Blau, Francine D.; Kahn, Lawrence M.

Working Paper
The US gender pay gap in the 1990s: slowing convergence

IZA Discussion Papers, No. 2176

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Blau, Francine D.; Kahn, Lawrence M. (2006) : The US gender pay gap in the 1990s: slowing convergence, IZA Discussion Papers, No. 2176, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/34046

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
IZA DP No. 2176

The U.S. Gender Pay Gap in the 1990s: Slowing Convergence

Francine D. Blau
Lawrence M. Kahn

June 2006
The U.S. Gender Pay Gap in the 1990s: Slowing Convergence

Francine D. Blau
Cornell University, NBER, CESifo
and IZA Bonn

Lawrence M. Kahn
Cornell University, CESifo
and IZA Bonn

Discussion Paper No. 2176
June 2006

IZA
P.O. Box 7240
53072 Bonn
Germany
Phone: +49-228-3894-0
Fax: +49-228-3894-180
Email: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit company supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

The U.S. Gender Pay Gap in the 1990s: Slowing Convergence

Using Michigan Panel Study of Income Dynamics (PSID) data, we study the slowdown in the convergence of female and male wages in the 1990s compared to the 1980s. We find that changes in human capital did not contribute to the slowdown, since women’s relative human capital improved comparably in the two decades. Occupational upgrading and deunionization had a larger positive effect on women’s relative wages in the 1980s, explaining a portion of the slower 1990s convergence. However, the largest factor was that the “unexplained” gender wage gap fell much faster in the 1980s than the 1990s. Our evidence suggests that changes in labor force selectivity, changes in gender differences in unmeasured characteristics and in labor market discrimination, as well as changes in the favorableness of demand shifts each may have contributed to the slowing convergence of the unexplained gender pay gap.

JEL Classification: J16, J31

Keywords: gender pay gap, wage differentials

Corresponding author:

Lawrence M. Kahn
264 Ives Hall
Cornell University
Ithaca, NY 14853
USA
Email: lmk12@cornell.edu

* The authors thank Nabanita Datta Gupta, Nicole Fortin, Caroline Hoxby, Ronald Oaxaca, two anonymous referees, and participants at the American Economic Association Meetings, Philadelphia, January 2005, the Society of Labor Economists Meetings, San Francisco, June 2005, and seminars at the Massachusetts Institute of Technology, Cornell University, the University of Washington, Seattle, Washington University, St. Louis, the London School of Economics and IZA for helpful comments and Fidan Kurtulus and Joan Moriarty for excellent research assistance. Portions of this paper were written while the authors were Visiting Fellows in the Economics Department of Princeton University, supported by the Industrial Relations Section. We are very grateful for this support. Data used in this paper are available from the authors.
I. Introduction

After thirty years of relative constancy, the gender pay gap in the United States narrowed substantially in the 1980s. For example, published tabulations from the Census Bureau on the median annual earnings of year-round, full-time workers indicate that the female-to-male ratio rose from 59.7 to 68.7 percent between 1979 and 1989—9.0 percentage points. However, the rate of convergence slowed markedly in the following decade, with a further increase to 72.2 percent by 1999—3.5 percentage points. In this paper, we shed light on several possible sources of slowing convergence in the 1990s using data from the Michigan Panel Study of Income Dynamics (PSID), the only nationally representative data base that contains information on workers’ actual labor market experience. Labor market experience has been shown to be an extremely important factor in explaining the gender pay gap (Mincer and Polachek 1974) and its trends (e.g., Blau and Kahn 1997; O’Neill and Polachek 1993). We focus on a number of hypotheses that might help to explain the slower progress of women in the 1990s.

First, relative improvements in women’s measured characteristics or increases in their labor market commitment may have proceeded at a slower pace in the 1990s than in the 1980s. For example, it is plausible that women enhanced their average experience levels at a slower pace in the 1990s, in that increases in female labor force participation rates were much slower in the 1990s than in the 1980s (Blau, Ferber and Winkler 2002, Ch. 4), although we note that it is not possible to directly infer trends in women’s average experience levels from trends in their participation rates (e.g., Goldin 1990). Another possibility is that discrimination narrowed at a slower pace in the 1990s. Views on this are mixed. On the one hand, the General Accounting Office (GAO) and members of Congress have raised concerns about glass ceilings in the late 1990s (GAO 2001; Offices of John D. Dingell and Carolyn B. Maloney, 2002). On the other hand, O’Neill (2003) argues that, at least within occupations, we have largely achieved pay
parity between men and women, implying that the slowing in convergence was inevitable.\footnote{Of course, if occupational representation reflects employer hiring decisions, then controlling for occupation may lead to us to underestimate the full extent of discrimination against women.}

Again, we will provide some suggestive evidence on glass ceilings.

Other explanations center around the possibility that demand- and supply-side shifts played out differently in the 1980s and 1990s resulting in a larger decrease in the gender pay gap as well as a larger increase in male inequality in the 1980s than in the 1990s. On the one hand, increases in the prices of labor market skills such as experience, for which women have a deficit, are expected to raise the gender pay gap or reduce the rate at which it falls (Blau and Kahn 1997). These skill price increases could in principle have proceeded more rapidly in the 1990s than the 1980s, helping to cause a reduction in the rate of wage convergence. However, wage inequality in fact grew more rapidly in the 1980s than the 1990s (Autor, Katz and Kearney 2005), making such an explanation unlikely. On the other hand, Welch (2000), for example, points to a rising demand for intellectual skills relative to physical strength due to technological advances, which benefited women as a group relative to men and high-skilled compared to low-skilled men. In this view, the slowing increase in male inequality that occurred in the 1990s is consistent with a tapering off of these demand shifts and thus of slower relative progress of women. Finally, labor force selection may cause changes in observed wage differentials between men and women. Data on wages are available only for a self-selected group of labor force participants. The possibility of selection bias (Heckman 1979) is of particular concern since women’s labor force participation grew more rapidly in one period (the 1980s) than in the other (the 1990s).

The paper is organized as follows. We first examine the overall patterns in the trends in the gender pay gap over the 1980s and 1990s. Then, using an accounting technique developed by Juhn, Murphy and Pierce (1991), we decompose the reduction in the gender wage differential in each period into a portion due to changes in the measured characteristics of women compared to men; changes in the prices of measured characteristics; and changes in the unexplained gender
pay gap. In the following section, we investigate a number of possible explanations for the slowing convergence in the unexplained gap identified in the decomposition analysis as the major factor accounting for the difference in trends in the two periods. The final section concludes.

II. Trends in the Gender Pay Gap: Overall Patterns

Table 1 contains information on male and female wage inequality, as well as the gender pay gap, for 1979, 1989 and 1998, based on the PSID. Since our two time periods are of unequal length (i.e., ten and nine years, respectively), for comparability, here and elsewhere in the paper, changes over each period are expressed as the average annual change (uncompounded) multiplied by ten. Mirroring the trends we discussed above based on published data, we find that the pay gap fell substantially faster in the 1980s than in the 1990s: the gender differential in log wages fell 0.164 log points from 1979 to 1989 compared to a ten year rate of decline of 0.075 log points from 1989 to 1998. The implied female-to-male pay ratio rose from 63 percent in 1979 to 74 percent in 1989 and 80 percent in 1998. Wage inequality as measured by the standard deviation of log wages or the 90-50 and 50-10 gaps in log wages rose considerably in the 1980s for both men and women; in the 1990s, 90-50 gaps continued to rise, while the 50-10 gap fell. The net effect on the standard deviation was a slowing increase in the 1990s compared to the 1980s. These inequality patterns among men and among women are consistent with Current Population Survey (CPS) data, as analyzed in an earlier version of this paper (Blau and Kahn 2004) and in Autor, Katz and Kearney (2005).

Figure 1, which displays the gender wage gap at the indicated percentiles of the male and female wage distributions, shows that the gender wage gap fell substantially throughout the wage distribution in the 1980s, with much smaller declines throughout the distribution in the 1990s. The figure also indicates little wage convergence at the top of the distribution in the 1990s, a finding consistent with the concerns raised by the GAO report cited above. We will examine this
issue below controlling for gender differences in measured characteristics by using quantile regression techniques.

Rising skill prices may induce changes in the gender pay gap that are unrelated to women's relative qualifications or to the extent of discrimination against them. A simple measure which controls for such changes in wage structure is the mean female percentile in the male wage distribution. The female percentiles presented in Table 1 indicate that the behavior of this indicator was similar to the gender pay ratio: women moved up in the male pay distribution in both periods, but the pace of this upward progression was slower in the 1990s than in the 1980s. On average, women outearned 24% of men in 1979, 35% in 1989, and 39% in 1998.

III. Decomposing the Changes in the Gender Wage Gap

A. Analytical Framework

Using a decomposition suggested by Juhn, Murphy and Pierce (1991)—JMP—and implemented to analyze trends in the U.S. gender pay gap in the 1980s by Blau and Kahn (1997), we identify, in an accounting sense, the contribution to changes over time in the gender pay gap of i) changes in the measured characteristics of women compared to men, ii) changes in the prices of measured characteristics; iii) changes in the unexplained gap (corrected for the impact of changes in the prices of unmeasured characteristics); and iv) changes in the prices of unmeasured characteristics.

The basic insight of the JMP framework is that, since prices change over time in ways that may advantage or disadvantage women, it is useful to separately identify the impact of gender-specific factors like the relative qualifications of women and discrimination against them from the effect of wage structure (or price changes that are common to both sexes). Intuitively, if, as the human capital model suggests, women have less experience than men, on average, the higher the return to experience, all else equal, the higher will be the gender gap in pay. Similarly, if, due to discrimination or other factors, women tend to work in different occupations and industries than men, the higher the return to working in the male sector, the larger will be the
gender pay gap. This reasoning suggests that rising wage inequality due to increasing returns to skill and sector would adversely affect women’s relative pay. On the other hand, a rising relative demand for intellectual skills relative to physical strength (Welch 2000) or for white collar relative to blue collar workers (Berman, Bound and Griliches 1994) due to technological advances, may benefit women as a group relative to men but also increase male wage inequality (see also, Blau and Kahn 1997).

Taking into account these alternative possibilities, rising wage inequality might be expected to have opposing negative and positive effects on women’s relative wages, with the dominant effect being an empirical question. In terms of the JMP decomposition, the negative effects are captured in the components that measure the impact of changes in measured and unmeasured prices on changes in the gender pay gap, while the impact of technological change and other factors that potentially positively affect the relative demand for female workers will be one of the possible factors included in the effect of changes in the unexplained portion of the gender pay gap.

Institutional changes are an additional factor that can affect the return to skill but may have gender-specific effects as well. For example, deunionization likely raises wage inequality and the price of skills, since unions compress wages (DiNardo, Fortin and Lemieux 1996). One might therefore expect that deunionization would raise the gender pay gap by making wage floors less prevalent. But in the 1980s, the unionization rate fell more for men than for women, actually helping to explain the falling gender pay gap (Blau and Kahn 1997). We can directly assess the latter impact of deunionization more easily than technological change, since we can observe it directly. However, any more general effects of deunionization through spill-over or threat effects on the nonunion sector, will not be measured by our analysis.²

Using the JMP framework, we begin with a male wage equation:

² Given the relatively small size of the union sector in the United States, such effects are not likely to be large empirically, and indeed a recent study does not find much evidence of them (Farber 2005).
where Y_{it} is the log of wages; X_{it} is a vector of explanatory variables; B_t is a vector of coefficients; θ_{it} is a standardized residual (i.e. with mean zero and variance 1 for each year); and σ_t is the residual standard deviation of male wages for that year (i.e., its level of male residual wage inequality). The difference in the gender pay gap between two years 0 and 1 (i.e., 1979-89 and 1989-98) can be decomposed into four components as follows (for additional details see Blau and Kahn, 2004 and Juhn, Murphy and Pierce 1991):

\[
\begin{align*}
(2) \quad \text{Observed X's Effect} &= (\Delta X_1 - \Delta X_0) B_1 \\
(3) \quad \text{Observed Prices Effect} &= \Delta X_0 (B_1 - B_0) \\
(4) \quad \text{Gap Effect} &= (\Delta \theta_1 - \Delta \theta_0) \sigma_1 \\
(5) \quad \text{Unobserved Prices Effect} &= \Delta \theta_0 (\sigma_1 - \sigma_0)
\end{align*}
\]

where a Δ prefix signifies the average male-female difference for the variable immediately following.

The Observed X's Effect reflects the contribution of changing male-female differences in observed labor market qualifications (X). The Observed Prices Effect reflects the impact of changes in prices of observed labor market characteristics, as indexed by male prices. The Gap Effect measures the effect of changing differences in the relative positions of men and women in the male residual wage distribution, including the effect of an improvement in women’s unmeasured characteristics or a reduction in the extent of discrimination against women. Finally, the Unobserved Prices Effect reflects the contribution to the change in the gender gap that would result if the percentile rankings of the female wage residuals had remained the same.

3 Datta Gupta, Oaxaca and Smith (2006) suggest performing Juhn, Murphy Pierce decompositions on pooled male and female wage samples. We chose not to do this because the coefficients for male equations are more likely to reflect true returns to human capital and rents rather than unmeasured human capital. However, in supplementary models, we pooled men and women for each year and obtained results that were very similar to those presented below.
and only the extent of male residual wage inequality had changed. It measures changes in the female penalty to being below average in the distribution of male residuals. The sum of the gap and unobserved prices effects is equal to the change in the "unexplained" differential, which is commonly taken as an estimate of discrimination in a conventional decomposition but may also reflect unmeasured productivity differences between men and women. Recently, this decomposition has come under a variety of criticisms, particularly the decomposition of the residual (for discussion, see Blau and Kahn, 2004). However, as shown below, our conclusions about the sources of the slowdown in the convergence of the gender pay gap in the 1990s are not affected by whether or not one decomposes the residual.

B. Data and Specifications

Three waves of the PSID are employed to compare the rate of convergence in the 1980s and the 1990s—1980, 1990 and 1999—allowing us to compute average hourly earnings for 1979, 1989 and 1998. In addition to spanning the appropriate time period, the economy was expanding in each of these years, suggesting that overall macroeconomic conditions may have been similar. We initially restrict our analysis of wages to workers who were, as of the survey date, full-time, nonagricultural employees age 18-65; the self-employed were excluded. We focus on full-time workers in our basic models in order to identify a group of men and women that is as homogeneous as possible with respect to labor market commitment. However, in some analyses below, we do include part-time workers in order to examine selection issues. To maximize sample size, we use both the PSID’s random sample and its poverty oversample populations and, in all analyses, employ the sampling weights supplied in the PSID files. Patterns were similar when we restricted ourselves to the random sample. The wage measure is average real hourly earnings during the previous calendar year expressed in 1983 dollars using

4 After the 1997 survey, the PSID began surveying respondents every other year rather than annually. Thus, there are no PSID data available for 2000.

5 The unemployment rate was 5.8% in 1979, 5.3% in 1989 and 4.5% in 1998 (BLS web site: www.bls.gov, accessed 6/9/03).
the Personal Consumption Expenditures deflator from the National Product Accounts. We exclude individuals earning less than $1 or more than $250 per hour in 1983 dollars. Our longer paper (Blau and Kahn 2004) contains details on the construction of the key experience variables.

Two specifications are employed in implementing the decomposition. The “human capital” specification includes controls for race, education, and experience. The race variable is primarily a control. Sample sizes were insufficient to perform separate analyses for nonwhites, although results were very similar when we confined the sample to whites only. Education is measured by three variables including years of schooling and dummies for college degree only and for advanced degree. Experience includes full-time and part-time experience and their respective squares.⁶

The second “full” specification augments the human variables with a collective bargaining coverage indicator and a set of 19 occupation and 25 industry dummy variables that include some two digit and some one digit categories, depending on cell size. Controlling for sector in this way is potentially interesting, since existing research finds that much of the gender gap is associated with location of employment (Blau 1977; Groshen 1991; Bayard, Hellerstein, Neumark and Troske 2003). Further, factors such as deunionization and occupation and industry shifts clearly in part reflect changing demand for labor, and this specification allows us to examine the importance of these factors (in an accounting sense). We thus present some results controlling for these variables and have moreover attempted to specify the categories in as detailed a fashion as feasible to make the results as informative as possible. However, the sector variables are also potentially endogenous as they themselves are likely to be affected by relative wages through both worker supply and employer demand decisions. Further, access to occupations, industries and unionized workplaces may be affected by discrimination. We thus present results for both specifications but interpret the “full” specification cautiously.

⁶ In view of the possibility that the returns to education changed differently for different experience groups (Card and Lemieux 2001), we also implemented the JMP decomposition interacting the three education variables with full time experience and its square; the results were unchanged.
As noted, to the extent that supply and demand shifts alter the extent of gender differences in occupation and industry, the *direct* effects of such shifts will, in an accounting sense, be captured in the portion of the change in the gender wage gap that is due to changes in gender differences in occupations and industries. However, to the extent, for example, that aggregate supply and demand shifts benefit women relative to men (as suggested by the discussion above), they should arguably raise the relative wages of women *wherever* they are employed. Such broader impacts of supply and demand shifts will be included in the unexplained gap.

We have not controlled for marital status or number of children, although they may be important factors influencing the pay gap. An alternative would have been to include them as productivity characteristics. However, such an approach is problematic since these variables may well proxy higher skills for men, but possibly lower skills for women, even controlling for actual labor market experience (see, for example, Korenman and Neumark 1991; Waldfogel 1998). The approach we have followed allows us to place a sharper interpretation in the decomposition on the impact of differences in labor market skills, as well as allowing marital status to be endogenous.

C. Empirical Results

Tables 2A and B show the results of the JMP decomposition of changes in the gender pay gaps across our two periods: 1979-89 and 1989-98. We first consider the descriptive statistics presented in 2A and then the full decomposition results in 2B. Table 2A shows similar patterns of rising residual inequality for both men and women. The residual 90-10 gap increased more rapidly in the 1980s than the 1990s as did overall wage inequality (see Table 1). The similar trends in residual inequality for men and women give us some confidence that the JMP assumption of a common labor market for men and women may be valid. However, as noted above, supply and demand shifts that affect men and women differently will be captured in the unexplained portion of the differential and provide a possible explanation for changes in the unexplained gender pay gap over time.
In both specifications, the average female residual fell dramatically in the 1980s but was virtually constant over the 1990s. Our results indicate that, controlling for the human capital variables, including actual labor market experience, the gender wage ratio increased from 70.8 to 81.8 percent between 1979 and 1989, and remained roughly constant at 81.2 percent in 1998. In the full specification, which adds controls for industry, occupation and collective bargaining coverage, the ratio rose from 81.6 percent in 1979 to 91.0 percent in 1989 and remained at about 91 percent in 1998. The mean female percentile in the residual distribution, a measure that, in the context of the JMP framework is independent of possible adverse shifts in the prices of unobservables, followed a similar pattern, rising sharply in the 1980s and only very slightly in the 1990s.

Table 2B shows the decompositions of the changes in the gender pay gap over the 1980s and the 1990s. Standard errors for the measured X and measured B effects, as well as approximate standard errors for the residual components are based on the Appendix to Datta Gupta, Oaxaca and Smith (2006). The 1980s decomposition is very similar to our earlier work which covered the 1979-88 period (Blau and Kahn 1997). Specifically, the human capital specification shows that women improved their relative experience levels in the 1980s, accounting for a 0.053 log point fall in the gender pay gap, or about 1/3 of the total decline. In addition, women moved up the male residual distribution, an effect contributing to a highly significant 0.180 log point decrease in the gender pay gap, or more than the actual decline. However, both measured prices and unmeasured prices each significantly changed to women’s detriment and together served to increase the gender pay gap by 0.065 log points. The full specification for the 1980s yields a larger observed X effect and a gap effect that is smaller in absolute value, suggesting that more of the observed change in the gender pay gap can be explained with the addition of the occupation, industry and union controls. In addition to the upgrading in female labor market experience, women’s occupations improved, and deunionization had a greater negative effect on men’s than on women’s wages, since men lost union jobs at a faster rate than women. These changes in the All X’s and Gap Effects between
specifications for the 1980s were statistically significant. Measured and unmeasured prices effects continued to raise the gender pay gap overall in the full specification, and were significant or marginally significant overall, although occupational price effects were negative.

Comparing the JMP decompositions for the 1980s and the 1990s can reveal some of the sources of the slowdown in the convergence of the gender pay gap. Using either the human capital or the full specification, we find that women upgraded their human capital as measured by education and experience to a similar degree in the two decades: for example, in the human capital specification, the difference in the All X’s effect was only 0.007 log points, although it was marginally significant. In the 1980s, women’s human capital upgrading consisted entirely of rising experience and, consistent with speculations based on aggregate labor force participation rates, decreases in the gender gap in experience contributed considerably less to wage convergence in the 1990s than in the 1980s. The gender gap in years of full-time experience decreased by .7 years between 1989 and 1998, compared to 2.3 years between 1979 and 1989. However, rising relative educational attainment of women played a much larger role in the 1990s, and thus, the sum of the effects of education and experience was similar in the 1980s and 1990s. Although men had an edge in the incidence of college degrees in earlier years, by 1998 the incidence of college degrees was slightly (1.2 percentage points) higher among women in our sample of full-time workers.

The full specification shows that, while occupational upgrading and deunionization contributed to women’s relative wage gains in both periods, these factors had larger effects in the 1980s than the 1990s, explaining roughly 0.024 log points of the 0.089 faster closing of the gender pay gap in the 1980s, or about 27%. Occupational shifts were similar in a number of respects in both periods. Women increased their relative representation in managerial

7 The negative occupational price effect contrasts with our earlier work and is likely due to our ability to more finely define occupation in the larger samples we now use. Our earlier study employed only the PSID random sample whereas the current study uses both the PSID’s random sample and its poverty oversample populations (employing appropriate sampling weights).

8 The All X’s effect in the full specification was significantly more negative in the 1980s than the 1990s.
occupations and in professional jobs (both overall and excluding K-12 teaching) and reduced their relative representation in clerical and service jobs at about the same pace in the two decades. However, the gender difference in representation in craft and operator jobs declined more rapidly in the 1980s than the 1990s. This was because men moved out of (or lost) these jobs at a faster rate in the earlier decade. The results for collective bargaining coverage reflect a slowing pace of deunionization for both men and women in the 1990s than in the 1980s, with a smaller gender difference in the rate of deunionization in the 1990s. The larger loss of relatively high-paying blue collar and unionized employment for men in the 1980s than in the 1990s may be indicative of larger demand shifts favoring women in the 1980s. To the extent that such demand shifts occurred, they would plausibly affect women’s relative pay wherever men and women are employed. We explicitly examine evidence of such demand shifts below.

While more favorable shifts in occupations and collective bargaining coverage for women in the 1980s help to explain some of the faster convergence in that decade, trends in measured and unmeasured prices worked to widen the gender pay gap more in the 1980s than the 1990s. Specifically, trends in measured prices were estimated to slow convergence in the 1980s compared to the 1990s by .059 (human capital specification) to .044 (full specification) log points, although these differences were either only marginally significant or not significant; and trends in unmeasured prices worked to slow convergence in 1980s relative to the 1990s by 0.012 to 0.019 log points, statistically significant differences.

The results in Table 2B indicate that the primary factor accounting for the more rapid convergence in women’s wages in the 1980s was the gap effect: unexplained gender differences in wages, corrected for unmeasured price changes using the JMP decomposition, narrowed more dramatically in both the human capital and full specifications in the 1980s than in the 1990s; and this highly statistically significant difference is more than sufficient to fully account for the slowdown in convergence in the 1990s. Women’s more rapid movements up the male distribution in the 1980s produced gap effects narrowing the gender gap by 0.128 to 0.180 log points, in contrast to the much smaller reductions of 0.006 to 0.007 log points for the 1990s.
This contrast means that, controlling for measured human capital and sector, women’s relative labor market position improved much more in the 1980s than the 1990s. While it is reassuring to have a measure of changes in the unexplained gap that is corrected for the negative effects on women’s wages (in some models) of widening residual male inequality, in fact our conclusions are similar if we restrict ourselves to changes in the conventionally defined unexplained differential also shown in Table 2B. 9

IV. Factors Contributing to a Slowing Convergence in the Unexplained Gender Pay Gap in the 1990s

The slower convergence in the unexplained gap in the 1990s compared to the 1980s has at least three possible, nonmutually exclusive, substantive sources: first, gender differences in unmeasured characteristics may have narrowed at a faster pace in the 1980s than in the 1990s; second, reductions in labor market discrimination against women may have proceeded at a faster pace in the 1980s than in the 1990s; and finally, demand and supply conditions for women may have changed more favorably in the 1980s than the 1990s. An additional factor to be considered is the change in labor force selectivity among men and women in each period, which may have contributed to an apparent slowdown in wage convergence overall and/or in the unexplained gender pay gap. Evidence on the impact of selectivity is considered prior to the assessment of the impact of the other factors since it is important to know whether the differential trends in the unexplained gap persist after adjusting for selection bias.

A. Changes in Labor Force Selectivity

Using re-weighting techniques introduced by DiNardo, Fortin and Lemieux (1996), we restimated our models holding constant first the age composition and second the human capital composition of the male and female samples over time. These analyses correct for cohort size (partial equilibrium) effects as well as sample composition effects with respect to the residual as suggested by Lemieux’s (forthcoming) work, and they yielded very similar results to the ones reported here. In addition, in our longer paper (Blau and Kahn 2004), we performed JMP decompositions on March CPS data for the same years used in Table 2 and obtained similar results.
Our approach to analyzing the impact of labor force selectivity on trends in the raw and unexplained gender wage gap is to get more information on the wages of those not included in our sample of full-time employed workers. An alternative would be to build sample selection models and then predict the wage offers of those without observed wages (Heckman 1979). However, since the identification conditions required for the successful implementation of such techniques are potentially severe, we take the more modest approach of looking harder for evidence on offers. We proceed in several stages, each of which allows us to include a successively larger portion of the adult population in our calculations.

First, we add all of those with observed hourly earnings in the current year to our base sample of full-time workers; that is, we include part-time workers. Second, for those with no earnings in a given year for which we measure wages, we use the longitudinal nature of the PSID to recover a real hourly earnings observation (using the Personal Consumption Expenditures deflator for the relevant year) from the most recent year for which one is available, with a maximum window of four years. Third, for those for whom we still have no observation on wages under these procedures, in the spirit of Neal and Johnson’s (1996) and Neal’s (2004) analyses of black-white wage differentials, we include some additional individuals by making assumptions about whether they place above or below the median of real wage offers. Specifically, we assume that individuals with at least a college degree and at least eight years of actual full-time labor market experience had above the median wage offer for their gender, and that those with less than a high school degree and less than eight years of actual labor full-time market experience had below median wage offers for their gender. Note that this procedure takes into account that, particularly for women, it would not be appropriate to assume that all those outside the wage sample have below median wage offers, since some women are outside the wage sample due to a high value of home time rather than a low wage offer. Further, our imputations take into account, in addition to education, actual labor market experience, a crucial
variable influencing women’s wages. If these wage assumptions are valid, we can use median regression to estimate raw (i.e., unadjusted) and human-capital corrected gender differences in wage offers for the expanded group. Koenker and Bassett (1978) show that under some non-normal distributions, the sample median has a smaller asymptotic variance than the sample mean, suggesting that median regression may well estimate effects of explanatory variables with smaller errors than linear regression.

The fraction of the population included in our base sample of full-time workers is indeed very selective with respect to women, with only 41% of women in the population included in 1979, rising to 50% in 1989 and 53% in 1998. Moreover, since this group grew very quickly in the 1980s and more slowly in the 1990s, selection may have differentially affected the wage trends during these two periods. In contrast, the inclusion of men in the full-time sample is much greater and fluctuates less over time—including 80 to 83 percent of the population over the period. Thus, concerns about selection are centered primarily on women, and results for this group will drive our selection-correction adjustments.

When we include all those with earnings in the prior year (i.e., part-time workers): the share of all women with wage observations now ranges across years from 68 to 77%, while for men, the sample includes 92 to 94% of the population. Recovering past observed wages for those without current observations using a four-year window adds 10 to 13 percentage points to

10 Applying these assumptions to individuals who had observed wage offers misclassifies 9-15% of men and 14-21% of women in the low-education, low-experience group and 17-22% of men and 11-20% of women in the high-education, high-experience group. Thus, while the imputation clearly makes some errors, they appear to have a low incidence. Results were not sensitive to some alternative education and experience cutoffs for inclusion in these imputed wage samples.

11 For the regression-based approach to evaluating raw and human-capital gender wage gaps that we employ, which is based on separate human-capital wage regressions for men and women, we need some additional assumptions about unobserved wage offers. Specifically, for individuals without observed wage offers, we need to assume that those with less than a high school degree and less than eight years’ full time experience had below median wage offers conditional on their human capital levels; by the same token we must assume that those with college degrees and at least eight years’ full time experience had above median wage offers conditional on their human capital. A similar point is made by Neal (2004). These assumptions are discussed further below.

12 Those who were self-employed or agricultural workers as of the time wages were observed (1979, 1989 or 1998) are excluded from both the numerator and the denominator in these percentages. For further details on the process of obtaining past wages, see Blau and Kahn (2004).
female coverage and 4 to 5 percentage points to male coverage. Finally, making our above and below median imputations for selected individuals without present or recovered past wage observations leads to very high rates of coverage of the population: fully 86-91% of women and 96-98% of men are now covered. Not only is the coverage within a given year much closer for men and women than under less inclusive definitions of the sample, the increase in female coverage over time for the expanded sample—4.3 percentage points (1979-89) and 0.4 percentage points (1989-98)—is much less than for the full-time employed sample—8.7 percentage points (1979-89) and 2.8 percentage points (1989-98).

Table 3 shows median log wage gaps (Panel A) and the changes in these gaps (Panel B) for the four samples described above. Two estimates for each year are presented. The first is the raw (unadjusted) gap and the second is the gap controlling for human capital. Panels A.I and B.I give our findings based on OLS regressions for full-time workers (repeated here for comparison). Panels A.II and B.II report our findings based on median (quantile .50) regressions estimated on the indicated samples. The raw gap is the difference in the predicted median male and female log wages based on the estimated median regression coefficients from separate male and female regressions under the human capital specification and the actual male and female means of the explanatory variables. The second, the median gender log wage gap controlling for human capital is the difference in predicted median male and female log wages when both the male and female median regressions are evaluated at the female means.

As may be seen in Panel A, median raw and human capital-corrected pay gaps for the sample of full-time employed workers are similar to those obtained using OLS regressions. Within each year, the size of the raw pay gap grows as we add individuals with less attachment to the labor force. Inspection of the predicted raw medians indicates that, on average, those

13 Note that, unlike OLS regressions, quantile regressions do not necessarily pass through the median of the dependent variable and the means of the independent variables. Thus, the predicted value of the male and female medians and the resulting gender gap is not necessarily equal to the actual male and female medians or the gender gap calculated from them. For the imputed wages, we assigned a log wage of 1 for those below median and 4 for those above median. Our analyses of the gender pay gap here focus on medians rather than means, since we do not know the actual earnings levels of these presumed below- and above-median wage individuals.
included in the full-time employed sample are a positively selected group compared to those added to form our most inclusive sample (d). Since we add considerably more females than males, the raw pay gap widens.

Table 3 provides some indirect evidence on the potential impact of selection on the slowdown in convergence in the gender pay gap in the 1990s. Focusing on a comparison of the trends for the medians for the full-time employed sample and the most inclusive of the three expanded samples, we see that the raw gap closed more slowly in the 1980s for the expanded sample (0.153 log points) than for the full-time employed sample (0.174 log points). Similarly, convergence in the unexplained gap was also slower for the expanded sample (0.132 log points) than for full-time employed workers (0.158 log points).

The results imply that, due to sample selection, the 1980s gains in women’s relative wage offers were overstated. At first glance it might be expected that using the observed wages of workers with full-time jobs should have caused us to understate the gains, since the female full-time work force was getting substantially larger over the 1980s, and median wage offers were lower among those without full-time jobs than among the full-time work force. The key to understanding why the selectivity-corrected offers closed more slowly than the observed wage offers in the 1980s lies in the changes in the degree of selectivity of the women included in the full-time sample (group a) as the female labor force grew. Our results suggest that female labor force growth over this period was positively selected, and this is indeed consistent with considerable evidence on female labor force participation trends. For example, Juhn and Murphy (1997) find that employment gains for married women over the 1970s and 1980s were largest for wives of middle- and high-wage men who themselves tend to be more skilled. This

14 For men, predicted median log wages of full-time, employed workers (group a) were .10 to .14 log points higher than those added to the full-time employed to form our most inclusive group (d); for women, they were .22 to .29 log points higher.
15 The estimated wage offers for women not included in group (a) were 25.2 percent lower than those in group (a) in 1979, but 33.2 percent lower in 1989—again indicating that the full-time employed had become more positively selected relative to those not included.
16 See also Blau (1998) and references therein.
pattern is in turn related to the rising returns to skills over this period, which drew high-skilled women into the labor force. Our findings suggest that this positive selection characterized not only the observable characteristics of women in the labor force (as reflected in our results for the raw gap) but also their unobserved characteristics (as reflected in our results for the unexplained gap).

The selection adjustments had less impact for the 1990s, as might be expected based on the slower growth in the female labor force for that period. Convergence in the raw gap was somewhat faster in the expanded sample, where the gender gap fell by 0.100 log points, than in the full-time employed sample, where it decreased by 0.087 log points. This suggests that labor force growth over this period was negatively selected and may reflect the large entry of relatively low-skilled, female single-family heads during this decade about which there is a sizable literature (e.g., Blank 2000; and Meyer and Rosenbaum 2001). Reductions in the gender wage gap controlling for human capital were also slightly faster in the expanded sample (0.019 log points) than the full-time sample (0.008 points).

Can sample selectivity help explain the slowdown in convergence between male and female wages in the 1990s? Table 3 suggests that it is indeed part of the explanation. Specifically, the last two columns of Panel B compare changes in the raw and human capital-corrected gender pay gap in the 1990s and the 1980s. Looking at trends for the medians for our most restricted sample, the full-time employed, the raw pay gap converged 0.087 log points more slowly in the 1990s than in the 1980s, and the difference between the two decades in the human capital corrected pay gap was even greater, closing 0.150 log points more slowly in the 1990s than in the 1980s. However, in our most inclusive sample (d), the raw gap closed 0.054 log points more slowly in the 1990s, and the human capital corrected gap closed 0.113 log points more slowly. The comparison across the two samples implies that as much as 0.033 log points (i.e., 0.087-0.054) of the 0.087 log point less rapid closing of the raw pay gap among the full-time employed in the 1990s was due to sample selection. Table 3 also shows a comparable effect of selection on the human capital-corrected gender pay gap: 0.037 log points of the 0.150
log point less rapid closing of the human capital-corrected gender pay gap in the 1990s was due
to sample selection. This implies that sample selection can explain about 25% (i.e., 0.037/0.150)
of the slowdown in the narrowing of the unexplained pay gap (in the human capital
specification) that we observe among the full-time employed. For the entire 1979-98 period,
Table 3 implies that the human capital-corrected gap fell 0.165 log points not controlling for
selection but 0.149 after accounting for selection. Thus, selection bias can explain about 10% of
the closing of the ceteris paribus gender pay gap over the 1980s and 1990s taken together.17
While our computations imply that selection has a noticeable effect for the 1980s-1990s
comparison, they do not alter our conclusion, based on OLS regressions for the full-time
employed sample, that there was considerably less convergence in the unexplained gender pay
gap in the 1990s than in the 1980s.18

B. Changes in Gender Differences in Unmeasured Characteristics and Labor Market
Discrimination
In this section we consider two possible sources of the slower convergence in the
unexplained gender wage gap in the 1990s that persists after our correction for sample
selection—slower reductions in the gender difference in unmeasured characteristics and in labor

17 After we wrote the first draft of this paper, we became aware of a paper that uses a structural approach to
investigate the impact of selectivity bias on the observed gender pay gap over the 1975-2001 period (Mulligan and
Rubinstein 2005). The authors find that selection accounts for all of the apparent improvement in women’s relative
wages since 1975, although they do not study the subperiods separately as we do. In contrast, as noted in the text,
we find that selection is only part of the explanation for the 1979-98 period. And using a selection correction similar
to ours, Olivetti and Petrongolo (2006) find that selection explains about 60% of the cross-country (negative)
correlation between the gender pay gap and the gender employment gap.
18 As noted, in order to reach conclusions about changes in the gender pay gap when those with imputed wages are
included (i.e., as in group d in Table 3), we must assume that their wage offers are above median or below median,
conditional on their human capital levels. This assumption is more likely to be valid for the group with low
education and low experience than for the high-education, high-experience group. When we performed analyses
like those in Table 3 adding only the former group, the results were virtually identical: selection is estimated to
account for 25% of the slowdown in the convergence in the unexplained pay gap. Moreover, as may be seen in
Table 3, when we make no imputations and include only those for whom we observe a wage offer at some time in
the past four years (group c in Table 3), we obtain very similar results to those for group d: selection accounts for
27% of the slowdown in the closing of the unexplained gender pay gap. Thus, our conclusions about selection do
not appear sensitive to adding those with imputed wage offers.
market discrimination in the 1990s. In the spirit of seeking as much homogeneity as possible between the female and male samples when addressing these issues, we return our focus to the full-time employed sample.

With respect to unmeasured characteristics, it is possible that increases in women’s commitment to the labor market and their employers was greater in the 1980s than the 1990s, even controlling for measured human capital and sector. Changes in such unmeasured characteristics are, by definition, difficult to measure. However, Aguiar and Hurst’s (2006) findings on changes in housework are consistent with the possibility that such shifts played a role. Specifically, based on time use diaries, the authors’ data imply that the gender gap in housework hours among nonretired individuals age 21-65 declined by more in the 1980s than in the 1990s: between 1975 and 1985, this gap fell from a level of 18.3 hours per week to 12.6 hours; however, from 1985 to 1993, the gap only fell to 10.6 hours, with a further reduction to 8.6 hours by 2003 (pp. 45-6). This pattern was also observed in analyses that controlled for the educational, age and family composition of the sample, as well as the day of the week on which the data were collected. Specifically, in weekly housework regressions that pooled years separately by gender and controlled for these factors, the female year effect fell relative to the male year effect by 4.4 hours per week between 1975 and 1985, 1.7 hours between 1985 and 1993 and 2.6 hours between 1993 and 2003 (p. 56). Additionally, retrospective data from the PSID for all full-time workers as well as married full-time workers show a similar pattern to the time diary data of faster declines in the housework gap in the 1980s (Blau and Kahn 2004). If housework reduces the effort one can put into a job (Becker 1985; Hersch and Stratton 1997), gender differences in potential effort on the job closed faster in the 1980s than the 1990s.

19 These conclusions are not affected by taking account of childcare, which was not analyzed in the regressions. Specifically, Aguiar and Hurst (2006, p. 47) found that the gap in average childcare hours between all working women and all men was 2.0 hours in 1975, 2.1 hours in 1985, 1.7 hours in 1993, and 2.6 hours in 2003 (the authors did not present data that would allow us to infer the pattern of changes in housework hours between working women and men).
Of course, the observed changes in housework hours could have been in part a *response* to changing labor market opportunities. However, this does not invalidate the reasoning by which housework potentially exerts an independent effect on labor market success. More broadly, it seems likely to us that the differences in trends for gender differences in housework over the two decades are indicative of faster convergence over the 1980s in other unmeasured characteristics as well. The faster increase in female labor force participation in the 1980s, as well as the more rapid narrowing of the gender gap in experience in that decade are also suggestive of a greater increase in women’s commitment to the labor force in the earlier decade.\footnote{Women’s work attitudes and ambition are examples of other unmeasured factors that potentially influence wages and could have changed at a different rate over the two decades. In this regard, it is interesting that Fortin (2005) finds evidence that gender differences in these factors were much smaller in 2000 than in 1986, although her data do not allow us to determine whether this convergence happened at a faster pace in the 1980s than the 1990s.}

It is also possible that discrimination decreased by more in the 1980s than in the 1990s. This might at first appear unlikely in that civil rights legislation passed in 1991 made the legal environment more favorable toward antidiscrimination lawsuits in the 1990s than in the 1980s (Gould 1993). This contributed to a more rapid growth in job bias lawsuits over the 1990s, since representing defendants in such suits became more lucrative for private law firms operating on a contingency fee basis (Blau, Ferber and Winkler 2002, p. 243). Nonetheless, if women’s labor force commitment changed more dramatically in the 1980s, it is possible that employers’ perceptions of women’s labor force commitment also changed more dramatically in the 1980s. If so, one of the possible bases for statistical discrimination against women may have eroded faster in the 1980s.

An additional scenario whereby discrimination could have narrowed more slowly in the 1990s is related to the glass ceiling hypothesis mentioned above. The so-called glass ceiling problem refers to the explicit or, more likely, subtle barriers that inhibit women’s progress at the highest echelons. If there is indeed such a problem, it may have had a greater negative impact on women in the 1990s as women’s 1980s gains placed more of them into the higher-level positions...
where glass-ceiling barriers might hinder their further upward progression. If women are indeed increasingly constrained by glass ceilings, then one might expect there to be less wage convergence with men at the top of the distribution than at other points. We study this issue in Table 4.

As we saw in Figure 1, the gender pay gap closed more slowly in the 1990s at all points in the distribution, but the contrast was particularly large at the top of the distribution. Although this is consistent with greater glass ceiling problems, it could also have been produced by different rates of change in women’s relative qualifications in the two decades. The estimates in Table 4 are based on quantile regressions for the 50th and 90th percentiles and allow us to present estimates of the unexplained gender pay gap controlling for measured characteristics. (Of course, as in all analyses of this kind, the unexplained gender wage gap could also be due in whole or part to gender differences in unmeasured characteristics.) We focus on the results for the human capital specification because the implicit cell sizes within occupation-industry-unionization cells in the PSID are rather small to support an analysis focusing on various points of the distribution.

Table 4 presents three sets of results. The first two apply the results of the male and female quantile regressions by evaluating them (I) at the actual female means and (II) for white college graduates with 15 years of full-time experience. That is, we take women with the indicated characteristics and compare the predicted wages from the male and female quantile regressions at the 50th and 90th percentiles given those characteristics.21 The rationale for the simulations in (II) is that the popular understanding of the glass ceiling is that it potentially applies to relatively high skilled/high level workers. A different approach is used for the last set of results (III) where we construct counterfactual wage distributions for each year using a technique proposed by Machado and Mata (2005) and compute the gender gap at the 50th and 90th percentiles of these counterfactuals. Specifically, we first estimate 99 quantile regressions

21 That is, the unexplained gap is calculated as $(B_M-B_F)X_F$, where B_M and B_F are vectors of coefficients from male and female quantile regression equations and X_F is a vector of female characteristics.
each year for men and women separately (i.e., quantiles 1-99). These quantile regressions use the entire sample of full-time employed wage and salary workers. Next, we take a random sample of 100 women in each year and find 198 predicted wages for each woman applying each of the 99 estimated male and female quantile regressions. This results in two counterfactual “raw” wage distributions for the same sample of 100 women, one based on the male quantile regressions and one based on the female quantile regressions. We then compare, for example, the 90th percentile of wages in the distribution based on the female and the male quantile regressions (i.e., the female and male reward structures). A comparison of how an individual near the top (i.e., 90th percentile) of these two distributions fares certainly incorporates an element of the glass ceiling idea. However, the characteristics of the individuals at the 90th percentile are not held constant in the comparison, as they are in approaches (I) and (II)—and as they traditionally are in studies of discrimination. That is, the male and female reward structures will likely result in different types of individuals ending up at the top and comparison (III) asks how people at the top fare under the two reward structures (regardless of their characteristics).

Looking at the results for the first approach (I), the results for the unexplained gender pay gap from median regressions are quite similar to those based on OLS regressions (see, Tables 2A and 2B; and Table 3). The unexplained gap fell substantially in the 1980s, with relatively little further convergence in the 1990s. At the 90th percentile however, this pattern is even more pronounced, with the unexplained gap actually increasing in the 1990s. When we evaluate the quantile regression results for white, college graduates with 15 years of experience, the disparity between the median and the 90th percentile is even more extreme, with women at the 90th found to be losing substantial ground relative to men at the 90th in the 1990s, ceteris paribus.

Our findings for the third approach (III) differ in a key respect from (I) and (II). As in the earlier exercise, we find that both 50th and 90th percentile gaps fell much more quickly in the

22 The simulated female wage distribution created using the sample of 100 women and the 99 female quantile regressions was very similar to the actual female wage distribution, suggesting that the 100 randomly chosen women were representative of the working female population. Note that Albrecht, Björklund, and Vroman (2003) also employ a sample of 100 women in their implementation of the Machado and Mata (2005) procedure.
1980s than the 1990s. But the results show that the magnitude of the slowdown in convergence was comparable at the 50th and 90th percentiles. This is not consistent with a worsening of the glass ceiling problem in the 1990s. Interestingly, though, the results for method (III) (unlike the results for I and II) suggest that women at the top were already showing a slower rate of progress than women at the median in the 1980s. And it is the continuation of this slower rate of progress of women at the 90th into the 1990s that results in a comparable slowdown in convergence for the 50th and the 90th in the 1990s.

Taking the evidence in Table 4 together, these methods of analyzing convergence at the top vs. the middle of the distribution provide mixed evidence in favor of the notion that the glass ceiling problem worsened in the 1990s. We would again like to emphasize that even the results that are consistent with the glass ceiling story (I and II) may reflect, in whole or part, the impact of unmeasured characteristics rather than discrimination. For example, the high tech boom of the late 1990s may have especially benefited high skill men (Echeverri-Carroll and Ayala 2006).

C. Shifts in Supply and Demand

In this section we consider the possibility that less favorable changes in supply and demand for women during the 1990s than in the 1980s contributed to slower convergence in the unexplained gap during the 1990s. On the supply side, our longer paper (Blau and Kahn 2004) found evidence of a larger rightward shift in female relative labor supply in the 1980s than the 1990s. Thus, female labor supply shifts do not explain the wage convergence patterns. On the other hand, there is some evidence that demand shifts both between sectors and within sectors were more favorable to women in the 1980s than in the 1990s.

First, looking at between sector changes, we examine the degree to which changes in the industrial-occupational structure of employment favored women in the 1980s and the 1990s. To do this, we compute demand indexes similar to those specified by Katz and Murphy (1992). Following Katz and Murphy (1992), we construct industry-occupation cells and view the "output" of particular occupation groups as an intermediate product. A relative demand index,
ln(1+ΔDEMf), was computed for women relative to men for the two time periods 1980-90 and 1990-99:

\[
\Delta DEM_f = \sum_o c_{of}(\Delta E_o/E_f),
\]

where \(o\) refers to occupation-industry cell, \(c_{of}\) is the female share of the labor input in occupation-industry cell \(o\) over the pooled sample 1980, 1990 and 1999, \(\Delta E_o\) is the difference between the 1990 and 1980 or 1999 and 1990 share of total labor input employed in cell \(o\), and \(E_f\) is the 1980 or 1990 share of total labor input accounted for by women. The demand index thus measures the degree to which 1980-90 or 1990-99 shifts in occupation-industry structure favored women, using pooled 1980, 1990 and 1999 weights.

Estimates of such demand indexes are likely to be biased, so caution must be taken in interpreting the empirical results. When labor input is measured in hours or employment, the index will understate the shift in demand for women that would have occurred at constant relative wages, since women’s wages rose more than men’s over the sample period. This understatement will be more severe in the 1980s when women’s relative wages were rising faster than in the 1990s. However, when labor input is measured in efficiency units (earnings), depending on the overall elasticity of demand for labor, the index could overstate or understate the shift in demand for women at constant relative wages. With inelastic labor demand, the index will overstate the shift toward women, while with elastic labor demand, the index will understate this shift; if the labor demand elasticity is -1, the index will accurately show the shift in labor demand at constant wages. In his review of many studies of labor demand, Hamermesh (1993) suggests that the elasticity of labor demand is less than zero but greater than -1, with a likely range of -0.15 to -0.75. This suggests that earnings based measures of labor demand shift will overstate the shift toward women during this period and will do so by more in the 1980s than the 1990s, in contrast to hours based measures. Of course, the shift-share analysis does not measure within sector changes in demand, and we will return to this issue below.
In computing the demand indexes, we use 1980, 1990 and 1999 March CPS data because the CPS sample sizes allow us to construct more detailed industry-occupation cells than the PSID. We include part-time and full-time nonagricultural workers, and both the self-employed and wage and salary workers. However, because of the difficulty in measuring self-employment income, earnings-based measures of labor income include only wage and salary earnings. As noted, the base shares of female labor input \(c_{of} \) are computed using pooled 1980, 1990 and 1999 samples. In pooling these CPS files, we adjusted the CPS sampling weights so that each year received the same weight. We obtained similar results using either the 1980, 1990 or 1999 female shares as our base.

We defined sector as industry-occupation cells, with 43 mostly two-digit industries and five occupations: (a) professionals; (b) managers; (c) clerical and sales workers; (d) craft, operative, and laborer jobs; and (e) service occupations. For both hours and efficiency unit definitions of labor input, demand shifts were favorable toward women in the 1980s. The demand index, which is in log units of labor, was estimated to shift .056 units in the 1980s and only 0.015 units in the 1990s using the efficiency unit definition, with shifts of 0.033 in the 1980s and -0.0017 in the 1990s using hours. While these estimated demand shifts are consistent with the slowdown in wage convergence, our longer paper (Blau and Kahn 2004) showed that these demand shifts were too small to account for a major portion of the slowdown. In fact, they were smaller than changes in our estimated supply shifts. However, it is certainly possible that the shift-share analysis understates the true growth in demand, and particularly the extent of faster growth in the 1980s.

One possibility is that a substantial portion of the gender-biased increases in the demand for intellectual skills discussed by Welch (2000) manifested themselves within industry-occupation cells and are thus not captured by our shift-share analysis. One indicator of the increased demand for “brains” over “brawn” is the growth in the incidence of computer use at work. The observation that women are more likely than men to use computers at work suggests that women as a group may have benefited from shifts in demand associated with
Diffusion of computers likely also benefited women because computers restructure work in ways that de-emphasize physical strength (Weinberg 2000). Consistent with these arguments, Weinberg (2000) found for the 1984-93 period that, within industry-occupation cells, growth in overall computer usage in the cell increased women’s share of hours worked among both computer users and nonusers.

Computerization rose more rapidly in the 1980s than in the 1990s and hence this may be a factor in explaining the slowdown in convergence in the 1990s. Friedberg (2003) reports that computer use increased from 24.4 percent of workers in 1984 to 37.3 percent in 1989, for an annual rate of increase of 8.9%; in contrast, the annual increase between 1989 and 1997 was only 3.9% (p. 514). Combining Weinberg’s estimates of the impact of increased computer use on the female hours share with Friedberg’s data on the growth in computer usage, we estimate that rising computer use increased women’s share of hours by 0.077 log points over the 1980s compared to 0.030 log points over the 1990s under Weinberg’s “high estimates,” and 0.047 log points in the 1980s compared to 0.018 log points in the 1990s under his “low estimates.” This suggests a plausible source of within industry-occupation demand shifts favoring women relative to men to a greater extent in the 1980s than in the 1990s that is not captured by our shift-share analysis. While even adding these estimates to those presented in the shift share analysis, we would still fall short of the demand shifts required by the simulation in Blau and Kahn (2004), this finding may be indicative of other factors positively affecting the demand for women within industry-occupation cells. A possible example of such within-sector changes in the demand for women is suggested by the recent work of Borghans, ter Weel and Weinberg (2005), who find

23 Autor, Katz and Krueger (1998) for example note that the groups that had the most rapid increase in computer usage in the 1980s and early 1990s (the highly educated, whites, white collar workers and women) also had the largest wage increases.

24 Friedberg provides data on computer use only for 1984, 1989, 1993, and 1997. The estimates in the text use linear interpolation to obtain computer use in 1998 and assume zero incidence of computer use in the workplace in 1979. The latter is consistent with Autor, Katz and Krueger’s (1998) observation that the IBM PC was introduced in 1981 and the Apple II in 1977. If we instead use linear interpolation to estimate 1979 computer use, we estimate that rising computer use increased women’s share of hours by 0.027 log points (Weinberg low estimate) to 0.044 log points (Weinberg high estimate) over the 1980s; and 0.018 log points (Weinberg low estimate) to 0.030 log points (Weinberg high estimate) over the 1990s.
evidence that a growing importance of interpersonal interactions (in part due to increased computer use) in affecting wages can help explain rapidly rising female relative wages in the 1980s as well as a slower rate of increase in the 1990s.

Finally, as noted above, the effects of industry, occupation and union coverage shown in Table 2B, taken together, are consistent with a slowdown in the growth of female demand in the 1990s. Specifically, Table 2B shows that women’s relative industry, occupation and union status changes together contributed to a 0.048 log point closing in the gender wage gap in the 1980s, but to only a 0.021 log point closing in the 1990s, with both occupational shifts and deunionization, in particular, contributing less to convergence in the 1990s. Of course, as noted, these effects only measure the direct effects of shifting employment distributions on the gender gap, demand shifts can also affect the female residual, but they are consistent with demand shifts that potentially have broader effects. Interestingly, technical change has been widely cited as a factor in the shrinking of blue collar employment (e.g., Katz and Murphy 1992) and is likely to also be a significant cause of deunionization, as computers make it easier to substitute away from relatively unionized routine manual jobs (Autor, Levy and Murnane 2003).

V. Conclusion

This paper used PSID data to study the slowdown in the convergence of female and male wages in the 1990s compared to the 1980s. After decades of near constancy, between 1979 and 1989 the female/male hourly pay ratio rose by 17.8 percent—from 63.2 to 74.5 percent. However, convergence slowed in the 1990s, with the ratio rising to 79.7 in 1998, an increase of only 7.2 percent on a ten-year basis. We first decomposed the slowdown in convergence into a portion due to changes in women’s relative human capital levels and other measured characteristics; a portion that was due to changes in measured labor market prices; a portion due to changes in women’s position in the male wage distribution; and a portion due to changes in unmeasured labor market prices.
Our decompositions showed that women improved their relative human capital to a comparable extent in the 1980s and the 1990s. In contrast, while occupational upgrading and deunionization contributed to women’s relative wage gains in both decades, the impact of these factors was greater in the 1980s. Thus, slowing convergence in sectoral location in the 1990s is part of the explanation for the slowdown in wage convergence. The results of our decompositions also indicate that changes in the price of skills and returns to location in favorable sectors of the economy cannot explain why the gender pay gap fell faster in the 1980s than in the 1990s. These prices changed to the detriment of women in the 1980s and had very little effect in the 1990s.

Controlling for human capital, sector, and the prices of measured and unmeasured labor market skills, we found that women made much larger gains in relative wages in the 1980s than in the 1990s. This difference, which is “unexplained” by our regression analyses, was sufficient to more than fully account for the slowdown in wage convergence in the 1990s. We then considered the factors that may have contributed to these changes in the convergence of the unexplained gender pay gap, including changes in labor force selectivity, changes in the gender difference in unmeasured characteristics and in labor market discrimination, and changes in the favorableness of supply and demand shifts. We present some evidence consistent with each of these factors suggesting that each may have played a role in explaining the observed trends.
References

Figure 1: Gender Gap, Log Hourly Earnings, by Percentile, Full-Time Workers, PSID
<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Changes (Average Annual Change X 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev. of Log Wage</td>
<td>0.506</td>
<td>0.569</td>
<td>0.601</td>
</tr>
<tr>
<td>90-50 Differential</td>
<td>0.516</td>
<td>0.630</td>
<td>0.761</td>
</tr>
<tr>
<td>50-10 Differential</td>
<td>0.654</td>
<td>0.787</td>
<td>0.700</td>
</tr>
<tr>
<td>Sample Size</td>
<td>2816</td>
<td>2894</td>
<td>2336</td>
</tr>
<tr>
<td>Gender Log Wage Differential</td>
<td>0.459</td>
<td>0.295</td>
<td>0.227</td>
</tr>
<tr>
<td>Implied Female/Male Pay Ratio</td>
<td>0.632</td>
<td>0.745</td>
<td>0.797</td>
</tr>
<tr>
<td>Mean Female Percentile in the Male Wage Distribution</td>
<td>24.31</td>
<td>35.16</td>
<td>38.93</td>
</tr>
</tbody>
</table>

Note: Table contains full-time, nonfarm wage and salary workers aged 18-65 years from the Michigan Panel Study of Income Dynamics. Wages are computed as annual earnings divided by annual work hours. Years refer to the period during which income was earned. The Implied Female /Male Pay Ratio is \((\exp(\ln wf)/\exp(\ln wm))\), where \(\ln wf\) and \(\ln wm\) are, respectively, the average log female and log male wage.

\(^a\)Computed by assigning each woman a percentile ranking in the indicated year's male wage distribution and calculating the female mean of these percentiles.
Table 2A: Decomposition of Changes in the Gender Pay Gap, 1979-89 and 1989-98—Descriptive Statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Human Capital</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male Residual 90-10 Differential<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>1.028</td>
<td>0.916</td>
</tr>
<tr>
<td>1989</td>
<td>1.124</td>
<td>1.028</td>
</tr>
<tr>
<td>1998</td>
<td>1.205</td>
<td>1.047</td>
</tr>
<tr>
<td></td>
<td>Female Residual 90-10 Differential<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>0.939</td>
<td>0.845</td>
</tr>
<tr>
<td>1989</td>
<td>1.064</td>
<td>0.922</td>
</tr>
<tr>
<td>1998</td>
<td>1.152</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>Mean Female Residual from Male Wage Regression</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>-0.346</td>
<td>-0.204</td>
</tr>
<tr>
<td>1989</td>
<td>-0.200</td>
<td>-0.094</td>
</tr>
<tr>
<td>1998</td>
<td>-0.209</td>
<td>-0.094</td>
</tr>
<tr>
<td></td>
<td>Implied Gender Wage Ratio (Adjusted for Measured Xs)</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>0.708</td>
<td>0.816</td>
</tr>
<tr>
<td>1989</td>
<td>0.818</td>
<td>0.910</td>
</tr>
<tr>
<td>1998</td>
<td>0.812</td>
<td>0.911</td>
</tr>
<tr>
<td></td>
<td>Mean Female Residual Percentile</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>27.00</td>
<td>34.57</td>
</tr>
<tr>
<td>1989</td>
<td>36.71</td>
<td>43.15</td>
</tr>
<tr>
<td>1998</td>
<td>37.68</td>
<td>44.18</td>
</tr>
</tbody>
</table>

^a Residuals from a male wage regression.

^b Residuals from a female wage regression.

Notes: The human capital specification includes controls for race, education and experience. The full specification includes, in addition, controls for occupation, industry and collective bargaining coverage. See Blau and Kahn (2004), Table A2 for variable means and Table A3 for regression results.
Table 2B: Decomposition of Changes in the Gender Pay Gap, 1979-89 and 1989-98: Decomposition Results

(Average Annual Changes X 10)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human</td>
<td>Full</td>
<td>Human</td>
</tr>
<tr>
<td>Change in Differential (D_1 - D_0)</td>
<td>-0.164</td>
<td>-0.164</td>
<td>-0.075</td>
</tr>
<tr>
<td>Observed X's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All X's</td>
<td>-0.049</td>
<td>-0.092</td>
<td>-0.056</td>
</tr>
<tr>
<td>(Standard errors)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Education variables</td>
<td>0.0002</td>
<td>-0.001</td>
<td>-0.035</td>
</tr>
<tr>
<td>Experience variables</td>
<td>-0.053</td>
<td>-0.046</td>
<td>-0.019</td>
</tr>
<tr>
<td>Occupation variables</td>
<td>----</td>
<td>-0.029</td>
<td>----</td>
</tr>
<tr>
<td>Collective Bargaining</td>
<td>----</td>
<td>-0.022</td>
<td>----</td>
</tr>
<tr>
<td>Industry variables</td>
<td>----</td>
<td>0.003</td>
<td>----</td>
</tr>
<tr>
<td>Observed Prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All B's</td>
<td>0.031</td>
<td>0.038</td>
<td>-0.028</td>
</tr>
<tr>
<td>(Standard errors)</td>
<td>(0.009)</td>
<td>(0.023)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Education variables</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Experience variables</td>
<td>0.025</td>
<td>0.022</td>
<td>-0.032</td>
</tr>
<tr>
<td>Occupation variables</td>
<td>----</td>
<td>-0.018</td>
<td>----</td>
</tr>
<tr>
<td>Collective Bargaining</td>
<td>----</td>
<td>0.007</td>
<td>----</td>
</tr>
<tr>
<td>Industry variables</td>
<td>----</td>
<td>0.022</td>
<td>----</td>
</tr>
<tr>
<td>Unexplained Differential</td>
<td>-0.146</td>
<td>-0.109</td>
<td>0.009</td>
</tr>
<tr>
<td>Gap Effect</td>
<td>-0.180</td>
<td>-0.128</td>
<td>-0.006</td>
</tr>
<tr>
<td>(Approximate standard errors)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Unobserved Prices</td>
<td>0.035</td>
<td>0.019</td>
<td>0.016</td>
</tr>
<tr>
<td>(Approximate standard errors)</td>
<td>(0.007)</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Notes: The human capital specification includes controls for race, education and experience. The full specification includes, in addition, controls for occupation, industry and collective bargaining coverage. See Blau and Kahn (2004), Table A2 for variable means and Table A3 for regression results. Standard errors of the All X’s Effect and All B’s Effect, and approximate standard errors of the Gap Effect and Unmeasured Price Effect computed using results from the Appendix to Datta Gupta, Oaxaca and Smith (2006).
Table 3: Changes in Gender Pay Gaps at the Mean for Full-time Workers and at the Median Under Different Sample Inclusion Rules

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gender Pay Gaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Mean (Full-time Employed Workers)</td>
<td>0.459</td>
<td>0.346</td>
<td>0.295</td>
<td>0.200</td>
<td>0.227</td>
</tr>
<tr>
<td>II. Median, Sample Inclusion Rule:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Full Time Employed Workers</td>
<td>0.479</td>
<td>0.366</td>
<td>0.305</td>
<td>0.208</td>
<td>0.227</td>
</tr>
<tr>
<td>b) All with Hourly Earnings Observations</td>
<td>0.521</td>
<td>0.346</td>
<td>0.389</td>
<td>0.222</td>
<td>0.318</td>
</tr>
<tr>
<td>c) All with Hourly Earnings Observations in the Last Four Years</td>
<td>0.546</td>
<td>0.351</td>
<td>0.424</td>
<td>0.235</td>
<td>0.343</td>
</tr>
<tr>
<td>d) c) + those with (16+ yrs Educ and 8+ yrs Exp) or (<12 yrs Educ and < 8yrs Exp)</td>
<td>0.620</td>
<td>0.385</td>
<td>0.467</td>
<td>0.253</td>
<td>0.377</td>
</tr>
<tr>
<td>B. Changes in the Gender Pay Gaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Mean (Full-time Employed Workers)</td>
<td>-0.164</td>
<td>-0.146</td>
<td>-0.075</td>
<td>0.009</td>
<td>0.089</td>
</tr>
<tr>
<td>II. Median, Sample Inclusion Rule:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Full Time Employed Workers</td>
<td>-0.174</td>
<td>-0.158</td>
<td>-0.087</td>
<td>-0.008</td>
<td>0.087</td>
</tr>
<tr>
<td>b) All with Hourly Earnings Observations</td>
<td>-0.132</td>
<td>-0.124</td>
<td>-0.080</td>
<td>0.005</td>
<td>0.052</td>
</tr>
<tr>
<td>c) All with Hourly Earnings Observations in the Last Four Years</td>
<td>-0.121</td>
<td>-0.116</td>
<td>-0.090</td>
<td>-0.007</td>
<td>0.031</td>
</tr>
<tr>
<td>d) c) + those with (16+ yrs Educ and 8+ yrs Exp) or (<12 yrs Educ and < 8yrs Exp)</td>
<td>-0.153</td>
<td>-0.132</td>
<td>-0.100</td>
<td>-0.019</td>
<td>0.054</td>
</tr>
</tbody>
</table>
Notes to Table 3:
Source: PSID. Raw Gap is the difference in predicted mean or median log male and log female wage, which is $H_m X_m - H_f X_f$, where H_m and H_f are respectively vectors of male and female mean (Row I) or median (Rows IIa-d) human capital log wage regression coefficients and X_m and X_f are respectively male and female means for the vector of explanatory variables, which include a dummy for white, years of schooling, dummies for college degree and advanced degree, and part-time and full-time actual experience and their squares. The Gap Controlling For Human Capital is $(H_m-H_f)X_f$.
Table 4: Unexplained Gender Pay Gaps Based on Quantile Regressions
(Human Capital Specification)

<table>
<thead>
<tr>
<th></th>
<th>1979</th>
<th>1989</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Unexplained Gender Pay Gap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Evaluated at the Female Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.366</td>
<td>0.208</td>
<td>0.201</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.377</td>
<td>0.209</td>
<td>0.269</td>
</tr>
<tr>
<td>II. Evaluated for White, College Graduates with 15 Years of Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.243</td>
<td>0.164</td>
<td>0.169</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.368</td>
<td>0.171</td>
<td>0.287</td>
</tr>
<tr>
<td>III. Evaluated Using Counterfactual Wage Distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>0.393</td>
<td>0.198</td>
<td>0.197</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>0.334</td>
<td>0.194</td>
<td>0.247</td>
</tr>
</tbody>
</table>

Average Annual Change X 10

<table>
<thead>
<tr>
<th></th>
<th>1979-89</th>
<th>98</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Changes in the Unexplained Gender Pay Gap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Evaluated at the Female Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>-0.158</td>
<td>-0.008</td>
<td>0.150</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>-0.168</td>
<td>0.067</td>
<td>0.235</td>
</tr>
<tr>
<td>II. Evaluated for White, College Graduates with 15 Years of Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>-0.079</td>
<td>0.005</td>
<td>0.084</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>-0.197</td>
<td>0.116</td>
<td>0.313</td>
</tr>
<tr>
<td>III. Evaluated Using Counterfactual Wage Distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>-0.195</td>
<td>0.0004</td>
<td>0.195</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>-0.140</td>
<td>0.053</td>
<td>0.194</td>
</tr>
</tbody>
</table>

*aThe human capital specification includes controls for race, education and experience.

Notes: In I and II, the unexplained gap is calculated as \((B_M - B_F)X_F\), where \(B_M\) and \(B_F\) are vectors of coefficients from male and female quantile regression equations and \(X_F\) is a vector of female characteristics, evaluated at the female means in I and for white, college graduates with 15 years of full-time experience in II. In III, counterfactual distributions are constructed from 99 male and 99 female quantile regressions estimated over the full male and female samples, with predicted wages based on a random sample of 100 women; see Machado and Mata (2005).