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1 Introduction

At high ages, dramatic events in an individual’s life may lead to dramatic changes

in his or her health conditions. In particular, the death of the spouse can be a

major sources of psychosocial stress, depression and anxiety. These are all fac-

tors associated with morbidity and mortality.1 Conjugal bereavement may also

directly deteriorate physical health, for instance by impairing the immune sys-

tem, increasing the prevalence of chronic illnesses, and functional limitations.

Furthermore, most older widowers experience (serious) difficulties in performing

housekeeping chores like cooking or cleaning. This may in the long run negatively

affect their health - due, for instance, to insufficient caloric intake or nutritional

deficits. Finally, there is evidence that widows often suffer from greater poverty,

a factor associated with higher morbidity and mortality among the aged.2 Os-

terweis, Solomon and Green (1984) provide a detailed overview of the possible

causal effects of bereavement on health and mortality.

Conjugal bereavement affects the potential supply of informal care for the

person left behind (the non-organized care provided from within the social net-

work of the individual). Informal care is an essential supplement or substitute to

self-care and professional long-term care. In the Netherlands for instance, about

30% of older (65 plus) individuals receive some kind of informal assistance (see

e.g. Portrait, 2000). The larger part of the informal assistance is provided by

healthier partners (see for instance Norton, 2000, and Lakdawalla and Philipson,

2002). This is reflected in health care costs. Prigerson, Maciejewski and Rosen-

heck (2000) estimated average health costs in 1989 and find that costs equal

$ 2,384 for widowed and $ 1,498 for married subjects. So, if the death of the

partner negatively affects the health and well-being of the surviving spouse, it

also reduces the supply of informal care whereas in fact the demand for care has

increased (see Williams, 2004, for additional evidence). This will exacerbate the

health effects and therefore increase the demand for formal health care services

use, and this increases health care costs.

In this paper we provide a detailed analysis of health and mortality risks at

advanced ages. We model the dynamic evolution of health and we focus on the

effect of conjugal bereavement on health and mortality risks. This enables us to

improve on the existing literature in two ways. First, note that the lifetimes of

spouses may be related because of a causal effect of the death of one member

on the mortality rate of the surviving spouse, or because of (unobserved) fac-

1See for instance Prigerson, Maciejewski and Rosenheck (2000).
2See for instance Ecob and Smith (1999) and Benzeval and Judge (2001).
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tors that influence both lifetimes. With respect to the latter, spouses may have

similar health-related behavior, eating patterns, material circumstances, marital

satisfaction, or more generally, spouses have shared life histories that may af-

fect husband-wife mortality and morbidity. Klein (1992) finds that death times

are related significantly between husbands and wives through unobserved couple-

level frailty. This means that there may be a stochastic relationship between the

two lifetimes, even after we have controlled for observed characteristics. It also

means that we can not simply assume that the vital status of one spouse is an

exogenous determinant of the mortality rate of the other. Instead we model the

lifetimes of both spouses and the multiple ways in which they are related. This

distinguishes our model from the usual contributions on conjugal bereavement ef-

fects. One major exception is Lichtenstein et al. (1998) in which the dependence

of survival status on marital status is studied using twin data. They assume that

there is an identical unobserved component for both members of the twin couple

and use stratified partial likelihood methods to assess the causal effect of spousal

bereavement on subsequent mortality.

Furthermore, the large majority of the studies in this area analyze the effect of

bereavement on one specific aspect of health status, like stress or mortality.3 This

includes Lichtenstein et al. (1998) who restrict attention to mortality. A second

main contribution of our study is that we distinguish between different aspects

of health. There are large differences in health status among the aged. Some of

them are healthy, whereas others suffer from cognitive impairment, but are in

perfect physical condition, and yet others combine cognitive impairment with

severe physical limitations. We consider all of these and study their simultaneous

dynamic evolution.

Our analyzes are based on a dataset covering about 2,000 older couples for the

period 1992-2000 called the Longitudinal Aging Study Amsterdam. The dataset

has abundant information on health indicators and outcomes as well as on socio-

demographic variables. Of interest for our analyses is that about 24% of the main

3See, for instance, Prigerson, Maciejewski and Rosenheck (2000) and Dijkstra, Van Tilburg
and De Jong Gierveld (2005) on the effect on psychosocial stress, depression, anxiety and lone-
liness, Irwin et al. (1987, 1993) on impaired immune function, Prigerson et al. (1997, 2000)
on chronic illnesses and functional limitations, Koehn (2001) on caloric intake and nutritional
deficits, and McGarry and Schoeni (2005) on poverty. Lillard and Panis (1996) study mortality
outcomes and incorporate a one-dimensional self-reported general-health assessment into the
analysis. This health variable is observed at regular time intervals. They also control for related
unobserved determinants in marital status, health, and mortality. However, the empirical anal-
ysis focuses on the effect of marital status (formation and dissolution) in general on mortality,
and most observed dissolutions are not bereavements but divorces.
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respondents and about 17.3 % of their partners are observed to die during the

period of observation, and that we were able to obtain administrative data on

the vital status of the respondents and of their spouse for the entire period of

observation.

The information in the data allows us to carefully characterize health evolu-

tion, to examine how health status influences mortality, to model the interrelation

between the lifetimes of spouses, and to study how the death of a partner influ-

ences the health and mortality of the surviving spouse. As will be explained,

feasibility constraints demand the use of a data reduction method to summarize

the observed health information in an equally informative health set of lower

dimension. We use a flexible non-parametric method called the Grade of Mem-

bership Method (GoM) (Woodbury and Clive, 1974; Woodbury and Manton,

1982). This method is designed to summarize a large set of health conditions

into a smaller number of clinical disease types. It is particularly useful if the

observable health-condition outcome variables are binary or only have a small

set of possible values. The method also determines individual weights measuring

the degree to which an individual fits each of the clinical disease types. We use

these Grade of Membership individual weights as measures for the health status

of the respondents and include these as regressors in our model for mortality.

These health measures are likely to be endogenous and we therefore extend our

bivariate survival model with a model for health dynamics. Health is allowed to

depend on lagged health, individual characteristics and the death of the partner.

We use the estimated model to calculate expected residual lifetimes in dif-

ferent health states (“health expectancies”) for married and widowed males and

females of various age groups. Health expectancies are informative on the frac-

tion of life spent in a healthy state compared to the fraction spent in frail health

conditions. This information plays a central role in the policy debate about the

future needs for long-term care of older populations. For a recent review on health

expectancies, see Robine, Jagger, and Mathers (2003).

Section 2 reports on the dataset. Section 3 discusses the non-parametric Grade

of Membership method. We apply the method on our data and briefly discuss

the main results. Section 4 proceeds with the statistical model for health and

mortality and Section 5 presents the results. In Section 6 we present the results of

simulations with the model. In particular, we compare expected residual lifetimes

and health expectancies of married and bereaved individuals. Section 7 concludes.
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2 Data

We use data from the Longitudinal Aging Study Amsterdam (LASA) (Deeg,

Knipscheer and Van Tilburg, 1993). The LASA study follows over time a rep-

resentative sample of non-institutionalized and institutionalized individuals aged

55 and above. The respondents lived at baseline (1992) in 11 municipalities in

the West, North-East, and South of the Netherlands. We use three waves: the

1992-93 wave, the 1995-96 wave, and the 1998-99 wave.4 Apart from the usual

socio-demographic variables, this dataset provides extensive information on the

physical, emotional, mental, and social functioning and also on a large set of

variables that may have an effect on these four aspects of functioning. Each com-

ponent is assessed by questionnaires and tests. Individuals were submitted either

to a complete face-to-face interview or, if they refused this, to a short telephone

interview.

The LASA dataset is linked to administrative records on the vital and marital

status of the main respondents and their spouses up to the first of January 2000.

If the respondent died during the sampling period, the date and place of death

as well as the timing of spousal bereavement (if he or she was widowed at the

moment of death) are recorded. For respondents who are still alive at the first of

January 2000, changes in marital status – and the moment these changes took

place – are also registered. This allows us to accurately follow the changes in

marital and vital status from the start of the sampling period up to the first of

January 2000. The smallest interval of time between deaths of spouses is 20 days

and one quarter of the respondents observed to die after conjugal bereavement

die within one year.

There are however some data limitations. First, information on the spouse

is not available after the death of the LASA respondent. Second, for privacy

reasons, the municipality of Amsterdam refused to provide records on spouses.

Consequently, the information on the vital status of spouses of respondents who

lived in Amsterdam can only be obtained from the survey data. We return to

factual numbers concerning this below.

2,061 individuals share their household with a partner at the initial wave in

1992. Respondents who lost their partner before this initial wave are excluded.

For this group we do not have information on the partner. We also excluded

a small group (121) of people living together but who were not married. For

4The LASA respondents are drawn from a dataset on social network of older individuals
held in the early months of 1992. This dataset, called the LSN dataset (Van Tilburg et al.
1992), provides among other things the household history of the respondents.
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this group we lacked essential information on the vital status of the partner.5

Respondents who were still legally married but who were not living together (13

individuals) were also excluded from our dataset. 6 respondents are observed

to divorce during the observation period; these respondents are discarded from

our analyses as well. The resulting sample counts 1.921 individuals. Very few

respondents (about 0.3% of our sample) are observed to re-marry after a period

of widowhood. We decided to only use the information of these individuals up to

the time of their new marriage.

Figure 1 shows the evolution of marital status and mortality over time. About

24 % of the main respondents died during the sample period. This concerns 345

males (dying at an average age of 79) and 111 females (dying at an average age of

78). 269 respondents were still married at the time of their death. 37 males and

25 males were observed to die after a period of widowhood (on average 2.2 and

2.9 years for respectively males and females). The remaining 125 (345 + 111 - 269

- 37 - 25) respondents who are observed to die lived in the city of Amsterdam.

For these 125 respondents we can only assess their marital status from survey

information. More precisely, information on the vital status of the spouse can

only be obtained for these respondents if they lived longer than their spouse and

also participated in a wave after the death of their partner. We furthermore have

256 respondents from Amsterdam, who were still alive at the first of January of

2000. For these individuals, we miss information on the vital status of the spouse

for the period between their last interview and the first of January 2000. These

partial observability problems need to be accounted for in the construction of the

likelihood function. We return to this in Section 4.

In total we observe 331 cases where the partner of the main respondent dies

(116 widowers and 215 widows). The average ages of widowhood are equal to

78.4 for males and 73.4 for females. Figure 2 shows the survival curve based on

the Kaplan-Meier estimate of the mortality hazard. First, it should be noted that

the survival probabilities for married individuals who are older then 86 are based

on a small number of observations. The same is true for age class 49-55. Second,

the graph shows that the survival probabilities are lower for widowed individuals,

except at older ages. For younger ages there is a relatively large difference between

the curves for married individuals and widowed individuals. This is consistent

with the results in the literature on mortality and spousal bereavement (see, for

instance, Lichtenstein et al. 1998).

5The cause of a separation between unmarried partners (death, discord, hospitalization,
admission in nursing or residential homes etc.) is not recorded in the LASA study. Moreover,
municipalities only provide records of official partners – i.e. spouses.
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Figure 1: Evolution of marital status during the LASA study
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Figure 2: Kaplan-Meier survivor function

Kaplan-Meier survivor function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

55 68 80 91

Age

S
ur

vi
vo

r 
p
ro

b
ab

ili
ty

Married
Widowed at age 55-65
Widowed at age 65-75
Widowed at age 75-85

8



Health status is a crucial variable in our model. Health is a multidimensional

concept and especially at advanced ages, striking differences are observed be-

tween individuals as well as over time. We use an extensive set of 22 health

measures that each describe different aspects of health, but together provide a

complete picture of health.6 Physical functioning is measured by a self-reported

test on mobility (van Sonsbeek 1988) and by a performance test of physical abil-

ity (Gulranik, 1994). Cognitive status is assessed using the Mini Mental State

Examination (MMSE, Folstein, 1975). The Center for Epidemiologic Studies De-

pression Scale (CES-D, Radloff, 1977) is used to measure emotional functioning of

older individuals. Two self-reported items on difficulties with seeing and hearing

measure perception. Finally, the presence of chronic diseases is assessed by ask-

ing the participants whether they have or have had any of the following diseases:

chronic obstructive pulmonary diseases (COPD), heart diseases, atherosclerosis,

stroke, diabetes, arthritis, cancer, and other chronic diseases. These diseases are

the most prevalent ones in older persons. To assess the severity of each disease,

it is asked whether respondents follow a medical treatment. Unfortunately, the

information on health is only available for the head respondent, and not for the

spouse.7

A problem with the high dimensionality of the health data is that it will be

difficult to use these indicators simultaneously in an empirical model for health

and mortality. In Section 3, we discuss a flexible non-parametric data reduction

method called the Grade of Membership method. Before we do this, we first

briefly list socio-demographic variables that we will use in our analyzes.

Income is derived from a question where respondents were asked to assign

their monthly total income - derived from pension, savings, dividends, and other

sources - to four categories (in $): 0 - 794 (in line with the Dutch minimum in-

come), 795 - 1,134, 1,134 - 1,815 and more than 1,815.8 For the spouse, we use as

proxy for income the occupational prestige of the longest job according to Sixma

and Ultee (1983) (ranging from 0 = “never had job” until 87 = “high prestige”).

A categorical variable indicating the level of education attained is used as a sup-

plemental measure of socioeconomic status and is determined by the question:

“Which is the highest education level attained?” Nine categories were reported

6The 22 health measures have been selected in collaboration with gerontologists and epi-
demiologists.

7This will of course affect our empirical model. We return to this issue in Section 4.
8Missing values for income were relatively frequent (almost 15%) and were imputed on the

basis of results of regression analyses of income on demographic and socioeconomic variables
such as age, cohort, gender, education, and degree of urbanization of the municipality where
the respondent lives.
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varying from “elementary education not completed” to “university education”.

The degree of urbanization of the area where the respondent lives (categorical

variable ranging from 1 = “low” until 10 =“high”) is an indicator of the external

living conditions and may influence positively or negatively the probabilities of

dying of older individuals through a variety of mediating factors – such as feelings

of insecurity, pollution, and availability of both formal and informal caregivers.

The variable “network size” (Van Tilburg et al. 1992) indicates the number of

network members – including children, other family members, friends, and neigh-

bors – who have regular contacts with the main respondent. The size of the social

network may affect morbidity or mortality in different ways. Previous studies in-

dicate that having children is one of the best predictors of formal and informal

care (Norton 2000). Our network variable includes this. We opted for the variable

“network size” instead of a set of variables measuring the number and gender of

children because “network size” excludes children with whom older individuals do

not have any contact, or who do not support their parents. A variable indicating

the frequency of church attendance is included in our analyses. The strength of

church affiliation may give some information on the lifestyle of the respondent,

and also on the way the respondent deals with the bereavement process. The

variable takes on value 0 if the respondent does not go to any church and ranges

from value 1 (“yearly or less”) until 5 (“weekly or more”). We also include age

and gender.

The quality of marital union may affect the way widowed individuals adjust

to the loss of the spouse (see for instance Van Baarsen and Broese van Groenou,

2001, Prigerson et al., 2000). Unfortunately, no reliable information on marital

satisfaction is available in the data set. The duration of the marital union is

included in the analyses as a proxy for the quality of marriage.9

Table 1 below presents the means of the demographic and socio-economic

variables.

9We will allow for time constant unobserved individual components in our model. This will
account for the average quality of the marriage.
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Table 1: Demographic and socioeconomic characteristics of the head (Wave I)

Variables Score Wave I (in %)
Number of individuals 1,743
Female 41.5
Age 55-65 43

65-75 33.5
75-85 23.4

Attained education level respondent Low 58.1
Medium 27.6

Income in $ < 793 14.4
793-1134 37.0

1134-1815 32.7
Degree of Urbanization Low 14.0

Medium 29.4
Church attendance ≤ Yearly 45.6

Monthly 10.6

3 The Grade of Membership method

3.1 General description

To describe the health condition of older individuals, a broad range of different

measures is required to cover all dimensions of health. Above we discussed the

set of 22 measures that we use in our study. As we aim to analyze the dynamics

in health, we need a method that summarizes this extensive set of indicators into

a manageable and meaningful health set of lower dimension. In addition, this

data reduction method also needs to be as flexible as possible, given the complex

nature of health and the way it is distributed across individuals in the sample.

The Grade of Membership (GoM) method is perfectly suited for this.

The GoM, developed by Woodbury and Clive (1974), Woodbury, Clive and

Garson (1978), and Woodbury and Manton (1982), is a statistical classification

procedure, designed to summarize a complex set of symptoms for chronic diseases

into a smaller number of ideal clinical disease types. These ideal clinical disease

types are referred to as “pure types” in the GoM terminology. The method not

only makes a partitioning of the data into a limited set of pure types, but it also

provides for each individual in the sample different weights indicating the degree

of similarity that an individual has with each of the pure types. These weights,

called “grades of membership”, sum up to unity over the classes. A weight of

1.0 means that an individual has all of the symptoms associated with the pure

type (so this individual can be viewed as a “standard textbook case”), whereas

11



a weight of 0.0 indicates that the individual bears no similarities with the pure

type at all. The method is similar to the well known and much applied factor

analysis, but it has some distinctive properties that are particularly relevant for

our study. We return to this after a more formal description of the method.

3.2 The method

Suppose that there are K underlying non overlapping pure (clinical disease) types.

Suppose furthermore that we have access to a set of J variables or tests that

together cover the symptoms of the underlying pure types present in a sample

of I individuals. As the information in each test j can have multiple response

categories, Lj, we can without loss of information code the test score of individual

i in test j into a set of dichotomous indicators yijl, measuring whether or not

individual i has responded or scored affirmative on the lth outcome of test j.

Next, define λkjl as the probability that a person of exactly the kth type has

the lth score on test j and define gik as the degree of proximity that individual i

has with the pure (clinical disease) type k. So, if an individual is of the pure type

k, then gik = 1 and the probability that he/she responds or scores affirmatively

to the lth outcome of test score j, namely Pr(yijl = 1), equals λkjl.
10 In other

cases, where the individual is not of one of the pure types, the probabilities λkjl

have to be weighted by the degrees of similarity (the grades of membership) of

the individual in the class k. More specifically:

Pr(yijl = 1) =
∑

k

gikλkjl

where 0 ≤ gik ≤ 1 and
∑

k gik = 1, ∀ i, k. The indicators gik mix the probabilities

λkjl to best represent the probability that yijl = 1.11 The fact that an individual

can belong to more than one group makes the GoM method very suitable for

the application at hand. Elderly individuals can have characteristics from various

different disease types, and the degree of involvement with a particular disease

type can vary across individuals.

The likelihood function used to estimate the parameters gik and λkjl from

cross-sectional data is based on the probabilities of responses. Specifically, it is a

10So λkjl = 1 indicates that a specific symptom is always associated with a specific pure type
k.

11In the terminology of Manton, Woodbury, Stallard and Corder (1992): the λkjl determine
the position of the K vertices of a K− 1 dimensional simplex in the J ∗ (

∑
j Lj − 1) space. The

weights gik are continuously distributed within the simplex and combine the extreme points of
the simplex in a convex set.
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simple independent multinomial given by:

L =
∏

i

∏
j

∏

l

Pr(yijl = 1)yijl =
∏

i

∏
j

∏

l

(
∑

k

gikλkjl)
yijl

This needs to be optimized with respect to gik and λkjl subject to the constraints:

0 ≤ gik ≤ 1 ∀ i, k∑

k

gik = 1

0 ≤ λkjl ≤ 1 ∀ k, j, l∑

l

λkjl = 1

As in Woodbury and Manton (1982), we use approximate likelihood ratio

tests for the determination of the order K (number of dimensions) of the model.

The test statistic is approximately χ2 distributed with the number of degrees

of freedom equal to the number of respondents I minus one plus the number of

variables j multiplied by the number of category per variable
∑

j Lj. We refer to

Woodbury and Manton (1982) for more details.

Given K, we need to address the consistency of the estimates of the indi-

vidual parameters gik, not in the least because we use the estimated individual

parameters ĝik in subsequent analyzes of health dynamics and mortality (Section

4). For consistency of ĝik, we have to rely on information growth in J or Lj.

More specifically, consistency is ensured when J ∗ (Lj − 1) becomes large (see,

for instance, Manton, Woodbury, Stallard and Corder, 1992). In our application

J ∗ (Lj − 1) equals 25, which may be sufficient, for not too large K, to accurately

estimate the individual parameters gik.

The GoM approach is similar to factor analysis. The factor loadings compare

to λkjl, whereas the gik have a similar function as the factor scores. However,

factor analysis typically makes distributional (normal) assumptions on the factor

scores and the outcomes, whereas the GoM method requires no assumption on

the distribution of gik. Moreover, the GoM method is well-suited for outcomes

that can be represented by binary variables. This makes GoM suitable to capture

the highly skewed and irregular health distribution among the aged. A practical

difference is that factor scores are calculated after the factor loadings have been

determined, whereas in the GoM method the parameters λkjl and gik are esti-

mated simultaneously. See Manton, Woodbury, Stallard and Corder (1992) for a

more detailed comparison.
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3.3 Application to the data

The GoM method is successively applied on the 22 health indicators (described

in Section 2) of wave I, wave II, and wave III of the data set, using the typology

derived in wave I. See, for instance, Portrait (2000) for details on the applica-

tion of the GoM method in a longitudinal context. The GoM parameters λkjl –

reported in Table A1 in appendix A – are used in the following to derive the

characterization of the pure types.

The empirical results reveal that the health concept can be characterized us-

ing five underlying health dimensions. The first group (see the column for K=1

of Table A1 in Appendix A) is the healthy group, they do not suffer from any

chronic diseases or functional limitations. The functional status of individuals

who completely belong to the second health dimension (K=2) is very good, but

they suffer from some mild depression12 and/or the presence of “other chronic

diseases”. The latter are mainly diseases which are not specific to older indi-

viduals and generally not too serious. Examples of these are hypertension, back

troubles, or diseases of the stomach, intestines, or nervous system. The third type

is characterized by the presence of heart diseases and atherosclerosis – without

any severe functional impairment except for some mild mobility limitations. The

fourth group is characterized by the prevalence of serious arthritis and/or dia-

betes. It is also characterized by mobility limitations. The fifth type is complexly

impaired, (s)he suffers from severe physical, emotional, and cognitive health dis-

orders, reports mobility limitations, has a low score on the performance test and

on the MMSE test, is depressed, and may suffer from severe respiratory diseases,

stroke, and/or cancer. Note that the GoM method does not identify a profile

characterized by high levels of depressive feelings and no cognitive or physical

limitations. This may be explained by the fact that depressive symptoms alone

are somewhat uncommon in older populations. Older individuals often suffer from

physical or cognitive health disorders and these disorders are often related (or due

to) emotional distress. Note that the pure types 2, 3, 4, and 5 are all associated

to some extent with emotional disorders.

With respect to the graded participation into the different pure types (the

gik), it can be noted that the larger part of our respondents participates only in

two (30.8%) or three (36.5%) dimensions. This means that a large share of the

respondents have a few gik (grades of membership/weights) strictly greater than

zero, while others equal zero. The distribution of the GoM parameters display

12CES-D scores larger than 16 indicate depression. Table A1 indicates that there is a positive
score on this item.
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Figure 3: Distribution of the GoM parameters, wave I

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C ardiovas cular dis e as e s

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

A rthritis /D iabe te s

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C omple x ly  impaire d

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

M ild chro nic  dis e a s e s

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

H e a lthy  type

15



extensive data heaping on a score of zero, meaning no participation in this specific

health dimension. For instance, 62% of the individual parameters have a zero score

in pure health type I and 69% have a zero score in pure health type III. Figure

3 displays the distributions of the grades of membership for the five types at

wave I conditional on participation in the respective pure type (i.e. for strictly

positive values of gik). No drastic and meaningful changes are observed in terms

of the distribution of the individual GoM parameters at wave II and wave III

(figures available on request by the authors). The figures also display substantive

heaping at one. These respondents exactly match the pure (classical disease)

type. For instance respondents with a score equal to one in the first dimension

can be considered as completely healthy. Individuals in our sample are aged 55

and over, hence not surprisingly this happens for 13.2% of the cases in our sample.

This implies that in our statistical model for health, measured by the individual

parameters gik, we have to allow for heaping at both zero and one.

4 The model for mortality and health status,

and its empirical implementation

4.1 Mortality

Let the couple {T h, T s} be non-negative random variables describing the lifetimes

of the head (main) respondent (h) and his/her spouse (s) respectively. Let xh and

xs be observed and αh and αs be unobserved factors for the head and spouse,

respectively. Our interest is in the lifetime of the head and how this is affected by

the death of the spouse. More specifically, we are concerned with the conditional

distribution T h|xh, ts, αh.

We assume that the hazard of the conditional distribution, T h|xh, ts, αh is of

the familiar Mixed Proportional Hazard (MPH) type and take it as (for notational

convenience we omit the individual index):

θh(th|xh
t , t

s, αh; β1, δ) = θh
0 (t). exp{xh′

t β1 + f(I(th > ts); δ) + αh} (1)

The set of explanatory variables xh
t includes socio-demographic factors and

health, i.e. xh
t = [x̃h

t , g1t, g2t, g3t, g4t, g5t], with x̃h
t socio-demographic variables and

gkt, k = 1, ..., 5 GoM health indicators. The function f(I(th > ts); δ) is included

to capture causal conjugal bereavement effects on the hazard rate of the head

respondent that are not captured by the causal effects induced by gkt.
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Some comments are in order. Firstly, our model is estimated on data from a

survey held at discrete points in time linked with administrative information on

the vital status of husband and wife. The administrative data provide an almost

continuous picture of the life histories over a period of seven to eight years.

However, the health status of the head respondent is measured at, at most, three

points in time. This is why the term f(I(th > ts); δ) is included. It is supposed to

capture the short-run effect of conjugal bereavement on mortality to the extent

that this effect is not yet captured by the included health status variables as

measured in the last survey wave before bereavement. (It would be preferable

to specify a model in which the instantaneous or short-run effect does not vary

across individuals with the timing of the survey interviews, but this would require

much more frequent observations of health status changes in time.) We expect

that in the longer run the effect of the realized bereavement before death of the

head respondent will be absorbed by the health status indicators. In that case

the value of f(I(th > ts); δ) should converge to zero if th − ts becomes large. We

do not impose this on our function f(.; δ), but expect to find this in the data.

Secondly, notice that (1) assumes that the hazard of the head respondent is

affected after the death of the partner but not before. This rules out anticipation

effects. This assumption is required to identify causal effects (see Abbring and

Van den Berg, 2003, and the discussion below), and it is implicitly made in most

of the literature on bereavement effects on the mortality rate. In the context

of our model, the assumption basically means that individuals can not exactly

predict the exact moment of the death of their partner. This is a reasonable

assumption. One may argue that there are situations where individuals are to

some extent able to predict the time of the death of their partner. For instance,

in the situation where the partner suffers from a life-threatening disease like

cancer. In that case, the hazard function may already start to rise before the

actual death of the partner and the estimate of the effect of f(I(th > ts); δ) may

be biased. Note however that it is always difficult to exactly predict the timing

of the death of the spouse. Also, we should point out that it is allowed that

individuals know as much about the process leading to the partner’s death as

is specified in equation (2). In terms of the treatment evaluation literature: we

allow the individual’s knowledge of the treatment assignment process to lead to

so-called ex ante effects on the rate at which the outcome of interest is realized.

The identified causal effect is relative with respect to the counterfactual mortality

rate in case the spouse has not died yet.

There is evidence that most individuals are able to cope with the situation

of a terminally ill partner before the actual moment of death and that most of
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the detrimental effects on the health of the head respondent take place just after

the death of the spouse (see Carr et al., 2001, for a recent review on anticipation

effects on adjustments to widowhood). Moreover, mechanisms that may play a

role after bereavement, like being lost in zest of life, and poverty due to reduced

income, actually take place after the death of the partner.

Note that the function f(I(th > ts); δ) as well as xh
t are endogenous deter-

minants of Th, since all are potentially affected by unobserved determinants. For

example, there may be selectivity in marital formation, leading to a dependence

of αh and ts. Also, the life style of an individual or previous investments in health

may play a role in both the individual’s mortality risk and the way in which

health evolves at advanced ages, leading to a dependence between αh and health.

This makes health, i.e., gkt and ultimately xh
t , an endogenous regressor in the

mortality equation. Fixed effect methods are not of much use here since we only

observe a single lifetime spell for each respondent. So we have to specify the cor-

relation between spousal bereavement and the unobservable αh, and we have to

consider the simultaneous determination of T h and xh
t .

We first examine the dependence of αh and the determinants of ts. For this we

extend the conditional model of mortality for the head with a model explaining

spousal mortality. We use the following MPH specification of the hazard function

of T s| xs, αs :

θs(ts|xs
t , α

s; β2) = θs
0(t

s). exp{xs′
t β2 + αs} (2)

As noted earlier, the data lack some valuable partner information. The data

contain only limited information on his or her health status, and, more impor-

tantly, we can not follow the spouse once the head respondent dies. For this reason

we do not allow for any effect of the death of the head respondent on the hazard

rate of the spouse. Equation (2) should therefore be viewed as a pure reduced

from equation.

Identification of the causal effect of spousal bereavement in duration models

is different from identification in linear models and most other non-linear models.

Abbring and Van den Berg (2003) prove and discuss extensively the identifica-

tion of treatment effects in duration models with selective assignment. They show

that, within our context of the class of MPH models, some residual randomness

in the timing of the cause-event (here: bereavement) is sufficient to identify the

causal treatment effect f(I(th > ts); δ), provided that the explanatory variables

are exogenous and independent of the unobserved heterogeneity terms αh, αs.

Identification does not require exclusion restrictions or assumptions on the func-

tional form of the baseline hazards or the mixing distribution (distribution of αh,
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αs). This result provides some intuition for the identification of our parameter

δ, although we have endogenous regressors xh
t in the mortality rate of the head

respondent (see next subsection).

4.2 Health evolution

We now turn to the second endogeneity issue, namely that health, as included in

xh
t , is an endogenous regressor for our mortality model because it may be related

to αh. To deal with this, we extend the mortality-rate model equations with

health evolution equations. Recall that health is characterized by the individual

GoM parameters gkt (t = 1, 2, .., 5) of the head respondent. The GoM parameters

show heaping at zero and one. We therefore opted for a two-limit Tobit panel

model to characterize the dynamics in health. More specifically, we specify for

each health typology the latent variable g∗kt governing the individual outcomes

gkt, as (for notational convenience we omit the individual index):

g∗kt =
5∑

l=1

glt−1γl1 + x̃′tγk2 + f(I(ts < th); γk3) + ζk + ukt (3)

for k = 1, ..., 5, and where gkt := g∗kt if 0 ≤ g∗kt ≤ 1, gkt := 0 if g∗kt < 0, and gkt := 1

if g∗kt > 1. Previous health captures dynamic health evolution. The health gkt−1

at time t − 1 in the pure health state k captures state dependence. Note that

t − 1 is short-hand notation for “the previous wave in the survey” (we discuss

initial conditions in Subsection 4.3 on empirical implementation). Furthermore,

since co-morbidity is a common phenomenon among older individuals, and the

occurrence of one disease may affect the likelihood of getting another disease, we

also include the lagged health indicators in the other states, gk′,t−1, k
′ 6= k. The

vector x̃t refers to socio-demographic variables. As in the mortality equation, we

allow for a direct effect f(I(ts < th); γk3) of bereavement. Like f(I(ts < th); δ)

in the mortality equation, this additional “bereavement function” is expected to

mostly capture short-run effects. In the longer run, the effect of bereavement will

be absorbed by the lagged health variables.

As with mortality, real-life anticipation to spousal death may affect health

before the actual death of the partner. We argued previously that this effect is

likely not to be important, but in case it affects our results, it most likely leads

to a downward bias of the bereavement effect.

The variables ukt are idiosyncratic shocks assumed to be uncorrelated. On the

other hand, the unobserved individual characteristics ζk, k = 1, .., 5, are allowed

to be related to αh and αs. This captures common unobserved determinants of
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health evolution and mortality of the head respondent and the spouse.

4.3 Empirical implementation

Equations (1) and (2) as well as the five equations of (3) constitute the full model

– referred to as Model I. The different parts of the models are linked because of

possibly correlated unobservables and because of direct effects (i.e. the effects of

bereavement and health on mortality of the head respondent and the effect of

bereavement on health). The structure of the model is such that joint estimation

is required.

We now discuss the regressors and other model determinants in the model.

First, consider the mortality rate (1). We split the total causal effect of bereave-

ment on mortality into a short-run effect and a long-run effect. The short-run

effect is the effect on the mortality rate between the moment of bereavement and

the moment of the first survey wave that occurs after bereavement. This effect

is captured by the “bereavement function” f(.; δ) on that specific time interval.

The long-run effect concerns the effect on the mortality rate after the first sur-

vey wave that occurs after bereavement. Now part (or all) of the bereavement

effect is also captured in the included health variables. The shape of f(.; δ) on

this time interval will pick up any effect of bereavement on the hazard that are

not captured by the observed health status evolution. We adopt the following

functional form for f : in the short-run time interval it is quadratic in the time

since bereavement, and in the long-run time interval it is also quadratic in the

time since bereavement, but the two quadratic functions are unrelated, so we do

not impose parameter restrictions across the quadratic functions.

The set of remaining explanatory variables x̃ includes time-varying variables

(such as income and health) and time-constant variables (such as gender, educa-

tion, urbanization, network size, and active church attendance.13). Information on

time-varying variables (such as health and income) is not always available for ev-

ery wave. Information at some waves is missing for respondents with a telephone

interview or respondents who refused to participate in wave II (201 cases and 88

cases, respectively) or wave III (135 and 110 cases, respectively). Nevertheless,

we include these individuals in the sample. We observe their vital status from the

register data, We control for the lack of recent health and income information by

including a “refusal” dummy variable indicating whether the respondents leave

the sample before the first of January 2000 for other reasons than death. Hence,

13Urbanization, network size, and active church attendance are measured at the first wave
and are held constant during the study period.
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this dummy variable is merely included to control for the fact that the information

of earlier waves on time-varying explanatory variables is not updated.

The baseline hazards θn
0 (t), n ∈ {h, s} of hazards (1) and (2) are taken as

piecewise constant functions of age that are allowed to change every four years

(except at younger and older ages since too few deaths were recorded in these

age classes to allow for a more detailed description of the data).

The health variables gkt sum up to unity over k for each individual at each

point in time. We choose to exclude the equation related to the healthy dimension

(for g1) from our calculations to avoid perfect correlation.14

The health modelling is dynamic, so we face an initial conditions problem. We

deal with this in the common way (see for instance Heckman, Manski, and Mc-

Fadden (1981) or Gritz (1993)) by specifying an extra auxiliary model equation

for observed health at the first wave. This includes unobservable health deter-

minants νk that are allowed to be correlated with the other unobservables of

the model (αh, αs and ζk, k = 2, .., 5). The estimation results may be sensitive

to aspects of the specification of this initial health equation, notably that the

included regressors are exogenous and that these are orthogonal to the unobserv-

able ν. Especially the latter assumption may be violated in practice. Here we

reach the limit of what is feasible in our study. It is fair to state that our model

framework and data are rich in terms of the changes over time in health as a

determinant of high-age mortality, and the model deals with joint selectivity in

health evolution and conjugal bereavement. The price to be paid is that we need

to deal with initial health conditions in a rather ad hoc way.15 To gauge to what

extent our results depend on the initial conditions, we also estimate a model –

referred to in the following as Model II – where hazards (1) and (2) are estimated

along with a static version of (3). We return to this in the next section.

The likelihood function associated with our Model I (equations (1), (2), and

(3)) plus the initial health conditions equation is not straightforward to derive

or compute. Firstly, as documented in the data section, in some situations we

can only partially observe health and vital status of the individuals.16 Survival

14Alternatively, we could have opted for the equivalent, but more complicated solution to
estimate the full model subject to the restriction that the five g′s have to sum up to unity.

15It is hard to justify exclusion restrictions on the set of explanatory variables that is allowed
to have a direct causal effect on mortality, so that instrumental variable techniques are not
useful here. Identification of our models benefits from the data-driven assumption that the
health-status regressors change values at a finite number of points only.

16It is important to emphasize that the likelihood function is corrected for the fact that the
interviews of each wave are held at different points in time. For instance, the duration of the
follow-up of respondents that are still alive at the end of the panel varies between 2,280 and
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data are right censored for the head respondent (1) when he or she is alive at

the first of January 2000 and (2) when he or she starts a new relationship after

spousal bereavement. With respect to the spouses, data on survival status are

right-censored (1) when both the head respondent and his/her spouse are alive

at the end of the panel and (2) when the head respondent dies during the period of

observation and his or her spouse is alive at the moment of death. In these cases,

we take the censoring as independent right censoring, with obvious modifications

to our likelihood function. Less straightforward is the case for respondents living

in Amsterdam. For privacy reasons, the municipality of Amsterdam refuses to

provide records on spouses. Consequently, for these respondents, we have a gap

for the vital status of the spouse between the last held interview and the point

where observation for the head respondent stops (i.e. the 1st of January 2000

if the respondent is still alive, or the moment of death if the respondent died

during the period of observation). This means that we have to “integrate out”

the life time T s of the partner from the last held interview up to the point where

observation stops. We do this in a way that is consistent with our model (i.e. we

use model (2) explicitly).

Secondly, our model includes unobserved random effects. The standard pro-

cedure to deal with random effects is to specify the likelihood conditional on the

unobservables of the model and to integrate these unobservables out of the likeli-

hood function. This assumes independence between observed exogenous charac-

teristics x̃ and unobserved characteristics (αh, αs, ζk, νk, k = 2, . . . , 5. Our sample

is taken from the older (55+) population. In the construction of our likelihood we

condition on survival beyond age 55. Van den Berg and Lindeboom (1995) show

that in this conditional approach, independence in the population carries over to

independence in the sample distribution under relatively weak conditions.

Thirdly, the large number of unobservables in our model poses formidable

computational obstacles, even with simulation estimation methods. We reduce

the dimensionality by adopting a one-factor loading specification for the unob-

served characteristics νk of the initial conditions. Specifically, we take (αh, αs,

ζ2, ζ3, ζ4, ζ5, ν2) jointly normal distributed and assume that νk = φkν2, k =

3, . . . , 5. The parameters φk are estimated along with the other parameters of

the model. Furthermore, the residuals ukt of the health evolution equations are

assumed to be independently (across health dimensions k and periods t) normally

distributed with zero mean and variance σk1. The likelihood function then con-

2,655 days – depending on the timing of the first LASA interview. In our estimation procedure,
ages of respondents at the timing of the interviews as well as the timing of bereavement are
thoroughly taken into account to increase the precision of our estimates.
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tains 7-dimensional integrals (over (αh, αs, ζ2, ζ3, ζ4, ζ5, ν2)), for which no closed

form solution exists. We use Simulation Methods to estimate the model. In par-

ticular, we opted for Simulated Maximum Likelihood (SML) (see, for instance,

Stern 1997).

The random variables S = (αh, αs, ζ2, ζ3, ζ4, ζ5, ν2) are assumed to be normally

distributed with mean 0 and covariance matrix Σ. It is well-known that any sym-

metric positive definite matrix Σ can be written as the product of L ∗ L′ = Σ,

where L is lower triangular. In order to simulate S, we first simulate a matrix ε of

standard normally distributed variables. It follows from standard statistical the-

ory that Lε is normally distributed with mean 0 and variance Σ. The parameters

of matrix L are estimated and used to compute matrix Σ. The Delta method is

used to estimate the standard errors of the parameters of matrix Σ.

The number of replications using Simulated Maximum Likelihood methods

has to be infinite to ensure consistency of estimated parameters. We estimated

Model I successively using an increasing number of replications. Beyond 20 draw-

ings the results appear to be very stable. The results presented in the following

sections are based on 30 replications.

5 Model estimation results

The parameter estimates for Model I are reported in Tables 2a (below) and 2b

(Appendix B) and in Figures 4, 5 and 6.

The upper panel of Table 2a reports the parameters of the mortality hazard

of the head respondent. Not surprisingly, the parameters of the baseline hazard

show an exponentially increasing function. The other coefficients also have the

expected signs. Females, individuals with higher incomes and religiously affiliated

people, and individuals with a large social network face lower mortality risks. The

last effect may be explained by different life style and social support of individ-

uals who frequently attend religious services. People living in urban areas have

higher mortality rates. Note that these effects are conditional on an individual’s

health status. Concerning health, individuals with higher involvement (grades of

membership) in dimension/health typology 5 (complexly impaired), 3 (cardio-

vascular diseases), and to a lesser extent, in dimension 2 (other chronic diseases)

have increased mortality risks. The remaining health dimension (4) is character-

ized by two, not directly, life threatening diseases (arthritis and diabetes) and we

consequently find little effects of it on the mortality rate. The dummy variable

“refusals” indicates whether the individual drops out of the subsequent wave(s).
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It is strongly significant,17 most likely because it captures time-varying health

effects for such individuals.

Both short-run and long-run bereavement effects variables are significantly

different from 0.18 Figure 5 depicts the total effect of bereavement. We find that

the loss of a partner significantly increases the mortality rate and that the effect

is stronger during the first three years of bereavement, decreases afterwards, and

disappears after approximately seven years of widowhood. This result is consistent

with previous findings in the literature (Lichtenstein et al., 1998). Note that the

bereavement variables measure the direct effect of bereavement, as far as this is

not included in health. We need to take the changes in health, due to bereavement

into account in order to assess the total effect of bereavement on mortality. We

return to this later.

Our findings are robust to alternative specifications. We tried various specifi-

cations like (a function of) the logarithm of time since bereavement, year dum-

mies for short-run and long-run effects etc. The results do not change and the

highest likelihood value is obtained using the specification presented above. We

also estimated the model allowing for different effects of widowhood according

to (1) gender, (2) the duration of the marriage, (3) age, (4) the number of times

an individual became widowed (5) strength of religion, and (6) health status.

The parameters associated with the interaction variables were never significant.

Therefore, we did not pursue this any further.

The lower panel of Table 2a reports the results of the health model. This

concerns estimates of a dynamic panel data model, with the GoM parameters

gkt, measuring the degree of involvement in health type k = 2, .., 5 as health

measures.19 We find strong effects of lagged health. The own lagged variables

- that account for state dependence - are strongly significant and greater than

one, indicating that a given condition deteriorates over time. The significant

lagged health indicators in the other health states are also positive, showing

that pertaining to a specific health type increases the probability of suffering

from other health disorders. For instance suffering from other chronic diseases at

(t − 1) increases the probability of having arthritis and/or diabetes, of having

cardiovascular diseases, and to a lesser extent of being complexly impaired at

(t). Likewise, suffering from arthritis and/or diabetes at (t − 1) increases the

probability of being complexly impaired and (to a lesser extent) increases the

17Recall that we use register data to follow individuals from the start of our sample period
(1992) up to the end of the observation window.

18See Subsection 4.2 for the definitions of the short- and long-run effects.
19The sum over k of gkt equals one, so we omit one of the categories (see Subsection 4.2).
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Table 2a: Results of Model I (first part): Mortality and Health Status of Head

Mortality Coeff. t-value Baseline hazard Coeff. t-value
Female -0.412 -3.45 γ1 (55/62) 0.002 2.59
Education -0.005 -0.20 γ2 (63/66) 0.005 2.83
Income -0.916 -3.92 γ3 (67/70) 0.008 3.06
Urbanization 0.028 1.68 γ4 (71/74) 0.016 3.31
Church attendance -0.118 -4.32 γ5 (75/78) 0.043 3.37
Network size -0.041 -7.33 γ6 (79/82) 0.095 3.45
TSB (short run) -0.331 -1.21 γ7 (83/86) 0.262 3.46
Quadratic TSB (short run) 0.307 3.75 γ8 (87/92) 0.365 3.03
TSB (long run) 0.721 2.81
Quadratic TSB (long run) -0.112 -1.90
Dummy refusals -1.523 -11.30
Other Chronic diseases 0.445 2.26
Cardiovascular diseases 0.650 3.44
Arthritis/Diabetes 0.125 0.54
Complexly impaired 1.346 7.25

Health evolution equations

Other Chronic diseases Cardiovascular diseases

Constant -1.004 -4.14 Constant -0.276 -2.88
Other Chronic diseases(t-1) 0.959 8.04 Other Chronic diseases(t-1) 0.232 5.78
Cardiovascular diseases(t-1) -0.031 -0.20 Cardiovascular diseases(t-1) 1.451 18.46
Arthritis/Diabetes(t-1) 0.247 1.67 Arthritis/Diabetes(t-1) -0.032 -0.60
Complexly impaired(t-1) 0.094 0.59 Complexly impaired(t-1) 0.055 0.88
Age 0.204 0.30 Age 0.247 0.86
Age2 -0.206 -0.30 Age2 -0.145 -0.49
Female 0.234 1.70 Female -0.198 -3.50
Education 0.093 0.52 Education 0.003 0.03
Income 0.121 0.75 Income -0.117 -1.60
Church attendance -0.105 -1.16 Church attendance -0.036 -0.92
Urbanization -0.183 -1.69 Urbanization 0.009 0.20
TSB (short run) 0.431 1.01 TSB (short run) -0.133 -0.65
TSB (long run) -0.137 -0.57 TSB (long run) -0.009 -0.08
σ1 0.953 8.74 σ2 0.186 15.53

Arthritis/Diabetes Complexly impaired

Constant -0.696 -5.89 Constant -0.222 -2.53
Other Chronic diseases(t-1) 0.300 7.00 Other Chronic diseases(t-1) 0.133 3.80
Cardiovascular diseases(t-1) 0.065 0.95 Cardiovascular diseases(t-1) 0.026 0.48
Arthritis/Diabetes(t-1) 1.249 16.39 Arthritis/Diabetes(t-1) 0.143 2.88
Complexly impaired(t-1) 0.081 1.16 Complexly impaired(t-1) 1.13 16.76
Age 0.128 0.40 Age 0.397 1.57
Age2 -0.101 -0.31 Age2 0.042 0.17
Female 0.310 4.64 Female -0.116 -2.19
Education 0.098 1.12 Education -0.140 -2.14
Income -0.144 -1.93 Income -0.053 -0.86
Urbanization 0.064 1.24 Urbanization -0.029 -0.70
Church attendance 0.027 0.64 Church attendance 0.016 0.48
TSB (short run) 0.394 2.05 TSB (short run) -0.223 -1.24
TSB (long run) 0.089 0.78 TSB (long run) -0.057 -0.65
σ3 0.239 16.83 σ4 0.166 16.74

Number of observations 1743 mean(log-likelihood) -9.6068
Note: TSB = Time since bereavement
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Figure 4: Covariance matrix of the unobserved effects (Model I);
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Figure 5: Total effect of bereavement on mortality (Model I);
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Figure 6: Ratio of g(bereavement at age 70) / g(no bereavement) for arthri-

tus/diabetes
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risk of experiencing “Other chronic diseases” at (t). So indirectly, a not directly

life threatening condition like diabetes can lead to increased mortality risks. This

is a well established fact in the medical literature (see e.g. Nathan, 1993).

We observe only a few age effects after we control for lagged health status.20

Only the age parameters of “complexly impaired” are jointly significant. They

indicate that the shifts in grades of membership are larger at older ages than

at younger ages. Differences are found with respect to gender. Females suffer

more often from arthritis, diabetes, and, to a lesser extent, from other chronic

diseases than males and males suffer more often from cardiovascular diseases and

complex impairment than females. Consequently, at older ages females experi-

ence less directly life threatening disorders. This finding is consistent with the

fact that females live on average longer than males. Finally, we find significant

effects of socioeconomic status, measured by income and education. Having high

incomes and/or being well educated positively affect(s) health status; it lowers

the probability of suffering from arthritis/diabetes, cardiovascular diseases, and

being complexly impaired. This result is similar to the finding of Attanasio and

Emmerson (2003), who also find an additional effect of socioeconomic status on

20The age effects are stronger in the static model; see Table 2c in Appendix C.
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health status after correcting for initial health status. Urbanization and church

attendance do not influence health evolution, but these factors are important in

the static model for health (see Table 2c in Appendix C).

With respect to the effects of bereavement on health, we start with mentioning

that we tried a range of different specifications : (1) using dummies for spousal

bereavement, (2) using quadratic specifications of the short-run and long-run

effect of bereavement (as in hazard (1)), (3) using the logarithm of the time

since death of the spouse. We also estimated the model allowing for different

bereavement effects for widows and widowers. These alternative specifications

did not lead to better results and the interaction variables were not significant in

any of the alternative specifications.

Table 2a shows that spousal bereavement significantly increases the probabil-

ity of suffering from Arthritis/Diabetes. Bereavement has no direct effect on the

other health dimensions.21 It is amenable that bereaved individuals experience a

reduction of their level of physical activity, a worsening of their eating patterns

and sleeping disturbances. These lifestyle factors may increase the risk of suffering

from arthritis and diabetes, which are to a certain extent related to the level of

physical activity and to eating patterns. Prigerson et al. (1997, 2000) also found

that bereavement increases the probability of suffering from chronic diseases.22

Only the short term effect is significant. This does not mean that there are no

longer run effects. These may be picked up by the lagged health status variable.

To illustrate this we used our model to calculate expected health paths for an

average male respondent for ages 61 to 100. In one situation we assumed that the

partner remains alive, in the other situation we assumed that his partner died

when he was 70 years old.

Figure 6 displays the ratio of the two health paths. The general picture is

that there is a strong immediate effect of bereavement on arthritus/diabetes. At

21We should point out that the precision of the estimates discussed above may be influenced
by some shortcomings of the data. First, the health information of individuals who refuse to
continue to participate in the LASA study is not available after they have left the sample. Note
that about one third of them refuses because of health problems. Second, we can not measure
the health status of an individual who lost his/her spouse and who dies before the next wave.
This effectively reduces the sample information with likely consequences for the precision of
the estimates of the health evolution equations. Most probably, we are more likely to miss
information on individuals suffering from more serious health disorders. In other words, the
sample design and the dynamic selection in the sample may prevent us from demonstrating the
direct effects of bereavement on dimensions with more serious health disorders.

22Our results do not imply that bereavement only affects physical health. As argued pre-
viously (Section 3), at advanced ages symptoms of emotional disorders are rarely observed
without physical disorders. Also our typologies are associated with emotional disorders.
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age 73 the expected degree of involvement (g) into arthritis/diabetes is about

80 percent higher for an individual who loses his partner at age 70.23 This is

due to the direct short-run effect. In the longer run there are no direct effects

(the coefficient of the long-run effect is insignificant). However, the increased g

at age 73 affects the outcome at age 76, which in turn influences the outcome

at age 79 etc. We can see from the figure that the effect of bereavement lasts

about 12 years. However, as in the mortality model, the direct effect is dominant;

bereavement affects health most strongly in the first few years after the death

of the partner. This is consistent with the literature on bereavement (see for

instance Van Baarsen et al., 2002).

Bereavement affects the probability of suffering from Arthritis/diabetes, but

Arthritis/diabetes does not have a direct effect on the mortality hazard (see

above). There may be an indirect effect of bereavement on mortality. Suffering

from arthritis and/or diabetes at (t− 1) increases the probability of being com-

plexly impaired, which in turn has a strong effect on the individual mortality rate.

We examined whether this indirect bereavement effect is strong, by looking at

the additional effect of bereavement on being complexly impaired due to having a

higher risk of arthritis/diabetes. We found that the increase in Arthritis/diabetes

due to bereavement only marginally increases the probability of being complexly

impaired.24

We can conclude from the above that there are strong direct effects of bereave-

ment on the hazard and on the probability of suffering from Arthritis/diabetes.

Both effects are temporary and fade out after 7 and 12 years, respectively. For

mortality this is largely a direct effect. Indirect effects of bereavement (via sub-

sequent health) on mortality are very small because Arthritis/diabetes is not a

directly life threatening disease and because the direct and indirect effects of be-

reavement on life threatening diseases are too small to influence the mortality

rate.

In Section 6 we will use the model to make calculations for males and females

and look at the impact of bereavement on expected residual lifetimes and time

spent in specific health states. The latter is denoted as health expectancies in the

gerontological literature. Before we do that we first briefly discuss the estimates

of the covariance matrix Σ and the fit of the model. The results of the mortality

23The expected g at age 73 is 0.05 when no bereavement takes place and 0.09 when the
partner dies at age 70. See for instance Wooldrigde 2003, pages 567–569, for explicit expressions
of expected values of the dependent variable in two-sided Tobit models.

24To be more specific, the expected g of being complexly impaired is increased by 1.6 percent
at age 76 and the effect reduces slowly afterwards
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equation of the spouse as well as the results of the initial conditions are reported

in Appendix B. We do not comment on these results. These models are purely

reduced form and it is therefore difficult to give a meaningful interpretation to

the parameter estimates of these models.

Figure 4 displays the results of the covariance matrix Σ of the unobserved

individual effects. A majority of the variances and covariances of the individual

unobserved effects are not significant.25 This seems to indicate that it is not

necessary to estimate the mortality equation jointly with the health evolution

equations. We performed a Wald test on the joint significance of the parameters

of the matrix Σ. The Wald test rejects the null hypothesis of no correlation

between (αh, αs, ζ2, ζ3, ζ4, ζ5, ν2). Similarly, we perform a series of Wald tests for

the joint significance of the variances and covariances of : (1) the head and spouse

mortality equations, (2) the head mortality equation and (each of) the health

equations, (3) the spouse mortality equation and (each of) the health equations,

and (4) the health equations. The Wald tests indicate that the null hypothesis

of no correlation between unobserved determinants of head and spouse mortality

could not be rejected whereas the other null hypotheses of no correlation between

unobserved determinants of head mortality and health evolution, between spouse

mortality and health evolution, and between the health equations are rejected.

This indicates that the shared risks of mortality between husband and wife go

through unobserved characteristics that influence health status. Our conclusion

from all these tests is that the mortality equations and the health equations

should be jointly estimated.

We have performed an informal check of the fit of our health evolution model.

Figure 9 of Appendix D is based on histograms of the average actual and es-

timated probabilities that a grade of membership g∗kt falls in a specific interval.

The estimated probabilities are calculated using parameters estimates of Model I.

The dotted line connects the tops of the histogram of actual probabilities whereas

the solid line connects the tops of the histogram of the estimated probabilities.

A comparison of the graphs per health dimension indicates that the dynamic

health model fits the observed data quite well. A check on the model fit of the

bivariate mortality model is less straightforward.26 However, we have modelled

the lifetimes with a flexible piecewise constant baseline hazard, time-varying re-

gressors and unobserved characteristics. Generally, it is believed that this is the

25The covariances in Model II (the static model) are strongly significant. The results are
available upon request.

26We have stock sampled lifetimes, which makes it difficult to calculate (modified) Kaplan-
Meier estimates that are comparable to the hazard rate predictions of the model.
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most flexible specification within the class of MPH models. Finally, the results

of Model I may depend on the specification of the initial conditions. To check on

this, we compare the results of the survival models and of the health model in the

static and dynamic specifications. The results are highly comparable, which indi-

cates that our results are not sensitive to the treatment of the initial conditions

problem in our model.

6 Life and health expectancies

Residual life expectancy and time spend in specific health states (called “health

expectancies”) are relevant for health care policy and frequently calculated in the

demographic and gerontological literature. With our model we can differentiate

these with respect to marital status and calculate the fraction of lifetime lost as

well as the increase in health disorders resulting from bereavement.

6.1 Residual life expectancies

Expected residual lifetimes at age s are computed as (see, for instance, Lancaster

1990):

E(s) =

∫∞
s

S(t) dt

S(s)

We compute the survivor function, S(.) from the estimated model, for each sam-

ple respondent. Subsequently, we average the survivor functions per gender and

within specific age intervals. The expected residual lifetimes E(s) are calculated

per gender and marital status. We do the calculations at the sample average

of the socioeconomic characteristics and health status. We report the results in

Tables 3a and 3b.

Males and females lose 7.6 % (= 2.4 years of life) and 8.3 % (= 2.9 years of

life) respectively of their residual life expectancy after bereavement at age 55-

65. For bereavement at age 65-75, these percentages equal 11 and 12.1 and for

bereavement at age 75-85, 16.0 and 17.3. So the loss of the spouse is found to

significantly decrease the residual lifetimes of both genders and at all ages. Tables

3a and 3b also show that most of the effect arises in the first years of bereavement,

during which the residual life expectancies are largely affected. Afterwards, the

decline in remaining years of life are comparable for (still) married and widowed

individuals. This is in line with what we concluded in the previous section. The
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Table 3a: Residual life expectancies for males (in years).
Age Married Widowed

at age 55-65 at age 65-75 at age 75-85
Number of cases 958 3 31 49

55 31.5 29.1
62 24.6 22.3
66 20.7 18.4 18.4
70 16.7 14.5 14.6
74 13 10.8 11 11.2
78 9.5 7.7 7.9 8.1
81 6.4 5.4 5.6 5.8
85 3.6 3.0 3.2 3.4

Table 3b: Residual life expectancies for females (in years).
Age Married Widowed

at age 55-65 at age 65-75 at age 75-85
Number of cases 530 29 84 73

55 34.9 32.0
62 27.9 25.0
66 23.9 21.1 21.1
70 20 17.2 17.2
74 16.2 13.4 13.6 13.8
78 12.5 9.9 10.1 10.3
81 8.9 7.1 7.3 7.5
85 5.5 4.9 5.1 5.3
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table also shows that widowhood at younger ages affects the remaining life ex-

pectancies the most. At all ages residual life expectancy after the death of the

partner is lower for those who lose their spouse at a relatively young age (55-65)

as compared to those who lose their partner at older ages (65-75 and 75-85).

The residual lifetimes based on our model exceed the numbers provided by

Statistics Netherlands. Our sample concerns a group of married older persons and

their characteristics differ from the characteristics of entire Dutch population. We

report on this in Appendix E.

6.2 Health expectancies

Usually, the calculation of health expectancies involves the use of data on the

prevalence of unhealthy states and mortality. Information on the prevalence of

health states can be obtained from census of survey data and usually one uses

life table information to calculate mortality rates. The average number of years

spend in a health state x onwards from a given age s is then derived from (see

e.g. Sullivan, 1971):

HE(s, x) =

∫∞
s

∫
x
h(t, u)S(t) du dt

S(s)

where h(u, t) assigns weights to health states at age t.

Our approach differs from the the traditional “Sullivan method” in two ways.

First, we base our calculations of residual lifetimes in specific health states on

estimates of a joint model for health and mortality. Second, we do not use census

data on the prevalence of unhealthy states in older population, but use instead the

Grade of Membership and the estimates from our model. Our approach allows

for more detail in the calculation of the health expectancies. We calculate the

average grades of membership per age, gender, and marital status as weights

(h(t, k)=gkt) and use these to dis-aggregate the residual life expectancies27

“Healthy life expectancy” or “active life expectancy” is a particular form of

life expectancy that refers to the expected time spent in health states that are free

from serious disability. “Healthy” health states for older population are generally

associated with the absence of functional limitations. In our analyses, “healthy

life expectancies” are given by HE(s, 1), the number of years remaining in the

27Manton and Stallard (1991) also give estimates of health expectancies of the American older
population using the GoM method. However, their method differs from ours. They first identify
the different health dimensions from a cross section of a survey using the Grade of Membership
method and use Census Data to derive life expectancies E(s) for specific age-gender groups. we
use our model for this. They next combine both elements to derive health expectancies.
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healthy first dimension. Estimates of residual health expectancies per marital

status at age 70 and 80 are reported in Figures 7 and 8, for males and females

respectively.

Figures 7 and 8 show that after bereavement the share of healthy residual

years of life decrease for both genders. Bereaved males experience a worsening of

health status as (relatively) healthy years – in dimension 1 (healthy) and 2 (other

chronic diseases) – are replaced by unhealthy years – in dimension 4 (serious

arthritis and diabetes) and 5 (complexly impaired). Males lose on average 8.5 %

of their remaining healthy years as a consequence of widowhood. Similar effects

are observed for younger (70 year old) females. So, the calculations show that

after bereavement people spend a larger share of their remaining life suffering

from (serious) chronic diseases In absolute terms, however, bereavement reduces

time spend in unhealthy states. This is caused by the strong direct effect of

bereavement on mortality. The reduction in life years due to bereavement are

stronger than the effects of bereavement on health.

7 Conclusions

This study assesses the effects of spousal bereavement on health and mortality

risks at advanced ages. For that purpose, we specify a bivariate survival model

for husband and wife and a dynamic health evolution model and estimate it on a

rich longitudinal survey. Our approach adds to the literature because we combine

a number of relevant aspects. The mortality hazard of the head respondent allows

for a direct effect of the death of the partner and a range of health indicators.

The health indicators give an accurate description of all dimensions of individual

health and are derived from a broader set of health indicators using a flexible,

non-parametric, data reduction method called the Grade of Membership method.

Health is treated as an endogenous regressor and the dynamic model for health

also allows for a direct effect of spousal bereavement and indirect effect via lagged

health.

We find much higher mortality hazards for individuals with cardiovascular

diseases and complexly impaired individuals. The death of the partner signifi-

cantly increases the mortality rate of the survivor. The effect is strong during the

first three years and disappears after approximately seven years.

With respect to health, we find strong effects of lagged health, indicating on

average aggravation of health disorders. Also the prevalence of one disease in-

creases the risk of getting other diseases in the future. So initially not directly

life threatening diseases (like arthritis or diabetes) increase the risk of obtain-
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Figure 7: Health expectancies for older males

Married male aged 70, 
Total life expectancy = 16.7 years

Arthritis
13%

Others
18%

Complexly 
impaired

20%

Cardiovasc
ular 

diseases
23%

Healthy
26%

Widowed male aged 70, 
Total life expectancy = 14.5 years

Arthritis
27%

Others
8%

Complexly 
impaired

20%

Cardiovasc
ular 

diseases
21%

Healthy
24%

Married male aged 80, 
Total life expectancy = 7.5 years

Arthritis
13%

Others
16%

Complexly 
impaired

27%

Cardiovasc
ular 

diseases
27%

Healthy
17%

Widowed male aged 80, 
Total life expectancy = 6.6 years

Arthritis
22%

Others
11%

Complexly 
impaired

30%

Cardiovasc
ular 

diseases
22%

Healthy
15%

35



Figure 8: Health expectancies for older females
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ing life threatening diseases later in life and therefore later life mortality. The

death of the partner significantly increases the probability of suffering from arthri-

tis/diabetes. This effect is not permanent, but can last up to 12 years. However,

as in the mortality model, the direct effects of bereavement are stronger than the

longer run effects; bereavement affects the probability of arthritis/diabetes most

strongly in the first few years just after the death of the partner. We find no

direct effects of bereavement on other health disorders. Also indirect effects (via

arthritis/diabetes) of bereavement on other health disorders are small.

We used the model to calculate residual life and health expectancies differen-

tiated per marital status. We find that males and females lose on average 11.5 %

and 12.5 % respectively of their residual life expectancy after bereavement. Most

of the effect takes place in the first years of bereavement. We also calculated

health expectancies, i.e. residual life time spend in specific health states. We find

that bereavement affects the share of healthy years in residual lifetime, primarily

because healthy years are replaced by years of having serious arthritis and dia-

betes and of being complexly impaired. In absolute terms, however, bereavement

reduces time spent in unhealthy states. This is caused by the strong direct effect

of bereavement on mortality. The reduction in life years due to bereavement are

stronger than the effects of bereavement on health.

The strong direct effects of bereavement are important for policies aimed at

the elderly. It suggests that monitoring and/or interventions just after spousal

bereavement are important for the length of remaining life and for the physical

and mental health-related quality of life of older bereaved persons.
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Appendix A

Table A1: GoM Parameters λkjl, wave I

Score Freq. K=1 K=2 K=3 K=4 K=5

Self-reported test 0 0.591 1 0.612 0.358 0.367 0.433

on mobility 1 0.191 0 0.246 0.516 0.289 0.086

2 0.115 0 0.142 0.126 0.344 0.047

3 0.103 0 0 0 0 0.434

Performance test 0 0.545 0.642 0.600 0.481 0.565 0.285

(cardigan) 1 0.435 0.358 0.400 0.519 0.435 0.643

2 0.020 0 0 0 0 0.072

MMSE ≥ 23 0.900 1 1 1 1 0.604

< 23 0.100 0 0 0 0 0.396

CES-D ≤ 16 0.855 1 0.847 0.851 0.849 0.732

> 16 0.145 0 0.153 0.149 0.151 0.268

Vision Good 0.885 1 0.864 0.874 0.910 0.786

Bad 0.115 0 0.136 0.126 0.090 0.214

Hearing Good 0.940 1 1 1 1 0.770

Bad 0.060 0 0 0 0 0.230

COPD N 0.884 1 1 1 1 0.540

Y 0.116 0 0 0 0 0.460

Medical treatment N 0.915 1 1 1 1 0.672

(COPD) Y 0.085 0 0 0 0 0.328

Heart diseases N 0.804 1 1 0 1 1

Y 0.196 0 0 1 0 0

Medical treatment N 0.826 1 1 0.111 1 1

(Heart diseases) Y 0.174 0 0 0.889 0 0

Atherosclerosis N 0.902 1 1 0.591 1 1

Y 0.098 0 0 0.409 0 0

Medical treatment N 0.930 1 1 0.712 1 1

(Atherosclerosis) Y 0.070 0 0 0.288 0 0

Diabetes N 0.922 1 1 1 0.693 1

Y 0.078 0 0 0 0.307 0

Medical treatment N 0.926 1 1 1 0.709 1

(Diabetes) Y 0.074 0 0 0 0.291 0

Stroke N 0.944 1 1 1 1 0.780

Y 0.056 0 0 0 0 0.220

Medical treatment N 0.958 1 1 1 1 0.842

(Stroke) Y 0.042 0 0 0 0 0.158

Arthritis N 0.651 1 0.700 0.825 0 0.689

Y 0.349 0 0.300 0.175 1 0.311

Medical treatment N 0.850 1 1 1 0.336 1

(Arthritis) Y 0.150 0 0 0 0.664 0

Cancer N 0.907 1 1 1 1 0.650

Y 0.093 0 0 0 0 0.350

Medical treatment N 0.939 1 1 1 1 0.775

(Cancer) Y 0.061 0 0 0 0 0.225

Other chronic diseases N 0.667 1 0 0.966 1 0.887

Y 0.333 0 1 0.034 0 0.113

Medical treatment N 0.767 1 0 1 1 1

(Other chronic diseases) Y 0.233 0 1 0 0 0

The third column of Table A1 reports sample proportions of various health dis-

orders. The characteristics of the different health dimensions are determined by

examination of the K profile probabilities λkjl and their comparison to the sample

proportions of interest.
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Appendix B

Table 2b: Results of Model I (second part): mortality of spouse and initial conditions

Variables Coeff. t-value Variables Coeff. t-value

Mortality of spouses Baseline hazard for spouses

Female -0.890 -6.91 γ1 (32/70) 0.008 3.32

Education -0.110 -3.48 γ2 (70/74) 0.028 3.19

Occupational level 0.020 0.38 γ3 (74/78) 0.072 3.28

Urbanization -0.038 -1.94 γ4 (78/82) 0.207 3.25

Church attendance -0.044 -1.40 γ5 (82/86) 0.406 3.15

γ6 (86/95) 0.424 2.74

Health equation (Initial conditions)

Other chronic diseases Cardiovascular diseases

Constant -1.129 -4.16 Constant -0.321 -1.57

Age 0.491 0.65 Age 1.358 2.29

Age2 -0.647 -0.69 Age2 -0.539 -0.76

Female 0.696 3.63 Female -0.810 -5.48

Education 0.172 0.81 Education -0.229 -1.46

Urbanization -0.102 -0.67 Urbanization 0.061 0.53

Church attendance 0.018 0.15 Church attendance -0.076 -0.80

σ1 1.643 8.18 σ2 0.890 9.11

Arthritis/Diabetes Complexly impaired

Constant -0.965 -5.84 Constant -0.353 -2.85

Age 0.816 1.84 Age 0.899 2.47

Age2 -0.387 -0.72 Age2 -0.001 -0.00

Female 0.645 5.59 Female 0.008 0.09

Education -0.266 -2.12 Education -0.335 -3.39

Urbanization -0.040 -0.44 Urbanization 0.024 0.33

Church attendance 0.028 0.38 Church attendance -0.246 -3.86

σ3 0.239 16.830 σ4 0.166 16.74

One-factor error specification

l2 -0.133 -0.64

l3 0.205 0.62

l4 -1.630 -2.20
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Appendix C

Table 2c: Model 2: Mortality of head and spouse and a static health model of the head

Variables Coeff. t-value Variables (Age classes) Coeff. t-value
Mortality of LASA respondents Baseline hazard for LASA respondents

Female -0.482 -4.50 γ1 (55/62) 0.005 2.74
Education 0.018 0.77 γ2 (62/66) 0.010 3.08
Income -1.057 -4.87 γ3 (66/70) 0.016 3.29
Urbanization 0.026 1.76 γ4 (70/74) 0.030 3.57
Church attendance -0.112 -4.62 γ5 (74/78) 0.063 3.72
TSB (short run) -0.330 -1.38 γ6 (78/82) 0.121 3.80
Quadratic TSB (short run) 0.319 4.76 γ7 (82/85) 0.303 3.81
TSB (long run) 0.797 3.72 γ8 (86/92) 0.454 3.45
Quadratic TSB (long run) -0.130 -2.61
Dummy refusals -1.358 -10.78
Other Chronic diseases 0.444 2.40
Cardiovascular diseases 0.650 3.74
Arthritis/Diabetes -0.043 -0.21
Complexly impaired 1.275 7.23

Mortality of spouses Baseline hazard for spouses

Female -0.984 -8.15 γ1 (32/70) 0.017 3.47
Education -0.110 -3.81 γ2 (70/74) 0.051 3.36
Occupational level 0.033 0.70 γ3 (74/78) 0.110 3.41
Urbanization -0.040 -2.17 γ4 (78/82) 0.265 3.42
Church attendance -0.059 -2.03 γ5 (82/86) 0.478 3.39

γ6 (86/95) 0.547 3.00
Health model

Other Chronic diseases Cardiovascular diseases

Constant -0.860 -6.24 Constant -0.141 -1.79
Age -0.057 -0.15 Age 1.199 5.11
Age2 -0.069 -0.16 Age2 -0.542 -2.17
Female 0.516 5.72 Female -0.647 -13.70
Education 0.172 1.49 Education -0.130 -2.17
Income -0.016 -0.14 Income -0.137 -2.93
Church attendance -0.045 -0.76 Church attendance -0.122 -3.83
Urbanization -0.177 -2.40 Urbanization 0.010 0.27
TSB (short run) 0.008 0.16 TSB (short run) -0.002 -0.02
TSB (long run) 0.019 0.80 TSB (long run) -0.061 -1.44
σ1 1.305 14.14 σ2 0.425 19.80

Arthritis/Diabetes Complexly impaired

Constant -0.933 -12.75 Constant -0.218 -3.77
Age 0.972 4.91 Age 0.957 5.63
Age2 -0.603 -2.83 Age2 -0.118 -0.65
Female 0.643 13.98 Female -0.050 -1.40
Education -0.049 -0.86 Education -0.238 -5.17
Income -0.137 -2.50 Income -0.137 -2.93
Urbanization 0.031 0.87 Urbanization -0.024 -0.82
Church attendance 0.081 2.82 Church attendance -0.104 -4.08
TSB (short run) 0.094 2.31 TSB (short run) -0.002 -0.08
TSB (long run) 0.036 1.74 TSB (long run) 0.006 0.37
σ3 0.379 22.22 σ4 0.263 20.94

Note: TSB = Time since bereavement
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Appendix D

Figure 9: Informal check dynamic health model
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Appendix E

Figure 10: Sample and Statistics-Netherlands hazard rates
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Statistics Netherlands calculate “average residual life expectancies” – i.e. residual

lifetimes for individuals with average health status, socioeconomic characteristics

and marital status. Our sample is not representative of the Dutch older population

as we selected married individuals at baseline. Figure 10 shows hazard rate from

our model (estimated on the sample of married individuals) and hazard rates from

the Statistics Netherlands. It is clear that our model estimates are lower than

the estimates from Statistics Netherlands. We further compared the averages of

the explanatory variables of our (married) sample with the population averages.

On average, the sample respondents are younger, higher educated, have higher

incomes, and go more often to church. These factors are found to be associated

(in our model and in the literature) with lower mortality and morbidity.
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