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An experiment by Tversky and Kahneman (1981) illustrates that people's tendency to 
evaluate risky decisions separately can lead them to choose combinations of choices that are 
first-order stochastically dominated by other available combinations. We investigate the 
generality of this effect both theoretically and experimentally. We show that for any 
decisionmaker who does not have constant-absolute-risk-averse preferences and who 
evaluates her decisions one by one, there exists a simple pair of independent binary 
decisions where the decisionmaker will make a dominated combination of choices. We also 
characterize, as a function of a person's preferences, the amount of money that she can lose 
due to a single mistake of this kind. The theory is accompanied by both a real-stakes 
laboratory experiment and a large-sample survey from the general U.S. population. 
Replicating Tversky and Kahneman's original experiment where decisionmakers with 
prototypical prospect-theory preferences will choose a dominated combination, we find that 
28% of the participants do so. In the survey we ask the respondents about several 
hypothetical large-stakes choices, and find higher proportions of dominated choice 
combinations. A statistical model that estimates preferences from the survey results is best fit 
by assuming people have utility functions that are close to prospect-theory value functions 
and that about 83% of people bracket narrowly. None of these results varies strongly with the 
personal characteristics of participants. We also demonstrate directly that dominated choices 
are driven by narrow bracketing: when we eliminate the possibility of narrow bracketing by 
using a combined presentation of the decisions, the dominated choices are eliminated in the 
laboratory experiment and are greatly reduced in the survey. 
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1 Introduction

Tversky and Kahneman (1981) present an experiment that demonstrates an adverse e¤ect of �nar-

row bracketing�: a decisionmaker who faces multiple decisions and chooses an option in each case

without regard to the other decisions that she faces is prone to make a dominated combination of

choices that is inconsistent with any reasonable preferences. The experiment show that people make

this error when faced with only a pair of independent simple binary decisions that are presented on

the same sheet of paper. In our slight reformulation, subjects were presented with the following:

You face the following pair of concurrent decisions. First examine both decisions, then indicate

your choices, by circling the corresponding letter. Both choices will be payo¤ relevant, i.e. the

gains and losses will be added to your overall payment.

Decision (i): Choose between

A. a sure gain of £ 2.40

B. a 25% chance to gain £ 10.00 and a 75% chance to gain £ 0.00.

Decision (ii): Choose between

C. a sure loss of £ 7.50

D. a 75% chance to lose £ 10.00, and a 25% chance to lose £ 0.00.

If, as predicted by Kahneman and Tversky�s (1979) prospect theory, the decisionmaker is risk-

averting in gains and risk-seeking in losses and if she applies these preferences separately to the

decisions, then she will tend to choose A and D. This prediction was con�rmed: 60% of Tversky

and Kahneman�s (1981) participants chose this combination with small real stakes, and 73% did

so for large hypothetical stakes. But A and D is �rst-order stochastically dominated: the joint

distribution resulting from the combination of B and C is a 1
4 chance of gaining £ 2.50 and a

3
4

chance of losing £ 7.50; the joint distribution of A and D is a 1
4 chance of gaining £ 2.40 and a

3
4

chance of losing £ 7.60. The BC combination is equal to the AD combination plus a sure payo¤
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of £ 0.10. Our experiments � laboratory experiments both with real and hypothetical payments,

and a hypothetical-payment survey experiment with a representative sample from the general U.S.

population � con�rm the pattern of frequent AD choices, although at a somewhat lower level:

With large hypothetical payo¤s (the above amounts multiplied by 100) about 60% of participants

choose AD; for small real stakes, 28% of the subjects do so. (And 34% do so for small hypothetical

payments.) In the survey experiment we also �nd that between 40% and 50% of subjects make

dominated choices in three other large-stakes examples of sets of decisions, despite giving up larger

(hypothetical) amounts than in the original example � $50 or $75 in expectation, rather than $10.2

These dominance violations are a demonstration of narrow bracketing, because the choice of AD

is clearly due to the separate presentation.3 Theoretically, we are not aware of any utility theory ever

proposed that would allow for the choice of AD over BC.4 Empirically, almost no decisionmaker

presented with the explicit choice between AD and BC would choose AD, as is con�rmed by our

experiments where the violation rates under such a �broad presentation�treatment are reduced to

0% and 6%, respectively, in the laboratory and the survey.5

2Our instructions also made explicit that all random draws were independent, alleviating concerns that Tversky

and Kahneman�s results might be due to this ambiguity.
3A related example of narrow bracketing is Redelmeier and Tversky�s (1992) demonstration that the investment

choice in a risky asset can depend on whether the asset is framed as part of a portfolio of other assets or as a stand-

alone investment. See also the replication and variation in Langer and Weber (2001), and the literature cited there.

Other evidence on narrow bracketing in lottery choice include Gneezy and Potters (1997) and Thaler et al (1997)

who test whether mypoic loss aversion �a form of narrow bracketing �may serve as as a possible explanation of the

equity-premium puzzle, and by Camerer (1989) and Battalio et al (1990), both of whom present treatment variations

that suggest narrow bracketing of standard lottery choices. Papers that have explored the principles of what we call

narrow bracketing include Kahneman and Lovallo (1993), Benartzi and Thaler (1995) and Read, Loewenstein, and

Rabin (1999).
4Even models that allow for dominance violations � such as the disappointment-theory models of Bell (1985)

and Loomes and Sugden (1986), the related �choice-acclimating personal equilibrium�concept in K½oszegi and Rabin

(2007), as well as models with a taste for gambling such as Diecidue, Schmidt, and Wakker (2004) �do not permit

the preference for AD over BC, since BC is simply AD plus a sure amount of money.
5We examine the broad-bracketed presentation in three examples altogether in the survey experiment (see Section

3), and the violation rates are reduced from 66% to 6%, from 40% to 3%, and from 50% to 29%. The surprisingly

high violations of dominance in the last example even under broad presentation are inconsistent with any hypothesis
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The theoretical part of the paper contributes to understanding the generality with which narrow

bracketing can lead to dominated choices. Diecidue and Wakker (2002) follow de Finetti (1974) in

showing that unless a narrow-bracketing decisionmaker�s preferences exhibit risk neutrality, there

exists a set of correlated gambles such that her combined choice will be dominated by another feasi-

ble combination of choice. In this light, the insight from Tversky and Kahneman�s example is that

even if a prospect-theoretic decisionmaker merely ignores other choices that involve uncorrelated

events, she may choose a �rst-order stochastically dominated portfolio. In Section 2, we generalize

this in several ways. The main result establishes that the basic logic of Tversky and Kahneman�s

example extends quite broadly beyond prospect-theoretic preferences: if a narrow-bracketing deci-

sionmaker�s risk attitudes are not identical at all possible ranges of outcomes � essentially, if she

does not have constant-absolute-risk-aversion (CARA) preferences � then there exists a pair of

binary choices where she chooses a dominated combination.

The logic behind this simple result is itself simple. In the Tversky and Kahneman example,

a prospect-theoretic chooser changes from risk averse over a prospect in the gain domain to risk-

loving over the shifted prospect that lies in the loss domain. When narrowly bracketing, she takes

a less-than-expected-value certain amount over the lottery in the gain domain but takes the lottery

over its expected value in the loss domain. She�d be better o¤ doing the opposite. But the potential

for dominance depends neither on switches between risk aversion and risk-lovingness nor on where

or how her risk attitudes di¤er: if a person�s risk attitudes are not identical over all possible ranges,

then there always exists a lottery such that the distance between the lottery�s expected value and

the lottery�s certainty equivalent will be di¤erent for di¤erent outcome ranges. Hence, there exists

a non-risky alternative payment that a person would prefer to a given lottery in one range and

this payment is less attractive than a non-risky payment that she would reject in favor of the same

lottery in another range. If she is a narrow bracketer and is o¤ered both decisions between such

non-risky payments and the corresponding lotteries, then she will implement these two �narrowly

preferred�choices. But since her actual payo¤ is the sum of the two payo¤s, reversing her choices

about choice behavior that we are aware of and we do not understand what motives were induced by the design of

this example.
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leaves her with the same risk but a higher distribution of outcomes.

The argument also makes no assumption that the decisionmaker is an expected-utility maximizer

in the sense of weighting prospects linearly in probabilities, but follows solely from monotonicity

and completeness of preferences, plus the assumption that a certainty equivalent exists. In Section

2 we also establish two stronger results for the case that the narrowly-bracketing decisionmaker

evaluates prospects linearly in probabilities. First, we characterize as a function of preferences

a lower bound on the maximum amount that the decisionmaker can leave on the table in only

two choices. This characterization implies that a narrow bracketer with preferences substantially

di¤erent from CARA can be made to give up substantial amounts of money in only two choices

between uncorrelated gambles. Second, we show that even for a decisionmaker who has an arbitrarily

small propensity to narrowly bracket (measured in a particular way) there exists a pair of simple

binary choice problems such that she would violate dominance.

These results establish the existence of situations that generate dominance violations, but not

the empirical prevalence of such situations or scale of welfare loss from dominated choices. Indeed,

the fact that di¤erent pairs of binary choices are needed to �catch�decisionmakers with di¤erent

preferences means that any given pair of choices might induce dominance in only a small proportion

of the population. On the other hand, any non-CARA narrow bracketer who faces a large enough

set of varied choices will make a dominated choice overall if only one pair of those choices generates a

dominated choice, and she will su¤er a welfare cost that increases with the frequency of dominanted

choices. Further, it is important to note that while dominance violations are a clear example of

suboptimal behavior, there are many other ways in which an agent will fail to maximize her utility

if she does not incorporate multiple choices into a combined problem. We focus on dominance

violations because these are known to be mistakes for all monotonic preferences.6

However, while the high rates of dominance violations in the experiments indicate that sub-

jects are not broad-bracketing utility maximizers, this does not per se demonstrate that narrow-

bracketing utility maximization has much more explanatory power. We therefore jointly estimate

6While all of our experimental examples involve the possibly not-too-prevalent case of lotteries that lie fully in

the loss domain, a corollary of our main result is that if a person does not have CARA preferences over all lotteries

involving a chance of gain, she will be susceptible to dominated choices even when all risks involve gains.
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the subjects�utility and the pervasiveness of narrow bracketing, using a simple statistical model

where all agents are assumed to maximize their utility but where narrow-bracketing and broad-

bracketing agents co-exist. The results reinforce the dominance �ndings, suggesting that narrow

bracketing is frequent and that subjects exhibit largely coherent preferences given those narrow

brackets. We estimate that about �ve out of six decisions are made with narrow brackets, and that

the shape of the participants�utility function (assumed to be the same for both types of agents)

is reminiscent of Prospect Theory�s value function, with risk aversion in gains and around the sta-

tus quo point, and a preference for risk in losses. An important caveat is that such estimations

come with speci�c (albeit �exible) functional form assumptions �in particular that preferences are

homogeneous across the population. However, any hypothetical distribution of broad-bracketed

preferences in the population would run into di¢ culties with explaining several data patterns: (i)

the observed cases of dominance violations (ii) the strong e¤ects of broad versus narrow framing,

(iii) apparent shifts in the degree of risk aversion �there are some modal choices that broad brack-

eters would only make if they had a preference for risk in the gains domain, and other choices that

suggest wide-spread risk aversion. Moreover, we �nd that the "standard" expected-utility model

�which prescribes very mild but broad-bracketed risk aversion for all choices � performs really

poorly in our data: its prediction is observed in only few percent of the cases, below the level that

is predicted by assuming pure noise in all decisions. Even imposing homogeneity of preferences, the

estimated narrow model organizes the data better, correctly predicting the modal choice frequencies

in the majority of our experimental treatments.

The representative nature of the survey sample combined with the data on personal charac-

teristics allows us to ask who brackets narrowly. We �nd few strong correlations with observable

background characteristics, so that the main results hold about equally for almost all groups of

respondents. Re-estimating the model for di¤erent subgroups separately, we �nd that in each exam-

ined subgroup fewer than 22% of people are broad bracketers. But while the degree of bracketing is

small for all subgroups, there are a number of di¤erences in their preferences. Respondents in the

"non-white" ethnic/racial category are estimated to be more risk-neutral with respect to lotteries

around zero and in the gains domain. This corresponds to a signi�cant observed behavioral di¤er-
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ence: non-whites are less likely to violate dominance. Other di¤erences appear �e.g. the estimates

suggest more risk neutral preferenecs for men than for women, and likewise between math-skilled

and less math-skilled respondents �but these di¤erences are less pronounced and do not correspond

to reliable di¤erences in violation rates. Perhaps most surprisingly, we �nd no signi�cant e¤ect of

education on the violation rates.7

Taken together, our experimental and theoretical results illustrate the tension between as-

sessments of the positive versus the normative status of di¤erent models of risky choice: narrow

bracketing appears to be prevalent in decisions under risk, but will lead to decisions that are bad.

Rabin (2000a) formalizes a common intuition among researchers that the conventional diminishing-

marginal-utility-of-wealth expected-utility model not only fails in systematic ways to empirically

describe risk behaviors, but cannot even in theory provide a calibrationally plausible account of

modest-scale risk aversion. As suggested in Rabin (2000a, 2000b) and Rabin and Thaler (2001),

and brought into further focus by Cox and Sadiraj (2006) and Rubinstein (2006), the culprit in

the failure of the conventional model to account for departures from modest-scale risk neutrality

is the premise that choice is determined by �nal wealth: maintaining the assumption that people�s

weighting of prospects are linear in probabilities, the reality of widespread modest-scale risk aver-

sion could be accounted for by assuming as in Prospect Theory that changes in wealth are the

carriers of value.8 Yet we note that the existing evidence of preferences over changes in wealth is

essentially evidence of preferences over choice-by-choice isolated changes in wealth. As our new evi-

7The violation rate of respondent in the upper half of the income distribution is almost identical to that of the less

rich respondents. The respondents who correctly completed our set of three mathematical questions have a 9% lower

violation rate than the remaining respondents. Respondents with a bachelor�s degree have a 5% higher violation rate

than those with lower level of schooling. Respondents who report to have attended a math course in college have a

8% higher violation rate. None of these di¤erence is signi�cant at 5 percent in logistic regressions.
8 Indeed, papers such as Benartzi and Thaler (1995), Bowman, Minehart, and Rabin (1999), K½oszegi and Rabin

(2007) and many others have over the years emphasized that much of the insight of prospect theory as an alternative

to conventional expected-utility analysis can be gleaned even assuming linear-probability preferences. Safra and Segal

(2005) make the case even more clearly that the assumption that �nal wealth is the carrier of utility is the culprit:

they show that a wide range of models that allow non-linear probability weighting but assume �nal wealth as the

carrier of utility cannot provide plausible accounts of modest-scale risk aversion. Barberis, Huang and Thaler (2006)

give a closely related discussion in a di¤erent model.
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dence con�rms, most decisionmakers do not integrate their experimental choices with other choices

that occur even within the same experimental session, and certainly not with simultaneous risks

outside the experiment. Because the typical decisionmaker narrowly brackets preferences that do

not have a constant degree of abslolute risk aversion, one can conclude that she is apt to make

combinations of choices that are dominated. Along with other, less dramatic forms of mistakes,

this reinforces Wakker�s (2005) observation that choice-by-choice consistency with von Neumann�s

and Morgenstern�s axioms does not per se yield the features of rationality generally associated with

�expected-utility theory�.

Section 5 concludes the paper with a brief discussion of whether such violations may be observed

in markets where several agents interact, as well as some methodological implications for asessments

of risk preferences.

2 Theory

Assume that the world consists of decisions i = 1; :::; I that are to be made simulateneously, with

I di¤erent choice sets M1; :::;MI . Denote the choice made in choice set Mi by mi. Each possible

mi 2Mi induces a lottery, or probability distribution Li(xijmi) over changes in wealth xi 2 R of the

agent. We restrict attention to the case that the lotteries Li are independent between the "brackets"

i = 1; :::; I.9 The vector of choices m = (m1;m2; :::;mI) induces a probability distribution over the

sum of wealth changes xI =
X
i

xi, denoted by F (xI jm).

Following the terminology in Read, Loewenstein, and Rabin (1999), we assume that the deci-

sionmaker is a narrow bracketer, meaning that she chooses within each of the I choice sets according

to her preferences over the outcomes but without consideration to the fact that the relevant out-

come will be the combined outcome from all her choices. I.e. she evaluates the lotteries Li(xijmi)

but not the summed distribution F (xI jm). We assume further that the decisionmaker�s prefer-

ences are complete and strictly monotonic over the set of all possible lotteries, and that in her

9As noted in the introduction, it is clear that non-risk-neutral narrow bracketers can choose dominated combina-

tions if they are presented with correlated gambles. E.g. a risk-loving narrow bracketer may be tricked into paying

a premium for entering two bets on the same coin throw, once on Heads and once on Tails.
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narrow evaluation, certainty equivalents exist for all lotteries. Because preferences are monotonic,

the agent will never choose a dominated lottery within any single bracket � but the resulting

distribution F (xI jm) may be dominated. To de�ne the size of a �rst-order stochastic dominace

(FOSD) violation, we say that F1 dominates F2 by an amount � if it holds for all x in their support

that F1(x+ �) � F2(x). The decisionmaker violates FOSD by an amount � if she chooses a distri-

bution F2 that is FOS-dominated by another available distribution F1 by amount �: This measure

� has a straightforward interpretation: if the chosen F2 is dominated by an amount �, then the

decisionmaker could have chosen a distribution that is at least as desirable (from a broad-bracket

perspective) as receiving both F2 and a sure payment of �.

The propositions below state that lower bounds for the largest possible � are linked to the deci-

sionmaker�s variability of risk attitudes, which can be captured by describing certainty equivalents

and their variability. Let L be a lottery with expected value �L. Denote by eL � L+4x a lottery
that is generated by adding 4x to all payo¤s in L, keeping the probabilities constant: eL is a shifted
version of L. Finally, de�ne the decisionmaker�s net certainty equivalent for lottery L, NCEL, as

the di¤erence between the (gross) certainty equivalent CEL � the sure payment that makes her

indi¤erent to accepting L � and the expected value of L:

NCEL = CEL � �L:

NCEL is a measure of risk aversion towards the lottery L. A lower NCEL corresponds to a higher

degree of risk aversion, and the agent is risk neutral if NCEL = 0.

Proposition 1 establishes that a decisionmaker will violate dominance in joint decisions to the

degree that a shift can induce a change in the net certainty equivalent:

Proposition 1: Suppose that there exist shifted lotteries L and eL, such that jNCEL �
NCEeLj > �. Then there exists a pair of binary choices such that the decisionmaker violates

8



FOSD by the amount �.

All proofs are in Appendix 1.

The proof of the result strictly follows the construction of Tversky and Kahneman�s example,

where prospect theory predicts that the shift from negative-domain option D to positive domain

option B generates a strong di¤erence in the agent�s risk aversion. The proposition clari�es that

it is not necessary that the degree of risk aversion changes its sign as the lottery is shifted or that

the lottery be of the kind that Tversky and Kahneman used. Most importantly, the construction

works whenever the net certainty equivalent changes for any shift of any lottery. Not only does

this mean that dominance can result from narrow bracketing for non-prospect-theory prefrences,

but that it can result for all but a very particular class of preferences: e.g. for EU-representable

preferences the proposition implies that a dominance violation is possible for preferences that can

be represented by a utility function v if and only if v is not from the constant-absolute-value family

of utility functions, where v can be expressed as v(x) = CARA(x;�; �; r) � ��� exp(�rx), for any

(�; �; r) 2 R3. This is because the CARA family encompasses exactly those utility functions where

the net certainty equivalent is constant for all shifts of all lotteries L. But the proof of Proposition

1 does not rely on preferences being representable, and hence the violations can occur even for a

large class of non-EU preferences, as long as the decisionmaker narrowly brackets.

For any given �, however, Proposition 1 is silent about the set of preferences for which there

is a pair of lotteries L and eL with the property jNCEL � NCEeLj > �. To investigate when

decisionmaker is in danger of making a mistake of substantial size, we now consider preferences

that are representable by a (possibly reference-dependent) strictly increasing function v whose

expected value she maximizes � but with a narrow, bracket-by-bracket evaluation of the available

prospects. This allows to characterize a lower bound for the size of possible dominance violations,

9



by comparing preferences to the CARA family. To do so, we de�ne a metric for this comparison:

De�nition: For an interval [x; x] � R of changes in wealth,

K � inf
(�;�;r)

max
y2[v(x);v(x)]

jv�1(y)� CARA�1(y;�; �; r)j

is the horizontal distance between v and the family of CARA functions.

That is, for an interval [x; x], K is the smallest number such that all CARA functions are further

or equally far away in x-direction somewhere on the interval. We can now state another simple

proposition (although with a long proof):

Proposition 2: Suppose that v is strictly increasing and continuously di¤erentiable and has

a horizontal distance of K from the CARA family on the interval [x; x]. Then for all � > 0 there

exists a pair of binary choices � each between a binary lottery and a sure payment, and using only

payo¤s in [x; x] � such that a narrow bracketer with preferences represented by v violates FOSD

by an amount greater than K � �.

In the above de�nition, K indicates the change in risk attitudes across di¤erent ranges within

[x; x] � CARA represents a constant risk attitude, and K measures the distance between v and

CARA. Proposition 2 shows that there is a straightforward way to �nd an example where narrow

bracketing causes the decisionmaker to leave K on the table. The proof provides a construction

of two candidate lotteries LA and LB, where at least one of them can always be shifted in a way

that yields the violation. Further, the proposition ensures that these lotteries need involve only

two outcomes and lie fully within [x; x].

K is de�ned conditional not only on v, but also on the interval [x; x]. When the interval

is expanded, K (weakly) increases, and indeed is likey to become in�nitely large as the interval

increases. This is true, e.g., if v is a two-part linear function with a kink at some x-value or if v is

a constant relative risk aversion function (CRRA).

Our �nal theoretical result considers the question whether only fully narrow bracketer are in

danger of falling into such traps. The answer is no, and once again it is a construction similar

10



to Tversky and Kahneman�s example that delivers the result.10 However, to capture the relative

importance of broad versus narrow thinking, we now need to impose some additional structure on

the preferences. A convenient formulation is the global-plus-local functional form of Barberis and

Huang (2004) and Barberis, Huang and Thaler (2006): We assume that the agent�s choices are

determined by maximizing, over possible choice vectors m, the expression

U(m) = �

Z
u(xI)dF (xI jm) + (1� �)

X
i

Z
u(xi)dLi(xijmi).

Here u is a valuation function for money, which the decisionmaker applies both globally � evaluat-

ing total earnings, in the �rst term � and locally to each choice setMi, in the second term. Notice

that each element mi of m enters U in two ways: by contributing to the distribution F of total

wealth changes and through the narrow evaluation of payo¤s in bracket i alone. The parameter �

is the weight of the global part, and we assume that � 2 [0; 1), so that the decisionmaker exhibits

some degree of narrow bracketing. When � ! 1, choices correspond to fully broad mazimization,

and when � = 0, there is fully narrow bracketing. The proposition shows that if u is di¤erent from

CARA, then even mild degrees of narrow bracketing put the decisionmaker in danger of FOSD

violations � � could be arbitrarily close to 1.11

Proposition 3: Let u be strictly increasing and twice continuously di¤erentiable everywhere,

and suppose that u is not a member of the CARA family of functions. Then there is a pair of

binary choices, each between a 50/50 lottery and a sure payment, where the decisionmaker violates

FOSD.

In the proof of Proposition 3, it is shown that one can construct values fx1; x2; y1; y2; zg with

y2 > y1, such that the agent will make the following pair of lottery choices:

Reject gamble 1: A 50/50 gamble between x1�y1 and x1+ z, with y1; z > 0, versus x1 for sure.
10The result is even slightly simpler than in the original example, because it only uses 50/50 lotteries.
11The proof in the appendix covers a somewhat stronger statement, allowing for di¤erent valuation functions in the

broad versus narrow parts of the valuations. I.e. the proposition holds even if the function representing the broad

valuation (here, �u) is equal to CARA. It su¢ ces if the narrow valuation function (here, (1��)u) di¤ers from CARA.

11



Accept gamble 2: A 50/50 gamble between x2 � y2 and x2 + z, with y2; z > 0, versus x2 for

sure.

Due to y2 > y1, the choice combination (reject1; accept2) is dominated by (reject2; accept1).

The assumption that u is di¤erent from CARA is su¢ cient to identify two values x1 and x2 such

that the function�s local degree of risk aversion is larger at x1 than at x2. This can be used to show

that an appropriate set of small values y1, y2, and z can be found, with the above properties.

All three propositions highlight the role of constant absolute risk aversion. In fact, if most

people�s preferences were approximately CARA, then the typical decisionmaker would not make

dominated choices.12 There is certainly no strong evidence for prevalence of CARA preferences in

the literature (except for the special case of risk neutrality) but in the context of our discussion

it is important to note that all estimates of risk attitudes will crucially depend on the maintained

assumptions about bracketing.13 We are not aware of a study that simultaneously describes risk

attitudes and narrowness of bracketing, and will provide such an estimation in the following sections.

3 Experimental Design

We conducted two experiments in di¤erent formats: One laboratory experiment that replicates

and systematically varies the Tversky and Kahneman experiment ("Example 1", hereafter), and

one survey experiment with a large and representative subject pool, where we introduce additional

tasks. We describe the design and procedures of both experiments before describing the relevant

data.

The participants for the laboratory experiment were 190 individuals (mostly students) from the

12Although unstated, the converse of all propositions are also true: a person with CARA preferences will never make

dominated choices because with CARA the optimal choice within each bracket i is independent of the distribution

that is generated in the other brackets.
13The evidence on lottery choice behavior points at a decreasing degree of absolute risk aversion, for the average

decisionmaker � see e.g. Holt and Laury (2002) for laboratory evidence. As in most related studies, this stylized

result from Holt and Laury (2002) implicitly assumes fully narrow bracketing (� = 0 in our notation) when inferring

risk attitudes from lottery choice data. Dohmen et al (2005), in contrast, measure risk aversion also under the

assumption of broad bracketing.
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subject pool of the ELSE laboratory at University College London. They participated in 15 sessions

of sizes ranging between 7 and 18 particpants, in four di¤erent treatments. Each participant faced

one treatment only, consisting of one particular variant of the A=B=C=D choices of Example 1.

The wording was as given in the introduction.

In the �rst treatment, "Incentives-Small Scale", which was conducted in four sessions with

N = 53 participants in total, we used the payo¤s of A=B=C=D that were given in the introduction,

and these payments were made for real. In a "Flat Fee-Small Scale" treatment (three sessions,

N = 44), paticipants made the same two choices between A and B and between C and D, but only

the show-up fee was paid, as explained below. In the third treatment, "Incentives-Small Scale-Broad

Presentation" (four sessions, N = 45), they made only one four-way decision, choosing between the

distributions of the sum of earnings that would result from the four possible combinations of A and

C, A and D, B and C, and B and D. I.e., in this treatment we imposed a broad view on the two

decision tasks by adding up the payo¤s from the two decisions. For example, the combination of

A and D would be presented as "a 25% chance to gain £ 2.40 and a 75% chance to lose £ 7.60."14

Finally, in a "Flat Fee-Large Scale" treatment (three sessions, N = 48), the participants made the

two hypothetical choices of the second treatment, but we mutiplied all payo¤ numbers by a factor

of 100. Hence, they could make hypothetical gains and losses of up to £ 1,000 in this treatment.

On the �rst sheet of the experimental instructions, it was clari�ed that all random draws in the

course of the experiment would be independent draws and outcomes would be determined by coin

�ips. All choices were made in a paper-and-pencil format, with only very few oral announcements

that followed a �xed protocol for all treatments, and with the same experimenter present in all

sessions. After the choices on Example 1, the experiments moved on to a second part. This second

part is not analyzed in the paper, but the tasks are brie�y summarized in Table 1 and described in

detail in the appendix. The part II tasks di¤ered between the 15 sessions, but the participants were

not made aware of the contents of the part II before making their part I choices, so that the Example

1 choices cannot have been a¤ected by the di¤erences in the second part.15 The participants also

14 In this treatment, the order of the four choice options was randomly changed between the participants. In the

three treatments with two binary choices, we maintained the same order as in Tversky and Kahneman (1981).
15 In the second part, we tried out di¤erent lottery-choice problems that also addressed narrow-bracketing issues.
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had to �ll in a questionnaire and a sheet with �ve mathematical problems. Finally, the relevant

random draws were made and the participants were paid in cash. The entire procedure (including

payments) took about 40-50 minutes in each session.

An email was sent to the participants 24 hours before the session in which they participated, and

made them aware that (i) they would receive a show-up fee of £ 22, (ii) that they "may" make gains

and losses relative to their show-up fee, and (iii) that overall, they would be "about equally likely to

make gains as losses (on top of the £ 22)."16 Upon arrival at the laboratory, the participants learned

whether the experiment used monetary incentives or not, i.e. whether the outcome amounts were

added to/subtracted from their show-up fee. This procedure aims at minimizing possible e¤ects of

earnings di¤erences between treatments with hypothetical and real payments, by ruling out both

ex-ante di¤erences and anticipated ex-post di¤erences in average earnings. In those sessions where

we used real monetary incentives, the second part of the experiment was designed such that the

expected average of total earnings would indeed be at £ 22.17 A further role of the 24-hour advance

notice about the show-up fee was to make the losses more akin to real losses, as the participants may

have "banked" the show-up fee. The amount £ 22 was not repeated on the day of the experiment

before the subjects had made their Example 1 choices, and all gains and losses were presented

using the words "gain" and "lose". Table 1 summarizes the sessions, including a brief description

of the problems in part II of the experiment. In this description, "LC task" is short for a lottery

choice task between a 50/50 lottery and a sure outcome and "CE task" is short for a task where

the participants are asked to state their certainty equivalent for a given 50/50 lottery. "Example

2" will be presented in the next subsection, and more detail on the design of part II can be found

These problems were used as a pre-test for the survey experiment, and potentially for further laboratory experiments.

The initially announced payo¤ regime with respect to real versus hypothetical payments was always maintained in

the second part.
16The email text, and complete instructions of all experiments, are available upon request.
17On average, the subjects received £ 21.85 in these sessions, with a standard deviation of £ 7.70.
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in the appendix.

Treatm ent (part I) # of obs. Sessions Description of part I I tasks

Incentives-Small Scale 53 1-4

One of three LC tasks (N=33), or

two LC tasks sim ilar to Example 2 (N=20)

F lat Fee-Small Scale 44 5-7

One of three LC tasks (N=35), or

two LC tasks sim ilar to Example 2 (N=9)

Incentives-Small Scale-B road Presentation 45 8-11

Two LC tasks analogous to Example 2 (N=21), or three

CE tasks for 50/50 b etween {-10,0}, {-5 ,5} and {0,10} (N=24)

F lat Fee-Large Scale 48 12-15 Two LC tasks analogous to Example 2 (N=48)

Table 1: Overview of laboratory treatments.

The survey experiment used the survey tool of TESS (Time-Sharing Experiments in the Social

Sciences), which regularly conducts questionnaire surveys with a strati�ed sample of American

households, those on the Knowledge Networks panel. The panel members were recruited based on

their telephone directory entries, and are all used to answering questions via special TV-connected

terminals at their homes. For each new study, they are contacted by email. In the case of our

questionnaire, a total of 1,910 panel members was contacted, of whom 1,292 fully completed the

study. A further 30 respondents participated, but left at least one question unanswered. (We

included their responses in the analysis, wherever possible.) Each participant was presented with

one or several decision tasks, plus a short questionnaire that asked for information on mathematics

education and gave the participants three mathematical problems to solve. The data set also

contains information on each participant�s personal background characteristics such as gender,

employment status, income, and obtained level of education.

None of the lotteries was paid out, i.e. all choices were hypothetical. The amounts used in the

decision tasks ranged from �$1550 to +$2500.

In addition to the binary lottery choices we report here, subjects were also asked separate ques-

tions in which they were asked to state certainty equivalents for 11 di¤erent lotteries. In Appendix

3, we describe these experiments and the data, and discuss why we feel these certainty equivalence
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data are unreliable, as many participants cannot plausibly have understood the procedure.

Participants were randomly assigned to 10 di¤erent treatment groups, and each treatment

contained a di¤erent set of one, two or six decision tasks (including lottery choices and certainty

equivalent statements). Within each decision, the order in which the choice options appeared was

random across participants. Table 2 summarizes the tasks in each of the 10 treatments. Further

details on the tasks are given in the paragraphs following the table.

In each treatment, the participants� interfaces were programmed such that the participants

had to read through all their decisions �rst, before they could make their choices. Importantly,

the instructions that were presented to them on the �rst screen stated clearly that they should

make their choices as if all of their outcomes were paid. Hence, it is unlikely that choices were

made under a misunderstanding that only subsets of the decisions were relevant. Also, as in the
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laboratory experiment, the instructions made clear that all random draws were independent.

Treatm ent # of obs. # of LC tasks Description # of CE tasks Description

1 88 2 Example 1 - -

2 86 1

Example 1 �

broad presentation

- -

3 89 - - 2

CE for 50/50 b etween {0, 1000},

CE for 50/50 b etween {-1000, 0}

4 103 - - 1 CE for 50/50 b etween {0, 1000}

5 107 2 Example 2 - -

6 108 1

Example 2 �

broad presentation

- -

7 168 3

Example 2,

Example 4 �

broad presentation

3

CE for 50/50 b etween {-1400, 100},

CE for 50/50 b etween {100, 1600},

CE for 50/50 b etween {850, 2350}

8 185 3

Example 2 �

separate screens,

Example 3

3

CE for 50/50 b etween {-1000, 0},

CE for 50/50 b etween {-500, 500},

CE for 50/50 b etween {0, 1000}

9 174 2 Example 4 4

CE for 50/50 b etween {-650, 850},

CE for 50/50 b etween {-500, 500},

CE for 50/50 b etween {850, 2350},

CE for 50/50 b etween {1000, 2000}

10 184 3

Example 2 �

broad presentation ,

Example 4 �

separate screens

3

CE for 50/50 b etween {-1000, 0},

CE for 50/50 b etween {0, 1000},

CE for 50/50 b etween {1500, 2500}

Table 2: Overview of survey experiment treatments

The lottery choice tasks are similar to those in Tversky and Kahneman�s example, but with a
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slightly di¤erent wording.18 Our �rst set of decisions is parallel to the original example:

Example 1:

Decision 1: Choose between:

A. winning $240

B. a 25% chance of winning $1000 and a 75% chance of not winning or losing any money

Before answering, read the next decision.

Decision 2: Choose between:

C. losing $750

D. a 75% chance of losing $1000, and a 25% chance of not winning or losing any money

This replication was conducted in two treatments, once as descibed above (Treatment 1) and

once in the broad four-way presentation (Treatment 2), where we explicitly o¤ered the four com-

bined choices AC, AD, BC and BD, analogous to the third laboratory treatment. In both of these

treatments, the participants made no other choices.

In all other treatments, we used only 50/50 gambles. The following are the new examples that

we designed to generate dominance violations (the labels of choice options were changed from the

instructions, for the sake of the exposition):

Example 2:

Decision 1: Choose between:

A. not winning or losing any money

B. a 50% chance of losing $500 and a 50% chance of winning $600

Before answering, read the next decision.

Decision 2: Choose between:

C. losing $500

18Notice further the fact that we used USD amounts in the survey experiment, and GBP amounts in the laboratory

experiment.
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D. a 50% chance of losing $1000, and a 50% chance of not winning or losing any money

Example 2 was designed to bring loss aversion into play: if participants weigh losses heavier

than gains, they will tend to choose A over B, and if they are risk seeking in losses, they will tend

to choose D over C. Such a combination is dominated with an expected loss of $50 relative to the

reversed choices. This example, too, was conducted in isolation � i.e. with no other decisions for

the participants � and presented as stated here (Treatment 5) and in isolation and presented in a

broad-bracketing way (Treatment 6). In addition, the example was presented together with other

decisions, in three di¤erent ways. In Treatment 7, the two decisions appeared on the same screen.

In Treatment 8, they appeared on separate screens, with four other decisions appearing in between.

This variation was included to detect potential e¤ects of distractions caused by other choices. In

Treatment 10, the example was presented as a broad-bracketed four-way choice, alongside with

other decisions.

Example 3:

Decision 1: Choose between:

A. winning $1500

B. a 50% chance of winning $1000, and a 50% chance of winning $2100

Before answering, read the next decision. [...]

Decision 2: Choose between:

C. losing $500

D. a 50% chance of losing $1000, and a 50% chance of not winning or losing any money

Similar to Example 1, this example uses possible risk aversion in gains and risk lovingness in

losses. The choice of A and D is dominated with a loss of $50 on average. The example was only

conducted as stated here, in Treatment 8.19 An important new feature of the example is that all

possible combined outcomes involve positive amounts. Therefore, although a narrow evaluation of

the second decision would consider negative payo¤s, a broad-bracketing decisionmaker�s choices can

19 In treatment 8, the second decision of this example is also the second decision of Example 2, so that within the

data of Treatment 8, the occurances of dominance violations are correlated between the two examples.
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only be in�uenced by preferences for lotteries above zero. In particular, under the assumption of

broadly-bracketed choice, a decision for D over C would be evidence of risk-lovingness in gains.20

Example 4:

Decision 1: Choose between:

A. winning $850

B. a 50% chance of winning $100 and a 50% chance of winning $1600

Before answering, read the second decision.

Decision 2: Choose between:

C. losing $650

D. a 50% chance of losing $1550, and a 50% chance of winning $100

This �nal example uses a slightly more di¢ cult spread between the payo¤s and it involves some

payo¤s that are not multiples of $100. As before, a decisionmaker who rejects the risk in the �rst

decision but accepts it in the second decision (A and D) would violate dominance, here with an

expected loss of $75 relative to B and C. An new feature is that these choices sacri�ce expected

value in the second decision, not in the �rst. This implies that for essentially all broad-bracketing

risk averters the combined choice of A and C would be optimal: it generates the highest available

expected value at the lowest available variance. Di¤erent from the other examples, the prediction

for a broad-bracketed risk averter is therefore independent of the exact nature of her preferences. A

further property of the example is that A and C would be predicted even for some narrow bracketers

who have preferences like in Prospect Theory, with diminishing sensitivity for larger gains and losses,

loss aversion, and risk aversion/risk lovingness in the gain/loss domains. This is because the risky

choice D involves a possible gain of $100 so that a prospect-theoretic decisionmaker would only

accept the gamble D if the preference for risk in the loss domain is strong relative to the e¤ect of

20This is true only if Example 3 is viewed separately from the third lottery choice decision in this treatment

(Decision 1 in Example 2). Considering all three decisions, the treatment involves eight possible choice combinations,

only one of which involves a possible loss as only one of its eight possible outcomes. Hence, the choice of D in Example

would still be indicative of a preference for risk with almost all payo¤s being positive.
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loss aversion (which makes her averse to lotteries with payo¤s on both sides of zero). In particular,

the preference for risk in the loss domain needs to be slightly stronger than in the often-used

parameterization of Tversky and Kahneman (1992) � see footnote 27. Under the assumption of

narrow bracketing, the example therefore helps to discriminate between di¤erent plausible degrees

of risk lovingness in the loss domain. The example was conducted in Treatments 7, 9, and 10,

with di¤erences between broad versus narrow presentation, and with and without other decisions

appearing in between the two decisions.

4 Experimental results

4.1 Data Summary

Table 3 lists the frequencies of observing each of the four possible choice combinations in Example

1, in the four di¤erent laboratory treatments. The results of each of the treatments�second parts

are presented in the appendix.21

Treatm ent # of obs. A and C A and D B and C B and D

Incentives, Small Scale 53 0.21 0.28 0.11 0.40

F lat Fee, Small Scale 44 0.16 0.34 0.09 0.41

Incentives, Small Scale, B road Presentation 45 0.11 0.00 0.38 0.51

F lat Fee, Large Scale 48 0.15 0.54 0.08 0.23

Table 3: Choice frequencies in Example 1 � di¤erent laboratory treatments.

There is little di¤erence between the observed behavior in the �rst two treatments. No matter

whether the outcomes were actually paid or not, about half of the respondents chose the sure option

21We do not analyze the part II results further, noting that they are subject to possible in�uence of the �rst parts

and have few observations. The three lottery-choice tasks in the �rst two treatments were modelled after Redelmeier

and Tversky�s (1992) investment experiment. We abandoned further such tests when the data indicated that the

low level of behavioral variation between the three conditions would require large sample sizes to observe any e¤ects.

Generally, the participants made much more risk-seeking choices in all part II tasks; in the task similar to Example

2, only few FOSD violations appeared (see Tables 7.1, 7.2, and 7.3).
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of A over the lottery B, and slightly more than two thirds chose the uncertain loss of lottery D

over the sure loss in C. This con�rms Prospect Theory�s prediction of risk seeking behavior in the

losses domain, although the evidence in the �rst decision is less clear. 28 percent and 34 percent

of the two treatments�participants, respectively, chose the dominance-violating combination of the

risk-averting A and the risk-seeking D. The di¤erence in these two frequencies is insigni�cant at

any conventional level. A one-tailed Fisher exact test of the null hypothesis that the frequency of

observing A and D is identical under both treatments rejects at p = 0:346, and therefore �nds no

support for the alternative hypothesis that the frequency of dominance violations decreases if the

decisions are paid for real. Similarly, testing for di¤erences in the entire distribution of choices (not

just in the frequency of A and D), a two-tailed Pearson chi-square test rejects the null hypothesis

of no di¤erence at p = 0:866. Overall, there is no statistically signi�cant e¤ect of actually paying

the (small-scale) decisions in this data set.

A comparison of the Flat Fee-Small Scale treatment with the Flat Fee-Large Scale treatment

shows that if the hypothetical payo¤ numbers are larger, more participants indicate dominated

choices. The di¤erence between the frequencies of observing A and D increases from 34 perccent

to 54 percent, and this increase is signi�cant between the two treatments (p = 0:042, one-tailed

Fisher exact test).22 23

Finally, a comparison between the Incentives-Small Scale treatment and the Incentives-Small

Scale, Broad Presentation treatment suggests a strong e¤ect of narrow bracketing. If the partici-

pants are forced to view the decision problem from a broad perspective, they make much fewer A

and D choices (p < 0:001, one-tailed Fisher exact test), and also the overall distributions of choices

are signi�cantly di¤erent (p < 0:001, two-tailed Pearson chi-square test). This clearly indicates

that the subjects did not view the two decisions as a combined problem.

22But a Pearson chi-square test still supports the hypothesis of identical four-way distributions of choices, between

the two treatments (p = 0:221, two-tailed). In the light of the signi�cant result of the Fisher exact test we attribute

this failure to reject to the low numbers of observations.
23We note that the combination of the above comparisons does not reject the hypothesis that the di¤erence in

violation rates between our Incentives, Small Scale treatment and Tversky and Kahneman�s (1981) experiment is

largely driven by the larger payo¤ scale, not by the hypothetical/real payments di¤erence. A positive con�rmation

of this hypothesis would require a very expensive experiment with large real payments.
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The following table summarizes the frequencies of the representative-survey responses in the

four examples. The combination A and D is the dominated combination of choices in each of the

four examples.24

Treatm ent # of obs. D escription A and C A and D B and C B and D

1 88 Example 1 0.16 0.66 0.03 0.15

2 86 Example 1 � broad presentation 0.22 0.06 0.24 0.48

5 107 Example 2 0.24 0.53 0.05 0.19

6 108 Example 2 � broad presentation 0.09 0.38 0.12 0.41

7 171

Example 2

Example 4 � broad presentation

0.22

0.72

0.53

0.04

0.05

0.13

0.20

0.12

8 186

Example 2 � separate screens,

Example 3

0.26

0.23

0.44

0.50

0.07

0.10

0.23

0.17

9 179 Example 4 0.35 0.36 0.16 0.13

10 184

Example 2 � broad presentation ,

Example 4 � separate screens

0.15

0.33

0.24

0.43

0.24

0.10

0.36

0.14

Table 4: Results of lottery choices in di¤erent survey experiment treatments

The table shows that the frequencies of dominance violations is large when the examples are

presented as two choices. Pooling across treatments where applicable, the average frequencies of A

and D in Examples 1, 2, 3, and 4 are 0:66, 0:50, 0:50 and 0:40, respectively, out of four available

combinations. A and D is the most frequently chosen choice combination in all four examples

in the survey �note that this was not true in our small-scale laboratory treatments. Additional

summaries need to be given for treatments 7,8 and 10 of the survey, where the participants made

two binary choices and one four-way choice, which allows for a total of 16 choice combinations. Of

these, dominance can be violated by any of 7 available choice combinations (all combinations that

involve A and D in either example), and we �nd that the overall frequencies of choosing one of

these 7 combinations are at 0:56, 0:59 and 0:55, respectively.

24To interpret the reported frequencies of Treatment 8, recall that one decision is part of both Example 2 and

Example 3.
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All of these observed violations are inconsistent with any model where rational agents with

monotonic preferences make broad-bracketed choices. But the table also contains additional evi-

dence against broad bracketing. The variation between narrow and broad presentation of Examples

1, 2 and 4 shows that the frequencies of dominated choice are signi�cantly reduced in each of the

broad-presentation tasks. In two cases the reduction in violation rates are very large (Examples 1

and 4, where they are reduced to 0:06 and 0:03), but in the case of Example 2, there remains a

large proportion of respondents (0:29, summing across treatments) who choose the dominated A

and D even when the choice is presented to them in a broad way. These puzzling choices cannot

be explained even by narrow bracketing.25

Doubts about whether participants are broadly bracketing also arise from looking at the nature

of preferences that a broad bracketer would have to have in order to make the observed choices,

both within and across treatments. The design of Examples 3 and 4 is instrumental for this

consideration: in Example 3, we observe that 67% of the participants choose D over C, which is

(as argued in Section 3) evidence of risk-lovingness in the domain of gains under the assumption

of broad bracketing. However, the high frequencies of A and C in Example 4, particularly when

the example is presented broadly (72%), suggest the opposite �because the choice of A and D is

predicted for a risk-averse broad bracketer in that example.

To make such a comparison of hypothetical underlying preferences more rigorous, it is conve-

nient to look at treatments 7 and 10, which contain e¤ectively the same set of 16 available choice

combinations, only bracketed in di¤erent ways. One can ask whether any distribution of broadly

bracketed preferences in the population would predict the choices in these two treatments. Ob-

viously, no monotonic preferences would allow a dominated choice, so (considering the violation

rates reported above) a distribution of broad monotonic preferences can at most generate 44% of

the choices in these treatments. But because the available composite lotteries are identical and the

allocation of participants into treatments was random, all choice shifts between the treatments are

further evidence against broad bracketing. The largest possible proportion of choices that can be

25We have no good explanation for the high violation rate in this task. Perhaps (to give a couple of bad explanations)

the fact that "A and D" has fewer nonzero outcomes led some participants to choose it, or "B and C" is unattractive

due to the large-looming loss of $1000 that may appear even larger when contrasted with the small gain of $100.
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generated by a model with a stable distribution of broad-bracketing agents is therefore given by

adding up the smaller of the two observed frequencies of all 9 undominated choice combinations.

For brevity, we do not report the full distribution of choice combinations, but only report the added

frequencies: at most 33% of all choices could be generated by broad bracketers with monotonic pref-

erences, even if we allow for arbitrary heterogeneity in preference. Restricting preferences further

in various ways yields some insights into the plausibility of di¤erent models. If we require that all

agents have two-part CRRA preferences with a kink at 0,26 and allow the resulting two parameters

to vary arbitrarily across the population, we can explain up to 31% of the choices in treatments

7 and 10. In contrast, a distribution of CARA agents with di¤erent risk attitudes (a much less

�exible model with one parameter per agent) could only explain up to 17%. Restricting preferences

to meet the most standard model of economic decisionmaking �expected utility over total earnings

�would require near-risk-neutrality and could not explain virtually any of the participants�choices:

this model would predict B and C in Example 2 and A and C in Example 4 but only 2% of the

choices in treatment 7 follow this prediction.27

We also brie�y summarize the evidence in Table 4 that speaks for or against models where agents

have narrow brackets. As mentioned earlier, the surprisingly high frequency of A and D choices in

the broad presentation of Example 2 represents a failure of all reasonable models, including those

with narrow brackets. But at least in the binary choices, the results are consistent with narrowly-

26The utility function is v(x) =
�

x1� for x�0
��(�x1�) for x<0

	
, as in the parametrization of Prospect Theory�s value function

in Kahneman and Tversky (1992).
27As a comparison, consider the prediction success Tversky and Kahneman�s (1992) estimated version of Prospect

Theory, with the functional form given in the previous footnote with parameters  = 0:12 and � = 2:25. In treatment

7, the model would predict A and C in Example 4 and A and D in Example 2, wheras in treatment 10, it would

predict B and C in Example 2 and A and C in Example 4. These predictions, too, are only partially successful,

correctly predicting the choice combinations in 44% and 8% in the two treatments. In part, the poor performance

in treatment 10 is driven by the strange behavior of the respondents in Example 2 under broad presentation. But

furthermore, note that the above speci�cation of Prospect Theory would not predict D in the narrow presentation

of Example 4, because the preference for risks in the negative domain is too small to o¤set the e¤ect of the kink that

discounts the high payo¤ of $100 relative to the other payo¤s. To predict D, the sensitivity parameter  would have

to be at least 0:15.
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bracketed preferences. In particular, it is straightforward to �nd prospect-theoretic preferences that

have a very good �t: preferences that exhibit a su¢ cient degree of loss aversion and a su¢ ciently

fast decrease in the sensitivity to gains and losses would make a prediction that coincides with the

modal choice in each of the 13 binary choice problems contained in the survey �and a forteriori it

would correctly predict the modal choice of A and D in all four examples.

The table also shows that the experimental variation of presenting the two tasks of Examples 2

and 4 on separate screens, and hence including other choices in between, yielded no strong e¤ect.28

One can also ask more generally whether the inclusion of other tasks in a treatment appears to

in�uence the choice frequencies. With the exception of the broadly presented Example 2 �which

shows an e¤ect towards fewer violations when other choices are included �there appears no such

e¤ect. In particular, all of the binary choices can be quite reliably predicted independent of other

choices, but strongly dependent on the framing of the choice itself: in each of the four cases where a

binary choice problem was framed as a risky choice with positive payo¤s (the A-versus-B problems

in Examples 1, 3 and 4), at least 67% participants rejected the risk. In contrast, in each of the four

cases where a binary choice was presented as a risky choice with negative payo¤s (the B-versus-C

choices in Examples 1, 2 and 3), the risk was accepted by at least 67% of the participants.

Summing up, we �nd that broad-bracketing models can explain only a minority of choices,

whereas at least the binary choices can be somewhat well organized by assuming narrow brackets,

with risk aversion over gains and strong risk lovingness over loss. In the next subsection, we estimate

simultaneously the preferences and brackets that �t the behavior best, to provide a fuller and more

systematic statistical test of bracketing.

28The di¤erences in the frequencies of A and D are statistically signi�cant but small, and have opposite directions

between the two examples. In Example 2, the frequency decreases from 0:53 to 0:44 when other choices are included

(p = 0:091, two-tailed Fisher exact test) and in Example 4, the frequency increases from 0:36 to 0:43 (p = 0:026):
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4.2 Simultaneous estimation of preferences and degree of bracketing

4.2.1 Estimates with pooled data

We analyze the lottery-choice data from the survey experiment29 under the assumption that there

exist two types of decisionmakers: One broad type who integrates her lottery-choice decisions into

a joint decision problem (recall that each survey respondent has one, two or three lottery choices

to make, depending on the treatment � see Table 2) and a narrow type who makes all decisions

one-at-a-time. The broad type has frequency � in the population, the narrow type 1 � �. Apart

from their brackets, we assume that the decisionmakers have identical preferences represented by

an expected utility function v(�). In order to generate a positive likelihood of observing any feasible

choice vector, we assume logistic choice: The broad type calculates the expected utility E[v(m)]

from each available choice vector m, and probabilistically makes her choice according to

Pr(mj�; broad) = exp(�E[v(m)]P
m02M exp(�E[v(m

0)]
.

The narrow type calculates the expected utitlity for each choice within each bracket i, and chooses

each possible mi with probability

Pr(mij�; narrow) =
exp(�E[v(mi)]P

m0
i2Mi

exp(�E[v(m0
i)]
.

Hence, her choices in bracket i are independent of the choices in other brackets. The overall

likelihood of observing choice vector m is

Pr(mj�; �; u) = �Pr(mj�; broad) + (1� �) Pr(mj�; narrow),

where the narrow type�s likelihood of choosing the vectorm is calculated as the product Pr(mj�;narrow) =

�i Pr(mij�;narrow).

For the preferences v, we allow for a reference point x0 2 [�1500; 2500] and for a �exible hybrid

CRRA-CARA utility function both above and below the reference point.30 The function is given
29The laboratory experiment is much less suitable for preference estimations, due to the small variation in choice

sets.
30See Abdellaoui, Barrios and Wakker (2007) and Holt and Laury (2002) for related analyses with this hybrid

function.
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by

v(x) =

�1�exp(�r+(x�x0)1�+ )
r+

if x � x0

�1�exp(�r�(x0�x)1�� )
r�

otherwise

�
,

where r+; r�; +; � 2 (0; 1); and x0 2 [�1500; 2500]. The parameters r+ and + govern the shape

of the function for x-values above x0, and r� and � for values below x0. This separation into

two separate domains introduces a kink at x0 and makes v very �exible in terms of allowing for

changes in the degree of risk aversion. For r+ ! 0 or r� ! 0, the respective parts above or below

the reference points exhibit constant relative risk aversion, and for + ! 0 or � ! 0 they exhibit

constant absolute risk aversion.

Simultaneously to estimating these �ve parameters of v, we estimate the noise parameter � and

the proportion of broad types �. The following �gure shows the ML-estimated v function for the

(standard) case that the reference point is restricted to lie at x0 = 0.

1000 1000 2000

1000

500

500

x

v(x)

Figure 1: Estimated preferences v under the restriction that x0 = 0. Parameter estimates (and

estimated standard deviations in parentheses) are br+;x0=0 = 0:0014 (0:0004); b+;x0=0 = 0:0740
(0:0109); br�;x0=0 = 0:0005 (0:0001); and b+;x0=0 = 0:0000 (0:0000).

The parameter estimates for v are given in the caption of the �gure. Simulateneously, the

parameters � and � are estimated to be at b�x0=0 = 0:1119 (std. dev. 0:0491) and b�x0=0 = 0:0133
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(0:0012), and the obtained log likelihood is ll�x0=0 = �1926:4.

The estimate b�x0=0 = 0:1119 indicates the degree of broad bracketing: Only one out of nine

choice vectors is estimated to be made by a broad-bracketing decisionmaker. The estimates of the

preferences are very reminiscent of Prospect Theory�s value function, with risk aversion around

zero and in the positive domain, and a preference for risk in the negative domain. In part, this is

because of the restrictions that we impose on the parameters: we require that r+; r�; +; � all lie

in (0; 1), so that the function is necessarily concave above x0 and convex below x0. However, if we

relax the restriction that x0 = 0, then the degree of risk aversion is unrestricted at any given value

in [�1500; 2500], and the function is generally more �exible. In particular, the function includes

the special case of v being a CARA function (for x0 = �1500 and + ! 0), so that we can check

whether the propositions of Section 2 can apply: there, we had concluded that the decisionmaker

is in danger of making dominated decisions i¤ preferences do not exhibit contant absolute risk

aversion. Figure 2 shows the estimated function v for the estimation with general x0.

1000 1000 2000

200

200

400

x

v(x)

Figure 2: Estimated preferences of v with unrestricted x0. Parameter estimates (and estimated

standard deviations in parentheses) are bx0 = �474:0 (32:9); br+ = 0:0020 (0:0008), b+ = 0:1214
(0:0835), br� = 0:0000 (0:0000) and b� = 0:1902 (0:0617).

The �gure shows that the estimated structural break lies at �474:0. This is a surprising location
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that maximizes the �t of the model31 but on the whole does not change the general properties of

v with regard to relative changes in the degree of risk aversion. The decisionmaker is risk seeking

for most gambles in the range below x = 0, highly risk averse with respect to lotteries around

x = 0, and less risk averse for lotteries with only positive outcomes. The estimates of � and �

are b� = 0:1666 (std. dev. 0:0608) and b� = 0:0313 (0:0157), and the obtained log likelihood is

ll� = �1917:0. Hence, in the most general formulation of the model we �nd that about one out of

six choice vectors is estimated to be made by a broad bracketer.

We can now perform likelihood ratio tests to ask whether the estimated constellation of pref-

erences and brackets is signi�cantly di¤erent from its relevant special cases. First, we ask about

CARA. The special case that x0 = �1500 and + ! 0 yields a log likelihood of ll�CARA = �2131:8,

so that it is rejected at very high levels of signi�cance. In fact, CARA�s �t is not much better than

that of a fully random model, which has a log likelihood of ll�rand = �2158:5. Invoking our theo-

retical results of Section 2, this failure of CARA to �t the data establishes that the decisionmakers

are systematically subject to making dominated choices.

Next, we examine the importance of the degree of bracekting. First we restrict � = 0, so that all

decisionmakers are assumed to be narrow bracketers. This yields a log likelihood of ll��=0 = �1920:4.

While this implies that the restriction is rejected at statistical signi�cance of p = 0:009, the log

likelihood is still fairly close to that of the unrestricted model. In particular, the �t of the fully

narrow model is hugely better than the �t of the fully broad model where � = 1. This model yields

ll��=1 = �2120:0. In other words, the hypothesis that all decisionmakers integrate their choices into

a joint problem is strongly rejected, and is not much better than a fully random model of choice.

This test depends, of course, on the maintained assumptions about the preferences. In particu-

lar, we regard it as a strongly simplifying assumption that all agents are assumed to have the same

preferences. But in the light of the data summary in the previous section, it seems impossible that

allowing for heterogeneity would rescue the broad-bracketing model. There, we had found that even

31Notice that our experiment does not use any tasks that would provide "local" information at 0 or between �500

and 0. This may help explain the location of the reference point. Notice also that to obtain the maximum likelihood,

the convexity of v at �500 is important because in our sample there are many choices rejecting a sure payo¤ of �500.

The kink generates this convexity.
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allowing for an arbitrary degree of heterogeneity, only small parts of the data can be accounted for

within a broad-bracketing model.32

4.2.2 Who has narrow brackets, and whose utilities di¤er from CARA?

We now consider the background characteristics of the decisionmakers in the survey sample. The

panel is designed to be representative of the general U.S. population and we have a variety of

relevant characteristics in the data set. We separate the data set into pairs of subsamples according

to a series of criteria (e.g. male/female respondents), and for each of these subsamples we re-

estimate the model of the previous subsection. Appendix 4 complements the analysis with a series

of behavioral regressions, projecting the respondents�choices on their personal characteristics. This

allows to check whether the di¤erences between subgroups that we �nd in the model estimations

are signi�cantly re�ected in the frequencies of accepting/rejecting certain lotteries and in the rate of

violating dominance. The regression framework is also useful because for some of the explanatory

variables it is important to include control variables. We will cross-refer to the regression results

when discussing statistical signi�cance of di¤erence between the subsamples.

We use the following binary variables to create subsamples of the data, with numbers in

parentheses indicating the numbers of individuals in each category who made at least one lot-

tery choice (1109 in total): gender (532 male/577 female), age weakly below/strictly above the

median age of 45 (548/561), "white, non-hispanic"/other as the self-reported racial/ethnic back-

ground33 (815/294), household income weakly above/strictly below the median income34 (576/533),

complete/incomplete set of correct answers to all three of our numerical questions (174/935), self-

32As another goodness-of-�t measure we counted the frequency with which a model predicts an observed lottery

choice with the highest predicted likelihood, among the set of available choices. The best-�tting model among those

with � = 0 correctly predicts a total of 63.3% of all the lottery choices. In contrast, the best-�tting model with

� = 1 only has a rate of 47.6% correct predictions. Given that most choices are binary choices, this statistic further

illustrates the weakness of the broad-bracketing model. A fully random model would correctly predict 44.6% of the

choices. The value function of Kahneman and Tversky (1992), with their estimated parameters, correctly predicts

59.1% of the choices.
33 In the full data set, the racial/ethnic background is coded as a categorical dummy with �ve categories.
34Household income is measured in 20 brackets. The median category is the bracket [40,000; 49,999].
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reported attendance of a mathematics course in college (397/712), bachelor degree or higher/no

bachelor degree (306/803).

Table 5 reports the parameter estimates and standard deviations for all seven pairs of subsam-

ples, as well as the obtained log-likelihoods, under the restriction that the reference point lies at

x0 = 0. Figures 3-9 show the estimated preferences. For a comparison, the estimates for the full

data set are repeated in the �rst column of the table, and the preferences are depicted in Figure 1.

The last row of Table 5 shows the percentage of participants in each subsample that made at least

one A and D choice combination in one of the four examples.35

All data Gender Age Racia l/ethn ic background

male female <=45 >45 white non-white

�
0.1196

(0.0491)

0.2120

(0.0622)

0.0001

(0.0019)

0.1565

(0.0689)

0.0866

(0.0881)

0.1272

(0.0542)

0.0352

(0.1217)

r+
0.0014

(0.0004)

0.0010

(0.0004)

0.0017

(0.0005)

0.0012

(0.0004)

0.0017

(0.0005)

0.0015

(0.0004)

0.0009

(0.0006)

+
0.0740

(0.0109)

0.0812

(0.0149)

0.0617

(0.0159)

0.0673

(0.0134)

0.0796

(0.0146)

0.0772

(0.0122)

0.0544

(0.0149)

r�
0.0005

(0.0001)

0.0006

(0.0001)

0.0004

(0.0001)

0.0005

(0.0001)

0.0006

(0.0000)

0.0005

(0.0001)

0.0005

(0.0001)

�
0.0002

(0.0002)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

�
0.0133

(0.0012)

0.0159

(0.0019)

0.0113

(0.0013)

0.0142

(0.0018)

0.0125

(0.0024)

0.0149

(0.0014)

0.0101

(0.0025)

obs: 1109 532 577 548 561 815 294

ll� -1926.4 -913.2 -1009.6 -949.9 -975.3 -1381.2 -537.5

% A and D 50.1 49.3 50.8 46.7 53.3 53.3 41.7

Table 5: Parameter estimates (st. dev. in parentheses) with x0=0, data separated by variables.

35For ease of interpretation in the light of the estimation results, this percentage is calculated using only the narrow

presentations of the four examples, not the broad presentation cases.
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Household incom e Math answers College math course Educational degree

>=40,000 <40,000 3 correct <=2 correct attended not attended bachelor b elow bachelor

�
0.1539

(0.0681)

0.0627

(0.0577)

0.0928

(0.1334)

0.1133

(0.0471)

0.1615

(0.0697)

0.0880

(0.0666)

0.176

(0.0705)

0.1082

(0.0449)

r+
0.0012

(0.0003)

0.0017

(0.0007)

0.0008

(0.0004)

0.0016

(0.0004)

0.0014

(0.0006)

0.0014

(0.0005)

0.0013

(0.0005)

0.0015

(0.0005)

+
0.0608

(0.0116)

0.0876

(0.0201)

0.0454

(0.0150)

0.0815

(0.0127)

0.0751

(0.0160)

0.0718

(0.0143)

0.0547

(0.0158)

0.0834

(0.0139)

r�
0.0004

(0.0001)

0.0006

(0.0001)

0.0003

(0.0001)

0.0006

(0.0001)

0.0005

(0.0001)

0.0005

(0.0001)

0.0005

(0.0001)

0.0005

(0.0001)

�
0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

�
0.0163

(0.0019)

0.0109

(0.0015)

0.0201

(0.0044)

0.0126

(0.0012)

0.0159

(0.0022)

0.0121

(0.0014)

0.0170

(0.0026)

0.0122

(0.0013

obs: 576 533 174 935 397 712 306 803

ll� -967.9 -951.7 -282.1 -1639.7 -679.0 -1245.3 -516.7 -1406.2

% A and D 50.4 49.8 46.8 51.6 52.7 48.6 52.0 49.4

Table 5 (ctd.): Parameter estimates (st. dev. in parentheses) with x0=0, data separated by variables.
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Figure 3a: Estimated v(�), male respondents
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Figure 3b: Estimated v(�), female respondents
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Figure 4a: Estimated v(�), respondents �45 years
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Figure 4b: Estimated v(�), respondents >45 years
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Figure 5a: Estimated v(�), white respondents
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Figure 5b: Estimated v(�), nonwhite respondents
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Figure 6a: Estimated v(�), higher-income respondents.
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Figure 6b: Estimated v(�), lower-income respondents
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Figure 7a: Estimated v(�), math-skilled respondents
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Figure 7b: Estimated v(�), less math-skilled respondents
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Figure 8a: Estimated v(�); math-educated respondents
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Figure 8b: Estimated v( � ), non-math-educated resp.
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Figure 9a: Estimated v(�), respondents with bachelor
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Figure 9b: Estimated v(�), respondents without bachelor

The estimation results and the �gures show that the �ndings of the previous section are largely

robust to the inclusion of background characteristics. All estimated preferences have essentially the

same shape, and the estimated prevalence of broad bracketing (�) lies below 0:22 in all subsamples.

Likewise, almost all other parameter estimates are statistically indistinguishable between the pairs

of subsamples. In a separate, unreported set of estimates, we also ran the analogous regressions

without the restriction that x0 = 0. The results are qualitatively identical to the ones presented

here. In particular, all estimated preferences have the shape of Prospect Theory�s value function �

although the unrestricted model would allow for much more �exibility �and with a single exception,

all estimates of � lie below 0:3.36

But despite this robustness, there are some noticable di¤erences between the subgroups. For

example, male respondents have a signi�cantly higher estimate of � than female respondents. (In

fact, women do not seem to integrate the choices at all, according to our estimates.) However, as

indicated in the table�s last row and con�rmed in the the regressions of Appendix 4, this di¤erence

36The exception is the subsample of non-white respondents, whose estimate of � lies at 0:4 without the restriction.

This di¤erence under the more general model may also help to explain the behavioral di¤erences between this subgroup

and its comparison group, as described in the main text. Other di¤erences between the more general estimation and

the one with x0 = 0 were minor, so that we decided to report the restricted estimates, which are easier to interpret.
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is not strong enough to generate signi�cant di¤erences in the violation rates �respondents of both

genders have virtually identical frequencies of dominance violations. The reason may lie in the

stronger convexity of men�s utilities in the domain below zero, which leads them to have a slightly

higher rate of accepting unbalanced risks.

Older respondents appear to be more loss averse, as the slope of their valuation function is

steeper below zero. Their frequency of making a dominated choice is 14% higher than that of

younger respondents, but this di¤erence, too, is mostly insigni�cant in the regression analysis of

Appendix 4.

A stronger and more signi�cant e¤ect appears between white and non-white respondents. Non-

whites are much more risk neutral towards lotteries around zero and in the domain above zero.

This help them to avoid dominance violations, which is re�ected in the fact that their violation rate

is smaller than that of whites by 22%. The regressions in Appendix 4 indicate that this is mostly

due to a strong di¤erence in the behavior of hispanics.

Further di¤erences are in the more risk-neutral preferences for the groups of high-income and

math-skilled respondents, relative to their comparison groups. But again, the di¤erences do not

carry over to a statistically reliable e¤ect on behavior: dominance violation rates for high-income

respondents are almost identical to those of low-income respondents and about 9% lower for the

resondents who gave 3 correct mathematics answers, but none of this is signi�cant in logistic regres-

sions. This discussion partially con�rms recent studies by Benjamin, Brown and Shapiro (2006),

Frederick (2006) and Dohmen et al (2007) who �nd that risk preferences change systematically with

measures of IQ or mathematics skills.37 Our evidence is consistent with these �ndings in that we

also �nd more risk neutrality among the math-skilled respondents; but we do not �nd any robust

e¤ect on behavior, a discrepancy that may be due to the di¤erent pools of participants and/or to

the di¤erent behavioral outcome variables. It is also worth pointing out that between the more

and the less math-skilled respondents, we �nd no signi�cant di¤erence in �. Hence, it appears that

it is not a question of numerical complexity that determines whether or not the decisionmakers

37Their measures are comparable to our three numerical questions �one of our questions is equivalent to a question

that is used in Frederick (2006) and Benjamin, Brown and Shapiro (2006).
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integrate several choices into a joint choice problem. Even math-skilled respondents are susceptible

to narrow bracketing, and therefore to making dominated choices.

5 Conclusion

The paper establishes that, under a very wide set of preferences, the failure to combine several

decisions can lead a decisionmaker to make systematic mistakes in the form of dominated choices.

But we have not explored at all whether such situations are likely to arise naturally, or whether

economic actors out to make money (rather than social scientists out to make truth) will have

the wish and the ability to induce narrowly-bracketing agents to make stochastically dominated

choices. Indeed, the fact that the original example includes a choice among losses may mean that it

would be hard for "dominance-entrepreneurs" to readily introduce such choice combinations, since

presumably very few "clients" would volunteer to choose among losses. In this light, our results

showing that neither the inclusion of an all-loss choice nor risk-lovingness are needed to induce

dominance violations may add reason to believe that such violations might still be prevalent.

Against all this, we note that the frequency of dominated choices is not likely to be of special

interest for welfare analysis. While inducing stochastic dominance is a way to establish that mistakes

due to narrow bracketing exist independent of what preferences prevail (in the economy or in

economic theory), the prevalence of such choices does not tell us how much utility the decisionmakers

forgo. A complete welfare analysis of the losses due to narrow bracketing would measure the utility

loss occuring with the preferences that people seem to have.

A �nal methodological note concerns the question of how to devise empirical estimates of risk

preferences. Narrow bracketing implies that empirical estimates of risk attitudes will vary widely

with the assumptions about the scope of the decision problem that the agents face, and how well

those assumptions match the way agents themselves isolate choices in their minds. The currently

prevalent approach of researchers reporting estimates that can be varied by several orders of mag-

nitudes by dint of imposing varied assumptions about the scope of decisionmakers�choices needs a

substitute. Our statistical analysis demonstrates that it may be possible to include a simultaneous

estimation of the agents�degrees of bracketing so as to add more discipline to the measurement of
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risk attitudes.

6 Appendix 1: Proofs

Proof of Proposition 1: This is shown by a simple construction of two decision problems.

Suppose w.l.o.g. that L has the larger NCE, i.e. NCEL � NCEeL � �. Then the agent is more

risk averse with respect to lottery eL, so to make the her indi¤erent between accepting eL and a
sure payment, a relatively smaller sure payment su¢ ces. O¤er her the following pair of choices, for

small � > 0:

"Choose between lottery eL and a sure payment of CEeL + �".
"Choose between lottery L and a sure payment of CEL � �".

She will take the sure payment in the �rst choice, and the lottery in the second. In sum, she

will own the joint lottery given by CEeL + � + L. But she could have made the reverse choices,
which would have resulted in the joint lottery CEL � �+ eL.

The lotteries�expected values satisfy �eL = �L+4x. Using this together with eL = L+4x and
NCEL�NCEeL � �, it follows that CEL� �+ eL is identical to CEeL+ �+L plus an sure payment
of � � 2�: Hence, a dominance of size � can be approached. �

Proof of Proposition 2: Let CARA�(�) denote the CARA function that is closest to v (or

the limiting function if the minimum does not exist), i.e. reaches the distance K at a "K-distance

value" x 2 [x; x].38 The proof proceeds in four steps and one lemma. The �rst three steps show

the result for the case that CARA� is concave, and step 4 covers the case that CARA� is convex.

Several additional notations will be used repeatedly in the proof: For a given binary lottery L with

38Since K is de�ned as an in�mum over an open set of parameters (�; �; r) 2 R3 it may be that K can only be

approached but not reached with equality at some or all K-distance values �this may occur for one or more of the

CARA parameters growing to in�nity. To cover this case, the precise de�nition of a "K-distance value" is a value such

that for all � > 0 the horizontal distance lies within an �-neighborhood of K for a sequence of CARA functions that

converges to the limiting function. In the following, we will deal with the case that K can be reached with equality

at all K-distance points, but all statements and arguments extend to the case where K can only be approached.
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possible outcomes x0L and x
00
L and expected value �L 2 (x0L; x00L), let L(�) denote the function that

describes the straight line connecting (x0L; v(x
0
L)) and (x

00
L; v(x

00
L)) (the "lottery line"). Let CL(�) be

the function describing a straight line through (x0L; CARA
�(x0L)) and (x

00
L; CARA

�(x00L)). Similarly,

let HL(�) describe the straight line through (x0L; CARA�(x0L�K)) and (x00L; CARA�(x00L+K)), and

let JL(�) describe the straight line through (x0L; CARA�(x0L+K)) and (x00L; CARA�(x00L�K)). The

two lines CL and HL intersect at a point denoted by x�HL , and the two lines CL and JL intersect

at a point denoted by x�JL . The lemma stated after the proof contains some properties of x
�
HL

and

x�JL , as well as other properties of CARA functions.

From here on, we de�ne net certainty equivalents with respect to the functions that represent

underlying preferences. For example, for utility function v and binary lottery L, the net certainty

equivalent NCEvL is de�ned as CE
v
L��L, where CEvL satis�es the indi¤erence condition v(CEvL) =

Pr(x0)v(x0)+ (1�Pr(x0))v(x00). Finally, for any given point (x; v(x)) on the graph of v and for any

given CARA function ĈARA(�), we describe the horizontal distance between (x; v(x)) and ĈARA

by the function �(x; v; ĈARA) = x � ĈARA
�1
(v(x)): Under the assumptions of the proposition,

it holds that j�(x; v; CARA�)j � K for all x 2 [x; x].

Step 1: Existence of four K-distance points on the graph of v: Assume that v has a horizon-

tal distance of K from the CARA family on [x; x]. Then [x; x] contains (at least) four distinct

x-values fx1; x2; x3; x4g with j�(xi; v; CARA�)j = K for i = 1:::4 and with three sign changes of

f�(xi; v; CARA�)g4i=1 from one value to the next: there exist x1 < x2 < x3 < x4 such that either

[�(x1; v; CARA
�) = �K, �(x2; v; CARA�) = K, �(x3; v; CARA�) = �K and �(x4; v; CARA�) =

K] or [�(x1; v; CARA�) = K, �(x2; v; CARA�) = �K, �(x3; v; CARA�) = K and �(x4; v; CARA�) =

�K].

This statement holds because if there are fewer sign changes between K-distance values then

CARA� cannot be the closest CARA function but there exists a CARA function CARA00� with the

property that j�(x; v; CARA00� )j < K � � for all x 2 [x; x] and some � > 0. Towards a contradiction,

assume that there are no more than two sign changes of �(�; v; CARA�) between K-distance values

in [x; x]. With no more than two such sign changes, we can assume without loss of generality that
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the sign of �(�; v; CARA�) does not change from negative to positive and back to negative within the

set of K-distance values �so we have a sequence like in Figure 6.1.39 We will discuss several cases,

with the main argument given for Case 1. For each case, denote by XB the (possibly empty) set of

K-distance values that lie to the left of CARA� so that XB = fx 2 [x; x]j�(x; v; CARA�) = �Kg.

If XB is nonempty, let XA and XC be the two (possibly empty) sets of K-distance values below

XB and above XB, respectively: XA = fx 2 [x; x]jx < XB and �(x; v; CARA�) = Kg and

XC = fx 2 [x; x]jx > XB and �(x; v; CARA�) = Kg. Then all K-distance values lie in the set

XA [XB [XC . If XA and XC are nonempty, select xA to be the maximum of XA and xC to be

the minimum of XC .

Case 1: The sets XA; XB; XC are all nonempty and XB is a singleton with a unique element xB:

this case is depicted in Figure 6.1. (In the �gure XA and XC are also singletons, but the arguments

below cover the more general case of non-singleton sets.) By assumption, the minimum-distance

CARA function is CARA�, depicted as the middle dashed line through points A;B;C. Consider

the point B0 , with coordinates (xB +K � �; v(xB)) for some small � > 0. By the lemma, property

(i), there exists a CARA function CARA0� that connects the three points A;B
0; C.

Consider the following two-step manipulation of CARA functions: �rst, replace CARA� by

CARA0�; second, replace CARA
0
� by the function CARA

00
� : x! CARA0�(x��=2) �i.e. shift CARA0�

horizontally to the right by �=2. For su¢ ciently small �, this manipulation will always be feasible and

will result in a smaller horizontal distance to v: let eX� = fx 2 [x; x]jj�(x; v; CARA00� )j > K � �=4g

be the set of x-values that have a horizontal distance that is strictly larger than K� �=4 if CARA�

is replaced by CARA00� . We will show that this set is empty for su¢ ciently small �, by checking all

possible x 2 [x; x].

Checking x 2 XA [XB [XC : for x = xB the two-step manipulation yields j�(x; v; CARA00� )j =

j�(x; v; CARA0�)j+ �=2 = j�(x; v; CARA�)j� �=2 by construction of CARA0� and CARA00� . For x 2

fxA; xCg, the �rst manipulation from CARA� to CARA0� does not change the horizontal distance

39This is equivalent to assuming that if the sign changes twice, then it is from positive to negative to positive,

like in Figure 6.1. If the sequence of sign switches is from negative to positive to negative, then construct XA, XB ,

XC analogously, starting with the de�nition of XB = fx 2 [x; x]j�(x; v; CARA�) = Kg. All ensuing argument are

analogous.
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j�j, and the second manipulation reduces it by �=2 so that j�(x; v; CARA00� )j = j�(x; v; CARA�)j�

�=2. For x 2 XA [ XCnfxA; xCg, i.e. for K-distance values that lie below xA and above xC ,

the initial manipulation yields a strict reduction in j�j for su¢ ciently small � because CARA0� is

more concave than CARA�, and the second manipulation yields a further reduction by �=2. Hence,

j�(x; v; CARA00� )j > K � �=4 cannot hold at any initial K-distance value.

Checking x =2 XA [ XB [ XC : �rst observe that only in the vicinity of the initial K-distance

values in XA [ XB [ XC can v�s distance from CARA� be arbitrarily close to K. Since CARA�

and CARA00� converge for � ! 0, this observation implies that eX� converges to XA [XB [XC as
� ! 0. Hence, any sequence of pairs (�; ex�) such that � ! 0 and ex� 2 eX� has the property thatex� lies arbitrarily close to XA [XB [XC for su¢ ciently small �. But ex� cannot lie to the left of
xA or to the right of xC , by the same argument that we gave above for x 2 XA [ XCnfxA; xCg:

for any such values the two manipulations will yield a reduction in horizontal distance by strictly

more than �=2 so that j�(ex�; v; CARA00� )j > K � �=4 can hold only if ex� 2 (xA; xC). It follows thatex� must become arbitrarily close to the set fxA; xB; xCg so that there exists a subsequence of ex�,eex�, that converges to xA, xB or xC :
Could eex� converge to xA? eex� needs to satisfy j�(eex�; v; CARA00� )j > K � �=4, which implies

j�(eex�; v; CARA0�)j > K + �=4, since CARA00� results from a right shift of CARA0� by �=2. But

this means that as CARA� is replaced by CARA0� in the �rst manipulation, the horizontal distance

�(x; v; �) increases at x = eex� by more than 1=4 of the decrease at x = xB, or j�(eex�;v;CARA�)��(eex�;v;CARA0�)j
j�(xB ;v;CARA�)��(xB ;v;CARA0�)j

>

1=4. This is impossible if eex� converges to xA because by L�Hospital�s rule we have
lim
�!0

j�(eex�; v; CARA�)� �(eex�; v; CARA0�)j
j�(xB; v; CARA�)� �(xB; v; CARA0�)j

= lim
�!0

d
d� j�(eex�; v; CARA�)� �(eex�; v; CARA0�)j
d
d� j�(xB; v; CARA�)� �(xB; v; CARA0�)j

=
d
d� j�(lim�!0 eex�; v; CARA�)� �(lim�!0 eex�; v; CARA0�)j

1

=
d

d�
j�(xA; v; CARA�)� �(xA; v; CARA0�)j = 0;

a contradiction. The same argument rules out that eex� converges to xC .
Could eex� converge to xB? Again, eex� would need to satisfy j�(eex�; v; CARA00� )j > K � �=4, which
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implies that as CARA� is replaced by CARA00� the absolute horizontal distance j�(x; v; �)j is reduced

at x = eex� by less than 1=2 of the reduction at x = xB. But by L�Hospital�s rule we have
lim
�!0

j�(eex�; v; CARA�)� �(eex�; v; CARA00� )j
j�(xB; v; CARA�)� �(xB; v; CARA00� )j

= lim
�!0

d
d� j�(eex�; v; CARA�)� �(eex�; v; CARA00� )j
d
d� j�(xB; v; CARA�)� �(xB; v; CARA00� )j

=
d
d� j�(lim�!0 eex�; v; CARA�)� �(lim�!0 eex�; v; CARA00� )j

d
d� j�(xB; v; CARA�)� �(xB; v; CARA00� )j

=
d
d� j�(xB; v; CARA

�)� �(xB; v; CARA00� )j
d
d� j�(xB; v; CARA�)� �(xB; v; CARA00� )j

= 1;

in contradiction to the preceding sentence, so that eex� cannot converge to xB either. Therefore, eX�
must be empty under the assumptions of Case 1, for small enough �.

Case 2: The sets XA; XB; XC are all nonempty and XB is has multiple elements: In this case,

de�ne xminB = minXB and xmaxB = maxXB. The argument proceeds analogously to Case 1, but

instead of using the value xB in the construction, we will appropriately choose for each � a value

xB;� 2 fxminB ; xmaxB g which will determine the functions CARA0� and CARA00� .

For any given (small) � > 0 consider the point B0min with coordinates (xminB +K � �; v(xminB ))

and construct CARA functions CARA0min� and CARA00min� just as in Case 1 but using xminB instead

of xB: CARA0min� is the CARA function through A, B0min and C, and CARA00min� is a right shift

of CARA0min� by �=2. Among the x-values in XB, let xB;� be the value with the smallest reduction

in horizontal distance that is achieved by replacing CARA� by CARA0min� , given by

xB;� = arg min
x2XB

j�(x; v; CARA�)j � j�(x; v; CARA0min� )j.

Note that j�(x; v; CARA�)j�j�(x; v; CARA0min� )j is simply the horizontal distance between CARA�

and CARA0min� at the level v(x) � it can be rewritten as j�(ex;CARA0min� ; CARA�)j for ex =

(CARA�)�1(v(x)).40 This yields that xB;� 2 fxminB ; xmaxB g because the two functions cross in A

and C: for such a pair of functions, property (v) of the lemma implies that their horizontal dis-

tance cannot have a local minimum between A and C.
40The reformulation is j�(x; v; CARA�)j � j�(x; v; CARA0min� )j = (CARA�)�1(v(x)) � (CARA0min� )�1(v(x)) =ex� (CARA0min� )�1(CARA�(ex)) = �(ex;CARA�; CARA0min� ).
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If xB;� = xminB , then we set CARA0� = CARA
0min
� and CARA00� = CARA

00min
� . If xB;� = xmaxB ,

then we repeat the construction of the two CARA functions, but using xmaxB instead of xminB : we

construct CARA0max� through A, C and the point with coordinates (xmaxB +K� �; v(xmaxB )), and we

construct CARA00max� by shifting CARA0max� to the right by �=2. Then we set CARA0� = CARA
0max
�

and CARA00� = CARA
00max
� .

Notice that if xB;� = xmaxB , CARA0max� lies above CARA0min� at all x 2 XB: xB;� = xmaxB

implies that the horizontal distance decreases less at xmaxB than at xminB when CARA� is replaced by

CARA0min� �hence, the decrease at xmaxB is less than �. But when replacing CARA� by CARA0max� ,

the distance at xmaxB is decreased by �, so that CARA0max� lies above CARA0min� at x = xmaxB .

Since two CARA functions can only cross each other twice (by property (v) of the lemma), and

CARA0min� and CARA0max� cross in A and C, CARA0max� lies above CARA0min� at all x 2 [xA �

K;xC�K]. By an analogous argument, if xB;� = xminB then CARA0min� lies above CARA0max� at all

x 2 [xA �K;xC �K]. Therefore, we have established that the construction of xB;�, CARA0� and

CARA00� has the property that j�(x; v; CARA�)j � j�(x; v; CARA0�)j � � for all x 2 XB, and hence

j�(x; v; CARA�)j � j�(x; v; CARA00� )j � �=2 for all x 2 XB.

The arguments of Case 1 now apply to this construction, ruling out that j�(x; v; CARA00� )j >

K��=4 for small enough � at all x that are bounded away from XB. In addition, we need to rule out

two possibilities: First, could j�(x; v; CARA00� )j > K � �=4 be true for x 2 XB? This is impossible

due to the observation in the previous paragraph, which implies that j�(x; v; CARA00� )j � K � �=2

for x 2 XB. Second, could there exist a sequence (�; ex�) such that �! 0, ex� 2 eX� and ex� becomes
arbitrarily close to XB? No: ex� would have a subsequence eex� converging to some value eex 2 XB,
and due to the observation in the previous paragraph we could use the same argument as in Case

1, where convergence of eex� to xB was ruled out: It would have to hold that replacing CARA� by
CARA00� reduces j�(x; v; �)j at x = eex� by less than 1=2 of the reduction at x = eex, which is disproven
by L�Hospital�s rule for small enough �.

Case 3: XA is empty butXB andXC are nonempty, so that there is only one sign change between

K-distance values: The argument follows exactly the cases above, except that xA is chosen to be
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Figure 6.2: Lotteries L� and L��

the smallest possible value, xA = x.41

Case 4: XB is empty or both XA and XC are empty, so that no sign change between K-distance

points: in this case CARA� cannot be the best-�tting CARA funcntion, as it can obviously be

improved by a horizontal shift that moves it closer to v.

Step 2: Constructing the candidate lotteries: As seen in Proposition 1, it su¢ ces to �nd a lottery

that can be shifted within [x; x] such that its NCE varies by at least K. Step 1 guarantees the

existence of four K-distance values x1 < x2 < x3 < x4 where v lies on alternating sides of CARA�.

We start by considering the lottery L� in Figure 6.2, which has as its two outcomes x1 and x3, and

41The case that XC is empty is analogous, with xC = x.
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has an expectation �L� that is chosen such that the decisionmaker is indi¤erent between receiving

lottery L� or a sure payment of x2. This can be expressed as L�(�L�) = v(x2). This lottery

has the property that NCEvL� = NCECARA
�

L� � 2K, as can be seen in Figure 6.2: �NCECARA�L�

is equal to the horizontal distance between (�L� ; L
�(�L�)) and the graph of CARA

�(x � K) at

v-value v(x2) � this is because CARA��s NCE is constant across shifts of a lottery (property

(ii) of the lemma), so that NCECARA
�(x�K)

L� and NCECARA
�(x)

L� are identical. Hence, it holds

that NCEvL� = NCECARA
�

L� � 2K, as the point (x2; v(x2)) lies 2K to the left of the graph of

CARA�(x�K).

Analogously, consider the lottery L��, with outcomes x2 and x4 and the property that L��(�L��) =

v(x3) (see Figure 6.2). Here, it holds that NCEvL�� = NCE
CARA�
L�� + 2K.

Now consider changing the payo¤s of lottery L�, while holding its expected value �L constant,

at the level where L(�L) = v(x2). It holds that any such lottery L � with payo¤s x0 and x00 that lie

in [x; x], and with L(�L) = v(x2) � has the property that NCEvL � NCECARA
�

L . This is because

v(x0) � CARA�(x0 +K) and v(x00) � CARA�(x00 +K): If v reaches both of these upper bounds,

then NCEvL = NCECARA
�

L . All lower values of v(x0) and v(x00) result in a lower location of the

lottery line L(�), and hence in a smaller NCE.

Analogously, it holds that any binary lottery L with L(�L) = v(x3) has the property that

NCEvL � NCECARA
�

L , if both payo¤s lie in [x; x].

Notice that the above properties suggest a construction that would produce the desired result:

If we can shift lottery L� far enough to the right so that this shift results in a lottery eL� with
an expected utility of L(�eL�) = v(x3), then we are done: due to CARA�s constant NCE (see

property (ii) of the lemma), we would have NCECARA
�

L� = NCECARA
�eL� , so the two properties

NCEvL� = NCECARA
�

L� � 2K and NCEveL� � NCECARA
�eL� would imply that the NCE varies by

at least 2K, i.e. more than we need. We could then apply Proposition 1 to conclude that an

FOSD-violation by 2K can be generated. The trouble is that we cannot always shift L� far enough.

It may be that the upper payo¤ bound x is close or equal to x4, and that x3 is close to x4 , such

that x3 � �L� exceeds x� x3. Similarly, it may be that the analogous shift of L�� to the left is not

possible either.
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Figure 6.3: Lottery LA , in the case v(x1) < CARA(x1)

However, we can use the lotteries L� and L�� to generate two "shorter" lotteries that can be

shifted far enough for the NCE to vary by at least K (as will be shown in the next steps).

First, there exists a binary lottery LA with the properties that NCEv
LA

= NCECARA
�

LA
� K,

that the low outcome is x1, and that its expected utility is L(�LA) = v(x2). This lottery is depicted

in Figure 6.3. LA must exist due to continuity: consider the lottery L�, and decrease its high

payo¤ outcome x00, but keep the low lottery outcome x1 constant and keep the expected utility

constant at L(�) = v(x2). At the starting point of this variation, i.e. with a high outcome of x3,

it holds that NCEvL� = NCE
CARA�
L� � 2K. As the high outcome approaches x2, it holds that the

NCEs of v and CARA� of the resulting lotteries converge � they both approach 0. Hence, by

continuity of NCEv and NCECARA
�
, there exists a value x00

LA
that results in a lottery LA with
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Figure 6.4: Lottery LB , in the case v(x1) < CARA(x1)

NCEv
LA
= NCECARA

�

LA
�K. Let LA be the shortest lottery that has this property.

Second, and analogously, there exists a lottery LB with the property NCEv
LB
= NCECARA

�

LB
+

K, with a high outcome of x4, and with expected value of L(�LB ) = v(x3). Again, let L
B be the

shortest such lottery, i.e. the one with the highest low outcome. This lottery is depicted in Figure

6.4.

Step 3: If CARA� is concave, then either LA or LB can be shifted far enough: In the following

we will show that either LA can be shifted to the right, resulting in a lottery L eA with expected
utility L eA(�

L eA) = v(x3) or LB can be shifted to the left, resulting in a lottery L eB with expected
utility L eB(�

L eB ) = v(x2). By the observations in the previous step, this su¢ ces to prove the result
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(for the case that CARA� is concave). We consider 4 cases � two with v(x1) < CARA�(x1) (as

in Figures 6.3 and 6.4), and two with v(x1) > CARA�(x1).

Case 1: v(x1) < CARA�(x1), and LA is longer than LB, i.e. x00LA � x1 > x4 � x0LB : First

notice that the line HLA lies above the lottery line of L
A. (See Figure 6.3: HLA is a straight line

through (x1; v(x1)) and (x00LA ; CARA
�(x00

LA
+K)) � it is not drawn in the �gure, to avoid having

too many lines.) Hence, the value x�
HA , where HLA intersects CLA , lies to the left of �LA , i.e.

x�
HA � �LA . Similarly, for lottery LB, consider the auxiliary straight line HLB through (x4; v(x4))

and (x0
LB
; CARA�(x0

LB
�K)). HLB lies below CLB , so it holds that �LB � x�HB .

Now shift LB to the left, such that the low outcome of the resulting lottery LB
0
is equal to x1

� which is clearly possible without leaving [x; x]. Let x00
LB

0 be the high outcome of LB
0
, and �LB0

be its expected value. We will show that for this shifted lottery we have LB
0
(�LB0 ) � v(x2), which

implies the desired result, because by continuity of v there must then exist another shifted version

of LB, L eB, with L eB(�
L eB ) = v(x2).

For the shifted lottery LB
0
, consider the auxiliary linesHLB0 and CLB0 , which intersect at a point

x�
HB0 . Due to property (iii) of the lemma, the relative x-location of this intersection is constant,

i.e. it holds that x�
HB0 = x00

LB
0� (x4 � x�HB ). This implies that �LB0 � x�

HB0 , because both xLB0

and x�
HB0 were shifted by the same 4x (from x�

LB
and x�

HB ).

It holds that CLA(�LA) = v(x2) by construction. x�HA � �LA then implies that CLA(x
�
HA) �

v(x2), because CLA is increasing. From property (iv) of the lemma, it holds that CLB0 (x
�
HB0 ) <

CLA(x
�
HA): LA is longer than LB

0
and both have the same low outcome x1, so the property applies

here.

From above, we know that �LB0 � x�HB0 . But for all values x � x�
HB0 it holds that HLB0 (x) �

CLB0 (x
�
HB0 ), because HLB0 and CLB0 intersect in x

�
HB0 . Hence, HLB0 (�LB0 ) � CLB0 (x

�
HB0 ), and

since the lottery line LB
0
lies below HLB0 , it holds that L

B0(�LB0 ) � HLB0 (�LB0 ). Collecting the

above inequalities, it holds that LB
0
(�LB0 ) < v(x2).

Case 2: v(x1) < CARA�(x1), and LA is shorter than LB, i.e. x00LA � x1 � x4 � x
0
LB
: Now shift

lottery LA to the right, resulting in a lottery LA
0
with high outcome of x4 and expected value �LA0 .
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Figure 6.5: Location of CLB , CLA0 and L
A0 in Case 3 of Step 3.

Construct the auxiliary lines HLA0 and CLA0 , which intersect at x
�
HA0 . Analogous to the arguments

in Case 1, it holds that x�
HA0 � �LA0 and x

�
HB � �LB . Also analogous to the above arguments,

one can show that CLB (x
�
HB ) � v(x3), CLA0 (x

�
HA0 ) � CLB (x

�
HB ), HLA0 (�LA0 ) � CLA0 (x

�
HA0 ), and

LA
0
(x�
LA0
) � HLA0 (�LA0 ).42 Hence, LA

0
(�LA0 ) � v(x3), and it follows that there exists a lottery L

eA
with L eA(�

L eA) = v(x3).

Case 3: CARA�(x1) < v(x1), and LA is shorter than LB, i.e. x00LA�x1 � x4�x
0
LB
: Again, shift

42The following repeats the arguments, for this case. It holds that CLB (�LB ) = v(x3) by construction. x
�
HB � �LB

then implies that CLB (x
�
HB ) � v(x3), because CLB is increasing. Property (iv) of the lemma yields CLB (x

�
HB ) �

CLA0 (x
�
HA0 ): L

B is longer than LA
0
and both have the same high outcome x4. From above, we know that x�HA0 � �LA0 ,

so that HLA
0 (x) � CLA0 (x

�
HA0 ). Hence, HLA

0 (�LA0 ) � CLA0 (x
�
HA0 ), and since the lottery line L

A0 lies above HLA
0 ,

it holds that LA
0
(�LA0 ) � HLA

0 (�LA0 ).
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LA to the right, resulting in a lottery LA
0
with high outcome x4 and expected value �LA0 . Consider

Figure 6.5, which depicts the auxiliary lines CLA0 and CLB . Since both lotteries L
B and LA

0
have

the same high outcome, CLA0 lies above CLB . As in Case 2, we will argue that L
A0(�LA0 ) � v(x3).

To this end, we �rst ask where the lottery line LA
0
lies, relative to CLA0 . Observe that if the

entire line LA
0
lies above v(x3), then we are done � LA

0
(�LA0 ) � v(x3) must be true in this case.

Hence, assume to the contrary that the low payo¤ of LA
0
lies below v(x3), LA

0
(x0
LA0
) < v(x3), as

in the �gure. LA
0
crosses the horizontal line at level v(x3) somewhere, because its high payo¤ is

x4, and v is increasing. Furthermore, we will show in the next paragraph that at v-level v(x3), LA
0

necessarily lies to the left of CLA0 . Otherwise, there would exist a lottery
bL that is shorter than

LB but has all of the properties of LB: it would hold that NCEvbL = NCECARA�bL �K, x00(bL) = x4,
and bL(�bL) = v(x3). This would contradict the de�nition of LB as the shortest lottery with these
properties.

The following shows existence of bL, for this case. Consider the lottery bbL with outcomes x0
LA0

and x00
LA

0 , and an expected value �bbL that is chosen such that bbL(�bbL) = v(x3). If LA0 lies to the right
of CLA0 at v-level v(x3), then it follows that NCE

vbbL < NCECARA�bbL �K. Hence, we can increase the

lower outcome of this lottery, keeping the expected value �bbL constant, until (by continuity) there
results a lottery bL with NCEvbL = NCECARA�bL �K, as claimed in the previous paragraph.

The observation that LA
0
lies to the left of CLA0 at v-level v(x3) implies that there exists a

value ex where CLA0 crosses the horizontal line at level v(x3), see Figure 6.5. (This is true because
otherwise CLA0 would lie entirely above the horizontal line at v(x3) and could therefore not lie to the

right of LA
0
at v(x3).) Also, it holds that LA

0
lies above CLA0 at ex, i.e. LA0(ex) � CLA0 (ex) = v(x3).

Next, construct the auxiliary lines JLB and JLA0 , which intersect with CLB and CLA0 , respec-

tively, at x�
JB
and x�

JA0
. Analogous to Case 1, it holds that x�

JB
� �LB and x�JA0 � �LA0 .

43 The �rst

of these inequalities implies that CLB (x
�
JB
) � CLB (�LB ) (because CLB is increasing), and hence

CLB (x
�
JB
) � v(x3).

43This is because JLB lies above the lottery line L
B and JLA lies above L

A, and the relative locations of x�
JA

0 and

�LA0 are not a¤ected by the shift from LA to LA
0
.
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Now, we have

CLA0 (x
�
JA

0 ) � CLB (x�JB ) � v(x3),

where the �rst inequality is implied by property (iv) of the lemma. Since CLA0 is increasing and

reaches the level v(x3) at ex, this implies that x�JA0 � ex. Since LA0 is increasing and lies above CLA0
at ex, it follows that LA0(x�

JA0
) � LA0(ex) � v(x3). Finally, since x�JA0 � �LA0 (and LA0 is increasing)

it follows that LA
0
(�LA0 ) � v(x3), the desired result.

Case 4: CARA�(x1) < v(x1), and LA is longer than LB, i.e. x00LA � x1 > x4 � x0LB : This is

analogous to Case 3. Shift LB to the left, so that the resulting lottery LB
0
has the lower outcome

x1. Then, analogous versions of all arguments for Case 3 apply, yielding LB
0
(�LB0 ) � v(x2).44

Step 4: The previous steps show the result for the case that CARA� is concave. This can be

used to show that if CARA� is convex, the result holds as well.

Suppose that CARA� is convex. Consider the functions that describe v and CARA�, but

viewed from upside-down: bv = �v(�x) and \CARA�(x) = �CARA�(�x). Both of these mirrored

functions are increasing in x, on the interval [�x;�x], and \CARA� is concave. Also, for any

CARA function CARA : x! CARA(x), it holds that \CARA : x! �CARA(�x) is also a CARA

function, and that the horizontal distance between v and CARA on [x; x] is equal to the horizontal

distance between bv and \CARA on [�x;�x]. Hence, \CARA� is the best-�tting CARA function forbv on the interval [�x;�x], with distance K (because if there were a CARA function ĈARA(�) with

a lower horizontal distance, then it would also be true that �ĈARA(�x) is a CARA function with

a lower horizontal distance from v on the interval [x; x]).

44The following sketches the steps: CLB0 lies above CLA . If the entire line L
B0
lies below v(x2), then LB

0
(�LB0 ) �

v(x2) holds. Assume to the contrary that LB
0
(x00
LB

0 ) > v(x2). LB
0
crosses the horizontal line at level v(x2) to the

right of CLB0 , because otherwise the de�nition of L
A would be violated. Hence, there exists a value eex where CLB0

crosses the horizontal line at level v(x2), and LB
0
(eex) � CLB0 (eex) = v(x2). For the locations where the auxiliary lines

JLA and JLB0 intersect with CLA and CLB0 , respectively, it holds that x
�
JA � �LA and x

�
JB

0 � �LB0 . Therefore, and

from property (iv) of the lemma, we have CLB0 (x
�
JB

0 ) � CLA(x
�
JA) � v(x2). Since CLB0 is increasing and reaches

v(x2) at eex, this implies that x�JB0 � eex. Since LB0
is increasing and x�

JB
0 � �LB0 , it follows that L

B0
(�LB0 ) �

LB
0
(x�
JB

0 ) � LB
0
(eex) � v(x2).
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Hence, from the result of step 3, we know that there is a pair of shifted lotteries, with payo¤s

in [�x;�x], such that bv�s net certainty equivalent varies by at least K between the two lotteries.

This pair of lottery choice tasks can be re�ected around zero, by reversing the sign of all payo¤s.

Since bv is the mirror image of v, the resulting pair of lotteries will also have the property that v�s
net certainty equivalent will varies by at least K between the two lotteries. Also, all payo¤s of the

re�ected lotteries lie in [x; x]. Hence, we can apply Proposition 1 to obtain the result. �

Lemma: Properties of CARA:

(For notation, see the �rst two paragraphs of the proof of Proposition 2.)

(i) Consider a set of three points f(x1; v1); (x2; v2); (x3; v3)g that is strictly monotonic: x1 <

x2 < x3 and v1 < v2 < v3. There exists a CARA function that connects the three points.

(ii) For any CARA function CARA(�) and any binary lottery L, NCECARAL is constant across

shifted versions of L, where 4x is added to both payo¤s as in Section 2. I.e., NCECARAeL �

NCECARAL = 0.

(iii) Let (L; eL) be a pair of shifted lotteries. Then x�HeL �x0eL and x�JeL �x0eL are both independent
of the shift 4x. I.e. the relative location of x�HL and x

�
JL
does not change if L is shifted.

(iv) Let �; r > 0, so that CARA is strictly concave. Consider a pair of lotteries (eL; eeL) such
that eeL that is longer than eL, i.e. x00eeL � x0eeL � x00eL � x0eL. If both eeL and eL have the same low payo¤
(x0eeL = x0eL), then CL(x�HeeL) � CL(x

�
HeL) and CL(x�JeeL) � CL(x

�
JeL), i.e. for the longer lottery, both

values CL(x�HL) and CL(x
�
JL
) are at least as large. If both have the same high payo¤ (x00eeL = x00eL),

then the reverse inequalities are true, CL(x�HeeL) � CL(x
�
HeL) and CL(x�JeeL) � CL(x

�
JeL).

(v) Consider two CARA functions CARA1(x) = �1 � �1 exp(�r1x) and CARA2(x) = �2 �

�2 exp(�r2x). Their horizontal distance �(x;CARA1; CARA2) is unimodal: its derivative w.r.t. x

changes its sign no more than once.

Proof: (i) For a CARA function with parameters �; �; r to connect (x1; v1) and (x3; v3), we
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need

v1 = � � � exp(�rx1)

v3 = � � � exp(�rx3).

First restrict attention to the case that the CARA function is strictly concave (i.e. �; r > 0) and

that � > v3. Under these conditions, and with some algebra, the above equations imply that � can

be expressed as a function of �,

� = exp(
x3

x3 � x1
ln(� � v1)�

x1
x3 � x1

ln(� � v3))

=
(� � v1)

x3
x3�x1

(� � v3)
x1

x3�x1

.

Plugging the �rst of the expressions for � into the equation for v1 yields an expression for r, as a

function of �:

r =
ln(� � v1)� ln(� � v3)

x3 � x1
Now vary �, and ask what values can the CARA function have at x2, if it connects (x1; v1) and

(x3; v3). Using the above expressions for � and r, it holds that

CARA(x2) = � � � exp(�rx2)

= � � (� � v1)
x3�x2
x3�x1 (� � v3)

x2�x1
x3�x1 .

As � approaches v3 from above, this expression approaches v3. Also, it holds that as � approaches

1, r approaches 0, and therefore the function becomes approximately linear between x1 and x3.

Hence, by varying �, all points (x2; v2) that lie above the straight line between (x1; v1) and (x3; v3)

can be reached, by a concave CARA function that also connects (x1; v1) and (x3; v3).

Now, consider the points that lie below the straight line between (x1; v1) and (x3; v3). Notice

that the upside-down images of convex CARA functions are concave CARA functions (�CARA(�x),

like in step 4 of the proof of Proposition 2), so that the above argument applies: We can �nd a

convex CARA function connecting (x1; v1); (x2; v2); and (x3; v3) i¤ we can �nd a concave CARA

function connecting (�x3;�v3); (�x2;�v2); and (�x1;�v1). This can be achieved by the above

construction.
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(ii) For a binary lottery L with lower payo¤ x0L, express the higher payo¤ as x
00
L = x

0
L + �

00 and

the expected value as �L = x
0
L +

b�. By the de�nition of the certainty equivalent CECARAL ,

CARA(CECARAL ) = Pr(x0L)CARA(x
0
L) + (1� Pr(x0L))CARA(x00L)

=
�00 � b�
�00

CARA(x0L) +
b�
�00
CARA(x0L + �

00).

Using the functional form of CARA, and NCECARAL = CECARAL � �L, this is equivalent to

exp(�r(NCECARAL + b�)) = �00 � b�
�00

+
b�
�00
exp(�r�00),

which implicitly de�nes NCECARAL independent of the lottery�s lower payo¤ x0L. Since shifting

the lottery to eL is equivalent to a shift in x0L while keeping �
00 and b� constant, it follows that

NCECARAL = NCECARAeL .

(iii) It is straightforward to check that the relative location of x�HL is

x�HL � x
0
L

x00L � x0L
=

eKr

e�r(x
00
L�x0L) + eKr

.

Since 4x is added to both x00L and x0L, the term (x00L � x0L) is constant. Hence,
x�HL

�x0L
x00L�x0L

is constant.

Similarly, one can check that x�JL has the relative location

x�JL � x
0
L

x00L � x0L
= � (1� e�rK)

(e�rK � 1� erK�r(x00L�x0L) + e�r(x00L�x0L))
.

This expression, too, depends only on (x00L � x0L), so it is constant across shifts of the lottery.

(iv) To calculate CL(x�HL), �rst solve
x�HL

�x0L
x00L�x0L

= eKr

e
�r(x00

L
�x0

L
)
+eKr

for x�HL :

x�HL =
1

e�r(x
00
L�x0L) + eKr

�
x0Le

�r(x00L�x0L) + x00Le
Kr
�

The functional form of CL is given by

CL(x) = � � (� exp(�rx0L))(1 +
x� x0L
x00L � x0L

(exp(�r(x00L � x0L))� 1)).

Plugging x�HL into this expression yields

CL(x
�
HL
) = � � � e

Kr�rx00L + e�rx
00
L

e�r(x
00
L�x0L) + eKr

.
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Taking partial derivatives, one can see that the expression is increasing in both variables x0L and x
00
L,

if � > 0 and r > 0. Now, observe that if eeL is longer than eL and the two lotteries have the same lower
payo¤, then eeL can be generated from eL by increasing x00eL, so the inequality CL(x�HeeL) � CL(x

�
HeL)

follows from the monotonicity of CL(x�HL) in x
00
L. If they have the same higher payo¤, then

eeL can
be generated from eL by decreasing x0eL, and CL(x�HeeL) � CL(x

�
HeL) follows from the monotonicity in

x0L.

Similarly, one can check that the intersection of CL and JL occurs at v-level

CL(x
�
JL
) = � � �e�rx0L + �e�rK e�rx

0
L � e�rx00L

e�rK + e�r(x
00
L�x0L)

,

and again, the partial derivatives with respect to x0L and x
00
L show that the expression is increasing

in both x0L and x
00
L, if � > 0 and r > 0. The same reasoning as in the previous paragraph then

yields the results for CL(x�JeeL) and CL(x
�
JeL).

(v) The horizontal distance between CARA1 and CARA2 is given by �(x;CARA1; CARA2) =

x�CARA�12 (CARA1(x)). The inverse of CARA2 is given by CARA
�1
2 (v) = � 1

r2
ln(�2�v�2

). Hence,

�(x;CARA1; CARA2) = x+
1
r2
ln(�2��1+�1 exp(�r1x)�2

).

The statement is true because the second derivative of � w.r.t. x is

d2

dx2
�(x;CARA1; CARA2) =

(�2 � �1)(�r1)2�1 exp(�r1x)
((�2 � �1)�1 exp(�r1x))2

,

which has a constant sign. �

Proof of Proposition 3.We show a more general version of the proposition, which covers the

case that choices are representable by maximizing over m the expression

U(m) =

Z
u(xI)dF (xI jm) +

X
i

Z
v(xi)dGi(xijmi).

Here, u is the global evaluation of the distribution of total earnings, and v is the local or narrow

evaluation of wealth changes in each bracket. Both are assumed to be increasing and twice contin-

uously di¤erentiable. This generalizes the assumptions made in Section 2, where v(x) = �u(x). In

the following version of the proposition, there are only two choices to be made (I = 2) but this too

is only a simpli�cation. As we will see, the gambles o¤ered in brackets 1 and 2 (to be constructed

58



in the proof) can be made arbitrarily small for the result to hold, so that by the continuity of u

and v these gambles would generally not a¤ect the choices in any other existing brackets, unless

these choices were knife-edge cases. Hence, �xing I = 2 is not very restrictive.

Proposition 30: Suppose that v is not CARA (i.e. not ��� exp(�rx), for any (�; �; r)). Then

there is a world consisting of a pair of choices (I = 2), where the decisionmaker violates FOSD.

Proof: We will show that there exists a pair of 50/50 lottery choices of the following kind,

violating FOSD:

Reject gamble 1: A 50/50 gamble between x1�y1 and x1+ z, with y1; z > 0, versus x1 for sure.

Accept gamble 2: A 50/50 gamble between x2 � y2 and x2 + z, with y2; z > 0, versus x1 for

sure. Importantly, y2 > y1.

Due to y2 > y1, the choice combination (reject1; accept2) is FOS-dominated by (reject2; accept1).

We �nd appropriate values of x1; x2; y1; y2; z in two steps.

(i) If v is di¤erentiable but not CARA, then there exist payo¤s x�1 6= x�2 such that the Arrow-

Pratt degree of risk aversion rAP (x) = �v00(x)
v0(x) is di¤erent at the two locations. This can be shown

by showing the reverse statement: suppose that rAP (x) is constant and equal to some value r, at

all x. Then we have a �rst-order linear di¤erential equation for the function v0: v00(x)+ rv0(x) = 0,

which has the general solution v0(x) = � exp(�rx). Integrating yields the general solution v(x) =

� � � exp(�rx), i.e. that v is CARA.

(ii) Consider a fair 50/50 gamble in an arbitrary bracket i: The decisionmaker can either receive

a certain payo¤ xi or a 50/50 gamble between xi+ � and xi� �. (We will show that as � gets small,

the expression v00(x)
v0(x) will be important, and that we would need di¤erent certainty equivalents to

o¤set the gamble at x�1 and x
�
2.) Fix the choices in the other bracket at m�i, which will generate a

distribution F�i(�jm�i) over the sum of earnings in bracket �i. For anym�i, there exists a payment

ci(xi; �;m�i) that would need to be added to xi in order to make xi+ ci into a certainty equivalent,

i.e. for the decisionmaker to be indi¤erent between accepting and rejecting the gamble. This

payment ci(xi; �;m�i) is implicitly de�ned by U(x+ci(xi; �;m�i)jrejecti;m�i) = U(xjaccepti;m�i).
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Using the global-plus-local form, this isZ
u(x+ xi + ci(xi; �;m�i))dF�i(xjm�i) + v(xi + ci(xi; �;m�i))

�
Z
1

2
u(x+ xi + �) +

1

2
u(x+ xi � �)dF�i(xjm�i)�

1

2
[v(xi + �) + v(xi � �)]

= 0.

With �x xi andm�i, we can view this as h(�; ci(�)) = 0, and apply the implicit function theorem

to �nd that

dci
d�

= � (@h=@�)
(@h=@ci)

=

R
1
2u
0(x+ xi + �)� 1

2u
0(x+ xi � �)dF�i(xjm�i) +

1
2 [v

0(xi + �)� v0(xi � �)]R
u0(x+ xi + ci(�))dF�i(xjm�i) + v0(xi + ci(�))

.

Now consider the pair of brackets labelled 1 and 2, and simultaneously o¤er such a 50/50

gamble to win or lose � in both of them, starting from sure payo¤s of x�1 and x
�
2 (taken from part (i)

above). Now, since the decisionmaker can either accept or reject the gamble in the other bracket j

(with j 2 f1; 2g and j 6= i), we have to consider two cases for m�i in the expression for dcid� . But

di¤erentiating both of these expressions once again with respect to �, and taking the limit �! 0, it

is straighforward to see that for both possible choices mj 2 facceptj ; rejectjg, the second derivative

of ci(�) has the same limit:

lim
�!0

d

d�

dci
d�
(acceptj) = lim

�!0

d

d�

dci
d�
(rejectj) =

u00(x�i + x
�
j ) + v

00(x�i )

u0(x�i + x
�
j ) + v

0(x�i )

(The complete expressions for d
d�(

dc
d� ), evaluated separately at mj 2 facceptj ; rejectjg, are available

upon request.)

Now compare this expression between i = 1 and i = 2. In the denominator and in the numer-

ator, respectively, the same expressions u00(x�i + x
�
j ) and u

0(x�i + x
�
j ) are added in both brackets.

But v00(x�1)
v0(x�1)

6= v00(x�2)
v0(x�2)

by the result of (i). Hence, there is an � such that the second derivative of

ci(xi; �;m�i) is di¤erent between i = 1 and i = 2, for all � < �. This holds irrespective of the

behavior in bracket j 6= i, because the limit of d
d�
dci
d� is the same for both possible values of mj .

I.e., even if the choice in bracket j changes arbitrarily often as we send � to 0, it is still true that
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d
d�
dci
d� approaches a di¤erent limit in the two brackets. Hence, there is an � < � such that the

certainty equivalent itself is di¤erent, i.e. c1(x�1; �) 6= c2(x�2; �), because if two functions have di¤er-

ent continuous second derivatives over an interval, then they have a di¤erent value somewhere in

that interval. Wlog, assume c(x�1; �) < c(x�2; �). Then, by the de�nition of a certainty equivalent

and by monotonicity of u and v, there exists a value c with c(x�1; �) < c < c(x�2; �), such that the

decisionmaker strictly prefers to get x�1 + c for sure over the 50/50 gamble between x
�
1 + � and

x�1 � �, and he strictly prefers the 50/50 gamble between x�2 + � and x�2 � � over x�2 + c for sure.

Hence, the desired payo¤s exist: pick a � that is small enough to not change these choices, and set

x1 = x
�
1 + c; x2 = x

�
2 + c; y1 = �+ c; y2 = �+ c+ �; z = �� c. �

7 Appendix 2: Part II of the laboratory experiment

The �rst two treatments of the laboratory experiment, (Incentives-Small Scale and Flat Fee-

Small Scale) were conducted with analogous second parts, which di¤ered only with respect to

real/hypothetical payments. In each of the two treatments, the �rst set of sessions (sessions 1 and

2 in the �rst treatment, and sessions 5 and 6 in the second treatment) �rst involved the Example

1 choices described in the text, and then a single investment choice for each participant, which

followed the design of Redelmeier and Tversky (1992). Each participant was randomly designed to

one of the following three choices (presented to the participants without the labels in brackets, and

with the sentence in curly parentheses only for participants in the �rst treatment):

[One Gamble:] You now have the opportunity to play a gamble that o¤ers a 50% chance to win £ 4 and

a 50% chance to lose £ 2. {The gamble will be payo¤ relevant, i.e. all gains and losses will be added to your

overall payment.} Which of the following do you choose?

[Y1.] Play the gamble.

[N1.] Do not play the gamble.

[Five v Six Gambles:] You now have the opportunity to play a gamble that o¤ers a 50% chance to win

£ 4 and a 50% chance to lose £ 2.
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You can play the gamble several times, not just once. For each gamble that you play (50% chance to

win £ 4 and 50% to lose £ 2), there will be a separate coin �ip. Which of the following do you choose?

[Y2.] Play the gamble six times.

[N2.] Play the gamble �ve times.

[Five v Five-Plus-One Gambles:] You now have the opportunity to play a gamble that o¤ers a 50%

chance to win £ 4 and a 50% chance to lose £ 2.

You can play the gamble several times, not just once. For each gamble that you play, there will be a

separate coin �ip.

You will play the gamble (50% chance to win £ 4 and 50% chance to lose £ 2) �ve times, but you do not

yet know your wins and losses. Which of the following do you choose?

[Y3.] Play the gamble for the sixth time.

[N3.] Do not play the gamble for the sixth time.

In the remaining Incentives-Small Scale sessions 3 and 4, after the Example 1 choices, the

participants received a sheet that (i) announced an increase in the show-up fee by £ 10, and (ii)

reminded them of the overall expected payo¤ of £ 22. Then they faced the following two choices,

similar to Example 2:

[Example 2�:]You face the following pair of concurrent decisions. First examine both decisions, then

indicate your choices, by circling the corresponding letter. Both choices will be payo¤ relevant, i.e. the gains

and losses will be added to your overall payment.

Decision 3: Choose between

E. a sure gain of £ 0.50

F. a 50% chance to gain £ 6.00 and a 50% chance to lose £ 4.00.

Decision 4: Choose between

G. a sure loss of £ 5.00

H. a 50% chance to lose £ 10.00, and a 50% chance to lose £ 0.00.

In the remaining session of the Flat Fee-Small Scale treatment, the participants also recieved an

additional sheet after the Example 1 choices, which reminded them of (i) the fact that all payments

were hypothetical, and (ii) that the participation fee was £ 22. Then they faced the same two choices
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of Example 2�, except for the sentence concerning the payo¤ relevance. As the �nal two sheets in

both treatments, the participants received the math problems and the personal questionnaire.

Table 7.1 summarizes the choice frequencies of these two treatments, split up according to the

di¤erent choices in the second part.

Sessions # of obs. A and C A and D B and C B and D Y1 Y2 Y3 E and G E and H F and G F and H

1,2 33 0.18 0.24 0.15 0.42 11/11 8/11 8/11 - - - -

3 ,4 20 0.25 0.35 0.05 0.35 - - - 0 .05 0.00 0.35 0.60

5,6 35 0.17 0.37 0.11 0.34 11/12 12/12 11/11 - - - -

7 9 0.13 0.52 0.30 0.36 - - - 0 .00 0.11 0.11 0.78

Table 7.1: Choice frequencies in the �rst two treatments.

In the the �rst two sessions of the third treatment (sessions 8,9), Incentives-Small Scale-Broad

Presentation, the participants �rst made the four-way choice of Example 1, then they received

a sheet that announced an increase in the show-up fee by £ 10, then they �lled in the personal

questionnaire, then they received the following choices, which are analogous to Example 2 (but

with smaller payo¤s):45

[Example 2�:]You face the following pair of concurrent decisions. First examine both decisions, then

indicate your choices, by circling the corresponding letter. Both choices will be payo¤ relevant, i.e. the gains

and losses will be added to your overall payment.

Decision 2: Choose between

E. a sure gain/loss of £ 0.00

F. a 50% chance to gain £ 6.00 and a 50% chance to lose £ 5.00

Decision 3: Choose between

G. a sure loss of £ 5.00

H. a 50% chance to gain/lose £ 0.00, and a 50% chance to lose £ 10.00

Finally, the participants received the math problems.

In the remaining two sessions of this treatment (sessions 10,11), the procedure was the same, but

45The order of choice options within the two decisions was randomized across participants in this treatment, also

in this part of the experiment (cf. footnote 14). In the other treatments, the order was always constant.
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instead of the Example 2�choices, the participants received three sheets asking for their certainty

equivalents for the three 50/50 gambles between -£ 10.00 and £ 0.00, -£ 5.00 and £ 5.00, and £ 0.00

and £ 10.00. For the example of the second of these three tasks, the wording was the following:

[CE for {-5,5}:]Consider the following uncertain gain/loss:

U: a 50% chance to gain £ 5.00 and a 50% chance to lose £ 5.00

Also consider the following �xed gain/loss:

V: a sure gain/loss of £ Z

The exact value of Z is randomly chosen at the end of the experiment: All multiples of £ 0.10 that lie

between -£ 4.90 and +£ 5.00 are equally likely. Negative numbers indicate that you lose, and positive numbers

indicate that you gain.

Make the following choice:

I want to make the �xed gain/loss V if the gain/loss £ Z is higher than £ _____ (insert a number

between -5.00 and +5.00). If £ Z is lower than or equal to that, I want to make the uncertain loss U.

In the Flat Fee-Large Scale treatment (sessions 12, 13, 14 and 15), the procedure was analogous

to sessions 8,9 of the Incentives-Small Scale-Broad Presentation treatment, except for di¤erences

with respect to paid/hypothetical payments and small/large payo¤ scale: The participants �rst

made their (separately presented) Example 1 choices, then received a sheet that reminded them of

the show-up fee, then �lled in the personal questionnaire, then made the same choices as in Example

2�, but with all payo¤ numbers mulitplied by 100, and �nally answered the math problems.

Table 7.2 summarizes the lottery choice frequencies in the last two treatments. Table 7.3 reports

the mean responses in the CE tasks of sessions 10 and 11 (with standard deviation in parentheses),

as well as the mean across participants of the variation in the participant�s net certainty equivalents

between two lotteries (reported for two of the three pairs of lotteries). In each participant�s case,
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a value of 0 would indicate constant absolute risk aversion between the two lotteries.

Sessions # of obs. A and C A and D B and C B and D E and G E and H F and G F and H

8,9 21 0.14 0.00 0.33 0.52 0.29 0.05 0.24 0.43

10,11 24 0.08 0.00 0.42 0.50 - - - -

12 ,13,14,15 48 0.15 0.54 0.08 0.22 0.15 0.21 0.15 0.50

Table 7.2: Choice frequencies in the last two treatments.

Sessions # of obs. CE for {-10,0} CE for {-5 ,5} CE for {0,10}

d i¤erence in NCE

between {0,10} and {-10,0}

d i¤erence in NCE

between {0,10} and {-5,5}

10,11 24

-4 .40

(1.67)

0.45

(2.38)

4.97

(2.09)

-0 .63

(2.90)

-0 .48

(2.72)

Table 7.3: Certainty equivalent statements.

8 Appendix 3: Certainty-equivalent elicitation in the survey ex-

periment

The following are the instructions for eliciting the certainty equivalents for the 50/50 lottery between

$850 and $2350.

Decision 1: Consider the following:

Q. You have a 50% chance of winning $850 and a 50% chance of winning $2350

R. You will be given some unknown amount of money

What is the smallest amount of money that you would need to be given in option R for you to select

that option over taking your chances with option Q?

Rules:

Before the study began, an unknown amount between $850 and $2350 was determined for option F. If

this unknown amount is higher than your answer, then you will receive the unknown amount. If the unknown

amount is lower than or equal to your answer, you will receive option E.

All amounts between $850 and $2350 are possible and equally likely, as the unknown amount.
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The results of this and the elicitation tasks for the other lotteries are summarized in the following

two tables, separated into two groups: First, 7 tasks whether multiples of $100 were used as

outcomes and their spread was $1000, and second, 4 tasks where multiplies of $50 were used and

the payo¤ spread was $1500.

Lot. payo¤s Treatment % min
Mean of

stated NCE

% risk

neutral
% max

-1500,-500 0.05 354.53 0.08 0.62

-1000,0 0.03 303.51 0.15 0.16

-1000,0 0.05 265.40 0.15 0.13

-500,500 0.07 139.90 0.03 0.35

-500,500 0.04 132.93 0.05 0.22

0,1000 0.01 -66.70 0.38 0.12

0,1000 0.03 -141.91 0.26 0.10

0,1000 0.05 -175.95 0.30 0.04

500,1500 0.38 -236.74 0.21 0.06

1000,2000 0.44 -229.66 0.26 0.08

1500,2500 0.41 -195.82 0.26 0.11

Table 8.1: Stated certainty equivalents of 50/50 lotteries with payo¤ spread $1000.

Lot. payo¤s Treatment % min
Mean of

stated NCE

% risk

neutral
% max

-1400,100 0.02 567.43 0.01 0.42

-650,850 0.04 84.41 0.05 0.15

100,1600 0.24 -259.52 0.01 0.09

850,2350 0.28 -377.73 0.04 0.07

850,2350 0.27 -381.2 0.03 0.06

Table 8.2: Stated certainty equivalents of 50/50 lotteries with payo¤ spread $1500.
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The means of the respondents�stated net certainty equivalents for the 11 50/50 lotteries are

reported in the fourth columns of Tables 8.1 and 8.2, alongside with some other statistics of the

elicited distributions. The tables show that the reported certainty equivalents vary widely as the

lotteries are shifted across the interval [�$1500; $2500], suggesting (together with Proposition 1)

a large scope for FOSD violations that are due to the variablility of risk attitudes. The results

systematically indicate a preference for risk taking in the domain of losses, and a strong degree of

risk aversion in the gains domain.

However, we note that these data are probably unreliable. It seems doubtful that all or even

most of the participants have su¢ ciently well understood the incentive-compatible random-price

procedure. Severe limits in understanding are indicated by the large frequencies of extreme re-

sponses, as indicated in the columns labelled "% min" and "% max" of the tables: On average over

the tasks, 32% of the responses lie at the boundaries of the possible response sets, which indicates

that a large proportion may not have given an honest response, because one would need highly

unusual preferences to indicate that one is indi¤erent between a monetary payo¤ x for sure and a

50/50 lottery between x and x+ y, where y 6= 0. Though this high frequency does not imply that

there is no useful information in the responses of the certainty equivalence tasks, it is di¢ cult to

draw conclusions from data that are potentially severely biased.

9 Appendix 4: Regression analysis of choices on background vari-

ables

We use the variables descried in Section 4.1.2 as our main explanatory variables of interest. At least

the �rst three of these variables (gender, age, racial/ethnic background) can safely be viewed as

exogenous so that in addition to regressions on the full set of variables, we add a set of regressions

where the dependent variables are regressed on each variable alone, with no other person-speci�c

control variables.46 In all regressions, we also include a dummy variable for the experimental

46The following are the variables that we used in the regressions with all regressors: gender, performance in the

three maths questions (4 categories, for 0-3 correct answers), dummy for self-reported attendance of a maths course
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treatment, because the tasks were di¤erent between the treatments.

As dependent variable, we �rst take a dummy that indicates whether the decisionmaker chose

a combination of lotteries that is FOS-dominated by another available combination (an A and

D choice). Further, we run three additional regressions with alternative left-hand side variables:

Dummies that indicate whether (i) the decisionmaker made a weakly risk averse choice in the gains

domain (i.e. she chose a sure positive outcome over a lottery that has two positive outcomes and

weakly higher expected value), (ii) whether she made a weakly risk averse choice in the losses

domain,47 and (iii) whether she made a loss-averse choice, i.e. she was risk averse choice with

regard to a lottery that had one positive and one negative outcome. Comparisons between these

regressions will indicate whether any between-group di¤erences in FOSD violations can be explained

by di¤erences in the revealed degrees of risk aversion between the groups. In each regression, we

include only those decisionmakers who had the respective option available to generate both possible

values of the dependent dummy variable, i.e. who faced at least one relevant decision. Tables 9.1-9.6

show the resulting marginal odds ratios from logistic regressions.

at college, age, education level (4 categories), racial/ethnic background (5 categories), region of residence in the U.S.

(4 categories), household size, marital status (5 categories), dummy for living in a metropolitan area, log income (20

brackets), housing status (3 categories, rent/own/do not pay for housing), employment status (9 categories).
47Observations of Decision 2 in Example 4 are counted for this variable, althought the high payo¤ of the risky option

lies above 0. We decided to include this decision as the bevavior is arguably driven mostly by the risk attitudes below

0. These decisions are not counted for the next category, i.e. decisions that indicate degrees of loss aversion.
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Dependent var Dom inated R . av. - gains R . av. - losses Loss av .

(1) (2) (3) (4) (5) (6) (7) (8)

female (odds ratio) 1 .01 1.00 1.11 1.11 1.13 1.21 1.05 1.20

(0.14) (0 .14) (0 .20) (0 .22) (0 .16) 0.19 (0.22) (0 .29)

contro ls no yes no yes no yes no yes

treatm ent dumm ies yes yes yes yes yes yes yes yes

M ean of dep . var 0.501 0.500 0.742 0.741 0.350 0.356 0.728 0.728

Pseudo-R^2 0.026 0.062 0.005 0.048 0.037 0.066 0.004 0.089

# of obs. 916 914 643 641 926 924 471 471

Table 9.1: Logistic regressions on gender dummy.

Note: Robust standard error in parentheses. *: p = 0:1, **: p = 0:05, ***: p = 0:01.

Dependent var Dom inated R . av. - gains R . av. - losses Loss av.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

age (odds ratio) 1 .010** 1.038* 1.008 1.004 1.006 0.992* 1.001 0.995 0.999

(0.004) (0 .024) (0 .007) (0 .006) (0 .010) (0.004) (0.007) (0 .006) (0 .011)

age^2 - 0.9997 - - - - - - -

(0 .0002) - - - - - - -

contro ls no no yes no yes no yes no yes

module dumm ies yes yes yes yes yes yes yes yes yes

M ean of dep . var 0.501 0.501 0.500 0.742 0.741 0.350 0.356 0.728 0.728

Pseudo-R^2 0.030 0.032 0.062 0.006 0.048 0.039 0.066 0.005 0.089

# of obs. 916 916 914 643 641 926 924 471 471

Table 9.2: Logistic regressions on age.

Note: Robust standard error in parentheses. *: p = 0:1, **: p = 0:05, ***: p = 0:01.
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Dependent var Dom inated R . av. - gains R . av. - losses Loss av.

(1) (2) (3) (4) (5) (6) (7) (8)

b lack (odds ratio) 0 .67* 0.69 0.92 1.21 1.18 1.38 0.50** 0.60

(0.15) (0 .17) (0 .29) (0 .43) (0 .28) (0 .36) (0 .16) (0 .23)

h ispan ic 0 .49*** 0.60** 0.49*** 0.62* 0.97 0.98 0.38*** 0.60

(0.11) (0 .15) (0 .13) (0 .18) (0 .23) (0 .25) (0 .12) (0 .22)

2+ races, non-h ispan ic 0.94 0.93 2.13 2.01 1.14 1.25 1.06 1.52

(0.32) (0 .33) (1 .36) (1 .30) (0 .42) (0 .46) (0 .69) (0 .92)

other, non-h ispan ic 0 .69 0.80 0.48 0.48 1.17 1.09 1.01 1.38

(0.26) (0 .33) (0 .23) (0 .25) (0 .47) (0 .46) (0 .82) (1 .18)

contro ls no yes no yes no yes no yes

module dumm ies yes yes yes yes yes yes yes yes

M ean of dep . var 0.501 0.500 0.742 0.741 0.350 0.356 0.728 0.728

Pseudo-R^2 0.036 0.062 0.056 0.048 0.037 0.066 0.026 0.089

# of obs. 916 914 643 641 926 924 471 471

Table 9.3: Logistic regressions on racial/ethnic background categories.

Note: Omitted category is white, non-hispanic. Robust standard error in parentheses.

*: p = 0:1, **: p = 0:05, ***: p = 0:01.

Dependent var Dom inated R . av. - gains R . av. - losses Loss av.

(1) (2) (3) (4) (5) (6) (7) (8)

log incom e (odds ratio) 0 .99 0.84* 1.14 0.93 1.19** 1.33*** 1.24 1.05

(0.07) (0 .08) (0 .11) (0 .11) (0 .09) 0.14 (0.16) (0 .19)

contro ls no yes no yes no yes no yes

module dumm ies yes yes yes yes yes yes yes yes

M ean of dep . var 0.501 0.500 0.742 0.741 0.350 0.356 0.728 0.728

Pseudo-R^2 0.026 0.062 0.007 0.048 0.040 0.066 0.010 0.089

# of obs. 916 914 643 641 926 924 471 471

Table 9.4: Logistic regressions on log income.

Note: Robust standard error in parentheses. *: p = 0:1, **: p = 0:05, ***: p = 0:01.
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Dependent var Dom inated R . av. - gains

(1) (2) (3) (4) (5) (6) (7) (8)

math correct (odds ratio) 0 .80 - - 0 .76 1.11 - - 1 .11

(0.17) - - (0 .16) (0 .31) - - (0 .31)

college math course - 1 .33* - 1 .34 - 0 .93 - 0 .84

- (0 .21) - (0 .27) - (0 .19) - (0 .21)

bachelor�s degree - - 1 .19 1.04 - - 1 .08 1.18

- - (0 .20) (0 .23) - - (0 .24) (0 .32)

contro ls yes yes yes yes yes yes yes yes

M ean of dep . var 0.508 0.508 0.508 0.508 0.747 0.747 0.747 0.747

Pseudo-R^2 0.056 0.057 0.056 0.059 0.036 0.036 0.036 0.037

# of obs. 884 884 884 884 621 621 621 621

Table 9.5: Logistic regressions of FOSD choices and risk averse choices in gains domain on

math-skills related variables. Note: Robust standard error in parentheses.

*: p = 0:1, **: p = 0:05, ***: p = 0:01.

Dependent var R . av. - losses Loss av.

(1) (2) (3) (4) (5) (6) (7) (8)

math correct (odds ratio) 1 .45* - - 1 .52** 0.82 - - 0 .84

(0.30) - - (0 .32) (0 .29) - - (0 .32)

college math course - 0 .84 - 0 .82 - 1 .21 - 1 .61

- (0 .14) - (0 .17) - (0 .33) - (0 .53)

bachelor�s degree - - 0 .90 0.95 - - 0 .85 0.64

- - (0 .16) (0 .21) - - (0 .24) (0 .23)

contro ls yes yes yes yes yes yes yes yes

M ean of dep . var 0.344 0.344 0.344 0.344 0.735 0.735 0.735 0.735

Pseudo-R^2 0.064 0.062 0.062 0.066 0.081 0.081 0.081 0.085

# of obs. 893 893 893 893 453 453 453 453

Table 9.6: Logistic regressions of risk averse choices around zero and in losses domain on

education and math-skills related variables. Note: Robust standard error in parentheses.

*: p = 0:1, **: p = 0:05, ***: p = 0:01.
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The tables show that between most subgroups of respondents, the di¤erences in FOSD violations

are insigni�cant. In particular, Table 9.1 indicates no e¤ect at all of the decisionmaker�s gender,

not even on the revealed degrees of risk aversion in any of the three subsets of lottery outcomes that

we consider. Before turning to the other explanatory variables of interest, notice another indication

of the lack of explanatory power of any background variable � the Pseudo-R2 value lies below 0.1

for all regressions.

Age has a mildly adverse e¤ect on behavior (see Table 9.2), in the sense that older participants

make weakly more FOS-dominated choices. But the signi�cance of the e¤ect goes away when

squared age is included, or when other controls are included, so we regard it as an non-robust

e¤ect.

Nonwhites makes signi�cantly fewer FOS-dominated choices, and in particular the hispanic

population in the sample has a much lower frequency of FOSD violations. Table 9.3 shows that their

frequency is at less than 50 percent of the frequency of the omitted category (white, non-hispanic).

Furthermore, columns (3), (5) and (7) give a more detailed account of these di¤erences, indicating

that hispanics exhibit a similar behavior when the o¤ered lotteries that lie in the negative domain,

but that they are much less risk averse around zero and in the domain of gains. This corresponds

closely to the comparison between the estimated preferences in Figure 5, where the two groups

showed strong di¤erences for payo¤s around zero and higher.

The respondent�s income is only weakly correlated with the frequency of FOSD violations, as

Table 9.4 shows. Columns (5) and (6) indicate that higher-income participants behave less risk-

seeking in the losses domain than lower-income participants (again, in close correspondence to the

model estimates �see Figure 6), but this di¤erence does not carry over to a signi�cant and robust

reduction in FOS-dominated choices.

Perhaps the most surprising result is that none of the variables that may proxy for analytical

skills yields a signi�cant reduction in the number of FOSD violations. Neither the ability to answer

our three mathematics questions correctly, nor their general educational background and their

mathematics-related background are found to be signi�cantly correlated with the number of A and

D choices � see Tables 9.5 and 9.6. Figures 7-9 show that this �nding is consistent with the

absence of di¤erences between the respondents�risk attitudes.
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