
Sonnenholzner, Johannes

Book

Formen und Folgen der Softwaregestaltung:
Digitale Transformation am Beispiel der deutschen
Energiewirtschaft

Arbeit und Organisation, No. 19

Provided in Cooperation with:
WZB Berlin Social Science Center

Suggested Citation: Sonnenholzner, Johannes (2025) : Formen und Folgen der Softwaregestaltung:
Digitale Transformation am Beispiel der deutschen Energiewirtschaft, Arbeit und Organisation, No.
19, ISBN 978-3-8394-7688-8, transcript Verlag, Bielefeld,
https://doi.org/10.14361/9783839476888 ,
https://www.transcript-verlag.de/978-3-8376-7688-4/formen-und-folgen-der-softwaregestaltung/

This Version is available at:
https://hdl.handle.net/10419/333722

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.14361/9783839476888%0A
https://www.transcript-verlag.de/978-3-8376-7688-4/formen-und-folgen-der-softwaregestaltung/%0A
https://hdl.handle.net/10419/333722
http://creativecommons.org/licenses/by/4.0
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Johannes Sonnenholzner

Formen und Folgen der Softwaregestaltung

Digitale Transformation am Beispiel der deutschen Energiewirtschaft

Dissertation zur Erlangung des Grades eines Doktors der Philosophie der Fakultät für
Geistes- und Sozialwissenschaften der Helmut-Schmidt-Universität/Universität der
Bundeswehr Hamburg vorgelegt von Johannes Sonnenholzner aus Wasserburg am Inn.
Hamburg 2024.
Erstgutachter: Prof. Dr. Martin Krzywdzinski
Zweitgutachterin: Prof. Dr. Katharina Liebsch

Die Open-Access-Publikation wurde gefördert durch den Publikationsfonds für Open-
Access-Monografien der Leibniz-Gemeinschaft sowie durch Publikationszuschüsse des
Wissenschaftszentrums Berlin für Sozialforschung und der Hans-Böckler-Stiftung.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Natio
nalbibliografie; detaillierte bibliografische Daten sind im Internet über https://dnb.dn
b.de/ abrufbar.

Dieses Werk ist lizenziert unter der Creative Commons Attribution 4.0 Lizenz (BY). Diese Lizenz
erlaubt unter Voraussetzung der Namensnennung des Urhebers die Bearbeitung, Vervielfälti
gung und Verbreitung des Materials in jedem Format oder Medium für beliebige Zwecke, auch
kommerziell. (Lizenztext: https://creativecommons.org/licenses/by/4.0/deed.de)
Die Bedingungen der Creative-Commons-Lizenz gelten nur für Originalmaterial. Die Wieder
verwendung von Material aus anderen Quellen (gekennzeichnet mit Quellenangabe) wie z.B.
Schaubilder, Abbildungen, Fotos und Textauszüge erfordert ggf. weitere Nutzungsgenehmigun
gen durch den jeweiligen Rechteinhaber.

2025 © Johannes Sonnenholzner

transcript Verlag | Hermannstraße 26 | D-33602 Bielefeld | live@transcript-verlag.de

Umschlaggestaltung: Maria Arndt, Bielefeld
Umschlagabbildung: Collage aus Bildern von Pexels/Pixabay und Jason Goodman/

Unsplash
Korrektorat: Anette Nagel, CONTEXTA Lektrorat
Druck: Elanders Waiblingen GmbH, Waiblingen
Print-ISBN: 978-3-8376-7688-4
PDF-ISBN: 978-3-8394-7688-8
Buchreihen-ISSN: 2702-7910
Buchreihen-eISSN: 2703-0326�

Gedruckt auf alterungsbeständigem Papier mit chlorfrei gebleichtem Zellstoff.

https://dnb.dnb.de/
https://dnb.dnb.de/

Inhalt

Abbildungsverzeichnis ...9

Tabellenverzeichnis ... 11

Abkürzungen .. 13

Danksagung ... 15

1. Einleitung: Softwaregestaltung als Kind von Bürokratie und Rationalismus 17

2. Untersuchungsgegenstand und Gliederung ... 21
2.1. Forschungsgegenstand und -fragen: Formen und Folgen von Softwaregestaltung 21
2.2. Vorgehen: empirische, qualitativ-explorative Untersuchung der Energiewirtschaft 24
2.3. Zusammenhang von Fragestellung, Technologie, Praxis und Theorie 26
2.4. Überblick über Kapitel und Argumentation .. 31

3. Forschungsdesign und -methode .. 33
3.1. Methode ... 33

3.1.1. Qualitative Sozialforschung: Expert:inneninterviews für Fallstudien 33
3.1.2. Bezug zu Forschungsstand und Theorieentwicklung 35
3.1.3. Selbst-Positionierung .. 36

3.2. Forschungsverlauf .. 36
3.2.1. Feldzugang und Sampling .. 36
3.2.2. Ausgangsforschungsfragen und letztendliche Leitfragen 38
3.2.3. Weiterer Forschungsverlauf und durchgeführte Interviews 39

3.3. Kodierung, Kategorisierung und Fallvergleich .. 40
3.4. Grenzen der Untersuchung .. 42
3.5. Forschungsethik und Datenschutz ... 43

4. Softwaregestaltung als Teil der Digitalisierung
Vom Werkzeug der Forschung zum Primat der Softwareentwicklung
bei Nicht-IT-Unternehmen .. 45

4.1. Primat der Softwareentwicklung in Nicht-IT-Branchen und -Betrieben 45
4.2. Die zwei Kernprobleme der Softwaregestaltung .. 49

4.2.1. Softwaretechnische Interdisziplinarität ... 49
4.2.2. Softwaretechnische Gestaltungsmöglichkeiten 51

5. Softwaregestaltung basiert auf Wissen und Kommunikation57
5.1. Technische Grundlagen: Software als Ergebnis menschlicher Textarbeit 58

5.1.1. Verarbeiten und verstehen: Arbeitsteilung zwischen Menschen und Maschinen 58
5.1.2. Konkret und abstrakt: mehrere Schichten, sprachliche Strukturierung 60
5.1.3. Zwischen Text und Blackbox: Grenzen der Gestaltung und des Verstehens 62

5.2. Softwareentwicklung: vom einsamen Nerd zum kollektiven Kommunikationsprozess 64
5.2.1. Vom schnellen Reparieren zum iterativen, kollektiven Kommunikationsprozess 65
5.2.2. Kommunikationskompetenz und -kern: Anforderungsmanagement67
5.2.3. Kommunikation und Wissen organisieren: Local Practice statt Best Practice 69

5.3. Zwischenfazit: Softwaregestaltung als soziologisches Problem 73

6. Softwaregestaltung – konzeptionelle Grundlagen
Soziotechnische Netzwerkarbeit und soziotechnische Arbeitsgestaltung
zwischen Anwendung und Programmierung ...77

6.1. Softwaregestaltung als Arbeitsprozess: Die Lösung des Transformationsproblems
durch soziotechnische Netzwerkarbeit ... 81

6.2. Weder Markt noch Hierarchie: Netzwerke als analytische Grundlage 82
6.2.1. Theoretisch: Netzwerke in Abgrenzung zu Markt und Hierarchie 83
6.2.2. Organisatorisch: Netzwerke aus und in Organisationen 84
6.2.3. Technisch: digitale Netzwerke ... 85

6.3. Ein Beispiel für soziotechnische Netzwerkarbeit: IT-Projekte in Matrixorganisationen 86
6.4. Soziotechnische Netzwerkarbeit: die Ebenen Beziehungen, Software

und Wissensarbeitende ... 88
6.4.1. Organisationale und interpersonelle Beziehungen 89
6.4.2. Software kontrolliert und strukturiert das Netzwerk 93
6.4.3. Softwaregestaltende: Arbeiten zwischen Anwendung und Programmierung100
6.4.4. Flexibilität bei der Kommunikation und beim Wissensaustausch 111

6.5. Folgen der Softwaregestaltung: Soziotechnische Arbeitsgestaltung der Softwareanwendung
durch die Softwaregestaltung ... 112
6.5.1. Softwaregestaltung – eine Form der Rationalisierung der Softwareanwendung? 113
6.5.2. Unterschied zu Informatisierung und Informationsraum 114
6.5.3. Softwaregestaltung: inkrementell mehr Software in diversen Anwendungsbereichen .. 116
6.5.4. Folgen von Standardsoftware für die Arbeitsgestaltung der Softwareanwendung 117

6.6. Zwischenfazit: Softwaregestaltung als soziotechnische Netzwerkarbeit
und soziotechnische Arbeitsgestaltung .. 119

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 125
7.1. Industriestrukturen der Energiewirtschaft und ihr Verhältnis zur Digitalisierung 125

7.1.1. Ansatz der Industrie-Governance ... 125
7.1.2. Corporate Governance: Zwischen Daseinsvorsorge und Wettbewerb 127
7.1.3. Produktmarkt-Governance: staatliche Regulierung und Digitalisierung 133
7.1.4. Prozess-Governance: Systemstabilität und regulierter Datenaustausch 137
7.1.5. Governance industrieller Beziehungen: Betriebsräte und Akademisierung 140

7.2. Folgen der Industriestrukturen für die Softwareentwicklung143
7.2.1. Digitalisierungsstrategien zwischen Anwendung und Entwicklung143
7.2.2. Wechselspiel von Regulierung und Softwareentwicklung 149
7.2.3. Softwaregestaltende: gesteigerte Interdisziplinarität und Intervention Betriebsrat ... 152

7.3. Fazit: Software und Softwareentwicklung als Bausteine der Industrie-Governance 152

8. Formen und Folgen der Softwaregestaltung – die Empirie
Darstellung und Vergleich der Fallstudien .. 155

8.1. Einführung: Vorgehen und Kurzvorstellung der sieben Fallstudien 155
8.1.1. Kurzvorstellung der Fallstudien: Wie sie die Kernprobleme der softwaretechnischen

Gestaltungsmöglichkeiten und Interdisziplinarität lösen158
8.1.2. Unterschiedliche Möglichkeiten der Softwaregestaltung: zwischen Standard- oder

Individualsoftware und Überblick über die Fallstudien 167
8.1.3. Der Analyserahmen ... 169
8.1.4. Was sind große, mittlere und kleine EVU? ... 171

8.2. Soziotechnische Konstellation als Ausgangssituation der Softwaregestaltung 172
8.2.1. Darstellung der Fallstudien .. 172
8.2.2. Zusammenfassung .. 181

8.3. Formen des soziotechnischen Arbeitsprozesses der Softwaregestaltung 187
8.3.1. Arbeitsprozess der Softwaregestaltung: zwischen zentral und dezentral 187
8.3.2. Darstellung der Fallstudien ...189
8.3.3. Zusammenfassung ... 226

8.4. Folgen für die Arbeit der Beschäftigtengruppe der Softwaregestaltenden 236
8.4.1. Softwaregestaltende: zwischen Matrix- und reiner Netzwerkorganisation 237
8.4.2. Darstellung der Fallstudien ... 238
8.4.3. Zusammenfassung ..251

8.5. Folgen für die soziotechnische Arbeitsgestaltung der Softwareanwendung in den EVU261
8.5.1. Soziotechnische Arbeitsgestaltung: zwischen Abhängigkeit und Unabhängigkeit 262
8.5.2. Darstellung der Fallstudien ... 264
8.5.3. Zusammenfassung ... 279

8.6. Synthese, Zusammenfassung und Diskussion des Fallvergleichs 287
8.6.1. Synthese: Typen soziotechnischer Netzwerkarbeit

und soziotechnischer Arbeitsgestaltung ... 288
8.6.2. Zusammenfassung je Teil des Analyserahmens 295
8.6.3. Synthese: Rationalisierungstyp der technikentwicklungsbezogenen

Rationalisierung ... 307
8.6.4. Neue Konkurrenz für das Management durch die Softwaregestaltenden?310
8.6.5. Facetten einer industriespezifischen Softwaregestaltung312

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen315
9.1. Softwaregestaltung: ein wenig erforschter Arbeitsprozess der Digitalisierung315
9.2. Erster Debattenbeitrag: Softwaregestaltung als soziotechnische Netzwerkarbeit 317

9.2.1. Typische Unterschiede in der soziotechnischen Netzwerkarbeit319
9.2.2. Gemeinsame Kategorien der soziotechnischen Netzwerkarbeit 320
9.2.3. Beitrag zur Debatte über die Kontrolle von Wissensarbeit 325

9.3. Zweiter Debattenbeitrag: Softwaregestaltung als Arbeit an der digitalen Transformation 330
9.3.1. Teil der digitalen Transformation: soziotechnische Arbeitsgestaltung

der Softwareanwendung durch die Softwaregestaltung 330
9.3.2. Zwischen unabhängiger und abhängiger soziotechnischer Arbeitsgestaltung331
9.3.3. Beitrag zur Debatte über die digitale Transformation 332

9.4. Methodische Grenzen und weiterführende Fragestellungen 343

Literatur .. 347

Anhang .. 367
Übersicht Interviews .. 367
Leitfaden für Interviews .. 369

Abbildungsverzeichnis

Abbildung 1: Drei Arbeitsprozesse digitaler Arbeit ... 22
Abbildung 2: Konvergenz zweier Branchen? ... 26
Abbildung 3: Analyserahmen für die Darstellung und den Vergleich der Fallstudien 29
Abbildung 4: Übersicht über Kernbestandteile der Untersuchung 30
Abbildung 5: Übersicht Fallstudien ... 37
Abbildung 6: Vier Forschungsbereiche, die konzeptionelle Bezüge für soziotechnische

Netzwerkarbeit zwischen Anwendung und Programmierung liefern sollen, und
zugleich die vier Ebenen, auf denen die Kontrolle zur Transformation der
Arbeitskraft bei soziotechnischer Netzwerkarbeit basiert. 80

Abbildung 7: Anzahl Elektrizitätsunternehmen 2018 ... 131
Abbildung 8: Kooperationsgrad und -häufigkeit je Wertschöpfungsbereich 139
Abbildung 9: Kooperationsgrad nach Wertschöpfungsbereich und Unternehmensgröße 140
Abbildung 10: Vorher (1995) und nachher (2005) bei den industriespezifischen Softwarepaketen

der EVU .. 144
Abbildung 11: Analyserahmen für die Formen und Folgen der Softwaregestaltung –

soziotechnische Netzwerkarbeit und soziotechnische Arbeitsgestaltung 171
Abbildung 12: Schema einer auf Softwaregestaltung ausgerichteten softwaretechnischen

Prozessorganisation ... 286
Abbildung 13: Matrix Arbeitsprozess (dezentral – zentral) und Arbeitsbedingungen der

Softwaregestaltenden (Matrixorganisation – reine Netzwerkorganisation) und die
vier Idealtypen der soziotechnischen Netzwerkarbeit 289

Abbildung 14: Matrix softwaretechnischer Zuschnitt (Standard – individuell) und
organisatorische Ausrichtung (Anwendung – Entwicklung) und die vier Idealtypen
der soziotechnischen Arbeitsgestaltung (als Verhältnis von Softwaregestaltung
zu -anwendung) ... 292

Tabellenverzeichnis

Tabelle 1: Anzahl und Zeitraum geführte Interviews je Fall 40
Tabelle 2: Anzahl kooperierende Firmen SAP allgemein und Versorgungswirtschaft 55
Tabelle 3: Veränderung der IT-Beschäftigten in drei Kategorien zwischen 2013 und 2022. 101
Tabelle 4: Ebenen und Dimensionen der soziotechnischen Netzwerkarbeit 122
Tabelle 5: Rechtsformen Elektrizitätsversorger 2000 und 2017 128
Tabelle 6: Vergleich Investitionen in Software in Millionen Euro bei Stromversorgern zwischen

2009 und 2020 ... 144
Tabelle 7: Firmen Abrechnungssoftware Stand 2023 ... 145
Tabelle 8: Steckbrief Fallstudie INTERN1 ... 159
Tabelle 9: Steckbrief Fallstudie INTERN2 .. 160
Tabelle 10: Steckbrief Fallstudie KOOP1 ... 161
Tabelle 11: Steckbrief Fallstudie KOOP2 ... 163
Tabelle 12: Steckbrief Fallstudie PAKET ... 164
Tabelle 13: Steckbrief Fallstudie KOOP3 .. 165
Tabelle 14: Steckbrief Fallstudie STARTUP .. 166
Tabelle 15: Überblick über die Fallstudien – softwaretechnische Gestaltungsmöglichkeiten und

Interdisziplinarität ... 168
Tabelle 16: Überblick soziotechnische Konstellation je Fall 181
Tabelle 17: Arbeitsteilung zwischen Anwendung und Entwicklung 183
Tabelle 18: Grundkoordination je Fall und die Rolle der IT-Abteilung 184
Tabelle 19: Anwendungsbereich: Anteil der Datenverarbeitung, Fokus Rationalisierung,

spezifische Folgen für Anwendung .. 186
Tabelle 20: Prozesstiefe und Wissensdomänen je Fall ... 187
Tabelle 21: Idealtypen zentraler und dezentraler Arbeitsprozess der Softwaregestaltung 188
Tabelle 22: Rollen: reine Softwaregestaltungsrollen oder gemischt mit anderen und wer

Schulungen zur Rolle erhalten hat .. 229
Tabelle 23: Idealtypen Matrix- und reine Netzwerkorganisation 238
Tabelle 24: Vergleich Schwerpunkt der Kontrolle in Abhängigkeit zur primären

Grundkoordination je Fall .. 256
Tabelle 25: Idealtypen unabhängige und abhängige soziotechnische Arbeitsgestaltung 263

12 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 26: Idealtypen unabhängige und abhängige soziotechnische Arbeitsgestaltung –
Unterkategorien ... 264

Tabelle 27: Einfluss von Softwaregestaltung auf Softwareanwendung 282
Tabelle 28: Typen der Partizipation von Anwendenden an der Softwaregestaltung 285
Tabelle 29: Unterschiede zwischen integrierter und desintegrierter Softwareentwicklung aus

EVU-Sicht .. 291
Tabelle 30: Rationalisierungstyp der technikentwicklungsbezogenen Rationalisierung, angelehnt

an Rock/Ulrich/Witt (1990: 74) ...310
Tabelle 31: Übersicht Interviews .. 367

Abkürzungen

AP Arbeitsprozess
BNetzA Bundesnetzagentur
BPO Business Process Outsourcing
BR Betriebsrat
CRM Customer Relationship Management
DV Datenverarbeitung
ERP Enterprise Ressource Planning
EVU Energieversorgungsunternehmen
EW Energiewirtschaft
FB Fachbereich
FK Führungskraft
IT Informationstechnologie
IT-DL IT-Dienstleistungsunternehmen
PM Projektmanagement
PO Product Owner:in
SA Softwareanwendung
SE Softwareentwicklung
SF Softwarefirma
SG Softwaregestaltung
SLA Service Level Agreement
SM Scrum Master:in
ÜNB Übertragungsnetzbetrieb
VNB Verteilnetzbetrieb

Danksagung

Zunächst ein herzliches Dankeschön an alle Gesprächspartner:innen von IT-Dienstleis

tungsunternehmen, Stadtwerken, Energiekonzernen, Start-ups, Softwareunterneh

men, Verbänden und anderen Organisationen für ihre Offenheit und die Zeit, die sie
sich für die Gespräche genommen haben. Ohne sie hätte diese Arbeit keine empirische
Basis.

Vielen Dank an die Hans-Böckler-Stiftung für die finanzielle und ideelle Förderung
der Promotion. Zudem danke ich meinem Vertrauensdozenten der Hans-Böckler-Stif

tung Prof. Dr. André Bleicher.
Ich hatte das Glück, meine Dissertation am WZB Wissenschaftszentrum Berlin für

Sozialforschung schreiben zu können. Dort habe ich hervorragende Rahmenbedingun

gen vorgefunden. Ein sechsmonatiges Abschlussstipendium des WZB half mir, meine
Arbeit finanziell abgesichert abzuschließen. Mein Dank gilt der gesamten Forschungs

gruppe »Globalisierung, Arbeit und Produktion« am WZB, insbesondere Dr. Fabio Ascio

ne, Dr. Christine Gerber, Maximilian Greb, Dr. Tatiana López und Dr. Robert Scholz für
das Feedback zu einzelnen Textteilen und Samantha Gupta und Eileen Jahnke für alles
drum herum. Die geselligen Mittagessen u.a. mit Barbara Schlüter, Dr. Jana Flemming,
Dr. Sana Ahmad und meinen netten Bürokolleg:innen Lea Schneidemesser und Or Yo

sevof waren eine angenehme menschliche Bereicherung des Dissertationsalltags. Auch
vom Austausch mit den Kolleg:innen des Weizenbaum-Instituts für die vernetzte Gesell

schaft habe ich sehr profitiert. Einen herzlichen Dank an Maren Zychla und dem Open-
Access-Team vom WZB für die hilfsbereite Unterstützung im Publikationsprozess.

Prof. Dr. Ulrich Jürgens und Dr. Paul Bauer danke ich für die anfängliche Unterstüt

zung. Dr. Nicole Bögelein danke ich für die begleitende Unterstützung während der ge

samten Dissertation und das Feedback zu einzelnen Kapiteln.
Vielen Dank an die zahlreichen Korrekturleser:innen: Julia Campos, Ludwig Filser,

Max Franks, Veronika Hager, Eileen Jahnke, Kristin Tröndle, Charlotte von Knobelsdorff.
Vielen Dank an meine Mentoren Dr. Philip Wotschack und Dr. Patrick Feuerstein für

die Ermutigung in schwierigen Phasen, die richtigen Worte zur richtigen Zeit und das
Feedback zur Arbeit.

16 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Besonderen Dank schulde ich meinem Betreuer Prof. Dr. Martin Krzywdzinski, der
die Arbeit von Anfang bis Ende unterstützt hat, mir als Spätberufenem eine Chance ge

geben hat und mich großzügig an der Forschungsgruppe hat teilhaben lassen.

1. Einleitung: Softwaregestaltung als Kind

von Bürokratie und Rationalismus

»Die [Software] ist ›rationalen‹ Charakters: Regel, Zweck, Mittel, ›sachliche‹ Unpersön
lichkeit beherrschen ihr Gebaren. Ihre Entstehung und Ausbreitung hat daher überall
in jenem besonderen, noch zu besprechenden Sinne ›revolutionär‹ gewirkt, wie dies
der Vormarsch des Rationalismus überhaupt auf allen Gebieten zu tun pflegt. Sie ver
nichtet dabei Strukturformen der Herrschaft, welche einen, in diesem Sinn, rationalen
Charakter nicht hatten.« (Weber 1980: 578f.)

In diesem manipulierten Zitat aus Max Webers »Wirtschaft und Gesellschaft« von
1921/22 steht »Software« anstelle von Webers Begriff »Bürokratie«. Denn wie die Büro

kratie erfüllt auch Software die Forderung nach einer »beschleunigten, dabei präzisen,
eindeutigen, kontinuierlichen Erledigung von Amtsgeschäften« (Weber 1980: 562). Sie
agiert »entmenschlicht« (ebd.): leidenschaftslos, berechnend; ignoriert alle »irratio

nalen, dem Kalkül sich entziehenden Empfindungselemente aus der Erledigung der
Amtsgeschäfte« (ebd.). Sie ist – wie die »lebende Maschine« (Weber 1988: 835) der
Bürokratie und die »leblose Maschine« (ebd.) in der Fabrik – »geronnener Geist« (ebd.).

Die Bürokratie wird hier zum Vergleich herangezogen, weil Weber sie als Trägerin
des Rationalismus sieht. In ebendiesem Sinne erledigen heutzutage Software einsetzen

de Organisationen Aufgaben effizienter als eine rein auf Mitarbeitenden basierende Or

ganisation. Aus rein menschlichen Apparaten sind soziotechnische Organisationen ge

worden. Sie verdrängen Organisationen, welche die universelle Maschine Computer we

niger effizient zu nutzen wissen. So ergibt sich eine intensivierte Rationalisierung, bei
der nicht mehr allein die Leistung des Menschen im Fokus steht, sondern die jeweils effi

zienteste Software für die Datenverarbeitung oder – je nach Industrie – die effizienteste
Kombination aus Mensch, digitaler und mechanischer Maschine.

Die Bürokratie dient als Einstieg, weil sie im Zeitalter der Software weiterhin eine
Rolle spielt. Es braucht immer noch eine Organisation von Mitarbeitenden, es braucht
menschliche Arbeitskraft – ob Software anwendend oder entwickelnd. Für Weber (vgl.
Weber 1980: 125f.) ist die Bürokratie eine Organisation u.a. mit entsprechendem Per

sonal (dazugehöriger Persönlichkeitsstruktur und entsprechendem Fachwissen) sowie

18 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

definierten Aufgabenbereichen und Arbeitsweisen (Arbeiten nach Regeln, aktenmäßige
bzw. schriftliche Aufgabenerfüllung).

Die im Folgenden untersuchten Organisationen aus der Energiewirtschaft unter

scheiden sich von der Bürokratie bei Weber natürlich insofern, als Software bei Weber
noch gar keine Rolle gespielt hat. Manche dieser Organisationen wenden Software nicht
nur an. Sie entwickeln selbst Software oder sind zumindest Teil jener Phase der Soft

wareentwicklung, in der den Programmierenden gesagt wird, was die gestaltete Soft

ware können soll. Diese Phase bezeichnet die vorliegende Untersuchung als Software

gestaltung. Um Software gestalten zu können, muss es eine interdisziplinäre Zusam

menarbeit zwischen Fachleuten der energiewirtschaftlichen Anwendungsbereiche und
der Softwareentwicklung geben. Es geht immer um dieselbe Frage: Was sind die bran

chenspezifischen Bedarfe und wie können dafür die softwaretechnischen Möglichkeiten
genutzt werden? Es gilt, das jeweils (zu spezifizierende) Nützliche für einen branchen

spezifischen Anwendungsbereich zu programmieren.
Diese Arbeit zwischen Anwendung und Programmierung braucht – wie die Bürokra

tie bei Weber – Personal, Wissen, Aufgabenverteilung und Regeln, nach denen gearbei

tet wird. Die Betriebe müssen sie organisieren. Anders als bei Weber wiederum ist das,
was sich zwischen Softwareanwendung und -programmierung abspielt, ein wichtiges
Rationalisierungsfeld. Das zeigt sich z.B. in strategischen Fragen wie jener, ob Firmen
Wettbewerbsvorteile durch eine individuell gestaltete oder durch eine Standardsoftware
gewinnen können.

In der hier untersuchten Energiewirtschaft gibt es zum einen Organisationen, die
eine Standardsoftware einsetzen, an die sie sich anpassen müssen. Für solche Soft

warelösungen existieren selbst für industriespezifische Prozesse wie die Erstellung von
Strom- und Gasrechnungen oder den Handel mit Energie mehrere softwareanbietende
Unternehmen. Zum anderen existieren Organisationen, die eigens eine individuelle
Software gestalten. So zum Beispiel in der Netzinstandhaltung, um regionale Beson

derheiten oder spezifische Gefahrenlagen von Monteur:innen zu berücksichtigen.
Die sieben Fallstudien der vorliegenden Untersuchung liegen zwischen diesen

Polen: Energieversorgungsunternehmen (EVU), die sich auf eine industriespezifische
Standardsoftware verlassen und diese höchstens noch einstellen, aber selbst gar nicht
programmieren. EVU, die eine Standardsoftware mit eigenen Programmierern erwei

tern, oder solche, die dies in Kooperation mit anderen EVU tun. Untersucht wurde auch
ein energiewirtschaftliches Start-up, das von Anfang an darauf ausgerichtet ist, eine
eigene, individuelle Software für seine Dienstleistung zu entwickeln und Teile davon als
Standardlösung anderen Organisationen zu verkaufen. So bewegen sich die Fallstudien
zwischen rein anwendenden EVU und solchen, die letztendlich Softwareentwicklungs

firmen sind – auch wenn sie ihr Geld nicht primär mit dem Verkauf von Software,
sondern in der Wertschöpfungskette der Energiewirtschaft verdienen.

Mit den sieben Fallbeispielen aus der Energiewirtschaft zeigt die Untersuchung, wie
industriespezifische Softwaregestaltung in verschiedenen Konstellationen aussieht und
was sie voneinander unterscheidet. Die Branche eignet sich für diese Fragestellung be

sonders gut, weil sich durch Energiewende und Liberalisierung viel verändert hat und
immer noch verändert und weil die Energiewirtschaft einer starken Regulierung un

terworfen ist, wofür Firmen »Paragraphen-Automaten« (Weber 1988: 322) in Form von

1. Einleitung: Softwaregestaltung als Kind von Bürokratie und Rationalismus 19

(Standard-)Software entwickeln. Es gibt sowohl Organisationen in öffentlicher als auch
in privater Hand und aufgrund der vielen EVU einen großen Markt für industriespezi

fische Softwarelösungen. Eine Organisation ganz ohne Software gibt es auch in der En

ergiewirtschaft schon lange nicht mehr. Solche softwarebasierten Organisationen und
die Softwaregestaltung selbst lassen sich nicht mehr mit dem Bürokratie-Konzept von
Weber beschreiben. Deshalb erarbeitet die Untersuchung neue Begriffe und Konzepte
unabhängig von Weber.

2. Untersuchungsgegenstand und Gliederung

Wie bereits die ersten Seiten zeigen, bewegt sich die vorliegende Untersuchung zwi

schen allgemeinen, abstrakteren Begriffen und der konkreten Empirie der Energiewirt

schaft. Es geht um beides. Zum einen um eine allgemeine Problemstellung, die alle In

dustrien betrifft: industriespezifische Softwaregestaltung und welche Konzepte nützlich
sind, um diese zu analysieren. Zum anderen um konkrete, industriespezifische Anwen

dungsbereiche von Software in der Energiewirtschaft, wie die Firmen der Branche Soft

ware gestalten und was die Besonderheiten der Branche sind, die sich in der Softwarege

staltung niederschlagen. Sowohl allgemeine als auch spezifisch energiewirtschaftliche
Softwaregestaltung sind Forschungslücken und Gegenstand der Untersuchung.

2.1. Forschungsgegenstand und -fragen: Formen und Folgen
von Softwaregestaltung

Ganz allgemein ist eine zentrale Eigenschaft von Computern, dass sie als universale Ma

schine programmiert werden können (und müssen). Alles Mögliche kann als Quellcode
entwickelt werden: kleine Apps für Smartphones, Standardpakete zur Textverarbei

tung, Programme für den automatisierten Börsenhandel oder Steuerungsprogramme
für Atomkraftwerke. Die Folgen der Anwendung von Software auf Arbeit sind vielfältig
untersucht (meist in Verbindung mit einer jeweils spezifischen Hardware): ob zu den
Softwarelösungen der Gig-Ökonomie (vgl. Wood et al. 2019, Wu et al. 2019), Crowd

working (vgl. Gerber/Krzywdzinski 2019), ERP-Systemen (vgl. Hohlmann 2007, Walker
2016, Howcroft/Richardson 2012) oder in Call-Centern (vgl. Longen 2015). Auch zur
Organisation von Softwareentwicklung bzw. der Arbeit der Programmierenden gibt es
viel Forschung (vgl. Friedman/Cornford 1993, Barett 2005, Upadhya 2009, Feuerstein
2013).

Beide Forschungsbereiche der Digitalisierung sind in Abbildung 1 schematisch dar

gestellt: der Arbeitsprozess der Anwendung einer Software (A) und jener ihrer Program

mierung (C). Die vorliegende Arbeit untersucht (B), die Arbeit zwischen Anwendung
und Programmierung und wie sie organisiert ist. Der Arbeitsprozess heißt Software
gestaltung. Wie bereits in der Einleitung angesprochen, erfahren hier die Programmie

22 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

renden, was zu programmieren ist. Diese drei in Abbildung 1 dargestellten Perspektiven
auf die Digitalisierung sollten – so die These dieser Arbeit – voneinander unterschieden
werden.

Abbildung 1: Drei Arbeitsprozesse digitaler Arbeit

Softwaregestaltung ist die Phase der Konzeption (bzw. Spezifikation oder Anfor

derungsaufnahme) der Softwareentwicklung. Abhängig vom Fall spielt dabei auch die
Phase der Tests eine Rolle, weil in dieser die Anwendenden bzw. Testenden durch ihre
Rückmeldungen Input für die Gestaltung geben. Fragen der Bedienoberfläche (Design)
oder der Architektur, die Teil der Gestaltung von Software sein können, gehören hier
nicht zum Kern des Arbeitsprozesses. Die Softwarearchitektur ist meist eine bereits ent

schiedene Ausgangsbedingung: z.B. welche Schnittstellen vorhanden sind, welche Ein

stellungsmöglichkeiten eine Software hat oder welche Erweiterungsmöglichkeiten eine
Standardsoftware bietet. Das Software-Design in Sinne von z.B. anwendungsfreund

lichen Oberflächen ist in den untersuchten Fallstudien kein gesonderter Arbeitsschritt
mit den entsprechenden Spezialist:innen dafür.

Damit steht für die hier vorliegende Untersuchung im Mittelpunkt, dass Software
eine gestaltungsoffene Technologie ist, die je nach Umsetzung bspw. zu Formalisierung,
Standardisierung, Überwachung oder Automatisierung führt. Das heißt, das Rationali

sierungsziel des Softwareeinsatzes ist nicht per se die Formalisierung oder die Samm

lung möglichst vieler Daten. Vielmehr geht es darum, für einen Anwendungsbereich die
Entwicklungsmöglichkeiten der Technologie auszureizen.

Eine besondere Relevanz hat der Arbeitsprozess zwischen Anwendung und Program

mierung bei industriespezifischer Software. Anders als bspw. bei Standardsoftwarepa

keten wie LibreOffice oder MS Office ist der Wissenstransfer zwischen Industriefachleu

ten entscheidend. Organisationen überprüfen regelmäßig Entscheidungen über Make-
or-Buy und müssen die Softwarelösungen kontinuierlich anpassen, weil sich die Regu

lierungen durch den Staat ändern oder um sich im Wettbewerb zu behaupten. Die For

schungsarbeit zeigt, dass der Ablauf industriespezifischer Softwaregestaltung ein eigen

ständiger, zentraler Arbeitsprozess der Digitalisierung ist und die Arbeit von Beschäf

tigten der jeweiligen Industrie (hier: der Energiewirtschaft) prägt. Die These ist, dass

2. Untersuchungsgegenstand und Gliederung 23

für das Verständnis von heutiger Erwerbsarbeit das Verständnis der Softwaregestaltung
neben anderen Einflüssen relevant ist: ob Finanzmärkte und der Shareholder Value (vgl.
Windolf 2005, Vitols 2002, Dörre 2001, Höpner, 2003), der Position in der Wertschöp

fungskette (vgl. Gereffi et al. 2005, Flecker/Meil, 2010, Mezihorak 2018), bestimmte Ma

nagement- oder Organisationspraktiken (vgl. Gerst 2006, Boes et al. 2018) oder Produk

tionsmodelle (vgl. Kern/Schumann 1984, Herrigel 2010).
Die Softwareentwicklung als Ganzes ist Teil jeder Branche geworden. Jedes Unter

nehmen muss sich fragen, auf welcher Seite der Wissensgrenze zwischen Anwendung
und Entwicklung es steht und an welchen Phasen des Entwicklungsprozesses – be

stehend aus Spezifikation/Konzeption, Programmierung, Test, Support und Betrieb –
es beteiligt sein will. Gleichzeitig ist für einen großen Teil der Nicht-Softwareunter

nehmen und ihrer industriespezifischen Fachabteilungen die Softwareentwicklung mit
ihren Werkzeugen und Methoden zunächst einmal etwas Fremdes. Wie die Fallstudien
zeigen werden, bedeutet branchenspezifische Software zu entwickeln eine Abkehr von
der Fixierung auf eine nach Abteilungen gegliederte hierarchische Organisation und
rein marktbasierte Beziehungen zu IT-Zulieferern wie IT-Dienstleistungsunternehmen
(IT-DL) oder Softwarefirmen. Intern müssen Teams und Abteilungen (bspw. durch
IT-Projekte) und extern unterschiedliche Organisationen kooperieren (bspw. bei der
Zusammenarbeit mit Start-ups). Wenn gefragt wird: »Welche Ebene ist bestimmend
für die Arbeit unter Bedingungen der Informatisierung: der Betrieb, das Unternehmen,
das Projekt, das Netzwerk?« (Baukrowitz 2006: 82), so ist hier die Antwort: keine Ebene
alleine, sondern die Softwaregestaltung, die sich über mehrere Ebenen erstrecken kann.

Es geht um die Konstellationen, in denen angewendete Software entsteht und wel

che Folgen das für die Anwendung hat: ob sie eine Softwarefirma entwickelt, ein eigenes
Team an Programmierenden, eine Kooperation mehrerer Firmen; ob ein EVU eine Stan

dardsoftware einsetzt, anpasst oder eine individuelle Lösung gestaltet. Es stehen zwei
Kernfragen im Mittelpunkt der Analyse industriespezifischer Softwaregestaltung:

1. Kontrolle der Softwaregestaltung

• Wie kontrollieren Organisationen in unterschiedlichen Konstellationen den Ar

beitsprozess der Softwaregestaltung? (Formen)
• Welche Auswirkungen hat die jeweilige Konstellation und Form der Softwarege

staltung für die Arbeit der Softwaregestaltenden? (Folgen)

2. Verhältnis zur Softwareanwendung

• Welche Auswirkungen hat die jeweilige Konstellation und Form der Softwarege

staltung für die Arbeitsgestaltung der Softwareanwendung? (Folgen)

Analytisch gesehen müssen, um die beiden Fragen nach den Formen und den Folgen un

tersuchen zu können, a) Technikgestaltung, b) Arbeitsgestaltung und c) der Kontext bei
der gemeinsam untersucht werden. Die reine Anwendung der Software ist nur insofern
relevant, als sie diese Zusammenhänge erhellt. Das Methodenkapitel stellt unter 3.2.2
die zu den Kernfragen gehörenden Leitfragen für die Expert:inneninterviews vor.

24 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwaregestaltung ist dabei weder primär eine Form von Innovation noch Teil ei

ner Reorganisation. Auch wenn Softwaregestaltung innovativ im Sinn von ›etwas Neues
machen‹ ist, so liegt doch der Fokus auf den Gemeinsamkeiten mit anderen Arbeitspro

zessen. In der Praxis nehmen Beschäftigte den Bereich nicht als gesonderten Innovati

onsbereich wahr: Programmierende, Anforderungsmanagende oder IT-Projektleitende
sind in den untersuchten Fällen nicht allesamt in einer Innovations- oder F&E-Abteilung
angesiedelt (höchstens einzelne Beteiligte). Auch wenn Softwaregestaltung mit organi

satorischen Veränderungen einhergehen kann, ist dies in den untersuchten Fällen nicht
der primäre Zweck der Software. Genauso wenig wie Innovationen nicht das primäre
Ziel sind und in den untersuchten Fällen die Softwaregestaltung nicht per se als »inno

vativ« gilt – eher die verwendeten Methoden wie z.B. Scrum. Software ist eine schlichte
Notwendigkeit, um das Tagesgeschäft (auch in Zukunft) effizient zu bewältigen.

Die analytische Perspektive auf den Arbeitsprozess fokussiert die Frage, womit Fir

men und ihre Beschäftigten konfrontiert sind, wenn sie Software gestalten. Einerseits
will das Management die Effizienz steigern, andererseits müssen sich Beschäftigte auf
neue Methoden wie Scrum einlassen und unterschiedliche Abteilungen und Organisa

tionen miteinander kooperieren. Untersuchungsgegenstand sind dabei einzelne Gestal

tungsprozesse von Software(paketen) und nicht eine gesamte IT-Landschaft (aus einer
Vielzahl an Softwarepaketen). Zudem geht es beim Arbeitsprozess um die kleinen, ite

rativen Schritte, zu denen regelmäßige Treffen gehören, um Anforderungen aufzuneh

men, oder auch darum, den Anwendenden regelmäßige Updates der Software zur Ver

fügung zu stellen. Das Ziel ist, die Unterschiede und Gemeinsamkeiten der Formen der
Softwaregestaltung in den unterschiedlichen Fallstudien inklusive der jeweiligen Folgen
herauszuarbeiten.

2.2. Vorgehen: empirische, qualitativ-explorative Untersuchung
der Energiewirtschaft

Die oben genannten Fragen werden qualitativ-explorativ erforscht (Näheres dazu im
Methodenkapitel). Als empirischer Gegenstand fungiert die Energiewirtschaft und die
dort betriebene industriespezifische Softwaregestaltung. Diese Branche ist nicht nur
deshalb von Interesse, weil sie in der Soziologie kaum erforscht ist, sondern auch wegen
ihrer jüngeren Liberalisierungsgeschichte, ihrer regulierten und unregulierten Bereiche:
Die Fallstudien zeigen, dass das Folgen für die Softwaregestaltung hat, denn z.B. ist es
im regulierten Netzbereich für die Unternehmen einfacher, sich auf einen Standard zu
einigen. Im unregulierten Bereich der Energielieferung, in dem Wettbewerb herrscht,
gestalten EVU häufiger individuelle Software, z.B. um ihrer Kundschaft besondere An

gebote machen zu können. Durch die vielen und vielfältigen privaten, öffentlichen, gro

ßen und kleinen Unternehmen in der Energiewirtschaft gibt es einerseits einen großen
Markt für Standardsoftware und andererseits Möglichkeiten der Kooperation zwischen
den EVU. Da der Energiesektor insgesamt nicht zu den Vorreitern der Digitalisierung
gehört, prallen digital natives und digital immigrants besonders heftig und ersichtlich auf

einander. Software innerhalb der EVU zu gestalten, ist in so einer Konstellation eine be

2. Untersuchungsgegenstand und Gliederung 25

sondere Herausforderung. Zuletzt dient die Energiewirtschaft als Untersuchungsfeld,
weil der Verfasser selbst als IT-Berater in der Branche tätig war.

Die vielfältigen und komplexen Anwendungsbereiche von Software in dieser Branche
stellen eine Herausforderung für die Softwaregestaltung dar. Umfangreiche Wissensbe

stände müssen in Software übersetzt werden.

• Sei es technisches Wissen über Kraftwerke oder Netze: um sie zu steuern, zu über

wachen oder zu warten. Will ein EVU bspw. seine Netz-Monteur:innen mit mobilen
Apps und Drohnen ausstatten, ist ein intensiver Wissensaustausch mit ihnen über
deren Arbeitsweise und die technischen Spezifika der Netzwartung notwendig, da

mit die Programmierenden wissen, was sie zu tun haben.
• Sei es regulatorisches Wissen über Gesetze und Verordnungen, welche den automa

tisierten Datenaustausch zwischen den Marktteilnehmenden regeln, damit bspw.
die Stromkundschaft einfach per Internet das stromanbietende Unternehmen wech

seln kann. Jede:r kann einen Blick auf die eigene Stromrechnung werfen, um zu se

hen, was dort alles an Daten stehen muss: Abgaben, Umlagen, Steuern, technische
Angaben, der Strommix etc. Oder jene Gesetze und Verordnung, welche regeln, wie
Erneuerbare-Energie-Anlagen abgerechnet werden. Da kann es sein, dass Jurist:in

nen bei der Softwaregestaltung mitarbeiten, damit die Software auch das Richtige
macht und nichts falsch abrechnet.

• Sei es die Regulierung zu neuen Themen wie dem Emissionshandel, der in Software
übersetzt werden muss, damit ihn die Branche effizient betrieben kann.

• Sei es letztendlich Wissen über Marketing, Kund:innenservice oder Rechnungsstel

lung, die, auch wenn sie in anderen Branchen existieren, ihre Industriespezifika ha

ben und für die deswegen eigene Softwarelösungen entwickelt oder zumindest Stan

dardsoftwarepakete angepasst werden müssen.

Empirisch ist der Arbeitsprozess der Softwaregestaltung ein Teil der Konvergenz
zweier Industrien. Es treffen zwei Wertschöpfungsketten aufeinander (Software- und
Energiewirtschaft), die sich verschränken und meist auf verschiedene Organisatio

nen verteilt sind. In Abbildung 2 sind die beiden Wertschöpfungsketten dargestellt.
Jene der Energiewirtschaft setzt sich aus Energieerzeugung, Handel, Verteilung via
(Strom-/Gas-)Netze und Vertrieb zusammen. In der Softwarewirtschaft besteht sie aus
der Spezifikation, der Programmierung, den Tests, der Implementierung, Wartung,
dem Betrieb bis zum Vertrieb von Software. Beide Wertschöpfungsketten arbeiten
an bzw. mit der Anwendungssoftware. Aus Sicht der Energiewirtschaft ist Software
zentral für die Datenhaltung, -verarbeitung und die Leistungserbringung. Dazu ge

hören Transaktionen zwischen Firmen und Kundschaft (B2C, Business to Customer)
wie auch zwischen Firmen (B2B, Business to Business). In der Energiewirtschaft ist
das zu einem großen Teil mit einem hohen Grad an Automatisierung verbunden, weil
die vielen unterschiedlichen Marktteilnehmenden viele Massendaten (Strommengen,
Geldbeträge etc.) untereinander austauschen müssen. Kapitel 7 geht näher auf die
industriespezifischen Aspekte der Softwaregestaltung ein. Es reflektiert die Bedeutung
der Industriestrukturen für die Softwaregestaltung und gibt Hintergrundwissen zum
besseren Verständnis der Fallstudien.

26 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Abbildung 2: Konvergenz zweier Branchen?

Die Fallstudien beleuchten verschiedene Konstellationen der Softwaregestaltung

und vergleichen sie anschließend (kooperativ-firmenübergreifend, intern, durch Soft

warefirmen, in einem Start-up etc.). Die Firmen sind jeweils auf unterschiedliche Weise

Teil der Wertschöpfung der Softwarewirtschaft und tragen jeweils unterschiedlich zur

Softwaregestaltung bei.

2.3. Zusammenhang von Fragestellung, Technologie, Praxis und Theorie

In dem qualitativen Forschungsprozess haben sich aus einem iterativen Prozess der Re

flexion von Theorie und Empirie erst im Laufe der Zeit die Kernfragen, zentralen Pro

bleme der Praxis, konzeptionelle Ausrichtung und theoretischen Einsichten ergeben.

Ausgehend von der Fragestellung zu den Formen und Folgen des Arbeitsprozesses der

industriespezifischen Softwaregestaltung ergeben sich die relevanten technologischen

Grundlagen: der Quelltext, die unterschiedlichen technischen Schichten und sprachli

chen Strukturierungen, mit denen die Beteiligten auf Software blicken, worauf sie sich

in ihrer Arbeit beziehen und welche sie für die Kommunikation nutzen (Quelltext, Be

dienoberfläche, Einstellungsmöglichkeiten, Schnittstellen, Modelle, Algorithmen etc.).

Fragestellung und Technologie werfen in der Empirie bzw. den Fallstudien den Blick auf

zentrale Mittel der Arbeitspraxis der Softwaregestaltung und typische Probleme.

Sowohl die Software selbst als auch ihr Anwendungsbereich kann sehr komplex sein

und die Beteiligten müssen sich trotzdem auf eine Gestaltung einigen, weswegen Wissen

und Kommunikation untereinander die zentralen Arbeitsmittel sind.

Als typische praktische Kernprobleme für den Arbeitsprozess der Softwaregestal

tung hat die empirische Analyse die softwaretechnische Interdisziplinarität und die

softwaretechnischen Gestaltungsmöglichkeiten identifiziert. Die Fallstudien sind

unterschiedliche Beispiele dafür, wie Organisationen diese beiden Probleme lösen.

Allgemein stellen sich beide Probleme unabhängig vom Kontext – egal ob ein Start-up

oder ein seit Jahrzehnten existierender Industriekonzern Software gestaltet. Für die

softwaretechnische Interdisziplinarität müssen die Agierenden das Wissen über die

Potenziale der Softwaregestaltung mit dem Wissen über die fachlichen Bedarfe zusam

menbringen. Erst der Dialog der Wissensdomänen (IT und Energiewirtschaft) schöpft

die Möglichkeiten der Softwareentwicklung aus und überwindet Wissensgrenzen. Rol

2. Untersuchungsgegenstand und Gliederung 27

len wie IT-Beratende oder IT-Projektleitende stehen exemplarisch dafür, zwischen IT
und (energiewirtschaftlichen) Fachbereichen zu vermitteln. Vor allem bei industriespe

zifischer Software können Organisationen die Möglichkeiten ihrer Gestaltung erst in
Bezug auf den Arbeits-, Organisations- und Branchenkontext ausreizen. Der Begriff
der softwaretechnischen Gestaltungsmöglichkeiten betrifft die Gestaltung von Software
und von Organisation: Zum einen zeichnet Software aus, dass einerseits Synergien
durch die Entwicklung eines Standardsoftwarebausteins, den viele Firmen nutzen,
entstehen können. Andererseits kann eine individuelle Software Wettbewerbsvorteile
garantieren, indem organisationsspezifisches Wissen einfließt. Zum anderen gibt es
die Möglichkeit, die Organisation an einer Standardlösung auszurichten oder selbst
Software zu gestalten. Eine ausführliche Beschreibung beider Kernprobleme ist unter
4.2 zu finden.

Mit soziotechnisch ist gemeint, dass sich in der Softwaregestaltung Technisches und
Soziales »vermengen« (Conrad 2017): ob soziale Organisation und Softwarepaket, Orga

nisation der Anwendung und Organisation der Entwicklung, energiewirtschaftliche Ar

beitsaufgaben und technische Softwareanwendung, das Wissen über die Energiewirt

schaft und das Wissen über Software(entwicklung), Rollen für IT-Arbeit und Rollen für
Anwendungsarbeit. Um eine soziotechnische Arbeitsgestaltung handelt es sich, weil der
Arbeitsprozess der Softwaregestaltung nicht nur Software verändert, sondern via Soft

ware auch Arbeit gestaltet. Je nach Verhältnis der Arbeitsprozesse von Softwaregestal

tung und -anwendung kann dies eine umfassende Reorganisation für die anwendende
Organisation bedeuten – vor allem dann, wenn bspw. ein Energieversorgungsunterneh

men anfängt, selbst Software zu gestalten, dafür die eigene Organisation ändert und die
Anwendungsbereiche (Abteilungen, Teams) reorganisiert.

Eine Kernaussage der vorliegenden Untersuchung ist, dass die Arbeit der Software

gestaltung die Digitalisierung vorantreibt. Dabei konstituiert sich aus den wissensarbei

tenden Softwaregestaltenden und den softwaretechnischen und sozialen Strukturen ei

ne Kontrollform von Arbeit, die Kommunikation und Wissensaustausch ermöglicht. Die
analytische Perspektive auf die Softwaregestaltung und wie sie die Softwareanwendung
verändert, ist daher jene der Kontrolle von Arbeit. Unternehmen kontrollieren Arbeit,
weil sie das Transformationsproblem von Arbeitskraft lösen müssen: Anders als bei an

deren Produktionsfaktoren ist die Realisierung des Arbeitsvermögens nicht gesichert.
Der Betrieb hat aber das Ziel, das Arbeitsvermögen möglichst optimal zu nutzen und
an den Zielen der Organisation auszurichten (vgl. Minssen 2017: 301). Wie können Un

ternehmen sicherstellen, dass Beschäftigte Unbestimmtheitslücken im Arbeitsvertrag
nicht in ihrem Interesse ausnutzen und bspw. »Dienst nach Vorschrift« machen? Was
im Arbeitsvertrag steht, reicht dafür nicht aus (vgl. Marrs 2010: 331f.).

(Legitime) Herrschaft oder Macht, wie sie z.B. Weber versteht (vgl. Weber 1980: 27),
ist dabei nur ein Mittel neben anderen. Die Forschung fasst Kontrolle theoretisch unter

schiedlich auf: So kann Kontrolle als die Leitung, Anweisung, Überwachung, Disziplinie

rung und Belohnung von Arbeit verstanden werden, wozu Bürokratien oder Fließbänder
gleichermaßen dienen können (vgl. Edwards 1981). Andere Autoren unterscheiden zwi

schen Input-, Verhaltens-, Ergebnis-, Clan- und Selbstkontrolle (vgl. Wiener et al. 2016).
Wieder andere unterscheiden zwischen persönlicher Kontrolle durch Führungskraft und
Kollegenschaft einerseits und unpersönlicher Kontrolle durch standardisierte Arbeits

28 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

prozesse (Bürokratie), Qualifikationen (Professionen) oder Ergebnisse andererseits (vgl.

Apitzsch 2010: 89). Wie sich Kontrolle im Fall der Softwaregestaltung am besten konzep

tionell fassen lässt, arbeitet die vorliegende Forschungsarbeit heraus.

Dafür wurde nach konzeptionellen Bezügen gesucht, welche die konkreten prakti

schen Probleme der Softwaregestaltung analysieren helfen und die vorliegende Unter

suchung in der Forschungslandschaft verorten. Vor allem die Forschung rund um or

ganisationale, interpersonale und informationstechnische Netzwerke, zu Wissensarbeit

und zur Rolle von Software bei der Kontrolle von Arbeit hat sich dafür als hilfreich er

wiesen. Der Forschungsstand hat Studien aus der Informatik, der Information Science/

Wirtschaftsinformatik und unterschiedlichen Bereichen der Soziologie (Organisation,

Technik, Arbeit) berücksichtigt. Insgesamt ist es der Versuch, die Rezeptionssperre der

Sozialwissenschaften zu beenden, da diese die IT bisher weitgehend als Blackbox be

trachten (vgl. Lenk 2016: 352).

Aus Theorie und Empirie sind konzeptionelle Ergebnisse entstanden. Zentral sind

dabei der Analyserahmen und die beiden Konzepte der soziotechnischen Netzwerkar

beit und soziotechnischen Arbeitsgestaltung. Das Konzept der technikentwicklungsbe

zogenen Rationalisierung unterstreicht die Bedeutung der Softwaregestaltung für Or

ganisationen.

Das erste konzeptionelle Ergebnis der Arbeit ist der Analyserahmen der Software
gestaltung. Er basiert primär auf der Auswertung der empirischen Daten. Er dient dazu,

die Fallstudien zu strukturieren und vergleichen zu können. In Abbildung 3 sind die drei

zentralen Elemente des Rahmens dargestellt:

• die soziotechnische Konstellation aus Software (Anwendungsbereich und Architek

tur) und Organisation von Anwendung und Entwicklung (Gestaltung und Program

mierung),

• der soziotechnische Arbeitsprozess der Softwaregestaltung als Kommunikation zwi

schen Anwendung und Programmierung,

• die Folgen für die Arbeit der Softwaregestaltenden und die soziotechnische Arbeits

gestaltung der Softwareanwendung in den Firmen der Energiewirtschaft.

Alle Elemente des Analyserahmens berücksichtigen, dass es sich um eine soziotechni

sche Arbeit handelt, wie es für die Arbeit mit Software typisch ist.

Für die Frage nach der Kontrolle der Softwaregestaltung stellt die soziotechnische
Netzwerkarbeit den konzeptionellen Rahmen dar. Es geht um eine spezifische, netz

werkcharakteristische Form der Kontrolle von Arbeit. Sie ist abhängig von der sozio

technischen Konstellation, in der sie stattfindet. Sie besteht aus dem Arbeitsprozess der

Softwaregestaltung und der Arbeit der Softwaregestaltenden. Für beide arbeitet das Em

pirie-Kapitel typische Unterschiede heraus (siehe 8.6.1.1). So gibt es z.B. Fälle, bei denen

sich mehrere Organisationen in einem zentralen Arbeitsprozess der Softwaregestaltung

abstimmen und die Softwaregestaltenden in einer Matrixorganisation arbeiten müs

sen. Das bedeutet für die soziotechnische Netzwerkarbeit zum einen viel Koordinations

arbeit. Zum anderen besteht die Möglichkeit, viele Perspektiven zu berücksichtigen und

einen konsensbasierten Standard zu gestalten. In anderen Fällen gestaltet eine Organi

sation dezentral eine Software für sich selbst. Hier konzentriert sich die Arbeit im Netz

2. Untersuchungsgegenstand und Gliederung 29

werk auf das direkte Ausarbeiten der Anforderungen und der Koordinationsaufwand ist

gering. Die Softwaregestaltenden arbeiten in einer reinen Netzwerkorganisation – oh

ne formale Hierarchien und Marktbeziehungen. Unabhängig von diesen Unterschieden

zeichnet die soziotechnische Netzwerkarbeit aus, dass sie für Feedbackmöglichkeiten

zwischen Anwendung und Programmierung sorgt, kooperative Beziehungen auch über

Organisations- und Abteilungsgrenzen hinweg schafft und erhält, Softwarewerkzeuge

für die verteilte Eingabe von Anforderungen nutzt und Softwaregestaltende erwartungs

geleitet kontrolliert (und z.B. nicht durch die Vorgabe konkreter Arbeitsschritte/-anwei

sungen).

Abbildung 3: Analyserahmen für die Darstellung und den Vergleich der Fallstudien

Für die Frage nach dem Verhältnis der Softwaregestaltung zur Softwareanwendung

nutzt die vorliegende Untersuchung das Konzept der soziotechnischen Arbeitsgestal
tung. Dabei unterscheiden sich die Fallstudien, ob sie unabhängig oder abhängig in der

soziotechnischen Arbeitsgestaltung sind (siehe 8.6.1.3). Unabhängig sind sie z.B., wenn

die EVU eigenständig eine individuelle Software gestalten. Dann können sie mögliche

Konflikte zwischen Anwendung und Gestaltung selbst intern lösen und die Anwendung

hat direkt Einfluss auf die Softwaregestaltung sowie die Softwaregestaltung auf die Soft

wareanwendung. Abhängig sind die EVU, wenn sie eine industriespezifische Standard

software verwenden, die eine Softwarefirma gestaltet. Dann müssen sie mit einer exter

nen Firma mögliche Konflikte bei der Softwaregestaltung verhandeln und der Einfluss

beschränkt sich primär darauf, wie sie eine Standardsoftware einsetzen, und nicht auf

deren Gestaltung.

Mit dem Typ der technikentwicklungsbezogenen Rationalisierung grenzt die

Untersuchung die Rationalisierung durch Softwaregestaltung von anderen Rationali

sierungsformen ab (siehe 6.5.1 und 8.6.3). Es steht z.B. nicht die Arbeitsteilung zwischen

Kopf- und Handarbeit im Mittelpunkt wie im Taylorismus, sondern zwischen Software

anwendung, -gestaltung und -programmierung. Softwaregestaltung kann zudem ein

30 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Mittel für unterschiedliche Zwecke sein (z.B. Automatisierung oder Prozessintegration).

Sie rationalisiert die Softwareanwendung nicht nur, indem sie eine Software zur Verfü

gung stellt. Sie verändert auch die anwendende Organisation, weil diese entweder von

einer Standardsoftware abhängt und sich auf die Softwareanwendung konzentriert oder

selbst Software gestaltet. Indem Software immer zentraler für die Leistungserbringung

von Unternehmen wird, rückt sie in den Mittelpunkt der Arbeit und der Organisation

von Unternehmen. Der konkurrenzfähige Betrieb vieler Geschäftsbereiche ist ohne

Software gar nicht vorstellbar. Viele Beschäftigte sind über Software in die Wertschöp

fung eingebunden. Letztlich lassen sich viele branchenspezifische Prozesse nicht mehr

getrennt von der Software(gestaltung) rationalisieren. Dabei muss die Rationalisierung

durch Softwaregestaltung mit den Spannungen aus wissensintensiver Kommunikation

und Effizienz, aus Innovation und Kostendruck umgehen – vor allem, wenn bestehende

Strukturen nicht auf einen interdisziplinären Wissensaustausch ausgelegt sind. Denn

auch für die Softwaregestaltung zählen wirtschaftliche Indikatoren: Effizienz, Erhalt

und Gewinnung von Marktanteilen und Erzielung von Renditen. Die Unternehmen

prüfen regelmäßig, ob es nicht eine bessere, billigere und innovativere Softwarezulie

ferfirma gibt oder ob sie die Gestaltung und auch Programmierung selbst übernehmen

sollten.

Abbildung 4 stellt Fragestellung, Technik, Praxis und Theorie schematisch dar:

Abbildung 4: Übersicht über Kernbestandteile der Untersuchung

Aus der Untersuchung ergeben sich drei Kernthesen, die einen Beitrag zur Arbeits-,

Organisations- und Techniksoziologie leisten sollen:

2. Untersuchungsgegenstand und Gliederung 31

1. Ein zentraler Träger der Digitalisierung ist der Arbeitsprozess der Softwaregestal

tung und die Softwaregestaltenden. Die Kontrolle ihrer Wissensarbeit lässt sich als
soziotechnische Netzwerkarbeit konzeptionieren: erwartungsgeleitet, prozessför

mig, beziehungsgebunden, softwarebezogen, netzwerkförmig, wissens- und kom

munikationsbasiert und zwischen Anwendung und Programmierung vermittelnd.
2. Der Arbeitsprozess der Softwaregestaltung und sein Verhältnis zur Softwareanwen

dung stellt eine soziotechnische Arbeitsgestaltung dar: Es macht einen Unterschied
für anwendende Organisationen wie EVU, ob sie eine individuelle oder eine Stan

dardsoftware einsetzen, ob sie unabhängig gestalten können oder abhängig sind
(z.B. von einer Softwarefirma).

3. Softwaregestaltung als entwicklungsbezogene Rationalisierung von Technik zielt
darauf ab, die Möglichkeiten der Softwareentwicklung (Mittel) für den jeweiligen in

dustriespezifischen Anwendungsbereich (Zweck) effizient zu nutzen.

2.4. Überblick über Kapitel und Argumentation

Die grundlegende Argumentationsstruktur ist wie folgt aufgebaut: 1. Die Softwarege

staltung ist ein eigenständiger und relevanter Arbeitsprozess mit spezifischen Proble

men und Mitteln, zu dem weder ausreichend Konzepte noch Empirie existieren (Pro

blem/Forschungsstand). 2. Der Arbeitsprozess der Softwaregestaltung lässt sich als so

ziotechnische Netzwerkarbeit und in ihren Folgen als soziotechnische Arbeitsgestaltung
konzeptionieren (Theorie/Forschungsstand). 3. Die Branchenstruktur der Energiewirt

schaft hat Folgen für die Softwaregestaltung und die Branche hat spezifische Anwen

dungsbereiche für Software (Forschungsfeld). 4. In den Fallstudien zeigen sich unter

schiedliche Formen und Folgen der Softwaregestaltung. Der Analyserahmen dient dazu,
sie darzustellen und zu analysieren (empirische Analyse). 5. Die Ergebnisse zeigen, dass
Softwaregestaltung ein eigenständiger Arbeitsprozess ist, wie ihn Firmen kontrollieren
und dass er ein Faktor ist, der erklärt, wie EVU organisiert sind, wie sie arbeiten und wie
ein Teil der digitalen Transformation vonstattengeht (Bewertung der Ergebnisse).

Die Argumentation gliedert sich in die folgenden Kapitel: Das 3. Kapitel stellt das
Forschungsdesign und die Forschungsmethode vor. Kapitel 4 verweist allgemein auf die
veränderte Rolle der Softwareentwicklung in den Organisationen. Die zentralen Proble

me in der Praxis der Softwaregestaltung werden dabei genauer ausgeführt. Aus diesen
ergeben sich zusammen mit den Besonderheiten der Softwaretechnik (Kapitel 5), der
Fragestellung und dem Forschungsdesign die konzeptionellen Bezüge. Diese werden im
6. Kapitel dargestellt und zeigen, dass die Formen und Folgen von Softwaregestaltung an
bestehende Forschung anknüpfen und gleichzeitig Probleme darstellen, für deren Ver

ständnis ein Zusammendenken von Software- und Arbeitsgestaltung notwendig ist. Als
analytische Grundlage dient dafür der Begriff der soziotechnischen Netzwerkarbeit, bei
dem Software in mehrfacher Hinsicht für Kontrolle sorgt und Softwaregestaltende und
kooperative Beziehungen auf organisationaler und interpersoneller Ebene eine tragende
Rolle spielen. Das Kapitel führt auch den Begriff der soziotechnischen Arbeitsgestaltung
ein. Kapitel 7 führt in die Arbeitsweise und Strukturen der Energiewirtschaft ein. Es stellt
industriespezifische Anwendungsgebiete von Software und einen Teil der Softwarezulie

32 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ferindustrie vor. Es beleuchtet das Verhältnis von Software(gestaltung) und Branchen

strukturen. Das 8. Kapitel präsentiert als ein Ergebnis der Untersuchung den Analyse

rahmen, stellt mit ihm die Fallstudien dar und vergleicht sie. Die Zusammenfassung des

Kapitels stellt Bezüge zum Theorieteil her (6. Kapitel), bildet Idealtypen und diskutiert ei

nige Hypothesen. Der Schluss (9. Kapitel) fasst die Untersuchung zusammen, stellt den

Beitrag zu zwei arbeits- und industriesoziologischen Debatten dar und zeigt weiterfüh

rende Forschungsfragen auf.

Die vorliegende Untersuchung versucht so weit wie möglich auf technische Begriffe

zu verzichten. Wo dies unumgänglich ist, sind sie erklärt. Wichtiges empirisches Vor

wissen über SAP (S. 22), Scrum (S. 33) und Holokratie (S. 93) liefern kurze Exkurse. Fach

begriffe sind direkt in Fußnoten erläutert.

Da der Text einige Wörter sehr häufig verwendet, sind deren Abkürzungen zu Be

ginn der Untersuchung aufgelistet. Wichtig ist: Wenn Softwareentwicklung geschrieben

steht, dann ist damit immer der gesamte Prozess inklusive Gestaltung und Programmie

rung gemeint.

3. Forschungsdesign und -methode

3.1. Methode

3.1.1. Qualitative Sozialforschung: Expert:inneninterviews für Fallstudien

Die Forschungsfrage an sich ist bis auf einzelne Themen in der Soziologie (Energiewirt

schaft, organisationsübergreifende Arbeitsprozesse, Softwaregestaltung) noch nicht un

tersucht worden und auch im Zusammenspiel nur spärlich erforscht. Daher hat die Un

tersuchung einen qualitativ-explorativen Ansatz gewählt. Die Teilbereiche der Arbeits-,
Organisations- und Techniksoziologie sollen zusammen betrachtet und die dafür not

wendigen Begrifflichkeiten entwickelt werden.
Der qualitative Ansatz erlaubt es, mit der notwendigen Offenheit an die Fragen her

anzugehen und dabei zugleich die unterschiedlichen, bereits existierenden Erkenntnis

se zu berücksichtigen. Wie in qualitativen Untersuchungen üblich, wird die Komplexität
erst später im Forschungsprozess reduziert, was eine sehr umfassende Betrachtung des
Feldes ermöglicht. Drei Verfahren wurden angewendet, nämlich Fallstudien, Expert:in

neninterviews und Grounded Theory. Das Expert:inneninterview bietet zwei Vorteile,
indem es Themen bündelt und Daten evoziert. Im Austausch während des Gesprächs
kann der Verfasser seinen eigenen Expertenstatus als ehemaliger Softwareprogrammie

rer und IT-Berater fruchtbar machen. Die Grounded Theory bietet sich besonders in Be

reichen an, zu denen bisher wenig Forschung durchgeführt wurde – eines der Merkmale
des hier aufgespannten Feldes. Fallstudien erlauben es, Einzelfälle in ihrer Komplexität
zu untersuchen. Dazu gehört der Kontext über die befragten Individuen hinaus inklusi

ve der Branche.
Die Expert:inneninterviews wurden entsprechend der inhaltlichen Ausrichtung

der Arbeit als Untersuchungsmethode gewählt. Es geht dabei nicht um »die Gesamt

person […], d.h. die Person mit ihren Orientierungen und Einstellungen im Kontext
des individuellen oder kollektiven Lebenszusammenhangs« (Meuser/Nagel 2002: 71).
Nicht Biografie oder Deutungsmuster eines Individuums sind im Fokus, sondern die
Handlungen von Menschen in einem konkreten Arbeitskontext, also deren »Kenntnisse
über Sachverhalte und […] Einschätzungen« (Klemm/Liebold 2017: 309). Der Expert:in

nenstatus entspricht einer Rolle, die jede Person einnimmt, wenn sie ihrer Arbeit

34 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

nachgeht. Es geht um fachspezifisches Wissen bzw. »Betriebswissen« (Meuser/Nagel

2002). Auch Sachbearbeitende sind in ihrem Feld und für ihre Firma Spezialist:innen

bzw. Fachmenschen und gelten im Sinne dieser Arbeit als Expert:innen. Expert:innenin

terviews komplementieren zudem Fallstudien, weil die Vergleichbarkeit der Interviews

gewährleistet wird durch den »geteilte[n] institutionell-organisatorische[n] Kontext der

ExpertInnen« (Meuser/Nagel 2002: 81) und »durch die leitfadenorientierte Interview

führung« (ebd.). Bei dieser Methode kann ein Nutzen daraus gezogen werden, dass der

Autor selbst als IT-Fachkraft in der Branche gearbeitet hat und somit den Expert:innen

auf Augenhöhe begegnen kann: In so einem Fall soll sich der Forschende nach Bogner/

Menz (2002: 67), anders als in anderen Interviewmethoden, nicht rein passiv verhalten.

Interaktionseffekte sollen vielmehr als produktive Komponenten des Interviewverlaufs

begriffen werden. Schätzt der Interviewte die Forschenden als Co-Expert:in ein, hat das

Vorteile, wenn sachdienliche Informationen und Aufklärung über Sachverhalte erhoben

werden sollen.

»Wenn der Forscher sein fachlich-inhaltliches Interesse beweist, sein eigenes Wissen

einbringt und engagiert diskutiert, ist auch der Befragte zu entsprechendem Enga
gement bereit und gibt Informationen und Wissen preis, das bei anderen Rollenein
schätzungen und Kompetenzzuschreibungen kaum zugänglich würde« (Bogner/Menz

2002: 51).

Ein hohes fachliches Niveau im Gespräch von Co-Expert:innen erzeugt Daten, die dann

»gewinnbringend für detaillierte Sachanalysen« (Bogner/Menz 2002: 52) sind.

Zur Analyse solcher Daten ist die Grounded-Theory-Methode (GTM) besonders ge

eignet. Sie zählt nicht nur analytische Kategorien und fokussiert sich nicht auf sprach

liche Feinheiten wie etwa die objektive Hermeneutik (vgl. Ley 2010). Kruse (2015) hält

es bei qualitativen Interviewauswertungen für wichtig, eine »umfassende[…] gesprächs-
bzw. textlinguistische[…] Beschreibung der konkreten Versprachlichungen« (Kruse 2015:

374) vorzunehmen. Er berücksichtigt in seinem rekonstruktiv-hermeneutischen Verfah

ren die »Art und Weise der Versprachlichung von Wirklichkeit« (Kruse 2015: 375). Diesem

»(mikro-)sprachliche[n] Analyseansatz« (Kruse 2015: 376) folgt die GTM nicht:

»Beim Kodieren geht es nicht um das Herausfinden des wahren Sinns, der wahren
Be-/Deutung im Einzelfall […]. Das herauszufinden ist nicht Ziel und Anspruch der
Kodierungsprozedur in der GTM […]. Die Daten eines Untersuchungsteilnehmers wer
den vielmehr dazu benutzt, um Vorstellungen über Grundkonzepte, Komponenten,

Dimensionen, Bedingungsgefüge, Verlaufsmuster o.Ä. zu entwickeln« (Breuer/Dieris/
Lettau 2009: 78f.).

Wenn sich die Interpretation in der Fallbeschreibung – bestehend aus unterschiedlichen

Befragten-Perspektiven – bewährt, genügt das. Sie muss nicht den individuellen Sinn

des Befragten widerspiegeln. Dadurch reduziert sich der Arbeitsaufwand für die Ana

lyse eines Interviews, wodurch die Methode ermöglicht, größere Textmengen in einem

gegebenen Zeitraum zu analysieren. Das Kodieren hilft dabei, Texte sowohl zu struk

turieren als auch zu paraphrasieren und zusammenzufassen. Zudem ist die Grounded

3. Forschungsdesign und -methode 35

Theory der Informatik nicht fremd, wie die Verwendung im Information Systems Research
zeigt (vgl. Wiesche et al. 2017)1. Das lässt sie für die vorliegende Untersuchung besonders
fruchtbar erscheinen.

3.1.2. Bezug zu Forschungsstand und Theorieentwicklung

Die GTM ermöglicht es, den umfangreichen Forschungsstand aufgrund der vielfältigen
Forschungsfelder wie IT-Outsourcing, Softwareentwicklung oder Folgen von IT für Or

ganisationen und Arbeit zu berücksichtigten, ohne auf die Offenheit von qualitativer So

zialforschung verzichten zu müssen.
Die Grounded Theory kennt unterschiedliche Vorstellungen darüber, ob mit theore

tischen Vorannahmen ins Feld gegangen werden sollte. Mehrere Quellen vertreten die
Ansicht, dass es nicht zielführend sei, komplett ohne Theorie an Daten heranzutreten
(vgl. Breuer et al.: 2009: 58f.). Man spricht hier von »informed grounded theory« (Thorn

berg 2012). Der Rekurs auf den Forschungsstand ist notwendig und sinnvoll, um nicht
bereits gemachte Erkenntnisse zu ignorieren. Anderenfalls könnte eine Erkenntnis re

dundant sein, »without knowing whether it had already been done, what were the main
findings, and what remaining theoretical puzzles and empirical gaps needed to be ad

dressed« (Deterding/Waters 2021: 714). Wichtig ist, dass der Fokus auf den Daten bleibt
und nicht auf der Literatur und dass »concept or theoretical idea he or she constructs
must be grounded in data« (Thornberg 2012: 54). Offenheit soll so lange wie möglich auf

rechterhalten werden: Die Daten sollen aufzeigen, wie sie analysiert werden wollen, und
entsprechend darf die Strukturierung nicht zu stark sein. Kruse spricht von »schielender
Hermeneutik«, weil mit dem einen »Auge so offen wie möglich geschaut werden muss,
mit dem anderen Auge zugleich aber stets theoretisch versiert beobachtet werden muss«
(Kruse 2015: 363). Eine rigide Anwendung eines theoretischen Rahmens würde die Un

tersuchung stark einschränken (vgl. Collins/Stockton 2018: 9).
In der vorliegenden Arbeit wird von konzeptionellen Ergebnissen gesprochen und

nicht von Theoriebildung. Theorie wird dabei verstanden als ein Zusammenhang von
Ideen, der erklärt, warum Faktoren auftreten und warum sie miteinander im Beziehung
stehen (vgl. Gläser/Laudel 2006: 275).

»Theory is about the connections among phenomena, a story about why acts, events,
structure, and thoughts occur« (Sutton/Staw 1995: 378).

Der erarbeitete Analyserahmen stellt zwar die Verbindung zwischen den beobachteten
Handlungen und Strukturen her. Allerdings kann aufgrund der Vielzahl der unterschied

lichen Konstellationen, in denen Softwaregestaltung stattfindet, nicht davon ausgegan

gen werden, dass durch sieben Fallstudien in einer Branche eine Theorie der Software

1 Wenn auch nicht immer in der vorgesehenen Tiefe: Von 43 untersuchten Studien nutzen die GT
23 %, um eine Theorie zu entwickeln, und bei den anderen werden Modelle oder dichte Beschrei
bungen angefertigt. Das Memoing wird selbst bei den Theoriearbeiten nur bei jeder zweiten ver
wendet. Grundsätzlich wenden die Theoriearbeiten aber mehr Methoden an (vor allem offenes
Kodieren, axiales Kodieren und theoretisches Kodieren) (vgl. Wiesche et al. 2017).

36 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

gestaltung entwickelt werden kann. Der hypothetische Charakter der Studienergebnisse

soll durch die Verwendung des Begriffs des Konzepts klargestellt werden.

3.1.3. Selbst-Positionierung

Die verwendeten Methoden müssen es zulassen, dass Vorwissen eingebracht werden

kann, denn der Autor war selber in der Softwaregestaltung tätig. Wie bereits erwähnt,

lassen dies alle drei Methoden zu. Zudem wurde beachtet, was als Positionierung in der

Literatur bezeichnet wird: »Als Forschender positioniere ich mich und werde positio

niert; ich beobachte und werde beobachtet.« (Breuer et al. 2009: 30) Am Beginn eines

jeden Interviews hat sich der Verfasser als Wissenschaftler positioniert, der nicht nur

eine Forschungsarbeit zur Digitalisierung in der Energiewirtschaft durchführt, sondern

auch als ehemaliger IT-Berater in der Branche gearbeitet hat.

Der Verfasser war von Januar 2011 bis Juli 2018 als IT-Berater tätig. Zunächst hat er

als Trainee die Grundlagen der Branche und die Branchenlösung von SAP für die Versor

gungsindustrie kennengelernt. Im Anschluss war er mit der Betreuung und Entwicklung

von Software betraut und im Rahmen verschiedener Projekte bei EVU tätig. Letztere wa

ren in zwei Fällen auch längerfristig, d.h., er hat zweimal fast zwei Jahre lang mit den

Angestellten im Büro vor Ort gearbeitet. Somit war es kaum möglich, an das Thema un

voreingenommen heranzugehen. Themenwahl, Auswahl der Interviews, Interviewfüh

rung und Analyse sind durch seine Erfahrungen beeinflusst. Im Forschungsverlauf fand

eine ständige Kontrastierung der gemachten Erfahrungen, der eigenen Alltagstheorien,

des soziologischen Zugangs, der Forschungsliteratur, der Aussagen der befragten Per

sonen und der methodischen Auswertung statt. Als Material sind die Erfahrungen des

Verfassers jedoch nicht in die Fallstudien eingeflossen.

3.2. Forschungsverlauf

3.2.1. Feldzugang und Sampling

Es wurde versucht, Fälle zu erforschen, die verschiedene Formen der Softwaregestaltung

abbilden. Wie diese beschaffen sein sollten und welche Organisationen dafür in Frage

käme, wurde ausgehend von der eigenen Branchenerfahrung, regelmäßigem Lesen der

Zeitung für kommunale Wirtschaft (ZfK) und der Forschungsliteratur zu IT-Outsour

cing und Softwareentwicklung festgelegt. Obwohl der Feldzugang schwierig war, konn

ten verschiedene Fälle abgedeckt werden: interne Entwicklung in einem Konzern, ko

operative Entwicklung mehrerer EVU, die Entwicklung durch eine Softwarefirma, die

Entwicklung in einem Start-up, große (> 5000 Mitarbeitende) und kleine (≤ 800 Mit

arbeitende) EVU. Letztendlich lassen sich die Fälle danach sortieren, wie sich die Soft

wareentwicklung verteilt: ob sie durch mehrere Organisationen wie Softwarefirma oder

IT-Dienstleistungsunternehmen (IT-DL), außerhalb oder innerhalb der EVU stattfin

det.

In der folgenden Abbildung 5 sind die Bezeichnungen der Fallstudien rot markiert.

INTERN1 und INTERN2 sind Fallstudien, bei denen einen Teil der angewendeten Soft

3. Forschungsdesign und -methode 37

ware eine Softwarefirma entwickelt hat (SAP). Einen anderen Teil entwickeln die anwen

denden EVU, weshalb in der Spalte »EVU« die Kästchen »E« für Entwicklung und »A« für

Anwendung platziert sind. Ein Kästchen mit »E« ist heller, weil diese Softwareentwick

lung (bei SAP) nicht Teil der Analyse ist. Die grüne Linie steht für den Austausch zwischen

Organisationen oder Teams bzw. Abteilungen. Bei KOOP1, KOOP2 und KOOP3 entwi

ckeln sowohl eine Softwarefirma als auch ein IT-DL und einige EVU. Dabei ist nur im
Fall KOOP3 auch die Entwicklung in der Softwarefirma Teil der Fallstudie ist. Bei PAKET

entwickelt die Softwarefirma und die EVU wenden die Software nur an. Bei STARTUP

finden Anwendung und Entwicklung in einer Organisation statt und Abteilungsgrenzen

existieren nicht.

Abbildung 5: Übersicht Fallstudien

Für die Ansprache von Firmen und potenziellen Interviewpartner:innen wurde ein

Handzettel entworfen und an versendete Nachrichten angehängt. Zusätzlich wurde seit

Mitte 2020 immer noch ein Artikel mitversendet. Diesen hat der Verfasser für die Zei

tung für kommunale Wirtschaft (ZfK) geschrieben (vgl. Sonnenholzner 2020). Das Ziel

des Artikels war, Aufmerksamkeit zu erregen. Allerdings hat sich nur ein Berater ge

meldet, mit dem es zu keinem Interview kam. Über den Verband kommunaler Unter

nehmen (VKU) ergab sich zwar die Teilnahme an einem Treffen mit IT-Abteilungslei

tenden aus EVU – aber ebenfalls keine Interviews. Auch über die Gewerkschaften Ver

di und IGBCE konnten zwar Erstgespräche mit Personalvorständen arrangiert werden,

aber leider keine weitergehenden Interviews. Erfolgreicher war die Vermittlung von Ver

di an einen Betriebsrat eines größeren EVU, die zu mehreren Interviews führte. Dreimal

war ich auf Kongressen: Bundesverband der Energiemarktdienstleistungsunternehmen

38 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

(BEMD), Bundesverband Informationswirtschaft, Telekommunikation und neue Medi

en (bitkom) und eines kommunalen IT-DL. Es ergaben sich nur kurze Gespräche – aber

keine Interviews.

Aufgrund des zähen Erfolges über Gewerkschaften und Netzwerkpartner:innen

wurde parallel und verstärkt vor allem ab 2020 eine Internetrecherche zu Firmen

durchgeführt. Zuerst hat der Verfasser einzelne Firmen (Stadtwerke größerer Städte,

bekannte Softwarezulieferfirmen) per E-Mail angeschrieben. Daraus ergaben sich zwar

Kennenlerngespräche, aber keine Interviews. Mit der Zeit wurden massiv die sozialen

beruflichen Netzwerke (Xing und Linkedin2) genutzt. Zwar hat nur ein geringer Anteil

auf Kontaktanfragen reagiert, doch kam es dadurch zu vielen Interviews.

Die Sampling-Strategie bestand grundsätzlich darin, möglichst viele Interviews zu

einem Fall aus verschiedenen Perspektiven auf die Softwareentwicklung zu bekommen

(Anwendende, Programmierende, Gestaltende, Führungskräfte). Der Fokus lag auf den

Handelnden zwischen Anwendung und Entwicklung, die Softwaregestaltung betreiben

(bspw. IT-Projektleitung, Scrum Master, Product Owner, Anforderungsmanagement).

Dadurch wurde der Forschungsgegenstand »facettenreich erfasst« (Merkens 2012: 291):

sowohl in Bezug auf die Formen der Softwaregestaltung als auch auf die Perspektiven

auf den jeweiligen Arbeitsprozess. Teilweise kamen die Interviewkontakte über die

»Schneeballmethode« (ebd. 293) zustande und es entstanden »geklumpte Stichproben«

(ebd.) durch die persönlichen Netzwerke in einer Organisation. Gleichzeitig wurden

Interviews außerhalb dieser Netzwerke geführt, weil über die sozialen beruflichen

Netzwerke Kontakte zustande kamen.

3.2.2. Ausgangsforschungsfragen und letztendliche Leitfragen

Die Ausgangsfrage des Dissertationsprojektes war jene nach digitalen Wertschöpfungs

netzwerken in der Energiewirtschaft. Der Arbeitstitel lautete »Governance und Arbeit in
den Organisationsnetzwerken der digitalen Energiewirtschaft«. Ausgehend von Unter

suchungen zu den Folgen von Arbeitsverlagerungen von Mezihorak (2018) und Flecker/

Haidinger/Schönauer (2013) stellten sich folgende Forschungsfragen hinsichtlich der di

gitalen, netzförmigen Wertschöpfungsketten der Energiewirtschaft:

1. Welche Formen von Governance sind dort zu finden?

2. Wie verortet sich in ihr welche Art der Arbeit mit IT-Systemen?

3. Wie verändert sich der Arbeitsprozess in ihr?

Nach Gläser/Laudel (2006) wurden für diese Leitfragen Unterfragen entwickelt. Erstere

fragen nach »Beziehungen und Vorgängen im Untersuchungsfeld, nach Merkmalen von

Individuen, Gruppen, Organisationen usw.« (Gläser/Laudel 2006: 89). Der Forschungs

stand konzentrierte sich zunächst nur auf Energiewirtschaft und Netzwerkarbeit, wurde

im Verlauf dann aber mehr und mehr auf IT und Software ausgeweitet, was dann auch

2 Die beiden Netzwerke wurden auch angefragt, ob es die Möglichkeit gäbe, die Daten für Recher
chen bzw. Auswertungen zu nutzen, was aber beide ablehnten.

3. Forschungsdesign und -methode 39

andere Fächer einschloss (bspw. Information Science, Wirtschaftsinformatik, Anforde

rungsmanagement). Im späteren Verlauf der Forschung verschob sich das Thema immer
mehr in Richtung Softwareentwicklung. Das lag zum einen am Feldzugang (siehe oben).
Zudem fiel im Lauf der Zeit auf, dass eine Forschungslücke dahingehend besteht, wie
verschiedene Formen der Softwaregestaltung die Arbeitsgestaltung prägen und wie jene
Wissensarbeiter:innen arbeiten, die eine tragende Rolle dabei spielen. Als zentrale Leit

fragen stellten sich letztendlich folgende heraus, die teilweise auch den Kategorien des
Analyserahmens entsprechen:

• Welche Rolle spielt die Organisation von Anwendung und Programmierung für die
Softwaregestaltung? (Arbeitsteilung, Koordinationsformen)

• Welche Rolle spielen die Softwarearchitektur und der Anwendungsbereich der Soft

ware für deren Gestaltung?
• Wie wird in verschiedenen Konstellationen ein Arbeitsprozess der Softwaregestal

tung zwischen Anwendung und Programmierung etabliert? (Wissensgrenzen über

winden: Rollen, Ablauf, Kommunikation, Werkzeuge)
• Welche Folgen hat die Softwaregestaltung für die Arbeitsgestaltung? (Umfang der

Digitalisierung, Kontrolle, Beschäftigungssystem etc.)
• Wer darf wie mitgestalten an der entstehenden Software? Welche Rolle spielt das

Management? (Partizipation)
• Inwiefern sind bei der Gestaltung industriespezifische Muster zu erkennen? (am

Beispiel der Energiewirtschaft)

3.2.3. Weiterer Forschungsverlauf und durchgeführte Interviews

Es wurden Expert:inneninterviews mit Leitfäden durchgeführt. Der Leitfaden wurde
mehrmals angepasst: 1. aufgrund des Fortschritts der Untersuchung und 2. für jedes Ge

spräch abhängig von der Rolle des Gegenübers im Arbeitsprozess, den offenen Punkten
bzw. Unklarheiten aus vorhergehenden Interviews eines Falles, der Interviewdauer etc.
Der im Anhang befindliche Leitfaden stellt somit eine Sammlung von Fragen dar. Es wur

de versucht, ausführlichere Antworten zu evozieren durch Formulierungen wie »Könn

ten Sie das bitte noch einmal erklären?«, »Es scheint mir, andere sagen …« (vgl. Martin
2017: 88). Abstrakte Fragen und Zusammenhänge wurden vermieden (vgl. ebd. 91).

Das erste Interview wurde am 20.01.2019 geführt und das letzte am 17.02.2023
(Schwerpunkte waren Mitte 2019, Anfang und Mitte 2020 und Mitte 2021). Die Länge
der Interviews war mit 90 Minuten veranschlagt, wobei sich einige Interviewpartner:in

nen nicht so viel Zeit nehmen konnten. Insgesamt wurden 137 Interviews geführt, für
128 davon konnten Aufnahmen gemacht werden. Letztendlich konnten für die Fallstu

dien nur 62 verwendet werden. Wie oben zum Thema Sampling beschrieben, war das
Ziel, mehrere (mindestens drei) Interviews zu einem Fall zu sammeln. Das ist in sieben
Fällen geglückt. Die restlichen Interviews sind Einzelfälle (maximal zwei Interviews)
zum Arbeitsprozess der Softwaregestaltung.

40 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 1: Anzahl und Zeitraum geführte Interviews je Fall

Fall Anzahl w m Erstes Letztes
INTERN1 6 1 5 14.07.2020 16.05.2022
INTERN2 8 1 7 02.07.2020 03.12.2021
KOOP1 17 3 14 17.03.2020 20.05.2022
KOOP2 12 4 8 21.04.2020 01.03.2022
PAKET 12 3 9 01.04.2020 15.07.2022
KOOP3 4 0 4 30.03.2020 22.10.2021
STARTUP 3 1 2 04.10.2022 17.02.2023

Summe 62 13 49

Von den 62 Interviews wurde eines per E-Mail geführt. Die anderen 61 wurden auf

genommen und transkribiert. Nur zwei Interviews fanden persönlich statt – der Rest
telefonisch oder per Video-Konferenz. Aus methodischer Sicht können E-Mails bei Leit

fadeninterviews sogar Vorteile bieten (vgl. Schiek 2022), ebenso wie telefonische gegen

über solchen von Angesicht zu Angesicht (vgl. Schulz & Ruddat 2012). Es gab nur einen
Fall, in dem die befragte Person merklich zurückhaltend war und nur sehr allgemein ge

sprochen und wenig Konkretes über die eigene Arbeit gesagt hat. Die Fallbeschreibungen
zu INTERN1 und STARTUP wurde jeweils von einer befragten Person gelesen und ohne
Korrekturen als zutreffend eingeschätzt. Dieses Verfahren, um die Güte der qualitati

ven Sozialforschung zu steigern, wird »kommunikative Validierung« (Steinke 2012: 320)
genannt.

Ab Februar 2020 wurde ein Forschungstagebuch geführt, wo ich sowohl theoreti

sche als auch empirische Notizen (Überlegungen, Beobachtungen etc.) gesammelt habe.
Ebenso wurden die Interview-Situationen protokolliert und in einer Datei festgehalten
(inkl. Auffälligkeiten und offene Fragen).

3.3. Kodierung, Kategorisierung und Fallvergleich

Es wurde mit verschiedenen Kodierungsformen experimentiert. Ganz zu Beginn wurde
line-by-line Coding (vgl. Charmaz 2014: 343) probiert, was zu viele Kategorien hervor

brachte.
Friese (2016) weist darauf hin, dass es Corbin und Strauss darum ging, dass Codes

nicht nur Dinge beschreiben sollen, sondern eine Interpretation und Gruppierung auf
höherer Ebene darstellen (vgl. ebd. 487). Dadurch entstehen nicht so viele Kategorien.
Sie meint zudem, statt »kodieren« wäre »taggen« als Begriff besser, weil es mehr um Eti

kettieren oder Identifizieren geht (vgl. ebd. 490). Zentraler Teil ist neben dem »Taggen«
verschiedener Interviewstellen für sie das analytische Schreiben (vgl. ebd.). Das ist in der
vorliegenden Arbeit beim Text für die Fallstudien angewendet worden.

Dabei ist die Besonderheit von Expert:inneninterviews zu beachten:

3. Forschungsdesign und -methode 41

»Anders als bei der einzelfallinteressierten Interpretation orientiert sich die Auswer
tung von ExpertInneninterviews an thematischen Einheiten, an inhaltlich zusammen

gehörigen, über die Texte verstreuten Passagen – nicht an der Sequenzialität von Äu
ßerungen je Interview« (Meuser/Nagel 2002: 81).

Es wurde das versucht, was die Grounded Theory ausmacht: offen zu bleiben, nahe an
den Daten zu bleiben, Codes einfach, präzise und kurz zu halten, Handlungen in den
Fokus der Codes zu nehmen, Daten untereinander zu vergleichen (vgl. Charmaz 2014:
120). Aus der Codierung entstand ein Kategorienbaum in MAXQDA. Er besteht aus fünf
übergeordneten Kategorien:

• »Verteilte Kompetenzen und Funktionen/Arbeitsteilung/Spezialisierung«
• »Verhandlung generisch/individuell, integriert/segregiert«
• »Kooperation durch gemeinsames Wissen + etablierte Kommunikation«
• »Rahmen zur Integration von Software(-entwicklung)«
• »Subjektivierung (Möglichkeiten und Erwartungen des Einzelnen)«

Die Unterkategorien und -codes dienten dazu, für jeden Fall die zugeordneten Textab

schnitte in Excel zu exportieren, dort zu paraphrasieren und entsprechend den (über

geordneten) Kategorien in eine Textdatei für die Fallbeschreibung zu kopieren. Letzt

endlich wurden die Kategorien, wie sie nun im Analyserahmen festgehalten sind, erst
ausgearbeitet durch die Paraphrasierung aller als wichtig erachteten Interviewstellen,
deren Zusammenführung in einen Fall und durch die das im Fall entwickelte fallspezifi

sche Narrativ.

»In reading each case, the researcher will develop an idea of the important concepts
and their linkages in the data— provisional answers to the ›how‹ and ›why‹ questions
at the center of the research.« (Deterding/Waters 2021: 727)

Es war ein Prozess, in dem immer wieder zwischen den Kategorien in MAXQDA, einzel

nen Fallstudien und Theorien gedanklich hin und her gesprungen wurde.

»When passing through multiple cases in the first round of reading and coding, we
recommend compiling a list of concepts and relationships between them that appear
to describe multiple cases and begin describing the contours of relationships in the
matic memos.« (Ebd.)

Das wurde für mehrere Fallstudien durchgeführt. Peu à peu wurden über den Vergleich
verschiedener Fallstudien die Reflexion der Theorie und unter Berücksichtigung der Fra

gestellung die Kategorien weiterentwickelt. Ergebnis dieses Prozesses sind drei Ober

kategorien (soziotechnische Konstellation, Arbeitsprozess Softwaregestaltung, Folgen)
mit den jeweiligen Unterkategorien und der Analyserahmen in seiner jetzigen Form. Auf
diese Weise konnte ein Rahmen gewonnen werden, um die Fallstudien zu strukturieren
und den Arbeitsprozess der Softwaregestaltung von seinen Ausgangspunkten und sei

nen Folgen klar analytisch unterscheiden zu können.

42 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Als Erstes wurde für INTERN2 und KOOP1 versucht, einen möglichst kohärenten
Aufbau der Fälle zu erstellen. Dann kamen die anderen Fälle, wobei auch INTERN2 und
KOOP1 immer wieder leicht angepasst wurden. Zuletzt wurde STARTUP angefertigt. Ab

schließend wurde weiter an den jeweiligen Besonderheiten der Fälle gearbeitet. Im wei

teren Verlauf (Überarbeitung der einzelnen Kapitel der Dissertation, wiederholtes Lesen
der Fallstudien) kam nichts mehr zum Vorschein, was gegen den Analyserahmen gespro

chen hätte. Zuletzt wurden die Unterschiede zwischen den Fällen herausgearbeitet und
aus diesen Idealtypen konstruiert. Im Sinne Webers bezieht sich ein Idealtyp zwar »auf
empirische Phänomene, beschreibt sich aber nicht einfach, sondern übersteigert einige
ihrer Merkmale, um zu einem Modell sozialer Wirklichkeit zu gelangen.« (Kelle/Kluge
2010: 83)

3.4. Grenzen der Untersuchung

Erstens kann nicht ausgeschlossen werden, dass es ein Bias hinsichtlich funktionieren

der und aus der Perspektive der Beschäftigten positiver Arbeitsbedingungen gibt. Im
Laufe der Feldforschung fiel auf, dass sich vor allem jene Personen und Organisationen
zur Verfügung stellten, bei denen die Softwareentwicklung und der Softwareeinsatz po

sitiv wahrgenommen werden. Nur vereinzelt gab es Gespräche, bei denen über IT-Pro

jekte gesprochen wurde, die schiefgelaufen sind. Es blieb in diesen Fällen dann bei Ein

zelinterviews. Da viele Fallstudien über einzelne Personen gewonnen wurden, war es von
deren Offenheit und Bereitschaft abhängig, sich Zeit für Interviews zu nehmen (nur bei
INTERN1 und INTERN2 kamen die Kontakte innerhalb der Organisation über den Be

triebsrat zustande). Der Verdacht besteht, dass damit immer auch eher offene persönli

che Netzwerke genutzt wurden. Womöglich sind dadurch Arbeitsumfelder mit schlech

teren Arbeitsbedingungen aussortiert worden. Das heißt aber nicht, dass die Befragten
nicht einzelne Aspekte ihrer Arbeit kritisiert hätten (bspw. die Zusammenarbeit mit den
IT-DL oder Softwarefirmen).

Zweitens kann die Professionalität der Softwareentwicklung nicht gemessen wer

den. Es werden zwar in einzelnen Fallstudien aktuelle Methoden wie Scrum angewendet
oder sogar spezifische Entwicklungsmethoden wie Domain-driven Design3. Gleichwohl
wurde nicht der Quellcode geprüft, wie die Anforderungen geschrieben sind, ob sie klar
und verständlich sind, ob sauber dokumentiert wurde oder inwiefern objektorientiert
programmiert wurde.

Drittens wurde das Wissen der Befragten nicht differenziert erfasst. Es ist immer
noch eine offene Forschungsfrage, welche Wissensbestände entscheidend für die soft

waretechnische Interdisziplinarität sind. Nicht in allen Fällen wurde genau erhoben, vor
allem wegen der geringen Anzahl der Befragten, wer wie viel von welchem Wissen hat.
Meist wurde das Verhältnis von IT- zu Fachwissen abgefragt, welche Schulungen besucht

3 Dabei wird die Wissensdomäne des Anwendungsbereichs in der Programmierung berücksichtigt,
z.B. indem Fachbegriffe aus dem Anwendungsbereich in den Quellcode einfließen. Dadurch wird
die Kommunikation zwischen Programmierenden und Anwendenden einfacher, weil sie die glei
chen Begriffe verwenden.

3. Forschungsdesign und -methode 43

wurden und welche Ausbildung oder welches Studium die befragte Person absolviert hat.
Das gilt auch für den Wissensaustausch: Weder wurden Meetings beobachtet noch Chats
oder E-Mails analysiert, wer mit wem welches Wissen austauscht und welches eigene
Wissen einbringt.

Letztendlich erhebt die Arbeit keine quantitativen Zahlen und kann keine Aussagen
darüber treffen, wie viele EVU intern Software programmieren oder gestalten – auch
nicht für die untersuchten Firmen, weil immer nur ein Teil davon untersucht wurde. Die
Generalisierungen in Form konzeptioneller Ergebnisse wie die soziotechnische Netz

werkarbeit oder der Analyserahmen müssen sich erst noch in Untersuchungen anderer
Branchen beweisen.

3.5. Forschungsethik und Datenschutz

Bei der Befragung wurden die forschungsethischen Grundsätze berücksichtigt. Es gilt,
Schaden für die Untersuchten zu vermeiden, deren freiwillige, informierte Einwilligung
und der Datenschutz (vgl. Gläser/Laudel 2006: 48). Die Befragten wurden mit »mög

lichst ausführlichen Information[en] über Ziele und Methoden des entsprechenden For

schungsvorhabens« (DGS & BDS 2017: 2) und zudem über Gefahren und Risiken aufge

klärt (ebd.: 2f.). Dies schließt auch eine Anonymisierung ein (vgl. ebd.: 3). Zudem wurden
der eigene Wissensstand und die Vorgehensweise offengelegt (vgl. ebd.: 1).

4. Softwaregestaltung als Teil der Digitalisierung

Vom Werkzeug der Forschung zum Primat

der Softwareentwicklung bei Nicht-IT-Unternehmen

Warum ist Softwaregestaltung überhaupt relevant für Organisationen? Dieser Frage
geht das Kapitel in einem kurzen historischen Abriss nach. Softwareentwicklung war
und ist zentral, um Digitalisierung zu verstehen, und nicht nur die immer größere
Bedeutung von Daten oder die reine Softwareanwendung. Software ist zentral für die
Wettbewerbsfähigkeit von Firmen, und einige setzen mittlerweile von Anfang an auf
Softwareentwicklung als den Kern ihrer Organisation, auch wenn sie keine Software,
sondern andere Dienstleistungen oder Produkte verkaufen (vor allem sogenannte di

gitale Start-ups). Bei ihnen gilt der Primat der Softwareentwicklung. Das ist nicht bei
allen Unternehmen der Fall und es gibt eine große Vielfalt an Mischformen. Wie die
Softwaregestaltung jeweils organisiert ist, stellt der spätere Empirie-Teil dar. Neben
dem Begriff des Primats der Softwareentwicklung führt das Kapitel noch zwei weitere
wichtige Begriffe für die Analyse der Softwaregestaltung ein: die softwaretechnische
Interdisziplinarität und die softwaretechnischen Gestaltungsmöglichkeiten. Sie stellen
die beiden Kernprobleme der Softwaregestaltung dar, tauchen in der weiteren Ana

lyse immer wieder auf und sind Teil des soziotechnischen Begriffsapparates, der zur
Untersuchung der Formen und Folgen der Softwaregestaltung dient.

4.1. Primat der Softwareentwicklung in Nicht-IT-Branchen und -Betrieben

Software: Ihre Programmierung, Gestaltung und Anwendung ist Teil der Geschichte der
IT-Nutzung. Von der vorwiegend wissenschaftlichen Nutzung in den 50er Jahren von
IT zur Automatisierung von Routinetätigkeiten in den 60ern und den ersten PCs in den
80ern. Seit den 90ern nimmt die Netzwerk-Integration stetig zu und die Informati

onstechnologie hat auch verstärkt restrukturierende Effekte auf gesamte Unternehmen
– und nicht nur auf einzelne Tätigkeiten. Informationen können vielen zugänglich
gemacht werden und gleichzeitig ist eine zentrale Kontrolle via Daten möglich (vgl.
Schwarz/Brock 1998: 70ff.). Autoren sprechen von einer »open network organization«

46 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

(Schwarz/Brock 1998: 67ff.) und von »ubiquitous computing«, da der Zugriff und die
Kontrolle der Umwelt von überall und zu jeder Zeit möglich sein soll (wearables, collabo

rations, crowdworking, realtime) (vgl. Cascio/Montealegre 2016, vgl. Hirschheim/Klein
2012).

Software nimmt dabei eine immer größere Rolle ein. Friedman/Cornford (1993) ma

chen drei Phasen der Entwicklung von Computersystemen aus. In der ersten Phase bis
Mitte der 60er waren Beschränkungen durch die Hardware prägend und in der zwei

ten Phase bis in die frühen 80er solche durch Software. Ab der Phase 3 waren die Bezie

hungen zu den Nutzenden ein Hemmnis (»User Relations Constraints«). Die Nutzen

den wurden wichtiger und die Softwareentwicklung musste sie einbeziehen, vor allem
weil deren Anforderungen schwieriger zu spezifizieren waren (vgl. Friedmann/Cornford
1993: 325). Bereits Mitte der 70er waren Fehler in der Programmierung selbst nicht mehr
das zentrale Problem: »Analysis and design errors were revealed to be far more common
than coding errors« (Friedmann/Cornford 1993: 204).

Erst im Laufe der Zeit entstanden Firmen, die sich auf die Softwareentwicklung kon

zentrierten. Zu Zeiten der Großrechner bis Ende der 80er war Rechen- und Speicherka

pazität begrenzt und kostbar. Mit Software wurde nicht das große Geld verdient. Erst mit
Firmen wie Microsoft im Konsumentenbereich oder SAP und Oracle im Industriebereich
entstanden große Konzerne, deren alleiniges Geschäft im Programmieren von Anwen

dungen (und Datenbanken) bestand. Für die Industriefirmen bedeutete das, dass Stan

dardpakete zur Verfügung standen, die sie zentral implementieren konnten. Es wurde
üblich, abteilungs- und standortübergreifend zu arbeiten – an einem digitalen Prozess,
auf einer gemeinsamen, zentralen Datenbank.

In der Geschichte der Stadtwerke München (SWM) zeigt sich, dass sich unabhängig
von der Liberalisierung der Energiewirtschaft die IT stetig zu einem großen, integrier

ten System entwickelte. Im Frühjahr 1979 waren noch 1206 verschiedene, meist selbst
gestrickte, nicht miteinander verbundene Programme im Einsatz (vgl. Bähr/Erker 2017:
280). 1995 wurde für 13,5 Millionen D-Mark das Standard-R/2 ERP-System von SAP
eingeführt (Bähr/Erker 2017: 327). In der Folge gab es ab Ende 1997 dann eine gezielte
IT-Strategie bei den SWM, »die die datentechnische Durchdringung sämtlicher Arbeits-
und Geschäftsprozesse umfasste und als integraler Bestandteil des Transformations

prozesses begriffen wurde« (Bähr und Erker 2017: 326).
Die Softwareentwicklung selbst hat sich seither nicht in einigen wenigen Soft

warefirmen konzentriert. Das Gegenteil ist passiert. Sie wird immer einfacher: Mehr
Rechnerleistung, mehr Speicher und mehr Übertragungskapazität macht mittlerwei

le auch das Entwickeln in der Cloud möglich und damit nicht nur neue Formen des
kollaborativen Entwickelns, sondern auch das Nutzen von Entwicklungsumgebungen
und Werkzeugen wie von Amazon (mithilfe von deren Services auf AWS) oder Mi

crosoft (dem Cloud-Angebot Azure). Durch das Internet, mobile Geräte und immer
fortschreitende Softwareentwicklungstechnologien (Entwicklungsumgebungen, Bi

bliotheken, Entwicklungsmethoden) und immer mehr Arbeitskräfte mit Know-how
in der Softwareentwicklung (z.B. viele Studiengänge mit Informatikanteil, mehrere
Ausbildungsberufe, mehr Absolvent:innen national und international) verbreitet sich
der Einsatz von Software: von einzelnen, einfachen Anwendungen für Großrechner
zu einer Vielzahl von Anwendungen für Heimcomputer, Geschäftsprozesse, mobile

4. Softwaregestaltung als Teil der Digitalisierung 47

Endgeräte und Industrieanlagen – ob im Hintergrund laufend oder in Form von In

terfaces mit den Nutzenden interagierend. Dabei werden die Softwarepakete und die
IT-Landschaften komplexer, mit vielen Schnittstellen, Einstellungs-, Anpassungs- und
Erweiterungsmöglichkeiten. Arbeitsmethoden aus der Softwareentwicklung wie Scrum
oder IT-Projekte zur Implementierung oder Entwicklung von Software sind fester Be

standteil vieler moderner Organisationen. Dabei ist der Kern der Softwaregestaltung
die Datenverarbeitung nach bestimmten Regeln (Algorithmen) und nicht die Daten
selbst.

Nun ist für die meisten Organisationen die Software nicht das Produkt, mit dem sie
ihr Geld verdienen, bzw. ihr Organisationszweck. Sie ist das Werkzeug, um Geld zu ver

dienen oder Leistungen zur Verfügung zu stellen. Diese Firmen stellen sich die Fragen:
Selbst entwickeln oder entwickeln lassen? Standard1 anwenden oder etwas Eigenes ent

wickeln, was einen von der Konkurrenz abhebt? Ist Software ein reiner Kostenfaktor oder
gar Teil des Kerngeschäfts?

Ob Allianz, Siemens oder Volkswagen: Sie sind alle keine reinen Softwareentwick

lungsfirmen. Doch hat die Allianz erst vor kurzem ihre Strategie wieder aufgegeben, eine
Softwarefirma zu werden und ihre selbst entwickelte Software auch anderen Versiche

rern anzubieten (vgl. Fromme 2022). Siemens erweitert sein Angebot an Software immer
mehr, indem es bspw. eine Softwarefirma für 1,6 Mrd. Euro gekauft hat (vgl. Kopplin
2022). Volkswagen versucht mit Tesla Schritt zu halten, das Software als Kern des Autos
sieht, und hat seine Softwarekompetenz in der Tochterfirma Cariad konzentriert (vgl.
Hägler 2022). Das heißt, für Firmen wird Software nicht nur zum Kern ihrer Organisati

on (wie ERP-Systeme), sie bilden sich nicht nur um Softwarelösungen herum. Sie nutzen
die Software nicht nur als Plattform für die Organisation ihrer Wertschöpfung (vor al

lem bei den sogenannten Plattformfirmen der Gig Economy, Amazon etc.). Es wird der
Kern strategischer Fragen, weil unabhängig vom eigentlichen Kerngeschäft (Versiche

rungen, Autos, Industrieanlagen etc.) die Softwareentwicklung entscheidend wird, um
überhaupt eine konkurrenzfähige Wertschöpfung oder Produkte zu haben.

James Bessen spricht von »competing on complexity« (2022): In softwareintensiven
Industrien, in denen Software nicht das Produkt ist, ermöglichen es große, proprietä

re Softwaresysteme, sich gegen die Konkurrenz durchzusetzen. Weil Software leicht er

weiterbar ist, kann sie immer komplexer werden. Diese Komplexität können die Unter

nehmen unterschiedlich nutzen: um die Qualität von Produkten und Dienstleistungen
zu steigern. Um durch zusätzliche Features von Produkten und Dienstleistungen mehr
heterogene Bedürfnisse der Kund:innen zu befriedigen. Mehr Varianten, mehr Auswahl
und auch individualisierte Produkte anzubieten (vgl. ebd. 25f.).

»[F]irms make large investements in systems that combine the advantages of large
scale with the advantages of mass customization« (ebd. 45).

Dafür müssten die Firmen allerdings in die Entwicklung eigener, proprietärer Software
investieren. Als Vorreiter sieht Bessen Walmart an, die dank ihrer eigenen Software ei

1 Zum Standard einer Software gehört alles, was nicht für eine einzelne Anwenderorganisation bzw.
einzelne Kund:innen einer Softwarefirma programmiert wurde.

48 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ne immer größere Bandbreite an Produkten günstig anbieten konnten. Das Prinzip des
»competing on complexity« gelte aber mittlerweile für sämtliche Branchen. 2019 inves

tierten Firmen in den USA 239 Milliarden Dollar in proprietäre Software (vgl. ebd. 29).
Softwareentwicklung kann den Unterschied ausmachen. Um diesen Unterschied

hinzubekommen, ist eine entsprechende Organisation notwendig. Es ist nicht nur eine
Frage des Geldes. Mit wenig (Personal-)Aufwand können Firmen bereits entwickeln. Es
ist mehr eine Frage davon, ob eine Organisation, die nicht auf Softwareentwicklung spe

zialisiert ist, fähig ist, Teams von Programmierenden einzubinden oder mit größeren
Softwarefirmen oder -dienstleistungsunternehmen zu kooperieren.

(Vormals) digitale Start-ups sind ein Beispiel dafür, dass Softwareentwicklung nicht
nur eine fertige Anwendung ist, sondern die gesamte Organisation und Strategie be

trifft. Ob Fintecs, Amazon, Facebook, Firmen der Gig Economy: Es sind Firmen, die
Software für eine bestimmte Anwendung entwickeln und die gesamte Organisation
auf den Softwareentwicklungsprozess ausrichten. Sie bilden nicht einfach bestehende
Strukturen in Software ab. Es geht darum, kontinuierlich den Zugriff und die Konstruk

tion der Wirklichkeit via Software zu optimieren (bereits 1992 spricht Christiane Floyd
von »Software Development as Reality Construction«). Digitale Start-ups stellen sich die
Frage, wie sie das Potenzial der neuen Technologien in einem bestimmten Geschäftsum

feld nutzen können, und denken damit softwaretechnisches und branchenspezifisches
Know-how von Anfang an zusammen, um daraus Software entwickeln zu können.
Wie Amazon, Google & Co. zeigen, hören sie auch nicht mehr auf damit. Letztendlich
können digitale Start-ups als das Ende einer Entwicklung betrachtet werden, in der
in ursprünglichen Nicht-IT-Industrien die Softwareentwicklung immer mehr in den
Kern rückt: Zuerst auf die IT-Abteilung beschränkt, die einzelne, industriespezifische
Anwendungen schreibt. Dann entstehen immer mehr professionelle Softwarefirmen,
die kostengünstige Standardsoftware anbieten. Bis letztendlich zum Primat der Soft
wareentwicklung einer Organisation, wo sich seit der Gründung die Wertschöpfung
um eine Software herum bildet, die kontinuierlich weiterentwickelt wird. Oder anders
ausgedrückt: »Sachverhalte werden von vorneherein als Informationsprozess verstan

den, formuliert und modelliert« (Schmiede 2006: 465). Zusätzlich bieten solche Firmen
die intern entwickelte Software anderen Unternehmen an. Ein Ingenieur von Amazon
formuliert es so:

»Amazon is a technology company, but its warehouses are a huge laboratory where
we develop new technologies to sell to third parties.« (Massimo 2022)

Organisationen die auf dem Primat der Softwareentwicklung basieren, wie digitale
Start-ups, nutzen keinen rein technischen Vorteil. Sie nutzen vielmehr den Vorteil, neue
soziale Strukturen schaffen zu können, welche die Potenziale der Technik ausschöpfen
helfen. Dabei soll der softwaretechnische Vorsprung von Google et al. nicht unterschla

gen werden. Aber nur wenige Organisationen wurden von Beginn an unter der Prämisse
aufgebaut, alle Tätigkeiten zu prüfen, inwiefern sie mit einer Software bearbeitet und
in einer solchen abgebildet werden können. Die meisten (ob in der öffentlichen Ver

waltung oder der Wirtschaft) existieren bereits seit längerem. Bestehende Strukturen
wurden noch unter anderen technischen Vorzeichen rationalisiert. Sie stammen in ihrer

4. Softwaregestaltung als Teil der Digitalisierung 49

Grundstruktur aus einer Zeit vor Computer und Internet. So ist die Organisation auf die
Produktion von Autos oder die Wartung von Stromnetzen ausgelegt. Die IT-Abteilung
ist eine neben anderen indirekten Bereichen wie Personal oder Buchhaltung.

Die Fallstudien werden unterschiedliche Wege zeigen, wie Organisationen, die nicht
primär auf die Softwareentwicklung ausgerichtet sind, sich mal mehr und mal weniger
auf dem Weg machen, selbst Software zu programmieren.

4.2. Die zwei Kernprobleme der Softwaregestaltung

Traditionelle Nicht-IT-Unternehmen können nicht einfach Start-ups werden und wer

den es auch nicht. Sie müssen aber für sich die Frage beantworten, wie sie mit ihren be

stehenden Strukturen umgehen. Die Untersuchung der Fallstudien im 8. Kapitel und die
Aufarbeitung des Forschungsstandes ergaben zwei Kernprobleme der Softwaregestal

tung – egal ob die Organisationen ihre bestehenden sozialen Strukturen (ob z.B. zur Be

arbeitung von Kund:innenrechnungen oder Anträgen auf Bauförderung) abbilden, ver

ändern oder ganz neu gestalten: die softwaretechnische Interdisziplinarität und die soft

waretechnischen Gestaltungsmöglichkeiten. Die beiden Probleme sind deshalb relevant,
weil sie die Besonderheit des Arbeitsprozesses der Softwaregestaltung ausmachen und
die hier vorliegende Untersuchung darum kreist, wie Organisationen diese beiden Pro

bleme in unterschiedlichen Kontexten lösen und was das für Folgen hat.

4.2.1. Softwaretechnische Interdisziplinarität

Um Software für eine bestimmte Industrie zu entwickeln, ist Wissen über die entspre

chende Industrie notwendig. SAP (bekannt für industriespezifische Standardsoftware)
ist seit der Gründung 1972 groß geworden damit, in gemeinsamen Projekten mit Indus

triefirmen das industriespezifische Wissen in Konzepte und in Software umzusetzen
(vgl. Siegele/Zepelin 2009: 24, 52ff.). Wissen aus dem jeweiligen branchenspezifischen
(zukünftigen) Anwendungsbereich der Software und softwaretechnisches Know-how
müssen zusammen gedacht werden, um die Möglichkeiten der Technologie auszu

schöpfen. Vom allgemeinen Branchenfachwissen über einzelne industriespezifische
Prozesse, über Firmenwissen zu firmeninternen Abläufen bis hin zum individuellen An

wendungswissen eines Arbeitsplatzes mit seinen spezifischen Besonderheiten, an dem
Spezialist:innen arbeiten: Die Programmierenden müssen wissen, was sie zu program

mieren haben. Wer verantwortlich für die Interdisziplinarität ist, d.h. ob die Fertigkeiten
der Softwareentwickelnden ergänzt werden (vgl. Baukrowitz/Boes/Eckhardt 1994) oder
andere Fächer am Zug sind (Management, Behavioral Science, VWL) (vgl. Boehm 2006:
25), ist eine Frage, welche die Fallstudien erhellen werden: Es geht nicht nur um das
Wissen Einzelner, sondern vor allem darum, durch den Arbeitsprozess der Software

gestaltung die verschiedenen Wissensträger:innen zusammenzubringen. So oder so
nimmt die Herausforderung mit der Spezialisierung der Softwarelandschaft zu: was die
Vielzahl an Anwendungen, aber auch deren Umfang anbelangt. Die immer komplexer
werdenden Softwarepakete haben ihre eigene Biografie und Pfadabhängigkeiten (vgl.
Pollock/Williams 2009: 80ff.), deren Kenntnis oftmals Voraussetzung ist, um sie weiter

50 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

entwickeln zu können. Um all dieses Wissen für die Softwaregestaltung zu mobilisieren,
können unterschiedlichste soziale Einheiten zusammenarbeiten: Softwarefirma und
Verwaltung, IT-Abteilung und Fachbereich, Start-up und Industriekonzern, Scrum-
Entwicklungs-Team und ein Team für Stromhandel. Für viele Nicht-IT-Firmen ist das
eine Herausforderung, weil der offene, kommunikative Austausch ebenso wenig zum
Organisations- und Arbeitsrepertoire gehört wie die Softwareentwicklung.

Wegen immer komplizierterer Softwarelandschaften und -lösungen und immer
komplexerer Industrieprozesse gibt es immer mehr Spezialist:innen, von denen eine
Abhängigkeit besteht und auf deren Partizipation man angewiesen ist (das Heer an
SAP-Beratenden ist nur ein Beispiel). Auch wenn schon früh in der Forschung darauf
hingewiesen wurde, wie wichtig Partizipation bei der Einführung von IT-Systemen ist
(vgl. Mann/Williams 1960: 225f.), zeigen die Fallstudien dieser Arbeit, dass in den Un

ternehmen weniger der Wille ausschlagend ist, die Beschäftigten an der Gestaltung zu
beteiligen. Vielmehr geht es darum, an das für die Gestaltung der Software notwendige
Wissen bestimmter Beschäftigter zu gelangen. Der Gestaltungsprozess verteilt sich
auf all diejenigen, die zwischen Anwendenden und Programmierenden Anforderun

gen aufnehmen, Softwarepakte anpassen, Verhandlungen über neue Features führen.
Hohlmann (2007) spricht in ihrer Untersuchung von Netzwerken der Gestaltung, die
über das, wie sie es nennt, Integrationswissen aus Organisations-, Prozess- und Tech

nologiewissen verfügen. Andere Autoren sprechen von einem »institutionalisierten
Informationsbruch« (Remer 2008: 162) zwischen IT- und Fachabteilung, den es zu über

winden gilt. Durch die Konzentration der IT-Fachkräfte und -Kompetenzen in einer
Abteilung besteht eine Wissensgrenze zu den anderen. Mit dem IT-Alignment gibt es
eine eigene Disziplin in der (Wirtschafts-)Informatik, die erforscht, wie IT- und Fachab

teilung besser zusammenarbeiten können (darauf geht 6.4.1.1 genauer ein). Dabei geht
es z.B. um das IT-Projektmanagement, das aufgrund der fachlichen und technischen
Unsicherheiten in Projekten am besten sowohl über fachliches als auch über technisches
Wissen verfügen sollte. Gefragt ist die oder der »hybrid IT PM with one foot in the IT
domain and the other foot in the business domain« (Ko/Kirsch 2017: 316).

Zentral für die Untersuchung ist, wie in unterschiedlichen Kontexten diese Wissens

grenzen überwunden werden. Die dafür zuständigen Beschäftigten und Arbeitsabläufe
der Gestaltung stehen dabei im Mittelpunkt. Es handelt sich um eine neue Sorte von Wis

sensarbeit zwischen Anwendung und Programmierung. Die Wissensarbeitenden verfü

gen über spezifische Qualifikationen, Arbeitsmethoden und Rollen. Sie sorgen für die
kontinuierliche Weiterentwicklung der Software. Sie sorgen für die Konzeptionslogistik,
dass Programmierende immer wieder neue Konzepte bekommen, die zu programmie

ren sind. Die Fallstudien machen deutlich, dass diese interdisziplinäre Wissensarbeit im
Kontext der Konkurrenz auf der Ebene von Individuen und Organisationen geschieht.
Wirtschaftliche Indikatoren bestimmen Entscheidungen über Einsatz und Entwicklung
von Software. Das hat u.a. die Folge, dass es nicht ohne weiteres möglich ist, sich frei von
jeglichen Zwängen über die optimale Software auszutauschen. Kooperatives Verhalten
und damit eine Basis für einen offenen Wissensaustausch ist zwischen und innerhalb
von Firmen nicht selbstverständlich.

4. Softwaregestaltung als Teil der Digitalisierung 51

4.2.2. Softwaretechnische Gestaltungsmöglichkeiten

Ein zweites zentrales und typisches Problem für den Arbeitsprozess der Softwarege

staltung ist jenes der softwaretechnischen Gestaltungsmöglichkeiten2. Worin liegt das
Problem? Organisationen müssen zwei wesentliche Entscheidungen treffen und den
Arbeitsprozess der Softwaregestaltung entsprechend organisieren:

A) Gestaltung der Software: Ein Quellcode kann nur auf einem Computer existieren
oder auf einem vernetzten Server, auf den die ganze Welt Zugriff hat. Er kann Teil
eines Standards sein, den viele Organisationen nutzen, oder rein individuell und es
nutzt ihn nur eine Organisation. Die Softwaregestaltung steht nun vor dem Problem,
den jeweiligen softwaretechnischen Zuschnitt zu erarbeiten: Soll sie etwas individu

ell oder als Standard gestalten? Soll sie eine Standardsoftware erweitern oder anpas

sen?
B) Gestaltung von Arbeit und Organisation: Die anwendende Organisation kann die

Software selbst gestalten oder durch andere wie IT-Dienstleistungsunternehmen
(IT-DL) oder Softwarefirmen gestalten lassen. Beim Primat der Softwareentwick

lung hat sich eine Organisation dafür entschieden, sich organisatorisch auf die
Softwareentwicklung auszurichten. Das Problem, sich organisatorisch auf die An

wendung einer (Standard-)Software oder auf die Softwaregestaltung auszurichten,
wird hier als softwaretechnische Ausrichtung einer Organisation bezeichnet.

Die Fallstudien des 8. Kapitels zeigen konkret, dass es für die Softwaregestaltung
entscheidend ist, welche softwaretechnischen Gestaltungsmöglichkeiten in puncto
Zuschnitt (Standard oder individuell) und organisatorische Ausrichtung (Anwendung
oder Gestaltung) die Organisationen nutzen.

Theoretisch könnte A) bedeuten, dass man weltweit nur noch eine (Softwarebau

stein-)Bibliothek mit allen möglichen Funktionalitäten braucht. Dadurch wäre die
Softwaregestaltung deutlich weniger aufwendig. Tatsächlich gibt es solche Bibliotheken
mit industrieunspezifischen, grundlegenden Softwarebausteinen3. Auch eine Stan

dardsoftware wie SAP kann als Versuch gesehen werden, bestimmte Funktionalitäten
(bspw. Arbeitsabläufe oder Datenverarbeitungsprozesse) durch identischen Quell

code für alle Organisationen gleich abzubilden – selbst die industriespezifischen. Der
softwaretechnische Zuschnitt kann sich aus unterschiedlichen Ursachen ergeben:

• Synergien: Durch generische Teile einer Software oder Standardbausteine für meh

rere Anwendungsbereiche (verschiedene Abteilungen, Firmen etc.) oder Program

mierungen (einzelne Bausteine) sollen Synergien gehoben werden.

2 Es gibt Ähnlichkeiten zur »Bezugsebene« des Informationsraums (vgl. Boes et al., 2016: 34). Auch
wenn die Firmen diese Bezugsebene nutzen, um die softwaretechnischen Gestaltungsmöglichkei

ten zu verwirklichen: Der Begriff der Bezugsebene allein würde nicht verdeutlichen, um welche
spezifischen Eigenschaften von Softwareentwicklung es geht, die für die Softwaregestaltung be
sonders relevant sind.

3 Zum Beispiel Java Class Library, C++ Standard Library, React.js, Node.js.

52 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Institutionell: Die Software wird auf Standards ausgerichtet (bspw. technische oder
regulatorische).

• Abgrenzung von Wettbewerbern: Die individuelle Software soll es ermöglichen, sich
von der Konkurrenz abzuheben – ob durch mehr Effizienz oder individuelle Ange

bote für die Kundschaft.
• Anwendungsperspektive: Die Software soll auf die individuelle Perspektive der an

wendenden Organisation zugeschnitten werden, bspw. durch die Erweiterung einer
Standardsoftware.

• Prioritäten: Die Software bildet nur die wichtigsten Funktionalitäten ab. Das kann
bedeuten, dass eine Standardsoftware nur einen bestimmten Umfang hat. Die an

wendenden Unternehmen müssen diese dann noch individuell erweitern, um ihre
firmeninternen Prozesse darüber hinaus mit Software abarbeiten zu können.

Egal wie der Zuschnitt zustande kommt: Sobald eine Arbeitsteilung existiert und je mehr
Organisationen mitgestalten, desto höher wird der Koordinations- und Kommunikati

onsaufwand, um bspw. festzulegen, was in einen Standard hineinkommt oder ob und
wie Synergien gehoben werden oder nicht. Eine Möglichkeit, diesen Aufwand zu um

gehen, ist, sich einfach einer Standardsoftware unterzuordnen und seine Organisati

on und die Arbeit jedes Einzelnen auf diese auszurichten. Das bedeutet aber, potenzi

elle Möglichkeiten der individuellen Softwaregestaltung und unter Umständen Wettbe

werbsvorteile auszuschlagen.
Solche Synergien durch Standardbausteine schaffen im Fall von ERP-Systemen

Softwarefirmen. Sie haben es übernommen, generische, für einen Standard relevante
Arbeitsschritte und Prozesse zu entdecken und daraus eine Standardsoftware zu ent

wickeln – was eine aufwendige Verhandlungsarbeit ist (vgl. Pollock/Williams/D’Adderio
2007). Laut Mormann (2016) befördern Softwarehersteller den Glauben, dass Orga

nisationen viel gemeinsam haben, vor allem wenn sie Standardsoftware verkaufen
wollen (vgl. ebd.: 110). Es bestünde eine »Gleichheitsunterstellung« von SAP und den
SAP-Beratenden: Prozesse in verschiedenen Industrien unterscheiden sich nicht (vgl.
ebd.: 158). Eine Standardsoftware will die Softwarefirma möglichst oft verkaufen (»eco

nomies of scale«). Wie ein Fall in der Untersuchung hier zeigt (KOOP1), gibt es aber
auch die Möglichkeit, dass mehrere Organisationen sich in kooperativen Projekten die
Frage stellen, was sie denn gemeinsam haben, um dann zusammen eine Software zu
entwickeln. Daraus kann eine umfassende Standardlösung entstehen oder einzelne
Funktionalitäten, die über die Cloud abrufbar sind. Auch intern können Organisationen
für Prozesse Standardsoftwarebausteine entwickeln, die mehrere Abteilungen mit den
gleichen Arbeitsschritten betreffen.

Nicht nur Softwarefirmen oder Nicht-IT-Firmen tun sich schwer, solche Synergien
zu erkennen. Auch auf Branchenebene ist es schwierig: Ein Beispiel dafür ist das Er

neuerbare-Energien-Gesetz (EEG). Nachdem es die Bundesregierung verabschiedet hat,
haben sich über die Jahre hinweg regelmäßig die Einspeisevergütungen für Erneuerba

re-Energie-Anlagen geändert. Viele unterschiedliche Energieversorger, Softwarefirmen
und IT-Beratungen haben erst eigene Lösungen entwickelt, um diese Anlagen abzurech

nen, und diese dann immer wieder angepasst, anstatt zentral eine Lösung zu program

mieren. Im Laufe der Zeit stellten einzelne Softwarefirmen Standardlösungen zur Ver

4. Softwaregestaltung als Teil der Digitalisierung 53

fügung. Aber ob der Weg über den Markt der effizienteste für die Branche war, ist frag

würdig.
Das zweite praktische Problem der softwaretechnischen Gestaltungsmöglichkeiten

B) betrifft die Gestaltung von Arbeit und Organisation: wie sich Organisationen dazu
verhalten, dass sie sich so gestalten könnten, wie es optimal aus Sicht der Softwareent

wicklung ist, und nicht so, wie es z.B. EVU gewohnt sind: nach Fachabteilungen getrennt
für Instandhaltung, Abrechnung, Einkauf, IT-Abteilung, Stromhandel etc. Sich zusam

men mit vielen anderen Abteilungen auf eine Software einigen oder eigenständig eine
auswählen? Die IT-Landschaft von der bestehenden Organisation aus gestalten oder die
bestehende Organisation als softwarebasierte Organisation betrachten und davon aus

gehend nach Optimierungen oder Synergien auf Organisationsebene suchen? Sich an
einer Standardsoftware ausrichten oder diese anpassen? Wenn Amazon seine Logistik

software auch anderen Firmen anbietet, setzt sich dann nicht nur eine zentrale Software

lösung, sondern auch eine Standardorganisation und -arbeit durch?
Selbst bei einer Standardsoftware stehen die Unternehmen vor der Frage, ob sie sich

rein auf die Anwendung konzentrieren oder intern selbst individuelle Anpassungen und
Erweiterungen an der Standardsoftware vornehmen: Der Bedarf an betriebsindividuel

len Anpassungen ist groß. Die Anzahl an kooperierenden Firmen der Standardsoftware

firma SAP, die unter die Kategorien »Solution Building« und »Consulting Services« fal

len, beträgt 457 in Deutschland und 2796 weltweit4. Das ist möglich, weil SAP sich für
eine Softwarearchitektur entschieden hat, die neben individuellen Einstellungen auch
Veränderungen am Quellcode und das Programmieren von Erweiterungen zulässt.

In vielen Firmen existiert die Mischung aus Standardsoftware und selbst entwickel

ten Erweiterungen oder Anpassungen. Wie es zu dieser Mischung kommt und sie kon

kret aussieht, wäre eine weitere Frage. Es mögen Pfadabhängigkeiten sein oder strategi

sche Entscheidungen, die Softwaregestaltung in verschiedene Bestandteile aufzuteilen:
einen Teil für Tätigkeitsbereiche der Firmen, in denen durch individuelle Softwareent

wicklung ein Vorteil gegenüber konkurrierenden Firmen erzielt werden kann, und einen
anderen Teil, bei dem das nicht der Fall ist und daher eine Standardsoftware ausreicht,
die viele andere auch verwenden (es bleibt die Möglichkeit, durch eine effizientere An

wendung Wettbewerbsvorteile zu erzielen). Es ist eine wichtige strategische Frage, wel

che internen Prozesse sich an einer Standardsoftware ausrichten (können) und dadurch
»das Differenzierungsmerkmal der Organisation gegenüber möglichen Konkurrenten
am Markt verloren geht« (Masak 2006: 245). Grundsätzlich IT nicht als strategisch rele

vant und austauschbar wie Bürostühle zu erachten, scheint da wenig plausibel.5
Die Herausforderungen der softwaretechnischen Gestaltungsmöglichkeiten und

Interdisziplinarität sind geringer bei Start-ups bzw. bei Firmen, die von Anfang an
auf Softwareentwicklung als Basis ihrer Leistungserbringung zurückgreifen. Wenn der

4 Abgerufen von www.sap.com/partners/find.html am 26.04.2023
5 2003 hat Nicholas Carr den Artikel »IT Doesn’t Matter« geschrieben, in dem er argumentiert, dass

IT den Unternehmen keine strategischen Vorteile brächte. Sie tendiere dazu, eine austauschbare
Standardware (»Commodity«) wie bspw. Seife zu sein. Dies wäre dann der Fall, wenn die Software
einfach zu bedienen ist, ohne große organisatorische Veränderungen ausgetauscht werden kann
und kein Lock-in-Effekt besteht (vgl. ZDNet Staff 2004).

https://www.sap.com/partners/find.html

54 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

oben erwähnte Primat der Softwareentwicklung gilt, ist die Organisation bereits auf
deren Anforderungen ausgerichtet. Die industriespezifischen Prozesse werden den
softwaretechnischen Entwicklungsprozessen untergeordnet und damit die Arbeitsge

staltung komplett selbst in die Hand genommen.
Die beiden Kernprobleme verdeutlichen, wie wichtig es ist, verschiedene Konstella

tionen der Softwaregestaltung zu untersuchen. Die Firmen der Fallstudien des Empirie-
Kapitels wählen unterschiedliche Softwarearchitekturen oder Möglichkeiten von Syner

gien, Wissensgrenzen verlaufen jeweils anders und haben entsprechend Auswirkungen
auf Arbeit und Organisation. Genauso wird sich zeigen, dass es einer besonderen Form
der Kontrolle der Softwaregestaltung bedarf, um diese beiden Kernprobleme der Soft

waregestaltung zu adressieren.

Exkurs: Entwicklungsplattform von SAP

Die ersten vier Fallstudien (INTERN1, INTERN2, KOOP1, KOOP2) des Empirie-Kapitels
verwenden die Entwicklungsplattform von SAP. Es handelt sich um jene der ERP-Versi
on R/3, die SAP in den 90ern entwickelt hat. Für die Entwicklungsplattform ist SAP Net
Weaver die technische Basis. Sie ist als offene Plattform konzipiert, d.h. nicht nur für den
SAP-Konzern intern, sondern auch für kooperierende Firmen und die Kundschaft (vgl.
Siegele/Zepelin 2009: 191). Teil des SAP NetWeaver ist eine eigene, SAP-spezifische Pro
grammiersprache (ABAP) und Werkzeuge, um selbst Änderungen und Erweiterung am
Standard vorzunehmen: Entwicklungsumgebung (inkl. Debugger), Ticketsystem (Solu
tion Manager) und Transportwesen, um zwischen Entwicklungs-, Test- und Produktiv
system Softwareänderungen zu transportieren (vgl. Frederick/Zierau 2011: 29ff.). Die Ar
chitektur der ERP-Software hat Folgen für die Arbeitsteilung: Außerhalb der ERP-Firma
programmieren EVU und IT-DL selbst. Zur betrieblichen Realität der EVU gehört deshalb
nicht nur die angewendete Software, sondern eine Test- und Entwicklungsumgebung.
Einerseits müssen sich die EVU und IT-DL an die Möglichkeiten halten, die ihnen SAP
bietet, und es sich gut überlegen, wie weitgehend sie Anpassungen vornehmen, weil
das für sie mehr Aufwand bedeutet. Andererseits eröffnet es Spielräume für die interne
IT-Abteilung und externe IT-DL, die Software zu ergänzen und ihre eigenen Softwarelö
sungen an das SAP-System anzudocken.

Weil Organisationen unterschiedlichster Branchen SAP anwenden, anpassen und
erweitern, hat sich ein SAP-Ökosystem aus kooperierenden Firmen und SAP-Beraten
den entwickelt. Für die Versorgungswirtschaft (zu der die Energiewirtschaft gehört) gibt
es insgesamt 202 kooperierende Firmen in Deutschland (siehe Abbildung unten). 150
davon bieten »Consulting Services« an, zu denen die Programmierung gehört. Zusätz
liche Lösungen, die dann über Schnittstellen mit dem ERP-System von SAP verbunden
werden, bieten 104 kooperierende Firmen an (»Solution Building«).

Zu dem SAP-Ökosystem gehören u.a. umfangreiche Hilfe-Seiten und Communities
im Internet zur ABAP-Entwicklung (z.B. https://community.sap.com/topics/abap).

https://community.sap.com/topics/abap

4. Softwaregestaltung als Teil der Digitalisierung 55

Tabelle 2: Anzahl kooperierende Firmen SAP allgemein und Versorgungswirtschaft

Kategorie Anzahl
Kooperierende Firmen mit SAP für die Versorgungswirtschaft in Deutschland 202
- Solution Sales: SAP product and technology advisory and support services 84
- Solution Building: Build solutions on top of, or integrate with, SAP technology 104
- Consulting Services: SAP solution design, development, implementation, and integration
guidance

150

- Outsourced Solution Management: Hosting, managing, and running your SAP solutions
and IT infrastructure

34

- Global Technology; Global vendors of hardware, databases, storage systems, networks, and
mobile computing technology

2

- Education: Learning needs assessment and enablement services 10

(Quelle: SAP https://www.sap.com/partners/find.html, abgerufen am 28.04.2023)

https://www.sap.com/partners/find.html
https://www.sap.com/partners/find.html

5. Softwaregestaltung basiert auf Wissen

und Kommunikation

Um die beiden Forschungsfragen der Formen und Folgen von industriespezifischer Soft

waregestaltung zu beantworten, sind nicht nur die beiden oben genannten Kernproble

me der Softwaregestaltung entscheidend (softwaretechnische Interdisziplinarität und
Gestaltungsmöglichkeiten). Genauso wichtig für die Praxis sind Kommunikation und
Wissen: Software besteht vom Quellcode über die Softwarearchitektur, ihren Einstel

lungsmöglichkeiten bis zur Bedienoberfläche aus mehreren Schichten. Weil für die be

teiligten Menschen eine dieser Ebenen der primäre Arbeitsgegenstand ist (z.B. für die
Programmierenden der Quellcode, für die Anwendenden die Bedienoberflächen), müs

sen sie sich über ihre unterschiedlichen Perspektiven verständigen und ihr Wissen ein

bringen. Das Wissen über die komplexe Welt aus Algorithmen, Daten, Einstellungsmög

lichkeiten, Schnittstellen, fachlichen Prozessen etc. vor und hinter der Softwareoberflä

che reicht aber nicht aus. Die Beteiligten müssen sich im Zuge der Softwaregestaltung
kommunikativ austauschen können. Für die Softwaregestaltung ist neben der verbalen
Kommunikation nonverbale Kommunikation als wissensbasierte Textarbeit in Form von
Arbeit an Quelltext, Spezifikationen, Anforderungen, Konzepten oder Dokumentatio

nen notwendig. Wie das Kapitel zeigt, wurde Softwareentwicklung selbst im Laufe ihrer
Geschichte in Forschung und betrieblicher Praxis mehr und mehr als Kommunikations

prozess verstanden. Somit ist nicht nur die Anwendung von Software sozial bedingt. Ihr
gesamter Gestaltungsprozess ist es. Das Kapitel erläutert die Prämisse der vorliegenden
Arbeit, dass anders als bei anderen sozialwissenschaftlichen Ansätzen zum Verhältnis
von Mensch und Technik eine Arbeitsteilung zwischen Mensch und Software(entwick

lung) besteht: Der Mensch verfügt über das Wissen, kann kommunizieren und damit
Software gestalten. Softwaregestaltung ist etwas genuin Menschliches, weil dafür ein
sinnhafter Bezug zu Objekten notwendig ist. Damit legt dieses Kapitel die Basis für die
darauffolgenden Ausführungen, auch um zu verstehen, warum Wissen und Kommuni

kation zwei zentrale Begriffe und Elemente der Softwaregestaltung sind. Es geht um die
materielle Basis des Arbeitsprozesses.

58 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

5.1. Technische Grundlagen: Software als Ergebnis menschlicher Textarbeit

5.1.1. Verarbeiten und verstehen: Arbeitsteilung zwischen Menschen
und Maschinen

Was die theoretische Sicht auf Technik anbelangt, geht diese Arbeit von einer klaren Ar

beitsteilung zwischen Menschen und Computern aus: 1. Nur der Mensch kann infor

miert sein, etwas wissen und kommunizieren. 2. Der Mensch ist das soziale Wesen und
3. entwickelt die Software. Der Computer weiß weder etwas, noch ist er informiert, noch
stellt er soziale Beziehungen her oder schreibt autonom industriespezifische Software.

Zu 1.: Für die Person, die Daten eingibt, sind die Daten Informationen und sie
braucht ein bestimmtes Wissen, um die Eingabe korrekt auszuführen. Informationen
sind immer soziale Interpretationen von Daten, sie haben eine Bedeutung, sie haben
Sinn. Wobei aus Informationen Wissen wird, wenn sie in einen bestimmten Erfahrungs

kontext eingebunden sind (vgl. Willke 1998: 162). Das ist etwas, dass ein Computer nicht
kann, weil interpretieren nur Menschen können. Wie von Brödner (2014) analysiert,
ist der Interpretationsmoment hervorzuheben, der zwischen maschinell ausgeführten
Operationen und sozialen Handlungen eingebettet ist, zwischen zu interpretierenden
Daten und maschinellen Verarbeitungen (Algorithmen). Wenn Maschinen Daten liefern
und diese dann zur Steuerung und Kontrolle dieser Maschinen dienen, dann müssen
diese Daten von den Beschäftigten interpretiert werden (wie bspw. von Zuboff 1988
ausführlich beschrieben).

Der Begriff des Wissens markiert den Übergang zum Handeln. Mit Wissen können
Menschen Probleme lösen. Mit Wissen können sie in einem bestimmten Kontext han

deln und entscheiden. Somit ist es irreführend, davon zu reden, dass Computer handeln,
entscheiden oder etwas wissen. Das können nur Menschen, die einem Zeichen eine Be

deutung beimessen können (s.o.) und dann der Bedeutung gemäß handeln.
»Wissen als Erklärungszusammenhang für Informationen, als eine mit Erfahrung,

Kontext, Interpretation und Reflexion angereicherte Form der Information, geeignet,
Arbeitshandeln und Entscheidungen anzuleiten« (Jürgens 1999 nach Wilkesmann 2005:
56).

Also: Wenn ein Mensch Daten Sinn geben kann, sind es Informationen. Erst wenn
dieser Mensch daraus Handlungen und Entscheidungen ableiten kann, wird es zu Wis

sen. Genau dieser Prozess, den eine Autorin als De- und Rekontextualisierung beschreibt
(vgl. Degele 2000: 69), passiert täglich in den softwaregestützten Organisationen. So z.B.
wenn jemand vor einer Eingabemaske steht, die er nicht versteht, weil ihm das Wissen
fehlt, oder wenn der Rechnungsbeleg alle notwendigen Informationen enthält, die/der
neue Sachbearbeitende aber nicht genau weiß, warum die Rechnung nun so und nicht
anders aufgebaut ist. Für die Organisation ist es wichtig, dass die Software das richti

ge Rechnungsformular erzeugt. Womöglich ist die Umsetzung auch dokumentiert. Für
neue Sachbearbeitende wäre es jetzt wichtig zu wissen, wo sie diese Dokumente finden
oder wer ihnen sagen kann, warum etwas wie auf dem Rechnungsformular gestaltet ist.
Selbst bei programmiertem Quellcode ist es wichtig zu wissen, warum etwas wie ent

wickelt wurde. Die Bedeutung ist sonst nicht ersichtlich. Selbst eine umfangreiche Do

kumentation reicht oft nicht aus, um das gesamte Wissen zu hinterlegen (vgl. D’Adderio

5. Softwaregestaltung basiert auf Wissen und Kommunikation 59

2003: 326). Der Quellcode kann der Maschine eindeutige Befehle geben, liefert aber nicht
automatisch seine Entstehungsgeschichte und seinen Sinn für den Kontext, für den er
existiert.

Um Daten, Informationen und Wissen unter Menschen auszutauschen, ist Kommu

nikation notwendig. Dadurch, dass der Computer Kommunikation von ihrem Kontext
entkoppeln kann und wie ein Buch, ein Brief oder ein anderes Schriftstück vom Sen

denden abstrahiert, verändert sich das Verhältnis von Information, Mitteilung und Ver

ständnis durch Arbeiten via Software (vgl. Degele 2000: 65). Der Sinn der Kommunikati

on ergibt sich nicht mehr direkt aus der Mitteilung, sondern der/die Empfänger:in kann
unabhängig davon interpretieren und der Mitteilung einen Sinn geben (vgl. Esposito
1993: 351f.). Sie/er kann aber auch daran scheitern, weil er/sie z.B. einen Begriff nicht
versteht. Das alles macht menschliche Kommunikation zum wesentlichen Bestandteil
der Softwaregestaltung, die der Computer nicht vollständig ersetzen kann. Das zeigt
sich, wie im Folgenden dargestellt, vor allem im Anforderungsmanagement. Letztlich
sorgen die Beschäftigten in einem stetigen Kreislauf aus Daten, Information, Wissen
und Kommunikation dafür, dass Organisationen Software anwenden, programmieren
und gestalten.

Zu 2.: Neben der interpretierenden Funktion des Menschen sind die von ihm verwen

deten Zeichen Teil einer sozialen Welt. Der vorliegenden Arbeit liegt eine klare Unter

scheidung zwischen Sozialem und Technischem zugrunde. Sie folgte dabei ausgehend
von C. S. Peirce und Jürgen Habermas den Autor:innen Mingers und Willcocks (2014), die
von drei Welten ausgehen:

A) Der Welt der Person, welche Zeichen und Nachrichten erzeugt und interpretiert
(Softwaregestaltende, -anwendende, -programmierende).

B) Der materiellen Welt, in der die Zeichen verkörpert sind und übertragen werden
(Software, Hardware).

C) Der sozialen Welt, weil die individuelle Nutzung des Zeichens nicht über das Sozia

le hinausgehen kann (z.B. der kollektive Arbeitsprozess der Softwaregestaltung, die
Arbeitsteilung zwischen Anwendung und Entwicklung).

Für Mingers/Willcocks sind die oben aufgeführten drei Welten ontologisch und episte

mologisch getrennt. Wobei für sie das Individuum im Mittelpunkt steht: »communica

tions and information systems rest on individuals who create and send, or have sent,
messages and data; then receive and interpret them; then act (or not act) upon them«
(Mingers/Willcocks 2014: 50). Das Subjekt vermittelt zwischen materieller bzw. techni

scher und sozialer Welt, indem es Zeichen deutet. Damit grenzen sie sich von Ansätzen
wie jenem der Sociomateriality ab, für den Soziales und Technisches nicht trennbar sind.
Einer dieser Ansätze ist die Actor-Network-Theorie: Diese vernachlässigt für Mingers/
Willcocks sowohl die vermittelnde Funktion des Einzelnen als auch die ontologischen
Unterschiede zwischen Technik (Software) und der sozialen Welt (bspw. einer Organisa

tion). Wie sehr die oder der Einzelne als Teil einer sozialen Welt bei der Softwaregestal

tung agiert, führt 5.2 weiter aus und ist zentraler Bestandteil dieser Untersuchung (vor
allem beim Arbeitsprozess der Softwaregestaltung selbst).

60 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Zu 3.: Wenn eine Verwaltung bestehende Formulare in Software übersetzt und nun
papierlos arbeitet, ohne dass sich etwas am bürokratischen Ablauf oder den Formula

ren wesentlich verändert: Entstehen hier neue Informationen oder wird hier nur etwas
in Software überführt? Informatisierung, wie den Begriff unterschiedliche Autor:innen
verwenden (vgl. Baukrowitz et al. 2006, Boes et al. 2018, Ziegler 2020), unterscheidet die
vorliegende Arbeit von jener Tätigkeit, bei der Menschen die reale, analoge Welt in digi

tale umwandeln: der Softwareentwicklung.

5.1.2. Konkret und abstrakt: mehrere Schichten, sprachliche Strukturierung

Das Besondere an der Softwaregestaltung ist, dass die Beschäftigten während des
Arbeitsprozesses mit den verschiedenen technischen Schichten und sprachlichen
Strukturierungen der Software arbeiten müssen. Daraus erklärt sich auch die große
Bedeutung von Wissen und Kommunikation, weil sich die Beschäftigten über diese
unterschiedlichen Schichten und Begriffe verständigen müssen. Im Unterschied zu
anderen Technologien besteht Software komplett aus Zeichen. Mit den zugrundelie

genden 0en und 1en beschäftigt sich in den EVU niemand. An ihren unterschiedlichen
Erscheinungsformen kommt aber keiner mehr vorbei. Aus Arbeitssicht sind vier Aspekte
zentral: Die Programmierung von (1.) Algorithmen verlangt je nach (2.) Programmier

sprache unterschiedliche Fertigkeiten. Dazu gehört (3.) Softwarearbeit mit dem Medium
der Sprache und Begriffen wie Architektur, Modelle oder Schnittstellen zu strukturie

ren. (4.) Es existiert eine Oberfläche als Medium zwischen Anwendenden, Daten und
Algorithmen.

Zu 1.: Da sind zum einen die in der Software eingeschriebenen Anleitungen zur
Datenverarbeitung: die Algorithmen. Sie stellen klare Vorschriften dar. Jeden formali

sierbaren Sachverhalt kann die symbolische Maschine Computer ausführen. Dabei gibt
es keinen Interpretationsspielraum und die Algorithmen sind durch ihre Schriftlichkeit
klar definiert. Sie sind eindeutig, determiniert, unterscheidbar und allgemein (vgl. De

gele 2000: 62f.). In einem Programm können Tausende solcher Vorschriften enthalten
sein. Es ist dann eine Frage des Fokus, ob man eine relevante Funktionsweise (bspw.
den Suchalgorithmus von Google) oder die Struktur einer Software (Methoden, Klassen,
Funktionen, Befehle etc.) zugrunde legt, wenn man von Algorithmus spricht.

Zu 2.: Gebaut werden diese Vorschriften mithilfe von Programmiersprachen. Der Be

griff »Sprache« sollte nicht in die Irre führen. Sie werden nicht wie menschliche Spra

chen verwendet. Sie wurden als Medien entwickelt, um es den Menschen einfacher zu
machen, der Maschine Befehle zu geben (anderes als bei der menschlichen Sprache gibt
es keine Ambivalenz, Ironie oder Ambiguität). Softwarespezifische Sprachen wie ABAP
(für SAP), funktionsspezifische wie R, objektorientierte wie C++ oder Low-Code-Ansät

ze zeigen, dass es genau darum geht: ABAP soll möglichst auch für Nicht-Programmie

rende leicht erlernbar sein. Einfache Abfragen und Ausgaben von Datenbanktabellen
sollen bspw. auch für die in den Wirtschaftsorganisationen weitverbreiteten Betriebs

wirtschaftlern möglich sein. R wird für statistische Aufgaben verwendet und verfügt
über die entsprechenden Befehle. Low-Code-Software (im Sinne von wenig programmie

ren) anbietende Unternehmen versprechen, dass jedes Mitglied einer Organisation ei

ne Software entwickeln kann, weil keine komplizierte Programmiersprache gelernt wer

5. Softwaregestaltung basiert auf Wissen und Kommunikation 61

den muss (bspw. FrontPage von Microsoft, um Webseiten zu erstellen). Objektorientierte
Sprachen wie C++ ermöglichen es Programmierenden, Bibliotheken mit Quellcodes auf

zubauen, die sie wie Bausteine in unterschiedlichen Kontexten verwenden können. Das
erleichtert den für den Menschen sinnhaften Aufbau von Software und die sinnhafte Auf

teilung der einzelnen Bestandteile. Es gibt immer noch sogenannten »Spaghetti«-Code,
bei dem Befehl an Befehl aneinandergereiht ist, bis mehrere Tausend Zeilen dastehen,
die schwer wartbar sind. Der Maschine ist das egal, für den Menschen eine Qual.

Zu 3.: Hier wurden schon einige analytische Sprünge gemacht, die für Software ty

pisch sind: von Programmiersprachen über deren Eigenarten und deren Folgen für grö

ßere Mengen an Quellcode und Methoden, diesen Quellcode zu organisieren (bspw. in
Klassen, Funktionen etc.). Wie im weiteren Verlauf mehr und mehr klar wird, gibt es
eine Vielzahl von Konzepten, Begriffen und Methoden, um die Arbeit mit und am Quell

code, aber auch den Quellcode selbst zu organisieren. Die Vielfalt an Entwicklungsmög

lichkeiten kontrollieren Modelle, damit die Programmierung nicht im Chaos endet. Be

stimmte Formen der Programmierung, die den Quellcode strukturieren, stellen bereits
eine Form der Modellierung dar1. Sie machen Modellierung alltäglich (vgl. Mahr 2009:
230f.). Modelle sind Ressourcen zum Speichern und Transportieren und sie sind Agen

ten »zur Konstruktion und Gestaltung neuer Realitäten« (ebd.). Sie spielen eine wichtige
Rolle bei Erkenntnis- und Meinungsbildungsprozessen. Unterkategorien von Modellen
sind bspw. Architekturen, Prinzipien der Systemgestaltung, Techniken der Abstraktion
oder Prinzipien der Usability (vgl. ebd. 248). Vor allem der Modellbegriff der Architek

tur2 ist mittlerweile weitverbreitet. Es gibt viele Definitionen von Architektur und laut
einigen Autoren ist eine richtige Definition auch nicht möglich (vgl. Vogel et al. 2009: 49).
Sie schlagen trotzdem eine vor:

»Die Software-Architektur eines Systems beschreibt dessen Software-Struktur re
spektive dessen -Strukturen, dessen Software-Bausteine sowie deren sichtbaren
Eigenschaften und Beziehungen zueinander und zu ihrer Umwelt« (ebd.: 49).

Für sie geht es darum, dass Software-Architektur »Komplexität überschaubar und hand

habbar […] [macht] in dem sie nur wesentliche Aspekte eines Systems zeigt« (ebd. 10). Es
geht um die Fundamente und tragenden Säulen einer Software (vgl. ebd.). Ob eine Fir

ma intern etwas programmiert, es externen Programmierenden überlässt oder Baustei

ne aus der Cloud verwendet: Das wird schnell zu einer Frage der Architektur, weswegen
auch Nicht-ITler außerhalb von IT-Abteilungen und -Unternehmen über sie sprechen.
Weitere mittlerweile geläufige Begriffe wie Schnittstellen3 oder Softwarepakete zeigen,
wie strukturierungsbedürftig die Sprache bei der Arbeit mit Software ist.

1 Zum Beispiel die objektorientierte Programmierung.
2 Viel wichtiger als ihre Rolle bei der Modellierung ist die Softwarearchitektur bei der Untersu

chung der Fallstudien im Empirie-Teil, weil sie die Organisation der Softwaregestaltung prägt.
Darauf geht das nächste Kapitel gesondert ein und zeigt, welche konkreten Eigenschaften der
Softwarearchitektur für die Analyse der Formen und Folgen der Softwaregestaltung relevant sind
(6.4.2.2).

3 Meist nur noch APIs (Application Programming Interface) genannt.

62 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Zu 4.: Neben den Medien zum Programmieren der Maschine gibt es noch die Medi

en zur Ein- und Ausgabe von Daten und Algorithmen: ob Web-Oberflächen, Eingabe

masken, Computerspiele oder Textverarbeitungsprogramme. Anders als mechanische
Maschinen wie Verbrennungsmotoren, Leichtbauroboter o. ä. erfordern sie per se keine
mechanische Reaktion. Natürlich kann ein Programm so programmiert sein, dass eine
Eingabe erforderlich ist oder nur eine bestimmte Zeit zur Eingabe bleibt. Software kann
aber auch einfach nur Daten darstellen. Sie kann Arbeitsabläufe als Fließband darstel

len – muss sie aber nicht. So oder so bleibt Software ein Medium zur Darstellung oder
Eingabe von Daten. Der Mediencharakter zeigt sich bei Webseiten wie Wikipedia oder
einer digitalen Zeitung. Der Inhalt ist zwar der gleiche (die Daten), aber die Aufbereitung
anders, was Folgen für das Leseverhalten oder die Verbreitungsmöglichkeiten hat.

Wie die Fallstudien zeigen werden, spiegeln sich die verschiedenen technischen
Schichten und sprachlichen Strukturierungen in der Arbeitsteilung zwischen Program

mierenden, IT-Projektleitenden, IT-Beratenden, Key User:innen etc. wieder. In ihrer
Arbeit vermitteln sie zwischen verschiedenen technischen Schichten, Perspektiven und
Begriffen, wobei jeder seine Schwerpunkte hat und sie letztendlich eine gemeinsame
Sprache finden müssen. Es ist Kommunikation notwendig, um die jeweiligen Perspek

tiven auf die Software zu integrieren und sich zu verständigen. Damit geht es bei der
softwaretechnischen Interdisziplinarität nicht nur um das jeweilige industriespezifi

sche und softwaretechnische Domänen-Wissen.

5.1.3. Zwischen Text und Blackbox: Grenzen der Gestaltung und des Verstehens

Für die Softwaregestaltung spielt es eine besondere Rolle, dass unterschiedliche Perso

nen und Organisationen unterschiedlichen Zugriff und Gestaltungsmöglichkeiten be

züglich der Software haben und sich die Software stetig ändert. Nicht jede:r kann den
Quellcode oder eine Datenbank einsehen oder verstehen und verändern. Im Verlauf der
Entwicklung einer Software verändert sich, was die Beschäftigten noch gestalten oder
worüber sie noch reden können (vor allem bei Standardsoftware). Das ist insofern wich

tig, weil es Teil des Arbeitsprozesses der Softwaregestaltung ist, zu vermitteln: zwischen
Teilen der Software, die als Blackbox erscheinen, und den analysierbaren; zwischen ge

staltbaren und nicht mehr gestaltbaren Teilen der Software; zwischen Softwareoberflä

chen und einem Quellcode, die oder den man kennt oder einem fremd ist; zwischen ei

ner Software und ihrem Umfeld, die sich beide stetig ändern und damit das Wissen über
beide langfristig nicht gesichert ist.

Anders als bei anderen Maschinen oder Werkzeugen gibt es die Möglichkeit, den
Zugriff auf Software genau festzulegen. Dies geschieht häufig durch differenzierte
Berechtigungsstrukturen, die unterschiedliche Zugriffe auf Software und damit Da

ten, Funktionalitäten bis hin zum Quellcode erlauben (bspw. bei SAP, Windows oder
diversen Online-Plattformen). Mitarbeitende in einem Call-Center müssen mit der
Software arbeiten, die ihnen ihre Firma zur Verfügung stellt. Wenn die Software genaue
Vorgaben macht, wie ein Anruf abzuwickeln ist, und bestimmte Daten anzeigt, können
die Mitarbeitenden das nicht ändern. Es können auch einzelne Eingabefelder für Mitar

beitende freigeschaltet oder gesperrt sein. Andererseits gibt es formalisierte Wege für
den Zugriff auf die Gestaltung von Software. Viele Firmen haben (formale) Wege, um an

5. Softwaregestaltung basiert auf Wissen und Kommunikation 63

bestimmte Berechtigungen zu kommen. Bei Schwierigkeiten oder Fehlern mit Software
gibt es einen First-, Second-, Third-Level Support, der Anwendenden weiterhilft.

Für die unterschiedlichen Stakeholder einer Software gibt es unterschiedliche Mög

lichkeiten der Gestaltung und des Verstehens. So entscheiden meist wenige über die
Softwarearchitektur, die langfristig weitreichende Folgen hat. Manche Softwarelösun

gen bieten Einstellungs- oder Anpassungsmöglichkeiten an, die vom Festlegen des Farb

schemas bis hin zum Ersetzen einzelner Codestellen durch eigenen Quellcode reichen
können. Neben der Architektur können die Anwendenden oftmals nichts mehr daran än

dern, wie die Programmierenden den Anwendungskontext modelliert haben, auch wenn
das ihre Arbeit beeinflusst (vgl. Mahr 2009: 230). In Software ist ein »objektiviertes Mo

dell der organisatorischen Wirklichkeit« (Heidenreich/Kirch/Mattes 2008: 4) fixiert. Zu

dem ist das meiste Wissen, was in der Software steckt, nicht mehr außerhalb vorhan

den oder kann nur durch Fachexpertise oder über öffentlich zugängliche Spezifikatio

nen mühsam angeeignet werden. Der Computer ist für die meisten eine Blackbox (vgl.
Zuboff 1988: 166). Das kann bedeuten, dass die Software Dinge tut, von denen die An

wendenden nichts wissen – wie z.B. unentdeckt überwacht zu werden, wie dies durch
Software von Google oder Amazon passiert (vgl. Zuboff 2018).

»Je umfassender und komplexer Maschinen werden, wandern Praktiken und Normen
in die materielle Basis der Gesellschaft, allerdings black-boxed« (Joerges et al. 1998:
372).

Trotz beschränktem Zugriff auf eine Software und obwohl sie eine Blackbox sein kann,
die nicht mehr änderbar ist, ist die oder der einzelne Beschäftigte für ihre/seine Arbeit
auf das Wissen über die Software angewiesen. Das Wissen über den Anwendungskon

text allein reicht nicht. Denn der Anwendungskontext existiert nur noch als einer, den
die Software bereits verändert hat. Eine Autorin spricht von einem reflexiven Strukturie

rungsprozess: Beim Einsatz von Technik in organisationalen Netzwerken (in dem kon

kreten Fall geht es um Call-Center) bedeutet dies, dass sich das Verhältnis von organi

sationalem Netzwerk und Technikverwendung als eines der zunehmenden Durchdrin

gung und wechselseitigen Gestaltung beschreiben lässt. Soziales und Technisches sind
nur noch schwer zu trennen (vgl. Longen 2015: 120). In einer Studie zu einer ERP-Ein

führung ist von »durchwurstelt«, dem Eigenleben des Einführungsprojektes oder einer
»unruly technology« die Rede: Es kann immer etwas Unvorhergesehenes passieren (vgl.
Conrad 2017: 189f.). Das liegt für die Autorin daran, dass Organisation und Technik sich
nicht mehr auseinanderhalten lassen.

»Man hat es nicht mit zwei unterschiedlichen Entitäten zu tun – Organisation auf der
einen Seite, Medien und Technologien auf der anderen –, sondern beide enthalten
Elemente voneinander und haben sich in Abhängigkeit voneinander und in Abstim

mung aufeinander ausgebildet.« (Conrad 2017: 12)

Die Beschäftigten denken immer nur noch im Angesicht der Software über ihre eigene
Arbeit und Organisation nach. Über die Zeit (das können Jahrzehnte sein) findet eine
Ko-Konstruktion von Organisation und Software durch die anwendenden Beschäftigten

64 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

und Softwaregestaltenden statt. Am Ende eines IT-Projektes existiert der Arbeitskontext
nicht mehr, für den ursprünglich der Auftrag erteilt wurde, eine Software zu entwickeln:

»Coevolution changes the context […] and building the system changes the context
itself, a software development projects actively obsolesces its own contract« (Ralph
2015: 38).

Das Wissen über Anwendungskontext und Software ist nicht nur verschränkt. Es ändert
sich auch stetig. Die softwareeinsetzende Organisation als solche hat mit einem per

manenten Anpassungsbedarf zu rechnen. Bereits in den 80er Jahren schreibt Lehman
(1980), dass sich Software permanent ändert. Seine ersten zwei Gesetze der Programme

volution beziehen sich darauf: 1. kontinuierlicher Wandel und 2. zunehmende Komplexi

tät der Software. Mit dem Einsatz einer Software wird der oder die Anwendende Teil ih

res Lebenszyklus. Dabei geht es nicht nur um einen allgemeinen Zyklus der Softwareevo

lution: initiale Software, Entwicklung, Betreuung, Ausphasung, Abschaltung (vgl. Masak
2006: 222). Wenn SAP auf die Cloud und die neue Version seiner ERP-Software S/4 um

stellt und die Wartung für die alte Version R/3 ausläuft, entsteht der Zwang, die Software
auszutauschen. Dabei gilt besonders bei individuell entwickelter Software: Wenn An

wendende, Gestaltende oder Programmierende neu in einen Anwendungskontext kom

men, kennen sie die Vorgeschichte der nur für eine Organisation entwickelten Software
nicht4.

Letztendlich sind Anwendende, Gestaltende und Programmierende nicht nur Teil ei

ner modellierten Welt. Sie werden auch Teil eines Produktzyklus, auf den sie wenig Ein

fluss haben – und damit wenig Einfluss auf einen Teil des Wissens, den sie für ihre all

tägliche Arbeit brauchen und das sich stetig ändert.

5.2. Softwareentwicklung: vom einsamen Nerd
zum kollektiven Kommunikationsprozess

Im Laufe der Zeit wurde Softwareentwicklung immer weniger zu einem rein technischen
Problem, das Techniker:innen lösen. Wie bereits oben erwähnt, wurde es zu einer gro

ßen Herausforderung, die für den fremden Anwendungskontext nützliche Software zu
programmieren. Dafür sind Methoden wie Scrum nützlich (Näheres weiter unten unter
5.2.4), die den kontinuierlichen, geregelten sozialen Austausch mit klaren Rollen in den
Mittelpunkt der Softwareentwicklung stellen. Trotzdem konnte in der Forschung kein
Konsens hinsichtlich einer Best Practice gefunden werden, die als Orientierung für die
Kontrolle von Softwaregestaltung in unterschiedlichen Kontexten der Energiewirtschaft
nützlich sein könnte. Vielmehr scheinen unterschiedliche Methoden Softwaregestaltung

4 Man spricht auch von Legacy einer Software (vgl. dazu Fischbach 2016: 395ff.). Manche individuell
entwickelten Altsysteme von Firmen sind kompliziert, nicht wartungsfreundlich programmiert
und man befürchtet unvorhersehbare Fehler bei Änderungen an ihnen. Verlassen Mitarbeitende
das Unternehmen, die mit dem Altsystem gut vertraut waren (z.B. weil sie es selbst entwickelt
haben), kann das der Anlass sein, stattdessen eine Standardlösung einzuführen.

5. Softwaregestaltung basiert auf Wissen und Kommunikation 65

zu ermöglichen, solange sie die zentrale Rolle von Wissen und Kommunikation für den
Arbeitsprozess berücksichtigen.

5.2.1. Vom schnellen Reparieren zum iterativen, kollektiven
Kommunikationsprozess

Einerseits würde man aus dem bisher Gesagten vermuten, dass Kommunikation wich

tig in der Softwareentwicklung ist. Andererseits ist nicht verwunderlich, dass es bei
einer neuen Technologie, die aus der Ingenieurs- und Mathematik-Tradition kommt,
erst einmal um deren Erforschung und Entwicklung ging. Dafür waren komplexe
Kommunikationsprozesse und kommunikative Fertigkeiten nicht entscheidend. Für
die Programmierer hieß es in den 50ern noch »Engineer software like you engineer
hardware.« (Boehm 2006: 13) Oftmals fand IT-Arbeit damals noch in Forschungs-
und Entwicklungsabteilungen statt, wo die Techniker:innen unter sich waren. Unter
seines/ihresgleichen sind die Wissensgrenzen geringer. Als einen extremen Typus
sieht Weizenbaum die zwanghaft Programmierenden an, für die Programmieren ein
Selbstzweck ist. Ihnen geht es vor allem darum, mit der Maschine zu interagieren (vgl.
Weizenbaum 1978: 161). Sollen sie dann Software schreiben, die in anderen Kontexten
als der Werkstatt oder dem Labor funktionieren soll, ändern sich die Anforderungen.
Die Erfahrung der Beherrschbarkeit der Maschine durch Erteilen eindeutiger Befehle
via Programmiersprache wird unreflektiert auf soziale Zusammenhänge übertragen,
in der diese Software entsteht oder in der sie wirken soll (vgl. Klischewski 1996: 78). Die
Widerständigkeit des Sozialen fand erst über die Jahrzehnte hinweg in den Methoden
der Softwareentwicklung mehr und mehr Berücksichtigung.

Hieß es in den 60ern »code-and-fix«, also einfach zu programmieren, schauen, ob
es funktioniert, und dann zu verbessern (vgl. Boehm 2006: 14), wurden in den 70ern
die getrennten Aufgabenschritte der Anforderungsanalyse und des Designs eingeführt
(siehe auch Friedman/Cornford 1989). Das ursprünglich entwickelte Wasserfallmodell
sah die erst mit Scrum weitverbreiteten Mechanismen der Iterationen, Prototypen und
Feedbacks zwischen den Entwicklungsschritten vor. In der Praxis wurde das Wasserfall

modell aber erst einmal als rein sequenzieller Prozess ausgelegt (vgl. Boehm 2006: 15).
Softwareentwicklung wurde zum Arbeitsvorgang, in dem streng abgetrennte Phasen der
Spezifikation, Programmierung, Tests und Implementierung aufeinander folgen. Kri

tisch wird diese strikte Trennung vor allem, weil bei komplexen Anforderungen fehler

freies Arbeiten unmöglich ist. Eine vollständige Konzeption oder Spezifikation ist nicht
möglich, weil sich u.a. die Anforderungen der Anwendenden im Projektverlauf ändern.
Das kann an einem veränderten Umfeld liegen (Konkurrenzdruck, Markt verändert sich)
oder daran, dass technische Möglichkeiten erst bewusst werden, dass es Kommunikati

onsprobleme gab oder dass erst in der Anwendung neue Ideen auftauchen (vgl. Funken
2001: 30). In einem bekannten Artikel von 1980 schreibt Lehman, dass ein Programm nie
korrekt sein kann, weil es die Umwelt nicht komplett beschreiben kann. Software ist im

mer nur ein Modell der Welt. Für ihn kann es bei Software deshalb nicht um absolute
Korrektheit gehen (was eine mathematische Herangehensweise bedeuten würde), son

dern um die Relevanz der Ergebnisse oder die Anwendungsfreundlichkeit (vgl. Lehman
1980: 1064). Er führt auch eine Unterscheidung verschiedener Programmtypen ein. Das

66 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ist insofern wichtig, weil es darauf hinweist, dass es jenseits der hier behandelten indus

triespezifischen Softwareentwicklung selbstverständlich weiterhin Programme gibt, die
einige wenige oder sogar eine programmierende Person allein nach einer klaren Spezifi

kation entwickeln kann (bspw. ein:e Physiker:in, die eine Software für ein physikalisches
Experiment programmiert).

Laut Lehman kann Programmierung zudem keine Fließbandarbeit sein, weil u.a. die
Entwicklung nicht bereits im Vorhinein in einfach verbundene Untereinheiten zerteilt
werden kann, ohne dass sie sich gegenseitig bei der Umsetzung beeinflussen (vgl. Leh

man 1980: 1065). Das liegt auch an der Abstimmung zwischen der fachlichen Domäne,
in der die Software laufen soll, und den Programmierenden. Um die Nutzendenpartizi

pation und damit die Kommunikation zur Programmierung zu verbessern, wurde seit
Mitte der 70er die Methode des Prototyping entwickelt. Sie entlastet die Anforderungs

aufnahme, weil das anschauliche Ergebnis als Kommunikationsgrundlage fungiert und
Nutzende direkt an der Spezifikation beteiligt sind (vgl. Funken 2001: 32ff.). Wie weitge

hend sich das in der Praxis mit der Zeit durchgesetzt hat, wäre zu untersuchen.
In den 80ern stellten Floyd/Keil eine Methode vor, die eine iterativ-inkrementelle

Vorgehensweise und eine kontinuierliche Kommunikation zwischen programmieren

den und anwendenden Beschäftigten vorsieht. Vorteilhaft ist dabei auch die geteilte Ver

antwortung für die Weiterentwicklung – anstatt dass sie nur bei den Programmieren

den liegt, die gar nicht wissen, was die Anwendenden brauchen (vgl. Funken 2001: 36).
Die/der Programmierer:in soll nicht mehr einfach Herstellende:r sein, sondern

»Berater[:in] in Informationsangelegenheiten, welche Multiperspektivität anerkennt
und umsetzt, Vielfalt und Rückkopplung sucht und zu Revisionen bereit ist« (Floyd/
Keil 1983: 36 zitiert nach ebd. 37).

Das Agile Manifesto von 2001 (Scrum ist eine der agilen Methoden) führte diesen Ansatz
weiter und stellte vier Kernforderungen auf:

• »Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation
• Responding to change over following a plan.« (Beck et al. 2001)

Letztendlich legt das Manifest einen klaren Fokus auf einen iterativen Arbeitsprozess
mit direktem, regelmäßigem Feedback. Das Wasserfallmodell setzte sich auch deswegen
nicht vollumfänglich durch, weil der Druck wuchs, Software möglichst schnell auf den
Markt zu bringen, und es immer mehr Software gab, bei der die Benutzendeninteraktion
im Vordergrund stand. Anforderungen waren schwerer im Vorhinein festzustellen. Sie
wurden emergent und folgten dem IKIWISI-Syndrom – I know it when I see it: Die an

wendende Person konnte erst sagen, ob die Software den Anforderungen genügt, wenn
sie das Programm selbst gesehen hat und testen konnte (vgl. Boehm 2006: 18). Deshalb
war schon die Verwendung von Prototypen ein Fortschritt. Die agilen Methoden bewerk

stelligten das, indem in kurzen Zyklen (bspw. monatlich) ausführbare Software erstellt

5. Softwaregestaltung basiert auf Wissen und Kommunikation 67

wird, die dann die zukünftigen Nutzenden oder die Fachleute testen und dazu Feedback
geben können.

5.2.2. Kommunikationskompetenz und -kern: Anforderungsmanagement

Ohne auf alle agilen Ansätze5, geschweige denn alle anderen Methoden eingehen zu kön

nen, soll der obige kurze Abriss andeuten, dass die Softwareentwicklung sich selbst erst
mit der Zeit methodisch mit ihrer sozialen Einbettung befasst hat. Umfangreiche Feld

studien in den 80ern haben festgestellt, dass nicht fehlende technische Fertigkeiten das
Problem waren und sind. Die Softwareproduktivität und -qualität beeinflusst vor allem

»zu geringe und zu wenig verbreitete Kenntnisse der Entwickler über das Anwen
dungsgebiet, sich verändernde und widersprüchliche Anforderungen an das Software-
Design und Kommunikations- und Kooperationsprobleme zwischen Entwickler und
Kunden« (Funken 2001: 46).

Es wurde abgerückt davon, sich allein auf technische Fertigkeiten zu konzentrieren:

»Software-Entwicklung und -gestaltung muß also […] in wesentlichen Teilen als ein
Lern-, Kommunikations- und Aushandlungsprozeß verstanden werden, der hohe Ko
operations- und Kommunikationsanforderungen – mithin soziale Kompetenzen – an
die Entwickler stellt.« (Funken 2001: 48)

Mehrere Autor:innen weisen in den 80ern und 90ern drauf hin, dass das auch in der Aus

bildung von Informatiker:innen berücksichtigt werden sollte (vgl. Funken 2001: 46ff.,
Baukrowitz/Boes/Eckhardt 1994).

»[D]rei Viertel ihrer Arbeitszeit benötigen Software-Entwickler für die Kommunikati

on mit verschiedenen Partnern: Auftraggebern, Benutzern, Kollegen, Management,
Vertrieb usw.« (Funken 2001: 48)

Christiane Floyd sprach 1992 von »software development as an insight-building pro

cess in terms of multiperspectivity, self-organization and dialogue« (Floyd 1992: 86)
und eben nicht davon, dass Anforderungen fix auszumachen sind wie technische Ei

genschaften einer Maschine oder in einem kontrollierbaren, experimentellen Setting.
Anders als bspw. bei einem Labor-Experiment ist der Entwicklungsprozess nicht durch
innertechnische Rationalität vorgegeben, sondern ist ein Gestaltungsprozess, bei dem
nicht nur ein technisches System, sondern auch »die sozialen Zusammenhänge seiner
Verwendung modelliert werden müssen« (Schulz-Schaeffer 1996: 8).

Der kommunikationsintensivste Teil der Softwareentwicklung, das Requirements
Engineering (auf Deutsch meist: Anforderungsmanagement), entwickelt sich seit den
70ern zu einem eigenständigen Forschungsfeld (vgl. Funken 2001: 52). Es stellt die kor

rekte und objektive Darstellung von Anforderungen in Frage. Es plädiert dafür, unter

schiedliche Meinungen, Perspektiven und Sichten zu berücksichtigen. Unter anderem

5 Wie Extreme Programming, Kanban, Scrum etc.

68 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

sollen auch potenziell konfliktträchtige Perspektiven aufgenommen werden (vgl. Fun

ken 2001: 56f.). Das Schreiben von Anforderungen, die dann die Programmierenden um

setzen, hat etwas von einer Sozialforschung: Wer mit wem wie interagiert und wie die
Arbeitsabläufe sind, muss erfragt und beobachtet werden. Die Anforderungsaufnahme
kann Methoden wie Interviews, Ethnografie, Perspektivenübernahme oder diskursive
Anforderungsanalyse verwenden. Die Anforderungsstrukturierung nutzt Skizzen, Use
Cases, Diagramme etc. (vgl. Kaminski 2012: 112ff.). Im Prozess der Anforderungsauf

nahme treten IT-Fachkräfte als Kommunikations- und Übersetzungsexpert:innen auf,
wobei die Programmiersprache einen Eindeutigkeitsdruck auf die Kommunikation des
Anforderungsmanagements ausübt (vgl. Kaminski 2012: 89). Es muss Übersetzungsar

beit auf dem Weg zum Quellcode geleistet werden, weil Anwendende, Auftraggebende
und Programmierende unterschiedliche Sprachen sprechen (vgl. Kaminski 2012: 91). So
entscheidend ist die Sprache dabei, dass selbst sprachliches Framing relevant ist, um
zu verstehen, wie Entwicklungsprozesse ablaufen und Expert:innen Autorität gewinnen
(vgl. Alvarez 2002: 103).

Die Kommunikation muss es den Systemfachleuten ermöglichen, sich mit dem fach

lichen Kontext vertraut zu machen, und den fachlichen Kontextexpert:innen, sich mit
der Systemsprache vertraut zu machen. Nur so kann der Formalisierungs- und System

bildungsprozess funktionieren (vgl. Kaminski 2012: 121). Anforderungen aufzunehmen
ist für einige Forschende vor allem ein Meinungsbildungs- und Verbalisierungsprozess:

»Based on this vision, much of what occurs during the requirements process should
be about opinion and will formation that is, the development of an understanding
of, and the creation of meaning – about the organization and its goals and processes
for achieving these goals, supported by new systems« (Ross/Chiasson 2011: 134).
»[R]equirements elicitation takes on the form of a ›confessional‹ act where the indi
vidual verbalizes thoughts, intentions and consciousness« (Alvarez 2002: 85).
»The RE process is a socio-technical activity. It requires intensive communication
among stakeholders who have different backgrounds, skills, culture, knowledge, and
behavior« (Alsanoosy et al. 2020: 356).

Erfolgreicher Wissenstransfer, gegenseitiges Verständnis (gemeinsame Konventionen
und Sprache) und Kommunikation sind wesentliche Faktoren für eine erfolgreiche Soft

wareentwicklung (vgl. Corvera Charaf et al. 2013: 117).
Das gilt ebenso bei der Implementierung einer Standardsoftware. Es geht darum,

inwiefern diese anzupassen oder wie sie einzustellen ist. Auch hier müssen die Anforde

rungen der Kundschaft erst aufgedeckt werden, weil sie für Beratende und Kundschaft
nicht so klar auf der Hand liegen (vgl. Mormann 2016: 169). Dabei haben es die Bera

tenden in der Hand, welche Möglichkeiten der Software sie preisgeben oder bspw. aus
Kostengründen die Gestaltungsmöglichkeiten einschränken (vgl. Mormann 2016: 186).

Wie bereits oben aufgezeigt, sind Begriffe wie Funktionen, Architekturen, Modelle
oder Schnittstellen Hilfsmittel, um über Software zu reden. Dabei können im Prozess
des Anforderungsmanagements nicht nur einzelne Funktionalitäten eine Rolle spielen,
sondern auch wie die Software aufgebaut ist. Modelle dienen dazu, um über Software zu
diskutieren und sie zu dokumentieren. Sie spielen in unterschiedlichen Entwicklungs

5. Softwaregestaltung basiert auf Wissen und Kommunikation 69

methoden jedoch eine unterschiedliche Rolle. Manche Methoden6 betrachten Modelle
von vornherein als vorläufig und als fortlaufend anzupassen (vgl. Mahr 2009: 245). Agi

le Softwareentwicklung verwirft den »Gebrauch von Modellen zugunsten unmittelbarer
Programmierung« (Mahr 2009: 246). Folglich wird das Programm selbst zur Referenz,
um über die gedachten Modelle zu reden und sie anzupassen. Abhängig von der Me

thode unterscheidet sich dann die Kommunikation im Anforderungsmanagement und
damit der Softwaregestaltung.

5.2.3. Kommunikation und Wissen organisieren: Local Practice statt Best Practice

Um die Softwareentwicklung so zu organisieren, damit sie »the right thing« (Friedman/
Cornford 1989: 204) tut, hat die Prüfung der Forschungsliteratur keine Best Practice zu

tage gefördert. Vielmehr existieren lokale Praktiken und widersprüchliche Vorgehens

weisen. Daraus ergeben sich Ansätze, aber noch keine Konzepte für die Beschreibung
dessen, was bei industriespezifischer Softwareentwicklung in der Phase der Software

gestaltung in unterschiedlichen Kontexten zwischen Anwendung und Programmierung
passiert.

Unabhängig von einzelnen Methoden wie Scrum oder dem Anforderungsmanage

ment betrachten die Autor:innen der »general theory of software engineering« (Wohlin
et al. 2015) bei der Softwareentwicklung Wissen und Kommunikation als zentral. Den
Kern der Theorie bildet das intellektuelle Kapital, welches aus dem Wissen der Orga

nisation (organisationales Kapital wie Dokumentationen, Anleitungen oder der Quell

code selbst), der Fähigkeit von Individuen (Humankapital) und den Beziehungen zu den
Kund:innen und Anwendenden besteht (soziales Kapital). Wobei soziales Kapital hilft,
die zwei Kapitalsorten (Human, organisational) miteinander zu verbinden (u.a. um im

plizites Wissen – »tacit knowledge« – auszutauschen und voneinander zu lernen). Zen

tral ist für die Autorenschaft letztendlich die Kommunikation:

»Software system development is more of a communication problem than a technical
problem« (Wohlin/Smite/Moe 2015: 231)

Wie eine Entwicklungsaufgabe umgesetzt wird, hängt vom intellektuellen Kapital und
dem angestrebten Performance-Ziel ab. Das heißt, die Theorie sieht durchaus vor, dass
bspw. das intellektuelle Kapital nicht ausreicht, um die Aufgabe umzusetzen. Aufgabe
des Managements ist es dann, die Ziele zurückzuschrauben. Eine Best Practice oder spe

zifische Methode schlagen die Autor:innen nicht vor. Sie haben ein situatives Verständnis
von Softwareentwicklung, wobei Wissen, die Kompetenzen der Mitarbeitenden, Kom

munikation und gute Beziehungen eine zentrale Rolle spielen. Diese Abkehr von ein

zelnen Methoden und die Hinwendung zu abstrakteren Zusammenhängen vollzieht be

reits ältere Literatur. In Bezug auf Managementstrategien zur Softwareentwicklung sei

en keine eindeutigen Best Practices auffindbar:

6 In diesem Fall RUP (Rational Unified Process).

70 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Policies [of management strategies] pursued depended on the particular task at
hand, and on the particular skills, experience levels and even personalities of the
staff involved« (Friedman/Cornford 1989: 358).

Die Autoren lehnen bspw. Aussagen von anderen Forschenden ab, die Dequalifizierung
(»deskilling«) und direkte Kontrolle oder eine Mischung von »Slack« und direkter Kon

trolle allgemein als beste Strategie ansehen (vgl. ebd. 356). Andere Forscher stellen ebenso
die

»lokale Praxis einer inkrementellen Anpassung von Vorgaben, Zielen und Vorgehens
schritten an sich wandelnde oder erst spät erkennbare Erfordernisse« (Schulz-Schaef
fer 1996: 1)

fest. Ein anderer Autor spricht bei Softwareentwicklung von »Zonen iterativer und kom

munikativer Verständigungsprozesse« (Peter 1993: 423), weil nicht vorweg geplant fest

gelegt werden kann, wann wer über was kommuniziert. Trotzdem seien Entwicklungs

methoden nicht überflüssig. Sie haben einen Wert für den Prozess, weil sie Sicherheit
erzeugen. Sie helfen, den Planungsprozess erst einmal in Gang zu setzen und den Betei

ligten eine gewisse Handlungssicherheit zu geben (vgl. Schulz-Schaeffer 1996: 15).
Es gibt Fälle, die bestimmten Managementstrategien klare Grenzen aufzeigen.

Eine Studie zeigt, wie bei ausgelagerter Softwareentwicklung autoritäre Kontrolle
verhindert, dass sich ein gemeinsames Verständnis entwickelt und eine ausreichende
Kommunikation stattfindet. Beides wird erst wieder durch vertrauensvolle Beziehun

gen möglich (vgl. Gregory/Beck/Keil 2013: 1226). Auch frühe Autoren argumentieren,
dass nicht einfach mehr Arbeitskräfte produktiver sind, sondern dass Kommunikation
entscheidend ist und dass erst über diese nachgedacht werden sollte (vgl. Conway 1968:
31). Bei einer Untersuchung von Softwareprojekten stellt die Autorin fest, dass Demokra

tisierung die Produktivität einer individualisierten, wissensspezialisierten Belegschaft
steigern kann (vgl. Müller 2010: 52f.). Kooperatives Arbeiten sei vielversprechender – ob
durch kooperative Planung, Eigeninitiative etc. (ebd. 281f.). Eine Studie zu globalen Soft

wareprojekten kommt zu dem Schluss, dass nicht mehr das Management das Wissen
zentralisiert oder verwaltet, sondern die eingesetzten »[K]oordinationsmechanismen
zu Wissensmanagementinstrumenten« (Kotlarsky/Van Fenema/Willcocks 2008: 99)
werden. Wenn die Fachleute der Anwendungsbereiche und der Programmierung einer
Software zusammenarbeiten sollen, sind statt einer vertikalen Integration oder Märk

ten Netzwerke die optimale Organisationsform. Das zeigt eine Studie zur Entwicklung
eines digitalen Kontrollsystems für Flugzeugtriebwerke (vgl. Brusoni/Prencipe/Pavitt
2001: 610). Setzt sich also das agile Arbeiten mit seinen Kernforderungen durch?

»The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. […] The best architectures, require
ments, and designs emerge from self-organizing teams.« (Beck et al. 2001)

Empirisch existiert ein gemischtes Bild, was die Organisation der Softwareentwicklung
anbelangt. Selbstorganisation und direkte und offene Kommunikation sind in effizienz

5. Softwaregestaltung basiert auf Wissen und Kommunikation 71

getriebenen Organisationen nicht immer vorzufinden: Autoren sehen Fälle, in denen
Softwareentwicklung so strukturiert und organisiert werden kann, dass sie »dem Ide

al eines strikt vorgeplant-arbeitsteiligen Arbeits- und Produktionsprozesses recht na

hekommt« (Schulz-Schaeffer/Bottel 2018: 102). Zugleich räumen sie ein, dass das nicht
immer so ist und Softwareentwicklung auch in teamförmigen Abstimmungsprozessen à
la Scrum stattfinden kann (vgl. ebd.). Andere Untersuchungen zeigen, dass Scrum nicht
automatisch zur Selbstorganisation führt (vgl. Pfeiffer/Sauer/Ritter 2014, vgl. Boes et al.
2018). Unterschiedliche Organisationsformen sind auch bei internationaler Software

entwicklung zu finden: Zwei Fallstudien stellen einmal eine Industrialisierung und fa

brikmäßige Arbeit fest und einmal eine wenig formalisierte, auf eigenverantwortliche
Kommunikation setzende Arbeitsweise. Beides sind somit Beispiele für einmal direkte
und einmal permissive Kontrolle in der Softwareentwicklung (vgl. Feuerstein 2012). Bei
einer anderen Fallstudie hatte allein die Verlagerung der Softwareentwicklung inner

halb Deutschlands »ausgeprägte Tendenzen der Spezialisierung, Abschottung, Verlust
an Aufgabenvielfalt und Zuname der Dokumentations- und Kontrollarbeiten« (Flecker/
Holtgrewe 2008: 321) zur Folge. Die geringe Formalisierung der geografisch verteilten
Arbeit wurde zum Problem. Sie wurde dann stärker standardisiert (vgl. ebd.). Ganz zu
schweigen davon, dass es unterschiedliche Vertragsverhältnissen für Programmieren

de inkl. Selbstständige gab (vgl. ebd. 316f.). Daneben wirken sich die Projektphase oder
die Teamgröße auf die Arbeit in der Softwareentwicklung aus: Spätere Phasen in einem
Projekt sind strukturierter (Heidenreich/Kirch/Mattes 2008: 13) und bei größeren Teams
werden formale Organisation und Dokumentation wichtig (vgl. Ralph 2015: 35). Allein
der Typ der Software kann weitreichende Folgen für ihre Entstehung haben, wie eine
Gegenüberstellung von Carmel und Sawyer (1998) zeigt: Ob eine Softwarefirma entwi

ckelt oder intern in eine Firma selbst: Laut den Autoren besteht intern eine Matrixor

ganisation und es läuft bürokratischer ab. Die Softwarefirma arbeitet dahingehend u.a.
selbstorganisierter und die Prozesse haben eine geringere Reife. Zudem ist die Realität
vieler Softwareentwickelnde, dass sie bestehende Standardsoftware anpassen und des

halb viel Zeit damit verbringen, diese zu beurteilen, zu verändern und andere Lösungen
zu integrieren (vgl. Boehm 2006: 21).

Womit wir wieder am Anfang dieses Absatzes angekommen sind: Der Ansatz von
Wohlin et al. (2015) ist insofern zielführend, weil er nicht auf feste Methoden oder Ma

nagementstrategien wie Standardisierung oder Selbstorganisation setzt, wenn es um
die Analyse von Softwareentwicklung geht. Zudem geht es bei der Arbeit hier um jene
Phase der Softwareentwicklung, bei der die verschiedenen Kontexte eine noch größe

re Rolle spielen dürften und ein Wissensaustausch schwieriger zu standardisieren und
kontrollieren ist. Um in der Scrum-Begrifflichkeit zu sprechen, geht es hier um die Rolle
Product Owner. Sie ist für das Schreiben von Anforderungen zuständig und wie sie an
ihre Infos über die Anwendung (in unterschiedlichen Industrien, Firmen oder Abteilun

gen) kommt. Sie findet sich in unterschiedlichsten Kontexten wieder.
Die Spezifikation einer Software kann auf unterschiedlichen Wegen gelingen. Aus

tausch von Wissen und Kommunikation sind flexibel. Ein Meeting, eine gut formulierte
E-Mail, ein klärendes, persönliches Gespräch oder klare Abläufe via Ticketsystem sind al

lesamt Wege, Anforderungen zu spezifizieren (mehr dazu siehe unter 6.4.4). Es bleibt die
Spannung zwischen offenem und direktem Wissensaustausch und Effizienz und Wett

72 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

bewerb, wie sie allgemein für Wissensarbeit typisch ist. Bei ihr basiert Effizienz darauf,
»Wissen und Expertise als Rohstoff umzuformen« (Willke 1998: 166). Das Konzept des so

ziotechnischen Netzwerkes im nächsten Kapitel zeigt, wie Organisationen den Arbeits

prozess der Softwaregestaltung trotzdem kontrollieren können.

Exkurs: Was sind die Bestandteile von Scrum?

Scrum ist eine Methode zur Softwareentwicklung, bei der iterativ Konzepte an Program

mierende übergeben und von diesen abgearbeitet werden. Der Scrum-Prozess besteht
aus Rollen, Artefakten und Meetings (vgl. Gloger 2009: 11ff.):

Scrum-Prozess Beschreibung
Rollen
Product Owner:in für die Softwarelösung (das Produkt) verantwortlich; pflegt Anforderungen

(Items) in eine Liste (Product Backlog) und priorisiert sie für die Programmie

renden
Scrum Team Personen, die notwendig sind, um Anforderungen in Software zu verwandeln;

managt sich selbst (inkl. Arbeitsmenge); den Standards und Prozessen von
Scrum verpflichtet; für die Qualität verantwortlich

Scrum Master:in beseitigt Schwierigkeiten, Blockaden und Probleme, die das Team aufhalten;
nicht weisungsbefugt, sorgt für Einhaltung Scrum-Prozess; schult Teilnehmen

de in ihren Rollen
Management für Ressourcen und Richtlinien zuständig, setzt Rahmen des Scrum-Prozesses,

löst von Scrum Master:in identifizierte Probleme
Artefakte
Product Backlog Liste mit Anforderungen (Items), je Anforderung schätzt das Team den Aufwand
Sprint ein Zyklus (z.B. 2 Wochen), in dem Team Items abarbeitet
Sprint Backlog Liste mit abzuarbeitenden Aufgaben für einen Sprint, wird täglich überarbeitet

und aktualisiert
Meetings
Daily Scrum Meeting (ca. 15 Minuten) im Team, bei dem Personen sagen: Was habe ich seit

dem letzten Daily Scrum erreicht? Was will ich bis zum nächsten Daily Scrum
erreichen? Welche Impediments (Hindernisse) stehen mir dabei im Weg?

Sprint Plannings Treffen für anstehenden Sprint, über Anforderungen und Ziele des im Sprint
entwickelten Softwareteils; wie wird Software aufgebaut und welche Architek
tur soll sie haben?

Sprint Review Treffen, bei dem das Team Funktionalität am Ende des Sprints präsentiert; Fort
schritt wird anhand von »usable Software« demonstriert

Retrospektive Treffen, in dem das Team die eigenen Arbeitsprozesse optimiert

5. Softwaregestaltung basiert auf Wissen und Kommunikation 73

5.3. Zwischenfazit: Softwaregestaltung als soziologisches Problem

Für die Untersuchung der Formen und Folgen von industriespezifischer Softwaregestal

tung hat Kapitel 4 dargestellt, warum Softwaregestaltung zum Kern der Digitalisierung
von Wirtschaft und Gesellschaft gehört. Dies gilt auch für von Software durchdrungene
Organisationen, die nicht mit Software ihr Geld verdienen. Softwaregestaltung kann in
unterschiedlichen Kontexten stattfinden, die auch im weiteren Verlauf der Arbeit noch
eine Rolle spielen werden: durch Softwarefirmen, in digitalen Start-ups, durch IT-DL,
in den EVU selbst etc. Zudem hat Kapitel 4 für die weitere Analyse grundlegende Begrif

fe anhand eigener Überlegungen eingeführt, die für das hier vertretene soziotechnische
Verständnis moderner Organisationen stehen: softwaretechnische Interdisziplinarität
und softwaretechnische Gestaltungsmöglichkeiten (bestehend aus softwaretechnischer
Ausrichtung und Zuschnitt). Eine Variante der Letzteren ist der Primat der Software

entwicklung, bei dem eine Organisation von Anfang an auf die Softwaregestaltung aus

gerichtet ist (softwaretechnische Ausrichtung) und für sich eine individuelle Software
gestaltet (softwaretechnischer Zuschnitt). Eine andere Variante ist, dass sich eine Orga

nisation auf die Anwendung einer Standardsoftware konzentriert.
Um begrifflich zu klären, was bei der Softwareentwicklung der Mensch macht und

was die Maschine, hat Kapitel 5 zwischen den Begriffen Daten, Informationen, Wissen
und Kommunikationen unterschieden. In Abgrenzung zu anderen Theorien über das
Verhältnis von Menschen und Technik folgt die Untersuchung dem kritisch-realistischen
Ansatz von Mingers/Willcocks (2014). Demnach unterscheiden sich die drei Welten von
Person, Sozialem und Technik ontologisch und epistemologisch voneinander und zwi

schen Mensch und Technik besteht eine Arbeitsteilung: Der Mensch versteht, interpre

tiert und vermittelt zwischen Software und Umwelt und ist dabei in eine soziale Welt
eingebunden. Kommunikation und Wissen sind seine Domänen.

Um die Softwaregestaltung als Arbeitsprozess zu verstehen, hat Kapitel 5 gezeigt,
dass sie und warum sie wesentlich auf Wissen und Kommunikation basiert. Das
hat technologische (u.a. zeichenbasierte Technologie, mehrere technische Schichten,
sprachliche Strukturierung u.a. durch Begriffe) und organisatorische Gründe (u.a.
verstärkte Einbindung von Anwendenden). Es zeigt sich am historischen Wandel der
Softwareentwicklung und ihrer Methoden über die Jahrzehnte hin zu einem in vielen
Kontexten weitverzweigten, vernetzten, kollektiven Kommunikationsprozess.

Die Mitarbeitenden an der Softwaregestaltung machen das, was der Computer
nicht kann: Sie tragen ihr Wissen bei und kommunizieren. Das müssen sie tun, wenn
sie die notwendige softwaretechnische Interdisziplinarität herstellen wollen. IT-Fach

leute wie Programmierende und fachliche Expert:innen wie Anwendende müssen sich
austauschen. Dabei sind sie damit konfrontiert, dass Software unterschiedliche Schich

ten hat: Beispielsweise kennen die Programmierenden in erster Linie den Quellcode,
während die Anwendenden die Bedienungsoberfläche der Software aus ihrer täglichen
Arbeit kennen. Nicht jede:r hat die gleiche Perspektive auf die Software-Oberflächen
bzw. spielt die Software die gleiche Rolle im Arbeitsalltag. Die Beteiligten der Soft

waregestaltung haben unterschiedlichen Einblick in die Algorithmen, verstehen nicht
alle Programmiersprachen oder das Gleiche unter softwaretechnischen Begriffen wie
Softwarearchitektur, Schnittstelle oder Modell. In der Softwaregestaltung kann es dazu

74 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

kommen, dass es für jede Perspektive eigene Spezialist:innen gibt: für die Programmie

rung, Softwarearchitektur, Datenbanken, den Anwendungsbereich Prozessteil A der zu
gestaltenden Software und jenen von Prozessteil B usw.

Im Zuge der Softwaregestaltung kann Software einerseits keine Blackbox bleiben
und andererseits kann sich nicht jeder intensiv mit ihrem Innenleben beschäftigen. Bei

des wirkt sich auf Kommunikation und Wissen in der Softwaregestaltung aus. So kön

nen Berechtigungsstrukturen, die den Zugang zur gesamten Software oder einzelne ih

rer Funktionalitäten regeln, es erschweren, an das notwendige Wissen zu kommen, was
in der Software steckt. Dann muss möglicherweise der/die Expert:in der Softwarefirma
oder ein:e IT-Berater:in hinzugezogen werden. Zudem haben Beteiligte nicht immer die
Möglichkeit, sich sämtliches Wissen über die Software und ihre Anwendung anzueig

nen, wenn sich die Software stetig verändert, der gewohnte Arbeitskontext sich durch
eine neue Software oder ein Softwareupdate verändert hat oder die Software im Laufe
der Zeit immer komplexer geworden ist. Software ändert sich oftmals stetig. Das Wissen
über sie kann schnell veralten. Das liegt auch daran, dass eine Standardsoftware einen
Lebenszyklus hat. Die anbietende Softwarefirma löst alte Versionen ab, ohne auf die Zu

stimmung sämtlicher Anwendenden zu warten. All das hat Folgen für den kommunikati

ven Austausch und Wissenstransfer: die verschiedenen Perspektiven und Wissensstände
der Stakeholder:innen einer Software, welche Veränderungen durch wen überhaupt an
der Software oder an der Organisation möglich sind, stetige Änderungen an der Software
oder gar die Ablösung einer Software durch eine neue Version.

Historisch betrachtet wurde es über die Jahrzehnte immer wichtiger zu berück

sichtigen, dass Softwareentwicklung kein rein technisches Problem ist (vgl. Friedman/
Cornford 1989, Funken 2001, Boehm 2006). Statt sie wie Fließbandarbeit zu struktu

rieren, haben die Autoren des agilen Manifests 2001 einen Gegenentwurf zu dieser
Arbeitsorganisation veröffentlicht (vgl. Beck et al. 2001). Das Forschungsfeld des An

forderungsmanagements der Informatik zeigt, dass Kooperation, Kommunikation
und soziale Kompetenzen wichtig für die Softwareentwicklung sind. Sprache, Über

setzungsfähigkeit zwischen IT- und energiewirtschaftlichen Fachleuten, intensive
Kommunikation und gar die Anwendung sozialwissenschaftlicher Methoden zur An

forderungsaufnahme stehen im Vordergrund (vgl. Alvarez 2002, Ross/Chiasson 2011,
Kaminski 2012, Corvera Charaf/Rosenkranz/Holten 2013, Alsanoosy/Spichkova/Harland
2020). Diese Ergebnisse stellen eine erste Grundlage für den Arbeitsprozess der Soft

waregestaltung dar. Doch berücksichtigen sie keine arbeits- und organisationssoziolo

gische Literatur, die Softwareentwicklung in unterschiedlichen Kontexten untersucht.
Eine kurze Aufarbeitung dieser Literatur konnte zeigen, dass es nicht die beste Methode
oder Organisationsform für alle Fälle gibt. Stattdessen existieren lokale Praktiken und
die Empirie zeigt unterschiedliche Organisationsformen der Softwareentwicklung. Ein
allgemeines Konzept, um die Softwaregestaltung arbeitssoziologisch zu analysieren,
wäre aber hilfreich. Die allgemeine Theorie der Softwareentwicklung ist der Versuch,
ein solches allgemeines Konzept aufzustellen (vgl. Wohlin/Šmite/Moe 2015). Sie berück

sichtigt die Kontextabhängigkeit von Softwareentwicklung und legt sich nicht auf be

stimmte Organisationsstrukturen, Abläufe oder Managementmethoden fest. Indem sie
aber organisationssoziologische und arbeitssoziologische Erkenntnisse unterschlägt,

5. Softwaregestaltung basiert auf Wissen und Kommunikation 75

fehlt die Berücksichtigung von unterschiedlichen Arbeits- und Organisationskontexten
und wie sich diese auf die Softwareentwicklung auswirken.

Mit dem Konzept der softwaretechnischen Netzwerkarbeit, was das nächste Kapi

tel entwickelt, lässt sich der aus der Empirie der Fallstudien entwickelte Analyserahmen
besser konzeptionell in die Forschungslandschaft einbetten. Das Konzept ist auf die Pha

se der Softwaregestaltung zugeschnitten, berücksichtigt die für die Softwaregestaltung
wesentlichen Kontextfaktoren und ist zugleich so allgemein, dass es sowohl agile wie
auch weniger agile Organisationsformen abdeckt.

6. Softwaregestaltung – konzeptionelle Grundlagen

Soziotechnische Netzwerkarbeit und soziotechnische

Arbeitsgestaltung zwischen Anwendung und Programmierung

Um die Frage nach den Formen und Folgen der Softwaregestaltung zu untersuchen,
haben die vorhergehenden Kapitel deren materielle Basis und die daraus resultierenden
Besonderheiten im Unterschied zu anderen Arbeitsprozessen herausgearbeitet. Neben
den Kernproblemen der softwaretechnischen Interdisziplinarität1 und der software

technischen Gestaltungsmöglichkeiten2 (siehe 4.2) sind Wissen und Kommunikation
zentral. Einerseits muss es Einzelnen möglich sein, sich auf komplexe technische Ob

jekte wie Software mit ihren verschiedenen technischen Schichten und sprachlichen
Strukturierungen einzulassen (siehe 5.1.2) und sich mit komplexeren (energie)fachli

chen Themen oder Anwendungsbereichen auseinanderzusetzen. Sie müssen sich mit
umfangreichen Wissensdomänen beschäftigen können. Andererseits muss es möglich
sein, sich über beides mit anderen auszutauschen, Möglichkeiten der Softwareent

wicklung und fachliche Bedarfe abzugleichen und sich auf eine Umsetzung zu einigen.
Dabei ist diese Arbeit Einzelner wie auch die wissens- und kommunikationsintensive
Zusammenarbeit untereinander nicht einfach hierarchisch vorstrukturier- und stan

dardisierbar oder einfach monetär zu bewerten und dann über Marktbeziehungen zu
erledigen. Diese Zusammenhänge und Voraussetzungen arbeitet dieses Kapitel anhand
von Forschungsliteratur heraus. Dies zeigen aber auch die Fallstudien im 8. Kapitel, wo
die Zusammenarbeit in sehr unterschiedlichen Konstellationen und teils auf mehrere
Organisationen verteilt stattfindet.

In diesem Kapitel geht es nun darum, eine konzeptionelle Grundlage zu schaffen, um
zu beschreiben, wie die Organisationen in den Fallstudien die beiden Kernprobleme lö

sen und die wissens- und kommunikationsintensive IT-Arbeit3 kontrollieren und damit

1 Wissen über Programmierung und Wissen über den Anwendungsbereich.
2 a) organisatorisch: z.B. Ausrichtung auf Software oder auf Softwareentwicklung; b) softwaretech

nisch: z.B. Zuschnitt auf Standardsoftware oder individuellen Quellcode.
3 Softwaregestaltung unterscheidet sich von der Kommunikationsarbeit, wie sie Kruse (2004) all

gemein als charakteristisch für IT-Arbeit ausgemacht hat: Für ihn ist sie Interaktion der IT-Ar
beitenden mit Computertechnik sowie Kommunikation mit den Kund:innen und das diskursive

78 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

die Möglichkeiten der Softwaregestaltung zwischen Individual- und Standardsoftware.
Dies geschieht erstens dadurch, dass die vorliegende Untersuchung unterschiedliche
Formen der Organisation von Softwaregestaltung konzeptionell als Transformation der
Arbeitskraft der Beteiligten an ihr beschreibt. Wie in der Einleitung bereits ausgeführt,
bezeichnet das Transformationsproblem die Frage, wie Firmen die (in der Softwarege

staltung) eingesetzte, auf dem Arbeitsmarkt gekaufte Arbeitskraft in ihren Organisatio

nen in reale Arbeitsleistung überführen können (vgl. Marrs 2010: 331). Zweitens geht es
bei den Folgen der Softwaregestaltung darum, wie sich der Arbeitsprozess der Software

gestaltung zur Softwareanwendung verhält. Denn dieses Verhältnis ist in den Fallstudi

en sehr unterschiedlich und hat Folgen für die soziotechnische Arbeitsgestaltung in den
anwendenden Organisationen: Welche Konflikte bestehen zwischen Softwaregestaltung
und -anwendung und wie beeinflussen sie sich?

Als konzeptionelle Grundlage, um den Arbeitsprozess zu analysieren, verwendet die
Forschungsarbeit den Begriff des Netzwerks. Warum? In den Fallstudien findet die Ar

beit entweder in einer Matrixorganisation oder in einer reinen Netzwerkorganisation
statt. Für die Matrixorganisation ist IT-Projektarbeit typisch, die in einer anwendenden
Organisation quer zu einer Linienorganisation aus Abteilungen wie IT, Vertrieb, Netz

betrieb oder Logistik und in einer Aufbauorganisation, bestehend aus mehreren Hierar

chieebenen, stattfindet. Wenn sie firmenübergreifend erfolgt, kann eine Mischung aus
Hierarchie, Markt und Netzwerk bestehen. In reinen Netzwerken kann es erstens so weit
gehen, dass es keine formalen Hierarchien gibt und Führungskräfte unwichtig z.B. für
die Vorgabe von Arbeitspaketen sind. Zweitens bestehen keine Marktverhältnisse und
z.B. Auftraggeber und -nehmer Arbeit(sschritte) nicht preislich bewerten. Ob Matrixor

ganisation oder reines Netzwerk, zentralisierte Softwaregestaltung in einer Softwarefir

ma oder dezentral in einem EVU: Immer geht es in den Fallstudien um horizontale Ko

operation und Kommunikation – ob zwischen Einzelpersonen des gleichen Teams oder
unterschiedlichen Teams, Abteilungen, Organisationen. Das Kapitel geht bei der Kon

zeption des Netzwerkbegriffs über jenen hinaus, den Kruse für die IT-Arbeit verwendet.
Es trifft zwar zu, dass Softwaregestaltung wie IT-Arbeit im Allgemeinen eine »Netzwerk

arbeit zwischen den sozialen und technischen Netzen und […] Netzwerkarbeit innerhalb
der sozialen Netzwerke« (ebd. 320) ist. Allerdings reicht diese Beschreibung nicht dafür
aus, um konzeptionell einzubetten, was in den Fallstudien passiert, um das Transforma

tionsproblem im Arbeitsprozess der Softwaregestaltung zu lösen.
Vielmehr führt das Kapitel einen eigenen Begriff von Netzwerk ein: der soziotechni

schen Netzwerkarbeit. Mit diesem Konzept ist es möglich, die in der Empirie untersuch

ten Formen der Softwaregestaltung, die in sehr unterschiedlichen Konstellationen statt

und reflexive Nachdenken, wie diese Kommunikation zu gestalten ist (vgl. ebd. 295). Seine be
fragten Personen verstehen sich allesamt als Dolmetschende zwischen zwei Welten (vgl. Kruse
2004: 315). Sie realisieren ihre Arbeitsvollzüge durch Kommunikation (vgl. ebd. 324). Für sie ist
ein kommunikativer Erfahrungs- und Informationsaustausch notwendig, um die Überlastung mit
Informationen bewältigen zu können (vgl. ebd. 297f.). Bei der Softwaregestaltung geht es da
gegen im Kern vielmehr darum, via einen kollektiven Kommunikationsprozess eine quelltextba
sierte Technik zu gestalten. Kruse hat folgende IT-Arbeitenden interviewt: Systemadministrator,
PC-Techniker, Internetcafébetreiberin, IT-Projektmanager, Web-Designerin, Internetdienstleister
(vgl. Kruse 2004: 156ff.).

6. Softwaregestaltung – konzeptionelle Grundlagen 79

finden, analytisch zu fassen. Das Konzept der soziotechnischen Netzwerkarbeit zeigt,
dass Softwaregestaltung ein soziologisches und kein informationstechnisches Problem
ist. Zudem verankert es den in den Fallstudien entwickelten Analyserahmen in der For

schungslandschaft. Dazu fasst das Kapitel ausgehend von Forschung zu organisatio

nalen Netzwerken und IT-Projekten Netzwerke als Mehr-Ebenen-Gebilde auf. Es be

schreibt, wie die Transformation der Arbeitskraft teilweise ohne Hierarchien oder Märk

te gelingt, lässt aber auch eine Mischung aus Netzwerk, Markt und Hierarchie zu. Wie
gelingt die Transformation der Arbeitskraft in der soziotechnischen Netzwerkarbeit? In

dem vier Ebenen zusammenwirken:

1. Durch einen Ablauf, der festlegt, wie Anforderungen entstehen, wie sie zu den Pro

grammierenden gelangen, wer die Beteiligten sind und welche verschiedenen Feed

backmechanismen es zwischen Anwendung und Programmierung gibt.
2. Durch Beziehungen, welche helfen, die Arbeitsteilung zwischen Anwendung und

Programmierung zu überbrücken. Dazu gehört erstens eine kooperative Zusam

menarbeit auf organisationaler Ebene (Meso) zwischen IT-Abteilung und Fach

bereichen bzw. IT-Dienstleistungsunternehmen (IT-DL), Softwarefirma und an

wendenden Organisationen. Die Zusammenarbeit ermöglicht eine entsprechende
übergreifende Steuerungsstruktur, auch wenn Interessendifferenz und Machtun

gleichgewichte zwischen den beteiligten Organisationen bestehen. Dazu gehören
zweitens die interpersonalen Beziehungen (Mikro), die auf Vertrauen, Koopera

tionsbereitschaft und Reziprozität basieren. Die Fallstudien im 8. Kapitel und die
Forschung zeigen, dass diese notwendig sind, damit Mitarbeitende kooperativ zu

sammenarbeiten, und dass rein formale Abläufe wie IT-Projekte oder Scrum nicht
ausreichen.

3. Für die Transformation der Arbeitskraft ist neben Ablauf und Beziehungen die Soft
ware entscheidend. Im Gegensatz zur überwiegenden Diskussion über die Folgen
der Digitalisierung für die Arbeit kontrolliert sie Arbeit nicht nur einschränkend,
überwachend und steuernd. Vielmehr ermöglicht sie selbstständiges, kommunikati

ons- und wissensintensives, kooperatives Zusammenarbeiten – sei es durch Ticket

systeme, E-Mail-Programme oder Projektmanagementlösungen. In einigen Fallstu

dien des Empirie-Kapitels ist Software auch ein Kontrollinstrument für Führungs

kräfte oder Kundschaft. In anderen Fallstudien ist sie nur dazu da, eine horizontale,
abteilungs- oder organisationsübergreifende Kooperation und den Input für Anfor

derungen einzelner Beteiligter zu ermöglichen. Darüber hinaus prägt die Software

architektur die Softwaregestaltung. Sie entscheidet beispielsweise darüber, wie Fir

men eine Standardsoftware erweitern oder anpassen können und welche Abhängig

keiten zwischen Organisationen bestehen (z.B. ob einzelne Teams oder Organisatio

nen unabhängig von anderen einen Teil einer Software gestalten können).
4. Die vierte Ebene sind die Softwaregestaltenden und ihre Rollen, die sie jeweils im

Arbeitsprozess einnehmen. Das Kapitel zeigt, wie das Rollenkonzept zur Beschrei

bung der Kontrolle der Arbeit von Softwaregestaltenden eingesetzt werden kann.
Diese bekommen weniger konkrete Arbeitsschritte vorgegeben, als dass vielmehr Er

wartungen an sie bestehen, die sie zu erfüllen haben: z.B. dass sie soziale Struktu

ren wie IT-Projekte etablieren, Treffen organisieren, sich kooperativ verhalten oder

80 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

selbstständig und eigeninitiativ arbeiten und Ergebnisse liefern. Zudem stellen die

Softwaregestaltenden betriebliche Hierarchien in Frage. Gestaltet beispielsweise ein

EVU abteilungsübergreifend eine Software, macht es einen Unterschied für die Um

setzung der Softwaregestaltung, ob die Softwaregestaltenden hierarchisch über oder

unter den Abteilungsleitenden stehen. Welche Entscheidungen können sie im Sinne

der Softwaregestaltung durchsetzen und welche nicht? Werden sie Teil des Manage

ments?

Abbildung 6: Vier Forschungsbereiche, die konzeptionelle Bezüge für soziotechnische Netzwerk
arbeit zwischen Anwendung und Programmierung liefern sollen, und zugleich die vier Ebenen,
auf denen die Kontrolle zur Transformation der Arbeitskraft bei soziotechnischer Netzwerkarbeit
basiert.

Zur konzeptionell adäquaten Beschreibung, wie in den Fallstudien Organisationen

Softwaregestaltung kontrollieren, gehört, dass die vier Ebenen nicht immer in gleichem

Maße zur Transformation der Arbeitskraft beitragen. Es ist typisch für die soziotechni

sche Netzwerkarbeit, dass sich die vier Ebenen flexibel ergänzen können, z.B. dass ein

zelne Softwaregestaltende durch ihre Arbeit schwach formalisierte Abläufe kompensie

ren.

Die Möglichkeiten der Softwaregestaltung zwischen Individual- und Standardsoft

ware nützen zu können, indem eine Organisation einen entsprechenden Arbeitsprozess

der Softwaregestaltung etabliert und das Transformationsproblem löst, ist das eine in

teressante Untersuchungsfeld. Das andere ist, wie sich der Arbeitsprozess der Software

gestaltung auf jenen der Softwareanwendung auswirkt und wie er die Arbeit der Anwen

denden kontrollieren hilft. Dieses bestehende Forschungsdesiderat beleuchtet und un

tersucht die vorliegende Dissertation mit dem Konzept der soziotechnischen Arbeits
gestaltung. Dafür arbeitet das Kapitel anhand von Forschungsliteratur heraus, inwie

6. Softwaregestaltung – konzeptionelle Grundlagen 81

fern es sich bei der Softwaregestaltung um eine besondere Form der Rationalisierung
der Softwareanwendung handelt. Zugleich grenzt es diesen Ansatz von anderen ab, die
das Verhältnis von IT und Arbeit beschreiben (z.B. jenen der Informatisierung). Die For

schung zu den Folgen von Standard-ERP-Software für die Softwareanwendung rezipiert
der letzte Abschnitt. Allerdings lassen sich viele dieser Folgen entweder auf die Funktio

nalität der Software zurückführen oder darauf, dass es sich um eine fertige Standard

software handelt und weniger auf den Gestaltungsprozess.
Das Kapitel zeigt zunächst Forschungslücken auf und wie sich die vorliegende Ar

beit an die Diskussion über die Kontrolle von Wissensarbeit anschließt. Es untermau

ert, dass sich der Netzwerkbegriff besser eignet als jene von Markt oder Hierarchie, um
zu beschreiben, wie der Arbeitsprozess der Softwaregestaltung die Arbeitskraft transfor

miert. Dann führt ein Abschnitt Forschungsarbeiten zu IT-Projekten an, denn IT-Projek

te sind Beispiele für soziotechnische Netzwerkarbeit, und auch sie ermöglichen auf den
vier Ebenen die Transformation der Arbeitskraft. Danach betten mehrere Forschungsar

beiten konzeptionell ein, wie die Ebenen der organisationalen und interpersonalen Be

ziehungen, die Ebene der Software und der Softwaregestaltenden die Kontrolle von Soft

waregestaltungsarbeit ermöglichen. Zuletzt geht es um das Verhältnis von Softwarean

wendung und Softwaregestaltung.

6.1. Softwaregestaltung als Arbeitsprozess: Die Lösung
des Transformationsproblems durch soziotechnische Netzwerkarbeit

Die Frage nach Kontrollformen, welche zu einer kooperativen Wissensarbeit wie der
Softwaregestaltung passen, ist Gegenstand einer umfangreichen Diskussion in der
Forschung. Laut Kalkowski/Mickler stoßen Hierarchien und formale Strukturen bei
der Transformation von Arbeitskraft bei kooperativen Projekten an ihre Grenzen,
weil sie zu wenig Handlungsspielraum zulassen (vgl. Kalkowski/Mickler 2015: 38). Um
Softwaregestaltung zu organisieren, ist eine andere Form der Kontrolle notwendig:

»[A] shift from behaviour control toward knowledge control; the goal of the latter is to
elicit as much knowledge as possible from knowledgeable workers« (Rennstam 2012:
1072).

Ob Adler/Borys (1996) Rede einer befähigenden (»enabling«) Formalisierung, Friedmans
(1977) verantwortliche Autonomie oder die Diskussion über die Subjektivierung von Ar

beit: In allen drei Fällen geht es darum, dass bestimmte Formen von Arbeit so zu orga

nisieren sind, dass trotz Freiräumen die Beschäftigten zum Organisationszweck beitra

gen. Anders als in Bürokratien erwartet die Softwaregestaltung strukturbedingt von den
Wissensarbeitenden – in diesem Fall den Softwaregestaltenden –, dass sie ihre Subjek

tivität einbringen. Subjektivität ist kein Störfaktor mehr wie im Taylorismus (vgl. Mins

sen 2017: 303). Betriebe haben »erhöhten funktionalen Bedarf an Subjektivität« (Mins

sen 2011: 119). Sie ist relevant geworden für die Rationalisierung (vgl. ebd. 118). Software

gestaltende warten nicht auf detaillierte Anweisungen durch die Forgesetzten, sondern
werden zu »›Mittätern‹ der Kontrollregime« (Schaupp 2021: 114).

82 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Netzwerkformen wie Projekte oder Kooperationen zwischen Firmen zeichnen sich

dadurch aus, dass sie diesen Raum für Subjektivierung bei gleichzeitiger Handlungs

strukturierung nutzen. In ihnen koexistieren verschiedene Kontrollformen nebenein

ander. Sie sind Beispiele dafür,

»how these coercive and dominant forms of control coexist and interact with the more

enabling and knowledge-eliciting form[s]« (Rennstam 2012: 1086).

Was eine besondere Herausforderung bei der Softwaregestaltung ist: Es geht um Wis

sensarbeit in team-, abteilungs- und organisationsübergreifenden Konstellationen. Die

Forschung benennt die Verbindung von Arbeitsprozess und organisationalen Netzwer

ken in und zwischen Unternehmen als eine Forschungslücke:

»In consequence, we do not only need more differentiated theoretical frameworks

originating from the work of Gereffi4 and others but much more empirical studies
that connect the level of the work process with the organizational level of corporate
or inter-corporate relations.« (Sydow/Helfen 2020: 225)

Zudem gibt es noch ein weiteres Forschungsdefizit in diesem Bereich:

»Insgesamt handelt es sich bei diesen Zusammenhängen zwischen praktischer
Kooperation, Netzwerkformen, Nutzung von IuK-Techniken, Wissenstransfer und
Arbeit jedoch um ein wenig untersuchtes Gebiet, d.h. es besteht ein ausgeprägtes
Forschungsdefizit.« (Schmiede 2006: 466)

Das Konzept der soziotechnischen Netzwerkarbeit kann einen Beitrag dazu leisten, die

se Forschungslücken konzeptionell zu schließen, wie die nächsten Kapitel zeigen.

6.2. Weder Markt noch Hierarchie: Netzwerke als analytische Grundlage

Der Netzwerkbegriff eignet sich besonders gut, um die vielfältigen empirischen Bege

benheiten der Softwaregestaltung in den Fallstudien zu beschreiben: Sie findet mal in
Matrixorganisationen statt, mal in reinen Netzwerkorganisationen; mal dezentral in ei

nem Team und mal zentralisiert in einem IT-DL, der mit mehreren EVU zusammenar

beitet. Der Netzwerkbegriff ist zudem anschlussfähig an die Forschung der letzten Jahr

zehnte. Diese nutzt den Begriff, um Veränderungen in der Arbeitswelt zu beschreiben.

Der Begriff der Vermarktlichung ist hier ungeeignet, da er ein anderes Kernphänomen

adressiert, nämlich dass Firmen Marktmechanismen in ihrer Organisation nutzen (vgl.

Sauer 2018). Der Begriff der Informatisierung beschreibt eine allgemeine Entwicklung

und weniger, wie und warum Arbeit auf eine bestimmte Art und Weise organisiert ist,

um Technik zu gestalten (vgl. Schmiede 2017).

4 Bekannt für seine Governance-Typen für Wertschöpfungsketten: market, modular, relational, cap
tive, hierarchy (vgl. Gereffi/Humphrey/Sturgeon 2005).

6. Softwaregestaltung – konzeptionelle Grundlagen 83

Die Forschung zeigt, dass es unterschiedliche Gründe gibt, warum der Netzwerk

begriff nützlich für die Analyse der Softwaregestaltung ist: Es sind 1. theoretische (we

der Markt noch Hierarchie), 2. organisatorische (vertikale Desintegration, Wissensgren

zen, Projektarbeit) und 3. Technische Gründe (Verbindung zwischen IT und organisato

rischen Netzwerken).

6.2.1. Theoretisch: Netzwerke in Abgrenzung zu Markt und Hierarchie

Seit mehr als 30 Jahren beschreiben Forschende eine sich von Märkten und Hierarchien
unterscheidende Organisationsform (z.B. Williamson 1985, Powell 1990, siehe dazu Win

deler/Wirth 2010). Allgemein wird eine Krise der vertikalen, bürokratischen Organisati

on und abgeschwächten Firmengrenzen konstatiert (vgl. Ahrne/Brunsson 2011). Theore

tisch besteht ein weitreichender Konsens, dass mit Kategorien wie Markt oder Hierar

chie allein nicht mehr sämtliche Organisationsformen beschrieben werden können. Was
nun genau dieses fehlende Dritte sein soll, ist umstritten. Das fängt bei begrifflichen Fra

gen an: Zur Diskussion stehen u.a. die Begriffe Kooperation, Gemeinschaft, Clans, Netz

werke, langfristige Beziehungen. Auch darüber, wie diese Begriffe inhaltlich gefüllt wer

den sollen, besteht eine rege Diskussion. Bei Autor:innen wie Lamoreaux/Raft/Temin
(2003), Bradach/Eccles (1989) oder Wiesenthal (2000) können die drei Organisationsfor

men kombiniert werden (und werden empirisch auch kombiniert). Der Netzwerk-Be

griff enthält für Ahrne/Brunsson (2011) keine organisatorischen Elemente: Es ist flexi

bel und spontan (vgl. ebd. 97). Die Beziehungen in Netzwerken sind nicht hierarchisch,
sondern basieren auf Reziprozität, Vertrauen und sozialem Kapital (vgl. ebd. 88). Es gibt
zudem keinen einheitlichen theoretischen Ansatz. Mehrere Forschungsarbeiten nutzen
die Strukturationstheorie von Giddens (vgl. Windeler/Wirth 2010: 580ff., Longen 2015).
Williamson (1985) verwendet die ökonomische Transaktionskostentheorie.

Begrifflich hat sich die vorliegende Arbeit bereits für das »Netzwerk« als dritte
Kategorie entschieden. Konzeptionell folgt diese Arbeit Powell (1990), Kalkowski/Micker
(2015) und Sydow/Windeler (2000), die von Netzwerken als eigenständigen Organisa

tionsformen ausgehen. Dabei sind Netzwerke nichts Eindimensionales. Für Sydow/
Windeler (2000), Apitzsch (2006) oder Kalkowski/Mickler (2015) bestehen Netzwerke
aus mehreren Ebenen und Dimensionen. Wie in der Matrixorganisation können sich
verschiedene Kontrollformen mischen. Für Apitzsch sind unterschiedliche Beziehungs

eigenschaften auf interpersoneller, organisationaler und interorganisationaler Ebene
kombinierbar. Was an Inhalten ausgetauscht wird (bspw. Informationen), muss nicht
mit einer bestimmten Beziehungsart (bspw. starke Formalisierung), Beziehungsbasis
(bspw. Vertrauen) oder Intensität (bspw. stabil und längerfristig) einhergehen (vgl.
Apitzsch 2006: 21f.). Bei Kalkowski/Mickler sind auf den Ebenen der organisations

übergreifenden Kooperationsstruktur, der Projektorganisation und des Kooperati

onsverhaltens auch verschiedene Kombinationen möglich, bspw. ein hierarchischer
Kooperationstyp, eine schwach formalisierte Projektstruktur und regelmäßige Interak

tionen (vgl. Kalkowski/Mickler 2015: 88).
Bei der genaueren konzeptionellen Beschreibung der unterschiedlichen Ebenen des

Netzwerks setzt die vorliegende Untersuchung auf eigene Kategorien. Denn andere An

sätze sind (noch) allgemein(er) und ihre Begrifflichkeiten helfen nicht, die Besonderhei

84 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ten der Softwaregestaltung zu erfassen. Es gibt sicherlich Anknüpfungspunkte mit dem

oben genannten strukturationstheoretischen Ansatz von Giddens oder jenem allgemei

nen Kooperationsbegriff von Kalkowski/Mickler (2015). Wie Giddens begreift Sydow und

auch die vorliegende Arbeit Struktur und Handeln als rekursiven Zusammenhang. Aller

dings ist der begriffliche Apparat (vgl. Giddens 1988, Kalkowski/Mickler 2015: 68ff.) nicht

auf die Softwaregestaltung ausgerichtet5. Die in der Einleitung des Kapitels beschriebe

nen vier Ebenen der soziotechnischen Netzwerkarbeit eignen sich besser, um die Em

pirie des Arbeitsprozesses der Softwaregestaltung und seine spezifischen Probleme zu

erfassen.6 Zudem spielt Technik bei den genannten Autoren keine wesentliche Rolle für

die Netzwerkarbeit (nur z.B. zur Kontrolle der Projektarbeit, vgl. Kalkowski und Mickler

2015: 88). Ferner räumen sie, anders als die vorliegende Arbeit, Wissensarbeitenden und

deren Rollen analytisch keinen zentralen Platz in Netzwerken ein. Bei Sydow/Windeler

(2000) sind Individuen zwar eine Steuerungsebene (ebd.: 3f.), aber es bleibt unklar, was

deren Beitrag zu den Netzwerkstrukturen ist. Als Rolle ist nur vom »boundary spanner7«

die Rede (vgl. Sydow/Windeler 2000: 5, 10; auch Kalkowski/Mickler 2015: 74). Letztend

lich sind die Ansätze zu wenig auf die Softwaregestaltung ausgerichtet, bei der Wissens

arbeitende und IT eine zentrale Rolle spielen.

6.2.2. Organisatorisch: Netzwerke aus und in Organisationen

Die Softwaregestaltung findet in einem organisatorischen Kontext statt, zu dem der

Netzwerkbegriff passt, wie die nachfolgend zitierte Forschung zeigt: Erstens lagern

immer mehr Organisationen (IT-)Tätigkeiten aus (vgl. Miozzo/Grimshaw 2005: 1421f.,

vgl. Flecker/Haidinger/Schönauer 2013, vgl. Howcroft/Richardson 2012: 124f., vgl. Pur

anam/Alexy/Reitzig 2014: 172f.). Dies führt zweitens dazu, dass statt klarer Hierarchien

ein Spannungsverhältnis zwischen zentraler Steuerung und dezentraler Autonomie

besteht (vgl. Hirsch-Kreinsen 1995). Wie die Fallstudien des Empirie-Kapitels zeigen

werden, ist das typisch für die Softwaregestaltung. In Organisationsnetzwerken kann

beides vorhanden sein: zentrale Vorgaben von Budgets und eine Selbststeuerung der

5 Bspw. ist die Unterscheidung zwischen zweckrationalem und kommunikativem Handeln (Kalkow
ski/Mickler 2015: 69) für die Softwaregestaltung schwierig. Die Softwaregestaltung verwendet
Kommunikation instrumentell und es ist fragwürdig, ob es wirklich um Wahrhaftigkeit und Ver
ständigung geht, wie es für kommunikatives Handeln gilt: »Rationalitätsmaßstab sei die Wahr

haftigkeit intentionaler Äußerungen und die Richtigkeit von Normen« (Vormbusch 2002: 107).
Ausgiebig mit den Grenzen der Theorie von Habermas für die Anwendung auf die Softwarege
staltung hat sich Andelfinger (1997) auseinandergesetzt (sie wird trotzdem verwendet – z.B. Ross
und Chiasson 2011). Aber auch die anderen Begriffe der Theorien (bspw. Sozialintegration vs. Sys
temintegration bei Giddens) sind zu weit weg vom empirischen Kern der Softwaregestaltung.

6 Wie sich die jeweiligen theoretischen Ansätze mit den empirischen Ergebnissen vertragen, wä
re eine eigene Studie wert. Dies konnte die hier vorliegenden Arbeit nicht leisten – auch weil
die empirischen Ergebnisse nicht so einfach in bestehende Theorien integrierbar sind bzw. die
Softwaregestaltung ihre Eigenheiten hat, die sich nur mit eigenen Schwerpunktsetzungen in der
konzeptionellen Begriffsbildung erfassen lassen.

7 Nach einer Definition handelt es sich bei »boundary spanners« um »vital individuals who facilitate
the sharing of expertise by linking two or more groups of people separated by location, hierarchy,
or function.« (Levina und Vaast 2005)

6. Softwaregestaltung – konzeptionelle Grundlagen 85

Anwendungsarbeit, weil Netzwerke den Arbeitsvollzug unbestimmt lassen und es so

ermöglichen, dass Beschäftigte einen subjektiven Beitrag leisten (vgl. Schmiede 2006:

4). Aber es kann auch eine »Zentralisierung und Hierarchisierung von Unternehmens

netzwerken […] [und] asymmetrische Beherrschungsverhältnisse« (Apitzsch 2006: 10)

bestehen, z.B. wenn die Softwarefirma den Standard setzt oder Einstellungsmöglich

keiten des Standards vorgibt.

Drittens helfen Netzwerke, interdisziplinäre Wissensgrenzen zwischen Firmen oder

innerhalb von Firmen zu überwinden. Kooperationen zwischen Firmen sind eine Form

davon (vgl. Kalkowski/Mickler 2015). Erst in Netzwerken können abteilungs- und fir

menübergreifende, interdisziplinäre Praxisgemeinschaften entstehen (»communities of

practice« im Sinne von Wenger 1999), die für den Wissensaustausch notwendig sind:

»Where practice doesn’t prepare the ground, knowledge is unlikely to flow« (Brown/

Duguid 2001: 207).

Ein Beispiel für solche Praxisgemeinschaften sind Projekte. Sie sind als vierter

Punkt, der aus organisatorischer Sicht für den Netzwerkbegriff spricht, zentral in der

heutigen Arbeitswelt8. Für Apitzsch (2006) sind Projekte eine von mehreren Netzwerk

formen. Mehrere Studien weisen darauf hin, dass immer mehr Mitarbeitende außerhalb

von Linienaufgaben in Projekten arbeiten, und Scrum ist eine projektorientierte Arbeits

form, die diesen Trend verstärkt (vgl. Baudach 2018: 165). Castells (2001) sieht Projekte

zentral für die Network Society an. Im Buch »Der neue Geist des Kapitalismus« haben

Boltanski/Chiapello die Managementliteratur untersucht und herausgearbeitet, dass

Projekte über die Jahrzehnte eine immer größere Rolle spielen. Sie beschreiben bereits,

was sich bei der Einführung von SAP unter 6.3 zeigt: dass bei Projekten in Firmen »dau

erhafte Verbindungen aufgebaut werden, die anschließend in den Hintergrund treten,

aber weiter verfügbar bleiben« (Boltanski/Chiapello 2003: 149). Eine Studie zur Ener

giewirtschaft stellt fest, dass in den untersuchten Organisationen projektorientierte

und vernetzte, temporäre Zusammenarbeit (Netzwerkorientierung) und Orientierung

an der Kundschaft und Wettbewerbsfähigkeit (Marktorientierung) wichtiger wird und

die Orientierung an Industrie (u.a. technische Effizienz) und Staatsbürgerlichkeit (u.a.

Kollektivinteresse) abnimmt (vgl. Jacobsen/Blazejewski/Graf 2017).

6.2.3. Technisch: digitale Netzwerke

Neben diesen theoretischen und organisatorischen Gründen verbinden einige Au

toren mit dem Netzwerkbegriff eine zentrale Stellung der IT in der Arbeitswelt. Die

Einleitung des Kapitels hat bereits Kruse als Beispiel dafür genannt, der bei IT-Arbeit

8 Projektarbeit ist in der modernen Arbeitswelt weit verbreitet. Wie weit, dazu konnte der Verfasser
leider keine genaueren Statistiken zu durchgeführten Projekten in Firmen oder Branchen finden.
Anfragen an privatwirtschaftliche Firmen, die Zertifikate wie IPMA, PRINCE2 oder PMP anbieten,
blieben erfolglos. Allerdings finden sich online Informationen: In Deutschland haben 16.982 Per
sonen ein gültiges Zertifikat Project Management Professional (PMP) (Quelle: https://www.pmi.

org/certifications/certification-resources/registry, Stand: 04.01.2024).Ein Zertifikat der IPMA (In
ternational Project Management Association) der Kategorien A bis D haben von 1995 bis 2020
jährlich im Schnitt 14.456 Personen weltweit gemacht (Quelle:https://www.vzpm.ch/fileadmin/d

okumente/downloads/Deutsch/IPMA_Yearbook_2020.pdf, heruntergeladen am 04.01.2024).

https://www.pmi.org/certifications/certification-resources/registry
https://www.pmi.org/certifications/certification-resources/registry
https://www.vzpm.ch/fileadmin/dokumente/downloads/Deutsch/IPMA_Yearbook_2020.pdf
https://www.vzpm.ch/fileadmin/dokumente/downloads/Deutsch/IPMA_Yearbook_2020.pdf

86 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

von Netzwerkarbeit spricht. Castells hat bereits 19969 in seinem Buch eine globale

Netzwerkgesellschaft beschrieben, die auf Informationstechnologien beruht. Inter

organisationale IT-Systeme vereinfachen ab den 1990er Jahren die Kommunikation

zwischen den Organisationen, zentralisieren Kontrolle, machen Transparenz, Wissens

austausch und Entscheidungsdelegation (Dezentralisierung) technisch umsetzbar (vgl.

Bjørn-Andersen/Raymond 2014: 190). IT macht das Auslagern bestimmter Tätigkeiten

möglich (vgl. Grimshaw et al. 2002: 188, Robertson/Verona 2006: 90, Sahaym/Steensma/

Schilling 2007, Zammuto et al. 2007: 754ff.). Longen sieht einen Zusammenhang zwi

schen Firmen-Netzwerken der Call-Center-Arbeit und der verwendeten IT (Longen

2015). Auch beim Ansatz der systemischen Rationalisierung aus der Industrie- und

Arbeitssoziologie spielt die IT eine zentrale Rolle in Organisationsnetzwerken. Sie sorgt

für die »Optimierung des gesamtbetrieblichen Prozesses, die Organisierung von Markt-
und Austauschprozessen und die Gestaltung der Beziehungen zwischen Betrieben und

Unternehmen« (Sauer 2017: 286). Manche Autoren sehen gar Firmen als überflüssig an,

weil potenziell jeder dank IT individuellen Zugang zu allen relevanten Informationen

hat und jeder mit jedem kommunizieren kann (vgl. Symon 2000: 393).

6.3. Ein Beispiel für soziotechnische Netzwerkarbeit:
IT-Projekte in Matrixorganisationen

Den Weg zu einem allgemeinen Konzept der soziotechnischen Netzwerkarbeit, das zu

sämtlichen Fallstudien passt, weist IT-Projektearbeit. IT-Projekte sind auch deshalb re

levant für die Untersuchung, weil sie Firmen bei der ERP-Einführungen einsetzen und

es mehrere Forschungsarbeiten dazu gibt. Solche Projekte und die aus ihnen resultie

renden Gestaltungsnetzwerke nach ERP-Einführung weisen die vier Ebenen soziotech

nischer Netzwerkarbeit auf.

Allgemein zeigen sich in Projekten die vier Ebenen wie folgt:

1. Ablauf – zwischen starker und schwacher Formalisierung: Projekte schwanken zwi

schen zu starker und zu schwacher Formalisierung (vgl. Heidling 2018: 224). Durch

Handbücher für Aufbau- und Ablauforganisation eines Projektes, entsprechendes

Management und entsprechende Kennzahlen kann eine Formalisierung stattfinden

(vgl. Kalkowski und Mickler 2005: 59). Trotzdem lassen sie für einzelne Beschäftig

te Spielräume, um selbstständig fachliche Entscheidungen zu treffen und sich bspw.

mit Kund:innen abstimmen zu können (vgl. Kalkowski/Mickler 2005: 59).

2. Beziehungen – dank Projekt zwischen Organisationseinheiten und Einzelperso
nen

• Organisationale Beziehungen – Abteilungsgrenzen und Hierarchien überbrü

cken: Projekte überbrücken Grenzen aus Fachabteilung, Teams und Hierarchien

in Organisationen, damit unterschiedliche »Spezialdisziplinen, Domänen, Wis

sensbereiche, Einzelpersonen« (Heidling 2018: 211) zusammenkommen können.

9 Auf Deutsch 2001.

6. Softwaregestaltung – konzeptionelle Grundlagen 87

Sie ermöglichen einen verbesserten Informationsfluss und Spezialist:innen
können bspw. durch Mitarbeit an mehreren Projekten ausgelastet werden (vgl.
Ford/Randolph 1992: 273). Die Arbeitsteilung hat in der Matrixorganisation mit

hin zwei Ebenen: die Arbeitsteilung zwischen den Fachabteilungen und ihren
Hierarchien (Ablauf- und Aufbauorganisation) und die Arbeitsteilung im Projekt
selbst.

• Interpersonelle Beziehungen – auszuhandeln zwischen Führungskräften und
Mitarbeitenden (horizontal und vertikal): Es gibt eine geteilte Autorität zwi

schen der Hierarchie der Organisation, in der das Projekt stattfindet, und dem
Projekt selbst (vgl. Ford/Randolph 1992: 271). Es gibt Konflikte um Ressour

cen, um Prioritäten, es gibt Rollenkonflikte zwischen Projekt-Rolle und Rolle
in der Abteilung/im Team (vgl. Ford/Randolph 1992: 275). Die Projektleitung
hat oftmals keine Weisungsbefugnis, diese liegt vielmehr bei der Team- oder
Abteilungsleitung. Bei unternehmensübergreifenden Projekten findet ein Inter

essenausgleich und -abgleich durch Mitarbeitende und Projektleitung statt und
ein großer Teil der Projektsteuerung erfolgt situativ auf operativer Ebene (vgl.
Heidling 2018: 226). Kompromissfähigkeit, Verhandlungskompetenz, belastbare
Vertrauensbeziehungen und personengebundener Austausch sind gefragt (vgl.
ebd.: 227).

3. Software: Bei IT-Projekten sprechen Autoren von »technisch-bürokratischer Um

klammerung der Projektarbeit« (Kalkowski/Mickler 2005) durch verschiedene Soft

ware-Werkzeuge wie Projektmanagement-Tools.
4. Wissensarbeitende – Erwartung, Handlungsorientierungen zu kombinieren: In

Projekten ist Handeln stärker auf Kooperation und Kommunikation ausgelegt, bei
gleichzeitiger ökonomischer und unternehmerischer Orientierung (vgl. Heidling
2018: 213f.). Es verschränken sich planmäßig rationales Handeln mit erfahrungsge

leitet-subjektivem (vgl. ebd. 222).

Konkreter zeigen sich die vier Ebenen der Softwaregestaltung bei Projekten der Einfüh

rung von ERP-Standardsoftware. Dort passen Organisationen im Zuge der Implemen

tierung den Standard an, nehmen Einstellungen vor oder erweitern ihn. Es findet Soft

waregestaltung statt. Es gibt einige Forschungsarbeiten, die IT-Projekte zur Einführung
von ERP-Software untersuchen (bspw. Light/Wagner 2006, Svejvig/Jensen 2013, Conrad
2017). Auch sonst spielen IT-Projekte in der IT-Arbeit eine Rolle: so beim Thema Internet
of Things (IoT) (vgl. Ziegler 2020: 225, 259) oder bei Firmenkooperationen (vgl. Kalkow

ski/Mickler 2015: 221ff.).
Hohlmann geht tiefergehend darauf ein, wie die Softwaregestaltung des ERP-Stan

dards von SAP über das Implementierungsprojekt hinaus organisiert ist:

1. Ablauf: Zum einen bestimmt das IT-Projekt zur Einführung der ERP-Software selbst
den Ablauf. Zum anderen sind die während und danach existierenden Gestaltungs

netzwerke die Basis des Ablaufs, um abteilungsübergreifend zusammenzuarbeiten
und die Standardsoftware anzupassen, einzustellen, zu erweitern (vgl. Hohlmann
2007: 353).

88 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

2. Beziehungen jenseits bestehender Hierarchien und abteilungsübergreifend: Die Ge

staltungsnetzwerke entstehen aus dem Projektteam der SAP-Einführung innerhalb

der Firmen und untergraben alte Hierarchien. Es entstehen neue interdiszipli

näre Netzwerke, wobei für deren Macht Wissen und Expertise entscheidend sind

(vgl. ebd. 359f.). Die interdisziplinären Wissensbestände betreffen die anwenden

de Organisation, die fachlichen Prozesse und die ERP-Software selbst. Erst die

drei Wissensbereiche zusammengenommen10 ermöglichen eine Anpassung der

Software (vgl. ebd.: 55).

3. Software: Insgesamt sieht Hohlmann eine enge Kopplung (ebd. 34f.) von Software

und Organisation. Sie spricht von einem eng gekoppelten soziotechnischen Gesamt

system (ebd. 368), weil nicht nur das ERP-System für die Arbeit in den Organisatio

nen zentral wird, sondern weil IT- und Fachwissen nun Hand in Hand gehen und

die anwendenden Organisationen neue, softwarebezogene Rollen wie Key User:in

nen etablieren müssen (s.u.).

4. Wissensarbeitende: Die neue Qualifikation, zwischen System und Fachabteilung zu

vermitteln, verkörpert exemplarisch die Rolle Key User:in, die sich dadurch von an

deren Anwendenden abhebt (vgl. ebd. 348). Sie wendet eine Software nicht nur an.

Sie nimmt darüber hinaus Einstellungen an ihr vor, gibt neue Anforderungen für

die Software auf oder arbeitet direkt mit Programmierenden zusammen. Gleich

zeitig kennt sie sich fachlich in Bezug auf einen konkreten Anwendungsbereich gut

aus und arbeitet eng mit den Anwendenden zusammen. Key User:innen agieren als

Übersetzer:innen, und indem sie an der Softwaregestaltung mitwirken, halten sie

die Software auch bei veränderten Anforderungen durch die Umwelt der Organisa

tion oder der Anwendenden einsatzfähig und die Organisation effizient (vgl. ebd.

340, 357, 370).

Letztendlich zeigt sich, dass Organisationen mit einem ERP-System nicht nur ein neues

Werkzeug in Betrieb nehmen. Langfristig ändert sich ihre interne Organisation, um die

se Software zu gestalten. Damit beschreibt Hohlmann sowohl die Etablierung (via Pro

jekt) als auch die Folgen von Softwaregestaltung: und zwar nicht nur für die Anwenden

den, sondern auch jene Folge, dass in den anwendenden Organisationen neue Rollen,

Gestaltungsnetzwerke und Wissensbestände entstehen.

Um diese vier Ebenen allgemeiner zu fassen, erarbeitet der nächste Abschnitt eine

konzeptionelle Beschreibung des Netzwerkes unabhängig von Matrixorganisation und

Projektarbeit, um so den unterschiedlichen Konstellationen zu entsprechen, in denen

die Softwaregestaltung in den Fallstudien stattfindet.

6.4. Soziotechnische Netzwerkarbeit: die Ebenen Beziehungen, Software
und Wissensarbeitende

Die Matrixorganisation und IT-Projekte sind lediglich eine unter mehreren Möglich

keiten, Softwaregestaltung zu organisieren. Für einen allgemeinen konzeptionellen

10 Sie nennt die Kombination Integrationswissen.

6. Softwaregestaltung – konzeptionelle Grundlagen 89

Rahmen, der für alle Fallstudien gleichermaßen gilt, schlägt dieses Kapitel das Konzept
der soziotechnischen Netzwerkarbeit vor. Dafür arbeitet der Abschnitt im Folgenden
anhand von Forschungsergebnissen für die Netzwerkebenen Beziehung, Software und
Softwaregestaltende heraus, wie sie zur Transformation der Arbeitskraft durch die
Vermittlung von Handlung und Struktur und damit zur Kontrolle von Arbeit beitragen.
Abschließend folgt eine Analyse einer spezifischen Eigenschaft von Netzwerkarbeit:
dass die unterschiedlichen Ebenen flexibel und je Kontext unterschiedlich zur Transfor

mation der Arbeitskraft beitragen.
Für die konzeptionelle Ausarbeitung der Ebene Ablauf konnten keine nützlichen Be

züge in der Forschung gefunden werden.

6.4.1. Organisationale und interpersonelle Beziehungen

Industriespezifische Softwaregestaltung findet zwischen Einzelpersonen, innerhalb
oder zwischen Organisationseinheiten statt. Für die soziotechnische Netzwerkarbeit
sind diese interpersonellen und organisationalen Beziehungen zentral. Einerseits setzt
die soziotechnischen Netzwerkarbeit voraus, dass ein bestimmter Grad an Kooperation
in den interpersonalen und organisationalen Beziehungen vorhanden ist. Andererseits
ist es Teil der soziotechnischen Netzwerkarbeit, kooperative Beziehungen zu erhal

ten. Wann organisations- und abteilungsübergreifend kooperative Zusammenarbeit
gelingt, was Voraussetzungen und Hindernisse sind, zeigen Forschungsarbeiten zur
kooperativen Zusammenarbeit anhand von drei Punkten11:

1. Wenn IT-Abteilungen (ob in- oder outgesourced) mit den Fachabteilungen koopera

tiv zusammenarbeiten (6.4.1.1).
2. Wenn trotz unterschiedlicher Interessen und Wissen zwischen IT-DL, IT-Abteilung

und anwendenden Organisationen Strukturen zur kooperativen Zusammenarbeit
bestehen (6.4.1.2).

3. Wenn über formale Netzwerkstrukturen wie Projekte hinaus interpersonale Bezie

hungen bestehen, die auf Vertrauen, Reziprozität und Kooperation basieren, und
zwar sowohl für gemeinsame strategische Entscheidungen als auch für die opera

tive Zusammenarbeit (6.4.1.3).

6.4.1.1. Arbeitsteilung zwischen Anwendung und Entwicklung – die IT-Abteilung
Wenn IT-Projekte in Unternehmen stattfinden, ist entweder eine IT-Abteilung oder ein
IT-DL involviert. In den Fallstudien des Empirie-Kapitels ist das immer der Fall. Die
Forschung weist darauf hin, dass eine IT-Abteilung nicht automatisch kooperativ mit

11 Phänomene, die eine Besonderheit der Wertschöpfungskette der Softwareentwicklung darstel
len, aber auf die der in der Empirie untersuchten Softwaregestaltungsprozess keine direkte Aus
wirkung hatte, lässt die Untersuchung außen vor: so wie z.B. den Lock-in-Effekt durch die Im

plementierung einer Standardsoftware, d.h. eine starke Abhängigkeit vom softwareanbietenden
Unternehmen (vgl. Hohlmann 2007: 334), aber auch den Lebenszyklus einer Software, der eine
Abhängigkeit der Anwenderorganisation von der weiteren Wartung, von Updates und der Wei

terentwicklung durch die Softwarefirma erzeugt.

90 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

den Fachbereichen zusammenarbeitet. Es gibt unterschiedliche Organisationsformen

der IT-Abteilung – mal weniger und mal mehr hierarchisch oder marktförmig.

Das Forschungsgebiet, das die Beziehung zwischen IT- und Fachbereich untersucht,

nennt sich IT-Alignment. Dabei geht es nicht nur um die Entwicklung einer einzelnen

Lösung, sondern um die Organisation einer ganzen IT-Landschaft, d.h. eine Vielzahl an

Softwarepaketen und Hardware. Durch das IT-Alignment soll verhindert werden, dass

IT-Lösungen »not effectively support organizational activities and are more prone to

miss business innovation opportunities provided by new information technologies« (Val

orinta 2011: 47) – ob intern oder ausgelagert. Auch in der Forschung zum IT-Alignment

sind es nicht Märkte oder Hierarchien, welche die interdisziplinäre Zusammenarbeit

zwischen IT und Fachbereichen dominieren sollten. Vielmehr sind für eine kooperative

Zusammenarbeit ein regelmäßiger Austausch zwischen IT und Fachbereichen, Co-Loka

tion, gemeinsame Planung, gemeinsame Projekte und Bildung von sozialem Kapital hilf

reich (vgl. Reich/Benbasat 2000, Chan/Reich 2007, Masak 2006 Schlosser et al. 2015).12

Dazu gehört, dass Führungskräfte wie Chief Information Officer (CIO) sowohl an Prakti

ken der eigenen IT-Einheit als auch an jenen der Fachbereiche teilnehmen (vgl. Valorinta

2011: 50). IT-Projektmanagende sind ein interdisziplinäres Bindeglied und es ist wichtig

für den Erfolg von Projekten, dass sie über IT- und Fachwissen verfügen. Es ist vom hy

briden IT-Projektmanagement die Rede:

»[A] hybrid IT PM whose expertise includes technologies and techniques used on
the project and who also possesses relevant knowledge of organizational operations,
in-depth knowledge of the functioning of user departments, or expertise in the
specific application area of the system« (Ko/Kirsch 2017: 318).

Untersuchungen zeigen Fälle, in denen IT-Abteilungen die Kooperation erschweren

oder nicht auf Kooperation ausgerichtet sind. Guillemette & Parè (2012) machen fünf

verschiedene Typen aus, die unterschiedlich eng mit den Fachabteilung zusammenar

beiten. Statt auf langfristige Beziehungen zu setzen, die förderlich für den Wissens

austausch wären, entscheiden manche Firmen, ihre IT marktförmig zu organisieren.

IT-Sourcing-Abteilungen prüfen dann stetig, was Firmen extern an IT-Arbeit einkaufen

und was sie selber machen. Das betreiben die Firmen so intensiv, dass gar die Rede von

der »Industrialisierung des IT Sourcings« (von Jouanne-Diedrich et al. 2005) ist. Dabei

gibt es Forschung, die zeigt, dass, wenn Firmen komplexe IT-Wissensarbeit auslagern,

sie dann in die interne IT-Organisation investieren müssen, damit die Zusammenar

beit funktionieren kann (vgl. Tiwana/Kim 2016). Erschweren können die Kooperation

auch zentralisierte IT-Abteilungen, die zentral Kooperationen steuern wollen und so

dezentralen Initiativen in Organisationen entgegenstehen. Alternativen dazu sind de

zentralisiert oder föderal organisierte IT-Abteilungen (vgl. Sesay/Ramirez 2016). Laut

Masak ist die IT in Firmen meist föderal organisiert (vgl. Masak 2006: 209) und somit

12 Eine Studie hat herausgefunden, dass es eine Kluft zwischen »talk« und »action« bei IT-Projekten
gibt, was die Kommunikationsprozesse zwischen IT und anderen Abteilungen anbelangt. Auch
wenn sie von der Projektmethode vorgesehen waren und Projektleitende sich öffentlich hinter
die vorgesehenen Kommunikationsprozesse stellen, wurden sie nicht eingehalten (vgl. Monteiro

de Carvalho 2013).

6. Softwaregestaltung – konzeptionelle Grundlagen 91

von einer Zentrale unabhängiges Arbeiten Teil ihrer Organisation. Wie auch immer die
IT-Abteilung organisiert ist: Die Softwaregestaltung muss mit den verschiedenen Typen
von IT-Organisationen zurechtkommen. Hürden durch die hierarchische oder markt

förmige Organisation gilt es zu überwinden, soll die Kontrolle der Softwaregestaltung
gelingen.

6.4.1.2. Übergreifende Zusammenarbeit trotz unterschiedlicher Interessen
Letztendlich hängt die kooperative Zusammenarbeit davon ab, inwiefern Fach- und
IT-Abteilungen, EVU und IT-DL bzw. Softwarefirmen unterschiedliche Interessen
überwinden. Innerhalb von Konzernen gibt es zumindest Hierarchien, die den Abtei

lungen übergeordnet sind und die Zusammenarbeit zwischen diesen steuern können
(z.B. ein Lenkungskreis aus Projektleitung und Abteilungsleitung bei einem IT-Projekt).
Zwischen Organisationen ist es schwieriger, weil die Organisationen nicht immer auf
Augenhöhe agieren, wie die im Folgenden zitierte Forschung zeigt.

Es gibt ein umfangreiches Forschungsfeld zu den unterschiedlichen Steuerungs

formen in Organisationsnetzwerken und entsprechende unterschiedliche Begriffe wie
Netzwerk-Governance, Meta-Organisation oder Netzwerk-Orchestrierung (vgl. Helfen/
Wirth 2020: 14ff.). Wichtig für die Untersuchung hier ist, dass die Forschung feststellt,
dass sich Steuerungsstrukturen im Zeitverlauf verändern und ein Ergebnis dynamischer
Lernprozesse sein können. Dafür sind allerdings Kapazitäten für Wissensaustausch und
Reflexion zwischen Firmen notwendig, damit die Organisationen die jeweils passenden
organisationsübergreifenden Steuerungsstrukturen finden können (vgl. Mola et al.
2017: 1293, van Fenema/Keers/Zijm 2014: 205). Solche Lernprozesse zeigen einzelne
Fallstudien des Empirie-Kapitels.

Dabei muss für eine längerfristige Kooperation deren Steuerung mit Konflikten
zurechtkommen, die aus unterschiedlichen Interessen und ungleichen Wissensbestän

den entstehen13. Kaniadakis arbeitet heraus, wie Machtungleichgewichte entstehen,
wenn die anwendende Organisation die Anpassungen einer Software einer darauf
spezialisierten Firma überlässt. Die Unternehmen müssen dann Wege finden, die ex

ternen kooperierenden Organisationen zu kontrollieren und sich an der Umsetzung zu
beteiligen, auch wenn sie über weniger Wissen verfügen (vgl. Kaniadakis 2012: 270). Un

gleichgewichte bei der Auslagerung von IT-Arbeit entstehen u.a. dadurch, weil es bei der
auslagernden Organisation intern zu Kompetenzverlust, Kontrollverlust, einem Abbau
des organisationalen Lernens oder der Innovationskapazitäten kommt (vgl. Miozzo/
Grimshaw 2005: 1424). In der Untersuchung von Peled (2001) gelingt die Kontrolle der
Expert:innen gar nicht mehr und es entsteht ein »consultant-centered-regime«, weil die
öffentliche Verwaltung im IT-Bereich Kompetenzen ausgelagert hat und damit Wissen
und Kontrolle verliert. Sie ist von anderen abhängig, um ihre Leistung zu erbringen:
»Government authority is increasingly being shared with its proxies« (Peled 2001: 509).
Auch Flecker/Holtgrewe ziehen den Schluss, dass es bei Auslagerung von IT-Wissen
»langfristig zu einer Verschiebung der Machtbeziehungen zugunsten der privaten
Dienstleister« (Flecker/Holtgrewe 2008: 314) kommt. Zwischen IT-Dienstleistenden und

13 In der Fallstudie KOOP2 des Empirie-Kapitels zeigt sich, was passiert, wenn das nicht gelingt.

92 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

den Auftraggebenden bzw. der Konzernzentrale kann es zu Machtkämpfen kommen

(vgl. Mezihorak 2018: 825ff.).

Machtkämpfe aufgrund von unterschiedlichem Wissen und Spezialisierungen exis

tieren auch innerhalb von Firmen. Es ist nicht ausgeschlossen, dass Beschäftigte die IT

nutzen, um gegen die Organisation zu arbeiten (vgl. Symon 2000: 400ff.). Silva hat allge

mein für IT-Systeme beschrieben, dass die interne IT-Abteilung Machtquellen wie spe

zifische IT-Ressourcen sowie Wissen besitzt und Unsicherheit erzeugen kann, die nur

sie selbst aus der Welt zu schaffen fähig sind. Zum Beispiel kreieren schlecht dokumen

tierte Systeme Abhängigkeit (vgl. Silva 2005: 56). Ganz allgemein ist die Einführung und

Entwicklung von Software ein Schauplatz für Mikropolitik (vgl. Ortmann et al. 1990).

Wie der nächste Punkt zeigt, spielen für eine kooperative Zusammenarbeit nicht nur

Beziehungen auf der Meso-, sondern auch auf der Mikro-Ebene eine Rolle.

6.4.1.3. Netzwerkstrukturen reichen nicht: Vertrauen, Reziprozität
und Kooperationsbereitschaft

Was bei Netzwerken wie Projekten allgemein und der Softwaregestaltung im Besonde

ren eine große Rolle spielt, sind die direkten Kontakte zwischen den Beschäftigten über

ihre jeweiligen Organisationen, Abteilungen oder Teams hinweg. Die hier in der Folge

zitierten Forschungsarbeiten zeigen, dass rein formale Abläufe oder formal definierte

Stellen für kooperative Zusammenarbeit nicht ausreichen. Gleichzeitig zeigen Untersu

chungen, dass kooperative Beziehungen schnell wieder verloren gehen können, wenn die

Praxis der Kooperation, des Vertrauens und der Reziprozität nicht mehr besteht. Ihre Er

wartungen müssen die Beschäftigten zwischen Organisationen oder Organisationsein

heiten wie Teams oder Abteilungen immer wieder abgleichen – bei strategischen Fragen

und für die operative Zusammenarbeit.

Kooperative Beziehungen zwischen Beschäftigten, die Teil unterschiedlicher Or

ganisationseinheiten sind, stellen sich nicht automatisch ein, nur weil beispielsweise

Netzwerkstrukturen wie Projekte vorhanden sind. Eine Studie kommt zu dem Schluss,

dass Projektnetzwerke, die mit hierarchischen Organisationsformen koexistieren müs

sen, nur eine beschränkte Dynamik für kooperatives Handeln entwickeln (vgl. Rüegg-

Stürm/Young 2001). Diese entsteht erst durch individuelle Kooperationsbereitschaft,

Sozialkompetenz, breit verankerte Verantwortungsbereitschaft und verändertes Füh

rungsselbstverständnis/-verhalten. Dezentrale, teamorientierte Arbeitsformen brau

chen Zeit, vertikale und horizontale Kommunikationsprozesse entstehen erst zögerlich.

Am schwierigsten ist das partnerschaftliche und verbindliche Zusammenarbeiten (vgl.

ebd. 198).

Dass Zeit in Beziehungen eine Rolle spielt, hat bereits Powell festgestellt: Erst mit

der Zeit entsteht aus reziproken Beziehungen und geteilten Interessen Vertrauen (vgl.

Powell 1990: 305). Für Adler und Heckscher basiert Vertrauen auf »the degree to which

members of the community believe that others have contributions to make towards this

shared creation« (Adler/Heckscher 2006: 21) und damit auf Annahmen über die Zukunft.

Mit der Zeit wissen beispielsweise Zuliefererorganisationen, was die belieferten Unter

nehmen wollen, und es sind keine Absprachen mehr notwendig (vgl. Uzzi 1997. 46). Es

gibt Verhandlungsroutinen, man passt sich gegenseitig an und macht mehr, als im Ver

trag steht (vgl. ebd. 47).

6. Softwaregestaltung – konzeptionelle Grundlagen 93

Ein anderer Weg zu kooperativen Beziehungen im Arbeitsalltag ist jener, den Bolte
und Porschen mit der »Organisation des Informellen« beschreiben. Job Rotation, Hospi

tation, Promotor:innen oder Trainee-Programme für Einsteiger:innen stiften informel

le Beziehungen in Organisationen (vgl. Bolte/Porschen 2007). Dadurch entstehen Netz

werke innerhalb von Firmen, ohne dass eine größere Reorganisation notwendig ist.
Gerade bei der Einführung oder der Gestaltung von Software ist besonders viel

Vertrauen notwendig. Beschäftigte werden IT-Berater:innen mit Misstrauen begegnen,
wenn sie um ihre gewohnte Arbeitsweise fürchten müssen. Konflikte bei Änderungen
an IT-Systemen sind etwas Besonderes. Verändert sich die Arbeit der Betroffenen, kann
das einen Angriff auf deren Fachwissen darstellen (vgl. Boonstra 2006, Boonstra/de
Vries 2015).

Doch auch wenn vertrauensvolle und kooperative Beziehungen wichtig sind, stellen
sie sich nicht immer ein. Die Forschung stellt fest, dass in Kooperationsnetzwerken ge

nerell ein geringes Vertrauen und eine geringe Loyalität besteht (vgl. Grimshaw et al.
2002: 200, vgl. Brinkmann/Dörre 2006: 139, Howcroft/Richardson 2012: 122, vgl. Holt

grewe 2014: 17ff.). Bei einem Digitalfunkkonsortium mehrerer Firmen war das Problem,
dass diese selbst explizites Wissen nicht geteilt haben, weil man Angst hatte, Schlüssel

technologie zu verlieren, und Ingenieur:innen ihrer jeweiligen Firma loyaler als dem Ver

bund waren (vgl. Hirschfeld 2000: 268 und 277). Insbesondere marktförmige Beziehun

gen zwischen Anwendung und Entwicklung behindern die Zusammenarbeit, untermi

nieren Vertrauen und machen so den notwendigen Wissensaustausch schwer (vgl. Felin/
Zenger/Tomsik 2009: 557).

6.4.2. Software kontrolliert und strukturiert das Netzwerk

Der Arbeitsprozess der Softwaregestaltung basiert in zweifacher Hinsicht auf Software:
Sie ist sowohl Arbeitsmittel als auch Arbeitszweck. Die Softwaregestaltung ist Teil des
Produktionsprozesses der Softwareentwicklung, der digitale Bestandteile herstellt und
montiert.14 Bei der soziotechnischen Netzwerkarbeit spielt Software eine besondere Rol

le, wie es dieser Abschnitt ausgehend von unterschiedlichen Forschungsbezügen zeigt:

1. Die Kontrolle durch Software beschränkt sich nicht auf Standardisierung, Forma

lisierung und Überwachung. Vielmehr ist bei der Softwaregestaltung ihre koordi

nierende, kooperationsermöglichende und wissensaktivierende Funktion wichtig15
(6.4.2.1).

2. Die Softwarearchitektur beeinflusst die Arbeitsteilung und den Arbeitsprozess der
Softwaregestaltung (6.4.2.2).

14 Was die Untersuchung nicht näher betrachtet, ist die Rolle der IT als Infrastruktur: Breitband-
und firmeninterne IT-Netzwerke sind zwar Basis der soziotechnischen Netzwerkarbeit. Sie sind
aber in allen Fällen gleich, machen keinen Unterschied bei der Transformation der Arbeitskraft
und sind keine Besonderheit der Softwaregestaltung.

15 Was diese Arbeit unter Kontrolle versteht, wurde bereits in der Einleitung und unter 6.1 als in der
Arbeitssoziologie gängiges Transformationsproblem beschrieben.

94 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Software ermöglicht es, dass Spielräume für Subjektivität und Autonomie wie auch ein

geschränkte Handlungsspielräume gleichzeitig existieren. Sie richtet den Beitrag der

Einzelpersonen auf den Organisationszweck aus und hilft, ihre Arbeitskraft zu transfor

mieren. Das bewirkt sie selbst dann, wenn die Arbeit der Beschäftigten nicht durchge

plant ist. Die softwaretechnische Arbeitsumgebung ermöglicht eigenständiges Arbeiten

mit nur wenig Kontrollaufwand für das Management.

Natürlich setzen Organisationen Software auch als Werkzeug zur Kommunikation

ein (E-Mails, Chatprogramme etc.). Das ist jedoch kein gesondertes Thema der Unter

suchung. Der Abschnitt über die soziotechnische Flexibilität, in der die vier Netzwer

kebenen zur Kontrolle beitragen, greift das Thema aber auf (6.4.4).

6.4.2.1. Software kontrolliert die Softwaregestaltung:
einschränkend und ermöglichend

Software ist heutzutage zwar in vielen Organisationen so zentral für die Prozessgestal

tung wie Fließbänder in manchen Fabriken. Allerdings ist ihre Form der Kontrolle bei

der soziotechnischen Netzwerkarbeit nicht identisch mit diesen, weil sie sowohl Autono

mie als auch Fremdbestimmung ermöglicht. Die soziotechnische Netzwerkarbeit zeich

net aus, dass bei ihr ein und dieselbe Software zugleich a) Wissens- und Lernprozesse

in Gang setzen, b) den Arbeitsablauf vorgeben und c) die Arbeit zwischen den Beteilig

ten koordinieren helfen kann. Dabei verteilen sich die aufgezählten Eigenschaften von

Software (a, b, c) im Arbeitsprozess der Softwaregestaltung auf verschiedene Software

lösungen (wie Ticketsystem, ERP-System, Projektmanagementlösungen, Chatprogram

me, E-Mail-Programme etc.) oder Teile einer Softwarelösung. Viele Werkzeuge der Soft

waregestaltung sind softwaretechnisch abgebildet – ob Projektpläne in Excel, Anforde

rungen im Ticketsystem oder Dokumentationen im MS Sharepoint.

Ermöglichen und Koordinieren: Software als zentrales Organisationsobjekt
Bei der Softwaregestaltung trägt Software vor allem zur Kontrolle bei, indem sie die ko

operative Wissens- und Kommunikationsarbeit ermöglicht und weniger, indem sie diese

einschränkt. Im Folgenden verdeutlichen einige Forschungsarbeiten zu IT-Arbeit, was

damit gemeint ist, dass Software nicht nur kontrolliert durch Überwachen, Standardi

sieren und Formalisieren.

Darr bezieht sich auf Rennstam (2012), wenn er in seiner Untersuchung herausfin

det, dass Software auch »interactive relationships between itself and knowledge workers

such as development engineers« (Darr 2019: 892) fördert. Software entlockt direkt in
der Interaktion zwischen Software-Objekt und Wissensarbeitenden das Wissen und

regt Letztere an, sich zu engagieren. Diese Beziehung zwischen Software und den

Wissensarbeitenden ist zentral für die Kontrolle – und weniger die Beziehung zwischen

Management und Arbeitenden (vgl. Rennstam 2012: 1084f.). Rennstam bezeichnet das

als Objekt-Kontrolle, die erklären kann, wie Software Arbeit kontrolliert, die nicht so

einfach bürokratisch oder hierarchisch kontrolliert werden kann oder muss:

»One main feature of object-control is precisely that it interrupts the formal hierarchy,
allows for rearrangement on the basis of knowledge relationships, and invites organi
zational members to make use of their knowledge. Instead of employing bureaucracy

6. Softwaregestaltung – konzeptionelle Grundlagen 95

as a guide for action, or electronic systems for monitoring and correcting deviances,
object control involves the creation of a temporary community whose trajectory is
guided by various knowledge relationships with the object.« (Rennstam 2012: 1084)

Ein Beispiel aus der Wissenschaft wäre die Software zur qualitativen Analyse MAXQDA:
Mehrere Wissenschaftler:innen können an einem Projekt arbeiten. In der Interaktion
mit der Software pflegen sie Daten und werten sie aus. Das machen sie ohne die Inter

vention einer Führungskraft.
Für Darr (2019) müssen Arbeitende die Normen des Softwareobjekts nicht internali

sieren. Es reicht, wenn sie durch die Interaktion mit dem Wissensobjekt dessen Normen
in der Praxis verwirklichen. Indem man sich einlässt auf diese Objekte, kann man nicht
anders, als deren Normen zu akzeptieren und zu verwirklichen. Hier kommt wieder, wie
schon bei Rennstam, einer Eigenschaft dieser Form der Kontrolle eine besondere Bedeu

tung für die Wissensarbeit zu: Autonomie, zu der auch die Möglichkeit der Kritik gehört,
ist Teil der Objektbeziehung und fördert das Lernen.

»[W]orkers must retain a certain amount of agency, in the form of public critique and
even occasional resistance.« (Darr 2019: 893)

Das Konzept der Objektkontrolle schließt sich damit dem Ansatz der Affordances an, der
Software ebenfalls weder als etwas rein sozial Konstruiertes noch als etwas das Handeln
Determinierendes betrachtet. Die »affordance perspective recognizes how the material

ity of an object favors, shapes, or invites, and at the same time constrains, a set of specific
uses« (Zammuto et al. 2007: 752). Für andere Autoren gilt dies selbst für ERP-Systeme,
wo »technology’s consequences for organizations are enacted in use rather than embed

ded in technical features« (Boudreau/Robey: 2005: 14).
Um zum obigen Beispiel zurückzukommen: Kritik und gemeinsame Diskussion der

Beteiligten über die Funktionsweise von MAXQDA oder über die von ihnen gemachten
Eingaben oder Analysen kann den Arbeitsfortschritt befördern. Dafür reicht es aus, wenn
sie ohne Führungskraft mit der Software und untereinander interagieren. Dabei ent

scheidet sich, welche Funktionalitäten des Programms sie wie nutzen.
Auch andere Forschungsarbeiten zeigen die koordinierende Funktion von Soft

ware16. Sie ist das gemeinsame Bezugsobjekt der Beschäftigten. Das können verwendete
Hilfsmittel oder Werkzeuge (wie Ticketsysteme) oder die entwickelte Software selbst
sein. In Studien zur Softwareentwicklung vermitteln solche Software-Objekte, unter

stützen den Wissensaustausch und zeichnen sich durch ihre Interpretationsdürftigkeit
aus (vgl. Barrett/Oborn 2010: 1200ff.). Allgemein können Software-Objekte zwischen
IT-Abteilungen und den Fachbereichen vermitteln, z.B. indem Mitarbeitende in Gesprä

chen auf sie Bezug nehmen. Für die Softwaregestaltung ist dabei besonders relevant,
dass das speziell bei interdisziplinärer Arbeit passiert. Dort fungieren die Objekte als
»translation and transformation devices across various thought worlds« […] »they make

16 Die zitierten Quellen schreiben vom Boundary-Object oder IT-Artefakt. Für die Argumentation
sind die Unterschiede zwischen den Konzepten nicht relevant und so wird allgemein von Objekt-
Kontrolle gesprochen.

96 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

cross disciplinary work possible« (Nicolini/Mengis/Swan 2012: 624). Eine andere Un

tersuchung zeigt, wie die entwickelte Software als Diskussionsgegenstand dient, auf

den sich die Beteiligten beziehen (vgl. Carugati et al. 2018: 31). Auf ihr basieren wichtige

Prozesse der Softwareentwicklung wie Einspruch, Widerspruch und Konsensbildung

(vgl. ebd. 29). Eine weitere Untersuchung zeigt, wie sich in der fertigen Software dann

die »negotiated, embedded and sedimented sets of rules« (Ponte/Rossi/Zamarian 2009:

319) der gemeinsamen Zusammenarbeit wiederfinden.

Wie Software die Zusammenarbeit anregt und koordiniert, zeigt sich besonders an

der gemeinsamen Arbeit an (Quell-)Texten. Der Quellcode, die Kommentare und Doku

mentationen in der Software machen die Koordination mit anderen möglich, ohne di

rekt mit diesen kommunizieren zu müssen17. Die Interaktion mit anderen basiert auf

Spuren, die diese hinterlassen haben (vgl. Bolici/Howison/Crowston 2009). Dies funk

tioniert bspw. dann, wenn durch Lesen des Quellcodes oder einer Anforderung klar wird,

was noch zu tun ist oder ob Voraussetzungen für die Umsetzung gegeben sind. Dies ge

schieht, ohne dass Programmierende explizit erzählen, was sie gemacht haben (vgl. Bo

lici/Howison/Crowston 2016: 19).

Einschränken und Überwachen: Software gibt Rollen, Abläufe und Eingabemöglichkeiten

vor und liefert Kennzahlen
Trotz selbstständigen Arbeitens sollte nicht unterschlagen werden, dass Software die

Handlungsspielräume einschränkt. Das passiert aber 1. nicht wie am Fließband, sondern

2. indem Software Vorgaben macht, soziale Strukturen in soziotechnische umwandelt

und Beschäftigte und Abläufe überwacht.

Inwiefern unterscheidet sich 1. die technische Kontrolle bei der Softwareentwicklung

von jener durch ein Fließband? Als klassisches Beispiel für technische Kontrolle gilt für

Edwards (1981) das Ford-Montageband: Es legt auszuführende Arbeitsschritte, deren Ab

folge und das Arbeitstempo fest und löst damit das erste Kontrollproblem von Arbeits

leitung und -anweisung (vgl. ebd.: 131). Durch zusätzliche Verwendung von IT kommt

es zur Ausweitung der technischen Kontrolle durch »Feedback-Systeme« (z.B. wenn Ar

beitende Rückmeldung bekommen, dass ein Arbeitsschritt abgeschlossen ist) (vgl. ebd.

136). Damit ist das zweite Kontrollproblem der Überwachung gelöst (vgl. ebd. 138). Aus

Edwards Sicht wird das dritte Kontrollproblem (Disziplinierung und Belohnung) nicht

durch die technische Kontrolle gelöst (vgl. ebd. 139).

Wie schon unter 5.2.3 diskutiert, gibt es keine Best Practice, was die Kontrolle von

Softwareentwicklung anbelangt. Es gibt sehr unterschiedliche Arbeits- und Organisa

tionsformen. Grundsätzlich geben in der Softwareentwicklung die Softwarewerkzeuge

nur den Rahmen vor. Klar grenzen z.B. Andrews et al. (2005) die Arbeit in der Software

entwicklung von Fließbandarbeit ab, weil weder eingesetzte Methoden zur durchgehen

den Standardisierung beitragen noch die Abfolge der einzelnen Arbeitsschritte fest ge

taktet ist (63f.).

»At every stage human rather than machine intervention predominates.« (ebd.: 66)

17 Die Autoren nennen das »stigmergic coordination«.

6. Softwaregestaltung – konzeptionelle Grundlagen 97

Anders als am Fließband gibt die Technik keinen festen Takt vor. Wenn sie es tut, dann
durch soziale Organisationsformen wie Scrum, in denen es Sprints gibt, deren Zeiträu

men durch Menschen festgelegt werden. Abfolge und Tempo sind dann aber nicht durch
Technik vorgegeben, vor allem nicht, wie lange man für einen Arbeitsschritt (z.B. die Pro

grammierung einer Methode) braucht. Die Menschen müssen priorisieren, Änderungen
am Quellcode oder Tests freigeben. In zwei Fallstudien, die Barrett in ihrer Untersu

chung erforscht hat, haben die Programmierenden ihre Zeit selbst in der Hand und nur
die Deadline war direkt vom Management kontrolliert (vgl. Barrett 2005: 89).

Statt wie ein Fließband schränkt 2. Software die Arbeit der Softwaregestaltenden an

ders ein: durch a) Vorgaben machen, b) Abläufe integrieren, c) soziale Strukturen soft

waretechnisch zu stützen und d) Arbeit zu überwachen.
Zu a): Software kontrolliert, indem sie vorgibt, wie ein Beitrag und welcher Beitrag

zu leisten ist. Allgemein müssen Anwendende (auch von Werkzeugen für die Software

gestaltung) die Programmlogik nachvollziehen und sich mit den von der Software er

warteten Verhaltensweisen auseinandersetzen (vgl. Degele 2000: 67f.). Sie müssen sich
an die in Software fixierten Regeln halten (vgl. Heidenreich/Kirch/Mattes 2008: 7). Dabei
kann Software zu einer erhöhten Rigidität der Formalisierung führen, indem sie Arbeits

schritte als alternativlos vorgibt, sie detaillierter und umfassender verregelt, vorstruktu

riert und systematisiert (vgl. Schaeffer/Funken 2008: 13f.). So gibt sie z.B. über Eingabe

masken vor, was Anwendende in ein Ticketsystem eingeben können, welche Mitarbei

tende es bearbeiten und an welche Teams in der IT-Abteilung die Tickets weitergeleitet
werden können.

Zu b): Ganz allgemein ermöglicht IT eine Prozessorientierung sowohl im Unterneh

mensnetzwerk als auch in einer vermarktlichten Organisation (vgl. Sauer 2018: 196). Der
oder die Einzelne und sein Input in die Software sind in einen digitalen Prozess ein

gebunden. Das muss aber nicht mit einer durchgetakteten, formalisierten Anwendung
einhergehen. Bei komplexen Aufgaben formalisieren Unternehmen Zielparameter und
erwarten von den Anwendenden Problemlösungen und strukturierende Arbeit, mit der
sie die Lücke im digitalen Prozess füllen (vgl. Kleemann/Matuschek 2008).

Neben der Vorgabe durch Software, wie Beschäftigte einen Beitrag und welchen Bei

trag sie leisten können, macht IT (Hardware und Software) c) im Allgemeinen sozia

le Strukturen starrer (vgl. Mutch 2010). So fixieren die Benutzendenrollen in der Soft

ware die sozialen Rollen oder der Programmablauf von ERP-Software die Arbeitsrouti

nen softwaretechnisch. Das heißt, soziale Organisationselemente wie Rollen oder Rou

tinen bekommen (software-)materielle Bestandteile (vgl. Volkoff et al. 2007: 840f.). Rou

tinen und Rollen werden soziotechnisch: Sie existieren in der Software und der sozialen
Organisation. Bei einer angepassten ERP-Standardsoftware für eine anwendende Or

ganisation spricht Hohlmann von einer engen Kopplung (ebd. 34f.) von Software und
Organisation und Brödner davon, dass diese wie »flüssiger Beton« (Brödner 2002 nach
Remer 2008: 42) in der Organisation aushärtet.

Software gibt nicht nur vor, wie Beschäftigte einen Beitrag leisten können, oder ver

wandelt soziale Strukturen wie Rollen in soziotechnische. Sie d) überwacht auch Arbeit.
Bereits Zuboff (1988) hat vom »electric panopticum« gesprochen: Kontrolle kraft Trans

parenz. Die IT gilt seit längerem als Grundlage für Gruppen, Cost- und Profitcenter etc.
Sie ermöglicht die Dezentralisierung durch Planungs-, Budget- und Kennziffernsyste

98 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

me und die Kontrolle durch Rückmeldung (vgl. Kocyba 1999: 102f.). IT-Systeme können

für das Management in Bezug auf Kontrolle das Gefühl einer kleinen Firma bewahren,

indem sie eine zentrale Datenbank für die firmenweite Auswertung zur Verfügung stel

len (vgl. Sahaym/Steensma/Schilling 2007: 867). Das gilt u.a. für die Produktion, weil

die IT deren zentrale Steuerung möglich macht (vgl. Silva 2005: 50), wie auch für einen

spanischen Energieversorger (vgl. Tsamenyi/Cullen/González 2006). Über Kennzahlen

können Organisationen Teams kontrollieren und selbstständiges Arbeiten ermöglichen.

Sie können

»zu einer orientierenden und steuernden Instanz auch im Prozess der Selbstorganisa
tion der Teams werden. Gleichzeitig vermitteln sie – im Sinne der systemischen Inte
gration des gesamten Unternehmens – zwischen der Selbstorganisation in den Teams

und der Ebene des (hierarchischen) Managements« (Boes et al. 2018: 186).

Der Studie von Boes et al. (2018) kommt hier eine besondere Bedeutung zu, weil sie auch

den Einsatz von Scrum berücksichtigt und zwei ihrer Fallstudien im Bereich Software

entwicklung liegen. Die Überwachung durch Kennzahlen ermöglicht dabei die Selbst

kontrolle des Teams und des Einzelnen.

6.4.2.2. Prägt die Organisation: die Softwarearchitektur
Software ist nicht nur wichtig für die Kontrolle der Softwaregestaltung. Sie prägt durch

ihre Architektur die Organisationsstruktur und damit die Transformation der Arbeits

kraft. Es gibt eine bereits jahrzehntealte Diskussion über das Verhältnis von Organisati

on und Softwarearchitektur. Am bekanntesten ist Conways Law. In dem Aufsatz aus dem

Jahr 1968 vertritt Conway, der sich allgemein mit »system design« von Technik beschäf

tigt, die folgende These:

»The basic thesis of this article is that organizations which design systems (in the
broad sense used here) are constrained to produce designs which are copies of the
communication structures of these organizations.« (Conway 1968: 31)

Bezogen auf die Softwareentwicklung bedeutet das, dass man »in den Strukturen des

Softwaresystems die Strukturen der jeweiligen Entwicklungsorganisation« (Masak

2006: 232) wiederfindet.

Neuere Forschung zeigt, dass Conways Law bei der Softwareentwicklung nicht im

mer zutrifft. Zudem ist dafür, wer mit wem intensiv kommuniziert, nicht nur die Auftei

lung der Software in Module oder Bausteine relevant wie bei Conways Law. Es geht auch

um Abhängigkeiten, die entstehen, wenn Firmen oder Abteilungen gemeinsam Stan

dardbausteine bzw. -module entwickeln.

Inwiefern wirkt Conways Law bei Softwareentwicklung nicht immer? Unabhängig

von Conway wird das Thema begrifflich unterschiedlich gefasst: das eine Mal als Modu

larisierung, ein anderes Mal als Spiegelung. Unabhängig davon, ob es sich um Software,

Autos oder andere Maschinen handelt, stellt eine Metanalyse aus dem Jahr 2016 fest:

6. Softwaregestaltung – konzeptionelle Grundlagen 99

»Over two-thirds (70 %) of the descriptive studies provide strong evidence of mirror

ing, 22 % provide partial support, while only 8 % do not support the hypothesis.« (Col
fer/Baldwin 2016: 710)

Das heißt also, dass sich bei 70 % die technische Architektur in der Arbeitsteilung spie

gelt. Das liegt daran, weil jene, die sich mit einem technischen Teil auskennen und Ver

antwortung dafür haben, sich irgendwie mit anderen absprechen müssen, um ihre Ar

beit zu koordinieren (ebd. 712).

»[O]rganizational ties will be dense within modules of the system where technical
dependencies are dense and sparse across modules where technical dependencies by
definition are sparse.« (ebd. 713)

Die Autoren fanden aber auch heraus, dass offene, kollaborative Projekte im IT-Bereich
die geringste Unterstützung für die Spiegelungshypothese aufweisen (ebd. 726). Sie füh

ren drei Gründe auf, die alle darauf zurückzuführen sind, dass Software digital und da

mit leichter via Vernetzung und entsprechender Entwicklungsumgebung zu organisie

ren ist.
Auch andere Untersuchungen stellen fest, dass es bei der Softwareentwicklung zur

Spiegelung kommen kann, aber nicht muss. In einer Fallstudie zeigte sich am Anfang
noch Conways Law: Eine Firma hatte Teile ihrer Softwareentwicklung ausgelagert. Weil
die Kommunikation innerhalb der Teams besser war als zwischen den Teams, gab es
je Team einen Quellcode, um den sich das Team gekümmert hat. So entwickelten sich
entsprechend drei voneinander geschiedene Systeme (Insellösungen) heraus. Doch die
Firma wollte dies unterbinden und es gelang ihr auch: Sie führte einheitliche agile Ent

wicklungsmethoden18 ein und es gab tägliche Videokonferenzen. So überwand die Fir

ma die Barrieren in der Kommunikation zwischen den Teams, was sich dann auch in der
Softwarearchitektur niederschlug. Auch wenn die Kommunikation innerhalb der Teams
weiterhin intensiver war, konnte die Firma die Folgen davon auf die Architektur (Insellö

sungen) durch aktive Intervention und Etablierung informeller Kommunikation unter

binden (vgl. Hvatum/Kelly 2005: 3f.). In einem anderen Fall (der auch nicht Teil der Col

fer/Baldwin-Studie ist) gelang dies nicht und es entstanden Insellösungen (vgl. Swan/
Scarbrough 2005: 932). Letztendlich zeigt dies, dass Software sich anders verhält als an

dere Technologien und bei ihr der Spielraum größer ist, zu intervenieren und die Spie

gelung von Architektur und Kommunikationsstrukturen der Softwareentwicklung zu
unterbinden. Zwei Autor:innen sprechen deshalb von Conways force (vgl. Hvatum/Kelly
2005), weil es weniger ein Gesetz als eine Kraft ist, welche das Verhältnis von Software

entwicklung und -architektur in eine bestimmte Richtung tendieren lässt, es aber nicht
determiniert.

Bei der Architektur spielt für die vorliegende Arbeit aber nicht nur die Aufteilung
einer Software in unterschiedliche Bausteine bzw. Module und entsprechende Schnitt

stellen eine Rolle. Es geht auch darum, ob Organisationen etwas individuell oder als

18 In diesem Fall: Extreme Programming. Eine iterative Methode der Softwareentwicklung, bei der
es wichtiger ist, eine Anforderung umzusetzen, als einem formalisierten Vorgehen zu folgen.

100 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Standard gestalten. Gestalten mehrere Organisationen oder Organisationseinheiten

wie Abteilungen gemeinsam einen Standardsoftwarebaustein, entstehen Abhängigkei

ten. Wenn alle mitgestalten wollen, muss ein Austausch darüber stattfinden, was der

Standard können soll.

In seiner Dissertation untersucht Remer die Umstellung einer Softwarearchitektur:

Statt eines großen, monolithischen Systems will die Organisation viele kleine, über de

finierte Schnittstellen flexibel aufrufbare Bausteine programmieren19. Remer stellt fest,

dass solche Architekturinnovationen Änderungen an eingespielten sozialen Beziehun

gen verlangen. So kann er zeigen, dass die Firma ein neues Gremium einrichten muss.

Dies ist notwendig, weil Anforderungen an einen Baustein mit den unterschiedlichen

Stakeholdern, die diesen Baustein nutzen, abzustimmen sind. Das ist eine Folge der Ar

chitektur: Die Fachbereiche der Firma können nicht mehr allein über ihre Software(teile)

entscheiden (vgl. ebd. 145). Die Einführung einer auf flexible Bausteine setzenden Soft

warearchitektur hat somit ihre Risiken, weil es zu komplexen organisationalen und tech

nischen Abhängigkeiten kommen kann und es schwieriger wird, über diese den Über

blick zu behalten (vgl. ebd. 168). Das heißt, hier spiegeln sich zwar einerseits die Kom

munikationsstrukturen, weil bestimmte Teams für einen Baustein zuständig sind und

sie programmieren. Andererseits gibt es auch keine Spiegelung, weil sich die Kommu

nikation für die Abstimmungen und um sich auf die Gestaltung eines (Standard-)Bau

steins zu einigen, nicht in der Softwarearchitektur niederschlägt und z.B. deren modu

lare Aufteilung ändert

So stehen die Organisationen bei der Softwaregestaltung eines Standards vor der

Wahl: Statt für Abstimmungen aufwendige Kommunikationsstrukturen zu etablieren,

lassen sich Abhängigkeiten reduzieren und eine flexible Architektur in Form einer »Lego-

Logik« (vgl. Schmierl/Pfeiffer 2005) ermöglichen, wenn sich alle Beteiligten einem Stan

dard-»Lego«-Baustein und seinen Schnittstellen unterordnen und sämtliche Kommuni

kation und sämtliches Wissen für diesen innerhalb eines Teams existiert. Eine gewisse

Flexibilität im Zusammenspiel von organisationsspezifischer Praxis und softwaretech

nischen Funktionen kann erhalten blieben, indem bspw. individuelle Einstellungen an

einem Standardsoftware-Baustein möglich sind (vgl. Wolff et al. 1999: 303), wie es z.B. für

ERP-Systeme typisch ist. Dann besteht keine Abhängigkeit, weil sich für die individuel

len Einstellungen die anwendende Organisation nicht mit anderen abstimmen muss.

Ob Conways Law bewusst zu unterbinden oder Abhängigkeiten bei Standardbaustei

nen zu managen: Für die soziotechnische Netzwerkarbeit ist die Softwarearchitektur

entscheidend, weil sie die Organisation der Softwaregestaltung prägt (wie die Fallstu

dien zeigen werden).

6.4.3. Softwaregestaltende: Arbeiten zwischen Anwendung und Programmierung

Ein weiteres zentrales Element der soziotechnischen Netzwerkarbeit sind die Wissens

arbeitenden selbst. Sie sind entscheidend für das Verständnis der Fallstudien. Für die

Arbeit und wie der Analyserahmen zeigt (siehe 8.1.3), fungiert das Konzept der Rolle all

gemein als theoretisches Bindeglied zwischen Individuum und Organisation. Bei der so

19 Die Firma hat auf Micro Services als Teil einer Service Oriented Architecture (SOA) umgestellt.

6. Softwaregestaltung – konzeptionelle Grundlagen 101

ziotechnischen Netzwerkarbeit sind Rollen dreifach strukturgebend: als Rollen im her

kömmlich soziologischen Sinne, als Rollen speziell, um Netzwerke zu etablieren, und
als spezifische Rollenerwartungen der Softwaregestaltung. Bevor der Abschnitt dies an

hand von Forschungsliteratur zeigt, verortet der nächste Punkt die Softwaregestalten

den zwischen Anwendung und Programmierung in die allgemeine Diskussion zur Wis

sensarbeit und liefert einige Zahlen zu dieser Berufsgruppe. Die Forschung zur Rolle der
Produktmanagenden in einer Softwarefirma verdeutlicht, wie Softwaregestaltende ar

beiten und welche Erwartungen an sie bestehen.

6.4.3.1. Wissensarbeit Softwaregestaltung: Vermitteln zwischen Anwendung
und Programmierung

Softwaregestaltung ist als Wissensarbeit eine Form von Dienstleistungsarbeit. 2021 ar

beiteten in Deutschland 33,66 Mio. Beschäftigte im Dienstleistungssektor, davon 1,07
Mio. in der IT-Branche. Zudem beschäftigten 2020 19 % aller Unternehmen in Deutsch

land IT-Fachkräfte.20 Die Zahlen zu einzelnen IT-Beschäftigtengruppen sind leider nicht
so detailliert. Für die Softwaregestaltenden sind nur wenige vorhanden21.

Tabelle 3: Veränderung der IT-Beschäftigten in drei Kategorien zwischen 2013 und 2022.

Berufsgruppen IT 31.12.2012 30.06.2022 Differenz in %
Informatik 201.678 291.905 90.227 +45 %
IT-Systemanalyse, Anwendungsberatung,
IT-Vertrieb

135.194 218.601 83.407 +62 %

– ERP-Beratung 96.486 k. A.
IT-Netzwerktechnik, IT-Koordination, IT-Ad
ministration, IT-Organisation

138.139 198.914 60.775 +44 %

– IT-Projektleitung 22.734 k. A.
Softwareentwicklung und Programmierung 152.274 304.005 151.731 +100 %

Summe 627.285 1.013.425 386.140 +62 %

(Quelle: https://statistik.arbeitsagentur.de, abgerufen Februar 2023 und Zahlen von 2012 für ERP-
Beratung und IT-Projektleitung von https://job-futuromat.iab.de, abgerufen Februar 2023)

Für IT-Projektleitung und ERP-Beratung gibt es nur Daten für 2012. Es zeigt sich auf
jeden Fall, dass sich in den letzten zehn Jahren die Anzahl der Programmierenden ver

doppelt hat. Dass es über 100.000 ERP-Beratende, über 22.000 IT-Projektleitende und
mehr als 300.000 Programmierende gibt, belegt, dass Organisationen permanent ihre

20 Vgl. https://www.destatis.de, abgerufen am 16.11.2022.
21 Es gibt zwar auch Kategorien wie »43413-102 – ERP-Anwendungsentwickler/in« in der Statistik

der Arbeitsagentur. Allerdings fehlen dazu die Zahlen. Die Daten für die ERP-Berater:innen und
IT-Projektleiter:innen für das Jahr 2012 wurden von der Webseite https://job-futuromat.iab.de
des IAB kopiert.

https://statistik.arbeitsagentur.de
https://job-futuromat.iab.de
https://www.destatis.de
https://job-futuromat.iab.de

102 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwarelandschaften verändern. Diese Zahlen sind allerdings lediglich grobe Richtwer

te, weil sich bspw. IT-Projektleitende nicht alle mit der Softwareentwicklung/-gestaltung

beschäftigen. Zudem fehlen Rollen wie Product Owner:in, Scrum Master:in, Anforde

rungsmanagende, Anwendungs- oder Applikationsbetreuende oder Key User:in. Es ist

auch wenig über deren Qualifikationsprofile, Karriereverläufe oder Arbeitsbedingungen

bekannt (ob qualitativ oder quantitativ). Fest steht jedoch, dass sie, wenn sie in Nicht-

IT-Unternehmen tätig sind, zu den indirekten Bereichen der Unternehmen gehören und

somit die Produktion oder die Erbringung von Dienstleistungen unterstützen. Dort gilt

es den technischen Fortschritt zu steuern und zu bewerten und Innovationen anzusto

ßen. Sie gehören zur steigenden Anzahl an Akademiker:innen in den Organisationen

(vgl. Strulik 2017: 322). Als Höherqualifizierte ist deren zunehmende Zahl Teil der Pola

risierung der Qualifikationsstruktur im Dienstleistungsbereich und Teil des Trends zur

Höherqualifizierung in mittleren und höheren Dienstleistungsjobs (vgl. Overbeck 2017:

103ff.).

Was zeichnet diese Wissensarbeit grundsätzlich aus? Arbeit mit Software ist erstens

Arbeit mit Wissen, Informationen und Daten (für die Unterscheidung siehe Definition

unter 3.1.1). Zweitens geht es darum, zwischen der eigenen Arbeit und ihrem Kontext

wie Organisationsnetzwerk, Finanzzahlen bzw. IT-Budget und Software zu vermitteln.

Drittens spielen die Erwartungen und der Umgang mit Erwartungen eine wichtige Rolle

(vgl. Schmiede 2015: 49f., Boes und Kämpf 2017: 184, Baudach 2018: 71).

Diese drei Elemente und noch für die Softwaregestaltung spezifischere finden sich

bei der Rolle Produktmanager:in. Sie ist eine der wenigen softwaregestaltenden Rol

len, zu denen es qualitative Forschungsarbeiten gibt. Es zeigt sich, was Organisationen

von Softwaregestaltenden erwarten: interdisziplinär, kooperativ und kommunikativ ar

beiten, Beziehung aufbauen und verschiedene Handlungsorientierungen kombinieren

(wie es auch typisch für Projektarbeit ist, siehe 4.2). Wie für Arbeit in Netzwerken ty

pisch, agieren Produktmanagende »als Gleiche unter Gleichen; sie können in ihrer Tä

tigkeit nicht auf Anweisungen zurückgreifen, sondern müssen Probleme im Diskurs lö

sen« (Bolte 2017a: 483). Die Rolle ist auf die Kooperation andere Beteiligter angewiesen

und die meiste Arbeitszeit verbringt sie mit Kommunikation (vgl. Bolte 2017b: 488). Sie

hat vielfältige externe und interne Beziehungen: mit der Kundschaft, kooperierenden

Unternehmen, Abteilungen des eigenen Unternehmens wie Service, Vertrieb etc. (vgl.

Bolte 2017a: 484). Zentral ist dabei der Austausch mit der Kundschaft und den Program

mierenden (vgl. ebd. 489).

Produktmanagende sind Mediator:innen, »die Brücke[n] zwischen den beiden Welten

schlagen und Übersetzungsleistungen von der einen Welt in die anderen erbringen«
(Weishaupt/Hösl 2017: 505).

Es handelt sich um Interaktionsarbeit mit einer dialogisch-explorativen Vorgehens

weise und einer gegenstands- und handlungsvermittelten Kommunikation (vgl. Bolte

2017b: 490). Damit ist das Arbeitshandeln erfahrungsgeleitet-subjektivierend und nicht

nur planmäßig-rational (vgl. Weishaupt/Hösl 2017: 494).

6. Softwaregestaltung – konzeptionelle Grundlagen 103

Es geht um »wirkliches Verstehen des Problems durch Nachvollziehen, Hineinverset
zen in die Position des Anderen und eine anerkennende, partnerschaftliche und em

pathische Beziehung zum Gegenüber« (Weishaupt/Hösl 2017: 505).

Indem Produktmanagende die Aktivitäten mehrerer Abteilungen koordinieren, nehmen
sie Planungs- und Managementaufgaben wahr (vgl. Bolte 2017b: 487). Zusätzlich dazu
brauchen sie fundiertes fachliches Wissen über Inhalte und Möglichkeiten der Software

entwicklung, Kenntnisse des eigenen Produkts und über die Anwendungssituation (vgl.
Weishaupt/Hösl 2017: 501).

Die Beschreibung der Rolle Produktmanager:in zeigt, wie zentral eine einzige Person
für die Softwaregestaltung ist, indem sie Beziehungen knüpft und aufrechterhält; Wis

sen aneignet und einbringt; Anforderungen an die Software erstellt. Sie gewinnt und ver

arbeitet nicht nur Wissen, sondern ist Erzeuger:in und Träger:in von soziotechnischen
Netzwerkstrukturen.

Eine andere Studie geht auf die Grundlagen der Handlungsregulation von IT-Pro

jektleitenden, Beratenden und Customizer:innen in einem ERP-Einführungsprojekt
ein. Sie bestätigt und ergänzt, was bereits oben zu softwaregestaltenden Wissensarbei

tenden und Produktmanagenden geschrieben wurde: Sie müssen komplexe Aufgaben
bearbeiten und große Informationsmengen sammeln, deuten und integrieren. Es wird
Selbstmanagement und die Bereitschaft und Fähigkeit zu effektiver kooperativer Arbeit
erwartet (vgl. Bläsche/Lappe 2006: 307).

6.4.3.2. Rollen der Softwaregestaltenden: erwartungsgeleitetes Handeln
Analytisch gesehen verbinden sich in der Rolle Produktmanager:in drei strukturgeben

de Elemente von soziotechnischer Netzwerkarbeit: Es ist eine Rolle im herkömmlichen
Sinne, eine Rolle, speziell um Netzwerke zu etablieren, und in ihr zeigen sich Rollen

erwartungen, die für soziotechnische Netzwerkarbeit typisch sind. Damit ist das theo

retische Konzept der Rolle Teil der Kontrollform soziotechnische Netzwerkarbeit. Weil
Rollen in der Arbeitssoziologie bei der Kontrolle von Arbeit nicht im Fokus stehen, soll
dieser Absatz kurz verdeutlichen, wie Kontrolle durch Rolle funktioniert.

Softwaregestaltung als erwartete Subjektivität: Rollen, Subjektivierung
und subjektivierendes Arbeitshandeln
Was ist eine Rolle? Sie wird als Bündel an Erwartungen an die Träger einer Position de

finiert, die von Einzelnen unabhängig, sozialstrukturell verankert, von Normen geregelt
und von Sanktionen beeinflusst sind (vgl. Griese 2002: 458). Dahrendorf hat Handeln

de, die nicht dem Nutzenkalkül folgen, sondern gemäß einer Rolle handeln, als Homo
sociologicus bezeichnet. Als solcher agiert jemand aber nicht automatisch. Die Rollen

erwartungen sind nicht immer klar, ihre Einhaltung wird nicht immer überwacht. Es
muss erst gelernt werden, wie die Rolle auszufüllen ist. Manchmal steht, was die soziale
Norm verlangt, im Widerspruch zu dem, was die oder der Einzelne von sich aus tun will
(vgl. Schimank 2010: 171). So muss zwischen dem (komplikationslosen) role-taking und
der aktiven, interpretierenden Auseinandersetzung mit einer Rolle im role-making un

terschieden werden (vgl. Schimank 2010: 67). Wie bereits unter 6.3 beim Thema IT-Pro

jektarbeit erwähnt, ist das Konzept der Rollenkonflikte für die Netzwerkarbeit relevant.

104 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Denn in der Matrixorganisation kann eine Person mehrere Rollen haben: eine im Pro

jekt und eine in seinem Team. Beide können miteinander in Konflikt geraten und der

Einzelne muss diese Konflikte lösen (bspw. Zeit für das Team vs. Zeit für das Projekt).

Warum sind Rollen in der Softwaregestaltung wichtig? Das kann ausgehend von der

Forschung zur Arbeit in der Filmbranche gezeigt werden. Dort verlassen sich am Film

set ab dem ersten Moment die Projektmitglieder »on role expectations to guide relati

onships and tasks« (Bechky 2006: 14). Die Rolle (ob Regisseur, Kameramann etc.) ist auch

deshalb so zentral, weil, anders als in einem technischen Kontext (z.B. am Fließband),

der Beitrag der Technik zur organisatorischen Stabilität gering ist. Es ist mehr die er

höhte Sichtbarkeit des Einzelnen am Set, welche den Einzelnen unter Druck setzt, die

Rollenerwartungen zu erfüllen (vgl. ebd.: 15). Was die Fallstudien im 8. Kapitel zeigen:

Rollen sind immer angepasst an den jeweiligen Kontext und in Bezug zu den jeweiligen

Kolleg:innen. Das zeigen auch die Rollen am Filmset, obwohl sie sehr klar und langfristig

institutionalisiert sind. Es findet ein role-making statt: Sie werden gelernt, ausgearbei

tet, ihre Umsetzung mit anderen verhandelt (vgl. ebd. 16f.).

Wenn die Erwartungen an die Rollen bekannt sind (z.B. an Scrum Master:innen), er

wartet jede beteiligte Person deren Einhaltung. Ist eine Rolle wie das oben beschriebene

Produktmanagement erst einmal etabliert, geht sie ihrer Arbeit selbstständig nach. Eine

Forschung zur Softwareentwicklung stützt diese Sichtweite: Es ist wichtig, Verantwor

tung klar zuzuordnen, passende Fachleute einzubeziehen oder die einzelne Person für

unterstützende und helfende Rollen fit zu machen, statt zusätzlich technisches Wissen

zu lernen (vgl. Waterson et al. 1997: 96f.).

Neben diesen klaren, einzelnen Rollen sind für die Arbeit in soziotechnischen Netz

werken rollenunabhängige Erwartungen für die Handlungsorientierung wichtig. Wie

bereits bei der Definition von Wissensarbeit und der Beschreibung der Produktmana

ger:in gezeigt, bestimmen die Arbeit 1. allgemeine Erwartungen an Wissensarbeitende

(Subjektivität), 2. Erwartungen speziell für die Softwaregestaltenden und 3. Erwartun

gen, die sich situativ ergeben.

Es bestehen 1. unabhängig von der konkreten Rolle im Netzwerk allgemeine Erwar

tungen an die Softwaregestaltenden, von deren Erfüllung die erfolgreiche Transforma

tion der Arbeitskraft abhängt. Allgemein ist Wissensarbeit Teil der Subjektivierung der

Arbeitswelt. Statt sich von den Eigenschaften einzelner Beschäftigter möglichst unab

hängig zu machen wie im Taylorismus, werden bei der Subjektivierung »spezifische sub

jektive Eigenschaften und Fähigkeiten« (Minssen 2011: 120) im Arbeitsprozess genutzt.

Es besteht die »Erwartung von Unternehmen, dass diese Fähigkeiten tatsächlich einge

bracht werden« (ebd.: 119). In der Wissensarbeit wird nicht nur planmäßig-rationales

Handeln erwartet. Gehandelt werden soll situativ, erfahrungsgeleitet-subjektivierend,

dialogisch-interaktiv, entdeckend-explorativ und kooperativ. Technik soll als etwas »Le

bendiges« betrachtet werden, wie Subjekte, auf die man sich einstellen kann (vgl. Böhle

2010: 160ff.).

Es bestehen 2. neben diesen allgemeinen Erwartungen an Wissensarbeitende auch

spezifische an jene, die Software gestalten. Kapitel 4 und 5 haben gezeigt, dass sie mit ei

ner zeichenbasierten Technologie aus mehreren technischen Ebenen konfrontiert sind,

auf die Anwendende und Entwickelnde unterschiedliche Perspektiven haben. Interdiszi

plinäres Arbeiten wird erwartet, bei dem Kommunikation und Wissen die wesentlichen

6. Softwaregestaltung – konzeptionelle Grundlagen 105

Arbeitsmittel sind. Kapitel 6 hat nun auch noch gezeigt, dass durch die große Bedeu

tung von Beziehungen, die über Hierarchien und Märkte hinausgehen, und der Technik
selbst Erwartungen bestehen: sei es, Beziehungen herzustellen und zu pflegen oder sich
auf die zu gestaltende Software einzulassen.

Letzteres ist wichtig für die Analyse soziotechnischer Netzwerkarbeit, weil Erwar

tungen 3. erst situativ erkannt und abgeklärt werden müssen und die einzelne Person
entscheiden muss, ob die Erwartungen Teil des eigenen Rollen-Sets werden. Das betrifft
vor allem die technischen Erwartungen, wie sich mit der Software auseinanderzusetzen
und sich auf sie einzulassen. Im technischen Umfeld wird bspw. IT-Affinität erwünscht.
Aber wie weit diese geht, ob jemand Fehler analysiert oder sich selbstständig mithilfe der
Software und deren Dokumentation einarbeitet, hängt vom Arbeitskontext und den dort
vorhandenen Sanktionen, der Sozialisation und dem intrinsischen Wollen der einzelnen
Person ab.

Softwaregestaltung als Erfüllen multipler Erwartungen
Es gibt fünf Erwartungen, die die Forschung vielfach untersucht und thematisiert hat
und in denen sich die normative Handlungsorientierung in Bezug auf die soziotechni

sche Netzwerkarbeit zeigt: kooperativ sein, selbstständig arbeiten, sich (tiefergehender)
auf Software einlassen, mit Nicht-Wissen umgehen lernen und sich in den organisa

tionalen Netzwerken bewegen. Diese Erwartungen sind vergleichbar mit unkonkreten
Aufgaben, die zu erledigen sind. Deren konkreter Inhalt und die Umsetzung müssen die
Beschäftigten als Rollenträger selbst situationsabhängig bewerkstelligen.

Netzwerkspezifische Erwartungen: Grenzen zu überbrücken und kooperativ zu sein
Eine vielfach in der Literatur zu findende Rolle ist jene des Boundary Spanners, der Be

ziehungen stiftet (siehe auch Bolte 2017: 473ff., Williams 2002, Levina/Vaast 2005). Sie
werden auch »brokers« genannt und sollen verschiedene Gruppen miteinander verbin

den (vgl. Swan/Scarbrough 2005: 932ff.). Sie agieren in einem doppelten Handlungs

rahmen aus Netzwerk einerseits und Unternehmen andererseits (vgl. Sydow/Windeler
2000: 5, auch Kalkowski/Mickler 2015: 74). Die Rolle des Boundary Spanners kann durch
Outsourcing entstehen, um als Teil »neue[r] Verbindungs- und Koordinationsfunktio

nen und entsprechende[r] Arbeitsrollen« (Flecker/Holtgrewe 2008: 322) für die organi

sationsübergreifende Zusammenarbeit zu sorgen.
Der Boundary Spanner hat die Aufgaben, das Unternehmensnetzwerk zu stabi

lisieren, Vertrauen zwischen kooperierenden Unternehmen trotz Abhängigkeit und
Konkurrenz zu erhalten (vgl. Hirsch-Kreinsen 2002: 116) oder die Arbeit Einzelner zu
einem Ganzen zu koordinieren (vgl. Heckscher 2015: 246ff.). Weil der direkte Einfluss
der Hierarchie fehlt, agieren sie mittels Konsens, Beeinflussung, Verhandeln, Mediation
etc., um Deals mit unterschiedlichen Parteien zu machen (vgl. Williams 2002: 117).
Sie gewinnen ihre Macht dadurch, dass sie bestimmte Ressourcen über ihre Netzwerke
aktivieren können. Im Zuge dessen werden auch Bedeutungen generiert und geteilt (vgl.
Swan/Scarbrough 2005: 935). Hilfreich sind dabei interorganisationale Erfahrungen,
transdisziplinäres Wissen und kognitive Fähigkeiten (vgl. ebd. 119). Es können im Sinne
der Interdisziplinarität Leute sein, die zwischen IT und Geschäftsmodell vermitteln

106 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

(vgl. Miozzo und Grimshaw 2005: 1434). An oben genannte Produktmanagende oder

auch an IT-Projektleitende werden solche Erwartungen gestellt.

Wissensarbeitsspezifische Erwartung: selbstorganisiert zu arbeiten
Teil der Arbeit in Netzwerken ist zudem, dass Führungskräfte eine andere Rolle spielen.

Führungskräfte nehmen die Rolle von Unterstützenden der Wissensarbeitenden ein und

werden »nahezu vollständig von ihrer klassischen hierarchischen Koordinations-, Steue

rungs- und Kontrollfunktion entbunden« (Korge/Buck/Stolze (2016) nach Baudach 2018:

170). Durch Organisationsformen wie fremdorganisierte Selbstorganisation (vgl. Pon

gratz/Voß 1997: 212), Dezentralisierung (vgl. Hirsch-Kreinsen 1995) oder »marktgesteu

erte Dezentralisierung« (Sauer 2018) werden nicht nur Aufgaben delegiert, sondern die

Erwartung geschaffen, dass Mitarbeitende selbstorganisiert arbeiten. Damit gibt es Ge

meinsamkeiten zwischen der Vermarktlichung innerhalb von Organisationen und den

(Markt-)Beziehungen zwischen Firmen im Netzwerk (vgl. Sauer 2018: 193). Dabei ist je
nach Position unterschiedlich, was dezentral das Team oder einzelne Mitarbeitende ent

scheiden: die Ausführung der Arbeit, ihre Überwachung, Design der Arbeit, Zuordnung

von Ressourcen, Leistungsmanagement, Firmenstrategie (vgl. Lee/Edmondson 2017: 13)

oder ökonomische Ziele (vgl. Hirsch-Kreinsen 1995: 425). Das betrifft speziell die Anwen

dung von Software, weil dort »mehr Entscheidungsspielräume und Verantwortlichkei

ten auf der ausführenden Ebene« (Schulz-Schaeffer/Funken 2008: 20) existieren.

Zur Erwartung, selbstorganisiert zu arbeiten, gehört, sich mit anderen abzustim

men, sich selbst managen zu können und die Fertigkeiten seiner Kolleg:innen zu kennen.

Das zeigt das Beispiel der Gruppenarbeit. Sie macht Hierarchien unwichtiger, dezentra

lisiert Kompetenzen und bindet innerbetriebliche Positionen an individuelle Fähigkeiten

und individualisiert sie dadurch (vgl. Minssen 1999: 207). Es bestehen Erwartungen, die

auch sonst bei der Zusammenarbeit von Fachleuten bestehen: Kommunikation als Teil

der Arbeit zu sehen und seine Kollegenschaft gut genug zu kennen, damit die Koordinie

rung in der Gruppe mittels Diskurs und Kommunikation erfolgen kann und nicht durch

Bürokratie und Hierarchie (vgl. ebd.: 211). Wer was weiß und mit wem wie kommuni

ziert, ist wichtig zu wissen, weil keine festen, bürokratischen Verfahrensweisen mehr

vorhanden sind (vgl. Kotlarsky/Van Fenema/Willcocks 2008: 4). Erst mit diesem Wissen

kann eine Selbstorganisation/-koordination stattfinden.

»Team members must be familiar enough with each other’s experiences, skills,
and specialized knowledge to facilitate the emergence of expertise coordination
processes« (Faraj/Sproull 2000: 1564).

Für einige Arbeitende war die Umstellung auf Gruppenarbeit schwierig, weil es nicht

zum Selbstverständnis passt, Kommunikation als Teil der Arbeit zu sehen, und Gruppen

arbeit eher etwas ist, was man Angestellten zuschreibt (vgl. Minssen 1999: 215). Für die

einzelnen Teammitglieder bedeutet das effektives Selbstmanagement und damit einen

höheren Level an »psychological development and interpersonal skills« (Lee/Edmondson

2017: 18).

6. Softwaregestaltung – konzeptionelle Grundlagen 107

Softwarespezifische Erwartung: mit Software interagieren und Beziehung zum Austausch über sie
aufbauen
Eine weitere Erwartung ist, sich auf die Software einzulassen, sie kennenzulernen, zu
verstehen und dies immer wieder zu tun. Wie bereits bei dem Thema Kontrolle durch
Software geschrieben (siehe 6.4.2.1), sieht Rennstam als wichtigen Teil der Produktiv

kraft von Software an, dass ein:e Wissensarbeiter:in zu ihr eine Beziehung aufbaut:

»[T]heir relationships with the objects of knowledge […] give rise to most of the valu
able ›knowledge work‹« (Rennstam 2012: 1087).

Das betrifft die verwendeten Werkzeuge, aber auch die zu entwickelnde Software. Wie
auch schon bei der Selbstorganisation spielt Kommunikation durch den vermehrten
IT-Einsatz eine immer größere Rolle. Fallstudien zur Einführung von IT im Bereich
Workplace Studies zeigen, dass kommunikative Handlungen notwendig sind, um Ar

beit an technologisch vermittelnden Systemen durchzuführen, und dass der Arbeitstag
vor allem mit Kommunikation gefüllt ist. Arbeit muss abgestimmt, integriert und ko

ordiniert werden (vgl. Knoblauch 1996: 359). Es ist Teil der Arbeit, den elektronischen
Text zu interpretieren, und er ist Ausgangspunkt für Koordination und Kommunikation
(vgl. Zuboff 1988: 393f.). Organisationen, die Informationstechnologie einsetzen, sollten
organisiert sein »to promote the possibility of useful learning among all members and
thus presupposes relations of equality« (Zuboff 1988: 394). Öffentliche Debatten und
gegenseitige Beeinflussung müssen legitim sein (vgl. Zuboff 1988: 406). Darüber hinaus
ist bei der Arbeit mit Software die Subjektivität jedes Einzelnen umfassend gefragt.
Sie müssen persönliche Erfahrungen, implizites Wissen, Netzwerkfähigkeit, offene
Kommunikation, Spontanität, Motivation und Kreativität einbringen (vgl. Schilcher/
Diekmann 2012: 37). ERP-Systeme verlangen »zahlreiche Praktiken der Überprüfung
und Reparatur und diese nicht nur vorübergehend, sondern kontinuierlich« (Conrad
2017: 182). Statt des immer gleichen Handgriffs verlangen die in der Softwaregestal

tung entwickelte Software und die verwendeten softwarebasierten Werkzeuge mentale
Interaktion und situatives Handeln von den Anwendenden.

Softwaregestaltungsspezifische Erwartung: mit Nicht-Wissen in Kontext von softwaretechnischer
Interdisziplinarität umzugehen
Die Arbeit der Softwaregestaltung basiert nicht nur auf Wissen, sondern auch darauf,
mit Nicht-Wissen umzugehen. Das liegt an den sich ständig ändernden und komplexen
Wissensbeständen, dem Transfer des Wissens in unterschiedliche Kontexte und dem dy

namischen Wechsel von der Expert:innen- in die Lai:innenrolle.
Ob es um gesetzliche Regulierungen im Energiebereich oder neue Funktionalitäten

von ERP-Systemen geht: Ständig müssen die Softwaregestaltenden damit zurechtkom

men, dass sie etwas nicht wissen. Einige Autoren sehen den Umgang mit Nicht-Wissen
allgemein als einen entscheidenden Faktor der Wissensarbeit an.

»Wissen ist mithin – zusammengefasst – nicht positiv fest stellbarer Tat-Bestand, son
dern es ist beständiger Prozess, unendliche Bemühung, Kampf gegen das Nichtwis

108 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

sen, fundamental subjektive, aber immer auch objektiv vermittelte Bewährung in ei
ner grundlegend unbestimmten Welt« (Schmiede 2006: 16).

Dabei spielen die Wissensarbeitenden die tragende Rolle. Von ihnen hängt es ab, das

Wissen auf den jeweiligen Kontext zu beziehen, es zu interpretieren und sich mit an

deren darüber zu verständigen (vgl. Schmiede 2006: 15). Umgang mit Nicht-Wissen ist

bspw. auch Teil der Arbeit von Beratenden. Diese müssen »sich von einer Praxis belehren

lassen, welche sie belehren sollen« (Willke 1998: 173). Sie müssen nicht nur das fachliche

Wissen haben, sondern auch die Besonderheiten der Organisationen und der angewen

deten Software kennenlernen, die sie beraten wollen.

Zu einer besonderen Dynamik beim Nicht-Wissen kommt es in der Softwaregestal

tung, weil sich in der Softwaregestaltung je nach Situation ändert, wer Lai:in und wer

Expert:in ist. Die Software kann für Lai:innen eine Blackbox sein. Für Expert:innen kann

sie allerdings ein mächtiges Werkzeug sein, dessen Potenziale sie zu nutzen wissen.

Schulz-Schaeffer sieht es als Grundlage sämtlicher Technik an, dass sie eine Leistungs

steigerung mithilfe von Expert:innen und damit eine Sinnentlastung für Lai:innen

möglich macht (vgl. Schulz-Schaeffer 1999: 424). Bei der Softwaregestaltung kommt

es zum Rollentausch: Anwendende sind Expert:innen in ihrem Anwendungsbereich

und IT-Beratende, Programmierende, IT-Projektleitende o. ä. auf ihr Wissen ange

wiesen. Ingenieur:innen im Kraftwerks- oder Netzbereich oder Stromhändler:innen

haben Domänenwissen, was den IT-Fachleuten fehlt. Vermittelnde wie bspw. Product

Owner:innen oder IT-Projektleitende changieren zwischen IT- und Fachwissen. Sie

haben ggf. nur so viel Fachwissen wie nötig oder konzentrieren sich ganz darauf, den

Austausch zwischen Anwendung und Programmierung zu organisieren.

Netzwerkspezifische Erwartung: sich im Netzwerk zu bewegen und zu lernen
(neue Karrieremöglichkeiten)

Anders als in einer Bürokratie ergeben sich im Netzwerk für die Softwaregestaltenden

neue Karriere- und Lernmöglichkeiten. Die Arbeitenden sollen sich im Netzwerk bewe

gen. Die sich dadurch ergebenden unterschiedlichen Beziehungen, in denen sich Be

schäftigte (temporär) befinden, machen eine Selbstdarstellung wichtiger.

Projekte sind temporär, die Softwaregestaltung verläuft in Phasen (mal ist mehr, mal

ist weniger zu tun; mal an diesem, mal an jenem Softwarebestandteil zu arbeiten). Das

führt zur Erwartung an die Beteiligten, sich in temporäre Beziehungen zu begeben und

immer wieder offen für neue zu sein. Statt eines festen Beziehungszusammenhanges

und klarer Karrierewege in einer Organisation entsteht die Möglichkeit, sich horizontal

innerhalb einer Firma oder zwischen Firmen zu bewegen und Karriere zu machen. So

ergeben sich für IT-Fachkräfte im ehemals öffentlichen Sektor neue Karrieremöglich

keiten, aber auch Zwänge, sich im Netzwerk weiter zu bewegen (vgl. Flecker/Holtgrewe

2008: 330). Dabei geht es auch darum, dass man nur Neues lernt, wenn man Teil von

Netzwerken ist und sich in ihnen bewegt. Wie Hohlmann gezeigt hat, entstehen bei der

Implementierung der ERP-Software von SAP Gestaltungsnetzwerke, weil diejenigen, die

beim Implementierungsprojekt mitgemacht haben, etwas dazugelernt haben und lang

fristig die Gestaltung der Software übernehmen (vgl. Hohlmann 2007). Es kann Teil der

Implementierungsstrategie sein, dass Anwendende bei der Auswahl von Hard- und Soft

6. Softwaregestaltung – konzeptionelle Grundlagen 109

ware mitmachen, sie einführen und sich gegenseitig trainieren, damit sie sich Wissen
aneignen (vgl. Robey/Sahay 1996: 106f.). In eine Position zu kommen, die eine Kombina

tion von IT- und Branchenwissen verlangt, fördert den Aufbau von Kompetenzen (vgl.
Ramioul/De Vroom 2009: 63). Dies ist es ja auch, was in der interdisziplinären Arbeit der
Softwaregestaltung gefragt ist und für manche Befragte aus den Fallstudien im 8. Kapitel
den Reiz ihrer Arbeit ausmacht.

Zu dieser Bewegung in Netzwerken gehört, sich immer wieder auf neue Beziehun

gen einzulassen. Weil das jeweilige Wissen nicht direkt dem neuen sozialen Kontakt
transparent ist und man mit manchen Beteiligten (vor allem Führungskräften) nur kurz
zu tun hat, ist Selbstdarstellung wichtig. Wer als einzelne Person in einem Projekt bspw.
nicht untergehen will, muss am Impression Management arbeiten. Eine Untersuchung
kommt zum Schluss, dass Projektmitarbeitende zu Projektdarstellenden werden (auch
vor den Führungskräften) und die Karriere als Inszenierung begreifen (vgl. Funken/
Stoll/Hörlin 2011). Wie stark dies ausgeprägt ist, mag variieren. Aber die Erwartung
existiert und einzelne Personen erfahren Sanktionen, wenn Entscheidungsträger:innen
nicht mitbekommen, was sie leisten, weil sie ihren Führungskräften nicht darstellen,
was sie geleistet haben.

6.4.3.3. Softwaregestaltende als Konkurrenz zum Management?
Neue Kompetenzen und Aufgaben

Welche Rolle spielt das Management bei der Kontrolle der Arbeitskraft im Arbeitsprozess
der Softwaregestaltung? Die Wissensarbeitenden der Softwaregestaltung treten in Kon

kurrenz zu den bestehenden Managementstrukturen. Wie bereits unter 4.2. ausgeführt,
kommt Hohlmann zu dem Schluss, dass durch die entstehenden Gestaltungsnetzwerke
bei der ERP-Einführung alte Hierarchien untergraben und neue Kanäle geschaffen wer

den, wobei für deren Macht Wissen und Expertise entscheidend ist (vgl. Hohlmann 2007:
359f.). Die Forschung hat bereits festgestellt, dass bestimmte Berufsgruppen ihre Posi

tion verbessern wollen, indem sie alte Vorstellungen davon, wie man Arbeit am besten
kontrolliert, angreifen. Dies ist Teil einer allgemeinen Kritik an einer funktionalistischen
Sichtweise auf das Management: Es ist nicht immer gesagt, dass das Management die
Arbeit am effizientesten organisiert und eine Technologie optimal einsetzt. Hier sind
es aber weniger neue Managementmethoden als vielmehr technikinduzierte Möglich

keiten und Notwendigkeiten der Arbeitsgestaltung, die den Softwaregestaltenden Auf

stiegsmöglichkeiten und Einfluss auf die Kontrolle der Arbeit in den anwendenden Or

ganisationen eröffnen.
Armstrong (1985) sieht das Scientific Management à la Taylor als Methode an, die le

gitimieren soll, dass Ingenieur:innen am besten geeignet sind, den Arbeitsprozess zu
kontrollieren, und berechtigt sind, eine gehobene Position einzunehmen (vgl. ebd.: 131).
Er geht davon aus, dass eine Berufsgruppe aufsteigen kann, wenn es ihr vorzugeben ge

lingt, eine Lösung für eines der Kernprobleme des Kapitals zu haben (in diesem Falle: das
Kontrollproblem) (vgl. ebd.: 133). Als sich dann im weiteren Verlauf der Geschichte die
Buchhalter:innen und Controller:innen durchsetzen, wird das Senior Management zu
»financial rather than operational or technical decision-makers« (ebd.: 136). Als nächste
Gruppe würden nun auch die IT-System-Analyst:innen aufsteigen:

110 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Systems analysts appear to be advancing in corporate hierarchies partly by displac
ing, de-skilling and devising new systems for the surveillance of productive labour,
and partly by cannibalizing the tasks of the ›traditional‹ organizational professions«
(ebd.: 145).

Dabei sind das keine objektiven Bedarfe der Organisation. Vielmehr sind es Anstrengun

gen einer Berufsgruppe

»to develop their original techniques into a system of managerial control – compet

itive with other approaches – precisely as a means of achieving managerial ascen
dancy« (ebd.: 145).

Damit kritisiert er eine Sicht auf das Management, die auch Morozov (2019) an dem An

satz von Zuboff in ihrem Buch über den Überwachungskapitalismus (2018) kritisiert.

Diese hätte eine funktionalistische Sicht auf das Management. Sie würde der Ansicht

von Chandler (1990) folgen, der das Management als etwas ansah, das für den effizien

ten Einsatz von Technologien wie Telefon und Eisenbahn sorgte und dadurch so wichtig

in manchen Unternehmen wurde.

Bestimmte Gruppen erlangen Einfluss allein dadurch, dass eine Technologie auf be

stimmte Akteur:innen oder Organisationsformen angewiesen ist, um ihre Möglichkei

ten auszuschöpfen. Wie eine Fallstudie zeigt, kann die Einführung eines ERP-Systems

zu einer technikinduzierten Statusaufwertung in einer Organisation führen. Es entstan

den neue Anerkennungsmuster und es kam zur

»Verschiebung von der Aufwands- hin zur Ergebnisorientierung […], die mit dem Auf
stieg der Controlling-Abteilung einhergeht« (Walker 2016: 97).

Indem die IT die Zentralisierung als organisationales Leitbild ermöglicht, wird die Tä

tigkeit des Controllings aufgewertet (vgl. ebd. 97). Auch Hohlmann weist auf die technik

induzierte Statusaufwertung der Systemgestaltenden wie Key User:innen hin. Sie fun

gieren u.a. als Puffer für Marktanforderungen (vgl. Hohlmann 2007: 340). Denn Überra

schungen, Ausnahmesituationen oder spezielle Wünsche der Kundschaft sind durch die

ERP-Software nicht verarbeitbar. Sie kann sich nicht selbst ändern.

In puncto Softwaregestaltung stellt sich vielmehr die Frage, welche Rolle das Ma

nagement überhaupt noch spielt. Die vorliegende Untersuchung hat bereits an mehre

ren Stellen darauf hingewiesen, dass bei Wissensarbeitenden die Führungskräfte indi

rekt steuern. Bei seiner Studie zur Softwareentwicklung spricht Friedman vom Manage

ment by Neglect, die er als Form der »responsible autonomy […] of a particularly informal

or lax type« (Friedman/Cornford 1993: 322) beschreibt.

Damit sind die Softwaregestaltenden keine konkurrierende Beschäftigtengruppe

zum Management, weil sie neue Kontrolltechniken für die Anwendenden einführen,

sondern weil sie es sind, von denen abhängt, die Möglichkeiten der Softwaregestaltung

auszuschöpfen. Die Fallstudien werden zeigen, dass es nicht das Management per

se ist, sondern es bestimmte Führungskräfte sind, deren Position und Funktion der

Arbeitsprozess der Softwaregestaltung in Frage stellt. Es gibt andere Personen des Ma

6. Softwaregestaltung – konzeptionelle Grundlagen 111

nagements, die selbst den Arbeitsprozess der Softwaregestaltung in ihrer Organisation
etablieren und kontrollieren.

6.4.4. Flexibilität bei der Kommunikation und beim Wissensaustausch

In der Forschung und den Fallstudien zeigt sich als typische Eigenschaft in der Software

gestaltung ein Phänomen von Arbeit in soziotechnischen Netzwerken: Die verschiede

nen Ebenen aus Ablauf, Beziehungen, Software und Softwaregestaltenden können fle

xibel stark zur Kontrolle der Softwaregestaltung beitragen. Damit ist gemeint, dass es
empirisch unterschiedlich ist, wie stark die Transformation der Arbeitskraft von Ablauf,
individuellen und organisationalen Beziehungen, Software und den Softwaregestalten

den abhängt. Bei den Forschungsarbeiten, die das zeigen, geht es um Softwareentwick

lung. Sie zeigen einerseits, dass der Arbeitsprozess komplett digital und selbstorgani

siert sein, und andererseits, dass Kommunikation unterschiedlich stattfinden kann –
ob innerhalb oder zwischen Firmen. In mehreren Forschungsarbeiten geht es darum, in

wiefern direkte Kommunikation durch andere Formen der Kommunikation ersetzt wer

den kann22.
Erstens hängt die Kommunikation laut einer Studie zu projektförmiger Software

entwicklung von unterschiedlichen Faktoren ab. Die Studie untersucht die Unterschie

de zwischen interner und organisationsgreifender Zusammenarbeit: Wenn die Beschäf

tigten am gleichen Ort arbeiten, von Angesicht zu Angesicht, dann ist es egal, ob eine
oder mehrere Firmen beteiligt sind. Ist die Arbeit räumlich verteilt, macht es einen Un

terschied: Innerhalb von Firmen findet die Koordination via Common Ground aus Pro

grammierstandards und gemeinsamen Werkzeugen statt. Zwischen Firmen ist ein sol

cher Common Ground nicht vorhanden und es muss auf Arbeit von Angesicht zu An

gesicht zurückgegriffen werden. Ein weiteres Fazit: Wenn stetige Kommunikation und
eine modulare Softwarearchitektur (die es Teams erlaubt, unabhängig voneinander zu
arbeiten) schwierig sind, dann ist es besser, ein Entwicklungsprojekt innerhalb einer Fir

ma durchzuführen (vgl. Srikanth und Puranam 2014).
Zweitens unterstreicht eine andere Studie zu einem Softwareentwicklungsprojekt

die Bedeutung von Softwarewerkzeugen für Koordination und Kommunikation und
zeigt gleichzeitig deren Grenzen auf. Softwarewerkzeuge, organisierter und informeller
Austausch ergänzen sich, wenn es um die Kommunikation geht. Es existiert eine Mehr-
Ebenen-Kommunikation aus E-Mails, Meetings, Telefonaten, Protokollen, Chatgrup

pen etc. (vgl. Heidenreich et al. 2008: 16). Einerseits gibt es Software zur Planung,
Dokumentation, Steuerung des Projektes und eine Software für die Teamarbeit (E-Mail,
Kalender, Aufgabenliste etc.). Andererseits werden die Anforderungen selbst analog
in einem »Gremium von Managern, Projektleitern, Architekten und Marketing geneh

migt« (Heidenreich et al. 2008: 10). Auch wenn jeder Einsicht in Projektfortschritt über
das Planungs-Softwaresystem hat und eine effiziente Abstimmung darüber möglich ist,
hat diese informationstechnologische Koordinierung ihre Grenzen: Ob Besprechungen

22 Unabhängig von der Softwareentwicklung ist umstritten, unter welchen Umständen die Co-Loca
tion oder die computervermittelte Kommunikation für den Wissenstransfer besser ist (vgl. Song
et al. 2007).

112 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

über Schnittstellen, Fehler oder diverse Projekttreffen – sie finden auch über informelle

Wege statt. Das liegt laut Autoren an der Komplexität der Aufgaben (vgl. Heidenreich et

al. 2008: 12).

Drittens kann Softwareentwicklung komplett digital ablaufen. Dies war bei einer

Open-Source-Entwicklung (dem Betriebssystem Linux) der Fall. Die Personen haben

sich zum allergrößten Teil nie persönlich getroffen (vgl. Shaikh/Henfridsson 2017).

Bei einem anderen Open-Source-Projekt stellen die Autoren fest, dass selbstständiges

Arbeiten mit dem gemeinsamen Arbeiten an der Software verbunden ist (wobei alles

digital stattfindet). Es existiert ein Common Ground dank digitaler Kommunikation

(ob Chat-Foren oder E-Mail), für jedermann sichtbarer Handlungen und Kontexte (wer

welchen Teil des Quellcodes programmiert hat oder gerade an ihm arbeitet) und der

Visualisierung gemeinsamer Aufgaben (Ticketsystem). Zudem erlaubt es eine modulare

Aufgabenarchitektur, dass Einzelne unabhängig von anderen arbeiten können. Die Be

teiligten wählen selbst, welches Arbeitspaket sie bearbeiten (vgl. Puranam/Alexy/Reitzig

2014: 172).

Viertens hängt es von der Softwareentwicklungsplattform ab, wie die Nutzenden

dort Wissensgrenzen überwinden (können). Eine Form kann wie jene bei der Entwick

lungsplattform von SAP sein, die einige Organisationen aus den Fallstudien im Empirie-

Teil einsetzen (siehe 4.38.1.4). Dort gibt es engere Beziehungen und regelmäßigen Aus

tausch zwischen SAP und den kooperierenden Firmen, welche die Software anpassen,

erweitern und einstellen. Diese Form, Wissensgrenzen zu überwinden, nennen die

Autoren »bridging«. Andere Entwicklungsplattformen stellen nur online Hilfsmittel

wie Dokumentationen oder Beispiel-Programmierungen zur Verfügung. Die Nutzen

den müssen sich selbstständig mit der Plattform auseinandersetzen. Das nennen die

Autoren »broadcasting« (vgl. Foerderer et al. 2019).

6.5. Folgen der Softwaregestaltung: Soziotechnische Arbeitsgestaltung
der Softwareanwendung durch die Softwaregestaltung

Für die Frage der Folgen der Softwaregestaltung für die Softwareanwendung ist es

schwierig, Forschungsliteratur zu finden. Es gibt zwar viele Arbeiten über die Folgen

von Softwareeinsatz. Aber genau herausgearbeitet wurde nur in wenigen Fällen, welche

Folgen davon auf den softwaretechnischen Zuschnitt wie Standard oder individuell

zurückzuführen sind. Anhand der Forschung zu ERP-Software stellt 6.5.4 dar, wel

che Folgen für die Anwendung sich auf die Standardsoftwaregestaltung zurückführen

lassen. Zu einem konzeptionellen Ansatz führt das jedoch nicht. Dafür nutzt dieser Ab

schnitt Forschungsliteratur über die Rationalisierung von Arbeit durch IT und über die

Digitalisierung allgemein. So zeigt sich, dass das Verhältnis von Softwaregestaltung zur

Softwareanwendung eines der Rationalisierung ist, grenzt das Verhältnis von anderen

Ansätzen wie jenen der Informatisierung ab und stellt klar, um welchen langfristigen

Wandel es dabei geht. Den Ansatz, die Softwaregestaltung als eine soziotechnische

Arbeitsgestaltung der Softwareanwendung zu verstehen, arbeitet dann aber erst der

Empirie-Teil konzeptionell aus, weil dafür die Literatur zu wenig hergibt.

6. Softwaregestaltung – konzeptionelle Grundlagen 113

6.5.1. Softwaregestaltung – eine Form der Rationalisierung
der Softwareanwendung?

Es gibt eine Diskussion über die unterschiedlichen Formen der Rationalisierung. Was
zwischen Anwendung und Programmierung passiert, ist nicht Teil dieser Diskussion.
Die vorliegende Arbeit argumentiert, dass das aber relevant für die Effizienz und die
Kontrolle der Arbeit der Anwendenden ist. Statt eines Technikentwicklungsdeterminis

mus (oder Softwaregestaltung als Blackbox) geht die vorliegende Untersuchung davon
aus, dass zwischen Anwendung und Programmierung eine Rationalisierung eigenstän

digen Typs stattfindet. Sie vertritt eine andere Auffassung als Baethge (1996):

»Der Weg der Rationalisierung in den Dienstleistungsbereichen war nie und ist auch
heute nach dem Siegeszug der Mikroelektronik in den Büros und Verwaltungen nicht
[Herv. i. O.] in erster Linie eine Frage von Technikeinsatz und Technikgestaltung [Herv.
i. O.], sondern von Organisation und Kommunikation [Herv. i. O.]. Dies haben wir mit der
Kategorie der ›systemischen Rationalisierung‹ zu kennzeichnen versucht. Es wird in
ähnlicher Weise von Rock/Ulrich/Witt (1990) mit ihrem Begriff der ›kommunikativen
Rationalisierung‹ angezielt.« (ebd. 20)

Im Kern der Untersuchung steht eine technikzentrierte Form der Rationalisierung der
Dienstleistungsarbeit in den Firmen der Energiewirtschaft. Dabei ist die Technikge

staltung ein wesentliches Element der Rationalisierung, für die Kommunikation das
zentrale Mittel ist (vor allem für den Wissensaustausch zwischen energiewirtschaftli

chen Domänenexpert:innen und Programmierenden). Diese Kommunikationsprozesse
selbst sind rationalisierbar – wie auch die Fallstudien im 8. Kapitel zeigen. Sie werden
zu dem Zweck rationalisiert, die Softwaregestaltung zu verbessern.

Die hier vorgestellte Rationalisierung durch Technik stellt eine Ergänzung zu der von
Menz/Nies/Sauer (2019, alle folgenden Zitate S. 189) aufgestellten Unterscheidung dreier
Formen der Techniknutzung dar:

• Arbeitskraftbezogene Strategien, »die direkt auf die Arbeitskraft und das sogenann

te Transformationsproblem zielen«.
• Innerbetriebliche und betriebsübergreifende Prozessrationalisierung (systemische

Rationalisierung), bei denen »Prozesszusammenhänge, Friktionen an den Schnitt

stellen, die Koordination in verzweigten Wertschöpfungsketten etc.« im Fokus ste

hen.
• »[R]ationalisierungsunabhängige Strategien des Technikeinsatzes, insbesondere

Strategien der Kundenbindung und des Marketings, die i.d.R. nur mittelbar auf die
Steuerung von Arbeit und die Autonomie der Beschäftigten wirken.«

Software kann für all diese Maßnahmen entwickelt, eingesetzt und bestehende Software
entsprechend angepasst werden. Die Gestaltung von Software stellt eine vierte Form dar.
Es ist eine technikentwicklungsbezogene Strategie, die auf die Rationalisierung durch
Technikgestaltung abzielt, und zwar der soziotechnischen Arbeitsgestaltung durch Soft

waregestaltung.

114 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Die sieben Fallstudien beschreiben unterschiedliche Varianten dieser Form der Ra

tionalisierung. Dabei berücksichtigen die Fallstudien, dass es vom Anwendungsbereich

abhängt, wie groß die Potenziale der softwarebasierten Rationalisierung sind. Wo die

Kernarbeit auf reiner Datenverarbeitung basiert (Abrechnung, Handel etc.), gibt es mehr

Möglichkeiten der Automatisierung oder Prozessintegration durch Software (siehe Ka

pitel 8).

Ziel dieser Rationalisierung durch Softwaregestaltung ist es, je nach Anwendungs

kontext die Möglichkeiten der Softwaretechnik zwischen Standard- und individueller

Software optimal zu nutzen. Die Arbeitsteilung in Organisationen und Wertschöpfungs

ketten verläuft aus dieser Perspektive nicht mehr nach Hand- und Kopfarbeit, sondern in
den Kategorien von Softwareprogrammierung, -gestaltung und -anwendung. Das Ver

hältnis der beiden Arbeitsprozesse reicht dabei von einem evolutionären Wandel von an

wendender Organisation und Standardsoftware (vgl. Hohlmann 2007: 342ff.) bis hin zur

Disruption durch Start-ups in bestimmten Branchen, die von Anfang an softwareentwi

ckelnde Organisationen sind. Letzteres stellt ein besonderes Verhältnis beider Arbeits

prozesse zueinander dar: den Primat der Softwareentwicklung. Eine Organisation ge

staltet eine Software für einen Anwendungsbereich, um diesen möglichst effizient zu

bewirtschaften. So ist sie auf den Technikentwicklungsprozess der Softwareentwicklung

hin rationalisiert. Übrig bleib die Arbeit für Softwareanwendende, welche Software nicht

erledigen kann (oder soll).

6.5.2. Unterschied zu Informatisierung und Informationsraum

Softwaregestaltung in ihrem Verhältnis zur Softwareanwendung zu betrachten, unter

scheidet sich von anderen Ansätzen wie jene von Informatisierung und Informations

raum. Es geht um die Informationsverarbeitung und nicht um allgemeine Folgen der

Digitalisierung. Es geht um die Folgen des Verhältnisses der Arbeitsprozesse von Soft

waregestaltung und Softwareanwendung.

Bei der Informatisierung geht es um einen »soziale[n] Prozess der systematischen

Erzeugung und Nutzung von Informationen, um daraus weitere Informationen erzeu

gen zu können« (Boes/Pfeiffer 2006: 22). Bei der soziotechnischen Arbeitsgestaltung der

Softwareanwendung durch Softwaregestaltung steht hingegen die Informationsverar

beitung im Vordergrund. Softwaregestaltung ist die Erzeugung von informationsverar

beitender Software.

Dabei hängen die Möglichkeiten der Softwareentwicklung davon ab, die abzubilden

den Prozesse formalisieren zu können:

»Die Detailsteuerung und Kontrolle der Arbeit hängen nicht nur von den technischen
Möglichkeiten, sondern auch von der inhaltlichen, fachlichen und organisatorischen
Gestalt der Arbeits- und Produktionsprozesse ab. Die Formalisierung der Arbeitsab
läufe ist nicht Konsequenz, sondern Voraussetzung digitaler Durchsteuerung und
Kontrolle.« (Nies/Menz/Sauer 2019: 187)

Der Quelltext einer Software kann nur abbilden, was formal beschreibbar ist und die Pro

grammierenden umsetzen können. Doch wie die Fallstudien zeigen werden, macht der

6. Softwaregestaltung – konzeptionelle Grundlagen 115

Fokus auf das Verhältnis von Softwaregestaltung und Softwareanwendung klar, dass es
nicht nur um die Folgen der Formalisierung von Abläufen für eine softwareanwendende
Organisation geht.

Erstens macht es für anwendende Organisationen einen Unterschied, ob sie sich
den formalen Abläufen einer Standardsoftware unterordnen oder ihre eigenen Abläufe
formalisieren und in eine individuelle Software umsetzen. Zweitens kann im Zuge der
Softwaregestaltung eine Software entstehen, die keine formalisierten Abläufe oder eine
Detailsteuerung der Softwareanwendung verlangt. Es existiert keine Parallelität von
softwaretechnisch-formaler Abbildung und organisatorisch-formalen Arbeitsabläufen
in der Anwendung. Fortschreitende Softwarenutzung in einem Anwendungsbereich
kann dazu führen, dass die Anwendenden weniger formalisiert arbeiten als vorher, weil
sie komplexe Fälle lösen müssen, welche die Software nicht automatisiert verarbeiten
kann. Die Software prozessiert tausendfach die formalisierten Abläufe im Hintergrund,
ohne dass die Anwendenden eingreifen. Drittens ist, wie Hohlmann (2007) zeigt, stetig
Softwaregestaltung notwendig, weil die Software zu wenig flexibel ist, als dass Anwen

dende mit ihr auf veränderte Anforderungen reagieren können (seien es neue Wünsche
der Kundschaft, Ideen für effizientere Prozesse etc.). Da macht es dann einen Unter

schied, ob die anwendende Organisation selbst fähig ist, die Software zu gestalten oder
nicht. Es macht einen Unterschied, ob sich Software und Anwendung wechselseitig
weiterentwickeln, und dies innerhalb einer Organisation oder in Abhängigkeit von einer
Softwarefirma.

Die genannten Punkte sollen noch einmal verdeutlichen, dass Softwaregestaltung
weder ein rein technologiegetriebener (Programmierung) noch ein rein anwendungs

kontextgetriebener (Formalisierung von Arbeitsabläufen) Prozess ist. Softwaregestal

tung ist der stetige Prozess, Bedarfe eines industriespezifischen Anwendungsbereichs
mit den Möglichkeiten der Softwareentwicklung abzugleichen. Viele Möglichkeiten
der Softwaregestaltung ergeben sich erst iterativ im Austausch zwischen Anwendung,
Gestaltung und Programmierung.

Anders als beim Konzept des Informationsraums von Boes et al. (2006) steht beim
Verhältnis der Softwaregestaltung zur Softwareanwendung die Dynamik zwischen bei

den Arbeitsprozessen im Fokus. Der Anwendungsbereich ist Gegenstand der Software

gestaltung und ändert sich abhängig von den verwirklichten Möglichkeiten der Soft

wareentwicklung. Der Informationsraum hingegen ist nicht vorprogrammiert und ein
»offener Raum, der sich erst durch das soziale Handeln seiner Nutzer konstituiert« (ebd.
24f.). Bei der Softwaregestaltung geht es hingegen um die Programmierung und welche
Möglichkeiten der Softwaregestaltung zwischen Individual- und Standardsoftware Or

ganisationen für einen Anwendungsbereich nutzen. Es geht, anders als beim Informati

onsraum, um die »programmierten und starren Informationssysteme« (Boes et al. 2020:
313). Die Fallstudien werden zeigen, dass Software und Arbeitsorganisation, anders als
im folgenden Zitat, nicht als getrennt betrachtet werden:

»Insgesamt zeigt sich sowohl in den mittel- als auch in den höherqualifizierten Be
reichen, wie die Kombination eines digitalen ›Raums der Produktion‹ mit Lean und
agilen Methoden auf dem Shopfloor die Kopfarbeit neuen Formen der Industrialisie
rung zugänglich macht.« (Boes et al. 2018: 180).

116 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Vielmehr geht es immer darum, via digitalen Raum eine Software zu gestalten, und wie

das die anwendende Organisation verändert. Bereits im Kapitel zur Softwareentwick

lung (5.2.3) hat sich gezeigt, dass Firmen die Möglichkeiten des Internets für die Soft

wareentwicklung sehr unterschiedlich nützen. Weniger die Kombination von Internet

und Arbeitsmethoden steht im Fokus der vorliegenden Arbeit. Vielmehr ist es das Ver

hältnis von Gestaltung und Anwendung, in dem das Internet nur eine von vielen Mög

lichkeiten darstellt, die beim Abgleich von energiewirtschaftlichen Bedarfen und tech

nischen Möglichkeiten eine Rolle spielen.

So ist mit soziotechnischer Arbeitsgestaltung hier gemeint, dass sich Software, Ar

beit und Organisation des Anwendungsbereichs durch Softwaregestaltung verändern.

Die folgenden Kapitel arbeiten weiter heraus, welche Veränderungen sich auf die sozio

technische Arbeitsgestaltung zurückführen lassen und sich von den Folgen der reinen

Software(funktionalität) unterscheiden.

6.5.3. Softwaregestaltung: inkrementell mehr Software
in diversen Anwendungsbereichen

Folgt daraus eine allgemeine These für den Wandel der Arbeitswelt? In einem Artikel aus

dem Jahr 2011 sieht der Netscape-Gründer und Silicon-Valley-Investor Marc Andreessen

(als Tech-Nerd und durch IT Reichgewordener) eine unaufhaltsame Durchdringung der

Wirtschaft mit Software.

»Software is eating the world.« (Andreessen 2011)

Indizien sind für ihn die immer größer werdenden Softwarefirmen (Amazon, Google,

Facebook, Spotify, Netflix, Pixar, LinkedIn) und die immer größere Rolle von Software

in allen möglichen Industrien (er nennt die Logistik-Software von Walmart und die

Betriebssoftware von E-Autos). Er konstatiert damit einen noch allgemeineren Trend,

als ihn die Soziologie für die Digitalisierung feststellt: ob optimierte Überwachung

und Verhaltenssteuerung (vgl. Zuboff 2018), gesteigerte Bedeutung der Distributivkraft

(vgl. Pfeiffer 2021), neue Handlungsräume (vgl. Boes et al. 2016) oder allgegenwärtige

Plattformen (vgl. Srnicek 2017, Staab 2019) – um nur eine Auswahl zu nennen.

Die vorliegende Arbeit betrachtet a) Digitalisierung wie andere Autoren als inkre

mentellen soziotechnischen Wandel (vgl. Hirsch-Kreinsen 2020: 40ff.). Wobei Disrup

tionen durch Start-ups nicht ausgeschlossen sind. Sie finden aber auch inkrementell

statt. Sie sind nur innovativer, weil sie die Möglichkeiten der Technologie ausschöpfen,

indem sie dem Primat der Softwareentwicklung folgen. Zudem geht es b) um eine neue

Arbeitsteilung zwischen Anwendung und Entwicklung. Die Untersuchung geht von drei

Seiten einer Organisation und Wertschöpfung aus: die Software selbst, die Anwendung

der Software und Softwareentwicklung – ob innerhalb einer Firma oder verteilt auf meh

rere Organisationen. Damit geht es c) um die Technokratie an Softwareprogrammieren

den und -gestaltenden und deren zunehmende (Gestaltungs-)Macht.

Es geht also um soziotechnische Arbeitsgestaltung als inkrementellen Wandel hin

zur Software als Basis von Organisation und Arbeit, getragen von einer Gruppe an

Fachleuten und unterschiedlichen Formen des Arbeitsprozesses der Softwaregestaltung

6. Softwaregestaltung – konzeptionelle Grundlagen 117

als soziotechnische Netzwerkarbeit (und ermöglicht durch Breitband-Vernetzung,
Fortschritte bei der Chipproduktion und mobilen Endgeräten). Damit folgt diese Ar

beit anderen Forschenden, welche die Digitalisierung aus der Perspektive der Arbeit
analysieren, mit ihrer je arbeitsweltspezifischen Ausprägung (vgl. Apitzsch et al. 2021:
20f.).

Die Ansätze von Hirsch-Kreinsen (2020) und Apitzsch et al. (2021) diskutiert das
Schlusskapitel noch einmal, wenn es um den Beitrag der vorliegenden Untersuchung
zum Verständnis der digitalen Transformation geht.

6.5.4. Folgen von Standardsoftware für die Arbeitsgestaltung
der Softwareanwendung

Was sagt aber nun die Forschung konkret zu der Frage, welchen Unterschied es macht, ob
Organisationen eine individuelle oder eine Standardsoftware gestalten? Welche Folgen
einer Software auf die anwendende Organisation und die Anwendenden sind darauf zu

rückzuführen, dass sie individuell gestaltet ist? Dazu konnte keine Forschung gefunden
werden. Dagegen ist die Forschung zu Standard-ERP-Software üppig. Sie zeigt zweier

lei: Erstens gibt es Veränderung in der Softwareanwendung, die nicht auf den Standard

charakter zurückzuführen sind. Zweitens gibt es Veränderungen, die sich daraus erge

ben, dass die Softwareanwendung eine Standardlösung einsetzt. Bei diesen Folgen gilt
es allerdings in der Mehrzahl um jene einer fertigen Software und nicht um die Folgen
eines Gestaltungsprozesses.

Zu den allgemeinen Folgen der Einführung von Standard-ERP-Lösungen, die nicht
auf den Standardcharakter zurückgeführt werden können, gehören eine stärkere Au

tomatisierung, standardisierte Arbeit und die Substitution von gering Qualifizierten
durch höher Qualifizierte (vgl. Howcroft/Richardson 2012: 120). ERP-Systeme wirken
allgemein disziplinierend auf Arbeit: durch Intensivierung, Arbeitsplatzabbau oder
Integration jedes Arbeitsplatzes in ein IT-System (vgl. Dery et al. 2006: 207f.). Nach
ihrer Einführung entstehen neue Tätigkeitsfelder, Berufsfelder und Abteilungen, die für
die Koordination der Dateneingabe und -pflege zwischen allen involvierten Abteilungen
wie IT, Logistik oder Einkauf zuständig sind (vgl. Walker 2016: 83f.). Die Zentralisierung
des Managements durch ERP-Software kann das Problem mit sich bringen, dass z.B.
dezentrale Mitarbeitende einer Organisation keine Lösungen erarbeiten können, weil
das IT-System dafür zu unflexibel ist (vgl. Schwarz/Brock 1998: 76). Zu den im Absatz
genannten Effekten kann aber auch eine individuell für eine Organisation entwickelte
ERP-Software führen.

Es gibt aber einige Folgen, die sich auf den Standardcharakter zurückführen lassen,
auch wenn das Verhältnis zwischen Software und Organisation von Fall zu Fall unter

schiedlich ist. Standardsoftwarepakete wie die von SAP, die viele Einstellungs- und An

passungsmöglichkeiten bieten, werden für Mormann zum Bezugspunkt der Arbeitsge

staltung.:

»Die standardisierte Software fungiert als Referenzobjekt, mit dessen Hilfe sowohl
über die Anpassung der Software als auch über die Anpassung der Organisation etwas
ausgesagt werden soll.« (Mormann 2016: 150)

118 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Laut ihr re-modellieren anwendende Organisationen der Standardsoftware ihre Arbeits

abläufe. Nur bei größeren unternehmerischen Konflikten passen die Organisationen die

Software stärker an. So geschehen in einem Fall, bei dem Beschäftigte verhindert ha

ben, dass Standorte in puncto Kennzahlen einfach verglichen werden können (vgl. Mor

mann 2016: 222). Eine andere Autorin kommt zu dem Schluss, dass Standardsoftware da

zu dienen kann, Reorganisation in der anwendenden Organisation durchzusetzen (vgl.

Hohlmann 2007: 333). Eine weitere Untersuchung zeigt, dass mehrere Projektzyklen not

wendig waren, um die bei der ersten Einführung bereits umgesetzten, großzügigen An

passungen am Standard zu reduzieren und näher an den Standard der Software zu rü

cken (in diesem Fall geht es um das ERP-System von Oracle). Die ERP-Implementierung

erscheint als wiederkehrende, andauernde Aushandlung (vgl. Svejvig/Jensen 2013). Die

Anpassung der Organisation an den Standard schlägt sich in der Partizipation der An

wendenden nieder. Bei einer SAP-Einführung nahmen während des Einführungspro

jekts die Mitarbeitenden lediglich am Training teil und durften die Anwendung testen.

Gestalten durften sie nicht (vgl. Tsamenyi et al. 2006: 425f.). Andere Studien sprechen

von »marginalizing the users« im Verlauf einer ERP-Implementierung (vgl. Lyytinen und

Newman 2015). In anderen Fällen ist die Anpassung gescheitert. Die Firmen haben die

Implementierung abgebrochen, weil die Software wichtige Anforderungen nicht erfül

len konnte. Das Fazit der Autoren dreier Fallstudien ist, dass Firmen Effizienzen nur ge

hoben haben, wenn ihre bestehenden Praktiken zur Software passten (vgl. Grant et al.

2006: 13). In einem anderen Projekt bedeutete die Implementierung einer Standardsoft

ware, dass die Implementierung die vorher schon bestehende fehlende Integration von

Abteilungen fortgeschrieben hat. Damit hat die Organisation Ziele wie eine zentrale Ko

ordination durch die ERP-Software nicht erreicht (vgl. Elbanna 2007). Andere Autoren

und Autorinnen sehen, sobald die ERP-Software implementiert ist, die Möglichkeiten

eines starken Wandels von Software und Organisation als begrenzt an. Sie sprechen von

»flüssige[m] Beton« (Brödner 2002 nach Remer 2008: 42) oder »enger Kopplung« (Hohl

mann 2007: 34f.). Ein gelieferter Standard gilt aufgrund des Lock-in-Effekts als innovati

onshemmend, weil er erschwert, die Softwarezulieferfirma zu wechseln (vgl. Hohlmann

2007: 334, Zhu und Zhou 2012). Haben sich viele Organisationen an eine Standardsoft

ware angepasst, ist eine Verlagerung von Arbeit zwischen diesen leichter. Das ist eine

weitere Veränderung in der Anwendung, auf welche die Forschung hinweist: Aufgrund

von Standardisierung von Aufgaben und Fertigkeiten durch die Standardsoftware sind

diese einfacher von einem lokalen Kontext zu lösen und zu verlagern (vgl. Howcroft/

Richardson 2012: 124). Wer SAP in Firma X angewendet hat, kann es auch in Firma Y
tun.

Neben den Fragen der Anpassung und der Flexibilität von Organisationen bei

und nach Einführung einer Standard-ERP-Software geht es um die Veränderungen

innerhalb der anwendenden Organisation, die nichts mit der reinen ausführenden

Anwendung zu tun haben. Hohlmann (2007) stellt fest, dass nach der Einführung von

SAP Gestaltungsnetzwerke innerhalb von Organisationen entstehen. Sie sind dafür da,

den Standard anpassen zu können (siehe 6.3).

Letztendlich hat die Forschung vor allem untersucht, ob und wie sich eine Organi

sation einem fertigen Standardprodukt unterordnet. Nur Hohlmann geht ausführlich

auf Strukturen ein, die dafür da sind, Software über die Implementierung hinaus zu ge

6. Softwaregestaltung – konzeptionelle Grundlagen 119

stalten. Um solche Strukturen geht es auch beim Verhältnis von Softwaregestaltung und
Softwareanwendung. Es geht um den Arbeitsprozess der Softwaregestaltung und weni

ger um dessen Produkt und wie es auf Arbeit und Organisation wirkt. Wenn es in den
Fallstudien um Fragen von Partizipation, Reorganisation und Anpassbarkeit von Soft

ware geht, dann immer in Bezug auf eine noch zu gestaltende Individual- oder Stan

dardsoftware. Es geht um den Arbeitsprozess der Softwaregestaltung und sein Verhält

nis zum Arbeitsprozess der Softwareanwendung. Das kann dann auch einzelne Anwen

dungsbereiche in einem EVU betreffen und nicht gleich eine gesamte Organisation, wie
dies bei der Einführung eines ERP-Systems wie jenem von SAP der Fall ist.

6.6. Zwischenfazit: Softwaregestaltung als soziotechnische Netzwerkarbeit
und soziotechnische Arbeitsgestaltung

Das Kapitel hat Forschungsliteratur herangezogen, um die beiden Kernfragen der Arbeit
konzeptionell einzubetten. Die erste Kernfrage nach der Kontrolle der Softwaregestal

tung in unterschiedlichen Konstellationen adressiert das Konzept der soziotechnischen
Netzwerkarbeit. Es stellt die konzeptionelle Lösung des Transformationsproblems im
Arbeitsprozess der Softwaregestaltung dar. Für die zweite Kernfrage nach den Folgen
der Softwaregestaltung für die Softwareanwendung konnte die Literatur nur dreierlei
zeigen: (1.) Wie sich der Ansatz, die Folgen der Softwaregestaltung in ihrem Verhältnis
zur Softwareanwendung zu untersuchen, von jenem der Informatisierung und des In

formationsraums unterscheidet. (2.) Das Verhältnis von Softwaregestaltung und Soft

wareanwendung ist eines der Rationalisierung. (3.) Welche Folgen für die Softwarean

wendung sich auf den Standardcharakter von Software zurückführen lassen.
Die analytische Grundlage für die soziotechnische Netzwerkarbeit sind weder

Markt noch Hierarchie, sondern das Netzwerk. Mit ihm lassen sich auf verschiedene
Organisationen, Teams oder Abteilungen verteilte Arbeitsprozesse besser analysieren,
bei denen Wissen, Kooperation und Software zentral sind. Der hier verwendete Netz

werkbegriff folgt Ansätzen von Sydow/Windeler (2000), Apitzsch (2006) und Kalkowski/
Mickler (2015), die Netzwerke als aus mehreren Ebenen bestehend auffassen.

(IT-)Projekte sind Beispiele für soziotechnische Netzwerkarbeit, weil auch bei ihnen
die vier Ebenen aus Ablauf, Beziehungen, Software und Wissensarbeitenden für die Kon

trolle der Arbeit sorgen (Heidling 2018, Ford/Randolph 1992, Kalkowski/Mickler 2005).
Hohlmann (2007) zeigt, wie nach ERP-Einführungsprojekten Gestaltungsnetzwerke in

nerhalb der anwendenden Organisationen entstehen. Es existieren Abläufe, um weiter
abteilungsübergreifend zusammenzuarbeiten und die Standardsoftware anzupassen,
einzustellen und zu erweitern. Die Beziehungen zwischen den einzelnen Beteiligten des
Gestaltungsnetzwerks untergraben alte Hierarchien und sind interdisziplinär. Die Soft

ware in Form des ERP-Systems wird für die Arbeit in den Organisationen zentral und
das Wissen über die Software geht nun Hand in Hand mit dem jeweiligen branchen-
und organisationsspezifischen Fachwissen. Die Softwaregestaltenden vermitteln zwi

schen Software und Fachabteilung. So wenden z.B. Key User:innen Software nicht nur
an, sondern nehmen darüber hinaus Einstellungen an ihr vor.

120 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwaregestaltung findet aber nicht immer innerhalb von Organisation statt und

es geht nicht immer darum, eine Standardsoftware anzupassen. Zudem wird nicht im

mer Projektarbeit als Methode eingesetzt (mittlerweile weit verbreitet: Scrum). Deshalb

ging es im weiteren Verlauf des Kapitels darum, allgemein notwendige Bedingungen der

Kontrolle von Softwaregestaltung für drei der vier Ebenen der soziotechnischen Netz

werkarbeit herauszuarbeiten: Beziehungen, Software und Softwaregestaltende. Für die

Ebene des Ablaufs wurden neben der Literatur zu IT-Projektarbeit keine theoretischen,

passenden Bezüge gefunden.

Soziotechnische Netzwerkarbeit basiert unabhängig von der jeweiligen Konstellati

on auf kooperativen Beziehungen, die aber u.a. aufgrund von Marktbeziehungen, Hier

archien und Abteilungsgrenzen nicht selbstverständlich sind. Die Forschung zeigt, dass

eine IT-Abteilung nicht automatisch kooperativ mit den Fachbereichen zusammenar

beitet. Regelmäßige Kooperation, Kommunikation und interdisziplinäres Wissen auf

beiden Seiten sind Voraussetzungen dafür (vgl. Reich/Benbasat 2000, Chan/Reich 2007,

Masak 2006, Schlosser et al. 2015, Valorinta 2011, Ko/Kirsch 2017). Je nach Organisations

formen der IT-Abteilung arbeitet diese mehr oder weniger eng mit den Fachabteilungen

zusammen (vgl. Guillemette & Parè: 2012), ist sie mal mehr und mal weniger hierarchisch

und zentralisiert (vgl. Sesay/Ramirez 2016, vgl. Masak 2006: 209) oder marktförmig (von

Jouanne-Diedrich et al. 2005) organisiert. Dabei gibt es Forschung, die zeigt, dass Un

ternehmen, die komplexe IT-Wissensarbeit auslagern, dennoch in die interne IT-Orga

nisation investieren müssen, damit die Zusammenarbeit funktioniert (vgl. Tiwana/Kim

2016).

Die soziotechnische Netzwerkarbeit muss mit unterschiedlichen Interessen und un

gleicher Wissensverteilung und den daraus resultierenden Konflikten zurechtkommen.

Ungleichgewichte entstehen u.a. dadurch, weil es bei der Auslagerung von IT-Arbeit

in der auslagernden Organisation zu Kompetenzverlust, Kontrollverlust, einem Abbau

des organisationalen Lernens oder der Innovationskapazitäten kommt (vgl. Miozzo/

Grimshaw 2005: 1424). Es kommt zur Machtverschiebung zu IT-DL (vgl. Peled 2001,

Flecker/Holtgrewe 2008: 314). Es kann zu Machtkämpfen zwischen IT-Dienstleistenden

und den Auftraggebenden bzw. der Konzernzentrale kommen (vgl. Mezihorak 2018:

825ff.). Auch dann, wenn sie über weniger Wissen verfügen, müssen anwendende Un

ternehmen Wege finden, externe IT-Organisationen zu kontrollieren (vgl. Kaniadakis

2012: 270). Auch aufgrund der unterschiedlichen Konstellationen und Konflikte kann

es für die Zusammenarbeitet von Organisationen unterschiedliche Steuerungsfor

men geben (vgl. Helfen/Wirth 2020: 14ff.). Die Forschung weist darauf hin, dass sie

durch Lernprozesse entstehen, wofür Kapazitäten zum Wissensaustausch zwischen

Firmen notwendig sind (vgl. Mola et al. 2017: 1293, vgl. van Fenema/Keers/Zijm 2014:

205). Auch innerhalb von Firmen kann es zu Machtkämpfen zwischen interner IT und

Fachabteilungen kommen (vgl. Symon 2000: 400ff.). Dabei hat die IT-Abteilung eigene

Machtquellen (vgl. Silva 2005: 56). Aber letztendlich bietet die Einführung und Entwick

lung von Software für alle Beteiligten Möglichkeiten zur Mikropolitik (vgl. Ortmann et

al. 1990).

Nicht nur die Beziehungen zwischen Organisationen sind Teil der soziotechnischen

Netzwerkarbeit. Auch jene zwischen Personen sind es. Sie sind entscheidend, weil für die

kooperative Zusammenarbeit in einem Netzwerk z.B. Projektstrukturen allein nicht aus

6. Softwaregestaltung – konzeptionelle Grundlagen 121

reichen. Kooperationsbereitschaft, Sozialkompetenz, breit verankerte Verantwortungs

bereitschaft und verändertes Führungsselbstverständnis/-verhalten müssen vorhanden
sein (vgl. Rüegg-Stürm/Young 2001). Bolte und Porschen nennen Methoden, um infor

melle Strukturen der Kooperationen im Arbeitsalltag zu etablieren: Job Rotation, Hospi

tation, Promotoren oder Trainee-Programme für Einsteiger:innen (vgl. Bolte/Porschen
2007). Zudem ist es wichtig, dass langfristige Beziehungen bestehen, weil Vertrauen erst
mit der Zeit aus reziproken Beziehungen und durch geteilte Interessen entsteht (vgl.
Powell 1990, Uzzi 1997). Dabei ist das in Kooperationsnetzwerken schwierig: Denn es be

steht in ihnen generell ein geringes Vertrauen und eine geringe Loyalität (vgl. Grimshaw
et al. 2002: 200, Brinkmann/Dörre 2006: 139, Howcroft/Richardson 2012: 122, Holtgrewe
2014: 17ff.). Schnell entsteht Misstrauen und Wissen wird nicht mehr geteilt (vgl. Hirsch

feld 2000: 277, 268) – insbesondere bei marktförmigen Beziehungen (vgl. Felin/Zenger/
Tomsik 2009: 557).

Software beschränkt ihre Kontrolle in der soziotechnischen Netzwerkarbeit nicht
auf Standardisierung, Formalisierung und Überwachung. Vielmehr ist bei der Software

gestaltung ihre koordinierende, kooperationsermöglichende und wissensaktivierende
Funktion charakteristisch. Software verlangt von den Anwendenden wissensevozieren

des Engagement und Interaktion (vgl. Darr 2019, Rennstam 2012). Zudem koordiniert sie
als gemeinsam gestaltbares, textbasiertes Bezugsobjekt die Wissensarbeit (vgl. Nicolini/
Mengis/Swan 2012, vgl. Barrett/Oborn 2010, Carugati et al. 2018, Ponte/Rossi/Zamarian
2009, Bolici/Howison/Crowston 2009, 2016). Technische Kontrolle im Sinne Edwards
(1981) ist bei der Softwaregestaltung sekundär. Literatur zur Softwareentwicklung zeigt,
was auch für die Softwaregestaltung gilt: Menschliche Interventionen machen den digi

talen Arbeitsprozess aus (vgl. Andrews et al. 2005, Barrett 2005). Gleichzeitig schränkt
Software die Handlungsmöglichkeiten ein. Anwendende müssen der Programmlogik
folgen (vgl. Degele 2000: 67f.) und sich an die in der Software fixierten Regeln halten (vgl.
Heidenreich/Kirch/Mattes 2008: 7). Sie kann Arbeitsschritte als alternativlos vergeben,
sie detaillierter und umfassender verregeln, vorstrukturieren und systematisieren (vgl.
Schaeffer/Funken 2008: 13f.). Zudem verfestigt Software soziale Strukturen wie Rollen
oder Routinen soziotechnisch, indem sie diese in Software abbildet (vgl. Mutch 2010,
Volkoff et al. 2007). Sie gliedert den Einzelnen in einen Prozess ein (vgl. Sauer 2018: 196).
Wobei es dann nicht immer nur um einfachen Input gehen muss, sondern auch darum,
komplexere Aufgaben zu erledigen (vgl. Kleemann/Matuschek 2008). Zuletzt kontrol

liert Software durch Transparenz: ob durch Zuboffs »electric panopticum« (1988), die
organisationale Dezentralisierung durch die zentrale Steuerung dezentraler Einheiten
via Kennziffern (vgl. Kocyba 1999) oder die Teamsteuerung über Kennzahlen (vgl. Boes
et al. 2018).

Software ist aber nicht nur aufgrund ihrer Bedeutung für die Kontrolle eine der vier
Ebenen der soziotechnischen Netzwerkarbeit. Zusätzlich prägt die Software die Kom

munikation. Theoretischer Ausgangspunkt dabei ist Conways Law (1968), laut dem sich
organisationale Kommunikationsstrukturen in der Software spiegeln. Neue Literatur
weist darauf hin, dass es bei der Softwaregestaltung umgangen werden kann und trotz

dem noch prägend ist (vgl. Colfer/Baldwin 2016, Hvatum/Kelly 2005). Das betrifft jedoch
die Aufteilung einer Software z.B. in Module. Abgesehen davon können Abhängigkeiten,
die durch den softwaretechnischen Zuschnitt entstehen, die Kommunikation prägen.

122 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Wenn z.B. mehrere Teams mit einem gemeinsam genutzten (Standard-)Softwarebau

stein arbeiten, müssen sie sich für die Gestaltung dieses Bausteins abstimmen (vgl. Re

mer 2008).

Die vierte Ebene des Netzwerks sind die Softwaregestaltenden, die zwischen

Anwendung und Programmierung tätig sind. Als Wissensarbeitende sind die Soft

waregestaltenden Teil der zunehmenden Zahl an höherqualifizierten Dienstleistungs

arbeitenden in mittleren und höheren Dienstleistungsjobs, die zur Polarisierung der

Qualifikationsstruktur beitragen (vgl. Overbeck 2017). Sie sind Träger der soziotech

nischen Netzwerkarbeit, indem sie rollenbasiert Erwartungen erfüllen (vgl. Bechky

2006, vgl. Schimank 2010). Allgemeine Erwartungen unabhängig von spezifischen

Rollen wie IT-Projektleitung oder Anforderungsmanagende sind: kooperativ zu sein

(vgl. Williams 2002), selbstorganisiert zu arbeiten (vgl. Pongratz/Voß 1997, Sauer 2018,

Lee/Edmondson 2017, Minssen 1999, Faraj/Sproull), aktiv mit Softwareobjekten zu inter

agieren und sich ausgehend von ihnen zu koordinieren (vgl. Rennstam 2012, Koblauch

1996, Zuboff 1988, Conrad 2012), mit Nicht-Wissen umgehen zu können (Schmiede 2006,

Wilke 1998, Schulz-Schaeffer 1999) und sich im Netzwerk zu bewegen (vgl. Hohlmann

2007, Flecker/Holtgrewe 2008, Funken/Stoll/Hörlin 2011). Subjektivierung (vgl. Minssen

2011) und subjektivierendes Arbeitshandeln (vgl. Böhle 2010, Bolte 2017a, Bolte 2017b,

Weishaupt/Hösl 2017) sind Kernbestandteile der Kontrolle ihrer Arbeitskraft.

Softwaregestaltende sind eine Gruppe, die versucht, Einfluss in einer Organisation

zu gewinnen. Sie helfen, Kernprobleme des Kapitals (wie z.B. die Kontrolle von Arbeit)

zu lösen, und können deshalb eine bestimmte Position für sich beanspruchen (vgl. Arm

strong 1985). Ihre Position ergibt sich technikinduziert, weil sie notwendig sind, um die

Software-Technologie einzusetzen, wie bspw. die Rolle von Key User:innen (vgl. Hohl

mann 2007). Das empirische Kapitel wird zeigen, ob sie und ihre Qualifikationen tat

sächlich Teil des Managements sind, welchen Teil des Managements sie ersetzen oder

mit welchem Teil des Managements sie konkurrieren.

Die Ebenen und ihre Dimensionen der soziotechnischen Netzwerkarbeit zur Soft

waregestaltung zwischen Anwendung und Programmierung im Überblick:

Tabelle 4: Ebenen und Dimensionen der soziotechnischen Netzwerkarbeit

Ebene Dimension

Situativ Verhältnis von formalen und informellen Arbeitsschritten etablierenAblauf

Gestaltungsnetzwerke und deren Rollen und interdisziplinäres Wissen einbeziehen
Kooperative Beziehung zw. IT-Abteilung/-Dienstleistungsfirma und Fachabteilungen
Organisationsübergreifende Steuerungsstrukturen und kooperativer Umgang mit

Interessengegensätzen und ungleichen Wissensständen

Beziehung

Interpersonale Beziehungen basierend auf Vertrauen, Reziprozität, Kooperation

6. Softwaregestaltung – konzeptionelle Grundlagen 123

Ebene Dimension
Kontrolle: ermöglichend und einschränkend Software
Strukturprägend durch ihre Architektur
Wissensarbeitende Vermittelnde zwischen Anwendung und Programmierung
Rollen: erwartungsgeleitetes Handeln

Software-
gestaltende

Erhalten Einfluss, weil sie eine Technologie einsetzen helfen

Die Diskussion über die flexible Ergänzung der vier Ebenen in Abschnitt 6.4.4 sollte
verdeutlichen, dass es keine Best Practice dafür gibt, wie Ablauf, Beziehungen, Software
und die Rollen der Softwaregestaltenden auszugestalten sind und Kommunikation
stattfindet. So kann ein Common Ground aus Wissen und softwarebasierten Werk

zeugen oder eine modulare Softwarearchitektur direkte Kommunikation ersetzen (vgl.
Srikanth/Puranam 2014). Statt über den einen besten Weg zu kommunizieren, kom

men vielfältige Kommunikationskanäle zum Einsatz (vgl. Heidenreich/Kirch/Mattes
2008). Es gibt Fälle, in denen direkte Kommunikation durch digitale Kommunikation
(Chats, Ticketsysteme, online geteilte Dokumente) ersetzt werden kann (vgl. Shaikh/
Henfridsson 2017). Zudem ist es abhängig von der Softwareentwicklungsplattform, wie
ihre Nutzenden Wissensgrenzen überwinden (vgl. Foerderer et al. 2019).

Die Folgen der Softwaregestaltung auf die Softwareanwendung konzipiert die Un

tersuchung als soziotechnische Arbeitsgestaltung der Softwareanwendung durch die
Softwaregestaltung. Diese soziotechnische Arbeitsgestaltung als Verhältnis zweier Ar

beitsprozesse folgt Ansätzen einer inkrementellen Digitalisierung (vgl. Hirsch-Kreinsen
2020) im Sinne einer immer weiteren Ausbreitung von Software und einer Digitalisie

rung durch Arbeit und ihrer je arbeitsweltspezifischen Ausprägung (vgl. Apitzsch et al.
2021). Es handelt sich um eine Rationalisierung durch Technikgestaltung, was als tech

nikentwicklungsbezogene Strategie die drei anderen von Menz/Nies/Sauer (2019) ge

nannten vervollständigt. Indem Software für die Organisationen wichtiger wird, ihre
Ziele zu erreichen, wird Softwaregestaltung für die Effizienz einer Organisation wichti

ger. Das Konzept der soziotechnischen Arbeitsgestaltung arbeitet dann erst das Empi

rie-Kapitel detailliert aus.
Denn die Literatur zu den Folgen der Softwaregestaltung auf die Softwareanwen

dung betrifft nur Standardsoftware und liefert auch kein brauchbares Konzept, um das
in den Fallstudien aus dem 8. Kapitel vorliegende Verhältnis von Softwareanwendung
und Softwaregestaltung zu beschreiben. Was sind aber die Folgen von Standardsoft

ware für die Softwareanwendung? Eine Standardsoftware macht die Anwendung weni

ger flexibel in der Arbeitsgestaltung (vgl. Brödner 2002 nach Remer 2008: 42, Hohlmann
2007: 34, 334, Zhu/Zhou 2012). Sie kann als Durchsetzungsinstrument von Reorganisa

tionen dienen (vgl. Hohlmann 2007: 333), re-modelliert Arbeitsabläufe und nur bei grö

ßeren unternehmerischen Konflikten passen die Organisationen die Software stärker an
(vgl. Mormann 2016: 222). Andere ERP-Implementierungen sind wiederkehrende, an

dauernde Aushandlungen (vgl. Svejvig/Jensen 2013), werden abgebrochen, weil die Soft

ware wichtige Anforderungen nicht erfüllt (vgl. Grant et al. 2006: 13), oder schreiben die

124 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

vorher bestehende fehlende Integration von Abteilungen fort (vgl. Elbanna 2007). Zudem

entstehen langfristige Gestaltungsnetzwerke für ERP-Software innerhalb von Organisa

tionen (Hohlmann 2007). Ebenso stellen sich auch bei der Einführung einer Standard

lösung Fragen der Partizipation der Anwendenden (vgl. Tsamenyi et al. 2006: 425f., Ly

ytinen/Newman 2015). Zuletzt erleichtert Standardsoftware es, Tätigkeiten von einem

lokalen Kontext zu lösen und zu verlagern (vgl. Howcroft/Richardson 2012: 124). Ande

re Veränderungen lassen sich nicht auf den Standardcharakter zurückführen, wie zum

Beispiel neue Tätigkeitsfelder, Berufsfelder und Abteilungen für die Koordination der

Dateneingabe und -pflege (vgl. Walker 2016: 83f.); Automatisierung, Standardisierung,

Dequalifizierung in der Anwendung (vgl. Howcroft/Richardson 2012: 120); Intensivie

rung, Arbeitsplatzabbau oder Integration jedes Arbeitsplatzes in ein System (vgl. Dery

et al. 2006: 207f.); Zentralisierung des Managements einhergehend mit Handlungsein

schränkungen für dezentrale Teams (vgl. Schwarz/Brock 1998: 76).

Bevor die Fallstudien die unterschiedlichen Aspekte der soziotechnischen Netzwerk

arbeit und der soziotechnischen Arbeitsgestaltung konkretisieren, stellt das nächste Ka

pitel die Energiewirtschaft vor und beschreibt, wie sich die Industriestrukturen auf die

Softwaregestaltung auswirken.

7. Industriespezifische Aspekte der Softwaregestaltung

in der Energiewirtschaft

Eine Folge der Digitalisierung einer Branche ist, dass eine neue Arbeitsteilung existiert:
jene zwischen Anwendung und Entwicklung von Software. Dabei ist die Arbeitsteilung
geprägt durch Industriestrukturen, die das folgende Kapitel durch das Konzept der In

dustrie-Governance beschreibt. Letzteres dient dazu, in die Energiewirtschaft einzufüh

ren und Anwendungsfelder und Treiber der Softwareentwicklung kennenzulernen. Die
verschiedene Anwendungsfelder ergeben sich in erster Linie aus den unterschiedlichen
Geschäftsfeldern der EVU und aufgrund der umfangreichen Regulierung der Branche
durch den Staat. Energiewende und Liberalisierung sind wichtige Treiber für eine kon

tinuierliche (Weiter-)Entwicklung von Software. Charakteristisch für die Branche sind
zudem die vielen Kooperationen zwischen den EVU und ein vielfältiger Markt an Zulie

ferfirmen für Software.

7.1. Industriestrukturen der Energiewirtschaft und ihr Verhältnis
zur Digitalisierung

7.1.1. Ansatz der Industrie-Governance

Ob die Re-Regulierung der Energiewirtschaft seit 1998 oder der zunehmende Einsatz di

gitaler Technologien: Beide haben gravierende Folgen für die »Regulierung von Arbeit,
Auswirkungen auf die Arbeitsgestaltung ebenso wie auf die Handlungsspielräume und
Machtressourcen arbeitspolitischer Akteure« (Jürgens 2007: 119). Ebenso wie dies Jür

gens 2007 für die Automobilindustrie konstatierte, gibt es aktuell in der Energiebran

che Unsicherheit »hinsichtlich der Nachhaltigkeit neuer Struktur- und Strategiekonzep

te« (ebd.). Das industriespezifische Ordnungsmodell ergibt sich, wie das Kapitel zeigen
wird, im Wechselspiel aus politischer Regulierung und digitaler Technologie. Software
ist Teil davon und prägt unabhängig von einzelnen Organisationen unternehmensüber

greifende Struktur- und Handlungsmuster. Für die Analyse wird das Konzept der In

dustrie-Governance genutzt, das sowohl wirtschaftliche Strukturen als auch staatliche

126 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Regulierung im Blick hat, wie zuletzt von Jürgens (2007) beschrieben. Es geht um Struk

tur- und Handlungsmuster, die unternehmensübergreifend gültig sind. Beziehungen

zwischen Agierenden und Legitimationsfragen sind zentral. Das Konzept der Industrie-

Governance geht über Fragen der Regulierung und der Produktion hinaus. Es geht dar

um, wie einzelne handelnde Personen zentrale Probleme lösen und welche Governance-

Mechanismen sie anwenden. Ein solches Problem ist bspw., wie Wachstum geschaffen

werden kann. Für die großen Konzerne hat es Chandler (1990) idealtypisch beschrieben.

In den vertikal integrierten Unternehmen beruht es auf Massenproduktion (»scale«) und

Diversifizierung (»scope«), wobei sie immer neue Geschäftsfelder erschließen (vgl. Jür

gens 2007: 122). Eine andere Form ist im sogenannten Wintelismus (eine Wortschöp

fung aus Windows und Intel) in der IT-Branche zu finden, wo Unternehmen unprofi

table Bereiche abstoßen (es keine Querfinanzierung gibt) und Wachstum durch Fokus

auf Kernkompetenzen verfolgen. Neue Märkte werden durch Firmenzukauf erobert und

der Umsatz durch kürzere Produktzyklen gesteigert (vgl. Jürgens 2007: 124). An diesen

beiden skizzierten Beispielen lässt sich bereits erkennen, dass nicht nur Unterschiede

zwischen Ländern existieren, wenn es um eine wirtschaftliche Ordnung geht (wie der

Ansatz der Varieties of Capitalism (Hall/Soskice 2001) es vorführt). Auch Industrien unter

scheiden sich untereinander und verändern sich im Laufe der Zeit.

Um die Darstellung der Energiewirtschaft zu strukturieren, unterscheidet der In

dustrie-Governance-Ansatz vier Arenen (vgl. Jürgens 2007):

1. Corporate Governance: betrifft die Führung eines Unternehmens (z.B. grundsätzli

che Ziele oder für was Unternehmen Gewinne verwenden)

2. Produktmarkt: Normen und Regelungen (inkl. Standards) von Staat und Unterneh

men hinsichtlich Produkteigenschaften und Wettbewerbsstrukturen

3. Prozess: Ausgestaltung der interorganisationalen Beziehungen in den Wertschöp

fungsketten (z.B. fokale Unternehmen, Outsourcing, Spezialisierung durch Auftei

lung von Produktentwicklung und Fertigung, Fragmentierung, Rolle der Zulieferer,

Etablierte vs. Neulinge)

4. Arbeitsbeziehungen: z.B. Standardisierung von Arbeit, Bedeutung von Erfahrungs

wissen, Organisationsgrad der Arbeitnehmer

Ausgeschlossen von der Analyse sind die Zulieferfirmen für Netze oder Kraftwerke (ABB,

Hitachi, Siemens, Enercon, Yingli Solar, SMA Solar, Vestas, General Electric etc.) und

Projektierende und Planende von Erzeugungsanlagen (Fichtner, Juwi etc.). Um die Dar

stellung zu vereinfachen und weil in den Fallstudien der Regulierung, neuen Geschäfts

feldern und allgemein in der zukünftigen Energiewirtschaft Strom eine große Bedeu

tung zukommt, wird im Folgenden der Schwerpunkt auf die Governance der Stromwirt

schaft gelegt. Gas, Atomkraft, Öl oder Kohle bleiben außen vor.

Bevor das Kapitel die einzelnen Arenen detailliert behandelt, sei noch auf eine

wichtige Besonderheit der Energiewirtschaft hingewiesen. Zentral für ihr Verständnis

ist die Rolle des Staates. Er reguliert den gesamten Produktionsprozess. Er entscheidet

mit über Gewinnchancen und Innovationsmöglichkeiten. Im Energiebereich nimmt die

Governance ihren Ausgang in der EU und der Idee, einen Binnenmarkt für Energie zu

etablieren. Das Wettbewerbsprinzip soll gelten. Durch die Umsetzung der EU-Vorgaben

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 127

löst sich das vor 1998 noch existierende »korporatistisch geregelte[…] Oligopol mit re

gionalem Gebietsmonopol« (Sack 2018: 83) in Deutschland auf. Bontrup und Marquardt
fassen die Liberalisierung wie folgt zusammen:

»Auf die erste Phase eines eher großzügigen Laisser-faire, der auf die Selbstdiszipli
nierung des Markts bzw. auf Verbändevereinbarungen fast schon blind vertraute, folg
te eine Periode der extensiven Neugestaltung des Regulierungsrahmens für die Elek
trizitätswirtschaft.« (Bontrup/Marquardt 2010: 23)

Die als effizient geltende Markt-Governance setzt einen Verwaltungsaufbau voraus (vgl.
ebd: 72). Ein Autor konstatiert ein »ausuferndes Regulierungsrecht sowie einen erhebli

chen Behördenzuwachs« (Schöneich 2012: 79).
Wichtige Agierende in der Energiewirtschaft sind zudem die Verbände. Ob EEG oder

Vorgaben der Bundesnetzagentur: Die Verbände BDEW (Bundesverband der Energie-
und Wasserwirtschaft) und VKU (Verband kommunaler Unternehmen) liefern Anwen

dungshilfen für die Regulierung. Ob Verordnungen, Gesetze oder Datenformate: Es wer

den immer Dritte in sogenannten Konsultationsphasen hinzugezogen. In den Konsulta

tionsphasen können Anmerkungen gemacht werden1. Unternehmensverbände machen
zudem Studien zu neuen, digitalen Technologien und wie diese in der Energiewirtschaft
genutzt werden können. Sie wirken auf die Regulierung der Digitalisierung ein, bspw.
bei den Smart-Meter-Konsultationen.2

7.1.2. Corporate Governance: Zwischen Daseinsvorsorge und Wettbewerb

Die besondere Rolle des Staates zeigt sich daran, dass die Kernziele der Stromwirtschaft
durch die Politik vorgegeben sind. Alle Unternehmen der Energiewirtschaft unterliegen
gleichermaßen dem gesellschaftlichen Auftrag, der gesetzlich in § 1 des Energiewirt

schaftsgesetzes festgelegt ist: Ihr Sinn und Zweck ist demnach »eine möglichst siche

re, preisgünstige, verbraucherfreundliche, effiziente und umweltverträgliche leitungs

gebundene Versorgung der Allgemeinheit mit Elektrizität und Gas, die zunehmend auf
erneuerbaren Energien beruht.«

Inwiefern sie in ihrem Management öffentlich kontrolliert sind, hängt von ihrer Ei

genständigkeit von der staatlichen Verwaltung (7.1.2.1), der Entflechtung (7.1.2.2), den
Eigentümern (7.1.2.3) und der Marktrolle und den Geschäftsfeldern (7.1.2.4) ab.

1 Ein Beispiel für den Konsultationskreis: Jener für die Anreizregulierung am 25.08.2005, der laut
BNetzA-Webseite aus folgenden Organisationen bestand: 8KU (Kooperation der acht großen
kommunalen Energieversorgungsunternehmen aus Leipzig, Hannover, Köln, Frankfurt a.M.,
Darmstadt, Mannheim, Nürnberg und München), Bund der Energieverbraucher e. V., VKU –
Verband kommunaler Unternehmen e. V., Verbraucherzentrale Bundesverband e. V. und noch
zehn weiteren Verbänden: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/
Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/1_KK_Ein
ladung.pdf;jsessionid=ADF8AE92C4D64C672E8EF59F444AAF2E?__blob=publicationFile&v=1,
abgerufen am 16.05.2023.

2 Der Vollständigkeit halber sei erwähnt, dass – wie auch in anderen Industrien – Verbände wie
Bitkom oder das Forum elektronische Rechnung Deutschland (FeRD) aktiv darauf hinwirken, die
digitale Vernetzung der Gesellschaft voranzutreiben.

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/1_KK_Einladung.pdf;jsessionid=ADF8AE92C4D64C672E8EF59F444AAF2E?__blob=publicationFile&v=1
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/1_KK_Einladung.pdf;jsessionid=ADF8AE92C4D64C672E8EF59F444AAF2E?__blob=publicationFile&v=1
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/1_KK_Einladung.pdf;jsessionid=ADF8AE92C4D64C672E8EF59F444AAF2E?__blob=publicationFile&v=1

128 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

7.1.2.1. Rechtsform und eigenständige Unternehmensführung

Nicht erst durch die Liberalisierung hat sich die Unternehmensorganisation in der

Stromwirtschaft geändert. Die für kommunale Unternehmen typische Rechtsform

Eigenbetrieb ging bereits vorher stark zurück. 1952 hatten sie noch 94 %, 1989 noch 57 %

und 2009 nur noch 23 % der VKU-Mitglieder (vgl. Ambrosius 2012: 42). Die Daten des

Statistischen Bundesamtes zu allen Elektrizitätsversorgern zeigen, dass insgesamt die

GmbHs (GmbH oder GmbH & Co. KG) mit 1156 von 1444 Betrieben 2017 dominieren. Im

selben Jahr liefen nur noch 87 Versorger als Eigenbetrieb.

Tabelle 5: Rechtsformen Elektrizitätsversorger 2000 und 2017

Insge

samt

Ein

zelfir

ma

OHG KG

GmbH

& Co.
KG

GmbH AG

Ge

nos

sen

schaf

ten

Ei

gen

be

trieb

Ver

band

Sons

tige

2000 925 24 12 11 39 483 105 37 209 3 2

2017 1444 13 12 10 214 942 95 43 87 2 26

(Quelle: Statistisches Bundesamt)

Die Rechtsform macht für die Unternehmensführung einen Unterschied. Eigen

betriebsverordnungen wie jene in Niedersachsen lassen bspw. ein Weisungsrecht für

den Bürgermeister bzw. Gemeindedirektor erkennen. Für Brede ist das aber nicht mehr

zeitgemäß: »Die Werksleitung braucht Freiraum für die Gesamtheit der Unterneh

menspolitik.« (Brede 2012: 308) Statt bspw. Werksausschuss und Werkleitung (primäre

Leitungsorgane), Kommunalparlament und Hauptverwaltungsbeamte:r (sekundäre

Leitungsorgane) wie beim Eigenbetrieb stellen GmbHs ein eigenständiges Unterneh

men dar, dessen Geschäftsführung die gesellschaftende Kommune bzw. Stadt bestellt.

Die Geschichte der SW München zeigt eine lange, über Jahrzehnte gehende Diskussion

über die Rechtsform. Man wollte flexibleren Gestaltungsspielraum, weniger politische

Einflussnahme und verbesserte Effizienz durch Mitbestimmung (vgl. Bähr/Erker 2017:

284).

7.1.2.2. Unternehmensstruktur: Entflechtung der Unternehmen

Ein Teil der Liberalisierung war es, die bis 1998 vertikal integrierten Unternehmen

zu entflechten. Die Netze sind zwar weiterhin ein natürliches Monopol, »vor- und

nachgelagerte Wertschöpfungsstufen allerdings werden als wettbewerbsfähig erachtet«

(Bräunig 2012: 421). Bis 2005 sollten die EVU rechnerisch, informationell, eigentums

rechtlich und operationell entflechtet sein (vgl. Bräunig 2012: 422f.). Um diese als

»Unbundling« bezeichnete Reorganisation zu verbessern, wurde die BNetzA (Bundes

netzagentur) ins Spiel gebracht. Sie wacht darüber, dass die Netze diskriminierungsfrei

zugänglich sind und öffentliche und private Unternehmen gleichbehandelt werden.

Bei der informationellen Entflechtung geht es darum, dass die Informationen für

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 129

Netz und Vertrieb diskriminierungsfrei zugänglich sein müssen (bspw. Zählerstände).
Rechnerisch ist ein Unternehmen entflechtet, wenn es die Bilanzen nach Geschäftsfeld
getrennt aufführt (z.B. Netz und Vertrieb). Bei der operationalen Entflechtung geht
es vor allem um die personelle Trennung auf Leitungsebene (vgl. Bräunig 2012: 426f.).
Die Entflechtung kann durch unterschiedliche Organisationsmodelle wie Holding oder
Tochter-/Muttergesellschaften umgesetzt werden (vgl. Bräunig 2012: 432). Die Entflech

tungspflicht gilt nicht für EVU mit weniger als 100.000 Kund:innen (vgl. § 7 Abs. 2 EnWG
bzw. § 7a Abs. 7 EnWG). Dies hat zur Folge, dass kleine Stadtwerke integrierte Betriebe
bleiben. Als zusätzlich zu entflechtende Marktrollen kamen 2005 der Messstellenbetrieb
und mit dem Digitalisierungsgesetz von 2016 der Smart Meter Gateway Administrator
dazu (der das Zähler-Datenmanagement übernimmt).

Die organisatorische Besonderheit kommunaler Unternehmen ist, dass es sich oft
um Querverbundunternehmen handelt. 2009 bewirtschafteten 42 % der VKU-Unterneh

men neben Strom mindestens noch eine weitere Sparte wie Wasser, Gas, Wärme oder
Entsorgung. Strom allein bieten nur 16 von 1369 VKU-Mitgliedern an (vgl. Gottschalk
2012: 58). Das alleinstehende Stromlieferunternehmen oder der alleinstehende Netzbe

trieb sind also selten.
Das mittelgroße Stadtwerk von Heidelberg hat zum Beispiel neun Gesellschaften

im Konzern: Stadtwerke Heidelberg Bäder, Stadtwerke Heidelberg Energie, Stadtwer

ke Heidelberg Garagen, Stadtwerke Heidelberg Netze, Stadtwerke Heidelberg Techni

sche Dienste, Stadtwerke Heidelberg Umwelt, Stadtwerke Neckargemünd, Stromnetz
Neckargemünd, Heidelberger Straßen- und Bergbahn3. Einzelne EVU wie die Stadtwer

ke München überschreiten nationale Grenzen und haben Windparks in Norwegen oder
Frankreich (vgl. Stadtwerke München GmbH 2023: 33f.).

7.1.2.3. Eigentümerstruktur und Unternehmensziele
Mit der Liberalisierung ging eine Privatisierung öffentlichen Vermögens einher. Kom

plett privatisiert wurde aber nur ein kleinerer Teil der Stromversorgung. In seinem Da

tensatz von 820 kommunalen Unternehmen (oftmals Strom und Gas gemischt) konnte
Sander ermitteln, dass mehr als die Hälfte (430 Unternehmen) noch zu 100 % in kom

munalem Besitz waren. Von den verbleibenden 390 Unternehmen blieben 63 in kom

munaler Hand, wobei entweder weniger als 25 % der Anteile verkauft wurden oder ein
anderes kommunales Unternehmen Anteile über 25 % erwarb (vgl. Sander 2009: 10f.).
Von den großen Konzernen ist der Eigentümerstamm bei E.ON und RWE4 gestreut,
EnBW gehört dem Land Baden-Württemberg und einigen Kommunen dort5, Vattenfall
dem schwedischen Staat6 und Uniper gehört seit Dezember 2022 der Bundesrepublik
Deutschland.

Schwintowski macht als wesentlichen Unterschied zwischen privaten und öffentli

chen Unternehmen aus, dass »öffentliche Unternehmen typischerweise gewinnbringen

3 https://www.swhd.de/unternehmen, abgerufen am 02.05.2023.
4 Ca. 1/4 der Aktien von RWE gehören Kommunen (vgl. Meves 2021).
5 https://www.enbw.com/unternehmen/investoren/aktie/#aktionaersstruktur, abgerufen am

02.05.2023.
6 https://group.vattenfall.com/who-we-are/about-us, abgerufen am 02.05.2023.

https://www.swhd.de/unternehmen
https://www.enbw.com/unternehmen/investoren/aktie/#aktionaersstruktur
https://group.vattenfall.com/who-we-are/about-us

130 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

de Bereiche mit solchen bündeln [können], die defizitär wirtschaften« (Schwintowski

2012: 330). Bei den Unternehmenszielen wird von »citizen value« anstelle des »share

holder value« gesprochen (vgl. Bähr/Erker 2017: 371). Aber inwiefern öffentliche Eigen

tümer, öffentliche Kontrollstrukturen und öffentliche Ziele wirklich zur Realisierung öf

fentlicher Politik führen, ist umstritten. So »ist empirisch festzustellen, dass der öffent

liche Einfluss auf die Unternehmenspolitik mit zunehmender Größe der Unternehmen

sinkt« (Monstadt 2004: 91). Es geht mehr um Kosten und Preise und nicht mehr um

störungsfreie Versorgung. Das Management gleicht jenem in der Privatwirtschaft (vgl.

Edeling/Stölting/Wagner 2004: 155f.). Schäfer konstatiert, dass die Daseinsvorsorge Teil

des allgemeinen Wertschöpfungsprozesses wird und statt Bedürfnisbefriedigung und

Nutzenstiftung Gewinn und Profit in den Vordergrund rücken (vgl. Schäfer 2014: 31).

Unterschiede zwischen großen Konzernen und Stadtwerken gibt es weiterhin, was auch

an der lokalen Verankerung Letzterer liegt. Ob wirtschaftliche Betätigungen außerhalb

des Gemeindegebiets gesetzlich zugelassen sind, ist je nach Bundesland unterschiedlich

(vgl. Püttner 2012: 144).

»Während kommunale Energieversorger jedoch häufig aufgrund von politischem
Kalkül und bestehenden Gemeindeordnungen in ihren Expansionsbemühungen

beschränkt sind, haben andere regionale und überregionale Player den Markt der
energienahen Dienstleistungen längst für sich entdeckt und treten als starke Kon
kurrenz auf.« (Rödl und Partner 2017: 59)

Neben diesen räumlichen Grenzen wirken sich die Vergaberegeln der EU einschränkend

auf die wirtschaftliche Freiheit der kommunalen Unternehmen aus. Diese lässt nicht

ohne weiteres zu, eine für die Leistungserbringung geeignet gehaltene Organisation

auszuwählen (vgl. Brede 2012: 308). Gleichzeitig gilt die Selbstverwaltungsgarantie der

Gemeinden laut Artikel 28(2) GG (vgl. Hellermann 2000: 350). Sie sichert den Kommunen

die Selbstverwaltung zu. Die Selbstregelung lokaler Angelegenheiten und dezentrale

politische Macht (Prinzip der Subsidiarität) ist ihnen gesetzlich garantiert (vgl. ebd. 21).

Ob technischer Natur (in Form der Netze oder dezentraler Erzeugungsanlagen), im Sin

ne einer kommunalen Selbstverwaltung (Subsidiarität) (vgl. Edeling/Stölting/Wagner

2004: 20f.) oder durch Nähe zur Kundschaft, Dezentralisierung der Stromerzeugung

und Nachhaltigkeit (vgl. Doleski 2016: 25f.): Die deutsche Energiewirtschaft hat einen

starken regionalen Bezug. Eine aggressive Expansionspolitik oder kurzfristige Rendite

orientierung ist nicht das Ziel kommunaler Unternehmen. Gleichwohl stehen regionale

Versorger unter Druck, Gewinn zu erwirtschaften. Viele Kommunen finanzieren mit

dem Geld andere Vorhaben ihrer Stadt.

Als Folgen der Liberalisierung haben sechs Feldstudien im Bereich Elektrizität (Belgi

en, Österreich, Polen, UK) festgestellt, dass der Wettbewerb von der lokalen Situation ab

hängt und im Vereinigten Königreich der intensivste Wettbewerb herrscht (vgl. Flecker/

Hermann 2011: 526). Die EVU verfolgen neue Strategien: Diversifizierung, mehr Geld für

Werbung, mehr Call-Center und damit reduzierte Betreuung vor Ort (vgl. ebd. 527).

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 131

7.1.2.4. Marktrollen, Geschäftsfelder und Regulierung
Die meisten stromwirtschaftlichen Unternehmen sind Netzbetreiber oder Stromliefe

ranten. 2018 gab es 913 Stromnetzbetriebe und rund 1300 Stromlieferanten in Deutsch

land (vgl. BDEW 2019).

Abbildung 7: Anzahl Elektrizitätsunternehmen 2018

(Quelle: BDEW 2019)

Firmen für Energiedienstleistungen wie Energieberatung, Energie-Contracting (An

lagen zur Verfügung stellen und betreiben) und Energiemanagement gibt es ca. 7400

(vgl. BfEE 2019: 103). Zusätzlich gibt es durch die erneuerbaren Energien viele kleine,

private Erzeugungsanlagen von Genossenschaften, Landwirt:innen oder Privatleuten.

Im Marktstammdatenregister7 der BNetzA waren zum 28. April 2023 2.593.888 aktive

Anlagenbetreibende aufgeführt.

Die Regulierung ist für jedes Geschäftsfeld unterschiedlich. Der Netzbetrieb ist viel

stärker in seiner wirtschaftlichen Kalkulation von BNetzA-Verordnungen abhängig als

ein Stromlieferant, dessen Herausforderung mehr im Wettbewerb mit anderen Liefer

unternehmen liegt.

Bei den Netzen handelt es sich um natürliche Monopole. Es gibt Übertragungsnetz

betriebe (ÜNB) für die Fernübertragung, von denen es in Deutschland vier gibt (Tennet

TSO, 50Hertz Transmission, Amprion, TransnetBW) und Verteilnetzbetriebe (VNB) für

die letzten Kilometer bis zu den Verbrauchenden, von denen 913 existieren (siehe Ab

bildung oben) und die unterschiedlich groß sind. Die Übertragungs- und Verteilnetzbe

triebe haben jeweils durch den Gesetzgeber zugewiesene Aufgaben (bspw. Stabilisierung

des Stromsystems, Ausbau der Netze, Anschluss Erneuerbare-Energie-Anlagen). Um in
dem natürlichen Monopol Anreize für Effizienzsteigerungen zu setzen, wurde 2007 die

Anreizregulierungsverordnung verabschiedet8. Von nun an waren nicht mehr die Kos

ten Ausgangspunkt dafür, die Erlöse von Netzbetrieben zu bestimmen. Auch der Gewinn

wurde nicht mehr pauschal aufgeschlagen. Es wurden nun individuelle Effizienzvorga

ben ermittelt, von deren Erreichung abhängt, wie viel Rendite ein netzbetreibendes Un

ternehmen erwirtschaftet (vgl. Herrmann 2012: 289f.). Für Übertragungs- und Verteil

netzunternehmen liefert die Anreizregulierung einen Ansporn, die Effizienz zu steigern

(bspw. durch Kooperation mit anderen Netzbetreiber, Erschließung neuer Geschäftsfel

der, Einsatz moderner Technologien) (vgl. Herrmann 2012: 301). Laut einer Studie an

hand von 109 VNB über die Anreizregulierung von 2009 hatte die Anreizregulierung ei

7 https://www.marktstammdatenregister.de, abgerufen am 02.05.2023.
8 betreut durch die Beschlusskammer 8 der BNetzA, Verordnung StromNEV.

https://www.marktstammdatenregister.de

132 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

nen signifikanten positiven Effekt auf die Investitionsrate der VNB. Es stellte sich zudem

heraus, dass es keinen Unterschied zwischen Firmen im öffentlichen und privaten Besitz

gab (vgl. Cullmann et al. 2016).

Zwei Dinge gilt es noch zu bedenken: Für ca. 650 Stromnetzbetriebe (mit weniger als

30.000 Kund:innen) gibt es ein vereinfachtes Verfahren, bei dem die Berechnung der An

reizregulierung weniger aufwendig und somit kostengünstiger ist (vgl. Herrmann 2012:

295f.). Zum Zweiten müssen im Unterschied zu den ÜNB die VNB den Zuschlag für eine

Netzkonzession erhalten, um wirtschaftlich tätig werden zu können. Wenn bspw. ein 20-

jähriger Konzessionsvertrag ausläuft und der VNB den Zuschlag nicht mehr erhält, ist er

seiner Geschäftsgrundlage beraubt und muss den Betrieb einstellen. Um die Konzession

in Berlin zwischen Vattenfall und dem Land Berlin gab es gerichtliche Auseinanderset

zungen, bis Vattenfall nachgab (vgl. Müller 2021).

Nicht nur im Netzbereich entstehen viele unternehmerische Risiken und wirtschaft

liche Unsicherheiten durch die Regulierung oder politische Entscheidungen. Auch für

den Messstellenbetrieb (den aktuell meistens das netzbetreibende Unternehmen über

nimmt) gibt die BNetzA die Aufgaben vor: Installation, Inbetriebnahme, Konfiguration,

Administration, Überwachung und Wartung von Zählern. Zusätzlich wurde im Zuge der

Einführung von Smart Metering durch das Gesetz zur Digitalisierung der Energiewirt

schaft (was die Installation von Smart Metern betrifft) eine neue Marktrolle bzw. ein neu

es Geschäftsfeld geschaffen. Der Smart Meter Gateway Administrator soll die Kommuni

kationseinheit für Messdaten zur Verfügung stellen und damit seine Geschäfte machen.

Weil es so aufwendig ist, ein Zertifikat des Bundesamtes für Sicherheit in der Informa

tionstechnik (BSI) zu erhalten, gibt es nicht viele Firmen, die diese Marktrolle überneh

men. Zudem begrenzt die Regulierung die Preise für Stromzähler für die Endkundschaft

gestaffelt nach dem Stromverbrauch (für alle Verbrauchsstellen über 6000 kWh, bei de

nen der Einbau gesetzlich vorgeschrieben ist).

Die Stromlieferanten sind am stärksten am Markt ausgerichtet. Sie gab es vor der

Liberalisierung noch nicht. Sie müssen sich um Marketing kümmern, Kund:innenbe

ziehungen pflegen und es gibt viel Konkurrenz (mittlerweile auch von branchenfremden

Unternehmen wie Lidl9, Deutsche Bahn10 oder Volkswagen11).

Subventionierung Erneuerbare Energien
Erneuerbare Energieträger wurden vor allem zu Beginn durch ein Umlageverfahren

staatlich gefördert – und zwar nicht nur für (große) Firmen, sondern auch für Privat

personen. Die ökonomischen Anreize in Form von Fördersätzen wurden im Laufe der

Jahre stufenweise abgesenkt. Es gab seit 2000 mehrere Novellierungen des Erneuerbare-

Energien-Gesetzes. Über die Jahre und da es eine garantierte Vergütung von 20 Jahren

(EEG § 21 (2)) gibt, haben sich Tausende von Vergütungskategorien (unterschiedlicher

Jahre und Leistungsstufen) für die verschiedenen Energieträger Wasser, Biomasse,

Windenergie, Solarenergie und Geothermie angesammelt. Für Kraft-Wärme-Kopp

lungs-Anlagen gibt es noch einmal gesonderte Vergütungskategorien. Mittlerweile gibt

9 https://www.lidl-strom.de/, abgerufen am 12.05.2023.
10 https://www.dbstrom.de/, abgerufen am 12.05.2023.
11 https://www.elli.eco/de/volkswagen/naturstrom, abgerufen am 12.05.2023.

https://www.lidl-strom.de/
https://www.dbstrom.de/
https://www.elli.eco/de/volkswagen/naturstrom

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 133

es Ausschreibungsverfahren und die Direktvermarktung wird gefördert (bei großen
Solaranlagen gibt es keine Einspeisevergütung mehr). Seit 2017 gibt es einen »Mieter

stromzuschlag«, eine Subvention für Strom aus Solaranlagen auf Wohngebäuden, der
an die Hausbewohner geliefert wird.

7.1.3. Produktmarkt-Governance: staatliche Regulierung und Digitalisierung

Unabhängig von ihrer Rechtsform oder ihrer Marktrolle finden sich die Unternehmen
mit Normen und Regelungen konfrontiert, welche »die Produkteigenschaften und Nut

zungsmöglichkeiten sowie Wettbewerbsstrukturen der Industrie betreffen« (Jürgens
2007: 128). Diese Produktmarkt-Governance wird geprägt durch Staat, Verbände und
einzelne Firmen.

Eckpunkte für die Koordinierung und Steuerung durch den Staat sind die Harmoni

sierung der Kommunikationsstrukturen, die Durchsetzung des Wettbewerbsprinzips,
das Setzen von Standards oder die Regionalisierung der Käufermärkte (vgl. Jürgens
2007: 129f.). Das zentrale Ziel ist es, Strukturen zu schaffen, die einen Markt mit Wett

bewerbsmechanismen etablieren. Einen großen Anteil nimmt in der Stromwirtschaft
die Produktgestaltung ein.

7.1.3.1. Wechsel Stromlieferant, Energierechnung und Stromhandel
Kund:innen konnten zwar schon ab 1998 theoretisch ihren Stromlieferanten wechseln.
Aber erst 2007 gab es klare Vorgaben für den Wechsel des Lieferunternehmens. Im Zuge
der Liberalisierung wurde die Strombörse eingeführt und Social Media ist wie für Fir

men anderer Branchen ein wichtiger Kommunikationskanal für EVU geworden.
Um der Kundschaft ein vielfältigeres Angebot bieten zu können, den Strompreis

transparent zu machen und informierte Kaufentscheidungen zu ermöglichen, müs

sen sämtliche Abgaben, der Energiemix und die Herkunft des gekauften Stroms auf
der Rechnung angedruckt werden. Die Zusammensetzung des Preises muss gemäß
EnWG § 40 Abs. 2 für die Letztverbrauchenden transparent sein, d.h. auf der Rechnung
aufgeführt werden. § 42 des Energiewirtschaftsgesetzes (EnWG) verpflichtet Strom

lieferanten, ihrer Kundschaft die Zusammensetzung der Energieträger des gelieferten
Stroms (bspw. Kohle, Gas oder erneuerbare Energien) anzugeben. Seitdem § 66 Abs. 9
EEG und § 118 Abs. 5 EnWG am 1. Januar 2013 in Kraft getreten sind, gibt es das Her

kunftsnachweisregister (HKNR), welches durch das Umweltbundesamt geführt wird.
In dem Register sind sämtliche erneuerbaren Energiequellen aufgelistet. Ziel ist es,
dem »gemischten« Strom aus der Steckdose genau eine Energiequelle zuordnen zu
können, damit die Verbrauchenden sichergehen können, dass sie »grünen« Strom
bekommen. Der Herkunftsnachweis für Strom aus Erneuerbaren-Energie-Anlagen ist
in analoger Form nicht umsetzbar – das betrifft auch das Abbilden des Strommix auf
der Stromrechnung, um so der Kundschaft transparent zu machen, welchen Strom sie

134 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

bezieht.12 Für den Herkunftsnachweis und den Strommix mussten Entwickler:innen

die entsprechende Software programmieren.

Für einzelne Stromkund:innen war zwar durch die Regulierung der Wechsel des

stromliefernden Unternehmens möglich geworden. Es fehlte aber der Ort, wo sie die

unterschiedlichen Angebote vergleichen konnten. Was in anderen Märkten durch ein

neues Produkt im Warenregal geschehen kann, geschieht in der Stromwirtschaft über

digitale Prozesse. Dafür betreiben einige Firmen Internetseiten, auf denen die Verbrau

cher:innen für ihren Wohnort die Preise der Stromlieferanten vergleichen und auch

gleich einen Wechselprozess starten können (z.B. Verivox oder Check24).

Aber nicht nur auf den Vergleichsportalen müssen die EVU aktiv sein. Sei es So

cial Media, Apps, Online-Kund:innenportale oder Smart Home: Die Erwartung der stän

digen Erreichbarkeit und jene der Selbstdarstellung und Aufmerksamkeitsgenerierung

hat Einzug gehalten in die EW. Manche EVU richten Abteilungen für die Facebook-,

Twitter, Instagram und Whats-App-Betreuung ein. Dabei vermischt sich Kund:innen

service, PR und Vertriebsarbeit, wenn über Facebook nicht nur Beschwerden eingehen,

sondern auch Produkte erworben werden und über neue Aktionen in der Kommune des

Stadtwerkes informiert wird.

Exkurs zu Netzentgelten13

Die Stromrechnung soll die Kundschaft nicht nur darüber informieren, wie der Strom
produziert wird, sondern auch, wie sich der Strompreis zusammensetzt. Neben den
Steuern und Abgaben fordert das EnWG, die Netzentgelte auf der Rechnung auszuwei
sen. Auf der Stromrechnung mag das nur ein Detail sein, das den meisten Verbrauchen
den nie aufgefallen ist. Anhand dieses Beispiels kann aber exemplarisch die Verschrän
kung aus juristischer Regulierung und digitaler Abbildung aufgezeigt werden. Auch hier
kann von einer unvollständigen Regulierung gesprochen werden. Es bleibt nämlich of
fen, wie bspw. die Netzentgelte auf die Rechnung kommen. Es gibt an die 1000 Netzbe
triebe (VNB) und für ein Stromlieferunternehmen bedeutet das, dass es, je nachdem,

in welches Netz es liefern will, andere Netzentgelte auf der Stromrechnung auswei
sen muss. Eine Möglichkeit ist, die Beträge aus der Rechnung, die das netzbetreiben
de Unternehmen an das energieliefernde Unternehmen für die Nutzung seines Netzes
schickt, einfach auf der Rechnung an die Endkundschaft auszuweisen. Der Zahlungs
fluss ist nämlich so, dass das Lieferunternehmen das Geld der Kundschaft einzieht und
dies dann an den VNB weiterleitet. Dafür schickt der VNB dem Lieferunternehmen ei
ne Rechnung. Nach 1998 und bevor die Marktkommunikation (s.u.) funktionierte, ge
schah dies per Post. Folglich mussten Wäschekörbe mit Netzrechnungen in die IT-Sys
teme eingetippt werden. Mittlerweile passiert das digital und automatisiert. Wie kann
nun das Lieferunternehmen sicher sein, dass die Rechnung stimmt? Und was passiert,

12 Aus der Steckdose kommt immer der gleiche Strom. Die Zuordnung des eigenen Stroms zu be
stimmten Energiequellen ist physikalisch nicht möglich. Dazu müssten die Verbrauchenden Teil
eines Inselnetzes sein, in das bspw. nur Strom aus erneuerbaren Energiequellen eingespeist wird.

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 135

wenn der Rechnungszeitraum des VNB mit jenem vom Lieferunternehmen nicht über
einstimmt? Soll das Lieferunternehmen immer auf die Rechnung des VNB warten, bis
es die Rechnung an die Kundschaft schicken kann? Wenn das Lieferunternehmen nicht
warten will, muss es die Netzentgelte der jeweiligen VNB kennen. Die BNetzA verpflich
tet zwar die VNB, die Netzentgelte zu publizieren. Diese Veröffentlichung erfolgt aller
dings nicht zentral in einer Datenbank, sondern auf den Webseiten der VNB. Die Zen
tralisierung der Daten haben zwei Unternehmen übernommen (ene’t GmbH und GET
AG). Sie haben eine Datenbank mit sämtlichen Netzentgelten angelegt und bieten diese
den Lieferunternehmen zum Verkauf an. Damit bieten sie dem Vertrieb eine Grundlage,
Preiskalkulationen für die unterschiedlichen Netzgebiete vornehmen zu können. Ohne
die Netzentgelte je Netzgebiet kann das EVU seiner Stromkundschaft nämlich gar kein
durchkalkuliertes Angebot machen. Die Alternative sind vom Netzgebiet unabhängige
Preise. Dann muss der Vertrieb aber damit leben, dass er in dem einen Gebiet mehr und
in dem anderen Gebiet weniger Marge hat. Die stellenweise sich in einer Straße ändern
den Netzgebiete informationstechnisch zu integrieren und in jeder Abrechnung zu be
rücksichtigen, ist enorm aufwendig. Seit Jahren gibt es eine Diskussion, ob nicht der VNB
seine Preise dem Lieferunternehmen über die Marktkommunikation (mittels eines EDI
FACT Datenformats) zusendet, damit dieser dann eigene Kalkulationen machen kann.
Genauso gut könnte die BNetzA auch eine zentrale Datenbank mit sämtlichen Preisen
vorhalten und diese zur Verfügung stellen oder einen Web Service anbieten, der einem
die Preise zu einem Netzgebiet zurückliefert. So gab und gibt es unzählige IT-Fachkräfte,
die sich damit beschäftigen, die Netzentgelte auf die Rechnung der Verbrauchenden zu
bringen.

Im Zuge der Liberalisierung wurde eine Strombörse eingeführt. Indizien, dass dort Ma

nipulationen stattgefunden haben, gibt es viele (vgl. Becker 2010: 143ff.). Es mussten
zusätzliche Regulierungen her. Die Bundesnetzagentur überwacht mittlerweile zusam

men mit der bei ihr angesiedelten nationalen Markttransparenzstelle für den Großhan

del von Strom und Gas das Verbot von Insiderhandel und Marktmanipulation. Die dafür
geltende europäische Verordnung über die Integrität und Transparenz des Energiegroß

handelsmarkts (kurz: REMIT) ist seit 2011 wirksam. Zu den Aufgaben der Bundesnetz

agentur zählen die Registrierung von Marktteilnehmenden, die Durchsetzung von Da

tenmeldepflichten sowie die Verfolgung von Verstößen. Neben der REMIT gibt es noch
Verordnungen wie MiFID14 I, MiFID II, MiFIR15, EMIR16. Ihr Ziel »ist die Sicherstellung
von fairem Wettbewerb, effizienteren Märkten und vor allem, das verlorene Vertrauen
der Stakeholder in die Märkte zurückzugewinnen.« (Kolloch/Golker 2016: 45) Ein nach
REMIT meldepflichtiger Marktteilnehmer ist dazu verpflichtet, sich bei der jeweiligen
nationalen Behörde zu registrieren. In Deutschland wird diese Funktion durch die Bun

desnetzagentur (BNetzA) übernommen.

13 Basierend auf Erfahrungen des Verfassers als IT-Berater in der Energiewirtschaft.
14 »Markets in Financial Instruments Directive«
15 »Markets in Financial Instruments Regulation«
16 »European Market Infrastructure Regulation«

136 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

7.1.3.2. Zentrale Systemsteuerung, IT-Sicherheit und Standards
Zentral gesammelte Daten über das gesamte Stromsystem, Vorgaben zur IT-Sicherheit

und technische Standards kennzeichnen die Produktmarkt-Governance der EW.

Eine der Aufgaben der BNetzA ist es, zentral Daten zu sammeln. Sie führt eine Kraft

werksliste systemrelevanter Kraftwerke und das bereits erwähnte Marktstammdaten

register. Die Marktstammdatenregisterverordnung (MaStRV) verpflichtet dazu, sämtli

che ortsfeste Stromspeicher unabhängig von ihrem Inbetriebnahme-Datum im Markt

stammdatenregister zu registrieren. Es soll der Überblick behalten werden. Mittlerweile

stellt die BNetzA eine Ladesäulenkarte17 für E-Mobilität zur Verfügung. Über die Jahre

werden immer mehr Daten gesammelt und aufbereitet und die zu sammelnden Daten

werden komplexer.

Mit der steigenden Bedeutung der IT muss der Staat sich um die Sicherheit küm

mern. Es gibt eine ganze Reihe von Gesetzen und Verordnungen, die für die IT-Sicher

heit sorgen sollen: Im IT-Sicherheitsgesetz, das zum 25. Juli 2015 in Kraft getreten ist,

geht es schwerpunktmäßig um kritische Infrastrukturen. Durch das BSI-Gesetz wird

das BSI zur zentralen Meldestelle für die IT-Sicherheit. Der § 11 des EnWG ermächtigt

die BNetzA, einen Katalog von Sicherheitsanforderungen vorzulegen. Dazu gehört u.a.

die Einführung eines Informationssicherheits-Managementsystems (ISMS) oder, dass

jedes Unternehmen Ansprechpersonen für IT-Sicherheit benennen muss. Wie weiter

oben bereits erwähnt (7.1.2.4), zeigt die Einführung des Smart Meter Gateway Adminis

trator, dass Sicherheitsvorkehrungen Innovationen erschweren und Barrieren für die

Marktteilnahme errichten. Die Zertifizierung zur IT-Sicherheit ist sehr aufwendig.

Es gibt in der Stromwirtschaft unzählige Standards und mit der Digitalisierung

werden es immer mehr. Die Deutsche Energie-Agentur GmbH (dena) hat in einer Studie

von 2018 Schnittstellen und Standards für die Digitalisierung für Smart Grids, Virtuelle

Kraftwerke (Näheres siehe 7.2.2.3), Smart Meter, Smart Home und Elektromobilität

aufgelistet (vgl. Limbacher/Richard 2018). Im Rahmen des offenen Industrieforums

VHPready e. V., einer Initiative für die Integration und Standardisierung von de

zentralen Energiesystemen, wurde ein offener Industriestandard zur Steuerung von

dezentralen Stromerzeugungsanlagen, Verbrauchern und Energiespeichern erarbei

tet18. Mittlerweile werden in von der Europäischen Union geförderten Projekten wie z.B.

DISPOWER, FENIX und MICROGRIDS ebenfalls Standards für eine einheitliche In

formations- und Kommunikationstechnologie im Bereich dezentraler Energiesysteme

entwickelt. Mit diesen Standards wird u.a. sowohl die internetbasierte Steuerung eines

virtuellen Kraftwerkes möglich als auch der automatisierte Handel mit Strom. Virtuelle

Kraftwerke unterliegen mittlerweile den IT-Sicherheitsstandards des BSI, weil sie Teil

der kritischen Infrastruktur sind. Der BDEW listet acht Smart-Home-Funktionsstan

dards und zu jedem davon mindestens zwei unterschiedliche produktanbietende Firmen

auf (vgl. BDEW 2016: 65). Dann gibt es noch Initiativen wie die Interessengemeinschaft

17 https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Inst

itutionen/HandelundVertrieb/Ladesaeulenkarte/Ladesaeulenkarte_node.html, abgerufen am

16.05.2023.

18 https://www.smartgrids.at/VHPReady.html, abgerufen am 16.05.2023.

https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/HandelundVertrieb/Ladesaeulenkarte/Ladesaeulenkarte_node.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/HandelundVertrieb/Ladesaeulenkarte/Ladesaeulenkarte_node.html
https://www.smartgrids.at/VHPReady.html

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 137

Geschäftsobjekte Energiewirtschaft e. V., die Standards für Energiedienstleistungen
und die damit zusammenhängenden digitalen Prozesse etablieren will19.

7.1.4. Prozess-Governance: Systemstabilität und regulierter Datenaustausch

In dieser Arena der Governance geht es um die »Ausgestaltung der interorganisationalen
Beziehungen in den Wertschöpfungsketten« (Jürgens 2007: 132). Typisch für die Strom

wirtschaft ist die interorganisationale Prozessgestaltung durch die BNetzA, die vielfäl

tigen Kooperationen und Beteiligungen.

7.1.4.1. Regulierter Datenaustausch entlang der Wertschöpfungskette
Die BNetzA lieferte 2007 die ersten Prozessbeschreibungen für den Datenaustausch zwi

schen den Unternehmen. Damit die einzelnen Marktteilnehmenden ihre Rolle im Sys

tem erfüllen können, ist genau definiert, welche Daten sie von wem in welcher Frist zu
erhalten haben. Das legt die Beschlusskammer 6 der BNetzA20 in den folgenden Prozes

sen fest:

• Geschäftsprozesse zur Belieferung der Kundschaft mit Elektrizität (GPKE)
• Wechselprozesse im Messwesen Strom (WiM Strom)
• Marktprozesse für erzeugende Marktlokationen (Strom) (MPES)
• Marktregeln für die Durchführung der Bilanzkreisabrechnung Strom (MaBiS)

Der Datenaustausch zwischen den Firmen für einen reibungslosen Ablauf der interor

ganisationalen Prozesse basiert auf dem EDIFACT-Format (Electronic Data Interchange
for Administration, Commerce and Transport), das wiederum auf EDI (Electronic Da

ta Interchange) basiert. Dafür gibt es je Vorgang unterschiedliche Formate (bspw. für
Stammdatenaustausch das Datenformat UTILMD, für den Austausch von Zählerstän

den MSCONS), die über eine Webseite einsehbar sind21. Es erscheinen zweimal im Jahr
neue EDI-Formate für die Marktkommunikation22. Den rechtlichen Rahmen zwischen
Marktteilnehmenden regeln Verträge.

Wie bereits oben erwähnt, ist der Übertragungsnetzbetreiber (ÜNB) für die Netz

stabilität zuständig. Maßstab ist hierfür die Netzfrequenz von 50 Hertz. Diese Frequenz
darf nur minimal über- oder unterschritten werden, weil sämtliche technischen An

lagen (ob Industrie oder Haushalt) darauf eingestellt sind. ÜNBs können mehrere
Maßnahmen ergreifen, um diese einzuhalten: Kraftwerke abschalten (Redispatch),
verbrauchende Einrichtungen abschalten (abschaltbare Lasten) und auf Regelenergie
zurückgreifen, um unvorhergesehene Leistungsschwankungen in ihren Stromnetzen

19 https://www.bo4e.de/, abgerufen am 16.05.2023.
20 https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK06/BK6.html, abgerufen am

16.05.2023.
21 https://www.edi-energy.de/, abgerufen am 16.05.2023.
22 Auf der Webseite https://www.edi-energy.de ist das Archiv einsehbar. Bspw. beginnt es für das

Datenformat UTILMD (Übermittlung Daten der Kundschaft) bereits 2007. Bis 2022 gibt es dafür
26 Versionen. Jede neue Version macht eine Softwareanpassung notwendig.

https://www.bo4e.de/
https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK06/BK6.html
https://www.edi-energy.de/
https://www.edi-energy.de

138 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

auszugleichen. Mithilfe des Einspeisemanagements kann der verantwortliche Netzbe

trieb (VNB) unter besonderen Voraussetzungen die Einspeisung aus EE- und KWK-
Anlagen vorübergehend abregeln (§ 13 Abs. 2, 3 EnWG).

Um diese physikalischen Voraussetzungen zu gewährleisten, fließt neben Strom

Geld. Am 1. Juni 2010 traten die Marktregeln für die Durchführung der Bilanzkreisab

rechnung Strom (MaBiS) in Kraft. Sie regulieren die Bilanzierung der in einem Monat

im Stromnetz verteilten Energiemengen und die Abrechnung der Bilanzkreise. Damit

regelt die MaBiS den kaufmännischen Ausgleich zwischen Stromlieferanten und VNB.

Der Hintergrund ist, dass das Lieferunternehmen für seine Kundschaft den Verbrauch

prognostizieren muss, damit der entsprechende Strom geordert werden kann. Die

Abweichungen zwischen dieser Prognose und dem tatsächlichen Verbrauch werden

finanziell ausgeglichen. So ist das Lieferunternehmen zu einer möglichst genauen

Prognose angehalten.

Zur Durchsetzung ihrer Entscheidungen stehen der BNetzA umfangreiche Mittel

zur Verfügung. Die Aufsicht umfasst u.a. die ordnungsgemäße Abwicklung der Zahlun

gen von den VNB an die Betreibenden von Erneuerbaren-Energie-Anlagen oder Maß

nahmen für die Systemsicherheit wie bspw. Redispatch-Maßnahmen, durch die Erzeu

gungsanlagen abgeschaltet werden.

7.1.4.2. Typisch für die Branche: Kooperationen und Beteiligungen
Die rechtlichen Besonderheiten kommunalen Wirtschaftens führen zu vielfältigen über

kommunalen Kooperationen. Bontrup und Marquard sehen für die kommunalen Unter

nehmen keine andere Möglichkeit: »Kooperation oder Ausverkauf« (Bontrup/Marquardt

2010: 362). Die Thüga Holding GmbH & Co. KGaA hat 90 gesellschaftende Unternehmen

aus der kommunalen Energie- und Wasserwirtschaft23. Zu ihr gehört das IT-Dienstleis

tungsunternehmen (IT-DL) Thüga SmartServices. Es bietet IT-Dienstleistungen für über

250 Organisationen an24. Südweststrom hat 59 gesellschaftende EVU25. Ein IT-DL der

Branche wie rku.it hat 19 kommunale Anteilsinhabende26 und die items GmbH neun27.

Trianel, als Erzeugungskooperation gestartet, bietet mittlerweile digitale Handelsplatt

formen an und hat 57 Gesellschaftende (vgl. Trianel GmbH 2022).

Typische Formen von Kooperationen sind Shared Service Center wie jene der Thü

ga SmartService, rku.it, items oder Trianel. Sie bieten IT-Outsourcing an und betreuen

ERP-Systeme (zum überwiegenden Teil von SAP) für Stadtwerke.

Eine Untersuchung hat 65 Innovationskooperationen von Stadtwerken unter die Lu

pe genommen. Die Autoren stellen fest, dass nicht nur die großen EVU, sondern vor al

lem mittelgroße für Innovationen kooperieren. Von den 65 untersuchten Kooperationen

finden 57 zwischen Firmen mit weniger als 250 Mitarbeitenden statt (vgl. Lütjen et al.

2014).

23 https://thuega-cdn-copy.s3.eu-central-1.amazonaws.com/Thuega/documents/Th %C3 %BCga-Gr

uppe-Feb-2023.pdf, abgerufen am 28.04.2023
24 https://smartservice.de/thuega-smart-service/daten-und-fakten/, abgerufen am 28.04.2023.
25 https://www.suedweststrom.de/gesellschafter/, abgerufen am 28.04.2023.
26 https://rku-it.de/ueber-uns/profil/gesellschafter, abgerufen am 28.04.2023.
27 https://itemsnet.de/ueber-uns/, abgerufen am 28.04.2023.

https://thuega-cdn-copy.s3.eu-central-1.amazonaws.com/Thuega/documents/Th%C3%BCga-Gruppe-Feb-2023.pdf
https://thuega-cdn-copy.s3.eu-central-1.amazonaws.com/Thuega/documents/Th%C3%BCga-Gruppe-Feb-2023.pdf
https://smartservice.de/thuega-smart-service/daten-und-fakten/
https://www.suedweststrom.de/gesellschafter/
https://rku-it.de/ueber-uns/profil/gesellschafter
https://itemsnet.de/ueber-uns/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 139

In einer anderen Studie hat Sander (2009) 820 kommunale EVU untersucht und 277

Kooperationen identifiziert. Er kommt zu dem Ergebnis, dass drei Viertel aller kommu

nalen EVU an mindestens einer Kooperation und über 40 % an mindestens zwei Koope

rationen beteiligt sind. Die Wahrscheinlichkeit zu kooperieren und die Anzahl an Koope

ration nehmen mit der Größe des Energieversorgers zu. Es gibt noch weitere förderliche

Umstände: EVU im Alleinbesitz einer Kommune bevorzugen Kooperationen mit ande

ren kommunalen Unternehmen. Sie kooperieren nur zu einem geringen Anteil mit gro

ßen Energiekonzernen. Abbildung 9 zeigt, dass die Hälfte der kommunalen EVU in den

Bereichen Energiebeschaffung und -handel sowie knapp 44 % im Bereich Marketing und

Vertrieb kooperieren.

Kleine und mittlere EVU kooperieren relativ häufig in den Bereichen Shared Service

(IT, Materialbeschaffung, Personal etc.) sowie im Mess- und Zählerwesen und der Ab

rechnung (Abbildung 10). In diesen Bereichen erfordert die Einführung und Integration

neuer, komplexerer Datensysteme einen hohen finanziellen, organisatorischen und per

sonellen Aufwand (vgl. ebd. 27). Gleichzeitig gaben bei einer Studie der Unternehmens

beratung PWC über 60 % der befragten Geschäftsführenden von Stadtwerken an, ihre

Ziele mit der letzten Kooperation »eher nicht« oder nur »teils, teils« erreicht zu haben

(vgl. Sander 2009: 37f.).

Abbildung 8: Kooperationsgrad und -häufigkeit je Wertschöpfungsbereich

(Quelle: Sander 2007: 25)

140 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Abbildung 9: Kooperationsgrad nach Wertschöpfungsbereich und Unternehmensgröße

(Quelle: Sander 2007: 26)

In der Untersuchung von Sander zu Kooperationen von kommunalen Unternehmen

ist nicht klar, welche Rolle die IT spielt. Es ist auch nicht klar, auf welche Bereiche der IT

sich das Outsourcing bezieht. Genaue Daten über den Umfang des IT-Outsourcings in
der Branche fehlen.

7.1.5. Governance industrieller Beziehungen: Betriebsräte und Akademisierung

In dieser Arena der Industrie-Governance geht es um die Machtverteilung zwischen Be

legschaft und Management, um Arbeitsplatzsicherheit und den Organisationsgrad der

Beschäftigten (vgl. Jürgens 2007: 141ff.). Betriebsräte und Gewerkschaften sind in der

Stromwirtschaft stark verankert. Die Beschäftigungsreduktion im Zuge der Liberalisie

rung konnte die Branche »im Wesentlichen ohne betriebsbedingte Kündigungen« (Bon

trup/Marquardt 2010: 291) gestalten.

Leider gibt es für die Stromwirtschaft allein keine Daten zum Organisationsgrad.

Allerdings ist sie Teil des Wirtschaftszweigs Energie/Wasser/Abfall/Bergbau, für den

Daten des IAB-Panels aus dem Jahr 2016 vorliegen. Laut der Studie arbeiten 82 % der

Beschäftigten in Betrieben mit Betriebsrat (vgl. Ellguth/Kohaut 2017: 283). 75 % unter

liegen dem Branchentarifvertrag in West- und 44 % in Ostdeutschland (vgl. Ellguth/

Kohaut 2017: 280). 65 % der Betriebsräte geben in einer Studie von 2010 an, dass sich

die Arbeitsbedingungen verschlechtert oder stark verschlechtert haben. Ein Drittel

der Betriebsräte geben an, dass ihre Vorschläge gleichberechtigt in unternehmerische

Entscheidungsprozesse einfließen (»trifft zu« oder »trifft voll zu«) (vgl. Marquardt/

Bontrup 2010: 295). Die beiden großen Gewerkschaften der Branche sind Verdi und

IG BCE. Letztere ist eher in Ostdeutschland und bei den fossilen Kraftwerksbetrieben

vertreten. Erstere bezieht ihre Stärke vor allem daraus, dass sich die Branche aus dem

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 141

öffentlichen Dienst heraus entwickelt hat (wo Verdi einen Schwerpunkt hat). Bontrup
und Marquard kommen in ihrer Befragung von 53 Unternehmen bei 38 % der Unter

nehmen auf einen gewerkschaftlichen Organisationsgrad von über 50 %. Dabei sind
in der Erzeugung am meisten Beschäftigte organisiert. Der Organisationsgrad nimmt
mit der Unternehmensgröße zu. Nur 6 % der Unternehmen unterliegen dem Mitbe

stimmungsgesetz von 1976. Sie zitieren einen Verdi-Mitarbeiter, der meint, dass es
schwieriger geworden ist, Kandidat:innen als Arbeitsdirektor:in gegen die Kapitalseite
durchzusetzen (vgl. Bontrup/Marquardt 2010: 273f.). Die IT-Branche hat eine andere
Tradition, was Mitbestimmung und gewerkschaftlichen Organisationsgrad anbelangt.
Bei der ersten Betriebsversammlung von SAP stimmten 90 % gegen einen Betriebsrat
(vgl. Siegele/Zepelin 2009: 151).

Obwohl der Organisationsgrad im Vergleich zu anderen Branchen hoch ist, sind die
durch die Liberalisierung entstandenen Gewinne der Arbeitsproduktivität nicht bei der
Belegschaft angekommen. Das betrifft zwischen 1998 und 2006 sowohl die kleinen als
auch die großen Stromversorger.

»Stattdessen haben sich die Bezieher von Gewinneinkommen, Mieten und Pachten
überproportional stark bedient.« (Bontrup/Marquardt 2010: 107)

Für einzelne EVU wie die Stadtwerke München konnte eine Akademisierung der Beleg

schaft verzeichnet werden. Dort sind auch wieder so viele Beschäftigte angestellt wie vor
der Liberalisierung (vgl. Bähr/Erker 2017: 371). Wie auch in anderen Firmen wurden im
Zuge der Liberalisierung Leiharbeitende in Call-Centern eingesetzt und Busfahrer:in

nen zu schlechteren Bedingungen in Tochterfirmen eingestellt (vgl. Bähr/Erker: 353). Die
Qualifikationsstruktur hat sich allgemein im Zuge der Liberalisierung verschoben von
»gewerblichen zu höher bzw. hochqualifizierten Verwaltungs-, Gestaltungs- und Ma

nagementarbeitsplätzen« (Bontrup/Marquardt 2010: 97). Zudem ist ein Outsourcen »we

niger [benötigter] Unternehmensbereiche […] und ein Abschieben minderer Arbeitsqua

lifikationen in unternehmerische Randbereiche« (ebd.) zu beobachten. Zu der Akademi

sierung tragen zusätzlich die vermehrten Kooperationen bei.

»Je mehr ein Stadtwerk mit anderen Unternehmen zusammenarbeiten muss, desto
mehr Dienstleistungsmanagement ist gefordert.« (Bontrup/Marquardt 2010: 366f.)

Explizit in Bezug auf die Energiewirtschaft stellt eine Studie fest, dass die Entflechtung
von Netz und Vertrieb zu mehr bürokratischer Arbeit führt (vgl. Flecker/Hermann 2011:
539). Die digitale Transformation trägt zusätzlich zur Akademisierung bei. Es »nehmen
komplexe Tätigkeiten zu, die in der Regel auch tiefere Kenntnisse im Umgang mit der
digitalen Technik voraussetzen.« (Roth 2018: 78)

»Die Arbeit wird zunehmend unter Verwendung digitaler Arbeitsmittel und mit der
Unterstützung digitaler Assistenzsysteme (Software- wie Hardwarekomponenten) er
bracht und organisiert werden. Dies umfasst nahezu alle Tätigkeitsbereiche in der En
ergieversorgung, von den Monteuren über die Meister, Techniker und Ingenieure bis

142 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

hin in den Vertrieb, das Marketing und die Querschnittsbereiche wie Personalwesen,
Buchhaltung, Controlling und die kaufmännische Sachbearbeitung.« (Roth 2018: 77)

Neben der veränderten Zusammensetzung der Belegschaft lösen sich einzelne Gruppen

stärker räumlich von der Organisation als andere.

»Die Digitalisierung ermöglicht die zeitliche, örtliche und organisatorische Flexibili
sierung der Arbeit und verstärkt sie.« (Roth 2018: 64)

Es zeigt sich eine veränderte Zusammensetzung der Belegschaft (vgl. Roth 2018):

• Insgesamt weniger Bedarf gibt es im Rechnungswesen, Controlling, kaufmän

nische Sachbearbeitung, Personalwesen, für Ingenieur:innen (Erzeugung), Me

chaniker:innen, Monteur:innen (Erzeugung), Monteur:innen (klassisch, Netze),

Produktentwickler:innen (Commodity).

• Gleichbleibenden Bedarf gibt es für Monteur:innen (Bau) und Koordinator:innen

(Bau).

• Mehr Beschäftigte sind in den Bereichen WFM Montage (Netze), IT-Produkt

entwicklung, Ingenieur:innen (Netze), Online-Marketing, Projektmitarbeit und

Datenanalyse (Vertrieb) zu erwarten.

Die benötigten IT-Fachkräfte sind aber nicht leicht zu finden. Laut einer Studie28 von

BDEW und EY sehen Führungskräfte ein Haupthemmnis für die Digitalisierung im

Fehlen personeller Ressourcen und der Qualifikation der Mitarbeitenden (63 %) sowie in
nicht ausreichenden IT-Ressourcen im Haus (54 %) (vgl. BDEW/EY 2018: 16).

Eine Studie (Flecker und Hermann 2011) zu den Folgen der Liberalisierung mit sechs

Fallstudien in europäischen Ländern im Bereich Elektrizität (drei in Belgien, jeweils eine

in Österreich, Polen, UK) kommt zu ähnlichen Ergebnissen: Personalabbau zwischen 25

und 50 % seit Mitte der 90er. Es gibt weniger »blue collar«-Tätigkeiten (Erzeugung, In

standhaltung, Administration) und mehr »white collar«-Tätigkeiten (Handel, Einkauf,

Controlling, IT) (vgl. ebd. 531). Zusätzlich zeigt die Studie, dass eine Reaktion auf die Li

beralisierung eine Restrukturierung (Outsourcing, Konzentration) war (vgl. ebd. 528).

Vor allem Beschäftigte aus Österreich, UK und Polen betonen gestiegene Arbeitsinten

sität und Unterbesetzung. Call-Center-Beschäftigte haben die schlechtesten Arbeitsbe

dingungen (vgl. ebd. 538). Ein Beschäftigter aus Österreich war der Ansicht, dass die Ein

führung von SAP größere Auswirkungen auf das Unternehmen hatte als die Liberalisie

rung (vgl. ebd. 530).

28 193 Geschäftsführende und Vorstände von Stadtwerken und EVUs in Deutschland, Österreich und
der Schweiz wurden im Februar/März 2018 anhand eines standardisierten Fragebogens telefo
nisch befragt.

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 143

7.2. Folgen der Industriestrukturen für die Softwareentwicklung

So vielfältig und zahlreich die Betriebe in der Energiewirtschaft sind, so vielfältig sind
die Softwarestrategien und -anwendungsbereiche, so zahlreich die Möglichkeiten, um
mit Software Geld zu verdienen. Die Regulierung beeinflusst Produkte und Prozesse der
Branche und kommt ohne Software nicht aus. Verändert sich die Regulierung, braucht
meist auch die Software ein Update. Dabei gibt es, wie es in der Branche allgemein üblich
ist, viele Kooperationen. Die Beschäftigten müssen interdisziplinär arbeiten und über
staatliche Regulierung, Softwarelandschaften/-pakete und energiewirtschaftliche Tech

nik und Geschäftsprozesse Bescheid wissen. Aufgrund des hohen Organisationsgrades
spielt der Betriebsrat auch bei der Softwareentwicklung eine Rolle.

7.2.1. Digitalisierungsstrategien zwischen Anwendung und Entwicklung

Selbst Software zu entwickeln ist bereits seit langem Teil der Branche. Zugleich stellen
die vielen EVU und die zunehmende Bedeutung von Software einen großen Markt für
Standardsoftware und IT-Dienstleistungen dar. Sowohl Softwarefirmen als auch IT-DL
und die EVU selbst verdienen mit Software Geld. Aber weder dominiert eine Software

firma noch ein EVU mit einer bestimmten Digitalisierungsstrategie die Branche.

7.2.1.1. Vielfältige Zulieferindustrie für Standardsoftware
Bei den Stadtwerken München galt bereits seit 1977 die Datenverarbeitung als Manage

mentwerkzeug (vgl. Bähr/Erker 2017: 279ff.). Ab Ende 1997 gab es eine gezielte IT-Stra

tegie bei den SWM, »die die datentechnische Durchdringung sämtlicher Arbeits- und
Geschäftsprozesse umfasste und als integraler Bestandteil des Transformationsprozes

ses begriffen wurde« (Bähr/Erker 2017: 326).
Obwohl Software seit längerem die Arbeits- und Geschäftsprozesse in den EVU

durchdringt, nehmen die Investitionen in Software weiter zu. Laut Statistik des Statis

tischen Bundesamts geben Stromversorger mit mehr als 250 Beschäftigten mehr Geld
für Software aus (siehe Tabelle 5). Haben diese Unternehmen 2009 noch 86 Mio. Euro
investiert, sind es 2020 302 Mio. EVU mit weniger als 50 Beschäftigten haben 2009
noch 8 Mio. und dann 2020 10 Mio. Euro investiert. Wie die Tabelle zeigt, hängt diese
Veränderung nicht mit einer veränderten Anzahl an Unternehmen zusammen. Zahlen
dazu, in was die EVU genau investiert haben, z.B. wie viel in die Programmierung
(Anpassung eines Standards oder eigene Lösungen), gibt es leider nicht.

144 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 6: Vergleich Investitionen in Software in Millionen Euro bei Stromversorgern zwischen
2009 und 2020

Investitionen in Software Anzahl Unternehmen

 Unternehmen von bis
Beschäftigte

2009 2020 Veränderung 2009 2020 Veränderung

0 bis 9 2 2 0 % 379 62.05629 +16.274 %

10 bis 19 1 2 +100 % 103 297 +188 %

20 bis 49 5 6 +20 % 223 241 +8 %

50 bis 249 28 45 +61 % 320 421 +32 %

250 und mehr 86 302 +251 % 148 185 +25 %

(Quelle: Statistisches Bundesamt 2011 und 2022)

Ein Teil der Investitionen fließt auf jeden Fall in Standardsoftwarepakete. EVU ha

ben ihre Kern-Softwarepakete für industriespezifische Prozesse über die Jahrzehnte im

mer wieder einmal ausgetauscht. 1995 haben die Stadtwerke München für 13,5 Millio

nen D-Mark die Version R/230 des ERP-Systems von SAP eingeführt (vgl. Bähr/Erker

201: 326). Laut einer Studie mit 36 EVU sind zwischen 1999 und 2005 die untersuchten

Firmen mehrheitlich auf die neue Branchenlösung von SAP IS-U (»Industry Solution

for Utilities«) umgestiegen. Die alte Branchenlösung von SAP hieß RIVA. Die Abbildung

11 zeigt, dass von den Altsystemen 23 % Eigenentwicklungen waren (vgl. Sarshar/Loos/

Weber 2006).

Abbildung 10: Vorher (1995) und nachher (2005) bei den industriespezifischen Softwarepaketen
der EVU

(Quelle: Sarshar/Loos/Weber 2006: 122)

29 Die Statistik spricht seit 2018 nicht mehr von »Unternehmen«, sondern von »rechtlichen Ein
heiten«. Damit sind wahrscheinlich auch kleinere Anlagenbetreibende für Wind, Biomasse oder
Photovoltaik Teil der Statistik.

30 Seit 1981 gab es R/2, seit 1991 R/3 und seit 2015 S/4 (https://www.sap.com/germany/about/comp

any/history/, abgerufen am 4. Mai 2023).

https://www.sap.com/germany/about/company/history/
https://www.sap.com/germany/about/company/history/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 145

Für die Ablösung alter Software gibt es vielfältige Alternativen. Weil es keine anderen
Daten gibt, steht hier die Zulieferindustrie für Standard-Abrechnungssoftware31 im Fo

kus. Eine Übersicht des Bundesverbandes der Energiemarktdienstleister (BEMD) sieht
die industriespezialisierten Softwarefirmen von Schleupen, SIV und IS-Soft vorne, was
die Größe ihrer Kundschaft anbelangt (gemeinsam 912 EVU). Tabelle 6 zeigt, dass die
Softwarefirmen für die industriespezifische Software vor allem ab den 90er Jahren ak

tiv geworden sind. Was auffällt, ist, dass trotz der Komplexität der Branchenprozesse
und der vielfältigen Anwendungsfelder die IS-Soft mit nur 21 Programmierenden 255
EVU mit ihrer Software beliefern kann. Allerdings gehört keines der belieferten Unter

nehmen zu den großen mit mehr als 200.000 Marktlokationen bzw. Verbrauchenden32.
Neben IS-Soft zeichnet sich Schleupen durch seine Spezialisierung auf kleine EVU aus.
Bei den großen EVU liegen SIV und SAP vorne. Die Tabelle zeigt, dass sich jüngere Soft

warefirmen wie Powercloud, IQone oder Quanto schwertun, den Markt zu erobern.

Tabelle 7: Firmen Abrechnungssoftware Stand 2023

Softwarefir

ma
Markt-
eintritt

Mitarbeitende
für Produkt

Entwi

ckelnde für
Produkt

EVU bis 20.000
MaLo*

20.000-
200.000

ab
200.001
MaLo

Schleupen 1977 376 189 357 173 7 4
SIV 1992 399 121 300 90 83 37
IS-Soft 1996 82 21 255 190 65 0
Wilken Neu
trasoft 2000 208

95
207 107 100

0

MSU 2003 90 40 181 130 50 1
Wilken
ENER:GY 1999 208

95
128 35 90

3

SAP 1988 k. A. k. A. 84 10 47 27
SDK 1994 34 30 69 32 33 4
Rhenag 1998 85 70 52 18 30 4
Somentec 1995 78 27 46 35 11 0
Klafka&Hinz 2000 115 50 41 30 10 1
robotron 1999 325 120 40 19 15 6

31 Mit Abrechnungssoftware ist gemeint, dass eine Software Zählerdaten verarbeiten und eine
Rechnung an die Verbrauchenden versenden kann. Bei der BEMD-Studie der folgenden Seite ist
von »Meter to Cash« die Rede. Die Softwarepakete der Firmen haben meist aber auch noch ande
re Funktionalitäten wie Forderungsmanagement oder Finanzbuchhaltung mit dabei und stellen
vollständige ERP-Systeme dar.

32 Von »großen« EVUs wird hier gesprochen, wenn ein EVU mehr als 200.001 Kund:innen hat oder,
wie es in der Tabelle heißt: MaLo – siehe die Beschriftung der letzten beiden Spalten der Tabelle 7.
Die Abkürzung steht für Marktlokationen und ist vereinfacht gesagt eine technische Bezeichnung
für Kund:innen der EVUs.

146 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwarefir

ma

Markt-
eintritt

Mitarbeitende

für Produkt
Entwi

ckelnde für
Produkt

EVU
bis 20.000
MaLo*

20.000-

200.000

ab

200.001

MaLo

Powercloud 2012 60 45 35 10 21 4

AKTIF 2001 33 19 28 24 4 0

Iqone 2014 8 7 5 4 1 0

Quanto 2018 30 20 5 5 0 0

(Quelle: BEMD https://www.bemd.de/download/BEMD-ITLM2C_Anbietermatrix_Abrechnungssoft

ware_2020.pdf, zuletzt abgerufen am 2. Mai 2023)

* Marktlokation bezeichneten eine eindeutige ID für Stromabnehmer oder -einspeiser. Vereinfacht

könnte man sagen: Kund:innen der EVUs. Die Messlokation ist ein Stromzähler.

SAP begann 1995 die Entwicklung des branchenspezifischen Moduls IS-U mit dem

Ziel, eine international einsetzbare Standardlösung zu programmieren (vgl. Frederick/

Zierau 2011: 15f.). Die Anpassungen an den deutschen Markt konnten sich eher größere

EVU leisten. Die Besonderheit war und ist immer noch, dass SAP eine Entwicklungs

plattform bietet, damit EVU selbst oder IT-DL Programmierungen am Standard vorneh

men können. Wie bereits unter 4.3 geschrieben, gibt es allein für die Versorgungswirt

schaft über 200 Firmen, die mit SAP kooperieren. Diese große Anzahl ist ein Indiz dafür,

wie umfangreich die Arbeit war und ist, um SAP IS-U zu implementieren und anzupas

sen.

Es ist unklar, welche Rolle andere Entwicklungsplattformen spielen und wie häufig

sie die EVU nutzen. Zum Beispiel gibt es noch andere, kleinere branchenspezifische

Entwicklungsplattformen wie eine Open-Source-Datenplattform für Smart-City-An

wendungen für Stadtwerke (vgl. ZfK, 02.07.2022). Die Entwicklungsplattformen AWS

von Amazon33 oder Azure von Microsoft34 nutzen Organisationen der Branche auch.

Allerdings bieten die zwei Unternehmen keine industriespezifischen Bausteine an.

7.2.1.2. Unterscheiden sich große und kleine EVU?
Auch wenn größere EVU mehr Geld für Software ausgeben, heißt das nicht, dass nicht

ebenso kleine EVU agile Teams etablieren und selbst Software entwickeln. Untersuchun

gen zur Digitalisierung in großen und kleinen EVU zeichnen ein unscharfes Bild und

zeigen eine Heterogenität an Digitalisierungsstrategien. Ob groß oder klein: Auch beim

Thema Digitalisierung kooperieren die EVU.

Die Studien vom Verband BDEW, A. T. Kearney und IMP³Prove (2018 und 2019) konn

ten Unterschiede in der Digitalisierung zwischen großen und kleinen Versorgern35 nur

33 https://aws.amazon.com/de/developer/tools/, abgerufen am 4. Mai 2023.
34 https://azure.microsoft.com/de-de/products/visual-studio/, abgerufen am 4. Mai 2023.
35 »Die insgesamt 80 teilnehmenden EVU aus dem Jahr 2018 umfassen Strom-, Gas- und Wasser

netzbetreiberwie auch Querverbundunternehmen, darunter kleine und sehr große Unterneh
men, Netzbetreiber und Vertriebsunternehmen. In ihrer Gesamtheit bilden sie alle Wertschöp

fungsstufen und Unternehmensgrößen der Branche ab und lassen daher Rückschlüsse auf den
generellen Digitalisierungsstand in der Energiewirtschaft zu.« (BDEW et al. 2019: 6)

https://www.bemd.de/download/BEMD-ITLM2C_Anbietermatrix_Abrechnungssoftware_2020.pdf
https://www.bemd.de/download/BEMD-ITLM2C_Anbietermatrix_Abrechnungssoftware_2020.pdf
https://aws.amazon.com/de/developer/tools/
https://azure.microsoft.com/de-de/products/visual-studio/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 147

für ein Jahr feststellen. In einer Studie ermittelten sie einen Digitalisierungsindex je
Firma, der sich aus sieben Analysebereichen zusammensetzt (u.a. Digitalisierungsstra

tegie, Kostenersparnis durch digitale Interaktion mit der Kundschaft, ob agile Metho

den genutzt werden, Kooperationen mit Plattformen oder IT-Fachkräften). 2018 konn

ten zwischen großen und kleinen EVU noch keine Unterschiede festgestellt werden. Es
gab sowohl bei kleinen als auch großen »Top-Digitalisierer« wie Nachzügler. In der Stu

die von 2019 war dann ein leichter Zusammenhang auszumachen: je höher der Umsatz,
umso weiter in der Digitalisierung. Zu einem ähnlichen Ergebnis kommt die Kanzlei
Rödl & Partner. Sie messen den IT-Reifegrad36 (vgl. Rödl/Partner 2017: 42).

Unterschiede gibt es zwischen neuen und etablierten EVU. Bei einer Befragung von
elf kommunalen Versorgern mussten sich die Forschenden eingestehen, dass die »klassi

schen Digitalisierungsthemen etablierter Energieversorger möglicherweise nicht gänz

lich auf Stadtwerke-Neugründungen zu übertragen sind« (Berlo et al. 2018: 32). Sie wä

gen Risiken und Nutzen der neuen Technologien stärker ab und setzen sie sehr spezifisch
vor allem zum Auf- und Ausbau von Flexibilisierungsoptionen ein: flexibles Einspeise

management, Kontrolle von Lastverschiebungen, Bereitstellung von Speicherkapazität,
Erweiterung von virtuellen Kraftwerken (vgl. Berlo et al. 2018: 31f.).

Die typische Kooperationsbereitschaft der Branche zeigt sich auch bei der Digitali

sierung. EVU kooperieren: mit Start-ups (23 %), mit Mittelständlern/Großunternehmen
(36 %), anderen kooperierenden Unternehmen (Beratungsunternehmen, Softwarehäu

ser) (36 %), mit Universitäten oder Forschungseinrichtungen (35 %) (vgl. BDEW/A.T.
Kearney, IMP³Prove 2019: 23).

7.2.1.3. Software als Geschäftsfeld der EVU
Eine IT-Strategie, die sich in der Branche durchsetzt, ist nicht zu erkennen. Auf jeden
Fall gibt es EVU, die mit Software Geld verdienen.

Manche Unternehmen bieten die Standardsoftwarepakete als Anwendungsplattfor

men an. Darunter ist zu verstehen, dass ein IT-DL oder ein EVU eine Standardsoftware
implementiert und dann anderen zur Verfügung stellt. Die kommunale Kooperation
Thüga will bis 2024 30 Unternehmen für ihre Abrechnungsplattform gewinnen (vgl. ZfK,
17.06.2022). Der Energiekonzern EnBW stellt eine Anwendungsplattform für Stromlie

feranten zur Verfügung, auf der sie ihre Prozesse abwickeln können (vgl. ZfK, 25.02.
2019). Arvato Systems (Teil des Bertelsmann-Konzerns) bietet eine Anwendungsplatt

form (einzelne Module und Applikationen) als Pay-Per-Use-Service an37.
Eine Sonderform von Anwendungsplattformen ist White-Label-Software. Was ist

das? Eine Organisation entwickelt eine Software, stellt sie zur Verfügung (ob via Cloud
oder On-Premises38) und versieht sie in der Darstellung nach außen mit der entspre

36 Der wie folgt gemessen wird: Es gibt eine IT-Strategie. Mitarbeitende sind an die IT-Infrastruktur
angebunden. Wie zufrieden Mitarbeitende mit IT-DL bzw. der IT-Abteilung sind und wie Kosten-
Nutzen-Verhältnis der Unternehmens-IT eingeschätzt wird.

37 https://www.arvato-systems.de/branchen/branchen-im-ueberblick/energie-versorgungswirtsch
aft/aep, abgerufen am 4. Mai 2023.

38 Lizenzmodell, bei dem ein Unternehmen eine Softwarelizenz erwirbt und diese auf eigenem Ser
ver betreibt.

https://www.arvato-systems.de/branchen/branchen-im-ueberblick/energie-versorgungswirtschaft/aep
https://www.arvato-systems.de/branchen/branchen-im-ueberblick/energie-versorgungswirtschaft/aep

148 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

chenden Aufmachung des anwendenden EVU (bspw. Logo und Name Stadtwerk). Der

Endkundschaft fällt nicht auf, dass es eine Standardsoftware einer anderen Firma ist.

Solche White-Label-Lösungen gibt es für Kund:innenportale der Wohnungswirtschaft,

mit der Anwendende Zählerstände erfassen können (vgl. ZfK, 01.02.2022). Vattenfall

und EnBW kooperieren für eine White-Label-Software für den Smart-Home-Bereich

(vgl. ZfK, 25.02.2019). Auch Softwarefirmen wie die oben genannte SIV bieten bspw.

White-Label-Apps für Smartphones an39.

EVU sind (auch) Softwarefirmen, wie es Doleski (2016) für eine zunehmende Anzahl

von ihnen prognostiziert. Die Stadtwerke Schwäbisch Hall haben die Softwarefirma So

mentec40, das Stadtwerk Enercity aus Hannover Lynqtech41. EVU sind Gesellschaftende

von IT-Dienstleistungsunternehmen, die selbst programmieren und Software gestalten

(bspw. Thüga Smartservice GmbH, rku.it GmbH oder items GmbH).

Leider fehlen genaue Daten: Wer passt wie stark Standardpakete an? Wer nutzt einen

Softwarestandard ohne Anpassung? Welche EVU bieten White-Label-Software an oder

nutzen sie? Wie viel Geld verdienen EVU mit Softwareentwicklung oder mit dem Anbie

ten von Abrechnungsplattformen? Es gibt auch keine Übersicht über sämtliche Zuliefer

firmen für industriespezifische Software.

Statt dass sich in der Energiewirtschaft softwareentwickelnde Firmen durchsetzen

wie in anderen Branchen, gibt es sowohl Softwarefirmen für Standardsoftware als auch

EVU, die für einzelne, industriespezifische Anwendungsbereiche Software für andere

entwickeln oder betreiben. Bei den vielen EVU ist eine zur Branchenstruktur passende

Strategie, diese EVU zu beliefern oder mit ihnen zu kooperieren.

Auf jeden Fall gibt es kein disruptives Unternehmen wie Amazon, das Marktführer

in der Branche geworden ist und gleichzeitig viel Geld mit Software oder IT-Dienstleis

tungen verdient. Vielmehr koexistieren die Strategien: Einerseits etablieren sich neue

Stromlieferanten mit viel Werbung am Markt wie Yello Strom von EnBW (seit 1999). An

dererseits gewinnt Octopus Energy (seit 2015) Marktanteile: eine Firma, die nicht nur

Strom, sondern auch Software(dienstleistungen)42 anbietet.

39 https://www.siv.de/de/referenzen/referenzen-energielieferanten/team-energie-gmbh-co-kg/,

abgerufen am 4. Mai 2023.
40 https://www.somentec.de/ueber-somentec/unternehmen/, abgerufen am 4. Mai 2023
41 https://www.enercity.de/presse/pressemitteilungen/2020/Lynqtech, abgerufen am 4. Mai 2023.
42 eigene Softwarelösung https://kraken.tech/, abgerufen am 4. Mai 2023.

https://www.siv.de/de/referenzen/referenzen-energielieferanten/team-energie-gmbh-co-kg/
https://www.somentec.de/ueber-somentec/unternehmen/
https://www.enercity.de/presse/pressemitteilungen/2020/Lynqtech
https://kraken.tech/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 149

7.2.2. Wechselspiel von Regulierung und Softwareentwicklung

7.2.2.1. Markt-Governance dank Software: Wechsel Lieferfirma, Transparenz
und Datenaustausch

Auch wenn der Staat Software nicht selbst entwickelt, hat er durch die Regulierung ei

nen maßgeblichen Anteil an der stetigen Softwaregestaltung in der Branche. Die Regu

lierung für den Wettbewerb und die Produktgestaltung gibt der Staat vor. Die dafür not

wendige digitale Technik entwickelt jemand anderes.
Ein Ziel der Liberalisierung war, dass die Privatkundschaft das stromanbietende Un

ternehmen möglichst einfach wechseln kann. Aufgrund von Entflechtung, Auflösung der
Gebietsmonopole und um solche Wechsel zu ermöglichen, müssen die Unternehmen
vielfältige Daten austauschen (bspw. über Kundschaft oder Zähler). Die BNetzA über

nimmt die Regulierung der Kommunikationsstrukturen. In diesem als Marktkommu

nikation bezeichneten System hat jedes EVU und jedes zählende Gerät eine ID (siehe
oben 7.1.4.1). Die vorgeschriebenen Marktprozesse können bei der Koordination so vieler
Marktakteur:innen nur effizient sein, wenn sie automatisiert ablaufen. Müssten Strom

versorger langfristig eine Vielzahl an Sachbearbeitenden einstellen, um die Marktpro

zesse abzubilden: Wie wäre es um die Legitimität der Regulierung dann bestellt?
Vor allem für die Wertschöpfungsstufen Vertrieb und Netze müssen Unternehmen

Daten zu Zahlungen, Strombilanzierung, Anlagen und Personen austauschen. Das ist
kostenintensiv (vgl. Seeliger et al. 2019), birgt Risiken, macht die Industriestrukturen
komplexer und erhöht den Koordinations- und Informationsbedarf. Rohracher kommt
zu dem Schluss, dass »transaktionskostentheoretische Analysen auf die Kosten und
Imperfektionen des Ersatzes vertikaler Netzintegration durch Preissignale« (Rohracher
2007: 144) hinweisen. Andere Autoren stellen fest, dass der »betriebene Aufwand vermu

ten lässt, dass ein vertikal integriertes Energieversorgungsunternehmen in öffentlicher
Trägerschaft und mit Gebietsmonopol sogar effizienter und effektiver wirtschaften«
(Bräunig 2012: 435) kann. Renate Mayntz konstatiert, dass allgemein die Liberalisie

rung von Telekommunikation, Bahn, Elektrizität zu sehr komplexen Strukturen und
komplexen Abhängigkeiten zwischen Handelnden, Prozessen und System führt. Es
kommt dann nicht nur zu Konflikten zwischen Regulierer und Regulierten, sondern
auch zwischen den unterschiedlichen Zielen der Regulierung (vgl. Mayntz 2009: 139).
Die Regulierung soll schließlich nicht nur einen Markt ermöglichen. Sie soll zudem effi

zient sein und eine hohe IT- und System-Sicherheit garantieren, was bei zunehmender
Komplexität immer schwieriger wird.

»Die Komplexität der Koordination, die erfüllt werden muss, um Systemstabilität zu
gewährleisten, ist in allen Sektoren ein wichtiger Ansatzpunkt der Gegner der Libera
lisierung« (Voß/Bauknecht 2007: 121).

Indem die Koordination an die IT-Systeme delegiert wird, entlastet sie das Handeln
der Marktteilnehmenden wie z.B. einzelner Händler:innen am Energiemarkt oder der
Stromkundschaft (die beide per Mausklick handeln können) und belastet die IT-Sys

tembetreibenden.

150 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Dass Software einen Markt ermöglicht, ist auch in weniger stark regulierten Bran

chen zu beobachten. In ihrer historischen Darstellung der Literatur zum Forschungsfeld

Information Systems sehen Björn-Andersen und Raymond die Funktion der IT ab den

2000ern darin, Preistransparenz herzustellen und es neuen Firmen zu erleichtern, in
bestehende Märkte vorzudringen (vgl. Bjørn-Andersen/Raymond 2014: 190). Crowston

und Myers zeigen dies in ihrer Untersuchung der Immobilienwirtschaft (vgl. Crowston/

Myers 2004: 16ff.). Dort macht es die IT der Kundschaft einfacher, sich zu informieren.

Dadurch kann eine transparente, marktförmige Vermittlung stattfinden und auch Neu

linge in der Branche haben eine Chance.

7.2.2.2. Softwareentwicklung für den Stromhandel: Markt ermöglichen, Geld
verdienen und neue Risiken

Am Stromhandel zeigt sich, wie Software Markt ermöglicht, Regulierung Software-In

novationen erzwingt und gleichzeitig für neue Risiken durch Manipulationsmöglichkei

ten und IT-Sicherheit sorgt.

Eine neue Institution, welche die Liberalisierung eingeführt hat und die auf digita

ler Technologie basiert, ist die (europäische) Energiebörse. Der informationstechnische

Aufwand für die Preisbildung dort ist sehr hoch. Damit der tägliche Handel gewährleis

tet ist, muss ein hoher Datenverkehr mit entsprechender IT-Sicherheit ermöglicht wer

den. Die einzelnen Marktakteur:innen müssen am gleichen IT-System angeschlossen

sein. Für die Software der Energiebörse in Großbritannien wurden 1,5 Mrd. Euro aus

gegeben (vgl. Rohracher 2007: 144). Für die Regulierung des Handels durch die REMIT-
Verordnung der BNetzA von 2005 wird ein hoher Digitalisierungsgrad attestiert, weil

der Datenverkehr eine hohe Quantität und Varianz aufweist (vgl. Kolloch/Golker 2016:

45). Andererseits bieten die durch die Regulierung erzwungenen technischen Innova

tionen in Form von Software Firmen die Chance, die von ihnen entwickelten Lösungen

anderen anzubieten.

»Dies kann besonders vor dem Hintergrund des schwindenden Kerngeschäfts, der Be
lieferung von Endkunden mit den Medien Strom und Gas, von immanenter Bedeutung
für die wirtschaftliche Zukunft der EVU sein. Der Wandel vom reinen Medienvertrieb

zum integrierten Medien- und Dienstleistungsvertrieb wird einer der entscheidenden
Faktoren sein, die über das Überleben der EVU auf dem (Energie-)Markt entscheiden.«
(Kolloch/Golker 2016: 53)

Es gibt eine ganze Reihe digitaler Handelssysteme und Beschaffungsplattformen wie

EnPortal43 (seit 2007) oder Enmacc44 (gegründet 2016), die den Handel an der Börse oder

Over the Counter (direkt zwischen zwei Parteien, nicht via Börse) anbieten. Sie eröffnen

für kleine Stadtwerke und Energielieferfirmen nicht nur Einnahmequellen, sondern die

Möglichkeit, an der Börse teilzunehmen.

Beim Stromhandel kann es zu Manipulationen und erhöhtem Risiko kommen. Zum

einen wegen technischer Fehler: An der europäischen Strombörse kam es schon einmal

43 https://www.enportal.de/, abgerufen am 4. Mai 2023.
44 https://enmacc.com/, abgerufen am 4. Mai 2023.

https://www.enportal.de/
https://enmacc.com/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 151

zu einem Ausfall, weil Datenpakete fehlerhaft waren (vgl. Päffgen/Sperling 2019). Ne

ben der Börse für Lieferunternehmen gibt es noch einen Regelenergiemarkt für den not

wendigen Lastenausgleich im Stromnetz. Dort wird der Strom gehandelt, der eingesetzt
wird, um die Netzfrequenz stabil zu halten. 2019 fiel die Netzfrequenz schlagartig auf
49,8 Hz, was einem Blackout nahekommt. Es wird vermutet, dass eine fehlerhafte Da

tenübertragung und die darauffolgende Reaktion einer vollautomatischen Regeleinrich

tung der Grund waren. Auf jeden Fall stiegen die Preise für Regelenergie sprunghaft an
(vgl. Sperling 2019).

Als Grund für die Instabilitäten des Stromsystems macht Weyer Interessengegen

sätze aus:

»Ferner kann die Frage nach der Sicherheit und Zuverlässigkeit komplexer technischer
Systeme gestellt werden, die unter den Bedingungen verschärften Wettbewerbs ope
rieren müssen und zudem von unterschiedlichen Handlungslogiken geprägt werden.
Für einen Stromhändler beispielsweise hat die Stabilität des Systems nicht oberste
Priorität, so dass seine Transaktionen das Energienetz zusätzlich belasten können.«
(Weyer 2010: 844)

Netze bekommen so einen prekären und riskanteren Status, anders als das bei den
»High-Reliability-Organisationen der 1980er Jahre der Fall war« (ebd.).

Das Beispiel soll verdeutlichen, dass es ein langwieriger Regulierungsprozess ist, um
ein stabiles System herzustellen, bei dem auch die Softwareentwickelnden gefragt sind
und die Regulierung nicht mit dem Erlassen einer Verordnung erledigt ist. Institutionen
und Technologien entwickeln sich wechselseitig in einem Prozess der Koevolution (vgl.
Rohracher 2007: 148). Wobei die IT selbst institutionalisiert und »Part of the Furniture«
(Silva/Backhouse 1997) der Energiewirtschaft wird.

7.2.2.3. Dezentrale Erzeugungsanlagen gebündelt vermarkten:
virtuelle Kraftwerke

Mit der Energiewende wurde die Dezentralisierung der Stromversorgung wieder zum
Thema. Einige Autoren haben die Hoffnung, dass mithilfe von IT und weniger kapital

intensiven Erzeugungsanlagen eine wettbewerbliche Organisation der Stromwirtschaft
möglich ist (vgl. Voß/Bauknecht 2007: 119). Weil es den Regelenergiemarkt gibt und die
Möglichkeit, mehrere Erzeugungsanlangen zusammen dort zu vermarkten, wurde da

für eine informationstechnische Lösung gefunden: virtuelle Kraftwerke.
Mittlerweile haben schon einige EVU (bspw. RheinEnergie45 aus Köln oder die

Stadtwerke Rosenheim46) solche Kraftwerke aufgebaut. Lichtblick (1999 gegründet) war
eine der ersten Firmen, die solch ein virtuelles Kraftwerk geschaffen haben. Darunter
versteht man die Steuerung mehrerer dezentraler Anlagen, als wären sie ein einziges
Kraftwerk (im Falle von Lichtblick Gasmotoren, die Strom und Wärme produzieren
– sogenannte Mikro-Blockheizkraftwerke/-BHKWs, Batterien und PV-Anlagen). Die

45 https://www.rheinenergie-trading.com/de/produkte_2/services_strom/virtuelleskraftwerk.html,
abgerufen am 13.07.2023.

46 https://www.swro.de/de/dienstleistungen/energievermarktung, abgerufen am 13.07.2023.

https://www.next-kraftwerke.de/energie-blog/stromnetzfrequenz
https://www.rheinenergie-trading.com/de/produkte_2/services_strom/virtuelleskraftwerk.html
https://www.swro.de/de/dienstleistungen/energievermarktung

152 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Steuerung des Kraftwerkpools, zu dem auch die vielen kleinen, in den Kellern von Privat

personen stehenden Mini-BHKWS gehören, übernimmt die von Lichtblick entwickelte

Software »SchwarmDirigent« (vgl. von Petersdorff 2013). Es gibt mittlerweile einen tech

nischen Standard für virtuelle Kraftwerke (siehe 7.1.3.2) und weitere Softwareprodukte

(bspw. von Next Kraftwerke47), mit denen EVU unterschiedliche Erzeugungsanlagen

zusammengeschalten können.

7.2.3. Softwaregestaltende: gesteigerte Interdisziplinarität
und Intervention Betriebsrat

Die Energiewirtschaft verlangt von Softwaregestaltenden im besonderen Maße, inter

disziplinär zu arbeiten, und der Organisationsgrad der Branche, dass sie sich mit Be

triebsräten arrangieren.

Der Anteil der Akademiker:innen steigt und es muss intensiv interdisziplinär ge

arbeitet werden. Neben den komplizierten energietechnischen Anlagen (Netze, Kraft

werke etc.) sorgen die ständigen Änderungen der Regulierung dafür. Bei deren Überset

zung in Algorithmen müssen juristische Texte interpretiert werden, energiewirtschaft

liches Wissen und Kompetenzen in der Softwareentwicklung vorhanden sein. Wie kom

pliziert die Umsetzung der Regulierung ist, zeigt sich daran, dass die Verbände für grö

ßere Gesetze und Verordnungen immer Anwendungshilfen herausgeben48. Obwohl die

EVU selbst Fachleute haben, um zwischen gesetzlicher Regulierung und Software zu

übersetzen, ziehen sie und Softwarefirmen für die Programmierung bei Bedarf zusätz

lich Jurist:innen zurate, wofür es spezialisierte Rechtsanwaltskanzleien gibt (bspw. Be

cker Büttner Held). So sparen sie Zeit, weil nicht immer das Know-how vorhanden ist,

um juristische Texte zu verstehen, und sie gehen sicher, nichts falsch zu machen.

Wenn auch der hohe Organisationsgrad nicht den Personalabbau und Restrukturie

rung verhindern konnte (wie oben beschrieben), ist doch der Betriebsrat entscheidend

dafür, eine mögliche digitale individuelle Leistungs- und Verhaltenskontrolle zu verhin

dern:

»Inwiefern die Möglichkeiten der zunehmenden Transparenz für eine Leistungs- und
Verhaltenskontrolle genutzt werden, hängt stark davon ab, ob es im Unternehmen

einen Betriebsrat gibt.« (Roth 2018: 76)

7.3. Fazit: Software und Softwareentwicklung als Bausteine
der Industrie-Governance

In der Stromwirtschaft gibt es für Software vielfältige Anwendungsbereiche in den Wert

schöpfungsstufen Vertrieb, Netz, Handel und Erzeugung. Die Besonderheiten des Soft

wareeinsatzes sind, dass Software tragend für die Regulierung ist (bspw. Marktkommu

nikation), aus systemstabilisierenden Notwendigkeiten resultiert (bspw. Strommengen

47 https://www.next-kraftwerke.de/unternehmen/technologie, abgerufen am 13.07.2023.
48 https://www.bdew.de/service/anwendungshilfen/, abgerufen am 13.07.2023.

https://www.next-kraftwerke.de/unternehmen/technologie
https://www.bdew.de/service/anwendungshilfen/

7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft 153

bilanzierung) oder die Marktintegration von dezentralen Erzeugungslangen ermöglicht
(bspw. virtuelle Kraftwerke).

Der Ansatz der Industrie-Governance zeigt, dass die Softwaregestaltung für alle Are

nen relevant ist: Die Unternehmen müssen sich eine Strategie überlegen. Dabei steht die
reine Anwendung einer Standardsoftware für viele EVU im Mittelpunkt. Es stehen viele
Firmen zur Verfügung, die dafür Softwarelösungen anbieten. Die EVU sind dann von
den Lebenszyklen der Softwarepakete abhängig. Gleichzeitig profitieren sie von soft

waretechnischen Innovationen. Einige machen sich auf, selbst Software zu gestalten und
zu programmieren – für sich und für andere. Genaue Zahlen dazu gibt es nicht. Für die
Arenen der Produktmarkt- und Prozess-Governance ist Software entscheidend, um die

se in der Form, wie sie die Regulierung vorgibt, umzusetzen: sei es für den Datenaus

tausch zwischen Firmen, den aus Sicht der Verbrauchenden unkomplizierten Wechsel
des Stromlieferanten, die Strommengenbilanzierung, neue Geschäftsfelder wie virtuel

le Kraftwerke oder die Vermarktung von Ökostrom. Für die Beschäftigten bedeutet der
zunehmende Softwareeinsatz zunehmende Akademisierung und ruft die Betriebsräte
auf den Plan, zumindest bei der individuellen Verhaltenskontrolle einzuschreiten. Oft
ist die Umsetzung ohne Anwendende und allein mit Expert:innen möglich – ob für Re

gulierung oder Energietechnik (bspw. virtuelle Kraftwerke).
Software hilft, existierende Strukturen zu erhalten. Dabei gibt es sowohl in der Soft

ware- als auch der Stromindustrie keine Anzeichen für eine Monopolisierung: In der
energiewirtschaftlichen Softwareindustrie gibt es einerseits noch viele Anbietende von
Software und neue Verdienstmöglichkeiten vor allem für große EVU und die großen,
kooperativen IT-DL durch Softwareentwicklung und den Betrieb von Anwendungsplatt

formen. Andererseits gibt es viele kleinere Softwarefirmen und auch kleinere EVU pro

grammieren selbst oder haben gar eigene Softwareunternehmen. In der Stromindus

trie bleiben die vielen kleinen Unternehmen erhalten und damit auch die kommuna

len Strukturen, weil sich Standardprozesse und die umfangreiche Regulierung digital
durch Standardsoftwarepakete und Anwendungsplattformen abwickeln lassen. Um die
genannten Thesen auf soliden empirischen Boden zu stellen, fehlen allerdings die quan

titativen Zahlen.
Unklar bleibt, welche Rolle die Spannung zwischen Profitorientierung und kommu

naler Daseinsvorsorge beim Softwareeinsatz spielt. Es sei vorweggenommen, dass auch
die Fallstudien das nicht aufklären können.

8. Formen und Folgen der Softwaregestaltung –

die Empirie

Darstellung und Vergleich der Fallstudien

8.1. Einführung: Vorgehen und Kurzvorstellung der sieben Fallstudien

Die Forschungsarbeit beleuchtet, was zwischen Anwendung und Programmierung pas

sieren muss, damit Firmen die Möglichkeiten industriespezifischer Softwareentwick

lung für sich nutzen können, und welche Folgen dies hat. In den hier vorgestellten sieben
Fallstudien lösen die Organisationen die beiden Kernprobleme der Softwaregestaltung
(jene der softwaretechnischen Gestaltungsmöglichkeiten und der Interdisziplinarität)
jeweils unterschiedlich, um mal gemeinsam einen Standard zu gestalten oder für sich ei

ne individuelle Software herzustellen. Beides sind Wege, auf denen die EVU die Möglich

keiten der Softwaregestaltung für sich nutzen und ihre Effizienz steigern. Beides sind
Wege, welche die Fallstudien nicht immer in ihrer Reinform darstellen. In einigen Fällen
liegt eine Mischung zwischen Individual- und Standardsoftwaregestaltung vor. Darüber
hinaus reorganisieren sich die EVU in unterschiedlichem Maße, aber nie vollständig, um
die Möglichkeiten der Softwaregestaltung zu nutzen. Nur in einem Fall ist eine Organi

sation von Anfang an auf die Softwaregestaltung ausgerichtet und schöpft ihre Möglich

keiten voll aus: STARTUP gestaltet für sich eine individuelle Software und bietet diese als
(Standard-)Produkt anderen Organisationen zur Anwendung an. Bei ihr gilt der Primat
der Softwareentwicklung (4.1) und die Anwendung ist nicht nur von einer Software, son

dern auch von einer kontinuierlichen Softwaregestaltung abhängig und den Bedarfen
der Softwaregestaltung untergeordnet, damit diese ihre Möglichkeiten voll ausschöpfen
kann.

Dank der Fallstudien konnte die Forschungsarbeit für die beiden Konzepte der
soziotechnischen Netzwerkarbeit (Kontrolle der Softwaregestaltung) und soziotechni

schen Arbeitsgestaltung (Verhältnis von Softwaregestaltung zur Softwareanwendung)
einen kategorienbasierten Analyserahmen ausarbeiten. Zudem hat die Analyse der
Fallstudien ergeben, dass es wichtig ist, zwischen Konstellation, Softwaregestaltung
und Folgen für Softwaregestaltende und Softwareanwendung zu unterscheiden.

156 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Die soziotechnische Netzwerkarbeit als bestehend aus vier Ebenen zu konzeptionie

ren, war ein erster, vereinfachender Schritt (siehe 6. Kapitel). Nun kommen für die Soft

waregestaltung spezifische Kategorien hinzu und die Differenzierung zwischen Kon

stellation, Arbeitsprozess und Arbeit der Softwaregestaltenden, um die Zusammenhän

ge zwischen diesen zu untersuchen. Dabei setzt sich die soziotechnische Netzwerkarbeit

aus dem Arbeitsprozess der Softwaregestaltung und der Arbeit der Softwaregestalten

den zusammen.

Für die soziotechnische Arbeitsgestaltung geht es um die Zusammenhänge zwi

schen Konstellation und Verhältnis von Softwaregestaltung zur Softwareanwendung

und welchen Einfluss Gestaltung und Anwendung aufeinander haben und welche

Konflikte zwischen ihnen bestehen.

Der Analyserahmen besteht aus vier Teilen:

1. Der Teil der soziotechnischen Konstellation beschreibt die Bedingungen, unter de

nen im jeweiligen Fall die Organisationen die Möglichkeiten der Softwaregestaltung

nutzen. Sie ist deshalb ein eigenständiger Teil des Analyserahmens, weil die Soft

waregestaltung auszeichnet, dass sie in sehr unterschiedlichen Kontexten stattfin

det. Die soziotechnische Konstellation hat Folgen dafür, wie die Softwaregestaltung

stattfindet, die Softwaregestaltenden arbeiten und welche und wie weitgehend Fir

men die Möglichkeiten der Softwaregestaltung nutzen können.

2. Der Arbeitsprozess der Softwaregestaltung selbst findet unter diesen Bedingungen

der soziotechnischen Konstellation statt und zeigt, wie die Organisationen diesen

Arbeitsprozess kontrollieren. Was müssen die Organisationen und Arbeitenden kön

nen, um eine individuelle oder eine Standardsoftware zu gestalten? Er findet entwe

der dezentral in den softwareanwendenden Organisationen statt oder zentralisiert

in einer Organisation, die für mehrere anwendende Organisationen eine Software

gestaltet.

3. Für die Arbeitsbedingungen der Softwaregestaltenden sind soziotechnische Kon

stellation und Arbeitsprozess der Softwaregestaltung mehr oder weniger förderlich.

Entweder arbeiten sie in einer Matrixorganisation, d.h., die Softwaregestaltung ist

Teil einer Hierarchie oder einer Marktbeziehung zwischen Organisationen. Oder sie

arbeiten in einem reinen organisationalen Netzwerk, in dem weder formale Hier

archie noch Markt die Softwaregestaltung beeinflussen. Unabhängig davon, ob es

sich um eine Matrixorganisation oder ein reines Netzwerk handelt, stellen die Soft

waregestaltenden in allen Fallstudien eine eigenständige Beschäftigtengruppe dar,

die hinsichtlich des Beschäftigungssystems, der Kontrolle und der Wissensvertei

lung ihre Besonderheiten aufweist.

4. Zuletzt hat es für die soziotechnische Arbeitsgestaltung der Softwareanwendung
Folgen, wie die Fallstudien die Möglichkeiten der Softwaregestaltung nutzen. Sie

hat Folgen vor allem dahingehend, ob die softwareanwendenden Organisationen die

Software unabhängig gestalten können oder abhängig sind von einer Softwarefirma,

einem IT-Dienstleistungsunternehmen (IT-DL) oder anderen EVU. Es geht darum,

wie die Organisationen die Möglichkeiten der soziotechnischen Arbeitsgestaltung

durch die Softwaregestaltung nutzen. Dabei geht es um das Verhältnis der beiden Ar

beitsprozesse: Welchen Einfluss haben die Arbeitsprozesse von Softwaregestaltung

8. Formen und Folgen der Softwaregestaltung – die Empirie 157

und Softwareanwendung aufeinander und welche Konflikte bestehen zwischen bei

den?

Als Ergebnis veranschaulicht der Schluss des Kapitels die Unterschiede der Fallstudien in
puncto soziotechnischer Netzwerkarbeit und soziotechnischer Arbeitsgestaltung jeweils
anhand von vier Idealtypen. Die vier Typen der soziotechnischen Netzwerkarbeiten ma

chen deutlich, dass vor allem der Koordinationsaufwand, aber auch die Möglichkeiten,
einen Standard basierend auf einem breiten Konsens zu etablieren, sich je nach Netz

werk unterschieden. Jene vier Typen der Arbeitsgestaltung verdeutlichen dabei noch ein

mal, dass Organisationen die Möglichkeiten der Softwaregestaltung dann voll ausschöp

fen, wenn sie individuell für sich eine industriespezifische Software gestalten und diese
gleichzeitig als Standardsoftware anderen Firmen anbieten. Vor allem zeigt sich, dass es
um soziotechnische Möglichkeiten geht: nicht nur um individuelle Softwaregestaltung,
sondern auch um eine individuelle Gestaltung einer gesamten Organisation, bei der die
gestaltete und angewendete Software im Zentrum steht.

Zudem stellt der Schluss einen neuen Rationalisierungstyp vor, der sich aus den
Gemeinsamkeiten der Fallstudien ergibt. Kapitel 6 hat ihn bereits theoretisch von an

deren abgegrenzt und als Typ der technikentwicklungsbezogenen Rationalisierung
bezeichnet. Er basiert auf der Arbeitsteilung von Softwareanwendung, -gestaltung und
-programmierung, ist rollen- und softwarebasiert und hat die Kommunikation und
den Wissensaustausch zwischen Anwendung und Programmierung als Gegenstand.
Mit ihm wird noch einmal das Argument unterstrichen, dass, indem der Arbeitsprozess
der Softwaregestaltung Arbeit und Organisation in EVU gestaltet, er Anwendungsbe

reiche rationalisiert. Unabhängig davon, welche Form die Softwaregestaltung in den
einzelnen Fallstudien annimmt: Es zeigen sich doch immer die gleichen Elemente einer
technikentwicklungsbezogenen Rationalisierung.

Zuerst führt das Kapitel kurz in die sieben Fallstudien ein: Wie lösen sie jeweils
die Kernprobleme der Softwaregestaltung von softwaretechnischen Gestaltungsmög

lichkeiten und Interdisziplinarität? Inwiefern gestalten sie einen Standard oder eine
individuelle Software? Zuletzt stellt die Einleitung des Kapitels den Analyserahmen
vor und zeigt, wie er mit den Konzepten der soziotechnischen Netzwerkarbeit und
der soziotechnischen Arbeitsgestaltung (beide aus Kapitel 6) in Verbindung steht. Die
nächsten vier Abschnitte behandeln dann je einen Teil des Analyserahmens, für den
sie jeweils die sieben Fälle detaillierter darstellen. Zudem fassen die vier Abschnitte
Gemeinsamkeiten und Unterschiede zwischen den Fallstudien zusammen. Der letzte
der vier Abschnitte bzw. Teil des Analyserahmens zur soziotechnischen Arbeitsge

staltung diskutiert darüber hinaus drei Thesen: Inwiefern handelt es sich um einen
intervenierenden Betriebsrat? Inwieweit kann von einer direkten Partizipation der
Anwendenden gesprochen werden? Inwieweit bewegen sich EVU auf einen neuen Typus
von Prozessorganisation zu? Das Fazit dieses Kapitels fasst die Ergebnisse zusammen,
stellt Bezüge zu bestehenden Forschungsarbeiten aus Kapitel 6 her, geht auf den Typ der
technikentwicklungsbezogenen Rationalisierung und auf zwei Punkte gesondert ein:
inwiefern die Softwaregestaltung eine Konkurrenz zum Management darstellt und ob
es eine industriespezifische Softwaregestaltung gibt.

158 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Um die Fallstudien besser zu verstehen, haben bereits vorhergehende Kapitel in

Scrum (5.2.4) und die Entwicklungsplattformen von SAP (4.3) eingeführt. Am Ende der

Kurzvorstellung der sieben Fallstudien steht eine kurze Erläuterung zur Holokratie, die

bei der Fallstudie STARTUP eine Rolle spielt. Sonstige Fachbegriffe sind in Fußnoten

erklärt.

8.1.1. Kurzvorstellung der Fallstudien: Wie sie die Kernprobleme

der softwaretechnischen Gestaltungsmöglichkeiten

und Interdisziplinarität lösen

Zur Einführung stellt der nächste Abschnitt die sieben Fallstudien kurz vor. Dabei steht

im Fokus, wie jeder Fall die Kernprobleme der softwaretechnischen Gestaltungsmöglich

keiten und Interdisziplinarität löst und ob sie eher die Möglichkeiten einer individuellen

oder einer Standardsoftware nutzen. Zudem nennt er die Eckdaten der Fälle: Um welche

Unternehmen handelt es sich, welche Software entwickeln sie, welchen Anwendungsbe

reich hat die Software, wer sind die Anwendenden, Programmierenden und Softwarege

staltenden? Die unterschiedlichen Fälle werden dann die nächsten Abschnitte differen

zierter und detaillierter mithilfe der vier Teile des Analyserahmens und ihrer jeweiligen

Kategorien analysieren.

8.1.1.1. INTERN1: erweitertes Scrum für die mobile Auftragssteuerung
der Netz-Instandhaltung

Die Softwaregestaltung findet in dem Fall innerhalb eines EVU statt. Wie löst das

EVU das Problem der softwaretechnischen Gestaltungsmöglichkeiten? Es ist soft

waretechnisch sowohl auf die Anwendung als auch auf die Entwicklung von Software

ausgerichtet. Weil die Softwaregestaltung parallel zur bestehenden Organisation des

EVU besteht, existiert eine Matrixorganisation. Iterativ übergeben Rollen wie Anfor

derungsmanagende und Product Owner:innen im Scrum-Ablauf die Anforderungen

aus dem anwendenden Fachbereich an die programmierende IT-Abteilung. Der soft

waretechnische Zuschnitt ist individuell, weil das EVU zwar die ERP-Software von

SAP erweitert, es die mobile Lösung für die Instandhaltung aber allein für den Fachbe

reich gestaltet. Die Interdisziplinarität besteht in diesem Fall aus einem Netzwerk der

Softwaregestaltung zwischen IT-Abteilung und dem Fachbereich Instandhaltung.

Damit gelingt dem EVU etwas, was anderen misslingt: Es kann intern einen funk

tionierenden, netzwerkförmigen, kommunikativen Arbeitsprozess für die Softwarege

staltung quer zu bestehenden Abteilungen und Teams etablieren. Es fehlt weder an soft

waretechnischem Know-how, noch vereiteln Kommunikationshürden wie Abteilungssi

los, hierarchische Konflikte oder Widerstände in den Fachabteilungen die Gestaltung der

Software. Einzig die Frage ist offen, wer zukünftig die Hoheit über die Softwaregestal

tung hat: der Fachbereich oder die IT-Abteilung.

Das betreffende EVU gehört zu den größeren in Deutschland. Es deckt die gesamte

Wertschöpfung der Branche mit unterschiedlichen Tochterfirmen ab. Neben einer zen

tralen IT gibt es für die Geschäftsfelder Vertrieb und Verteilnetz eigene IT-Abteilungen.

Bei dem Unternehmen handelt es sich um einen Verteilnetzbetreiber (VNB) für Strom

und Gas, das Teil eines Konzerns ist und mehrere Tausend Mitarbeiter hat. Der Anwen

8. Formen und Folgen der Softwaregestaltung – die Empirie 159

dungsbereich der mobilen Lösung ist die Netz-Instandhaltung mit 600 Monteur:innen
und 100 Dispatchenden. Das EVU engagiert externe Programmierende. Für den Arbeits

prozess der Softwaregestaltung existiert ein angepasstes Scrum mit Scrum Master und
mehreren Product Owner:innen aus der IT-Abteilung und mehreren Anforderungsma

nagenden und Key User:innen in den Fachbereichen.

Tabelle 8: Steckbrief Fallstudie INTERN1

Unternehmen VNB Strom und Gas (ca. 4000 MA), Teil eines Konzerns
Anwendungsbe

reich
Instandhaltung Netze

Software Mobile Lösung für Monteure und Auftragsverarbeitung für Dis
patcher (beides integriert in ERP-System)

Anwendende 600 Monteure, 100 Dispatcher, Strom und Gas, alle intern

Allgemeine
Eckdaten

Programmierende 8 für die mobile Lösung (Backend1, Frontend, Middleware), 2 für
die ERP-Integration der Auftragsverarbeitungssoftware; Teil der
IT-Abteilung, 4 davon sind Externe

Key User:innen 52 für Monteure, 4 für Dispatcher
Product
Owner:innen

4 (einer davon führend), Teil des Innovationsbereichs der IT-Ab
teilung

Anforderungs

mgmt.
5 bis 6 aus dem Fachbereich

Scrum Master 1 (Teamleiter)

Software-
gestaltende

Ausgewählte An
wendende

für Tests, Resonanzgruppen, Workshops und andere Treffen

8.1.1.2. INTERN2: zentrale Anforderungsrunde mehrerer Fachbereiche
für die Auftragsverarbeitung

Auch bei INTERN2 findet die Softwaregestaltung innerhalb eines EVU statt. Auch in
diesem Fall löst das EVU das Problem der softwaretechnischen Gestaltungsmöglichkei

ten damit, dass es sich softwaretechnisch nicht komplett reorganisiert, sondern ergän

zend zu bestehenden Strukturen der Softwareanwendung den Arbeitsprozess der Soft

waregestaltung etabliert. In dieser Matrixorganisation gestaltet das EVU individuell ei

ne Software. Aber in diesem Fall tut es dies abteilungsübergreifend und anders als bei IN

TERN1 für mehrere Fachbereiche, die sich regelmäßig in einer Anforderungsrunde tref

fen. Dabei erweitert das EVU die SAP-ERP-Software nicht um eine mobile App, sondern
passt ein von SAP geliefertes Modul an. Hier besteht das interdisziplinäre Netzwerk der
Softwaregestaltung aus der IT-Abteilung und den dortigen Programmierenden, mehre

ren Fachbereichen und Abteilungen, von denen einzelne eigene, kleine IT-Teams haben.

1 Datenzugriffsschicht einer Software (Backend), im Gegensatz zur Präsentationsschicht (Front
end) als Quellcode zur Darstellung der Daten. Eine Middleware ist eine Software, die den Da
tenaustausch zwischen zwei ansonsten nicht verbundenen Softwarekomponenten ermöglicht.

160 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Der Fall zeigt, wie es einem größeren EVU gelingt, einen Kommunikationsprozess

zu etablieren, der eine ganzheitliche, abteilungsübergreifende Betrachtungsweise eines

Prozesses erlaubt. Für diese abteilungsübergreifende Softwaregestaltung ist die Koope

ration mehrerer Firmenbereiche notwendig, die an einem digitalen Prozess arbeiten und

sich die dafür zuständigen Programmierenden teilen.

Das betreffende EVU ist eines der größten in Deutschland. Es deckt die gesamte

Wertschöpfung der Branche mit unterschiedlichen Tochterfirmen ab. Neben einer

zentralen IT hat der Netzbereich seine eigene IT-Abteilung. Die Tochterfirma für den

Netzbetrieb Strom und Gas hat mehrere Tausend MA. Der Anwendungsbereich betrifft

die Auftragsverarbeitung bzw. das Work-Management, wie das SAP-Modul heißt. Meh

rere Fachbereiche nutzen es. Für die Softwaregestaltung existieren Scrum Master, Key

User:innen und Product Owner:innen in den unterschiedlichen Fachbereichen. Dort

gibt es auch eigene kleine IT-Teams. Die Abstimmungsrunde bearbeitet ca. 10 Tickets

pro Woche. Die Programmierenden sind größtenteils externe Freelancer, welche die

IT-Abteilung steuert.

Tabelle 9: Steckbrief Fallstudie INTERN2

Unternehmen VNB für Strom und Gas (ca. 4000 MA), Teil eines Kon
zerns

Anwendungsbereich Work-Management (Auftragsverarbeitung): betrifft
mehrere Fachbereiche (u.a. Netzanschluss, Zählerwe
sen, Abrechnung)

Software Teil der ERP-Software von SAP
Anwendende keine genauen Zahlen vorhanden, aber auf jeden Fall

mehr als 300 Anwendende für das Work-Management

Allgemeine

Eckdaten

Programmierende Programmierende des Work-Managements: 2 Interne, 7
Externe

Abstimmungsrunde bestehend aus den betroffenen Fachbereichen (u.a.
Netzanschluss, Zählerwesen, Abrechnung), der IT des
Zentralbereichs, Programmierende und Scrum Master

Product Owner:innen/
Anforderungsmgmt.

mehrere in den Fachbereichen und der IT der Abteilung
Zentralbereich

Scrum Master 1

Key User:innen 20–30 im Fachbereich Netzanschluss (für die anderen FB
liegen keine Zahlen vor)

Arbeits-
prozess

Software-
gestaltung

Tickets pro Woche min. 10 Tickets in der Abstimmrunde, ca. 300
im Backlog

8.1.1.3. KOOP1: kooperativ verhandelte, industriespezifische Erweiterung
und Anpassung einer Standard-ERP-Software

In dem Fall überlassen die EVU den größten Teil der SAP-Erweiterung und -Anpassung

einem IT-DL. Wobei sie im Zuge des vom IT-DL organisierten Anforderungsmanage

8. Formen und Folgen der Softwaregestaltung – die Empirie 161

ments kooperativ über den Zuschnitt der Software verhandeln: was sie in einen gemein

samen Standard aufnehmen und was einzelne EVU individuell gestalten. Die interdiszi

plinären Netzwerke der Softwaregestaltung erstrecken sich zwischen IT-DL und mehre

ren anwendenden EVU, wobei die größeren EVU auch noch eigene IT-Abteilungen haben
und selbst Software gestalten.

In dem Fall gelingt es den beteiligten Organisationen, die widersprüchlichen Ziele
von gemeinsamen Synergien und individueller Gestaltung zu verhandeln. Dabei setzt
das IT-DL einen Mediator ein:

»Ich glaube, eines der größten Learnings ist, dass die größten Herausforderungen,
einer der großen Kostenpunkte, die Abstimmung überhaupt und den Austausch über
den Kunden (unv.). Also dieses ganze Anforderungsmanagement und alles was nichts
mit Technik zu tun hat, […] sondern wirklich miteinander reden und abstimmen und
irgendwie sich auf einen gemeinsamen Nenner zu einigen. Dass das eigentlich die
größten Hürden sind und das über Jahre hinweg irgendwie so am Laufen zu halten.
Dafür haben wir eine Lösung gefunden, auch sogar irgendwann extern moderiert
und auch immer noch. Das tut auch gut, wenn ein neutraler Externer dabei ist, der
zwischen Kunden und auch uns als Dienstleister irgendwie vermittelt und irgendwie
schaut, dass einem da gerecht wird.« (Digitalisierungsmanager IT-DL)

Tabelle 10: Steckbrief Fallstudie KOOP1

Unternehmen mehrere EVU (vor allem Netz, Vertrieb, Strom, Gas) und IT-DL
Anwendungsbereich sämtliche energiewirtschaftlichen Kernprozesse (Marktkom

munikation, Abrechnung, Geräteverwaltung etc.)
Software SAP-ERP-Standardsoftware, industriespezifisch erweitert
Anwendende mehrere Tausend in unterschiedlichen EVU

Allgemeine
Eckdaten

Programmierende 15–20 für den industriespezifischen Teil des ERP beim IT-DL,
vereinzelt Programmierende in EVU (z.B. 3 bei EVU2)

Key User:innen verteilt auf die EVU
Key Account
Managende

mehrere des IT-DL, zuständig für einzelne EVU

Anforderungsmgmt. mehrere im IT-DL und den EVU
IT-Projektmanagen

de
7 beim IT-DL (2 auf Tests spezialisiert), vereinzelt bei EVU

IT-Beratende 28–30 für den industriespezifischen Teil des ERP beim IT-DL
Prozessmanagende bei zwei der befragten EVU
IT-Koordinierende bei einzelnen EVU
Digitalisierungsma

nager
bei einem befragten EVU

Software-
gestaltende

Applikationsbetreuer bei einem befragten EVU

162 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Die Gesellschaftenden des IT-DL sind mehrere EVU. Die durch das IT-DL betrie

bene und weiterentwickelte ERP-Software bildet sämtliche Kernprozesse der EVU ab

(Marktkommunikation, Abrechnung, Geräteverwaltung etc.). Die Anwendenden und

Key User:innen arbeiten in den EVU. Dort findet vereinzelt auch Softwaregestaltung

statt (z.B. durch Applikationsbetreuende oder IT-Koordinierende). Programmierende,

IT-Beratende, IT-Projektmanagement und Key Account Managende sind beim IT-DL

angestellt.

8.1.1.4. KOOP2: prekäre Kooperation für eine industriespezifische Erweiterung
und Anpassung einer Standard-ERP-Software

Wie auch bei KOOP1 lösen das Problem der softwaretechnischen Gestaltungsmöglich

keiten mehrere Organisationen. Nur gibt es nicht das eine institutionalisierte Treffen,

in dem sich EVU darüber verständigen, welche anstehenden Anforderungen an die IT

sie gemeinsam umsetzen und welche nicht. In diesem Fall überlassen die EVU nur einen

kleinen Teil der SAP-Erweiterung und -Anpassung einem IT-DL. Den anderen Teil über

nehmen die EVU (vor allem die größeren) selber. Das geht so weit, dass sie selbst Soft

waregestaltungsprojekte zusammen mit anderen EVU machen. Über den Zuschnitt der

Software der EVU entscheidet damit nicht zentral eine Organisation: Es gibt Standard-

Erweiterungen und -Anpassungen der SAP-Software durch das IT-DL, durch einzelne

EVU und auch Softwaregestaltung mit anderen Softwarefirmen. Die interdisziplinären

Netzwerke der Softwaregestaltung erstrecken sich zwischen IT-DL und mehreren EVU.

Die größeren EVU haben in diesem Fall eigene IT-Abteilungen.

Der Fall zeigt, dass sich die beteiligten EVU immer mehr aus einer Kooperation lö

sen, wenn die zentrale Steuerung der Softwaregestaltung nicht gelingt. Im Zeitverlauf

wandern koordinative und operative Aufgaben zwischen EVU und IT-DL hin und her.

Die uneinheitliche Lage drückt sich darin aus, dass es schwierig war, sich durch die In

terviews einen Überblick zu verschaffen: welches EVU nun was selber macht (ob Anwen

dung, Programmierung oder Softwaregestaltung) oder inwieweit sich die industriespe

zifische Standardsoftware von EVU zu EVU unterscheidet.

Das IT-DL ist im Eigentum einiger EVU und bietet sowohl Softwareentwicklung als

auch -anwendung (inkl. Business Process Outsourcing) an. Dabei soll es nicht nur für

die gesellschaftenden Unternehmen Aufgaben übernehmen, sondern mit der Betreu

ung anderer EVU Geld verdienen. Kernanwendungsbereich der Software ist die Daten

verarbeitung für die energiewirtschaftlichen Geschäftsprozesse (Marktkommunikation,

Kund:innenservice, Energiemengenbilanzierung etc.). IT-Beratende und Programmie

rende arbeiten für das IT-DL. Größere EVU haben ihre IT-Projektleitenden, IT-Koor

dinierenden, Key User:innen und Prozessmanagenden und arbeiten mit unterschiedli

chen Softwarefirmen direkt zusammen.

8. Formen und Folgen der Softwaregestaltung – die Empirie 163

Tabelle 11: Steckbrief Fallstudie KOOP2

Unternehmen IT-DL, EVU, diverse Softwarefirmen
Anwendungsbereich Datenverarbeitung Geschäftsprozesse EVU
Software SAP-ERP-Software, Softwarelösungen anderer Firmen:

Marktkommunikation, Kund:innenservice und Netzleitstel
le

Anwendende verteilt auf mehrere EVU und beim IT-DL

Allgemeine
Eckdaten

Programmierende vereinzelt in EVU, beim IT-DL, Freelancer, Softwarefirma
Key User:innen,
Prozessmanagende

EVU2: ERP, Marktkommunikation, Kund:innenservice Netz

Teamleitung Marktkom

munikation
EVU2 Netzbetrieb

IT-Projektleitung EVU2 Netzbetrieb
IT-Koordinierende
Fachbereich

EVU2: zuständig für ca. 60 Mitarbeitende Netzbetrieb

Manager Digitalisierung EVU3: Vertrieb

Software-
gestaltende

IT-Beratende IT-DL

8.1.1.5. PAKET: industriespezifische ERP-Standardsoftware
entwickelt durch eine Softwarefirma

Die EVU der Fallstudie lösen das Problem der softwaretechnischen Gestaltungsmöglich

keiten damit, dass sie ihre Organisation auf die Anwendung einer Standardsoftware aus

richten und den Standardsoftware-Zuschnitt der Softwarefirma überlassen. Ausgewähl

te EVU und ihre Expert:innen nehmen an Arbeitskreisen und Projekten mit der Soft

warefirma teil. Diese interdisziplinären Netzwerke ergänzen die in der Softwarefirma
vorhandene Interdisziplinarität, die notwendig ist, damit sie die industriespezifische
Standardsoftware entwickeln kann.

Damit ist, anders als in den anderen Fallstudien zuvor, die entwickelte Software eine
Standardware, bei der die Softwarefirma auf Skalierung setzt und die EVU vorwiegend
auf Kosteneffizienz und Auslagerung der Softwareentwicklung. Dennoch ist die Soft

warefirma auf das Feedback und den Input der EVU zur Qualitätssicherung und Weiter

entwicklung des Standards angewiesen.
In dem Fall geht es um eine Softwarefirma und mehrere EVU. Die Software bildet

die energiewirtschaftlichen Kernprozesse wie Marktkommunikation, Abrechnung oder
Energiedatenmanagement ab. An der Softwaregestaltung sind im wesentlichen Key
User:innen, Fachexpert:innen (via Arbeitskreise), Anwendungsbetreuende, Prozess

managende oder Führungskräfte der EVU sowie Fachexpert:innen, IT-Projektleitende,
Führungskräfte und IT-Beratende der Softwarefirma beteiligt. Die Programmierenden
arbeiten allesamt in der Softwarefirma. Die Anwendenden sitzen in den EVU, wobei
die Softwarefirma auch BPO (Business Process Outsourcing) anbietet und dafür eigene
Anwendende beschäftigt.

164 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 12: Steckbrief Fallstudie PAKET

Unternehmen eine Softwarefirma, mehrere EVU
Anwendungsbereich energiewirtschaftliche Kernprozesse wie Marktkommunikation,

Abrechnung, Energiedatenmanagement

Software ERP-Lösung inklusive industriespezifischer Prozesse
Anwendende verteilt auf mehrere EVU, bei EVU6 z.B. ca. 380 Anwendende

Allgemeine

Eckdaten

Programmierende konzentriert auf eine Softwarefirma, genaue Anzahl unbekannt
Key User:innen verteilt auf diverse EVU
Fachexpert:innen verteilt auf diverse EVU und innerhalb Softwarefirma

IT-Projektleitende in EVU oder Softwarefirma

IT-Beratende mehrere der Softwarefirma

Anwendungsbetreu

ung

in manchen EVU

Prozessmanagende in manchen EVU

Software-
gestaltende

Führungskräfte in manchen EVU an Softwaregestaltung beteiligt

8.1.1.6. KOOP3: Ko-Produktion einer IoT-Software
für stadtwerksnahe Anwendungen

Wie auch bei PAKET richten sich in dem Fall die EVU drauf aus, die Kernmodule der

IoT-Software anzuwenden. Sie überlassen den softwaretechnischen Zuschnitt des Stan

dards der Softwarefirma. Das Problem der softwaretechnischen Interdisziplinarität in
Bezug auf die energiewirtschaftlichen Anwendungsfälle löst KOOP3 dadurch, dass das

IT-DL die Rolle des Vermittlers in die Energiewirtschaft übernimmt. Es führt die Imple

mentierungsprojekte in den EVU durch und gibt bei deren Durchführung aufkommende

Anforderungen an die Softwarefirma weiter.

Im Gegensatz zu den Fällen von KOOP1, KOOP2 und PAKET hat die Kooperation

stark informellen Charakter (rudimentäre Verträge, flache Hierarchien, Konflikte wer

den persönlich gelöst). Weder Marktmechanismen noch hierarchische Befehlsketten

oder Abteilungsgrenzen stellen Hemmnisse dar, um das notwendige Wissen aus dem

Anwendungsbereich mit jenem der Programmierung zusammenzubringen.

Die beteiligten Unternehmen sind die IoT-Softwarefirma, das IT-DL und die EVU.

Schwerpunkt der Anwendungsfälle ist die Installation von Sensoren. Die IoT-Lösung

liest diese über LoRaWan2 aus, stellt ihre Daten über Schnittstellen zur Verfügung, so

dass verschiedene Anwendungen der EVU die Daten weiterverarbeiten bzw. darstellen

können. Die Programmierenden arbeiten in der Softwarefirma und zum Teil beim

IT-DL oder in EVU, wenn diese die Standardsoftware um eigene Module erweitern. Für

die Softwaregestaltung gibt es IT-Projektmanagende in der Softwarefirma, dem IT-DL

2 Form der kabellosen Datenübertragung in einem Netzwerk, die sich durch geringen Energiebe
darf auszeichnet.

8. Formen und Folgen der Softwaregestaltung – die Empirie 165

und den EVU. Für die Zusammenarbeit mit der Softwarefirma hat das IT-DL einen extra
Product Owner.

Tabelle 13: Steckbrief Fallstudie KOOP3

Unternehmen IoT-Softwarefirma, IT-DL, EVU
Anwendungsbereich IoT, LoRaWan
Software Datenplattform: Daten diverser Sensoren sammeln; bietet

Schnittstellen zu anderen Systemen
Anwendende keine konkreten Anwendenden, weil diverse Anwendungen

die gesammelten Daten verwenden können

Allgemeine
Eckdaten

Programmierende zentral in der Softwarefirma (ca. 15); IT-DL und manche EVU
programmieren kleinere Lösungen, die sie über Schnittstellen
mit der IoT-Software verbinden

IT-Projektmanage

ment
Softwarefirma, IT-DL, EVU

Account Management Softwarefirma
Product Owner IT-DL

Software-
gestaltende

Teamleiter EVU1

8.1.1.7. STARTUP: Primat der Softwareentwicklung
für den digitalen Emissionshandel (E-Mobilität)

Das ist der einzige Fall, in dem die Organisation klar auf Softwareentwicklung aus

gerichtet ist und ihre eigene Software herstellt. Damit löst STARTUP das Problem der
softwaretechnischen Gestaltungsmöglichkeiten in diesem Fall mit dem Primat der
Softwareentwicklung (siehe dazu 4.1). Die Anwendung der Software beschränkt sich
allerdings nicht auf STARTUP selbst. Die entwickelte Software bietet die Firma anderen
Unternehmen als Anwendungsplattform in Form einer White-Label-Software3 an (z.B.
Firmen der Automobilbranche). Die Interdisziplinarität besteht intern zwischen unter

schiedlichen Rollen und es gibt keine Grenzen durch Abteilungen oder abgeschottete
Teams.

Das Start-up organisiert den Quoten- bzw. Emissionshandel von E-Autos für ein

zelne Autobesitzer:innen und für Ladesäulen. Um die Emissionen im Verkehrssektor zu
reduzieren, hat der Staat die Treibhausgasminderungsquote (kurz: THG-Quote) einge

führt. Unternehmen mit hohen Emissionen, wie z.B. die Mineralölindustrie, können ih

re Quoten erfüllen, indem sie über den Quotenhandel Zertifikate von Unternehmen er

werben, die emissionsarme Kraftstoffe für den Verkehr herstellen, wie z.B. Stadtwerke,
die Strom z.B. über PV-Anlagen produzieren und über Ladesäulen anbieten. Die vom

3 Wie bereits unter 7.2.1.3 ausgeführt, handelt es sich bei einer White-Label-Software darum: »Eine
Organisation entwickelt eine Software, stellt sie zur Verfügung (ob via Cloud oder On-Premises)
und versieht sie in der Darstellung nach außen mit der entsprechenden Aufmachung des anwen
denden EVU (bspw. Logo und Name Stadtwerk).«

166 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Start-up entwickelte Software hat im Wesentlichen zwei Teile, die auch den zwei ange

botenen Dienstleistungen entsprechen: einen für die Anmeldung von E-Autos (B2C) und

einen für den Quotenhandel (B2B).

Die Programmierenden arbeiten alle für das Start-up. An der Softwaregestaltung

nehmen vor allem all jene teil, die an den zwei Kreisen für Handel und Anmeldung zum

Handel mitarbeiten, wozu die Unternehmensleitung, Product Owner, Solution Archi

tect, aber auch Programmierende und andere Beschäftigte gehören.

Tabelle 14: Steckbrief Fallstudie STARTUP

Unternehmen organisiert Quotenhandel für E-Mobilität
Anwendungsbereich Quotenhandel: Anmeldung von E-Autos (B2C) und Handel mit

diesen Zertifikaten, Handel mit Mengen aus Ladesäulen (B2B)
Software a) Webseite und App, um E-Autos anzumelden, b) Software für

Quotenhandel

Mitarbeitende insge
samt

ca. 20–25, ca. 13 Vollzeitäquivalent (schwankt im Befragungs
zeitraum)

Anwendende E-Auto-Besitzende, interne Mitarbeitende

Allgemeine

Eckdaten

Programmierende 2 für das Modul Anmeldung, 3 für das Modul Zertifikate-Handel
Geschäftsführung 2

Product Owner:in
nen

2

Kreise 2 (je Produkt: Handel und Anmeldung)

Software-
gestaltung

Solution Architect 1

Exkurs: Holokratie

In der Fallstudie STARTUP organisieren u.a. Kreise die Zusammenarbeit. Woher kommt

die Idee von Kreisen? Der Verfasser führt dies auf das Organisationskonzept der Holok
ratie zurück. Es stammt wie das agile Manifest aus der Softwareentwicklung. Bei der Ho
lokratie sind Rollen zentral und es soll eine hierarchiefreie Organisation geschaffen wer
den. Das Organisationskonzept soll hier zumindest erwähnt werden und der Exkurs auf
die Kernelemente hinweisen, um den Fall STARTUP besser zu verstehen und zu zeigen,
aus welchen unterschiedlichen Ansätzen sich Organisationen bedienen, um Software
gestaltung zu organisieren.

Auf der Webseite www.holacracy.org sind auf der Seite Verfassung (https://www.h
olacracy.org/constitution/5) als Organisationsstrukturen aufgeführt:

• Role Definition
• Responsibility of Role Leads

https://www.holacracy.org
https://www.holacracy.org/constitution/5
https://www.holacracy.org/constitution/5

8. Formen und Folgen der Softwaregestaltung – die Empirie 167

• Circles
• Circle Leads

Dabei werden Kreise wie folgt definiert:

»A ›Circle‹ is a container for organizing Roles and Policies around a common Purpose. The
Roles and Policies within a Circle make up its acting ›Governance‹.« (HolacracyOne 2023)

Die Befragten sprachen in den Interviews nie über »Policies«. Doch ist unverkennbar,
dass in der Fallstudie STARTUP Rollen und Kreise zentral sind. Die Verantwortlichkeiten
der Rollen verhandeln die Beteiligten untereinander. Diese Treffen werden in der
Holacracy »governance meetings« genannt:

»Governance meetings help define how we will work together – they facilitate un
covering and assigning the roles needed to reach the circle’s aim.« (Robertson 2007)

Kreise haben konkrete Zwecke (z.B. ein Modul der Software zu gestalten) und es
gibt Regeln, nach denen sie arbeiten (z.B. wer Treffen organisiert). Obwohl die Anleihen
aus dem Organisationskonzept der Holokratie unverkennbar sind, konnten die Befrag
ten nicht bestätigen, dass ihre Organisation davon inspiriert ist. Manchmal sprechen sie
von Teams, manchmal von Kreisen.

8.1.2. Unterschiedliche Möglichkeiten der Softwaregestaltung: zwischen
Standard- oder Individualsoftware und Überblick über die Fallstudien

Letztlich lassen sich die Unterschiede zwischen den Fallstudien in Bezug auf die Nut

zung der Möglichkeiten der Softwaregestaltung auf zwei diametral entgegengesetzte
Typen reduzieren: Gestalten sie eine individuelle Software oder einen Standard? Welche
Form der Softwaregestaltung am effizientesten für ein EVU ist, lässt sich nicht so einfach
beantworten. Denn sowohl eine individuell auf die jeweiligen Bedürfnisse zugeschnitte

ne Software kann effizient sein als auch eine Software, die viele EVU einsetzen und die
einen Standard darstellt. Andererseits kann es unnötig hohe Kosten verursachen, etwas
Individuelles zu gestalten, oder es kann ineffizient sein, sich auf eine Standardsoftware
auszurichten, wenn eine Organisation dadurch vorher effiziente und optimierte interne
Prozesse ändern muss.

In den Fallstudien liegt, was die gesamte IT-Landschaft der EVU betrifft, meistens
eine Mischung aus industriespezifischen Standardlösungen oder -softwarebausteinen
und individuell gestalteter Software vor. Für den Arbeitsprozess der Softwaregestaltung,
der den Kern der jeweiligen Fallstudie bildet, lässt sich jedoch sagen, dass bei INTERN1,
INTERN2 und STARTUP Unternehmen eine individuelle Software gestalten. Bei PAKET
und KOOP3 gestalten Softwarefirmen eine Standardlösung. Bei KOOP1 ist ein koopera

tiver Standard das Ziel, wenn es auch individuelle Abweichungen gibt. Bei KOOP2 ist
es gar nicht so einfach zu sagen, welches EVU einem gemeinsamen Standard folgt und

168 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

welches nicht, weil kein zentralisiertes Entscheidungsgremium dafür existiert. Das rest

liche Kapitel macht die Unterschiede zwischen den Fallstudien deutlicher und vertieft

sie.

Die obige Kurzvorstellung der Fallstudien und wie sie die beiden Kernprobleme der

Softwaregestaltung der softwaretechnischen Gestaltungsmöglichkeiten und der Inter

disziplinarität lösen, sind in der untenstehenden Tabelle zusammengefasst. Wie ist die

Tabelle zu lesen? Zum Beispiel ist bei INTERN1 das EVU durch eine Matrixorganisati

on aus Softwareanwendung (SA) und Softwaregestaltung (SG) auch auf die Softwarege

staltung ausgerichtet. Dabei besteht der Arbeitsprozess der Softwaregestaltung im Kern

aus einem um einige Methoden erweiterten Scrum-Arbeitsprozess. Die Software hat ei

nen individuellen Zuschnitt für den Fachbereich Instandhaltung und die softwaretech

nische Interdisziplinarität ist in einem EVU integriert, weil beteiligte Softwaregestal

tende, -programmierende und -anwendende Mitarbeitende eines EVU sind. Bei KOOP1

hingegen gibt es sowohl EVU, die nur anwenden, als auch diejenigen, die mitgestalten

und dafür den entsprechenden Arbeitsprozess der Softwaregestaltung haben. Den Zu

schnitt der Software verhandeln die EVU untereinander und die softwaretechnische In

terdisziplinarität ist nicht in einer Organisation integriert, sondern verteilt sich auf EVU

und IT-DL, auch wenn einige EVU über softwaretechnisches Wissen verfügen und das

IT-DL tiefergehendes energiewirtschaftliches Wissen hat.

Tabelle 15: Überblick über die Fallstudien – softwaretechnische Gestaltungsmöglichkeiten und
Interdisziplinarität

Softwaretechnische Gestaltungsmöglichkeiten Softwaret. Interdisziplinarität

Fall softwaretechnische Ausrich
tung anwendende Organisati
on (EVU)

softwaretechnischer

Zuschnitt

organisatorische und interpers.
Netzwerke der Softwaregestal
tung

IN

TERN1

SG: Matrix Fachbereich – IT-Ab
teilung, erweitertes Scrum

individuell für einen
Fachbereich

integriert: IT-Abteilung und ein
Fachbereich

IN

TERN2

SG: Matrix Fachbereiche –
IT-Abt., Anforderungsrunde

individuell für mehre

re Fachbereiche
integriert: IT-Abteilung, meh

rere Fachbereiche inkl. deren
IT-Teams

KOOP1 SA/SG: organisationsübergr.
Matrix EVU – IT-DL, zentrales
Anforderungsmanagement

kooperativ verhandelt:
Standard – individuell
für mehrere EVU

desintegriert: IT-DL und meh

rere EVU; Fachbereiche und
IT-Abteilung innerhalb der EVU

KOOP2 SA/SG: organisationsübergr.
Matrix EVU – IT-DL, verteiltes
Anforderungsmanagement

verteilte Entschei
dungshoheit: Stan
dard – individuell

desintegriert: IT-DL und meh

rere EVU; Fachbereiche und
IT-Abteilung innerhalb der EVU

8. Formen und Folgen der Softwaregestaltung – die Empirie 169

Softwaretechnische Gestaltungsmöglichkeiten Softwaret. Interdisziplinarität

Fall softwaretechnische Ausrich
tung anwendende Organisati
on (EVU)

softwaretechnischer
Zuschnitt

organisatorische und interpers.
Netzwerke der Softwaregestal
tung

PAKET SA: Anwendung Standard
software inkl. Einstellungen
vornehmen

Standard für viele EVU desintegriert: Arbeitskreise und
IT-Projekte zw. Softwarefirma
und EVU, intern in Softwarefir
ma

KOOP3 SA: Anwendung IoT-Software Standard-Kernmodul
IoT für viele EVU

desintegriert: IT-DL, Software
firma, EVU

START

UP
SG: Primat der Softwareent
wicklung

individuell für die
Organisation und als
Standard für andere

integriert: intern, rollenbasiert
(keine Abteilungsgrenzen),
Kreise

Der Analyserahmen hilft, die soziotechnische Netzwerkarbeit der Softwaregestal

tung in ihren Zusammenhängen und wesentliche Elemente zu untersuchen.

8.1.3. Der Analyserahmen

8.1.3.1. Die vier Teile und ihre Kategorien
Die vier Teile des Analyserahmens wurden bereits kurz in der Einleitung vorgestellt. Der
folgende Abschnitt geht ausführlicher auf sie ein, indem er die jeweiligen Kategorien der
Teile vorstellt.

1. Ausgangsbedingungen für die Softwaregestaltung (soziotechnische Konstellation)

Die soziotechnische Konstellation von Anwendung und Entwicklung bestimmt den
Spielraum und die Grenzen, welche Möglichkeiten der Softwaregestaltung Organisatio

nen überhaupt in einem Anwendungsbereich verwirklichen können. Indem die Analyse
der Fallstudien die Ausgangsbedingungen der Softwaregestaltung berücksichtigt, kann
sie zeigen, wie in verschiedenen Kontexten die Beteiligten Wissen austauschen und
kommunizieren und welche Folgen der Kontext für den Arbeitsprozess der Softwarege

staltung, die Arbeit der Softwaregestaltenden und die soziotechnische Arbeitsgestaltung
der Softwareanwendung hat. Die empirische Untersuchung hat vier zentrale Katego

rien der soziotechnischen Konstellation ausgemacht: Anwendungsbereich der Software,
Softwarearchitektur, Arbeitsteilung und die Grundkoordination zwischen Anwendung
und Entwicklung (Gestaltung und Programmierung). Vom Anwendungsbereich hängt
der Digitalisierungsbeitrag ab: Inwieweit kann Software zur Arbeit beitragen oder diese
ersetzen? Welches energiewirtschaftliche Domänenwissen ist relevant und wie ist es
verteilt? Die Softwarearchitektur prägt die Arbeitsteilung zwischen Anwendung und
Programmierung: Welche technischen Gestaltungsmöglichkeiten gibt es außerhalb
einer Softwarefirma (Schnittstellen, Anpassungsmöglichkeiten)? Wie ist die Software
technisch aufgeteilt und wer gestaltet welchen Teil? Die Arbeitsteilung beschreibt, wie
sich Arbeit und Wissen von Anwendung und Entwicklung verteilen und wie die Wis

170 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

sensgrenzen verlaufen. Sind die Programmierenden Teil der IT-Abteilung oder einer

Softwarefirma? Sind die Anwendenden Teil eines Fachbereichs eines EVU oder eines

IT-DL? Von der Grundkoordination ausgehend müssen Organisationen die koopera

tive Zusammenarbeit zwischen Anwendung und Entwicklung etablieren. Arbeiten die

beteiligten Teams, Abteilungen oder Organisationen primär via Markt (z.B. zwischen

Softwarefirma und EVU), Hierarchie (z.B. innerhalb eines EVU) oder Netzwerk (z.B.

projektförmig) zusammen?

2. Folgen der Softwaregestaltung für die Arbeit der Softwaregestaltenden

Wie die Softwaregestaltenden als Beschäftigtengruppe in einer Organisation arbeiten,

hängt mit der soziotechnischen Konstellation und dem Arbeitsprozess der Softwarege

staltung zusammen. Dabei sind Beschäftigungssystem, Kontrolle und die Wissensver

teilung Gegenstand der Analyse und wie sie sich unterscheiden in Fällen von Matrix-
oder reinen Netzwerkorganisationen. Mit Beschäftigungssystem ist in erster Linie die

Allokation von Arbeitskräften inklusive ihrer Karrierewege gemeint. Den Vergleich mit

Anwendenden und Programmierenden nutzt die Zusammenfassung des Abschnitts, um

die Eigenarten der Arbeit der Softwaregestaltenden zu verdeutlichen.

3. Folgen der Softwaregestaltung für die soziotechnische Arbeitsgestaltung der Soft

wareanwendung

Die Folgen für die soziotechnische Arbeitsgestaltung der Softwareanwendung ergeben

sich im Verhältnis von Softwaregestaltung und Softwareanwendung. Erst in diesem Ver

hältnis zeigen sich Einfluss und Konflikte zwischen beiden. Zentrale Elemente dabei

sind, inwiefern Anwendende an der Softwaregestaltung partizipieren, welche Ziele die

EVU verfolgen (bspw. die Entwicklung einer Softwarefirma überlassen), ob die Software

gestaltung die Softwareanwendung kontrollieren kann und ob eine Reorganisation statt

findet (bspw. damit ein EVU selbst Software entwickeln kann). Die soziotechnische Ar

beitsgestaltung der Softwareanwendung durch die Softwaregestaltung ist damit nur ein

Teil der Arbeitsgestaltung in EVU – allerdings kein unwichtiger. Denn die gestaltete Soft

ware prägt je nach Anwendungsbereich weitgehend Arbeitsinhalte und Arbeitsprozesse

und vom Arbeitsprozess der Softwaregestaltung hängt die Organisation der anwenden

den Organisation ab. Die Fallstudien unterscheiden sich dahingehend, wie unabhängig

die EVU Software und damit die Arbeit der Anwendenden gestalten können.

Der Analyserahmen teilt die vier Ebenen der soziotechnischen Netzwerkarbeit von

Ablauf, Beziehungen, Software und Softwaregestaltenden aus dem 6. Kapitel auf die drei

Teile soziotechnische Konstellation, Arbeitsprozess der Softwaregestaltung und Arbeit

der Softwaregestaltenden auf, um die Zusammenhänge zwischen ihnen zu untersuchen.

Der Arbeitsprozess der Softwaregestaltung besteht aus den Kategorien Rollen, Ablauf,

kommunikative Beziehungen, digitale Werkzeuge und softwaretechnischer Zuschnitt.

Der Rahmen verdeutlicht die soziotechnischen Strukturen der Fallstudien: Soft

warearchitektur und Anwendungsbereich der Software als Teil der soziotechnischen

Konstellation, softwarebasierte Werkzeuge und softwaretechnischer Zuschnitt als

Elemente des Arbeitsprozesses der Softwaregestaltung.

8. Formen und Folgen der Softwaregestaltung – die Empirie 171

Abbildung 11: Analyserahmen für die Formen und Folgen der Softwaregestaltung – soziotechnische
Netzwerkarbeit und soziotechnische Arbeitsgestaltung

8.1.4. Was sind große, mittlere und kleine EVU?

In der Untersuchung steht zwar nicht im Fokus, welche Auswirkung die Organisations

größe auf die Softwaregestaltung hat. Jedoch gibt es Auffälligkeiten, die mit der Größe

der Firmen zu tun haben. Um diese einzuordnen, unterscheidet die Untersuchung der

Fallstudien drei Größen:

• kleine EVU: weniger als 800 Mitarbeitende

• mittlere EVU: zwischen 800 und 5000 Mitarbeitende

• große EVU: über 5000 Mitarbeitende

Die Einteilung geht darauf zurück, welche EVU in den Fallstudien welche Auffälligkeiten

zeigen (z.B. selbst Software zu gestalten, mitzugestalten oder nur Software anzuwen

den). Das ist eine ganz andere Einteilung als jene des Statistischen Bundesamtes, das

sämtliche EVU mit mehr als 250 Mitarbeitenden in eine Kategorie steckt (siehe 7.2.1.1).

Eine andere Unterscheidung zwischen EVU wäre jene der BNetzA, die EVU mit weni

ger als 100.000 Kund:innen von einigen regulatorischen Vorgaben befreit (siehe 7.1.2.2.).

Der Frage, welche Folgen diese Grenze für die Softwaregestaltung hat, konnte die Arbeit

nicht nachgehen. Es scheint aber, dass jene mit weniger als 100.000 Kund:innen tenden

ziell auf andere Standardlösungen vertrauen (siehe 7.2.1.1).

172 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.2. Soziotechnische Konstellation als Ausgangssituation
der Softwaregestaltung

Die beiden Kernprobleme der softwaretechnischen Gestaltungsmöglichkeiten und In

terdisziplinarität lösen die EVU je Fallstudie unterschiedlich. Die folgenden Abschnitte

vertiefen mithilfe des Analyserahmens und seiner Kategorien das Verständnis darüber,

wie dies geschieht.

Der in 8.2 behandelte erste Teil des Analyserahmens nimmt die soziotechnische Kon

stellation (Anwendungsbereich, Arbeitsteilung, Grundkoordination, Softwarearchitek

tur, s.o.) in den Blick. Sie stellt die Ausgangsbedingungen und Grenzen des Arbeitspro

zesses der Softwaregestaltung dar, in denen sich die Möglichkeiten der Softwaretechnik

verwirklichen lassen. Sie legt bereits im Wesentlichen fest, ob Organisationen eine in

dividuelle Software gestalten oder einen Standard, ob innerhalb eines EVU oder zentra

lisiert in einer Softwarefirma oder einem IT-DL. Nach der Falldarstellung stellt die Zu

sammenfassung noch einmal die Unterschiede und Gemeinsamkeiten der Fallstudien

heraus und stellt kurz die Zusammenhänge mit den anderen Teilen des Analyserahmens

dar. Auf die Folgen der dargestellten Ausgangsbedingungen gehen erst die darauffolgen

den Punkte 8.3.ff. ein, die sich den anderen Teilen des Analyserahmens widmen.

8.2.1. Darstellung der Fallstudien

8.2.1.1. INTERN1: Erweiterung ERP-Software durch IT- und Fachabteilung
zur Steuerung der Instandhaltung, hierarchisch

Welche Folgen haben in diesem Fall die Ausgangsbedingungen der soziotechnischen

Konstellation von Arbeitsteilung, Grundkoordination, Softwarearchitektur und An

wendungsbereich? Die Arbeitsteilung trennt Anwendung und Programmierung klar

voneinander. Die so bestehenden Wissensgrenzen zwischen den Abteilungen muss der

Arbeitsprozess für die individuelle Softwaregestaltung überwinden, mehrere Program

mierenden-Teams einbinden und viele Anwendende mit unterschiedlichen Spezialisie

rungen berücksichtigen. Die zehn Programmierenden gehören zur IT-Abteilung. Die

Anwendenden der Software umfassen ca. 600 Monteur:innen und 100 Dispatcher:innen

und sind selbst noch einmal fachlich spezialisiert für Hoch-/Nieder-/Mittelspannung

und Strom-, Gas- und Wassernetze.

Aufgrund der Grundkoordination muss der Arbeitsprozess der internen Soft

waregestaltung im EVU quer zu den existierenden hierarchischen Strukturen und

Abteilungsgrenzen stattfinden. Dies zeigt sich neben den Hierarchieebenen von IT-
und Instandhaltungsabteilung an den hierarchisch vorgegebenen Zielen für die Soft

waregestaltung: Kostenreduzierung (weniger Personal bzw. mehr Arbeit mit gleichem

Personal) und Qualitätssicherung in der Instandhaltung.

Dabei bringt die Softwarearchitektur eine Spezialisierung und damit zusätzliche

Wissensgrenzen zwischen den Programmierenden mit sich, die der Arbeitsprozess der

Softwaregestaltung berücksichtigen muss. Denn die Software besteht aus vier Teilen,

die allesamt für den Arbeitsprozess der Instandhaltung notwendig sind: die Software

auf den mobilen Endgeräten, die dazugehörige Software für die Anbindung an das ERP-

8. Formen und Folgen der Softwaregestaltung – die Empirie 173

System (Middleware4), die ERP-Software selbst und eine Software für die Auftragsverar

beitung (Dispatching). Diese dezentrale Softwaregestaltung im EVU, unabhängig vom
anbietenden Unternehmen der ERP-Software SAP, ermöglicht die SAP-Architektur, die
vielfältige Erweiterungsmöglichkeiten z.B. durch diverse Schnittstellen bietet.

Vom Anwendungsbereich hängt ab, für was das EVU die von ihm gestaltete Software
einsetzen kann. In dem Fall ist nicht der gesamte Arbeitsablauf der Netz-Instandhal

tung in der Software abgebildet, sondern nur die Steuerung der Monteur:innen. Ihre
Steuerung soll möglichst automatisiert ablaufen. Früher haben Meister:innen den Mon

teur:innen Zettel mitgegeben, auf denen stand, was zu tun ist. Jetzt nimmt ein Team von
Auftragsverarbeitenden zentral Aufträge auf (z.B. von Baufirmen) und gibt sie digital an
Monteur:innen weiter, die von ihrem mobilen Gerät über Aufträge informiert werden.
Sie geben in das mobile Gerät Daten wie Arbeitsstunden oder Zählerstände ein. Wie weit
die Automatisierung der Auftragsverteilung geht, ist noch offen. Aktuell gibt es intern im
Büro noch sogenannte Dispatchende. Sie stehen für Rückfragen der Monteur:innen zu
Aufträgen zur Verfügung und verteilen Aufträge, welche die Software nicht automatisch
zuordnen kann.

8.2.1.2. INTERN2: Anpassung ERP-Software durch mehrere Fachbereiche
und die IT-Abteilung zur Auftragsdatenverarbeitung, hierarchisch

In diesem Fall führt die soziotechnische Konstellation dazu, dass der Arbeitsprozess der
individuellen Softwaregestaltung im Gegensatz zu INTERN1 Wissensgrenzen nicht nur
zwischen IT und einem Fachbereich, sondern zwischen mehreren Fachbereichen und
IT-Teams überwinden muss. Die mehreren Hundert Anwendenden für das SAP-Modul
Work-Management, welches zur Auftragsverarbeitung im Netzbereich dient, sind auf
einige Fachbereiche verteilt. Im Unterschied zu INTERN1 sind mehrere IT-Teams auch
außerhalb der IT-Abteilung involviert: Zum einen ist eine Abteilung (»Zentralabteilung«)
für das gesamte Modul des Work-Managements zuständig. Sie kümmert sich um Wei

terentwicklung, Fehlerbehebung und Datenbereinigung. Zum anderen gibt es dezentra

le IT-Teams in den Fachbereichen wie Netzanschluss, die automatisieren und digitalisie

ren sollen. Dann gibt es noch die zwei internen und sieben externen Programmierenden,
die im zuständigen IT-Team der zentralen IT-Abteilung sitzen.

Der interne Arbeitsprozess der Softwaregestaltung im EVU muss althergebrachte in

terne Hierarchien, deren jeweilige Ziele und Vorgaben und, im Unterschied zu INTERN1,
mehrere Abteilungsgrenzen berücksichtigen. Dies zeigt sich neben den Hierarchieebe

nen auch in den hierarchisch vorgegebenen IT-Budgetzielen für die Softwaregestaltung:
Das Management gibt jedem Fachbereich einzeln ein IT-Budget. Im Fachbereich Netz

anschluss gibt das Management Ziele vor: Orientierung an der Kundschaft, Effizienz
und Ausrichtung am Standard des SAP-Softwarepakets.

Dabei ermöglicht die Softwarearchitektur wie bei INTERN1 eine dezentrale Soft

waregestaltung unabhängig vom anbietenden Unternehmen der ERP-Software SAP.
Wobei es in dem Fall vor allem um die Anpassung des SAP-Standards durch Customi

4 Eine Middleware ist eine Software, die den Datenaustausch zwischen zwei ansonsten nicht ver
bundenen Softwarekomponenten ermöglicht.

174 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

zing5 und Programmierung geht sowie Schnittstellen zu anderen Softwarelösungen

herzustellen und weniger darum, eine eigenständige Erweiterung zu gestalten wie bei

INTERN1.6

Neben Arbeitsteilung, Grundkoordination und Softwarearchitektur stellt der An

wendungsbereich eine Ausgangsbedingung für die Softwaregestaltung dar. Anders als

die Instandhaltung bei INTERN1 lässt sich die gesamte Auftragsverarbeitung in Soft

ware abbilden. Die EVU können mit dem Modul Work-Management der ERP-Software

von SAP anstehende Arbeiten wie den Einbau von Stromzählern oder das Verlegen eines

Netzanschlusses koordinieren und dann entsprechende Rechnungen stellen. Es geht

um den Datenverarbeitungsprozess und die Prozessintegration mehrerer, auf Teams

verteilter Arbeitsschritte: vom ersten Kontakt mit der Kundschaft über das Verlegen

des Anschlusses bis zur Rechnungsstellung. In diesem Prozess erfasst der Fachbereich

Netzanschluss dann z.B. die Dokumentation zu den Anschlüssen, Strom-/Gas-/Wasser-

Verteilern und Häusern im ERP-System, und der Fachbereich Abrechnung schickt die

Rechnung an die Kund:innen.

8.2.1.3. KOOP1: Erweiterung und Anpassung ERP-Software durch IT-DL
und EVU zur Datenverarbeitung, marktbasiert

Die soziotechnische Konstellation hat in dem Fall zur Folge, dass mehrere EVU darüber

kooperativ verhandeln, was sie als gemeinsamen Standard und was sie individuell

gestalten. Dabei muss aufgrund der Arbeitsteilung der Arbeitsprozess für die Verhand

lung zwischen Individual- und Standardsoftwaregestaltung mehrere Wissensgrenzen

überwinden: nicht nur zwischen dem IT-DL und den EVU, sondern auch innerhalb

einiger EVU und innerhalb des IT-DL selbst. Denn es besteht in diesem Fall zwar eine

starke Zentralisierung der Softwareprogrammierung und -gestaltung aufgrund der

Auslagerung vieler IT-Tätigkeiten an das IT-DL. Einige wenige EVU haben jedoch ei

gene Programmierende, Dienstleistungsunternehmen oder Softwarefirmen, mit denen

sie zusammenarbeiten. Bezogen auf die umfangreichen Einstellungsmöglichkeiten an

der SAP-Standardsoftware haben neben den Programmierenden auch andere Mitar

beitende die Möglichkeit, über vorgegebene Einstellungsmöglichkeiten Änderungen an

der Software vorzunehmen.

Anders als in vorhergehenden Fällen muss sich der Arbeitsprozess der Softwarege

staltung mit einer Marktbeziehung als Grundkoordination zwischen den EVU und dem

IT-DL arrangieren. Die Marktbeziehung zeigt sich an Verträgen, Kostenkalkulation und

Monitoring durch monatliche Berichte. Zwei der befragten EVU sagen explizit, dass das

IT-DL mit anderen IT-DL konkurriert und sie Aufträge auch an andere vergeben. Sie ha

5 Unternehmensspezifische Einstellung einer Standardsoftware.
6 Zugleich bleibt die Softwaregestaltung auf einen Teil der von Softwareanwendenden verwen

deten Softwarelösungen beschränkt. Der befragte Anwendende aus dem Fachbereich Netzan
schluss setzt neben dem Modul Work-Management von SAP noch mehrere weitere Systeme ein,
weil die Standardsoftware nicht alle notwendigen Funktionalitäten abbildet. Dadurch beschränkt
sich die individuelle Softwaregestaltung auf einen Teil der verwendeten Software. Für die anderen
Softwarepakete muss der Fachbereich mit anderen Teams der IT-Abteilung zusammenarbeiten.

8. Formen und Folgen der Softwaregestaltung – die Empirie 175

ben intern wieder Know-how aufgebaut, um Aufwandsschätzungen für Anforderungen
des IT-DL hinterfragen zu können. Die Marktbeziehung geht mit Misstrauen einher.

»Also, Beraterfirmen sind auch Vertriebler. Vertriebler verkaufen ihre Seele. Das ist
einfach so. […] Das ist immer alles toll. Die können auch immer alles, was fehlt, noch
weiterentwickeln, klar.« (Teamleiter Fachbereich EVU2)

Doch ist das Besondere, dass die beteiligten Organisationen die Marktbeziehungen
durch kooperative Beziehungen ergänzen. Es gibt Treffen unterschiedlicher Hierar

chieebenen von EVU und IT-DL für operative und strategische Abstimmungen. Es gibt
langjährige, persönliche Beziehungen zwischen Beschäftigten der Organisationen. Vor
allem die größeren EVU und das IT-DL arbeiten intern über Hierarchien und Abtei

lungen hinweg zusammen, z.B. in Projekten, wie es für Matrixorganisationen typisch
ist. Ob zwischen oder innerhalb der Organisationen: In diesem Fall besteht die Her

ausforderung darin, die Zusammenarbeit sowohl für einzelne Teile der Software, den
gemeinsamen Industriestandard, individuelle Anforderungen als auch für langfristige
strategische Projekte zu organisieren. Somit muss die zentralisierte Softwaregestaltung
des kooperativen Standards durch das IT-DL trotz Marktbeziehungen und quer zu
den hierarchischen Strukturen und Abteilungsgrenzen innerhalb und zwischen den
Organisationen stattfinden.

Die Softwarearchitektur des kooperativen Standards sieht drei Stufen der Standar

disierung vor: Der Kern besteht aus einem harten Standard, den jedes der beteiligten
EVU hat. Dann kommt der Template-Bereich, dessen modulare Funktionalitäten ein

zelne der EVU nutzen können, aber nicht müssen. Auf der äußersten Schale finden sich
freie, individuelle Anpassungen, die nur einzelne EVU auf ihren Systemen haben. Laut
Befragten sind derzeit ca. 80 % der Anpassungen und Erweiterungen der ERP-Standard

software harmonisiert, d.h. für alle EVU, die an der Kooperation teilnehmen, gleich. Die
Softwarearchitektur ermöglicht eine Softwaregestaltung sowohl dezentral in den EVU
als auch zentral im IT-DL und zudem noch – wie in den Fallstudien INTERN1 und IN

TERN2 auch – unabhängig vom anbietenden Unternehmen der ERP-Software SAP.
Neben Arbeitsteilung, Grundkoordination und Softwarearchitektur bestimmt der

Anwendungsbereich darüber, wie die Organisationen die Softwaregestaltung einsetzen.
In dem Fall ist der Anwendungsbereich der gestalteten Software die industriespezifi

sche Datenverarbeitung: Sie reicht von der Abrechnung der Kundschaft über die
regulierungsbedingte Marktkommunikation bis hin zur Energiemengenbilanzierung.
Entsprechend gibt es umfangreiche Möglichkeiten der Automatisierung. Eine befragte
Sachbearbeiterin (EVU2) ist vor allem mit Fehlerklärungsarbeiten, Vervollständigungs

arbeiten (z.B. fehlende Daten ergänzen, Daten aus E-Mails oder Telefonaten mit der
Kundschaft eingeben, einzelne Schritte im Abrechnungsprozess manuell durchfüh

ren) oder Tests von Softwareänderungen beschäftigt. Aus ihrer Sicht sind 90–95 % der
Abrechnung automatisiert und in der Marktkommunikation seien die Zahlen noch
höher.

176 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.2.1.4. KOOP2: Erweiterung und Anpassung ERP-Software durch IT-DL und EVU
zur Datenverarbeitung, marktbasiert

Wie bei KOOP1 schafft die soziotechnische Konstellation die Möglichkeit, dass sich EVU

mithilfe eines gemeinsamen IT-DL auf einen gemeinsamen Standard einigen – nur, dass

es in diesem Fall nicht gelingt. Anders als bei KOOP1 ist die Arbeitsteilung in dem Fall

weder für die Anwendung noch die Programmierung oder Gestaltung weitestgehend in
den EVU oder beim IT-DL zentralisiert. Nachdem ursprünglich das IT-DL die Software

gestaltung verantwortet hat, haben einzelne EVU wieder verstärkt die Koordination der

Softwaregestaltung übernommen. Programmierung für die Erweiterung der ERP-Soft

ware findet sowohl beim IT-DL als auch teilweise innerhalb der EVU oder in den von

EVU geleiteten Projekten statt (dann u.U. mit externen Programmierenden wie Freelan

cern). Das IT-DL übernimmt u.a. Entwicklungsaufgaben für den (halb)jährlichen For

matwechsel, der von der Regulierung vorgegeben ist, oder entwickelt kleinere Software-

Lösungen. Es nimmt zudem Customizing an der ERP-Software vor. Die uneinheitliche

Arbeitsteilung zeigt sich auch an der Anwendung der Software. Diese findet zum ei

nen in den EVU und, weil einige sie ausgelagert haben, beim IT-DL statt. Ein EVU aus

dem Organisationsnetzwerk hat laut einem Befragten gar keine operativen Anwenden

den mehr für industriespezifische Arbeiten mit dem ERP-System. Wie bei KOOP1 muss

der Arbeitsprozess für die individuelle oder Standardsoftwaregestaltung aufgrund der

Arbeitsteilung Wissensgrenzen zwischen Fach- und IT-Wissen nicht nur zwischen dem

IT-DL und den EVU, sondern auch innerhalb einiger EVU und innerhalb des IT-DL selbst

überwinden.

Wie auch bei KOOP1 muss sich der Arbeitsprozess der Softwaregestaltung aufgrund

der Grundkoordination mit der Marktbeziehung zwischen den EVU und dem IT-DL ar

rangieren. Wie bei KOOP1 reichen Verträge für die Kooperation nicht aus. Beziehungs

pflege gehört zur Koordination zwischen den Firmen dazu. Wobei der Fall zeigt, wie brü

chig eine Kooperation sein kann. Die Befragten nennen einzelne Ereignisse, die Auslöser

oder Manifestationen von fehlendem Vertrauen zwischen beiden waren, was dann zur

Rückverlagerung von IT-Arbeit in die EVU geführt hat.

»Warum ist man seit Jahren unzufrieden und warum ist das eskaliert? Manchmal ist
es relativ einfach. Die Erwartungshaltung ist zu groß – von Anfang an. Man hat sich
nie verstanden oder nie so richtig ausgetauscht. […] [W]as möchte der Kunde und was
kann das Unternehmen überhaupt leisten? […] Und wir sind nie das Kernproblem an
gegangen. Nie. ›Komm, wir reden mal offen darüber.‹ Das ist dann sukzessive eskaliert
und irgendwann hatten die Mitarbeiter alle keine Lust mehr.« (Teamleiter IT-DL)

Ein anderer Grund ist, dass ein EVU Entscheidungen über die Softwareanwendung und

deren Gestaltung autonom treffen will:

»Der Grund, warum wir zurückgeholt wurden, war, dass das Know-how wieder im
Haus ist, weil die Markt-Kommunikation sehr komplex geworden ist und man nicht
mehr vom Dienstleister abhängig sein wollte. […] Ja, die sind diejenigen, die die Pro
zesse ausführen. Aber sie sind nicht Prozesseigentümer, sollte auch kein Dienstleister
sein. Aber wenn ich als Auftraggeber Entscheidungen treffe, muss ich das fachliche

8. Formen und Folgen der Softwaregestaltung – die Empirie 177

Know-how haben hinten dran … und deswegen wurde dann damals entschieden, uns
wieder zurückzuholen.« (Teamleiterin Marktkommunikation EVU2)

Im Unterschied zu KOOP2 führen die EVU teilweise selbst kooperative Projekte mit an

deren EVU durch und das IT-DL stellt Mitarbeitende nur zur Umsetzung einzelner An

forderungen zur Verfügung. Zusätzlich existiert innerhalb der EVU eine Matrixorga

nisation, d.h., die Mitarbeitenden arbeiten über Hierarchien und Abteilungen z.B. in
IT-Projekten zusammen. Die Softwaregestaltung im IT-DL und jene dezentral in den
EVU müssen damit basierend auf diesen Marktbeziehungen und quer zu den hierarchi

schen Strukturen und Abteilungsgrenzen innerhalb der EVU stattfinden.
Anders als in KOOP1 ließen die Interviews keine klare Systematik erkennen, welche

EVU inwieweit einen gemeinsamen Standard einsetzen und was sie individuell noch
angepasst haben. Die Organisationen erweitern das gleiche SAP-Standard-ERP-System
wie in den vorhergehenden Fällen (INTERN1, INTERN2, KOOP2) und somit prägt die
gleiche Softwarearchitektur die Arbeitsteilung zwischen Anwendung und Entwicklung:
Das ERP-System ermöglicht es, über Schnittstellen Drittsysteme anzubinden, und
erlaubt weitreichende Erweiterungs- und Anpassungsmöglichkeiten am Standard. Die
Softwarearchitektur ermöglicht sowohl eine dezentrale Softwaregestaltung in den EVU
als auch zentral im IT-DL unabhängig von SAP, das die ERP-Software anbietet.

Neben Arbeitsteilung, Grundkoordination und Softwarearchitektur ist der Anwen

dungsbereich eine Ausgangsbedingung. Er entscheidet darüber, für was die Organisa

tionen Software gestalten und wie weitgehend sie Arbeit durch Software ersetzen kön

nen. In dem Fall ist der Anwendungsbereich der gestalteten Software wie bei KOOP1
vorwiegend die industriespezifische Datenverarbeitung: u.a. Abrechnung, Marktkom

munikation und Energiemengenbilanzierung.

8.2.1.5. PAKET: Entwicklung industriespezifischer Standard-ERP-Software
durch Softwarefirma zur Datenverarbeitung, marktbasiert

Als Teil der soziotechnischen Konstellation führt in diesem Fall die Arbeitsteilung dazu,
dass der Arbeitsprozess der Softwaregestaltung einer Standardsoftware zentral in der
Softwarefirma stattfindet und deshalb die Wissensgrenzen geringer sind. Denn die Soft

warefirma macht federführend die Konzeption, die Tests und den Support für die Soft

ware in interdisziplinären Teams, die auf einzelne Funktionalitäten oder Module spezia

lisiert sind. Sie besitzt für die industriespezifische Softwareentwicklung tiefergehendes
Wissen zur Energiewirtschaft und speziell zur Regulierung und den grundlegenden Ge

schäftsprozessen, d.h. all das, was alle EVU leisten müssen. Trotzdem ist die Zusammen

arbeit mit ausgewählten EVU zur Gestaltung des Standards notwendig, wobei die Soft

warefirma selbst über Branchenwissen verfügt, weswegen nicht so viel Wissen über die
Marktbeziehung hinweg ausgetauscht werden muss. Dabei geht es vor allem um Feed

back der EVU zu fertigen Konzepten und Umsetzungen. Die operativ Anwendenden sind
auf einen fachlichen Bereich spezialisiert und damit auch auf den entsprechenden Teil
der Software (Kund:innenservice, Energiedatenmanagement, Abrechnung etc.). Sie sit

zen in den EVU, in der Softwarefirma selbst (die als Dienstleistung für EVU Business
Process Outsourcing (BPO) anbietet) und bei anderen IT-DL, die für die EVU Geschäfts

prozesse abwickeln.

178 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Aufgrund der Grundkoordination innerhalb der Softwarefirma muss sich der Ar

beitsprozess der Softwaregestaltung zwar mit den internen Hierarchien arrangieren.

Jedoch gibt es spezialisierte, interdisziplinäre Teams für einzelne, fachlich abgegrenz

te Teile der Software, in denen ein hierarchieunabhängiger Austausch möglich ist. Weil

es sich zwischen Softwarefirma und EVU um eine Lieferbeziehung mit einer klar defi

nierten Leistungserbringung handelt, sind Verträge zentral für die Beziehung. Sie legen

fest, welche Funktionen die Software erfüllt. Die Softwarefirma garantiert z.B. die Um

setzung der Regulierung zum gesetzlichen Stichtag, bildet die energiewirtschaftlichen

Kernprozesse ab und garantiert Zuverlässigkeit in puncto Qualität und fristgerechte Fer

tigstellung von Softwareupdates. Die EVU sind davon abhängig, weil sie viele ihrer Auf

gaben nur mit der Software erledigen können. Für einzelne, ausgewählte EVU besteht

jedoch keine reine Marktbeziehung. Diese bindet die Softwarefirma bei strategischen

Entscheidungen über ein Gremium ein. Sie machen bei Arbeitsgruppen und Entwick

lungsprojekten mit. Hier muss sich der Arbeitsprozess der Softwaregestaltung mit der

Marktbeziehung zwischen EVU und Softwarefirma arrangieren, wenn auch nur für be

stimmte Projekte, umfangreichere Konzepte oder kleinere Anforderungen.

Anders als in den anderen Fallstudien, die SAP verwendet haben, sieht die Software

architektur von PAKET keine Programmierungen durch die EVU selbst vor. Der Stan

dard an branchenspezifischen Funktionalitäten ist umfassend und soll ausreichen, um

die notwendigen Geschäftsprozesse abzuwickeln. Die Anpassungsmöglichkeiten durch

die EVU beschränken sich auf vordefinierte Einstellungsmöglichkeiten. Diese müssen

jedoch vorgenommen werden, weshalb trotz des Standards nicht von einer Plug-and-

Play-Anwendung gesprochen werden kann. Darüber hinaus stellt PAKET Schnittstellen

zur Verfügung, dank derer die EVU Softwarelösungen anderer Softwarehersteller an

schließen können.

Neben Arbeitsteilung, Grundkoordination und Softwarearchitektur beeinflusst der

Anwendungsbereich die Softwaregestaltung, indem u.a. von ihm abhängt, welche Arbei

ten Software erledigen oder steuern soll. In dem Fall ist der Anwendungsbereich zugleich

der Kern der energiewirtschaftlichen ERP-Software: die industriespezifische Datenver

arbeitung – wie bei KOOP1 und KOOP2. Sie ist das Zentrum der Leistungserbringung

in Bereichen wie Abrechnung, Marktkommunikation oder Bilanzierung von Energie

mengen. Wie auch in den vorhergehenden Fallstudien ist aufgrund des hohen Anteils

an Datenverarbeitung eine hohe Automatisierung möglich. Bei hoher Automatisierung

kümmern sich die Anwendenden der Software vor allem um Restfälle, d.h. bspw. ein

zelne Kund:innen oder Datensätze, welche die Software nicht automatisiert verarbeiten

kann. In einem befragten EVU ist die Automatisierung der Datenverarbeitung seit län

gerer Zeit ein Thema:

Der »automatisierte[…] Rechnungseingang: Seit 15 Jahren arbeiten wir da dran in ver
schiedenen Stufen.« (IT-Leiter EVU2)

8.2.1.6. KOOP3: Ko-Produktion einer IoT-Anwendung zwischen Softwarefirma

und IT-DL zur Überwachung, netzwerkförmig

Wie bei PAKET hat die Arbeitsteilung zwischen Softwarefirma, IT-DL und EVU zur Fol

ge, dass die Softwarefirma die Software zentralisiert programmiert und das IT-DL nur

8. Formen und Folgen der Softwaregestaltung – die Empirie 179

mitgestaltet, indem es Anforderungen einbringt. Doch anders als bei PAKET spielt die
Arbeitsteilung zwischen den Organisationen als Wissensgrenze eine geringe Rolle. Ers

tens ist das Wissen gleichmäßig verteilt: Mit dem IT-DL gibt es eine Organisation, die
die IoT-Software des Softwareunternehmens bei den EVU implementiert, das Software

unternehmen bei der Weiterentwicklung der Software unterstützt, selbst Erweiterungs

module entwickelt und auch Schulungen für EVU anbietet, damit diese eigenständig
Module entwickeln können. Zweitens ist das Wissen über IoT-Anwendungsfälle in der
Energiewirtschaft weniger kompliziert und sowohl die Softwarefirma als auch das IT-DL
verfügen über Wissen über IoT und die IoT-Standardsoftware. Weil die Wissensgrenzen
geringer sind, sich die Möglichkeiten von individueller und Standardsoftwaregestaltung
auf verschiedene Organisationen verteilen und sie dabei auch noch kooperieren, zählt
der Fall zu den kooperativen Formen der Softwaregestaltung.

Zwar bestehen Marktbeziehungen zwischen Softwarefirma und IT-DL, doch spie

len diese bei der Zusammenarbeit eine geringe Rolle. Vielmehr ist die Grundkoordina

tion in diesem Fall das Netzwerk. Warum? Weil Verträge und hierarchische Vorgaben
oder Strukturen in diesem Fall keine Hindernisse für die Softwaregestaltung darstel

len. Verträge wurden von den Befragten nicht als zentral genannt, genauso wenig wie
das IT-Budget. Die Kosten für Sensoren und IoT-Software sind gering. Zudem hat das
IT-DL keine große Erwartung, was die Einnahmen durch IoT-Projekte und die EVU was
z.B. die Kostenersparnis durch IoT-Projekte anbelangt. Es geht primär darum, den Ein

satz von IoT voranzutreiben und damit um eine kooperative Softwaregestaltung bzw.
Ko-Produktion einer IoT-Software.

Wissensgrenzen spielen auch wegen der Softwarearchitektur eine untergeordnete
Rolle. Zum liegt das an der Modularität der Software. Die zentrale Datenplattform, von
der Softwarefirma entwickelt, hat Schnittstellen, welche das IT-DL oder die EVU nutzen,
um selbst Erweiterungsmodule zu programmieren. Die Softwarefirma hat ein Interesse
daran, dass sich die Arbeit nicht in der Softwarefirma zentralisiert. Das zeigt sich daran,
dass die Datenplattform auch ohne größere IT-Kenntnisse bedienbar sein soll u.a. weil
z.B. Kommunen wenig Geld und Personal haben. Dafür existiert eine nach dem Prin

zip »low code«7 gestaltete Software, die es erlaubt, ohne große Programmierkenntnisse
Sensoren zu verbauen und in den Datenfluss zu integrieren.

Der Anwendungsbereich grenzt die Möglichkeiten der Softwaregestaltung auf eine
Software ein, die Daten erfasst. In diesem Fall setzen die EVU die IoT-Software zur Über

wachung ein: ob von Straßen, Stromnetzen oder Abwasserkanälen. Denn unter IoT ver

steht der untersuchte Fall, dass Sensoren ausgebracht werden und deren Daten in ei

ner IoT-Datenplattform zusammenfließen. Letztere soll Basis für Smart-City-Lösungen
sein. Da es sich um eine Infrastruktur für Daten handelt, geht es bei der Implementie

rung weniger um Anwendende als um Anwendungsfälle. Die Daten fließen meist in an

dere Anwendungen ein. Bei einem befragten EVU fließen Daten von Sensoren über die
Datenplattform in ein bestehendes System des Netzbetriebs zur Netzkontrolle ein.

7 Ansatz in der Softwareentwicklung, der versucht, auf Programmierung zu verzichten, und statt
dessen auf grafische Designwerkzeuge oder stark vereinfachte Programmiersprachen setzt.

180 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.2.1.7. STARTUP: Primat der Softwareentwicklung in einer Organisation
zur Datenverarbeitung, netzwerkförmig (rollenbasiert)

Die Arbeitsteilung ist in dem Fall so organisiert, dass die Wissensgrenzen gering sind

und bleiben. Dank der soziotechnischen Konstellation muss der Arbeitsprozess für die

individuelle Softwaregestaltung keine Organisations-, Team- oder Abteilungsgrenzen

überwinden. Die Arbeitsteilung zwischen Anwendung und Entwicklung ist vielmehr so

organisiert, dass die Programmierenden und softwaregestaltenden energiewirtschaft

lichen Fachleute des Start-ups fest und regelmäßig in Kreisen zusammenarbeiten. Es

gibt je einen Kreis für die zwei Teile der Software: für den Zertifikate-Handel und für die

Anmeldung von E-Autos. Die Anwendenden sind nicht Teil dieser Kreis-Organisation.

Sie sind aber auch nicht jene mit dem tiefergehenden Fachwissen über den Zertifikate-

Handel, das die Softwaregestaltung benötigt.

Anders als in den anderen Fällen gestaltet STARTUP die Software primär nur für

sich selbst. Es ist von Anfang an auf die Softwaregestaltung ausgerichtet. Es gilt der Pri

mat der Softwareentwicklung (siehe 4.1). Die Grundkoordination ist in diesem Fall das

Netzwerk – weder Hierarchie noch Markt stören bei der Softwaregestaltung. Vielmehr

ist die Organisation rollenbasiert. Die Verantwortung für Aufgaben je Mitarbeitenden

sind als Rollen definiert (»Programmierende«, »Product Owner:in«, »Social Media Ma

nagement« etc.). Über diese Rolle sind die Mitarbeitenden Kreisen zugeordnet, wobei

eine Person mehrere Rollen haben und eine Rolle mehreren Kreisen angehören kann –
temporär oder langfristig. Der Netzwerkcharakter zeigt sich auch daran, dass es für den

Einzelnen eine Flexibilität gibt, was die Arbeitsaufgaben anbelangt: Es gibt regelmäßi

ge Treffen, wo alle sagen können, ob sie eine weitere Rolle übernehmen oder abgeben

wollen.

»Also, wir haben da halt auch keine Hierarchie dahinter in dem Sinne. Sondern, das
ist eben ein rein rollenbasiertes System. […] [I]m Endeffekt basiert alles bei uns auf
Kompetenz und Verantwortung und nicht in dem Sinne auf: ›Ja, die Person hat halt
das und das Sagen‹, sondern immer nur inhaltlich auf die entsprechenden Kompe

tenzbereiche bezogen.« (Programmierer1)

Zuletzt zeigt sich der Netzwerkcharakter daran, dass Mitarbeitende spontan ohne Ab

sprache mit einem Vorgesetzten via direkter Kommunikation Themen bearbeiten, z.B.

durch informelle Treffen oder Online-Chats.

Dabei ermöglicht die Softwarearchitektur eine getrennte Softwaregestaltung der

beiden Teile (Anmeldung der E-Autos und Quotenhandel) unabhängig voneinander

in den Kreisen. Es sind nur wenige Absprachen notwendig. Die beiden Teile verfügen

jeweils über Schnittstellen, um andere Softwarelösungen anzuschließen, welche die

Firma nicht selbst entwickelt hat (z.B. für die Rechnungslegung).

Neben Arbeitsteilung, Grundkoordination und Softwarearchitektur ist der Anwen

dungsbereich eine Ausgangsbedingung für die Softwaregestaltung. Er legt fest, für wel

chen Zweck die gestaltete Software eingesetzt wird. Im Anwendungsbereich der Soft

ware geht es um die Anmeldung von E-Autos für den Zertifikate-Handel. Da es sich um

eine reine Datenverarbeitung handelt, sind die Möglichkeiten der Softwaregestaltung

weitgehend und eine Automatisierung naheliegend. Die Grenzen liegen in dem Fall mehr

8. Formen und Folgen der Softwaregestaltung – die Empirie 181

in den fehlenden digitalen Schnittstellen zu Behörden und notwendigen Prüfschritten,
weil z.B. beim Lesen der Fahrzeugscheine noch Fehler auftreten können oder das START

UP ausgezahlte Beträge noch einmal manuell prüfen will. Für die Prüfung der Fahrzeug

scheine gibt es zwei bis drei 450-Euro-Kräfte als Anwendende. Weil STARTUP von An

fang an und auch weiterhin auf die Möglichkeiten der Softwareentwicklung setzt, ma

chen Anwendende nur das, was (noch) nicht die Software erledigt.

8.2.2. Zusammenfassung

8.2.2.1. Überblick über zentrale Unterschiede und ihre Folgen
Die Fallstudien haben gezeigt, dass die Softwaregestaltung unter ganz unterschiedli

chen soziotechnischen Konstellationen stattfindet. Zusammenfassend gibt dieser Teil
einen Überblick über die Unterschiede zwischen den Fallstudien, ihre Folgen für den Ar

beitsprozess der Softwaregestaltung, die Arbeit der Softwaregestaltenden und die sozio

technische Arbeitsgestaltung in den EVU.
In der untenstehenden Tabelle sind die Ausprägungen der vier Kategorien der

soziotechnischen Konstellation für jede Fallstudie zusammengefasst. Wie die Tabelle
zeigt, besteht die Arbeitsteilung bei INTERN1 und INTERN2 zwischen verschiedenen
Abteilungen (IT- und Fachbereiche innerhalb der EVU), bei KOOP1 und KOOP2 zwi

schen mehreren EVU und einem IT-DL, bei PAKET zwischen mehreren EVU und einer
Softwarefirma, bei KOOP3 zwischen mehreren EVU, dem IT-DL und der Software

firma und bei STARTUP innerhalb einer Organisation ohne Abteilungsgrenzen. Der
Anwendungsbereich unterscheidet sich zwischen Datenverarbeitung (DV), Steuerung
von Beschäftigten und Überwachung. Die Grundkoordination unterscheidet zwischen
Markt, Hierarchie und Netzwerk. Bei KOOP1, KOOP2 und PAKET besteht zwischen
EVU und IT-DL bzw. Softwarefirma eine Marktbeziehung, innerhalb der Organisa

tionen jedoch eine Hierarchie, die bei der Softwaregestaltung eine Rolle spielt. Die
Softwarearchitektur ist bei den ersten vier Fallstudien durch das SAP-ERP-System
geprägt. In diesen Fallstudien wird die SAP-Software erweitert und angepasst. Die
Ausprägung je Fall ist in der folgenden Tabelle aufgelistet:

Tabelle 16: Überblick soziotechnische Konstellation je Fall

Fall Schwerpunkt Anwen
dungsbereich Arbeitsteilung Grundkoordina

tion Softwarearchitektur

INTERN1
Auftragssteuerung
Instandhaltung (Steue
rung von Beschäftigten)

integriert: ein
Fachbereich und
IT-Abteilung

Hierarchie
individuell: Erweite
rung und Anpassung
ERP, mobile App

INTERN2 Arbeitsauftragsverar

beitung Netze (DV)
integriert: etliche
Fachbereiche und
IT-Abteilung

Hierarchie individuell: Anpas
sung ERP

182 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Fall
Schwerpunkt Anwen
dungsbereich

Arbeitsteilung
Grundkoordina

tion
Softwarearchitektur

KOOP1
Energiewirtschaftliche

Geschäftsprozesse (DV)
desintegriert:

EVU und IT-DL
Markt/

Hierarchie

kooperativer Stan
dard: Erweiterung und
An-passung ERP

KOOP2
Energiewirtschaftliche

Geschäftsprozesse (DV)
desintegriert:

EVU und IT-DL
Markt/

Hierarchie

prekärer Standard:
Erweiterung und
Anpassung ERP

PAKET
Energiewirtschaftliche

Geschäftsprozesse (DV)
desintegriert:

EVU und Soft
warefirma

Markt/

Hierarchie
Standard-ERP

KOOP3
Überwachung mittels

Sensoren

desintegriert:

EVU, IT-DL, Soft
warefirma

Netzwerk

Standard-IoT-Soft

ware, individuelle
Erweiterung

STARTUP

Anmeldung und Handel
CO2-Zertifikate E-Autos
(DV)

integriert: etliche
Rollen und Kreise Netzwerk

individuell: eigen
ständige Module
Anmeldung und Han
del

Die Unterschiede der soziotechnischen Konstellation haben Folgen für den 2. Teil des

Analyserahmens: den Arbeitsprozess der Softwaregestaltung. Soziotechnische Konstel

lation und Arbeitsprozess der Softwaregestaltung haben wiederum Folgen für die Teile

der Arbeitsgestaltung und die Arbeit der Softwaregestaltenden. Die wesentlichen typi

schen Zusammenhänge seien kurz aufgeführt und anhand von diametralen Typen zur

Unterscheidung der Fallstudien verdeutlicht.

1. Die Kategorien der soziotechnischen Konstellation von Arbeitsteilung, Grundkon

stellation und Architektur wirken sich auf den Arbeitsprozess der Softwaregestal
tung aus. Sie bestimmen, ob er dezentral in EVU oder zentralisiert Software gestal

tet.

2. Für die Beschäftigtengruppe der Softwaregestaltenden hängt von der soziotechni

schen Konstellation ab, inwiefern sie in einer reinen Netzwerk- oder in einer Ma

trixorganisation arbeiten.

3. Auf die soziotechnische Arbeitsgestaltung wirkt sich die soziotechnische Konstella

tion dahingehend aus, ob in den Fällen ein EVU unabhängig oder nur abhängig von

anderen Organisationen Software und damit die eigene Arbeit gestalten kann.

Die weiter unten folgenden Abschnitte zu den jeweiligen Teilen des Analyserahmens und

die Zusammenfassung des Kapitels gehen ausführlicher auf die diametralen Unterschei

dungstypen wie zentral – dezentral, Matrix – reines Netzwerk und unabhängig – abhän

gig und die Zusammenhänge ein.

8. Formen und Folgen der Softwaregestaltung – die Empirie 183

8.2.2.2. Ergebnisse des Fallvergleichs je Kategorie
Für jede Kategorie der soziotechnischen Konstellation zeigen die Ergebnisse des Fallver

gleichs, welche allgemeinen Aussagen sich treffen lassen.

Arbeitsteilung – wie die Wissensgrenzen verlaufen
Aus Sicht der Softwaregestaltung wird die Arbeitsteilung zwischen Anwendung und Pro

grammierung zur Wissensgrenze, die sie überwinden muss. Sie kann innerhalb oder
zwischen Firmen bestehen. Es gibt Fälle, in denen Anwendung und Programmierung
in einer Organisation, aber durch Bereichsgrenzen getrennt sind (INTERN1, INTERN2).
Es gibt Fälle, bei denen einzelne Organisationen interdisziplinär arbeiten und die Wis

sensgrenzen nur noch zwischen einzelnen Beschäftigten bestehen – im STARTUP, inner

halb von interdisziplinären Teams in der Softwarefirma von PAKET oder den IT-DL von
KOOP1/KOOP2. Was auffällt, ist, dass in den Fällen weniger die Anwendenden Program

mierungswissen haben, als vielmehr die Programmierenden über Fachwissen verfügen.
Die untenstehende Tabelle zeigt je Fallstudie die Arbeitsteilung zwischen Anwen

dung und Entwicklung (Programmierung und Gestaltung).

Tabelle 17: Arbeitsteilung zwischen Anwendung und Entwicklung

Fall Arbeitsteilung Anwendung – Gestaltung – Programmierung
INTERN1 eine Firma (Fachbereich und IT-Abteilung getrennt), einige Programmierende extern
INTERN2 eine Firma (Fachbereiche und IT-Abteilung getrennt), einige Programmierende extern

KOOP1 verteilt auf IT-DL (Programmierung, Gestaltung, BPO) und EVU (Anwendung, Gestal
tung), wenige EVU mit eigenen Programmierenden

KOOP2 innerhalb IT-DL (Programmierung, Gestaltung, BPO) und EVU (Anwendung, Gestal
tung), wenige EVU mit eigenen Programmierenden

PAKET Softwarefirma programmiert, gestaltet und wendet an (BPO), EVU wenden an und
gestalten (nehmen Einstellungen am Standard vor)

KOOP3 Softwarefirma programmiert Kern und IT-DL gestaltet mit, IT-DL und EVU programmie

ren und gestalten Erweiterungen; Anwendung durch EVU
STARTUP eine Firma, interdisziplinäre Kreise

Grundkoordination – Ausgangspunkt von Kommunikation und Kooperation
Von der Grundkoordination ausgehend (egal welche vorliegt) müssen die Organisatio

nen der Fallstudien den Arbeitsprozess der Softwaregestaltung etablieren. Als Formen
der Grundkoordinationen zwischen Anwendung und Programmierung zeigen sich in
den Fällen Markt, Hierarchie oder Netzwerk. Wobei Letzteres besser zur Softwaregestal

tung passt, weil Wissensgrenzen geringer sind und es weniger Hürden bei der Zusam

menarbeit gibt. Kontrollelemente wie IT-Budget, Service Level Agreements (SLA) zwi

schen EVU und IT-DL, Projektverträge innerhalb eines EVU oder andere Zielvorgaben
können die Folgen von Hierarchien oder Märkten auf die Softwaregestaltung verstärken

184 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

oder, wie im Fall von KOOP3, so eine geringe Rolle spielen, dass trotz Marktbeziehung

der Typ der Netzwerk-Grundkoordination vorliegt.

Neben diesen Kontrollelementen kann innerhalb der EVU die IT-Abteilung der EVU

die Zusammenarbeit zwischen Anwendung und Programmierung prägen. Sie spielen in
den Fallstudien zwar eine Rolle. Insgesamt sind in den Fällen die IT-Abteilungen aber

keine Hürde bei der Softwaregestaltung. Sie sind für den Betrieb der IT-Systeme zu

ständig, stellen Programmierende zur Verfügung oder koordinieren die als Externe ein

gebundenen Programmierenden. Vor allem bei größeren EVU koordinieren sie die Soft

waregestaltung.

Tabelle 18: Grundkoordination je Fall und die Rolle der IT-Abteilung

 Fall Grundkoordination IT-Abteilung EVU

INTERN1
Hierarchie: interne Matrixorga
nisation

stellt Programmierende und IT-Infrastruktur zur Ver
fügung

INTERN2

Hierarchie: interne Matrixorga
nisation

stellt Programmierende und IT-Infrastruktur zur Ver
fügung, verteilte IT-Teams für Softwaregestaltung in
den Fachbereichen

Markt: zwischen EVU und IT-DL
KOOP1 Hierarchie: Matrixorganisation

innerhalb EVU und IT-DL

wenn vorhanden (größere EVU): organisieren Anfor
derungsaufnahme, manche machen eigene IT-Projek
te

Markt: zwischen EVU und IT-DL
KOOP2 Hierarchie: Matrixorganisation

innerhalb EVU und IT-DL

wenn vorhanden (größere EVU): in einem EVU An
forderungsaufnahme organisieren; in anderem EVU
initiiert sie IT-Projekte in Fachbereichen

Markt: Softwarefirma – EVU
PAKET Hierarchie: innerhalb Software

firma und EVU

FB der EVU arbeiten direkt mit SF zusammen; in ei
nem EVU entscheidet FB unabhängig von IT-Abteilung
über Softwareauswahl

KOOP3
Netzwerk: Ko-Produktion IoT Ansprechpersonen bei Implementierung IoT für Inte

gration IoT-Software in bestehende IT-Landschaft
STARTUP Netzwerk: rollenbasierte Kreise keine

Softwarearchitektur – Grundstruktur der Arbeitsteilung in Organisationen
und Organisationsnetzwerken

Die Softwarearchitektur hat sich in allen Fällen als zentral dafür erwiesen, wie sich die

Arbeit in den Gestaltungsnetzwerken verteilt. Erstens ist sie zentral wegen der Auftei

lung der Software in z.B. Module, mit der eine Spezialisierung der Programmierenden

einhergeht und die darüber entscheidet, was ein EVU außerhalb von Softwarefirmen wie

SAP, von PAKET oder der IoT-Softwarefirma von KOOP3 gestalten kann. Dabei ist die

Aufteilung der Module, Softwareteile oder Schnittstellen bereits im Vorhinein gegeben.

Die gegebene Architektur führt die softwaregestaltenden Organisationen fort. Zweitens

schafft die Architektur Abhängigkeiten, wenn sich mehrere Teams, Abteilungen oder Or

ganisationen auf einen Standard einigen müssen. In einigen Fallstudien ist es Teil der

8. Formen und Folgen der Softwaregestaltung – die Empirie 185

Softwaregestaltung zu verhandeln, welche Anforderung in einen Standard einfließt und
welche individuell umgesetzt wird.

Die Architektur prägt erstens, wo und wer Software gestalten und programmieren
kann und wie sich die Programmierenden spezialisieren. Alle Fälle zeigen, dass die je

weiligen Programmierenden(teams) auf bestimmte Softwareteile spezialisiert sind. Bei
KOOP3 will die Softwarefirma die technischen Voraussetzungen schaffen, damit es mög

lichst einfach ist, durch Schnittstellen weitere Module anzuschließen. Solche individuel

len Module kann dann z.B. das IT-DL unabhängig von der IoT-Softwarefirma program

mieren. Bei INTERN1 sind die Programmierenden entweder auf die mobile Lösung oder
das Instandhaltungsmodul der ERP-Software spezialisiert, bei INTERN2 auf das Modul
für die Auftragsverwaltung. Im Fall STARTUP entwickeln unterschiedliche Programmie

rende jeweils die Module für Anmeldung oder Handel von CO2-Zertifikaten.
Bei den Organisationen, die größere ERP-Pakete (mit)gestalten, wie die IT-DL von

KOOP1 und KOOP2 und die Softwarefirma von PAKET, verteilen sich die Programmie

renden auf fachlich aufgeteilte Softwareteile für energiewirtschaftliche Anwendungs

bereiche wie Marktkommunikation, Energiemengenbilanzierung, Abrechnung oder In

standhaltung. In diesen Fällen existieren auf diese Bereiche spezialisierte, interdiszipli

näre Teams. Dort programmiert und gestaltet ein Team aus Fach- und Softwarespezia

list:innen ein Modul eigenständig.
Die ersten vier Fälle haben das gleiche ERP-System von SAP (Näheres zur Entwick

lungsplattform unter 4.3). Für alle EVU, die dessen individuelle Erweiterungsmöglich

keiten nutzen, bedeutet das, dass zur betrieblichen Realität nicht einfach nur die An

wendung von Software gehört, sondern auch eine Test- und Entwicklungsumgebung
existiert. So hat die Architektur, die individuelle Erweiterungen zulässt, Folgen für die
Anwendenden: Sie können und/oder müssen die kontinuierlichen Softwareänderungen
testen.

Die Softwarearchitektur prägt zweitens die Softwaregestaltung dadurch, dass sie
vorgibt, was individuell gestaltbar ist und was nicht. Gestalten Organisationen gemein

sam einen Standard, müssen sie sich im Arbeitsprozess der Softwaregestaltung darüber
verständigen, was Teil des Standards wird. Dann spiegeln sich Kommunikations

strukturen und Softwarearchitektur nicht. Ein Team programmiert den gemeinsamen
Standard, und die Softwaregestaltung sorgt dafür, dass die Beteiligten über Architek

turgrenzen hinweg kommunizieren (das können auch mehrere Organisationen sein).
Wenn eine Organisation wie eine Softwarefirma den Standard vorgibt oder ein EVU eine
Software individuell gestaltet, ist eine solche Abstimmung zwischen Organisationen
nicht Teil der Softwaregestaltung.

In der Mehrzahl der EVU ist die energiewirtschaftliche Arbeitsteilung nach wie vor
mehr an fachlichen Themen als an der Software-Architektur orientiert. Alle FB arbeiten
mit den für sie relevanten Teilen der ERP-Software, ohne sich mit anderen abstimmen zu
müssen. Es gibt aber EVU in einigen Fallstudien, die Software über Architekturgrenzen
hinweg gestalten. Ob bei INTERN2 oder KOOP1: Durch fachbereichs- oder EVU-über

greifende Anforderungsrunden entscheiden verteilte fachliche Expert:innen über einen
zentral durch ein Team an Programmierenden entwickelten Softwareteil. Die Kommu

nikationswege sind damit auf ein Netzwerk von Organisationen und Teams verteilt, die
allesamt zu einem zentralen, spezialisierten Programmierendenteam führen. Geringer

186 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ist der Kommunikationsaufwand, wenn wie bei PAKET eine Softwarefirma einen Stan

dard gestaltet. Das jeweilige zuständige Team der Softwarefirma gestaltet und program

miert einen Teil der Software, und damit konzentriert sich dort die Kommunikation.

Die Ergebnisse fasst der Schluss des Kapitels noch einmal zusammen und stellt Be

zug zur Literatur aus dem 6. Kapitel her.

Anwendungsbereich – Ausgangspunkt und Grenze für den Beitrag von Software zur Arbeit
Welche allgemeinen Aussagen lassen sich über den Anwendungsbereich fällen? Je Fall

studie ist es vom Anwendungsbereich abhängig, wie nützlich Software für diesen sein

kann. Das betrifft den Anteil der Datenverarbeitung im Anwendungsbereich und ob die

Softwaregestaltung einen gesamten Prozess gestaltet oder nur Teile davon. Von beidem

hängt ab, was der Kern der Rationalisierungsmöglichkeit ist und wie komplex die abzu

bildenden Prozesse und Wissensdomänen sind.

Letztendlich lassen sich die Anwendungsbereiche der Fallstudien unterscheiden, in

wieweit sie sich in Software abbilden lassen. Wenn sich der gesamte Anwendungsbe

reich in Software übersetzen lässt, wie dies bei der Datenverarbeitung der Fall ist, kann

die Softwaregestaltung mehr leisten, als wenn nur ein Teil des Anwendungsbereichs in
Software übersetzt werden kann, wie dies z.B. in der Instandhaltung der Fall ist. Die Ar

beit der Monteur:innen kann Software zwar steuern. Die Arbeit an den Netzen kann die

Software aber nicht erledigen. Somit unterscheiden sich die Fallstudien darin, ob Soft

ware a) Arbeitende steuert und informiert oder b) Arbeitende ersetzt (Automatisierung).

Fälle von c) Steuerung von Maschinen kommen in keiner der Fallstudien vor. Vielmehr

geht es in den meisten Fallstudien um die Verarbeitung von Daten, z.B. Buchhaltung,

Datenaustausch mit anderen EUVs oder Rechnungsstellung. Von dem Beitrag der Soft

ware zur Arbeit, d.h. wie sehr die Möglichkeiten der Softwareentwicklung genutzt wer

den können, hängt der primäre Fokus der Rationalisierung ab. Wenn eine hohe Automa

tisierung mithilfe von Software möglich ist, hat das für die Anwendung zur Folge, dass

die Anwendenden meist nur nicht-automatisierbare Restfälle bearbeiten müssen. Geht

es in erster Linie um die Steuerung der Arbeitenden, bedeutet dies für die Anwendung,

dass die Anwendenden Teil eines digitalen Prozesses werden und dieser ihre Arbeit steu

ert und/oder sie für diesen Input liefern müssen.

Tabelle 19: Anwendungsbereich: Anteil der Datenverarbeitung, Fokus Rationalisierung, spezifi
sche Folgen für Anwendung

Fall Bereich
Anteil Daten-
verarbeitung

Primärer Fokus
Rationalisierung

Spezifische Folgen
für Anwendung

Alle
energiewirtschaftliche

(Geschäfts-)Prozesse

hoch Automatisierung Restfallbearbeitung

INTERN1
Instandhaltung gering Steuerung Fernsteuerung, Pro

zessintegration

KOOP2 Kund:innenservice, IoT gering Information Prozessintegration

8. Formen und Folgen der Softwaregestaltung – die Empirie 187

Der Anwendungsbereich bestimmt nicht nur, wie weit die Möglichkeiten der Soft

waregestaltung gehen und was der Fokus der Rationalisierung ist. Er legt zusätzlich die
Prozesstiefe fest und damit, wie lang die Prozesskette ist, welche die Softwaregestaltung
betreffen kann. In den Fallstudien geht mit der Prozesstiefe immer auch eine zunehmen

de Vielfalt der Wissensdomänen einher. Vor allem bei INTERN2 ist das ein Thema, weil
mehrere Fachbereiche zusammenarbeiten müssen und ein höherer Koordinationsauf

wand besteht. Dieser ist bei STARTUP deutlich geringer. KOOP3 bildet keinen Arbeits

prozess ab.

Tabelle 20: Prozesstiefe und Wissensdomänen je Fall

Fall Prozesstiefe Energiewirtschaftliche Wissensdomänen

INTERN1
2 Prozessteile (Instandhal
tung und Auftragsverar
beitung)

verschiedene Energiesparten und Netzgebiete

INTERN2 1 Prozessteil (Softwaremo

dul »Work-Management«)
verschiedene Fachbereiche, ein Thema: Verwaltung von
Arbeitsaufgaben für den Netzanschluss

KOOP1 viele Prozessteile viele und verschiedene Fachbereiche auf mehrere EVU ver
teilt

KOOP2 viele Prozessteile viele und verschiedene Fachbereiche auf mehrere EVU ver
teilt

PAKET viele Prozessteile viele und verschiedene Fachbereiche auf viele EVU verteilt

KOOP3 keine prozessabbildende
Software

diverse Anwendungsfälle

STARTUP
2 Prozessteile (Anmel

dung und Übergabe an
Händler)

THG-Quote (Emissionshandel E-Mobilität)

8.3. Formen des soziotechnischen Arbeitsprozesses der Softwaregestaltung

Der soziotechnische Arbeitsprozess der Softwaregestaltung ist jener Teil des Analyserah

mens, der die Umsetzung der Softwaregestaltung in den Blick nimmt. Die Analyse der
Interviews ergab fünf Kategorien, die zentral für diesen Arbeitsprozess zwischen An

wendung und Programmierung sind. Mit ihrer Hilfe zeigt dieser Abschnitt, wie Organi

sationen oder Organisationsnetzwerke im Arbeitsprozess die Arbeitskraft transformie

ren, um die Möglichkeiten der Softwaregestaltung zu nutzen – ob für eine Individual-
oder für eine Standardsoftware.

8.3.1. Arbeitsprozess der Softwaregestaltung: zwischen zentral und dezentral

Beim Arbeitsprozess der Softwaregestaltung lassen sich die Fallstudien danach unter

scheiden, ob die Softwaregestaltung eher dezentral (innerhalb der EVU: ob als Projekte,
in Abteilungen oder Teams) oder zentralisiert (in einer Softwarefirma oder einem IT-DL)

188 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

passiert. Beide Extreme hängen mit der Arbeitsteilung, der Grundkoordination und der

Architektur der soziotechnischen Konstellation zusammen.

Bei dezentraler Softwaregestaltung ist aufgrund einer Arbeitsteilung, bei der die

Softwaregestaltung Teil der anwendenden Organisation (EVU) ist, der Arbeitsprozess

darauf ausgerichtet, Anforderungen aufzunehmen, diese zu sammeln und aufzuberei

ten und direkt zwischen Anwendenden, Gestaltenden und Programmierenden zu kom

munizieren. Es können sich langfristige Beziehungen, eine gemeinsame Sprache und ei

ne gemeinsame Wissensbasis etablieren. Entsprechend helfen die digitalen Werkzeuge

dabei, direkten Input der Beteiligten zu organisieren. Der softwaretechnische Zuschnitt

ist individuell.

Bei einer zentralisierten Softwaregestaltung ist aufgrund einer Arbeitsteilung, bei

der sich die EVU auf die Softwareanwendung konzentrieren, der Arbeitsprozess dar

auf ausgerichtet, Anforderungen verschiedener Organisationseinheiten zu koordinie

ren, sie in Gremien zu verhandeln und über stärker formalisierte Abläufe aufzunehmen.

Dabei stehen Anforderungen im Fokus, welche für die gesamte Branche oder zumin

dest für mehrere EVU relevant sind. Es ist schwieriger, kooperative Beziehungen zu eta

blieren, weil Spannungen bestehen: zwischen verschiedenen Marktpersonen mit unter

schiedlichen Interessen oder weil Hierarchien oder Führungskräfte mit unterschiedli

chen Interessen und Kompetenzbereichen beteiligt sind. Erwartungen sind abzuglei

chen und Konflikte zu lösen. Die digitalen Werkzeuge helfen u.a. durch die Schaffung

von Transparenz bei der Koordination von Handelnden, die über mehrere Organisati

onseinheiten verteilt sind. Der softwaretechnische Zuschnitt ist ein Standard.

Tabelle 21: Idealtypen zentraler und dezentraler Arbeitsprozess der Softwaregestaltung

Typ

Typische

Erwartungen

an die Rollen
Typisch für den Ablauf

Typischer

Nutzen

Werkzeuge

Typische

kommunikative

Beziehungen

Software-
techni

scher

Zuschnitt

Zentral Koordination Gremien für Verhandlun
gen, Erwartungsabgleich,
Konfliktlösung

Transparenz,

Abstimmun

gen

Spannungen

ausgleichen,

bürokratisch

Standard

Dezentral Anforderungs-
aufnahme

Anforderungen direkt sam

meln und ausarbeiten
direkter Input kooperativ, direkt,

gemeinsame

Sprache

individuell

Inwiefern eine Zuordnung zu einem aus dem empirischen Material der Interviews

entwickelten Idealtyp so einfach möglich ist, zeigen die Fallstudien selbst und diskutiert

die Zusammenfassung am Schluss dieses Abschnitts zum Arbeitsprozess der Software

gestaltung.

8. Formen und Folgen der Softwaregestaltung – die Empirie 189

8.3.2. Darstellung der Fallstudien

Die folgenden sieben Fallstudien sind anhand der Kategorien Rollen, Ablauf, kommuni

kative Beziehungen, digitale Werkzeuge und softwaretechnischer Zuschnitt dargestellt.
Sie vertiefen und ergänzen die im obigen Überblick aufgelisteten Unterschiede und wie
die Organisationen die Möglichkeiten zwischen Individual- und Standardsoftwarege

staltung nutzen.

8.3.2.1. INTERN1: erweitertes Scrum, Gestaltungsnetzwerke,
langfristige Beziehungen, dezentral

In dem Fall liegt ein dezentraler Arbeitsprozess der Softwaregestaltung für eine indivi

duelle Software innerhalb eines EVU vor. Um einen solchen zu ermöglichen und um An

forderungen aufzunehmen, setzt das EVU Methoden wie Scrum, Resonanzgruppen und
Workshops ein. Indem die kommunikativen Beziehungen offen, direkt, langfristig und
tief verankert im Fachbereich bzw. nah an den Monteur:innen dran sind, erleichtern sie
den Austausch quer zu den Abteilungsgrenzen und Hierarchien. Neben einem Ticket

system wird ein Chat-Kanal verwendet, der den dezentralen Input von Anwendenden
für Anforderungen ohne bürokratische Hindernisse erlaubt.

Rollen: Product Owner:innen, Anforderungsmanagende, Key User:innen
Wie für einen dezentralen Arbeitsprozess der Softwaregestaltung typisch, besteht an die
Rollen vor allem die Erwartung, Anforderungen aufzunehmen, und zwar sehr nah an
und direkt mit den Anwendenden im Fachbereich. Dafür gibt es in dem Fall gleich meh

rere Rollen: So bearbeitet selbst der Haupt-Product-Owner (neben seiner Leitungsfunk

tion) Anforderungen. Daneben gibt es noch drei weitere Product Owner:innen, die für
einzelne Funktionalitäten zuständig sind (wie z.B. für die mobile App der Monteur:in

nen), und noch fünf bis sechs spezialisierte Anforderungsmanagende aus dem Fachbe

reich (Hochspannung, Nieder-/Mittelspannung, Gas, Wasser, Strom). Eine befragte An

forderungsmanagerin hat viele Jour fixes mit verschiedenen Bereichen (ob IT-, Fachab

teilungen oder Teams). Sie beschreibt ihre Arbeit so:

»Ich schaue mir die Prozesse an und schaue mir an: Wo haben wir Verbesserungs
potenzial, wo wir mit Digitalisierung irgendwas verbessern können? Ich nehme aber
auch Anforderungen auf von Anwendern, wo die einfach sagen: Hier habe ich ein
Stück Papier, das will ich künftig nicht mehr ausfüllen können. Könnt ihr das digita
lisieren? Oder: Hier haben wir einen Prozess, da muss ich zehnmal telefonieren, das
passt mir nicht. Und dann schaue ich mir das an. Schaue noch nach rechts und links,
wie es andere machen und dass wir da irgendwie Synergieeffekte vielleicht gewinnen
können. Und wir überlegen uns dann Lösungen. Ich schreib dann eine Story8, tausche
mich mit dem PO9 […] oder mit den Ansprechpartnern dort gezielt aus – je nachdem
ob backend10 oder frontend. Und dann wird es in eine Story gegossen, priorisiert und

8 Anderes Wort für Anforderung, meist im Scrum-Setting so bezeichnet.
9 Product Owner
10 Datenzugriffsschicht einer Software, im Gegensatz zu Präsentationsschicht (Frontend) mit dem

Quellcode zur Darstellung der Daten.

190 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

umgesetzt und von mir dann getestet und kommuniziert nach draußen: Ab jetzt ha
ben wir den und den Prozess. Das mache ich dann auch noch. […] Ich telefoniere sehr
viel.« (Anforderungsmanagerin)

Als letzte Stufe der Softwaregestaltung zwischen Anwendung und Programmierung

existieren Monteur:innen, welche zusätzlich zu ihrer Montagearbeit als Key User:innen

agieren. Sie sind Sprecher:innen, Multiplikator:innen und technischer Support. Sie

installieren z.B. mobile Apps.

Nicht nur die vielen unterschiedlichen Rollen innerhalb des Fachbereichs der

Instandhaltung zeigen, dass die Organisation die Ausgestaltung der Rollen für eine de

zentrale Softwaregestaltung situativ anpasst. Die situative Anpassung der Rollen zeigt

sich in diesem Fall auch an der Rolle des Scrum Masters. Diese übernimmt, anders als

in der Scrum-Methode vorgesehen, eine Führungskraft (ein Teamleiter). Er koordiniert

die Aufgaben und kümmert sich um Schwierigkeiten im Ablauf.

Ablauf: Scrum, Resonanzgruppen, Workshops

Der Ablauf besteht primär, wie für einen dezentralen Arbeitsprozess der Softwaregestal

tung typisch, im Ausarbeiten und Sammeln von Anforderungen, wobei das in diesem

Fall besonders feedback-intensiv passiert. Grundlage dafür ist Scrum. Das EVU setzt

die Methode vollumfänglich um, wozu ein iteratives Vorgehen gehört. Neben den typi

schen Rollen und Artefakten (siehe 5.2.4) ist der Ablauf darauf ausgelegt, immer wieder

zwischen den Beteiligten dezentral im EVU ein gegenseitiges Verständnis zu sichern,

Erwartungen abzugleichen und Wissen auszutauschen, um die Anforderungen aufzu

nehmen. Resonanzgruppen waren vor allem zu Beginn des Projektes und bei größeren

Umsetzungsideen Teil des Ablaufs. Dort sagen z.B. Programmierende, wie sie die Anfor

derung verstanden haben. Nach ein paar Wochen stellen sie die Änderungen den Anwen

denden vor und fragen, ob sie den Erwartungen entsprechen. Der Austausch hat sich mit

der Zeit immer mehr zu den Key User:innen hin verlagert. Unter anderem in Workshops

erarbeiten die Anforderungsmanagenden mit den Key User:innen Anforderungen.

Kommunikative Beziehungen: zugänglich, offen, interdisziplinär und gut vernetzt
Der Fall zeigt die für einen dezentralen Arbeitsprozess der Softwaregestaltungen typi

schen direkten und langfristigen Beziehungen und eine gemeinsame Sprache. Anders

als in anderen Organisationen stellen für Mitarbeitende des EVU die typischen Kom

munikationshemmnisse interner Gestaltungsprojekte wie Team-, Abteilungssilos oder

Hierarchien keine Hindernisse dar. So existieren zusätzlich zu den Resonanzgruppen

oder Workshops persönliche Beziehungen vom IT-Team zum FB und es entsteht eine

gemeinsame Sprache. Die Programmierenden reden direkt mit Anwendenden, vor al

lem, wenn sie feststellen, dass sie über eine Story zu wenig wissen.

»Aber ja, wir kommen gut an Informationen ran. Wir müssen nicht irgendwie ewig
über irgendwelche Chefs gehen und sagen: Dürfen wir mit dem so oder so sprechen.
Das ist sehr angenehm, muss ich sagen.« (Programmierer)

Der befragte Architekt beschreibt eine Offenheit im Austausch:

8. Formen und Folgen der Softwaregestaltung – die Empirie 191

»Da ist, wie gesagt, eine große Offenheit der Menschen. Insofern kann das Wissen
frei fließen. […] Ich hatte den Eindruck, dass wenn man fragt, man immer Antworten
kriegt. Halt so gut, wie der Gegenüber das weiß, sowohl auf Fachbereichs- als auch
auf IT-Seite, als auch bei schwierigen Themen, die man vielleicht erst mal überhaupt
fassen muss, damit man darüber sprechen kann.« (Architekt)

Die Anforderungsmanagerin hat ein internes Netzwerk, das ihr direkte Gespräche un

abhängig von den hierarchischen Strukturen ermöglicht. Sie fragt nach, wenn sie etwas
nicht versteht. Sie bekommt mit, was andere Abteilungen machen, und kann Beschäf

tigte zusammenbringen, bei denen sie feststellt, dass sie am gleichen Thema arbeiten.
Die richtige Sprache zu sprechen, d.h. die richtige Terminologie zu verwenden, ist eine
Qualifikation, die von der Anforderungsmanagerin mit der Zeit erworben wurde:

»Ich musste IT-Deutsch lernen. Wenn ich Storys schreibe, dann muss ich dies so schrei
ben, dass die Softwareentwicklung versteht, obwohl ich aus der Anwender-Ecke ge
kommen. Ja, ich muss mich da einfach in so eine IT-Denke reinschrauben.« (Anforde
rungsmanagerin)

Der Fachbereich hat aus Sicht des befragten Programmierers dazugelernt, kann besser
formulieren, was er will. Auch die Fehlermeldungen, die bei Tests aufgenommen wer

den, sind qualifizierter und unterstützen so die Fehleranalyse. Es wird nicht nur ge

schrieben »es tut nicht« (Teamleiter IT).

Digitale Werkzeuge: dezentraler Input dank Ticketsystem und Chat-Kanal
In dem Fall geht das EVU über die für digitale Werkzeuge typische Verwendung in dezen

tralen Arbeitsprozessen der Softwaregestaltung hinaus. Es existiert nicht nur ein Ticket

system, das die auf verschiedene Abteilungen verteilten Mitarbeitenden vernetzt und ih

nen ermöglicht, direkt und dezentral Anforderungen aufnehmen zu können. Es existiert
zusätzlich ein Microsoft-Teams-Kanal, den Key User:innen und Anforderungsmanagen

de des Fachbereichs verwenden. Er hat ca. 110 Mitglieder. Dort können die Teilnehmen

den Informationen austauschen, Anforderungen und Probleme besprechen. Dadurch ist
eine offene, hierarchieunabhängige und direkte Kommunikation möglich. Die verwen

deten Werkzeuge dienen damit primär als Infrastruktur für die Zusammenarbeit, um
die Kommunikation zu ermöglichen, zu dokumentieren und zu koordinieren, und we

niger zur Standardisierung oder Formalisierung.

Softwaretechnischer Zuschnitt: individuelle Anforderungen der Anwendenden
Der für einen dezentralen Arbeitsprozess der Softwaregestaltung typische individuel

le softwaretechnische Zuschnitt zeigt sich nicht nur darin, dass ein EVU eine Software
allein für sich gestaltet. Er zeigt sich auch darin, dass die Softwaregestaltung die indivi

duelle Sicht der Anwendenden des EVU auf zweifache Weise berücksichtigt.
Erstens verhandelt der Arbeitsprozess die Priorisierung von Anforderungen des Ma

nagements und der Anwendenden. Das Management trägt seine Anforderungen – eini

ge Befragte sprechen von Unternehmensanforderungen – an den Haupt-Product-Ow

ner heran. Weil die Anforderungsmanagenden näher an den Monteur:innen dran sind,

192 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

bringen sie entsprechend mehr Anforderungen der Anwendenden ein und votieren für

deren Umsetzung. Auch wenn letztendlich der Haupt-Product-Owner über die Priorität

von Unternehmens- oder Anwendenden-Anforderungen entscheidet, fließen individu

elle Anforderungen der Anwendenden ein.

Zweitens berücksichtigt die Softwaregestaltung die Begrifflichkeiten aus dem Ar

beitsalltag der Monteur:innen. Die unterschiedlichen Netzbereiche verhandeln einen

Konsens, welche Begriffe auf der Softwareoberfläche auftauchen. Innerhalb des Quell

codes der Software verwenden Programmierende Begrifflichkeiten aus dem Arbeitsfeld

der Monteur:innen des EVU, um sprachliche Hürden zu verringern11.

8.3.2.2. INTERN2: gemeinsame Anforderungsrunde
mehrerer Fachbereiche, dezentral

In dem Fall liegt ein dezentraler Arbeitsprozess der Softwaregestaltung für eine indi

viduelle Software innerhalb eines EVU vor. Die Besonderheit liegt darin, dass hier, an

ders als bei INTERN1, mehrere Fachbereiche an der Softwaregestaltung beteiligt sind.

Repräsentant:innen aus den Fachbereichen verständigen sich zentralisiert in einer An

forderungsrunde darüber, wie sie die Software gestalten. Aufgrund der fachbereichs

übergreifenden Softwaregestaltung sind die kommunikativen Beziehungen durch hier

archische Hürden gehemmt, auf kooperative Fachbereiche angewiesen und wegen der

zentralen Anforderungsrunde mit bürokratischen Abläufen konfrontiert. Die beteiligten

Fachbereiche verwenden unterschiedliche Ticketsysteme, die aber teilweise dezentralen

Input ermöglichen. Über den softwaretechnischen Zuschnitt entscheidet die Anforde

rungsrunde, so dass sich trotz individueller Softwaregestaltung im EVU die individuel

len Wünsche einzelner Fachbereiche nicht immer durchsetzen.

Rollen: Scrum Master, Product Owner, Anforderungsmanager

Wie für einen dezentralen Arbeitsprozess der Softwaregestaltung typisch, besteht an die

Rollen vor allem die Erwartung, Anforderungen aufzunehmen, und zwar sehr nah an

und direkt mit den Anwendenden in den Fachbereichen.

In diesem Fall verteilen sich die Rollen auf verschiedene Fachbereiche. So ist z.B. der

befragte Product Owner zu 100 % in dem dezentralen IT-Team des Fachbereichs Netzan

schluss. Seine Aufgabe ist es, die Anwendungsprozesse inkl. Software und sein IT-Team

weiterzuentwickeln, Anforderungen aufzunehmen und an der Anforderungsrunde teil

zunehmen. Dann gibt es noch die Anforderungsmanagerin aus der Abteilung Zentral

bereich. Sie arbeitet zusammen mit der IT-Abteilung Fachkonzepte zu einzelnen Tickets

aus und testet die Umsetzungen. Wie auch bei vielen anderen Fallstudien gibt es die Rolle

Key User:in, die den Anwendenden am nächsten ist. Wobei in diesem Fall die Möglich

keit besteht, dass alle Anwendenden sich einbringen. Der befragte Product Owner aus

der dezentralen IT im Fachbereich Netzanschluss schätzt, dass für das reguläre Anfor

11 Das nennt man Domain-Driven Design: Die Programmierung berücksichtigt die Wissensdomä

ne des Anwendungsbereichs, z.B. indem Fachbegriffe aus dem Anwendungsbereich in den Quell
code einfließen. Dadurch wird die Kommunikation zwischen Programmierenden und Anwenden
den einfacher, weil sie die gleichen Begriffe verwenden.

8. Formen und Folgen der Softwaregestaltung – die Empirie 193

derungsmanagement 80 % der 300 Anwendenden mindestens einmal an einem Jour fixe
teilnehmen.

Der Scrum Master hat die Verantwortung für die Abstimmungsrunde der Fachberei

che: dass und wie sie abläuft und optimiert werden kann. Dabei nimmt er manchmal die
Rolle des Mediators ein, wie es für die Rolle Scrum Master:in üblich ist.

»[N]atürlich gibt es auch Interessenskonflikte und da muss man natürlich schauen,
dass man auf den größten gemeinsamen Nenner kommt oder im Idealfall vielleicht
sogar auf eine geniale Idee, die dann alle Interessen unter einen Hut bringt. Aber der
Input kommt von allen Seiten, genau. Die Moderation oder auch Mediation, falls er
forderlich, die liegt dann schon bei mir.« (Scrum Master)

Dabei fällt stärker als bei INTERN1 auf, was allgemein für die Softwaregestaltung typisch
ist: Die Ausgestaltung der Rollen erfolgt situativ angepasst, ändert sich im Zeitverlauf
und anders als bspw. in Scrum vorgesehen, sind sie nicht immer klar spezialisiert. So
koordiniert der Scrum Master zusätzlich die Beauftragungen und die Auslastung der
externen Programmierenden und optimiert die Arbeit des programmierenden Teams.
Letztendlich ist er sich gar nicht sicher, was er ist: IT-Koordinator, Scrum Master, agi

ler Coach oder Projektleiter, weil er sich nicht in einem reinen Scrum-Setting bewegt
und seine Rolle nicht klar geschnitten ist. Auch die befragte Anforderungsmanagerin
ist nicht nur mit Anforderungen beschäftigt, sondern nimmt auch Einstellungen an der
ERP-Software vor, macht Datenbereinigungen und -auswertungen.

Im Unterschied zu INTERN1 übernehmen aufgrund der zentralen Anforderungs

runde der Product Owner oder die Anforderungsmanagerin auch koordinative Aufga

ben. Sie schreiben Anforderungen nicht nur selbst, sondern sammeln sie auch und be

reiten sie auf.

Ablauf: Anforderungsrunde, Refinement-Termine, IT-Teams in Fachbereichen, Tests
Der Ablauf besteht primär, wie für einen dezentralen Arbeitsprozess der Softwaregestal

tung typisch, im Ausarbeiten und Sammeln von Anforderungen der Anwendenden. Wo

bei in diesem Fall aufgrund der zentralen Anforderungsrunde auch Verhandlungen Teil
des Ablaufs sind. Aus Sicht des Scrum Masters liegt kein reines Scrum vor, sondern sie
verwenden Bestandteile aus unterschiedlichen Ansätzen.

Wie dezentral die Softwaregestaltung ist, zeigt sich daran, dass der Arbeitsprozess
Konzepte iterativ mit Anwendenden erarbeitet. Programmierende, Gestaltende und
Anwendende arbeiten eng zusammen, was sich an kontinuierlichen Feedbackschleifen
zeigt. So bringen Fachbereiche Vorkonzepte in die Anforderungsrunde ein, über die
sich der Fachbereich und die Programmierenden bereits direkt ausgetauscht haben.
Dadurch ist die eingebrachte Anforderung näher an der späteren Umsetzung und es
gibt kein Hin und Her mehr zwischen Anwendung und Programmierung, weil die
Programmierenden nicht erst in der Umsetzungs- bzw. Sprintphase mit einem Konzept
konfrontiert sind, sondern vorher bereits nachfragen können. Größere Fachbereiche
haben dafür ein- oder zweimal die Woche feste Refinement-Termine. Der Scrum Master
sitzt meistens auch in den Refinement-Terminen, leitet sie und bekommt so mit, was
dort für Themen auftauchen. Kleinere Fachbereiche können in vorgegebenen Zeitfens

194 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

tern Termine mit den Programmierenden vereinbaren. Bei kleineren Anforderungen

ist ein direkter Austausch zwischen Fachbereich und Programmierenden möglich, um

nachzufragen, ob ein Konzept so in Ordnung ist. Die Schleifen zwischen Fachbereich

und Programmierung gehen so lange, bis der Reifegrad passt. Dann wird die Anforde

rung Teil eines Sprints. Neben diesen Feedbackschleifen bei der Konzeptionierung gibt

es eine zweite Feedbackmöglichkeit durch Tests. Wenn ein Fachbereich Fehler entdeckt

oder mit einer Umsetzung unzufrieden ist, geht das entsprechende Ticket zurück an die

Programmierung.

Die dezentrale Softwaregestaltung zeigt sich zudem durch einen Ablauf, der aktiv

und direkt auf Anwendende in den Fachbereichen zugeht. So nutzt das IT-Team des

Fachbereichs Netzanschluss seine dezentrale Position, um Interviews durchzuführen.

Dazu werden Mitarbeitende aus jedem Team eingeladen, die einzelnen Prozesse durch

gesprochen und Änderungswünsche gesammelt. Die so erarbeiteten Konzepte kommen

von den Anwendenden selbst und sie nehmen deren Umsetzungen gut an, so eine be

fragte Person. Nach der Umsetzung holt die Programmierung noch Feedback ein, ob die

Umsetzung den Erwartungen entspricht.

Dass trotz der zentralen Anforderungsrunde die dezentralen, individuellen Anforde

rungen der Fachbereiche eine Rolle spielen, zeigt sich daran, dass die Beteiligten gleich

berechtigt sind. Zur Zeit der Befragung nahmen an der Anforderungsrunde zwei Ver

treter aus der IT (inkl. Programmierende), zwei aus der IT des Zentralbereichs und vier

Vertretende aus den Fachbereichen12 teil. Für eine Sitzung nimmt jede beteiligte Per

son ihre Anforderungen mit, die in der Woche angefallen sind. Die Anforderungen stel

len die Vertretenden der Fachbereiche kurz inhaltlich vor und agieren damit in der Rolle

von Product Owner:innen. Die einzelnen Fachbereiche sind dort gleichgestellt, verfügen

über ein gemeinsames Budget und sollen sich demokratisch einigen.

»Ja, wenn man so will, sind ja die Vertreter der Fachbereiche die einzelnen Product
Owner. Dafür haben wir natürlich keinen ›Ober Product Owner‹, sondern wir setzen
im Moment darauf, dass sich die […] [Abstimmungsrunde] schon einigen wird. Und
das hat bisher auch funktioniert, so eher demokratisch.« (IT-Manager Fachbereich)

So bereiten Konflikte keine größeren Probleme. Die Teilnehmenden haben manchmal

unterschiedliche Vorstellungen und Interessen, was Anforderungen an die Software an

belangt. Dort können sie sich darüber austauschen und gemeinsame Lösungen finden.

Kommunikative Beziehungen: Kooperationsbereitschaft und direkte Kommunikation

Der Fall zeigt die für einen dezentralen Arbeitsprozess der Softwaregestaltungen typi

schen direkten und langfristigen Beziehungen intern in einem EVU, welche die oben

genannten Rollen und Abläufe ergänzen. Allerdings existieren anders als bei INTERN1

Spannungen in den Beziehungen, weil mehrere Fachbereiche beteiligt sind. Die verän

derten Erwartungen an die Beschäftigten im Zuge der Softwaregestaltung spiegeln sich

12 Netzanschluss, IT-Zentralbereich (Work-Management und Messstellenbetrieb), Zählerwesen,
Abrechnung.

8. Formen und Folgen der Softwaregestaltung – die Empirie 195

darin nieder, dass es für manche Mitarbeitende schwer war, Kommunikation als Teil ih

rer Arbeit zu begreifen.
Das EVU konnte den Arbeitsprozess der Softwaregestaltung erst etablieren, als

die fehlende Kooperationsbereitschaft sowohl zwischen den Fachbereichen als auch
zwischen IT-Abteilung und Fachbereichen beseitigt war. Ein Befragter bezeichnet es
als »revolutionär«, dass, als sich der Fachbereich neu organisieren wollte, dieser zwei
Vertretende der IT zu einigen Terminen dazu geladen hat, aus denen dann die Abstim

mungsrunde hervorging. Dass es so gut geklappt hat, lag daran, dass die Beteiligten
keine vorbelasteten Beziehungen hatten:

»[W]eil sie die Historie nicht mit sich herumgeschleppt haben, wer da mal vor zehn
Jahren wem irgendwie ans Schienbein getreten ist oder irgendwie was weggenom

men oder irgendwas Blödes gemacht hat.« (IT-Manager Fachbereich)

Allgemein gibt es persönliche Netzwerke zwischen den Fachbereichen und der IT-Abtei

lung. Als die IT noch ausgelagert war, hat das Management versucht, dass Fachbereiche
mit ihr nur noch über formal festgelegte Wege kommunizieren. Jetzt ist es wieder in
Ordnung, sich persönlich zu kennen und anzusprechen. Der Scrum Master beschreibt
die direkte Kommunikation als effizienter, weil es kein Hin und Her zwischen den Be

teiligten gibt:

»Aber wir haben halt versucht, gerade halt möglichst mehr auf eine direkte Kommuni

kation umzusteigen, weil gerade in der Vergangenheit gab es dann in den Tickets häu
fig das Phänomen, dass dann so ein Frage-Antwort-Pingpongspiel hin und her ging.
Und der Durchschnitt war da tatsächlich, dass wir zu einem Ticket so 30 Kommentare
hatten.« (Scrum Master)

Die Anforderungsmanagerin aus der Zentralbereichs-IT meint, dass sie bestimmte The

men mit den Programmierenden direkt bespricht. Entweder macht sie das per E-Mail,
per Telefon oder, wenn das nicht ausreicht, persönlich.

Um sich direkt auszutauschen, müssen Mitarbeitende dazu bereit sein. Einige Be

fragte weisen darauf hin, dass dies nicht selbstverständlich ist. So haben sich ältere Pro

grammierende anfangs nicht gern in agilen Teams ausgetauscht. Mit Scrum verbinden
sie viele Termine, Kaffeekränzchen und dass man nicht zum Arbeiten kommt. Einige
Mitarbeitende wollen lieber vor sich hinarbeiten, als sich regelmäßig mit anderen ab

zustimmen. Im Gegenteil dazu sieht die Anforderungsmanagerin Kommunikation als
selbstverständlichen Teil ihrer Arbeit an.

Digitale Werkzeuge: mehrere Softwarelösungen, um Anforderungen zu sammeln
In dem Fall zeigt sich in dem EVU die für digitale Werkzeuge typische Verwendung in de

zentralen Arbeitsprozessen der Softwaregestaltung in Extremform: Es geht primär dar

um, Anforderungen zu sammeln, und weniger um Kontrolle oder Koordination der ge

samten Softwaregestaltung. Denn es gibt unterschiedliche Ticketsysteme, Web-Formu

lare und Exceldateien, mit denen die Fachbereiche Anforderungen für die Anforderungs

runde sammeln. Wegen dieser disparaten Landschaft an Werkzeugen existiert kein in

196 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

tegriertes digitales Gesamtsystem, weswegen die verwendeten digitalen Softwaretools

nicht zur zentralen Kontrolle taugen. Vielmehr wenden die Beteiligten pragmatisch de

zentral an, was sie kennen, können und ihnen nützlich erscheint – Hauptsache, sie kön

nen Anforderungen einfach sammeln. Allerdings gibt es zentral in der Anforderungs

runde eine Liste, damit den Teilnehmenden transparent ist, welche Anforderungen wie

priorisiert sind. In Zukunft sollen aber alle das gleiche Ticketsystem verwenden.

Softwaretechnischer Zuschnitt: größter Nutzen für das Unternehmen

Der für einen dezentralen Arbeitsprozess der Softwaregestaltung typische individuelle

softwaretechnische Zuschnitt zeigt sich auch in diesem Fall. Die zentrale Anforderungs

runde übt jedoch einen Konsens- und Standardisierungsdruck auf die einzelnen Fach

bereiche aus. Deren individuellen Vorstellungen sind dadurch Grenzen gesetzt.

Mehr noch als bei INTERN1 muss sich die individuelle Sicht der Anwendenden des

EVU gegen die Unternehmenssicht durchsetzen, weil zentral mehrere Repräsentant:in

nen der Fachbereiche über Anforderungen und deren Priorisierung verhandeln. Maß

geblich kann z.B. sein, wie viele Anwendende eine Anforderung betrifft oder wie teuer

eine Umsetzung wird. Wie wichtig die Priorisierung ist, zeigt sich an den ca. 100 Tickets

im Backlog der Anforderungsrunde, die noch umzusetzen sind.

»Also, ich sag mal, in der Abstimmungsrunde sitzen eben die Leute drinnen, die wis
sen, wir müssen als Gesamtunternehmen effizient sein. Ich kann nicht jedes Wünsch-

Dir-Was-Thema einsteuern. Wir sind aber auch keine Anwender. Wenn ich bei mir im
Fachbereich priorisiere, da sitzt ein persönlicher Leidensdruck oft dahinter, dass er
sagt: Mich stört das tagtäglich in meiner Arbeit. Betrifft aber vielleicht nur fünf Mit

arbeiter von den 300. Manche Themen die betreffen alle und das in Waage zu halten,
das ist, ja, eine Herausforderung.« (Product Owner IT-Team Netzanschluss)

Die dezentrale Gestaltung einer individuellen Software in einem EVU zeigt sich zu

dem daran, dass laut einem Befragten das genutzte System stark vom SAP-Standard

abweicht. Ein Teil des Arbeitsprozesses ist es, zu verhandeln, ob ein Fachbereich eine

Standardausprägung von SAP nutzt oder diesen Standard anpasst. Ein Grund für eine

individuelle Anpassung kann sein, dass es mehr kosten kann, wenn das EVU beim

Standard bleibt. Das ist dann der Fall, wenn dadurch das EVU mehr Personal braucht,

weil die Software nicht auf die firmenindividuellen Prozesse angepasst ist.

Wie auch bei INTERN1 zeigt sich die individuelle Softwaregestaltung daran, dass der

dezentrale Arbeitsprozess auf EVU-eigene Begriffe Rücksicht nimmt und einen Konsens

über sie verhandelt. Die von der Softwaregestaltung betroffenen Anwendenden im Netz

anschluss sind zahlreich und in unterschiedlichen Netzgebieten tätig (und damit regio

nal weit verteilt), weswegen die Mitarbeitenden teilweise die gleichen Dinge mit anderen

Namen bezeichnen.

8.3.2.3. KOOP1: zentralisiertes Anforderungsmanagement,

um Standard zu verhandeln

Anders als bei INTERN1 und INTERN2 geht es in dieser Fallstudie in erster Linie dar

um, dass mehrere EVU die Möglichkeit der Softwaregestaltung für einen gemeinsamen

8. Formen und Folgen der Softwaregestaltung – die Empirie 197

Standard nutzen wollen. Dafür gibt es einen zentralen Arbeitsprozess der Softwarege

staltung in Form eines Anforderungsmanagements, welches das IT-DL organisiert und
bei dem mehrere EVU mitmachen. Jedoch ist das Besondere an dem Fall, dass die EVU
verhandeln, was zum Standard gehört und was sie individuell gestalten. Dementspre

chend erfolgt auch die Softwaregestaltung dezentral in und für einzelne EVU und, wie
für diese Form der Softwaregestaltung typisch, die Anforderungsaufnahme direkt mit
den Anwendenden. Aufgrund der Marktbeziehung zwischen IT-DL und EVU herrscht
eine Spannung in den kommunikativen Beziehungen: einerseits aus partnerschaftlich-
kooperativem Vorgehen für den gemeinsamen Standard und andererseits nur so lange
zu kooperieren, wie es dem einzelnen EVU nützt, und z.B. Vorteile aus individuellen Al

leingängen zu ziehen. Die eingesetzten digitalen Werkzeuge erledigen sowohl die typi

schen Zwecke einer dezentralen als auch zentralisierten Softwaregestaltung. Sie dienen
dazu, die Verhandlungen zwischen den Organisationen transparent zu halten, zu koor

dinieren, die Umsetzung des IT-DL zu kontrollieren und dezentral Input in den EVU zu
ermöglichen.

Rollen: Anforderungsmanagende, IT-Beratende, Key User:innen, Anwendungsbetreuende & Co.
– zwischen und innerhalb der Organisationen
Wie für einen zentralen Arbeitsprozess der Softwaregestaltung typisch, besteht an die
Rollen vor allem die Erwartung, die Anforderungserarbeitung über Organisationsgren

zen hinweg zu koordinieren. Nur so ist eine stetige Verhandlung darüber möglich, was
zentral das IT-DL oder dezentral die EVU gestalten. Doch gibt es Unterschiede zwischen
den EVU, inwiefern sie sich a) rein auf die kooperativen, zentralisierten Anforderungs

prozesse des IT-DL ausrichten oder b) selbst Rollen haben, die eine eigenständige, de

zentrale Softwaregestaltung erlauben.
Für die Koordination zwischen IT-DL und EVU gibt es sowohl innerhalb des IT-DL

als auch in den EVU Rollen. Innerhalb des IT-DL gibt es mehrere Rollen, welche die zen

tralisierte Softwaregestaltung koordinieren. So gibt es ein neunköpfiges Team für ko

operative Projekte, wovon zwei für das Anforderungsmanagement zuständig sind. Da

neben gibt es extra Rollen, um die Beziehungen zu den EVU zu pflegen: die Key Account
Managenden. Über sie läuft alles Kaufmännische wie z.B., wenn das Budget für eine
Anforderung nicht ausreicht und EVU und IT-DL sich auf das weitere Vorgehen eini

gen müssen. Für die Übersetzung zwischen IT- und Energiewirtschaft existieren beim
IT-DL IT-Beratende, die spezialisiert sind auf einzelne Fachgebiete wie Stammdaten,
Abrechnung, Ablesung oder Instandhaltung. Sie schreiben Konzepte, unterstützen Pro

grammierende mit fachlichem Wissen oder beraten die EVU. Jede beratende Person hat
zudem als Aufgabe, bei Anforderungen zu prüfen, welche EVU sie betreffen bzw. für wel

che sie interessant sein könnten.
Innerhalb der EVU gibt es für das vom IT-DL koordinierte Anforderungsmanage

ment zuständige Mitarbeitende. Ihre Arbeit zeigt, dass die zentralisierte Standard

gestaltung in diesem Fall auf dezentrale Anforderungen der Anwendenden Rücksicht
nimmt und sie in den Arbeitsprozess der Softwaregestaltung einbindet. Der Anfor

derungsmanager von EVU2 kümmert sich um die kaufmännische Abwicklung und

198 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

sammelt Anforderungen – sowohl für den Netz- als auch für den Vertriebsbereich seines

EVU.

Ebenso innerhalb der EVU sind die Key User:innen für das zentrale Anforderungs

management aktiv. Sie sind noch näher an den Anwendenden dran, auch selbst Anwen

dende der Software und sie speisen Anforderungen in das Anforderungsmanagement

des IT-DL ein. Ein befragter Teamleiter (EVU2) hat in seinem Team neben Key User:in

nen und sechs Sachbearbeitenden noch eine zusätzliche Rolle, die an der Softwaregestal

tung teilnimmt: die Fachkoordinator:innen. Sie arbeiten übergreifender als Key User:in

nen, stärker koordinativ, strategische und fachliche Diskussionen und Umsetzungen be

gleitend. In EVU2 macht ein befragter Teamleiter am Anforderungsmanagement mit.

Manche EVU haben keine Key User:innen und stattdessen übernimmt das IT-DL deren

Aufgaben.

Die EVU verfügen zudem über Rollen, mit denen sie dezentral und unabhängig vom

zentralisierten Anforderungsmanagement im IT-DL selbst Software gestalten. So gibt

es im EVU2 einen Anwendungsbetreuer, der die von ihm betreuten Softwareanwendun

gen unabhängig vom IT-DL gestaltet: Er leitet Projekte, macht Prozessanalysen, macht

Ausschreibungen und nimmt Anforderungen auf. EVU2 ist allgemein ein Beispiel dafür,

dass die Verhandlung von Individual- und Standardsoftwaregestaltung auch innerhalb

der EVU stattfindet. Der befragte Anwendungsbetreuer aus EVU2 meint, dass im EVU

aufgrund von Sparprogrammen vor einigen Jahren IT-Querschnittsfunktionen wie sei

ne abgebaut wurden, weil sie kein Geld bringen würden. Nun entstehen sie wieder, weil

man deren Notwendigkeit erkannt hat. Laut dem Digitalisierungsmanager von EVU2

agieren die Fachbereiche unterschiedlich: Die einen binden die IT stärker ein und arbei

ten mehr mit ihr zusammen. Andere stellen selber Key User:innen ein und bauen ERP-
Know-how auf, um eigenständig Einstellungen an der Software vornehmen zu können.

Aus seiner Sicht gibt es einen Wellenverlauf zwischen De- und Zentralisierung.

Der Prozessmanager aus dem Vertrieb von EVU3 koordiniert dezentral die Gestal

tung des CRM-Moduls (Customer-Relationship-Management13). Wie für dezentrale Ar

beitsprozesse der Softwaregestaltung typisch, fließen die individuellen Anforderungen

von Anwendenden ein:

»Also, zum großen Teil kommen diese Anforderungen von den Anwendern. Weil letzt
endlich sie ja in dem System arbeiten und dort Probleme und Anforderungen, um den
Prozess zu optimieren, besser einsehen können.« (Prozessmanager EVU3)

Er prüft deren Anforderungen und den Ist-Zustand der Software, spricht mit dem

IT-DL und internen Mitarbeitenden und schreibt Anforderungen für das Anforde

rungsmanagement, die dann bei den Programmierenden landen. Zudem informiert

er Anwendende, was geändert wurde, oder organisiert bei größeren Veränderungen

Schulungen.

Ein letztes Beispiel für dezentrale Softwaregestaltung ist die Prozessmanagerin aus

EVU1. Sie arbeitet eigenständig mit den IT-Beratenden des IT-DL zusammen, tauscht

13 Software zur Erfassung und Verwaltung von Daten der Kundschaft vor allem zu vertrieblichen
Zwecken (bspw. um Marketingaktionen durchzuführen).

8. Formen und Folgen der Softwaregestaltung – die Empirie 199

sich mit Programmierenden aus und spricht Softwarekonzepte mit den involvierten An

wendenden durch, damit diese die Veränderungen verstehen und sinnvoll finden. Zu

gleich nimmt sie selber Einstellungen an der Software vor.

Ablauf: zentral organisiertes Anforderungsmanagement und dezentrale Softwaregestaltung
Der Ablauf besteht primär daraus – wie für einen zentralisierten Arbeitsprozess der
Softwaregestaltung typisch –, über Anforderungen zu verhandeln, Konflikte zu lösen
und Feedback von verschiedenen EVU einzuholen. Wobei in diesem Fall trotzdem
auch dezentral die EVU von den Anwendenden Anforderungen aufnehmen. So gibt
es aufgrund der Mischung aus zentraler und dezentraler Softwaregestaltung Feed

backs zwischen Programmierenden, Anwendenden und Softwaregestaltenden in einem
weitverzweigten Gestaltungsnetzwerk.

Die für eine zentralisierte Softwaregestaltung typischen Konflikte zwischen den
EVU moderiert das IT-DL im Anforderungsmanagement auf operativer und strate

gischer Ebene. Auf der operativen übernehmen das die Anforderungsmanagenden
des IT-DL. Dort bringen die EVU ihre jeweiligen Erfahrungen und Sichtweisen in die
Diskussion über die Anforderungen ein. Dann teilt jedes EVU mit, welche Anforde

rungen es haben will und welche nicht – je mehr EVU eine Anforderung gemeinsam
umsetzen, umso günstiger wird es. Alle zwei Wochen treffen sich die EVU dafür in einer
Telefonkonferenz. Auf der strategischen Ebene des Anforderungsmanagements ist ein
professioneller Mediator aktiv. Der Mediator kann durch seine Neutralität zwischen
den verschiedenen Interessen des Dienstleistungsunternehmens und der EVU vermit

teln. Die EVU müssen sich auf gemeinsame Ziele einigen, wenn sie einen Standard
gestalten wollen. Die Treffen behandeln u.a. größere Themen oder Projekte wie z.B. eine
Umstellung auf eine neue Version des ERP-Systems.

Das Besondere an dem Fall ist nun, dass nicht einfach Fachleute zentral einen Stan

dard gestalten, sondern dezentral die EVU von den Anwendenden Anforderungen sam

meln. Dafür müssen die EVU intern für sich herausfinden, wie sie die Möglichkeiten
der Softwareentwicklung nutzen wollen: Welche Anforderungen nur für sie und welche
für das zentrale Anforderungsmanagement relevant sind und damit in den kooperativen
Standard einfließen. Die EVU müssen für sich herausfinden, wie sie sich intern organi

sieren, wenn sie für die Softwaregestaltung mit mehreren Organisationen zusammenar

beiten. Das EVU2 macht jede Woche Anforderungsmanagementrunden mit den Anfor

derungsmanagenden aus den unterschiedlichen Bereichen. Dort tauschen sich die be

teiligten Personen über Anforderungen aus, die für das zentrale Anforderungsmanage

ment relevant sind. Daneben gibt es ca. einmal im Monat Key-User-Runden, in denen
sich die Key User:innen der Fachbereiche treffen, um z.B. abzustimmen, was sie gemein

sam gestalten.
Gleichzeitig gibt es für Projekte ohne das IT-DL dezentral eigenständige Abläufe

zur Softwaregestaltung. Der verantwortliche Applikationsbetreuer von EVU2, der für
die Software zur Instandhaltung zuständig ist, führt als Projektleiter Workshops durch,
um Anforderungen aufzunehmen. Er sieht agile Anleihen in seiner Art des IT-Pro

jektmanagements: Die Arbeitspakete ergeben sich iterativ, es gibt vierwöchige Sprints
inklusive Reviews und Retrospektive, wie es in Scrum üblich ist. Das heißt, er arbeitet

200 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

direkt Anforderungen für Programmierende aus und stimmt sich mit diesen ab. So

existiert dezentral ein direkter Feedbackmechanismus zwischen Anwendung und Pro

grammierung. EVU3 koordiniert intern für sich die Gestaltung einer Softwarelösung zur

Betreuung seiner Kundschaft, die sowohl das IT-DL als auch zwei Softwarefirmen ent

wickeln. Das heißt, intern muss das EVU nicht nur Anforderungen aufnehmen, sondern

auch die unterschiedlichen Organisationen koordinieren, welche die Programmierung

übernehmen. Weil mehrere Fachbereiche des EVU betroffen sind, hat das EVU intern

ein Anforderungsmanagement etabliert, damit nicht alle betroffenen Mitarbeitenden

direkt ein Ticket an das IT-DL schreiben und sich die verschiedenen Teams stattdessen

absprechen, was die Anforderungen anbelangt. Der befragte Prozessmanager spricht

von einer »stadtwerkemodifizierten Scrum-Lösung«.

Der Grund für die dezentrale Softwaregestaltung innerhalb der EVU liegt auch darin,

dass der zentralisierte Arbeitsprozess zu bürokratisch ist:

»Aber wir machen eigentlich alles, was prozessual selber durch uns zu heben ist, sel
ber. Weil erstens schneller, günstiger und ja, runder irgendwie. Sonst muss man im

mer Tickets schreiben, Ressourcen anfordern, feststellen, dass man die Ressource erst
in Wochen bekommt, dann testen und irgendwann freigeben. Da wo es halt geht, ma

chen wir es halt möglichst agil selber.« (Teamleiter EVU1)

Typisch für eine zentralisierte Softwaregestaltung und Teil der Feedbackschleife zwi

schen Anwendung und Programmierung sind die vom IT-DL zentral koordinierten

Tests. Sie sind ein wichtiger Teil der Softwaregestaltung, weil sie Rückmeldung dar

über geben, ob eine Umsetzung den Vorstellungen der EVU entspricht. Neben dem

gemeinsamen Anforderungsmanagement testen die EVU und das IT-DL gemeinsam.

Das IT-DL hat extra Rollen für das Testmanagement, um die Tests zu koordinieren.

Dezentral hat z.B. EVU2 selber noch eine Person, die Testfallkataloge schreibt und sie

an die Fachbereiche verteilt.

Kommunikative Beziehungen: partnerschaftlich und bei Bedarf direkt
In dem Fall existieren die für einen zentralen Arbeitsprozess der Softwaregestaltungen

typischen bürokratischen und spannungsgeladenen marktförmigen Beziehungen, wel

che die Kommunikation erschweren. Doch sorgen neben Mediator, kooperativen Rollen

und Abläufen kommunikative Beziehungen dafür, dass der Arbeitsprozess der Software

gestaltung trotzdem gelingt. So gibt es langfristige Beziehungen auf Augenhöhe und

direkte Kommunikation trotz formal-bürokratischer Abläufe. Trotz Marktbeziehungen

zwischen EVU und IT-DL sprechen Beteiligte von einer Familie und von einem Geben

und Nehmen.

Über das IT-DL Software zu gestalten, bringt einen langwierigen, formalen Prozess

mit sich, an den sich die beteiligten Rollen ausrichten müssen:

»Ticket, Angebot schreiben, Change im System, Alphatest, Kundentest, Go-Live, Sta
bilisierung. Ich habe ja jedes Mal eine Destabilisierung des Systems« (Key Account
Manager).

8. Formen und Folgen der Softwaregestaltung – die Empirie 201

Solche Hürden der Softwaregestaltung ergeben sich auch durch interne Prozesse in den
EVU. Der befragte Applikationsbetreuer aus EVU2 meint, dass es dauert, bis Anforde

rungen durch die interne Hierarchie gehen, weil die Befehlskette für Abstimmungen zu
berücksichtigen ist.

Kommunikative Beziehungen wie direkte Kontakte verringern diese Kommunikati

onshürden. Ein befragter Programmierer arbeitet zwar viel via Ticketsystem und ohne
direkten Kontakt zu den EVU. Gleichzeitig ist er im Gegensatz zu früher wieder telefo

nisch erreichbar. Er ruft manchmal direkt bei einem EVU an und diese wiederum können
ihn direkt auf seinem Diensthandy erreichen. Das erleichtert seiner Meinung nach die
Abstimmung.

»Mittlerweile ist mir das aber lieber, wenn ich auch direkten Kundenkontakt habe.
Ich rufe dann auch manchmal direkt an. Ich habe ein Diensthandy. Die Leute sehen
dann auch meine Mobilfunk-Nummer und können mich bei Nachfragen oder auch di
rekt erreichen. Das erleichtert meiner Meinung nach die Tätigkeit, die Abstimmung.«
(Programmierer1)

Der andere befragte Programmierer2 wird bei bestimmten Themen (für die er bekannt
ist) von den EVU direkt angesprochen und danach wird eine Anforderung aufgenom

men. Ein Prozessmanager aus einem EVU meint:

»Man hat einfach diesen Stille-Post-Effekt. Wenn ich eine Anforderung aufgebe, […]
auf der [IT-DL]-Seite einen Berater gibt, der diese Anforderung aufnimmt und diese
dann mit dem Entwickler bespricht, dann ist es halt manchmal so, je nachdem, wie
weit schon der andere den anderen kennt oder halt eben auch nicht, dass manchmal
nicht das Richtige dabei rauskommt. Und ich glaube schon, dass es einfacher wäre,
wenn wir im Haus intern eine Entwicklungsabteilung hätten und man dann direkt
mit den Entwicklern spricht, denen die Anforderung geben könnte. Dann hätte man
halt eine Schnittstelle weniger.« (Prozessmanager EVU1)

In den Interviews werden auch verschiedene Elemente der Kommunikation genannt, die
für die Zusammenarbeit hilfreich sind, wie Offenheit und professionelle Kommunikati

on:

»Das wichtigste Konzept in unserem Bereich ist wirklich die Offenheit, da wirklich
auch Leute zu integrieren, mitzunehmen, abzuholen, die immer wieder auch… Es gibt
ja immer diese schöne Bringschuld. Das wird bei uns nicht funktionieren, wenn nicht
jeder auch wüsste, es kann wichtig sein für die Kollegen, die oder die Veränderung zu
wissen. […] Wie gesagt, bei uns läuft alles über Offenheit.« (Programmierer1)

Ein befragter Betriebsrat betont die Erwartungen an die Softwaregestaltenden, nicht
nur das IT-System zu betreuen, sondern den Anwendenden zuzuhören, zu verstehen,
zu übersetzen, Lösungen anzubieten, die Sprache der Anwendenden zu sprechen. Das
hätte sich seit Mitte/Ende der 2010er Jahre verändert.

202 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Dieses Verstehen, das einander verstehen und zuhören. Und das ist etwas, was meine

Erfahrung ist: Also, bei uns hat das was mit Menschen zu tun. Wir haben die richtigen
Leute eingestellt in den letzten Jahren und die sind extra…, die sind Kommunikations

profis, auch IT-Profis« (Betriebsrat)

Neben dem direkten Austausch ist die langfristige Zusammenarbeit eigentlich charak

teristisch für eine dezentrale Softwaregestaltung. Sie spielt aber auch in diesem Fall eine

Rolle. Ein EVU hat mal das IT-DL gewechselt, ist aber wiedergekommen. Es hat erst beim

neuen Dienstleistungsunternehmen gemerkt, was es am alten und dessen Wissen über

das eigene EVU hatte. Es geht auch darum, ein gemeinsames Verständnis entwickelt zu

haben:

»Naja, je besser man mit den Personen sprechen kann und je besser man sich kennt,
in der Regel ist es auch, umso besser werden dann auch die Anforderungen umge

setzt. […] Weil man einfach eine andere Sprache spricht, wenn man die gleichen Leute
und wenn man weiß, wie die sozusagen ticken und die auch wissen, wie man selber
so tickt. Ich glaube schon, je länger man miteinander zusammenarbeitet, dass, umso

besser wird das Ergebnis. Vorausgesetzt, dass man gut miteinander zusammenarbei

tet und nicht gegeneinander.« (Prozessmanager EVU1)

Das spielt auch bei individueller Softwaregestaltung dezentral für ein EVU eine Rolle.

So kennt durch die lange Zusammenarbeit das IT-DL die individuellen Anpassungen im
Bereich CRM für das EVU3 sehr gut. Das IT-DL war bereits bei der Einführung dabei.

Zudem sind die IT-Beratenden fest den EVU zugeteilt und zugleich programmieren sie

auch. Laut dem befragten Prozessmanager (EVU3) ist deswegen keine detaillierte Be

schreibung bei Anforderungen notwendig. Er hat mit dem CRM-Team beim IT-DL ein

kollegiales Verhältnis.

Die EVU und das IT-DL arbeiten trotz Marktbeziehungen kooperativ zusammen und

sprechen von einer Art Familie. Denn trotz Konkurrenz und Kostenkalkül arbeiten sie

partnerschaftlich zusammen und kennen sich untereinander. Die Kooperation ist part

nerschaftlich, weil es ein Geben und Nehmen ist. Das kooperative Verhalten zeigt sich

auch daran, dass die EVU die in den SLA festgelegten Möglichkeiten nicht ausreizen,

Strafen einzutreiben.

»Das ist ein sehr schönes Arbeiten, muss ich sagen, mit dem Kunden. Ich habe viel
leicht auch das große Glück, dass ich auf der anderen Seite auch, sagen wir mal, Men

schen habe, die sehr angenehm sind. Es ist aber auch bei anderen Kunden, wo es
manchmal vielleicht etwas hitziger zugeht, wie ich so bei den Kollegen höre, ist es
aber immer die Situation und der Alltag getrieben eigentlich von der Einstellung: Es
muss ein Geben und Nehmen sein. Selbst bei den SLA: Es gibt natürlich SLA-Verstöße.
Es sitzt bei keinem Kunden einer, der nur darauf wartet und sich freut und dann sofort
die Rechnung und den Taschenrechner raus und sagt: ›Hier drei SLA-Verstöße […] Ich
hätte gerne 15500 Euro für den Monat.‹ Diese Dinge werden immer erst besprochen,
die Gesamtgemengelage, Ursachen, vielleicht schwierige Rahmenbedingungen mit

besprochen, Herstellerqualität, Corona: Das kommt alles jetzt, auch wenn es jetzt ak

8. Formen und Folgen der Softwaregestaltung – die Empirie 203

tuell, das kommt alles zusammen und das ist ein Geben und Nehmen.« (Key Account
Manager)

Es kommt vor, dass sich EVU unabhängig vom IT-DL untereinander absprechen und Än

derungen vornehmen:

»… wir auch teilweise Kontakt zu den anderen Häusern aufnehmen, Ideen aufzugrei
fen, weiterzuverfolgen oder abzustimmen. Die Stadtwerke so und so hat schon eine
Lösung dafür. Dann machen wir einfach einen Termin mit denen. Ich nehme meine
Leute dazu, wie die das gebaut haben und überlegen uns noch, ob wir das auch wol
len.« (Teamleiter EVU1)

Digitale Werkzeuge: mehrere Ticketsysteme und ERP-Entwicklungsumgebung
So wie der Fall zwar um eine zentralisierte Softwaregestaltung kreist, aber die dezentrale
Softwaregestaltung in den EVU zulässt, so ist auch die Verwendung der digitalen Werk

zeuge eine Mischung aus beiden Typen. Die digitalen Werkzeuge verwenden die EVU
sowohl typisch für zentrale Arbeitsprozesse, um Abstimmungen und Transparenz ge

währleisten, als auch für direkten Input durch Anwendende, was typisch für eine dezen

trale Softwaregestaltung ist. Die kooperativen Beziehungen zwischen IT-DL und EVU
drücken sich darin aus, dass direkte E-Mails an einzelne Mitarbeitende eine große Rolle
spielen.

So ist im vom IT-DL bereitgestellten MS Sharepoint für sämtliche EVU einsehbar,
welche Anforderungen im Anforderungsmanagement für den gemeinsamen Standard
vorliegen und was die Umsetzung jeweils kostet. Das MS Sharepoint dient zur Abstim

mung darüber, wer welche Anforderungen haben will und bezahlt. Die Ergebnisse der
Abstimmungen inklusive der gesammelten Anforderungen sind dort ebenso dokumen

tiert.
Zusätzlich betreibt das IT-DL ein eigenes Ticketsystem für die gesamte Kommunika

tion und Dokumentation von Tickets. Das betrifft kleinere Anforderungen und Störun

gen bezüglich der Software. Die EVU können online Tickets aufgeben. Wenn die EVU für
ein Ticket die betroffene Software und das fachliche Thema auswählen, dann ordnet das
Ticketsystem das Ticket automatisch dem verantwortlichen Team beim IT-DL zu. Über
das Ticketsystem können die EVU aber auch das IT-DL kontrollieren, z.B. wie lange eine
Umsetzung gedauert hat.

Der Prozessmanager der dezentralen Softwaregestaltung im EVU3 nutzt nicht das
Ticketsystem des IT-DL. Wie für dezentrale Arbeitsprozesse der Softwaregestaltung ty

pisch, haben die digitalen Werkzeuge primär die Funktion, dass Anwendende mitge

stalten können. Dafür setzt der Prozessmanager die MS-Office-365-Lösung ein, welche
die Mitarbeitenden gut kennen. Dort gibt es einen MS-Teams-Kanal, der direkten Aus

tausch und Input ermöglicht.

Soziotechnischer Zuschnitt: zentrale Synergien durch gemeinsamen Standard
und dezentrale Abweichungen
Weil in dem Fall die EVU für die gesamte industriespezifische Softwarelandschaft ver

handeln, was sie als Standard gestalten und was individuell, zeigt sich hier besonders,

204 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

wie der softwaretechnische Zuschnitt zustande kommt. So prägen a) institutionelle Un

terschiede der Geschäftsbereiche Vertrieb und Netz die Möglichkeiten eines Standards.

Es bestehen aber auch b) unabhängig davon Unterschiede zwischen den Firmen, inwie

fern sie individuell gestalten. Zudem müssen die EVU c) intern die Kompetenzen haben,

um überhaupt Synergien erkennen zu können.

Zu a): Allein durch die institutionelle Begebenheit, dass Prozesse im Netzbereich

stärker durch die Regulierung bestimmt sind, gibt es dort in den EVU weniger indivi

duelle Ausprägungen in der Softwaregestaltung. Im Vertriebsbereich ist ein Konsens

bei Anforderungen schwieriger, weil individuelle Vorstellungen bei den einzelnen EVU

vorliegen. Laut einem Anforderungsmanager (EVU2) geht auf der Vertriebsseite immer

mehr zurück, auf was man sich in der Kooperation einigen kann. Wenn der Vertrieb

sagt, er braucht das und das für den Markt, dann ist es schwer, den Standard zu halten,

vor allem wenn dafür Geld in den EVU da ist.

»Und das sind ja Vertriebe und das können Sie sich sicherlich vorstellen, die Vertriebe
sind ja teilweise völlig unterschiedlich ausgerichtet.« (Anforderungsmanager EVU2)

Ein Beispiel dafür sind die verschiedenen Strom- und Gastarife, die man der Energie

kundschaft anbietet. Auf der Netzseite ist der Gestaltungsspielraum durch die Regulie

rung eingeschränkt, weshalb es dafür in der Kooperation standardisierte Tarife gibt. Im

Vertrieb sind die Produkte individueller, weswegen einen Standard auszuprägen schwie

riger ist. Ein Befragter aus dem EVU1 nimmt eigenständig Einstellungen an der Software

vor, um der Kundschaft des EVU unterschiedliche Produkte anbieten zu können.

Zu b): Neben den Unterschieden zwischen den Geschäftsbereichen gibt es auch noch

firmenbedingte. Ein befragter Betriebsrat (EVU4) meint, dass früher das EVU sehr viel

individuell entwickelt hat und man jetzt trotz einzelner individueller Programmierun

gen auf den Standard durch das IT-DL setzt.

»Man hat das bei uns in diesem Projekt immer genannt: Hier gibt es blau, grün, gelb
karierte Maiglöckchen für jeden Anwender. Also, es wurde alles versucht, in SAP zu
programmieren. Selbst der kleinste Fall. […] Das hat uns immer sehr viel Geld gekos
tet. […] Jetzt haben wir natürlich sehr viel auf Standard gesetzt.« (Betriebsrat EVU4)

Keines der befragten EVU sagt, dass es rein auf den Standard setzt. Ein Befragter meint,

dass bei der Einführung versucht wurde, am Standard zu bleiben, und die Fachabtei

lungen argumentieren mussten, warum eine individuelle Anpassung notwendig sei.

Beispiele dafür, dass EVU vom Standard abweichen, sind eine unabhängig ausgewähl

te und angepasste Instandhaltungssoftware (EVU2) oder unterschiedliche Lösungen

für das Energiedatenmanagement (EVU1). Bei EVU3 hat die starke Orientierung an

der Kundschaft dazu geführt, dass es ein individuelles Portal für seine Kundschaft

entwickelt hat:

»Wir haben versucht, es immer unseren Kunden recht zu machen. Das führt dazu,
warum der Standard sehr umgebaut worden ist zu einem sehr individuellen Produkt.«
(Prozessmanager, EVU3)

8. Formen und Folgen der Softwaregestaltung – die Empirie 205

EVU3 nutzt das Modul von SAP für das Customer-Relationship-Management (CRM)
dafür ganz anders als die anderen EVU der Kooperation. EVU3 will es für Privat-,
Geschäftskundschaft und den ÖPNV nutzen und regionale Besonderheiten berücksich

tigen. Es gestaltet lieber dezentral selbst, weil die Abstimmung mit anderen EVU zu
aufwendig ist. Anders als andere EVU setzt EVU3 seit längerem auf das CRM-Modul
von SAP.

»Entweder müssten alle anderen Häuser diese Entwicklungsschritte gehen, die wir
gehen, oder wir müssten die Entwicklungen, die wir haben, irgendwie erst einmal
beiseite stellen und sie in dieser Kooperation mit den anderen Partnern entwickeln,
obwohl wir sie eigentlich schon haben (lacht). Und da ist halt die Frage, inwieweit
da tatsächlich dann ein Mehrwert ist oder ob es da nicht kostengünstiger in Anfüh
rungsstrichen ist, wenn wir für uns selbst eine Plattform aufstellen.« (Prozessmanager
EVU3)

Zu c): Unabhängig von solchen Unterschieden war es und ist es ein langwieriger Prozess,
die Fähigkeiten zu entwickeln, um Synergien zu erkennen. Im EVU2 wurde die Rolle
Prozessberatung 2020 geschaffen, um bereichsübergreifende Aufgaben zu erledigen. Sie
hat nicht nur die Aufgabe, Gestaltungsprojekten durchzuführen. Sie soll auch mögliche
Synergien feststellen und Entscheidungsvorlagen für übergreifende Optimierungen er

arbeiten. Die Rolle soll dafür sorgen, dass Fachbereiche nicht unabhängig voneinander
Anforderungen an das IT-DL stellen, sondern der Gesamtzusammenhang berücksich

tigt wird. Durch den Blick auf die Organisation von den digitalen Prozessen und nicht
allein von der energiewirtschaftlichen Fachlichkeit her hat das EVU eine neue Perspek

tive gewonnen. Erst dadurch ist aufgefallen, dass Anforderungen aus unterschiedlichen
Fachbereichen zusammenhängen und z.B. Synergien möglich sind.

8.3.2.4. KOOP2: EVU und IT-DL zwischen dezentraler
und zentraler Softwaregestaltung

Wie bei KOOP1 nutzen die Organisationen in diesem Fall sowohl die Möglichkeiten der
individuellen als auch der Standardsoftwaregestaltung. Doch es gibt einen Unterschied:
Es gibt keine zentralisierte Verhandlung darüber beim IT-DL und nur einen kleinen Teil
der Softwaregestaltung erledigt das IT-DL zentral für die EVU in Form eines gemeinsa

men Standards. Der Grund für die fehlende Zentralisierung liegt darin, dass IT-DL und
EVU die Spannungen aufgrund der Marktbeziehungen nicht immer beseitigen konnten.
Deshalb etablieren einzelne EVU wie EVU2 verstärkt selbst dezentrale Arbeitsprozesse
der Softwaregestaltung. Das geht bei dem EVU so weit, dass es gemeinsame Projekte mit
anderen EVU initiiert, wofür es die entsprechenden, typischen koordinierenden Rollen
einer zentralisierten Softwaregestaltung hat. So muss in dem Fall von prekär-koopera

tiven kommunikativen Beziehungen gesprochen werden, und zwar auch für die dezen

tralen Arbeitsprozesse innerhalb der EVU: weil sie, nachdem das IT-DL die Koordina

tion der Softwaregestaltung nicht mehr übernimmt, erst intern lernen müssen, abtei

lungsübergreifend für Softwareprojekte Beziehungen aufzubauen und zu kommunizie

ren. Weil es keine eingespielte, langfristige zentralisierte Abstimmung zwischen IT-DL

206 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

und EVU gibt, gibt es auch keine klare Systematik des softwaretechnischen Zuschnitts

und damit, welches EVU welchem Standard folgt und was EVU individuell gestalten.

Rollen: verteilte Rollen für zentralisierte und dezentrale Softwaregestaltung (IT-
koordinierender Fachbereich, Key User:innen, IT-Projektleitende & Co.)
Da es in diesem Fall sowohl zentrale als auch dezentrale Arbeitsprozesse der Softwarege

staltung gibt, existieren auch die typischen Rollen für beide. Aber anders als KOOP1 zeigt

der Fall noch einmal besonders, was passiert, wenn EVU anfangen, dezentral Software zu

gestalten, und sie dafür intern die entsprechenden Rollen brauchen. Die EVU brauchen

dann noch mehr koordinierende Rollen als bei KOOP1, weil sie neben der Anforderungs

aufnahme auch noch die Umsetzung selbst koordinieren (z.B. externe Freelancer oder

das IT-DL beauftragen).

EVU2 koordiniert die Softwaregestaltung wieder verstärkt selbst. Es verändert sei

ne internen Strukturen nur dahingehend, dass sie[es?] diese um einzelne Rollen für die

Softwaregestaltung ergänzt. Diese agieren dann fachbereichsübergreifend wie auch be

schränkt auf einzelne Fachbereiche und arbeiten teilweise eigenständig mit externen

Softwareunternehmen zusammen. Zusätzlich gibt es extra Rollen wie eine Projekt-Coa

chin, um die Bedingungen für die Softwaregestaltung im EVU zu verbessern.

Zuerst zu den fachbereichsübergreifenden Arbeitsprozessen der Softwaregestal

tung: Hier zeigt sich an den Rollen, dass das EVU sich auf Softwaregestaltung einstellt,

dafür die althergebrachten Strukturen aber nicht radikal ändert. Das hat zur Folge, dass

nicht die direkte Anforderungsaufnahme im Mittelpunkt steht, sondern die Koordina

tion der Softwaregestaltung quer zu den althergebrachten Strukturen aus Hierarchien

und Abteilungsgrenzen. So kann zwar der befragte IT-Projektmanager des EVU2 dank

seiner Position in der Stabstelle Netzbereich, die hierarchisch über den Abteilungen

steht, ein zentralisiertes, fachbereichsübergreifendes Softwaregestaltungsprojekt steu

ern. Er kann als Bindeglied zwischen kaufmännischen und technischen Fachbereichen

fungieren. Dabei übernimmt er aber vor allem eine koordinierende Rolle: innerhalb des

EVU und zu Externen wie IT-DL oder anderen EVU. Das Projekt, das er leitet, findet zu

sammen mit anderen EVU statt und es betrifft nicht nur unterschiedliche Fachbereiche,

sondern auch unterschiedliche Systeme.

»Netzbetrieb bedeutet das, das, das und wir brauchen dafür die und die Systeme und
die hängen so und so zusammen. Und danach kommt dann Abrechnung, Bilanzie
rung, was auch immer zusammenhängt. Was ich brauche… Ja, fachbereichsübergrei
fende Kompetenz über Prozesse, wie hängt etwas zusammen, und ich kann dann erst
die Systeme auch verorten und damit die Schnittstellen.« (IT-Projektleiter EVU2)

Unabhängig von einzelnen Projekten hat EVU2 die Aufnahme von Anforderungen und

die Koordination der Softwaregestaltung in den einzelnen Fachbereichen langfristig bü

rokratisch gelöst, indem es die bestehenden hierarchischen Strukturen ergänzt hat. So

hat es die Rollen der IT-Koordinierenden sowohl auf IT- als auch auf Fachbereichssei

te für die Softwaregestaltung für jeden Fachbereich geschaffen. Die technischen IT-Ko

ordinierenden aus der IT-Abteilung kümmern sich z.B. um die Abrechnung mit IT-DL

und kontrollieren das Budget. Die fachlichen IT-Koordinierenden aus den Fachberei

8. Formen und Folgen der Softwaregestaltung – die Empirie 207

chen sind u.a. dafür zuständig, innerhalb des Fachbereichs für einen durchgängigen di

gitalen Prozess zu sorgen und Anforderungen aufzunehmen. Sie informieren die tech

nischen IT-Koordinierenden u.a. über Anforderungen oder Aufträge an einen IT-DL.
Somit hat das EVU die althergebrachte Organisation auf die Softwaregestaltung ein

gestellt, indem es IT-Projekte durchführt und zentrale und dezentrale Koordinationsrol

len in den Fachbereichen und der IT-Abteilung etabliert. Weil das EVU gemerkt hat, dass
diese Strukturen noch nicht reichen, hat es zusätzlich eine Projekt-Coachin eingestellt,
die die Projektarbeit durch verschiedene Maßnahmen verbessern soll. Sie führt Schulun

gen zur besseren Kommunikation unter Projektbeteiligten und in Workshops durch.
Im gleichen EVU2 gibt es aber auch ein Beispiel für einen dezentralen Arbeitspro

zess der Softwaregestaltung unabhängig von den IT-Koordinierenden, der sich auf die
Anforderungsaufnahme und -umsetzung konzentriert und weniger koordinative Auf

wände betreiben muss. In dem Fachbereich für Marktkommunikation kümmert sich die
Teamleiterin um die Weiterentwicklung der Marktkommunikationssoftware, die zwar
an das SAP-ERP-System angeschlossen, aber nicht von SAP ist. Dafür arbeitet sie direkt
mit einem Prozessmanager der IT-Abteilung, einem IT-Berater der Softwarefirma der
Marktkommunikationslösung und den Key User:innen ihres Teams zusammen. Die Key
User:innen ihres Teams sammeln die Anforderungen von den anderen Anwendenden ein
und sind in mehrfacher Hinsicht Übersetzende:

»Im Prinzip sind meine Leute nicht nur Key User, sie sind Prozess Manager, sie sind
Problemlöser, sie sind die Schnittstelle zwischen Sachbearbeiter und der Entwicklung.
Also, die müssen es übersetzen, dass es der Entwickler versteht und umgekehrt auch
der Sachbearbeiter.« (Teamleiterin Mako EVU2)

Solche Rollen für eine dezentrale, von der internen Hierarchie unabhängige Softwarege

staltung gibt es auch in anderen EVU. Im EVU1 hat der befragte Sachbearbeiter, obwohl
er kein Key User ist, zusätzlich die Rolle, regelmäßig bei Treffen zu Anforderungen für
eine Software zur Abrechnung von Anlagen erneuerbarer Energien dabei zu sein.

Dezentrale Softwaregestaltung zu ermöglichen und zuzulassen, ist auch ein The

ma bei EVU3. Es hat vor zweieinhalb Jahren entschieden, die Kompetenzen zum The

ma Digitalisierung zu bündeln. Vorher haben die Fachbereiche selbstständig bei der An

passung von SAP agiert. Jetzt wird zentral koordiniert, um eine Gesamtsicht über die
Digitalisierung zu haben (auch zu Themen wie IT-Sicherheit, Datenschutz, Software

architektur). Die Rolle des befragten Manager Digitalisierung ist Teil dieser Strategie.
Er kümmert sich darum, eine zentrale, digitale Infrastruktur für Softwareentwicklun

gen zu schaffen. Diese soll es u.a. erleichtern, externe Programmierende einzubinden.
Er initiiert Softwareentwicklungsprojekte, die dann auf dieser zentralen Infrastruktur
stattfinden.

Weil die EVU intern mehr Know-how bei der Softwaregestaltung aufbauen und ko

ordinieren, haben auch typische Rollen wie IT-Beratende beim IT-DL andere Aufgaben:
Anders als in anderen Fällen programmiert der befragte IT-Berater des IT-DL haupt

sächlich, hat kaum eine vermittelnde oder fachlich beratende Funktion und wird flexibel
eingesetzt. Die EVU kaufen nur seine Leistung als Programmierer. Anders als die EVU
setzt das IT-DL zwar Scrum ein. Wie in den anderen Fallstudien lebt es die Rollen aber

208 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

anders. Der Scrum Master ist gleichzeitig Projektleiter, Product Owner und macht bei

Softwaretests mit.

»Ich sage mal, die Rollen sind ein bisschen anders, nicht ganz so scharf geschnit
ten. Der Scrum Master ist eigentlich auch Projektleiter oder Product Owner. Das
verschwimmt dann häufig ein bisschen.« (IT-Berater)

Ablauf: dezentral und zentralisiert in den EVU
Da die EVU zum Teil selbst Software entwickeln – mit mehreren Fachabteilungen und

in Zusammenarbeit mit anderen EVU –, finden sich in diesen EVU typische Abläufe

für zentrale Arbeitsprozesse, um Anforderungen zu verhandeln und Konflikte zu lösen.

Gleichzeitig zeigen die Beispiele dezentraler Arbeitsprozesse der Softwaregestaltung in
den EVU den typischen Fokus auf das Ausarbeiten und Sammeln von Anforderungen,

mit den dazugehörigen dezentralen Gestaltungsnetzwerken und Feedbackschleifen zwi

schen Anwendung und Programmierung. Das IT-DL ist dann nur noch in die von den

EVU koordinierte Softwaregestaltung eingebunden, weil es Programmierende für sie

abstellt oder einzelne Anforderungen umsetzt.

Wie die Rollen bereits gezeigt haben, ist EVU2 ein Beispiel dafür, wie ein EVU mehr

Verantwortung bei der Softwaregestaltung übernimmt, ohne bestehende Strukturen zu

verändern, sondern diese vielmehr ergänzt. Bei einem von EVU2 koordinierten großen

IT-Projekt14 schlagen sich die internen Strukturen in der Koordination des Ablaufs nie

der, der auf Gremienarbeit basiert, wie es für eine zentralisierte Softwaregestaltung ty

pisch ist: Es gibt einen dreiköpfigen Lenkungskreis und fünf Teil-Projektleitende nach

Bereichen aufgeteilt, um eine bereichsübergreifende Kooperation horizontal hinzube

kommen (u.a. die Bereiche Netzbau, Netz-Service, Netz-Management und kaufmänni

scher Service). An täglichen Jour fixes des Projekts, in denen Aktivitätenlisten durchge

gangen werden und was noch an Arbeitspaketen offen ist, nehmen immer auch die ver

schiedenen Teilprojekte teil. Wie in Scrum wird iterativ vorgegangen. Doch reduziert

sich das regelmäßige Feedback der Anwendenden auf Tests, mit denen sie entscheiden,

ob sie einer Entwicklung grünes Licht geben. Wie für eine zentralisierte Softwarege

staltung typisch, waren es vor allem Fachleute und Führungskräfte, die an den Work

shops für die Anforderungsaufnahme teilgenommen und sich mit den Programmieren

den ausgetauscht haben.

Ein solcher zentraler, top-down-orientierter Softwaregestaltungsprozess rührt aber

nicht allein aus der Organisation des EVU her. Das hängt davon ab, ob es sich um

einen zentralisierten – im Fall von EVU2 fachbereichsübergreifenden – Softwaregestal

tungsprozess in einer Hierarchie und mit mehreren Abteilungen handelt oder einen

dezentralen. Bei einem anderen Projekt von EVU2, bei dem es um die Betreuung der

Kundschaft im Netzbereich geht, laufen die Anpassungen dezentral über die betrof

fenen Teams. Treffen finden direkt zwischen Anwendenden und Programmierenden

stattfinden. Die Hierarchie schlägt sich dann aber in einem bürokratischen Ablauf bei

14 Es ging um die Umsetzung von Redespatch 2.0, einer Regulierung für die Verteilnetzbetriebe
(VNB).

8. Formen und Folgen der Softwaregestaltung – die Empirie 209

der Umsetzung nieder: Der IT-Koordinator des Fachbereichs prüft und bewertet An

forderungen, die ihm die Anwendenden geben. Er übergibt die Anforderungen an den
für den Fachbereich zuständigen technischen IT-Koordinator aus der IT-Abteilung, der
dann die Umsetzung organisiert und dazu auf das IT-DL oder andere Programmierende
bspw. Freelancer zugreift.

Stärker noch dezentral und auf Sammeln und Ausarbeiten von Anforderungen
konzentriert ist die Softwaregestaltung im Fachbereich für Marktkommunikation von
EVU2. Der Fachbereich nimmt individuelle Anpassungen an der Software direkt mit
dem Softwareunternehmen vor. Die Anforderungen sammelt die Teamleitung mithilfe
von Key User:innen bei den Anwendenden ein und gibt sie in Form von Tickets an die
Softwarefirma weiter. Alle zwei Wochen hat die Teamleitung einen Termin mit einem
Berater der Softwarefirma, in dem offene Punkte und Probleme besprochen werden.
Doch auch hier muss die Teamleitung existierende Hierarchien berücksichtigen. Weil
Änderungen an der Schnittstelle zur ERP-Software vorzunehmen sind, muss die IT-Ab

teilung die entsprechenden Programmierenden beauftragen. Die Teamleitung macht
regelmäßig Termine mit den jeweiligen für das SAP-Softwarepaket verantwortlichen
Prozessmanagenden, um Softwareänderungen abzustimmen.

Eine andere Art, wie ein EVU selbst Abläufe schafft, um individuell Software zu
gestalten, zeigt EVU3. Ein neu geschaffener, zentraler Bereich für IT-Projekte treibt
für mehrere Fachbereiche die Softwaregestaltung voran. So hat das EVU über kleinere
IT-Projekte Erfahrungen in der App-Entwicklung gesammelt und dezentral in den
Fachbereichen ausprobiert.

»Das war so die erste Applikation, die in eine Cloud migriert ist von On-Prem15, und
das war so ein bisschen so ein Versuchsballon für alles Mögliche. Und da haben wir
sehr viele Verfahrensweisen mittlerweile auch für andere Applikationen übernom

men. Aus diesen Teams raus haben sich dann noch andere Teams gebildet, die dann
zum Beispiel für den Kundenservice eine App entwickelt haben, wo man dann auch
irgendwo so ein bisschen Selbstvertrauen gewonnen hat und man gesagt hat: Was wir
hier gemacht haben, können wir dann eigentlich für einen anderen Bereich auch ma

chen. […] Ob wir uns jetzt eine teure Lösung einkaufen oder hier was Kleines, Schnelles
selber entwickeln. Lass uns mal die eigene Entwicklung probieren. Und das haben wir
an vielen Ecken und Enden mittlerweile gemacht. Und funktioniert ganz gut. Funk
tioniert nicht alles, muss man dazu sagen. Aber viele dieser Projekte haben wirklich
Mehrwert gebracht.« (Manager Digitalisierung)

Das IT-DL hat in dieser Fallstudie deutlich weniger koordinativen Aufwand als bei
KOOP1. Es nimmt vor allem Anforderungen entgegen oder stellt Programmierende für
IT-Projekte zur Verfügung und leitet nur noch wenige Projekte selbst. Die Umsetzung
innerhalb des IT-DL ist zum Teil nach einem angepassten Scrum organisiert. Sonst
herrschen laut einem Befragten im Alltag des IT-DL verschiedene Mischformen vor –
aus Scrum, Wasserfall oder anderen Methoden.

15 Kurzform für On-Premises und vor der Zeit von Cloud-Computing das gängige Modell, um Soft
ware zu betreiben: auf einem lokalen Server mit der entsprechenden Lizenz.

210 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Kommunikative Beziehungen: prekäre Beziehungen, direkte Kommunikation

und hinderliche Hierarchien

Der Fall zeigt, dass mangelhafte kommunikative Beziehungen dazu führen können, dass

kein zentralisierter Arbeitsprozess der Standardsoftwaregestaltung für mehrere EVU

in einem IT-DL möglich ist. Die Marktbeziehung versucht das IT-DL nun durch Bezie

hungspflege zu verbessern, profitiert aber bereits vom direkten Kontakt zwischen Mitar

beitenden des IT-DL und den EVU. Jene EVU, die nun die Koordination der Softwarege

staltung übernehmen, merken, dass es eine Herausforderung darstellt, kommunikative

Beziehungen innerhalb ihrer Matrixorganisation herzustellen.

Das IT-DL ist noch dabei, die Beziehungspflege zu den EVU zu verbessern. Ein be

fragter Teamleiter des IT-DL betont die Wichtigkeit der Beziehungspflege zu den EVU.

Es sei Teil seiner Arbeit. Er musste seine Führungskraft aber erst überzeugen, dass durch

eine gute Beziehung die EVU z.B. eher Fehler verzeihen würden. Dazu gehört es, öfters

mal anzurufen, als direkter Ansprechpartner da zu sein und auch ehrlich und offen zu

sagen, was man nicht kann, um dadurch Vertrauen zu schaffen.

Doch obwohl die kooperative Softwaregestaltung der EVU mit dem IT-DL als ko

ordinierende Organisation nicht so gut funktioniert, ist ein direkter Austausch der

Beschäftigten zwischen IT-DL und EVU möglich. Für das IT-DL ist es von Vorteil,

wenn Ansprechpersonen und die internen Wege in den EVU bekannt sind. Weil das

IT-DL durch Outsourcing aus den EVU entstanden ist, haben einzelne Mitarbeitende

in den EVU noch alte Kontakte. Der befragte IT-Koordinator eines Fachbereichs von

EVU2 spricht trotz eigentlich vorhandener und vorgegebener formaler Wege über die

IT-Abteilung direkt mit dem IT-DL. Er betont die Vorteile direkter Kommunikation:

»Nichtsdestotrotz halte ich es für klug, wenn der Anforderer direkt mit dem Entwick
ler spricht, wenn es eben um das Customizing geht oder halt das Thema an sich, dass
das wirklich auch der Entwickler im O-Ton hört, was will der Anforderer eigentlich ha
ben. […] Bevor ich das dann hier auf drei DINA4 Seiten runter beschrieben habe, das
macht dann keinen Sinn, dann spricht man lieber.« (IT-Koordinator EVU2)

Da nun EVU2 selbst anfängt, Softwaregestaltung für fachbereichs- und organisations

übergreifende Projekte zu organisieren, muss es erst noch lernen, mit den Spannungen

aufgrund von Hierarchien und Abteilungsgrenzen umzugehen, und eine gemeinsame

Sprache finden. Der Projektleiter aus EVU2 beschreibt ausführlich, wie er initial zwi

schen den verschiedenen Bereichen horizontal interdisziplinäre Kontakte geknüpft hat.

Er hat Termine gemacht, damit die verschiedenen im Projekt involvierten Fachberei

che die Perspektive der anderen kennengelernt haben. Das folgende Zitat zeigt, dass be

stehende Strukturen erhalten und informelle Kontakte aus dem Projekt heraus bestehen

bleiben, eine gemeinsame Wissensbasis entsteht und ein Austausch unabhängig von der

Projektleitung stattfinden muss:

»Ich persönlich bin hergegangen und habe die Kolleginnen und Kollegen quasi zu
sammengenommen und habe versucht, jeweils die Sichtweisen der anderen darzu
stellen. Das heißt, die kaufmännischen Kollegen haben was mitbekommen von den
technischen Kollegen, was deren ihre Hauptaufgabe ist – auch andersherum. Und,

8. Formen und Folgen der Softwaregestaltung – die Empirie 211

dass jeder ein Gefühl bekommt für die Tätigkeit der anderen, dass man einen Blick
hat, dass man versteht, was wird benötigt vom anderen und was kann der überhaupt
liefern. Was ist der in der Lage…? Um erst mal ein Gefühl für den Gesamtprozess zu be
kommen. Und entsprechende Anpassungen wurden dann auch gemeinsam diskutiert.
Das hat anfangs ein bisschen länger gedauert, weil natürlich die Sichtweise nicht da
war. Aber gerade jetzt, am Ende des Projektes, zeigt sich, dass das wirklich auch nicht
die schlechteste Entscheidung war, Ressourcen dafür zu verwenden, weil dann auch
im wirklichen Tagesgeschäft das Know-how vorhanden ist. Da brauchen wir es. Und
die Kontakte sind geknüpft. Das heißt, nicht als Projektleiter die zentrale Funktion
zu sein und zentrale Kommunikation, sondern die Kolleginnen und Kollegen sollten
direkt miteinander auch kommunizieren, sich austauschen, ein Gefühl für die Arbeit
der anderen bekommen.« (IT-Projektleiter EVU2)

Laut dem befragten IT-Projektleiter gibt es Kommunikationshürden durch das Hierar

chiedenken z.B., wenn er die IT-Koordinatoren einbeziehen muss, diese aber keine fach

bereichsübergreifenden Entscheidungen fällen können. Zudem würde der IT-Abteilung
der Einblick in die tägliche Arbeit der Fachbereiche fehlen. Sie habe keine Vorstellung
über die Probleme der Fachbereiche und aus seiner Sicht arbeitet sie nicht lösungsori

entiert.
Auch aus Sicht des IT-Koordinators aus dem Fachbereich sind Hierarchien das Pro

blem. Die operative Zusammenarbeit unter Mitarbeitenden unterschiedlicher Bereiche
funktioniert dagegen gut:

»Also, Ingenieure untereinander, die sind sich einig und zwar, da ist es völlig wurscht,
ob die aus drei unterschiedlichen Bereichen kommen. Und es ist eben auch die Erfah
rung, die wir bei uns gemacht haben und auch immer noch machen: Auf der operati
ven Basis funktioniert alles wunderbar, ja. Die Probleme fangen in den Führungsebe
nen an, weil da andere Befindlichkeiten ins Spiel kommen, die wir meistens auch gar
nicht kennen.« (IT-Koordinator Fachbereich EVU2)

Bei den Fachbereichen setzt, wenn es um IT-Budget oder um zu erreichende Ziele geht,
bei den Führungskräften ein Silodenken ein: Wer muss bezahlen? Wer bekommt die An

erkennung? Dies ist ein weiteres Beispiel dafür, wie innerhalb der EVU das Hierarchie

denken die kommunikativen Beziehungen behindert und bei Softwaregestaltung inner

halb von EVU der direkte Austausch nicht unbedingt einfacher ist.

Digitale Werkzeuge: Ticketsysteme, MS Excel und E-Mails
In dem Fall zeigt sich die typische Verwendung von digitalen Werkzeugen für die Soft

waregestaltung. Allerdings ist sie weniger eindeutig auf die Typen von zentralisierten
oder dezentralen Arbeitsprozessen zurückzuführen. Auch hier liegt es daran, dass, an

ders als bei KOOP1, die Softwaregestaltung wieder mehr die EVU übernehmen, auch was
deren Koordination anbelangt.

Zwar hat das IT-DL ein Ticketsystem. Dies nutzen die EVU aber weniger, um die von
ihnen koordinierte Softwaregestaltung zu organisieren, als vielmehr dem IT-DL Anfor

derungen zur Umsetzung zu übergeben. Wie bei KOOP1 können die EVU mithilfe dieses

212 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Ticketsystems die Arbeit des IT-DL kontrollieren. Dazu gehört die Kontrolle vereinbarter

SLA zwischen IT-DL und EVU oder die Tickets mit einer Priorität zu versehen.

Zusätzlich dazu verwendet EVU2 ein Ticketsystem der ERP-Software von SAP für

die Umsetzung von Anforderungen. Für die Erarbeitung und den Austausch über Anfor

derungen setzt es MS Excel und E-Mails ein. Weil es die Koordination der Umsetzung

der Softwaregestaltung selbst übernimmt, nutzt das EVU zudem noch die Ticketsyste

me anderer Softwarefirmen und IT-DL, mit denen es zusammenarbeitet. So nutzt es die

digitalen Werkzeuge sowohl für direkten, dezentralen Input als auch für Transparenz bei

zentralisierter Softwaregestaltung. Es gibt nicht das eine Werkzeug, um die Kommuni

kation zentral zu kontrollieren.

Softwaretechnischer Zuschnitt: Synergien über gemeinsame Projekte und Release des IT-DL
So wie auch der Arbeitsprozess der Softwaregestaltung nicht klar zentralisiert ist, zeigt

sich in dem Fall auch nicht der entsprechend typische softwaretechnische Zuschnitt ei

nes Standards. Es zeigt sich ein Flickenteppich aus Standard von SAP, durch das IT-DL

gestaltetem Standard, durch EVU gestaltetem Standard und individuellen Anpassungen

und Erweiterungen. So reizen die EVU in diesem Fall die Möglichkeiten eines gemein

samen IT-DL nicht aus, zusammen Synergien zu heben.

Der Release an Softwareänderungen des IT-DL für einen gemeinsamen Standard

konzentriert sich vor allem auf einzelne Regulierungen, die sämtliche EVU umsetzen

müssen. Doch auch dieser gemeinsame Release bzw. der durch das IT-DL für mehrere

EVU entwickelte Softwareteil war für einige Jahre ausgesetzt. Ein anderer Weg zu Syner

gien sind gemeinsame Projekte, bei denen die EVU unabhängig vom IT-DL gemeinsam

einen Standard gestalten, wie dies in dem oben geschilderten Projekt von EVU2 passiert

ist.

Anders als bei KOOP1 gibt es keine abgestimmte Systematik zwischen den EVU, was

sie als gemeinsamen Standard und was sie individuell gestalten. Für die Untersuchung

wäre es daher ein nicht abzuschätzender Aufwand gewesen, genau herauszufinden, wel

ches EVU was individuell gestaltet und wo es einem Standard folgt.

8.3.2.5. PAKET: zentrale Softwaregestaltung durch eine Softwarefirma

In dem Fall gestaltet eine Softwarefirma eine industriespezifische Standard-ERP-Soft

ware, bei der die EVU nur individuelle Einstellungen vornehmen können. Entsprechend

existiert ein zentralisierter Arbeitsprozess der Softwaregestaltung der Softwarefirma

mit den typischen Rollen und Abläufen zur Koordination, die Verhandlungen zwischen

Softwarefirma und EVU über den Standard zulassen. Doch da innerhalb der Software

firma interdisziplinäre Teams existieren, ist sie nicht ausschließlich auf den Input der

EVU angewiesen. Zudem ist allgemeines Branchenwissen wichtiger für die Gestaltung

der Branchen-Standardsoftware als Wissen über spezifische Arbeitsabläufe in einem

EVU. Deswegen spielen die Anwendenden bei der Softwaregestaltung nahezu keine Rol

le. Jedoch: Da die EVU dezentral Einstellungen an der Software vornehmen können, gibt

es intern in den EVU noch eine dezentrale Softwaregestaltung, die sich darum kümmert

– mit den entsprechenden Rollen und Abläufen. In dem Fall spielen die organisations-
und abteilungsübergreifenden kommunikativen Beziehungen eine geringere Rolle als

8. Formen und Folgen der Softwaregestaltung – die Empirie 213

in den anderen Fällen. Dies ist zum einen so, weil die Softwarefirma (SF) spezialisiert
auf die Softwareentwicklung ist und dort interdisziplinäre Teams existieren, die sich
direkt austauschen können. Zum anderen ist zwar der Austausch zwischen EVU und SF
wegen der Marktbeziehung stark formalisiert und die Spannungen aufgrund der unter

schiedlichen Interessen von EVU und SF fallen auf. Allerdings ist die Kommunikation
zwischen EVU und SF weniger wichtig für die Softwaregestaltung der ERP-Software,
weil diese hauptsächlich von der Softwarefirma ausgeht. Nur mit einzelnen, ausgewähl

ten EVU gibt es eine engere, kooperative Zusammenarbeit für die Softwaregestaltung.
In dem Fall dient das Ticketsystem der Softwarefirma entsprechend vor allem dazu,
die Kommunikation und die Umsetzung von Anforderungen und Fehlern (die den EVU
in der Anwendung auffallen) zu kontrollieren. Dadurch, dass die Softwarefirma für
viele EVU einen Standard entwickelt, schöpft sie die Möglichkeiten an Synergien in der
Softwaregestaltung stark aus. Gleichzeitig gibt es durch die Einstellungsmöglichkeiten
an der Software begrenzten Spielraum für individuelle Softwaregestaltung durch die
EVU.

Rollen: verteilte Fachexpert:innen zwischen allgemeinem Branchen-
und firmenspezifischen Anwendungswissen
Wie für einen zentralen Arbeitsprozess der Softwaregestaltung typisch, bestehen an
die Rollen vor allem die Erwartungen, die Softwaregestaltung zu koordinieren und
den Standard zu gestalten. Zusätzlich existieren innerhalb der EVU noch Rollen, um
individuelle Einstellungen an der ERP-Software vorzunehmen.

Die Softwarefirma koordiniert die Softwaregestaltung: ob in ihren interdisziplinären
Teams, durch Projekte mit EVU oder durch Arbeitskreise, zu denen Fachleute bzw. fach

liche Repräsentant:innen aus den EVU eingeladen sind. Eine Rolle ist der Lösungsarchi

tekt. Er koordiniert Erweiterungen der Standardsoftware. Er prüft, was in der Branche
an neuen Anforderungen entsteht, und entscheidet dann, was die Softwarefirma selbst
umsetzt und was sie anderen Softwarefirmen überlässt. Zum Beispiel deckt die Soft

warefirma beim Thema Abrechnung von Strom aus E-Auto-Ladesäulen mit ihrer Soft

ware nicht das Auslesen der Strommenge aus der Ladesäulen ab, weil es dafür Angebote
anderer Unternehmen gibt. Daneben hat die Softwarefirma IT-Beratende. Sie nehmen
Anforderungen von den EVU auf und Einstellungen an der Standardsoftware vor und
unterstützen darüber hinaus die EVU bei der Anwendung des Standardprodukts.

»Also, der reguläre Weg ist, wir haben den Consultant, der nimmt dann sozusagen
unsere Anforderungen auf und dann geht das [Softwarefirma]-intern weiter.« (Team

leiterin Abrechnung EVU5)

Außerhalb der Softwarefirma bringen fachliche Repräsentant:innen der Branche sich in
Arbeitskreisen bei der Gestaltung des Standards ein. So sind von den vielen EVU, welche
die Software nutzen, nur wenige an der Gestaltung beteiligt.

In den EVU gibt es mal mehr und mal weniger interne Beschäftigte, die sich um einen
optimalen Einsatz der Software kümmern können, dafür Einstellungen an dieser vor

nehmen und einen hohen Grad an Automatisierung garantieren. Wenn EVU solche in

ternen Rollen haben, handelt es sich meist um Key User:innen oder Anwendungsbetreu

214 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ende. Key User:innen nehmen Anforderungen auf, nehmen Einstellungen an der Soft

ware vor, geben Tickets an die Softwarefirma auf oder informieren die Anwendenden

über Änderungen an der Software.

»Ja, also, die [Anwender] bringen sich ein. Das sind ja auch die, die immer am leben
den Objekt… Die wissen ja noch mehr, was sie brauchen, damit sie diesen Prozess be
arbeiten können. […] Also, der Key User sammelt das alles ein.« (Teamleiter Abrech
nung EVU5)

Anwendungsbetreuende haben meist noch eine übergreifende Perspektive auf das Sys

tem und nehmen Prozessoptimierungen vor.

»Weil es natürlich auch oft so ist, dass man schauen muss, wie man eben seine eige
nen Prozesse in die neue Software implementiert und dann erst mal schauen muss,

wie funktioniert es eigentlich? Was kommt da hinten raus?« (Anwendungsbetreuung
EVU3)

In dem Fall zeigt sich die für Rollen in der Softwaregestaltung typische situative Ausge

staltung, wie die, dass es z.B. mal nur Key User:innen gibt und mal auch noch Anwen

dungsbetreuende. Zudem gibt es mehr Führungskräfte als in den anderen Fallstudien,

welche die Software gestalten. Es gibt Team-/Gruppenleitende, die durch ihre langjäh

rige Erfahrung mit der Software Systemwissen aufgebaut haben und wegen ihres fach

lichen Know-hows eine vermittelnde Rolle zwischen Software und Anwendung spielen.

Mal arbeiten sie am Schreiben von Anforderungen mit (Teamleiter EVU5), mal nehmen

sie in geringem Umfang selbst Einstellungen an der Software vor (Gruppenleiter EVU4).

Ablauf: innerhalb und zwischen Organisationen – etablierte Kommunikationswege

in der Softwarefirma und Einbindung von Branchenexpert:innen
Das Sammeln und Ausarbeiten von Anforderungen erfolgt in diesem Fall maßgeblich

durch die Softwarefirma. Das heißt, zentral schreibt die Softwarefirma Konzepte und

holt sich die Meinungen der EVU über verschiedene Wege ein, z.B. in gemeinsamen Tref

fen wie Arbeitskreisen, um über den Standard zu verhandeln. Nur in Ausnahmefällen

schreiben die EVU selbst die Konzepte. Weil die Softwarefirma die Hoheit hat, was in den

Standard kommt, muss der Ablauf selten tiefergehende inhaltliche Konflikte zwischen

den EVU lösen. Weil es um einen Branchenstandard geht, sind die Gestaltungsnetzwer

ke vor allem auf Branchenexpert:innen begrenzt und schließen weniger individuelle An

wendende ein. Die Feedbacks zwischen EVU und SF reduzieren sich dann meistens auf

Fehler und Tests und finden, was die Softwaregestaltung betrifft, mehr innerhalb der

SF statt. Dafür setzt sie verschiedene Methoden zentral in der Softwarefirma (agile wie

Scrum, Wasserfallmodell, Teamarbeit, Projekte) und zentralisiert für die Softwarege

staltung (Projekte, Arbeitskreise, Anwendendengruppen, Entwicklungskooperationen)

ein.

In den (Fach-)Arbeitskreisen treffen sich mehrere EVU und einige Vertreter:innen

der SF mindestens zweimal im Jahr, um über Details einzelner, dringender Themen zu

sprechen. 10–15 Personen im Schnitt sprechen über aktuelle Umsetzungen und Anfor

8. Formen und Folgen der Softwaregestaltung – die Empirie 215

derungen. Die Mitglieder sind von der SF ausgesuchte Mitarbeitende aus EVU, die für
ihre Expertise bekannt sind. Die Softwarefirma stellt erste Entwurfsfassungen von Kon

zepten vor und die EVU können eigene Vorschläge einbringen. Es werden Prozesse und
Eingabemasken besprochen und ggf. gezeigt. Teilweise erstellen Mitarbeitende der EVU
einzelne Kapitel der Konzepte.

»Es gibt sogenannte Facharbeitskreise und da wirken wir immer mit und es gibt quasi
gewisse… Es gibt dort die Fachabteilung Abrechnung. Es gibt den technischen Netz
betrieb, es gibt Marktkommunikation. Und dort sind jeweils Kollegen von uns, die
dann natürlich aufmerksam auch die Gesetze lesen und die Veränderungen und ge
ben dann der [Softwarefirma] Hinweise. Oder: Wir hätten das gerne so und so und
könnt ihr das nicht so bauen?« (Gruppenleiter EVU3)

Die Herausforderung bei zentralisierter Softwaregestaltung, nicht nah an Anwenden

den dran zu sein, löst PAKET durch Prototyping, z.B. indem es laut Befragten ca. zwei
von drei Anforderungen agil umsetzt, d.h. erst ein Grundgerüst programmiert und dann
auf Basis von Feedback durch die EVU kontinuierlich weiterentwickelt. In anderen Fäl

len stellt die Softwarefirma umgesetzte Features in einer Web-Konferenz ausgewählten
Anwendenden vor, um Feedback zu erhalten.

Dabei kann der interdisziplinäre Austausch innerhalb der Softwarefirma sehr inten

siv und kontinuierlich erfolgen, was ein Vorteil der Zentralisierung ist:

»Es wird meistens ein zumindest grobes fachliches Konzept vorgegeben und alles wei
tere, die konkrete fachliche Ausprägung und so, das wird dann mit den entsprechen
den Spezialisten für die Prozesse dann geklärt und dokumentiert.« (Programmierer)

In den Teams der Softwarefirma, die jeweils für einen Teil der ERP-Software zuständig
sind, gibt es tägliche Besprechungen wegen neuer Anforderungen vor allem wegen neuer
Regulierung (typischerweise ohne Anwendende oder EVU). Im Team des befragten Pro

grammierers gibt es drei, vier Jour fixes die Woche und dann zwei, drei abhängig von
Ereignissen, Problemen etc., über die man reden muss.

Die Ausnahme stellt EVU5 dar, das erst vor kurzem die ERP-Software eingeführt hat.
Weil das EVU einige Eigenheiten hat, die bisher die Standardsoftware nicht berücksich

tigt, gibt es eine engere Zusammenarbeit – eine Art Entwicklungskooperation. Es gibt
regelmäßigen Austausch zwischen dem EVU und der Softwarefirma. Die befragte Grup

penleitung aus EVU5 hat zusammen mit Key User:innen einmal in der Woche einen Ter

min mit der Softwarefirma und deren Programmierenden.
Neben der Teilnahme an der Konzeptionierung für den Branchenstandard leisten

die EVU eine wichtige Qualitätskontrolle/-verbesserung, indem sie Tests durchführen
und Fehlermeldungen zu neuen Versionen der Software aufnehmen. Wie auch bei der
Konzeptionierung machen die EVU dabei in unterschiedlichem Ausmaß mit (tendenzi

ell eher die größeren EVU).

216 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Kommunikative Beziehungen: zwischen reiner Zulieferbeziehung, Formalisierung

und partnerschaftlicher, direkter Kommunikation

Die für einen zentralen Arbeitsprozess der Softwaregestaltungen typischen spannungs

geladenen und bürokratischen Beziehungen existieren in dem Fall. Wobei einige der

EVU gut mit der reinen Lieferbeziehung leben können. Andere wünschen sich einen

partnerschaftlichen Umgang, um das komplizierte Produkt besser einsetzen zu können.

So oder so geht es in diesem Fall zwischen EVU und Softwarefirma weniger um die Ge

staltung der Software als um die Qualität eines Standardprodukts und welche Aufgaben

die Softwarefirma als Zulieferunternehmen darüber hinaus hat. Nur wenige EVU arbei

ten bei der Gestaltung der Software enger mit der Softwarefirma zusammen.

Wie für einen zentralisierten Arbeitsprozess der Softwaregestaltung typisch, wollen

die EVU in erster Linie eine funktionierende Standardsoftware. Deshalb existieren zwi

schen Softwarefirma und EVU nicht immer kommunikative Beziehungen. Ein Befragter

spricht von »reine[r] Dienstleistungsbeziehung« (Teamleiter EVU2). Für einen anderen

Befragten ist die Beziehung erst einmal nicht wichtig, weil die Software einfach funktio

nieren soll. Er erwartete, dass die Softwarefirma Fehler oder Anforderungen terminge

recht behebt bzw. umsetzt. Teilweise kommt es zu Eskalationen aufgrund von zu langsa

mer Umsetzung. Der Teamleiter aus EVU2 ist misstrauisch und hat den Verdacht, dass

größere EVU schneller Rückmeldung bekommen. Er ist davon genervt, dass er immer

nachfragen muss, wenn es länger dauert.

Doch ist die industriespezifische ERP-Software ein zu kompliziertes Produkt, als

dass immer eine bloße Auslieferung ausreicht. Einige EVU haben deshalb die Erwar

tung, dass die Beziehung darüber hinausgeht. Für einige befragte EVU hat die Soft

warefirma, obwohl nicht vertraglich fixiert oder Teil des Produkts, eine Bringschuld.

Sie kommt nicht auf die EVU zu, um auf Verbesserungsmöglichkeiten, Einstellungs

möglichkeiten oder (neue) Funktionalitäten hinzuweisen. Ein Befragter merkt manch

mal nur durch Austausch mit anderen EVU, was noch mit der Software möglich wäre.

Ein EVU hat erst durch Umstieg auf ein neues Lizenzmodell gemerkt, was es noch alles

für Module gibt. Aus der Sicht eines anderen Befragten wäre es partnerschaftlich, wenn

mehr Austausch als dringend notwendig stattfinden würde. In Einzelfällen gibt es das

und dann ist es ein Geben und Nehmen: Laut Befragten existieren bei Tickets, die schwer

zu beschreiben sind und deshalb ausführlicher ausfallen, engagierte Mitarbeitende der

Softwarefirma. Diese rufen an und geben Tipps und notwendige Hintergrundinforma

tionen, was das Problem sein könnte und wie es zu lösen ist.

Das Gegenteil zur reinen Zulieferbeziehung sind die engeren Beziehungen der Soft

warefirma mit EVU, mit denen sie gemeinsam Innovationsprojekte macht oder langfris

tig bei der Gestaltung des Standards zusammenarbeitet. Mit diesen EVU ist die Zusam

menarbeit »partnerschaftlich« (Lösungsarchitekt Softwarefirma).

In diesem Fall verwenden viele EVU und ihre unzähligen Anwendenden eine Stan

dardsoftware und es steht ihnen nur das Ticketsystem und andere formale Wege der

Kommunikation mit der Softwarefirma offen. Weil die Softwarefirma eine große Kund

schaft hat, ist eine stärker formalisierte Kommunikation notwendig. Dies hat Nachteile

und Befragte ziehen die direkte Kommunikation vor:

8. Formen und Folgen der Softwaregestaltung – die Empirie 217

»Also, wenn man einen direkten Draht hat, dann ist es gut. Dann läuft es. Aber die
Kommunikation rein über das Ticketsystem ist… Meiner Meinung nach verhindert das
eine schnelle Lösung.« (Gruppenleiter Abrechnung EVU5)
»Da ist es in der Kommunikation meistens wesentlich einfacher, wenn man direkt
mit dem Kunden dann spricht und sagt: ›Hier, wie siehts aus?‹ Mit dem Bearbeiter
halt wirklich, weniger dann mit den Entscheidungsebenen, sondern mit dem Benut
zer wirklich der Software.« (Programmierer)

Unabhängig, ob Ticketsystem, E-Mail oder Telefon: Einige befragte Personen betonen
auch bei der zentralisierten Softwaregestaltung den Vorteil, wenn es langfristige An

sprechpersonen und Netzwerke in der Softwarefirma gibt und man die gleiche Sprache
spricht. Im EVU5 gibt es einen Mitarbeiter, der Programmierer in der Softwarefirma war
und nun Berater ist und der beide Seiten versteht: Er kann die Anforderungen und Pro

bleme der Anwendenden verstehen und weiß zugleich, was mit der Software möglich ist.
Eine Befragte hat die Erfahrung gemacht, dass eine höfliche, sehr klar formulierte und
gradlinige Kommunikation hilft, schnellere Antworten zu bekommen. Kolleg:innen, die
das nicht machen, sind schon »auf die Nase gefallen« (Anwendungsbetreuerin EVU3).

Digitale Werkzeuge: Ticketsystem – digitale Vernetzung und Detaillierung
In dem Fall setzt die Softwarefirma digitale Werkzeuge für eine zentralisierte Software

gestaltung auf typische Weise ein: um die Softwaregestaltung zu koordinieren und zu
kontrollieren und weniger, damit Anwendende direkt Anforderungen aufnehmen kön

nen. Es geht darum, die Kommunikation und den Fluss an Fehlern und Anforderungen
der umfangreichen Kundschaft der Softwarefirma zu kontrollieren. Zwei Befragte mein

ten, dass 90 % der Zusammenarbeit mit der Softwarefirma über Tickets läuft. Der Rest
sind E-Mails an konkrete Ansprechpersonen. Ein anderer Interviewter meint, dass alles
über Tickets läuft. EVU3 gibt ca. 400 Tickets im Jahr auf. Für die Sortierung der Tickets
können die EVU eine Priorisierung hinterlegen und haben drei Typen zur Auswahl: An

forderungen, Fehler oder Unterstützung. In der Softwarefirma gibt es Ticketmanagen

de, deren Aufgabe es ist, ein Auge auf sämtliche Tickets zu haben, und wenn z.B. etwas
eskaliert, leiten sie es an das mittlere Management oder eine Teamleitung weiter.

Softwaretechnischer Zuschnitt: zentrale Standardisierung und Priorisierung durch die Softwarefirma
Der für einen zentralen Arbeitsprozess der Softwaregestaltung typische softwaretechni

sche Zuschnitt für einen Standard zeigt sich in diesem Fall sehr klar. Dabei ist die Kon

sensfindung über den Standard in der Softwarefirma zentralisiert. Sie hat letztendlich
die Entscheidungshoheit. Größere EVU haben mehr Einfluss u.a. durch die Teilnahme
an Arbeitskreisen. Bei kleineren EVU geht es vor allem um eine günstige Software. Sie
folgen dem Standard, weil das für sie billiger ist.

»Bei kleineren ist es wirklich ein reines Kostending. […] Bei größeren Werken wollen
auch zwar die Kosten senken, möchte aber gerne immer ganz viel individuelles Zeugs
beibehalten.« (Lösungsarchitekt Softwarefirma)

218 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Laut drei Befragten haben große EVU mehr Einfluss auf die Software. Dies liegt daran,

dass ihr Kundenstamm größer ist und ein Fehler in der Software dementsprechend kost

spielig und folgenschwer sein kann. Zwischen Kosten und Anpassungen muss jedes EVU

für sich eine Lösung finden.

»[ERP-Software] ist ein Standard und das Stadtwerk [Name] oder was auch immer,

hat aber kein Interesse, weil der hat fünf Fehler davon und wir haben vielleicht 5000
Fehler davon. Dann haben wir natürlich ein viel höheres Interesse daran, dass es […]
die Software das vollumfänglich abarbeitet.« (Gruppenleiter EVU3)

Es ist noch einfacher als bei KOOP1, im zentralisierten Softwaregestaltungsprozess

regulatorisch notwendige Umsetzungen oder solche, die sämtliche EVU betreffen,

in den Standard aufzunehmen. Wenn einzelne EVU sich nicht dem Standard unter

ordnen, dann vor allem bei wettbewerbsdifferenzierenden Prozessen, z.B. wenn EVU

Anschreiben oder Rechnungen an ihre Kundschaft senden:

»Ich habe schon das Gefühl, wir werden so ein bisschen in die Standardlösung ge
presst. Wir haben immer noch sehr individualisierte Schreiben und so weiter. So viele
Sachen, die sind für uns grundsätzlich unumstößlich. Wir werden jetzt keine Stan
dardschreiben rausschicken wie 90 Prozent der [Software]-Anwender. Die müssen

schon individualisierbar sein.« (Anwendungsbetreuung EVU3)

8.3.2.6. KOOP3: zentrale Softwaregestaltung durch Softwarefirma

in Ko-Produktion mit IT-DL
In dem Fall nutzen die beteiligten Organisationen beide Möglichkeiten der Softwarege

staltung: Die Softwarefirma gestaltet eine Standard-IoT-Software und das IT-DL und

einige EVU erweitern diese individuell. Das heißt, für den Kern der Software existiert

ein zentraler Arbeitsprozess der Softwaregestaltung. Das Besondere ist aber nun im

Unterschied zu den vorhergehenden Fällen, dass Hierarchien und Marktbeziehungen,

auch wenn sie zwischen und innerhalb der Organisationen vorhanden sind, kein Hin

dernis für die Softwaregestaltung darstellen. Denn die kommunikativen Beziehungen

zwischen IT-DL und SF sind sehr kooperativ, direkt und durch eine interpersonale

Beziehungsfähigkeit gekennzeichnet, wodurch die Mitarbeitenden Konflikte informell

lösen. Zusätzlich dazu sind nur wenige an der Softwaregestaltung beteiligt und die in

terdisziplinären Wissensgrenzen sind gering, wodurch sich letztendlich Anforderungen

unkompliziert aufnehmen, ausarbeiten und umsetzen lassen. So kombiniert der Fall

in den Rollen und Abläufen Eigenschaften einer zentralisierten und dezentralen Soft

waregestaltung. Letztendlich kann von einer Ko-Produktion gesprochen werden, weil

IT-DL und Softwarefirma beide ein Interesse daran haben, dass das IoT-Kernmodul der

Softwarefirma weiterentwickelt wird, alle ihren Teil kooperativ beitragen und das IT-DL

eigene Module an das Kernmodell andockt. Anders als bei PAKET existiert zwischen

IT-DL und Softwarefirma keine reine Lieferbeziehung. Was in den Standard des IoT-
Kernmoduls kommt, darüber entscheidet aber letztendlich die Softwarefirma.

8. Formen und Folgen der Softwaregestaltung – die Empirie 219

Rollen: Projektmanager, Account Manager, Product Owner
Das Besondere an dem Fall ist, dass zwar die für einen zentralisierten Arbeitsprozess
einer Standardsoftware typischeren koordinierenden Rollen existieren. Diese verteilen
sich aber auf Softwarefirma, IT-DL und einzelne EVU. Anders als für eine zentralisierte
Softwaregestaltung typisch, sind die Rollen weniger spezialisiert, weil die Implementie

rungsprojekte, welche die Hauptquelle von neuen Anforderungen sind, nur wenige Be

teiligte haben. So mischen sich in den Rollen die Aufgaben des Koordinierens, der Auf

nahme und der Ausarbeitung von Anforderungen.
Die besondere Aufgabe des IT-DL ist es in diesem Fall, in die Energiewirtschaft zu

vermitteln. Er hat Rollen, die zwischen EVU und Softwarefirma koordinieren und zu

gleich Anforderungen sammeln und an die Softwarefirma übergeben, damit diese in
die Standard-IoT-Software einfließen. Der Product Owner des IT-DL beschäftigt sich
unabhängig von einzelnen IoT-Implementierungsprojekten kontinuierlich mit der Wei

terentwicklung der IoT-Standard-Datenplattform. Darüber hinaus betreut er die vom
IT-DL selbst entwickelten individuellen Module.

Einzelne EVU setzen sich intensiver mit dem Thema IoT auseinander und schaffen
interne Positionen dafür. Ein befragtes EVU hat einen eigenen Product Owner für IoT
etabliert. Er spricht sich intern mit Projektleitenden ab, welche die Implementierungs

projekte durchführen. Er ist Ansprechpartner für die eigene Kundschaft (das EVU be

treut andere EVU).
In der Softwarefirma selbst gibt es Rollen, welche die Zusammenarbeit mit dem

IT-DL und den EVU koordinieren, wobei sie auch Anforderungen sammeln und ausar

beiten. Wenn die Softwarefirma selbst Kontakt zu den EVU hat, dann vor allem über
Projektmanagende. Das ist aber selten, weil die Zusammenarbeit mit EVU meist über
das IT-DL läuft. Sie nehmen Anforderungen auf und geben sie an die Programmie

renden weiter. Der Account Manager der Softwarefirma ist für den ersten Kontakt mit
interessierten Unternehmen zuständig, bevor es zur technischen Umsetzung kommt.
Er und das Projektmanagement haben, wie es für eine Standardlösung typisch ist, auch
noch die Aufgabe, die Kundschaft zu beraten und ihre Erwartungen mit den Möglich

keiten der Software in Einklang zu bringen. Es geht darum, die Kundschaft darauf
einzustellen, welche Gestaltungsmöglichkeiten es gibt und wann eine Anforderung Teil
des Standards wird.

Ablauf: Anforderungstreffen, Projekte, Scrum
Auch wenn es sich in dem Fall um eine zentralisierte Softwaregestaltung handelt, Soft

wareanwendung, -gestaltung und Programmierung nicht in einer Organisation stattfin

den und unterschiedliche Treffen Anforderungen für den Standard zum Thema haben:
Sammeln und Ausarbeiten bilden jeweils gleichwertige Schwerpunkte des Ablaufs, weil
aufgrund der wenigen Beteiligten die Koordination weniger kompliziert als in anderen
Fällen ist. Zudem sind in diesem Fall trotz der zentralen Softwaregestaltenden Verhand

lungen und Konfliktlösungen kein wesentlicher Bestandteil des Ablaufs. Er ist unbüro

kratisch.
Um zentral über energiewirtschaftliche Anforderungen zu sprechen, gibt es monat

liche Treffen zwischen dem IT-DL und der IoT-Softwarefirma. Dort übergibt das IT-DL

220 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Anforderungen an die Softwarefirma und beide diskutieren über sie. Die Anforderun

gen stammen aus IT-Projekten mit EVU und den dabei stattfindenden (wöchentlichen)
IoT Jour fixes. Dort haben IT-DL und EVU Anforderungen gesammelt und über sie dis

kutiert, um sie dann alle ein, zwei Monate in dem Termin mit der Softwarefirma zu be

sprechen.
Auch die IoT-Softwarefirma macht Implementierungsprojekte, in denen sie Anfor

derungen sammelt. Doch betreffen solche Projekte meist Kundschaft außerhalb der En

ergiewirtschaft.
Intern nutzt die Softwarefirma für die Umsetzung und Ausarbeitung der Anforde

rungen Scrum. Diese iterative Entwicklungsmethode bietet sich an, weil auch die Anfor

derungen iterativ entstehen: peu à peu durch die Implementierungsprojekte oder neuen
Ideen der Softwarefirma, des IT-DL oder der EVU.

Kommunikative Beziehungen: Reziprozität und persönliche Beziehungspflege
Die für einen zentralen Arbeitsprozess der Softwaregestaltungen typischen bürokra

tischen und spannungsgeladenen Beziehungen gibt es nicht. Das liegt daran, weil
die Marktbeziehungen zwischen Softwarefirma, IT-DL und EVU und die Hierarchien
innerhalb der Organisationen die Kommunikation nicht behindern. Es gibt direkte
Kommunikation unabhängig von Hierarchien oder Verträgen, basierend auf Rezi

prozität, gemeinsamem Mehrwert bzw. gemeinsamer Ko-Produktion, längerfristigen
Beziehungen und einer gemeinsamen Wissensbasis.

Das IT-DL kann durch längerfristige Zusammenarbeit und eigenes Know-how zu
IoT der Softwarefirma genau sagen, was zu tun ist und wo das Problem liegt. Es hat sich
zwischen beiden bereits eine gemeinsame Sprache etabliert. In diesem Zusammenhang
kommt dem IT-DL das umfassende Know-how zugute, das es im Laufe der Zeit zur IoT-
Software und deren Anwendung in der Energiewirtschaft erworben hat. Wenn Anforde

rungen direkt von den EVU kommen, ist das nicht immer der Fall. Dann ist es aufwendi

ger, zu einem gemeinsamen Verständnis zu kommen, damit letztendlich das umgesetzt
wird, was das EVU erwartet und aus Sicht der Softwarefirma möglich ist.

Konflikte sind kein Hemmnis für die Kommunikation, z.B. wenn das befragte EVU1
andere Erwartungen an einen Umsetzungszeitraum hat. IT-DL und EVU1 klären Kon

flikte informell z.B. via Telefon. Es findet ein Erwartungsabgleich statt. Die unerfüllten
Erwartungen und die divergierenden Vorstellungen werden angesprochen, was zur Kon

fliktlösung beiträgt.

»Ja, also Konflikte gab es auch mal. Ich sage mal, es passiert glaube ich relativ au
tomatisch mal. […] Aber ich glaube… Kein Konflikt der schriftlich erfolgt, sagen wir
es mal so. Ganz normal am Telefon oder persönlich. Man sagt, dass man das Thema
unprofessionell findet und eine andere Erwartungshaltung hat. So lief es bei uns auf
jeden Fall bis jetzt. […] Aber wir machen es immer rein auf der persönlichen Ebene.«
(Teamleiter IT EVU1)

Die Zusammenarbeit der Firmen ist geprägt durch Vertrauen und die Reziprozität der
Ko-Produktion. Der direkt erlebte und vorführbare Mehrwert in Form der Software, d.h.
die Daten aus den Sensoren in die bestehende IT-Landschaft der EVU zu integrieren,

8. Formen und Folgen der Softwaregestaltung – die Empirie 221

ist für die Beteiligten grundlegend für eine erfolgreiche Zusammenarbeit. Sowohl beim
IT-DL als auch beim befragten EVU1 ist es möglich, kleinere Piloten für IoT ohne größe

ren bürokratischen Aufwand durchzuführen. Stellenweise werden Projekte ganz ohne
Verträge gemacht, wie EVU1 berichtet:

»Also das sind so, ich will nicht sagen, bisschen Pilotcharakter oder, ich will nicht sa
gen, wie kann man das sagen: Einstieg zu einem ›proof of concept‹, zu einem neuen
Produkt, der aber noch keine vertragliche Relevanz hat. Also vertraglich irgendwie zu
gesichert ist. Sondern beide geben einen gewissen Aufwand rein, ohne ihn vorher zu
klassifizieren oder zu monetarisieren.
I: Aber es gibt Verträge bei solchen Projekten oder ist das komplett ohne Verträge?
B: Sehr oft ohne Vertrag.« (Teamleiter IT EVU1)

Das IT-DL hat den Vorteil gegenüber der Softwarefirma, dass es bereits länger in der
Energiewirtschaft aktiv ist und es die EVU kennen. Manche EVU sind Gesellschaftende
vom IT-DL. Das heißt, nicht nur die Beziehung zwischen IT-DL und Softwarefirma ist
eng, sondern auch jene zwischen IT-DL und EVU. Weder Markt noch Hierarchie prägen
allein die Zusammenarbeit. Verträge, partnerschaftliche Beziehungen und Projektkoor

dination vermengen sich.

»Wenn du den Kunden seit 20 Jahren kennst, dann sagst du: ›Du, pass auf, ich habe
das intern [im EVU] geklärt. Wir machen das jetzt, wir können das entwickeln. Aber
ich brauche noch drei Wochen, bis das durch den Einkauf geht.‹ Weil solche Prozesse
halt mal sehr langsam sein können. Dann sagen wir: ›Ja, okay, wir kennen uns seit 20
Jahren, wir gehen in die Entwicklung‹.« (Product Owner IT-DL)

Digitale Werkzeuge: Ticketsystem, Test-Accounts
In dem Fall zeigt sich in dem EVU die für digitale Werkzeuge typische Verwendung in
zentralen Arbeitsprozessen der Softwaregestaltung in abgeschwächter Form: Denn es
gibt zwar ein Ticketsystem der IoT-Softwarefirma, das vor allem dazu dient, die Anfor

derungen oder Fehler der diversen Kundschaft kanalisieren zu können. Ca. 100 Tickets
bearbeitet die Softwarefirma im Monat (Stand 2021). Doch wurde 2021 probeweise dem
IT-DL Zugriff auf das Ticketsystem gegeben. Er kann dadurch Tickets für die Software

firma nicht nur anlegen, sondern auch bearbeiten. Das sollen in Zukunft auch die EVU
können. Das hat den Vorteil, dass das IT-DL Anforderungen sieht und direkt mit dem
EVU reden kann, dass das jeweilige Ticket aufgenommen hat. So unterstützt das Ticket

system die Ko-Produktion, bei der zentral die Softwarefirma den Standard und IT-DL
und EVU dezentral individuelle Module programmieren. Sonst nutzt das IT-DL für die
Übergabe von Anforderungen aus den EVU an die Softwarefirma pragmatisch E-Mails,
Excel-Dateien oder andere Softwarelösungen. Wie für dezentrale Softwaregestaltung ty

pisch, dienen sie vor allem dazu, dezentral Anforderungen direkt aufzunehmen und zu
dokumentieren.

222 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwaretechnischer Zuschnitt: zentral durch IoT-Softwarefirma

In dem Fall zeigt sich der für einen zentralisierten Softwaregestaltungsprozess klare

Standard-Zuschnitt. Wobei zu diesem Schnittstellen gehören, so dass IT-DL oder EVU

dezentral individuelle Erweiterungen anlegen können.

Grundsätzlich legt die IoT-Softwarefirma die Priorisierung fest und teilt mit, bis

wann sie was umsetzt. Sie entscheidet darüber, was Teil des Standards wird. Nur

bei etwas Grundlegendem oder wenn mehrere EVU des IT-DL etwas wollen (laut ei

nem Befragten so ab drei bis vier EVU), konzeptionieren und priorisieren IT-DL und

Softwarefirma gemeinsam.

8.3.2.7. STARTUP: dezentral in Kreisen – eklektische Mischung
aus Holokratie und Scrum

In dem Fall liegt ein dezentraler Arbeitsprozess der Softwaregestaltung für eine indivi

duelle Software innerhalb von STARTUP vor. Von Anfang an hat STARTUP darauf ge

setzt, die Softwaregestaltung selbst in die Hand zu nehmen. Der Fall ist ein Beispiel für

den Primat der Softwareentwicklung einer Organisation. Deshalb gibt es innerhalb der

Organisation für den Arbeitsprozess keine Hürden durch Hierarchien oder Abteilungs

grenzen der Softwareanwendung. Es existiert vielmehr eine rollenbasierte Organisati

on, die stark darauf konzentriert ist, in einer Mischung aus Scrum und Holokratie Anfor

derungen auszuarbeiten und umzusetzen. Wie für einen dezentralen Arbeitsprozess der

Softwaregestaltung typisch, sind die kommunikativen Beziehungen offen, direkt, flexi

bel und werden durch ein gemeinsames Ziel gestützt. Neben einem Ticketsystem nutzt

STARTUP Chat-Kanäle, die den dezentralen Input von Gestaltenden, Programmieren

den und Anwendenden für Anforderungen ohne bürokratische Hindernisse erlauben.

Die individuell für die eigene Organisation gestaltete Software bietet STARTUP anderen

Organisationen wie Automobilfirmen als Standard-White-Label-Lösung an.

Rollen: Product Owner, Gründer, Solution Architect
Wie für einen dezentralen Arbeitsprozess einer individuellen Softwaregestaltung ty

pisch, bestehen an die Rollen vor allem die Erwartungen, Anforderungen aufzunehmen

und auszuarbeiten. So ist die befragte Product Ownerin sehr wenig mit Koordinati

on beschäftigt. Sie prüft die rechtlichen Voraussetzungen, z.B. wer bei Firmenwägen

die monetäre Pauschale bekommt, stimmt sich mit Behörden ab, entwickelt Road

maps für die Produktentwicklung und lässt Feedback des eigenen Support-Teams der

mobilen Anmeldungsapp in die Software einfließen. Zudem optimiert sie die Anmel

dungsprozesse und beantwortet besonders schwierige Support-Anfragen. Ganz ohne

Koordinierung geht es aber nicht.

»Ich muss alles im Blick haben und bin die Brücke zwischen Produkt-, Tech-Team und
Kommunikation. Ich koordiniere und kommuniziere intern (Meetings, Tickets, Pläne,
Dokumentation…).« (Product Ownerin Anmeldung E-Autos)

Einer der Gründer macht als Geschäftsführer bei der Softwaregestaltung mit. Er hat Pro

zesswissen zum Emissionshandel, übernimmt Aufgaben im Vertrieb, im Business Deve

lopment und ist auch an der Produktentwicklung beteiligt.

8. Formen und Folgen der Softwaregestaltung – die Empirie 223

»[Der] Geschäftsführer so Wirtschaftsinformatiker ist, der beide Seiten versteht. Und
das ist sehr, sehr fruchtbar, weil er versteht beide Sprachen: einmal die Wirtschaft

ler und einmal die Techies. Und dann ist er ein sehr guter Mediator und setzt dann
auch angemessene Prioritäten und Deadlines und so in Absprache auch mit uns.«
(Programmierer2)

Auch in dem Bereich, der sich um die Anmelde-Software kümmert, ist er als Moderator
tätig und wacht darüber, dass die Termine für die Teamtreffen stattfinden. Er agiert da

mit ähnlich wie ein Scrum Master. Neben diesen Kernrollen, die Anforderungen für die
Programmierenden schreiben, haben in der rollenbasierten Organisation auch noch an

dere als Teil ihrer Rolle, bei Bedarf an Konzepten mitzuschreiben: z.B. die Programmie

renden selbst, der Solution Architect oder Personen aus dem Kommunikationsbereich
von STARTUP.

Der Fall zeigt, wie andere Fälle auch, dass es den Arbeitsprozess der Softwaregestal

tung auszeichnet, dass Beteiligte je nach Konstellation auch mal mehrere Rollen ausfül

len – situativ angepasst und wechselnd. Wobei es hier so weit geht, dass alle gemeinsam
regelmäßig in dafür vorgesehenen Treffen darüber verhandeln, welche Rollen jemand
zusätzlich zu seiner Stammrolle übernimmt oder ob er gar seine Stammrolle wechselt.

Ablauf: Kreise, Scrum
Der Ablauf besteht primär, wie für einen dezentralen Arbeitsprozess der Softwarege

staltung typisch, im Ausarbeiten und Sammeln von Anforderungen. Die Organisation
ist von Anfang an auf die Softwaregestaltung ausgerichtet. Es besteht ein enger und
pragmatischer Austausch. Es stören keine Hierarchien oder althergebrachte, auf die
Softwareanwendung ausgerichtete Organisationsstrukturen dabei, die Möglichkei

ten der Softwaregestaltung auszuschöpfen – anders als bei einer Softwaregestaltung
innerhalb von EVU.

Der Ablauf der Konzeptionierung zeichnet sich durch direkte Feedbacks und den
direkten Austausch zwischen Anwendung, Gestaltung und Programmierung aus: Erst
trifft man sich in einem Kreis, dann werden die Anforderungen in Scrum-Arbeitswei

se abgearbeitet. Die offenen Anforderungen stehen im Ticketsystem Jira: im Backlog je

ne, die priorisiert sind, und auf dem Kanban-Board16 jene, die aktuell die Programmie

renden bearbeiten. An den Kreisen nehmen Product Owner:innen, Geschäftsführer und
Programmierende teil, um Aufgaben zu planen und Anforderungen für die Softwarege

staltung zu erarbeiten.
Der Produkt-Kreis für die Anmeldesoftware findet wöchentlich statt. Die Product

Ownerin lädt dazu Programmierende, bei Bedarf auch jemanden aus der Kommunika

tionsabteilung und, wenn auch selten, Kundschaft ein. Mit einem Kunden (einem Auto

mobilkonzern, der die App zur E-Auto-Anmeldung nutzt) hat STARTUP eng zusammen

gearbeitet, um dessen Bedürfnisse bei der Entwicklung zu berücksichtigen. Der Kreis

16 Darunter ist erst einmal nur die Visualisierung der Arbeitsschritte in eine Software gemeint und
nicht die Kanban-Methode. Meist ist die Darstellung ganz einfach und unterteilt die Aufgaben in
solche, die noch offen sind, gerade bearbeitet werden und abgeschlossen sind.

224 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

bespricht Konzepte und nimmt Ideen aus dem Support auf, worüber auch Anforderun

gen der Anwendenden einfließen. Den Backlog für die Programmierenden pflegt im Be

reich der Anmelde-Software »hauptsächlich« (Product Ownerin) die Product Ownerin.

Scrum lebt STARTUP im Bereich der App für die Anmeldung von E-Autos in folgen

der Version, was die enge und unkomplizierte Zusammenarbeit zwischen Gestaltenden

und Programmierenden verdeutlicht:

»Wir machen meistens einen Termin, in dem wir besprechen, was die Vorstellungen
sind und wie das dann technisch umsetzbar ist. Das halte ich fest und wir machen

erste Aufgabenstellungen daraus. Das wird dann bei den Scrum-Meetings gemeinsam

nochmal durchgegangen. Für [Teil des Start-ups] nehme ich dann Ideen und Entwick
lungen ab. In dem Scrum [Entwicklerteam eines Teils des Start-ups] sind 5 Personen,
aber niemand in Vollzeit. Wir machen keine täglichen Stand-ups, sondern nur wö
chentlich. Ansonsten machen wir Planning und Review inkl. Retro. Hinzu kommen

dann bei größeren Aufgaben auch das Epic-Planning. Es gibt feste Sprints.« (Product
Owner)

Auch diese Fallstudie zeigt, wie die Firmen für die Softwaregestaltung Methoden wie

Scrum anpassen. STARTUP setzt kein reines Scrum um. Zum Beispiel gibt es keine tägli

chen Treffen, die sogenannten Daylies. Größere Themen teilen die Beteiligten in mehrere

Aufgaben auf und deren Bearbeitung ist dann wieder in der Rollen- und Kreis-Struktur

organisiert.

Was STARTUP auszeichnet und typisch für dezentrale Softwaregestaltung ist: Ne

ben Product Ownern als übliche Anforderungsmanagende kann jede Person informell

Anforderungen an die Programmierenden stellen:

»Bei uns läuft da bei weitem nicht alles unbedingt die definierten Wege, sondern oft
viel pragmatischer. Wenn dann jemand von der Kommunikation direkt zu mir kommt

und sagt: ›Hey, ich hatte folgende spannende Idee und was hältst du davon?‹« (Pro
grammierer1)

Feedback ist zum einen nach dem zweiwöchigen Sprint dadurch möglich, dass die Pro

grammierenden »eigentlich immer« (Product Owner) Prototypen vorstellen. Zum ande

ren gibt es, wie in der Softwareentwicklung üblich, Tests. Die Tests laufen, typisch für

diesen Fall, unbürokratisch ab – »wie es grade passt« (Product Ownerin).

Für das Software-Modul zum Handel mit Emissionszertifikaten treffen sich die Be

teiligten dreimal wöchentlich. Dort ist zusätzlich noch ein Solution Architect im Kreis

mit dabei. Zum Zeitpunkt der Befragung wurde der Sprint-Zyklus ausgesetzt, weil es

einige dringende Themen abzuarbeiten galt, was die Flexibilität des dezentralen Ablaufs

verdeutlicht.

Kommunikative Beziehungen: flexibler, direkter und offener Austausch
In dem Fall existieren die für einen dezentralen Arbeitsprozess der Softwaregestaltun

gen typischen direkten und langfristigen Beziehungen und eine gemeinsame Sprache.

Die Befragten betonen den Vorteil direkter Kommunikation und wie offen und unkom

pliziert die Beziehungen die Kommunikation machen. Hemmnisse durch Hierarchien,

8. Formen und Folgen der Softwaregestaltung – die Empirie 225

Abteilungs- oder Teamgrenzen oder Marktbeziehungen gibt es nicht. Als Hürde für di

rekte Kommunikation und schnellen Austausch ohne Termin sehen Befragte die über

wiegende Home-Office-Arbeit.
Ein befragter Programmierer führt den offenen Austausch darauf zurück, dass Mit

arbeitende nicht untereinander konkurrieren:

»Das kenn ich normalerweise ganz anders bei den anderen Unternehmen. Meiner Er
fahrung nach ist das immer so, dass Leute immer ein bisschen ihre Projekte oder sehr
darauf geachtet haben, was halt andere sehen, was umgesetzt wird. Und so weiter.
Also so ein bisschen diese Konkurrenzsituation und das nehme ich bei uns gar nicht
wahr, sondern ganz im Gegenteil. Man kümmert sich untereinander.« (Programmie

rer1)

Da einige Mitarbeitende Teil mehrerer Kreise sind (bspw. Product Ownerin oder Ge

schäftsführung), tauschen sich diese nicht nur innerhalb eines Teams aus, wie das in
anderen Organisationsformen der Fall wäre.

Die Kommunikation ist kontinuierlich, flexibel und immer direkt möglich – ob durch
Treffen oder Chat. Die Product Ownerin sieht, was direkte Ansprache betrifft, intern kei

ne Hürden. Laut einem befragten Programmierer werden Anforderung auch außerhalb
der Kreis-Treffen aufgenommen:

»Das ist alles nicht festgefahren, sondern man weiß genau, wenn sich jetzt jemand
meldet und sagt: ›Du, ich habe folgendes Problem‹, und das kurz beschreibt, dann
kann man also, wenn es notwendig ist, auch alle Planungen irgendwie umwerfen. Und
auch mal, ja und sich halt um das kümmern, ganz pragmatisch, was halt gerade not
wendig ist. Und da gibt es dann keine Leute, die irgendwie blöd kucken oder sagen: ›Ja
puh, aber wir wollten doch dies, das oder so.‹ Sondern da ziehen halt alle am gleichen
Strang, ohne viele persönliche Befindlichkeiten, die dahinterstecken, ohne irgendwel
che Ego-Geschichten.« (Programmierer1)

Programmierer2, der den Handels-Software-Teil programmiert, meint, dass er auch
selbst etwas in das Ticketsystem Jira einpflegt, wenn er einen Fehler an der Software
feststellt. Zudem schreiben interne Anwendende und Kund:innen per E-Mail oder Chat
Anforderungen oder zumindest Ideen für solche.

Der regelmäßige Austausch in den Kreisen verringert mit der Zeit die sprachlichen
Hürden zwischen den Beteiligten. Nur durch die getrennten Kreise besteht noch eine
Wissensgrenze, weswegen die Product Ownerin zwischen diesen vermitteln muss. Dem
Kommunikations-Kreis fehlt manchmal der Überblick über Prozesse wie »Anmeldung
E-Autos« oder »Handel mit Emissionszertifikaten«. Der Produkt-Kreis wiederum be

kommt die Anforderungen der Kommunikation nicht automatisch mit. Diese Grenzen
sind für die Softwaregestaltung allerdings sekundär, weil alle Kreise unabhängig an ei

nem Teil der Software arbeiten können.

Digitale Werkzeuge: vor allem für direkten Input – Ticketsystem, Chats, E-Mails
In dem Fall zeigt sich in dem STARTUP die für digitale Werkzeuge typische Verwendung
in dezentralen Arbeitsprozessen der Softwaregestaltung. Das Ticketsystem, in das die

226 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Product Owner:innen den Backlog pflegen und dessen Kanban-Board die Programmie

renden für die Sprints nutzen, dient vor allem dazu, Anforderungen aufzunehmen, und

weniger zur Überwachung oder Standardisierung. STARTUP nutzt die ganze Bandbreite

an Kommunikationskanälen, um sich direkt abzusprechen und direkt Input für Anfor

derungen zu sammeln und Anforderungen auszuarbeiten: E-Mails, Telefon und Micro

soft Teams (Videokonferenzen, Chat-Kanäle). Durch den Chat (MS Teams) können Be

schäftigte direkt eine Person aus der Kollegenschaft anschreiben und eine Chat-Gruppe

aufmachen, um eine Anforderung oder ein Thema zu bearbeiten.

Softwaretechnischer Zuschnitt: individuell und eigenständig durch Start-up
Über den für einen dezentralen Arbeitsprozess der Softwaregestaltung typischen indivi

duellen softwaretechnischen Zuschnitt entscheidet das STARTUP eigenständig. Wobei

die Teilnehmenden innerhalb der Kreise gemeinsam darüber entscheiden, was die Soft

ware können soll. Die Product Ownerin priorisiert, aber diskutiert dann mit anderen,

was am wichtigsten ist. Nur wenn es nicht ganz klar ist, entscheidet sie. Dabei kann die

Priorisierung flexibel verändert werden, d.h., es gibt keinen eindeutigen formal-büro

kratischen Prozess dafür. Anforderungen von Nutzenden der Anmelde-App fließen ein,

wenn sie als sinnvoll erachtet werden und es die Software nicht zu kompliziert macht.

Individuelle Anpassungen für Firmen, welche die Software zur Anmeldung von

E-Autos als White-Label-Lösung einsetzen, gibt es nicht.

8.3.3. Zusammenfassung

Das Resümee fasst die Unterschiede von zentralisierter und dezentraler Softwaregestal

tung je Kategorie des Arbeitsprozesses zusammen und stellt allgemeine Aussagen zu den

Kategorien auf.

8.3.3.1. Unterschiede zwischen dezentralen und zentralisierten Arbeitsprozessen
der Softwaregestaltung

Die Fallstudien INTERN1, INTERN2 und STARTUP können dem Typ dezentral und

KOOP1, KOOP2, KOOP3 und PAKET dem Typ zentralisiert zugeordnet werden. Doch

zeigen die Falldarstellungen, dass sie nicht immer klar einem der diametralen Typen

entsprechen und sich teilweise dezentrale und zentralisierte Formen mischen. Hier

seien zum Abschluss des Abschnitts die Einordnungen der Fälle kurz begründet.

Ob dezentrale oder zentralisierte Softwaregestaltung: Egal welche Arbeitsteilung,

Grundkoordination oder Architektur vorliegt, findet in den Fallstudien durch den ent

sprechenden AP die Softwaregestaltung statt. Für Fälle wie STARTUP, bei denen die

Organisation auf die Softwaregestaltung ausgerichtet ist, ist aber der Koordinations

aufwand deutlich geringer. In Fällen wie KOOP1 ist der Koordinationsaufwand größer,

dafür bestehen aber auch erhebliche Möglichkeiten, Synergien durch einen Standard

zu heben. Bei PAKET müssen sich die EVU dem von der Softwarefirma gestalteten

Standard unterordnen.

In jedem Fall übernehmen die Rollen Aufgaben der Koordination und der Anforde

rungsaufnahme oder -ausarbeitung. Die Schwerpunkte sind jedoch unterschiedlich.

Bei der zentralisierten Softwaregestaltung der Fallstudien KOOP1, KOOP2, PAKET und

8. Formen und Folgen der Softwaregestaltung – die Empirie 227

KOOP3 sind extra Rollen mit der Koordination beschäftigt: Anforderungsmanagement,
Key Account Managende, IT-Projektleitung, IT-Koordination, Prozessmanagement, Lö

sungsarchitekt oder Anwendungsbetreuung. Das liegt schlicht an den zusätzlichen Ko

ordinationsaufgaben aufgrund der Arbeitsteilung zwischen Anwendung und Entwick

lung, die sich auf mehrere Organisationen erstreckt und wenn mehrere Organisationen
eine Software gestalten wollen. Bei KOOP3 ist aufgrund der netzwerkförmigen Grund

koordination der Koordinationsaufwand geringer, weil die Softwaregestaltung keine
Hierarchien und Marktbeziehungen überwinden muss. Bei dezentralen Softwaregestal

tungen wie INTERN1, INTERN2 und STARTUP liegt der Fokus darauf, Anforderungen
aufzunehmen und an die Programmierenden zu übergeben. Koordinative Aufgaben
fallen zwar auch an, aber in einem geringeren Umfang. Wobei bei INTERN2 auch mehr
Koordinationsaufwand besteht, den einzelne Mitarbeitende erledigen müssen, weil
mehrere Fachbereiche bei der Softwaregestaltung zusammenarbeiten. Bei STARTUP ist
der Koordinationsaufwand geringer: Es existiert eine Netzwerkorganisation, d.h., die
Beschäftigten müssen keine Hierarchien, Abteilungs- oder Organisationsgrenzen bei
der Softwaregestaltung berücksichtigen.

Die Abläufe sind in den zentralisierten Fällen aufgrund der Arbeitsteilung darauf
ausgerichtet, immer wieder Erwartungen zwischen den beteiligten Organisationen ab

zugleichen, mit Eskalationen umzugehen und Konflikte zu lösen. Bei KOOP1, KOOP2
und PAKET finden Abstimmungen auf mehreren Ebenen zwischen den Organisationen
statt. Strategische Themen verhandeln Führungskräfte bzw. Manager:innen in entspre

chenden Gremien oder Terminen. Für die Abstimmung über einzelne Anforderungen
gibt es separate Abläufe, wie das Anforderungsmanagement bei KOOP1 oder Arbeits

kreise bei PAKET. KOOP1 setzt einen Mediator und Key Account Managende ein, um die
Beziehungen zu pflegen und mit Konflikten umzugehen. In dem Fall dienen die Abläufe
für Verhandlungen darüber, was zentral das IT-DL und was dezentral die EVU gestal

ten. Bei KOOP3 gibt es regelmäßig Treffen zwischen dem IT-DL und der Softwarefirma
und es entstehen aus Projekten mit EVU neue Anforderungen an die IoT-Software. Al

lerdings ist aufgrund der netzwerkförmigen Grundkoordination und der kooperativen
Beziehungen der Koordinationsaufwand gering. Bei den dezentralen Fällen konzentrie

ren sich die Abläufe auf die Aufnahme und Ausarbeitung von Anforderungen. INTERN1
nutzt vielfältige Methoden, um die Anwendenden direkt einzubeziehen. Bei INTERN1,
INTERN2 und STARTUP arbeiten Programmierende und Gestaltende wie Product Ow

ner sehr kontinuierlich und langfristig zusammen. Wobei bei STARTUP aufgrund der
Grundkoordination die Abläufe weder Hierarchien noch Märkte überwinden müssen.

Die kommunikativen Beziehungen müssen bei den zentralisierten Fällen aufgrund
der Arbeitsteilung die Spannungen ausgleichen: zwischen der notwendigen Kooperation
für die Softwaregestaltung einerseits und hierarchischen und marktförmigen Bezie

hungen zu anderen Organisationen andererseits. Zudem sind bei den Fällen KOOP1,
KOOP2 und PAKET bürokratischere Anforderungsprozesse vorhanden. Zum Beispiel
müssen Führungskräfte Anforderungen absegnen oder es existiert ein formalisiertes
Vorgehen. Bei KOOP3 ist das aufgrund der netzwerkförmigen Grundkoordination und
den kooperativen Beziehungen nicht notwendig. Bei den dezentralen Fällen liegen
kooperative und direkte Kommunikationsbeziehungen vor. Die unkomplizierte und
offene Zusammenarbeit betonen besonders Befragte von STARTUP und INTERN1. Bei

228 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

INTERN1 und vor allem INTERN2 kommen bürokratische und formalisierte Elemente

hinzu. In ersterem Fall existieren Hierarchien zwischen den Product Ownern (z.B. wer

über Priorisierung entscheidet) und bei INTERN2 entscheidet die Anforderungsrunde

über Anforderungen.

Die direkte Kommunikation schlägt sich in den dezentralen Fällen INTERN1 und

STARTUP in den verwendeten digitalen Werkzeugen nieder. In beiden Fällen können

Beteiligte der Softwaregestaltung direkt via Chat Anforderungen aufnehmen und sich

absprechen, d.h. sich ohne formale Hürden austauschen. Bei den zentralisierten Fällen

KOOP1, KOOP2 und PAKET dienen die digitalen Werkzeuge dazu (vor allem die Ticket

systeme), um für Transparenz zwischen den beteiligten Organisationen zu sorgen. Vor

allem für die EVU-Kundschaft der IT-DL von KOOP1 und KOOP2 oder der Softwarefirma

von PAKET ist das Ticketsystem wichtig, um vertragliche Vereinbarungen zu kontrol

lieren und durchzusetzen (z.B. durch in SLA festgelegte Reaktionszeiten auf Tickets).

Aufgrund der netzwerkförmigen Grundkoordination und der kooperativen Beziehun

gen spielt beim Fall KOOP3 das Ticketsystem der Softwarefirma primär eine koordinie

rende Rolle. In Zukunft soll es dazu dienen, dass das IT-DL selbst Tickets bearbeiten

kann, was den Charakter der Ko-Produktion in dem Fall noch verstärkt.

Bei den dezentralen Fällen INTERN1, INTERN2 und STARTUP ist der softwaretech
nische Zuschnitt individuell. Bei KOOP1 existiert ein ausgefeilter Ablauf, mit dem sich

die EVU darüber verständigen, was in den gemeinsamen Standard einfließt und was sie

individuell selber gestalten. Bei KOOP2 existiert ein solcher Ablauf nur für bestimmte

Teile der Software. In beiden Fällen gestalten einzelne EVU selbst dezentral Software

unabhängig von einem gemeinsamen Standard. PAKET entwickelt zentral eine Stan

dardsoftware, die allerdings individuelle Einstellungen durch die EVU zulässt. Die Mög

lichkeiten individueller Einstellungen nutzen einige (vor allem größere) EVU ausgiebig

und haben dafür extra Rollen (z.B. Anwendungsbetreuende). Bei KOOP3 entwickelt die

Softwarefirma ebenfalls eine Standardlösung, allerdings ohne große Einstellungsmög

lichkeiten und dank Schnittstellen erweiterbar durch individuelle Module.

8.3.3.2. Ergebnisse des Fallvergleichs je Kategorie
Die Fallstudien zeigen, dass die Organisationen durch Rollen, Abläufe, kommunikative

Beziehungen und softwarebasierte Werkzeuge die Softwaregestaltung kontrollieren und

wie der softwaretechnische Zuschnitt der Software zustande kommt. Im Folgenden wer

den allgemeine Aussagen zu den Kategorien aufgestellt, die sich aus dem Fallvergleich

ergeben.

Rollen – situativ, teils mehrere und wechselnde Rollen übernehmen

Im Konzept der soziotechnischen Netzwerkarbeit erklärt der Rollenbegriff, wie Einzelne

ihr Handeln auf die Softwaregestaltung ausrichten, ohne dass ihnen genau gesagt wird,

was sie in der jeweiligen Situation konkret en détail zu tun haben. Die Fallstudien zeigen,

dass das Konzept der Rolle den empirischen Umständen gerecht wird, dass 1. viele der

Befragten nicht mehr nur eine Rolle haben, sondern mehrere und wechselnde. Zudem 2.

sind die Befragten weniger auf vordefinierte Handgriffe spezialisiert, sondern vielmehr

Teil von mehreren Arbeitsprozessen wie Softwaregestaltung und -anwendung und die

8. Formen und Folgen der Softwaregestaltung – die Empirie 229

Organisation und die oder der Einzelne muss die Rollen entsprechend ausgestalten und
kontrollieren: situativ, verhandelt, als Teil eines Arbeitsprozesses zwischen Anwendung
und Programmierung. Außerdem findet 3.Rollen-Handeln innerhalb von Hierarchien
statt, auch wenn Methoden wie Scrum keine formalen Hierarchien vorsehen.

Tabelle 22: Rollen: reine Softwaregestaltungsrollen oder gemischt mit anderen und wer Schulun
gen zur Rolle erhalten hat

Fall

Rolle nur für
Softwarege

staltung (An
forderungen,
Koordination)

Gemischte Rollen (Anwendung,
Programmierung, Customizing,
(IT) Management, Support für
SA)

Schulung Rollen-Kompetenz
(in Klammern welche Rolle Schu
lung absolviert hat)

INTERN1
Product Ow
ner:in (PO)

Key User:innen (KU), führender
PO, Anforderungsmanager, Team

leiter als Scrum Master (SM)

PO Schulung (POs), Scrum Schu
lung und Story Writing (Anforde
rungsmanager)

INTERN2
 KU, Ansprechperson in Fachberei

chen, SM, Anforderungsmanager,
PO

PO Schulung (Anforderungs-
manager, PO), SM Schulung (SM)

KOOP1

Anforderungs-
manager (IT-
DL), IT-PL,
Anwendungs-
betreuer

IT-Berater, Prozessmanager,
IT-Manager, Anforderungsma

nager (EVU)

SM, PO, PM (Anforderungs-
manager und PL IT-DL), Schu
lung Requirements Engineering
(Anwendungsbetreuer)

KOOP2
IT-Koordinator
Fachbereich,
IT-PL

IT-Koordinator IT-Abteilung,
KU, Manager Digitalisierung,
Teamleiterin, IT-Berater, Change
Manager

Scrum (IT-Berater, Change Mana
ger), PM (Change Manager, PL),
Change Manager schult intern zu
Projektthemen

PAKET
EW-Fachleute in
Arbeitskreisen,
Prozessbetreuer

Teamleitung Entwicklung, IT-Be
rater, Lösungsarchitekt, KU,
Anwendungsbetreuer

PM (Anwendungsbetreuung)

KOOP3 PO (EVU, IT-DL) Projektmanager, Account Mana
ger

unbekannt

STARTUP PO Solution Architect, Programmie

rer, Geschäftsführung
PO und Programmierer keine

Zu 1.: In allen Fallstudien gibt es Rollen, die für die Softwaregestaltung zuständig
sind. Sie koordinieren oder schreiben selbst Anforderungen. Meistens haben diese Rol

lenträger noch weitere Verantwortungsbereiche. Wie viele Rollen jemand übernimmt
und in wie vielen Arbeitsprozessen, ergibt sich im Wesentlichen aus: erstens der Über

schneidung der Softwaregestaltung mit anderen Arbeitsprozessen. Manche Softwarege

staltenden sind in mehreren Projekten aktiv und/oder sind zusätzlich Anwendende und
Programmierende der Software. Zweitens ist die Spezialisierung bei kleinen EVU gerin

230 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ger oder sie verzichten ganz auf eine gestaltende Rolle (z.B. haben einzelne EVU keine

eigenen Key User:innen oder internen Support für die Standardsoftware).

Die Überblickstabelle (Tabelle 22) fasst noch einmal zusammen, dass die meisten

Softwaregestaltenden mehrere Rollen innehaben. Zudem zeigt sich, dass in vielen Fäl

len die Rollenträger Schulungen besucht haben, worauf weiter unten näher eingegangen

wird.

Zu 2.: Die Fallstudien zeigen nicht nur, dass die Angestellten oftmals mehrere Rollen

übernehmen. Zudem erlauben es die Rollen, situativ und unabhängig von einer hier

archischen Position erwartungsgemäß zu agieren. Zwar zeigt die Tabelle 22 oben, dass

viele der Befragten für ihre Rolle Schulungen besucht haben. In den Fallstudien sind die

Schulungen und Zertifikate für Methoden bzw. Rollen (wie z.B. Product Owner:in oder

Projektmanagement) aber nur der Ausgangspunkt dafür, die Rollen in einer Organisati

on zu etablieren.

Im Arbeitsprozess der Softwaregestaltung reihen sich die Rollen zwischen Anwen

dung und Programmierung wie an einer Kette aneinander. Den Ablauf der Softwarege

staltung und die Tätigkeiten der einzelnen Rollen genau zu planen, ist jedoch schwierig,

weil die Kompetenzen und Wissensbestände der einzelnen Beteiligten, die verbale Aus

drucksfähigkeit und der Mitteilungswille, die soziotechnische Konstellation sowie die

Abläufe der Anforderungserarbeitung unterschiedlich sind. Vielmehr findet ein Erwar

tungsabgleich innerhalb des Netzwerks für Softwaregestaltung statt. Wie situativ das

Gestaltungsnetzwerk die Rollen prägt, zeigt sich daran, dass Softwaregestaltende mal

mehr, mal weniger energiewirtschaftliches Fachwissen haben und brauchen. Somit ist

der Arbeitsprozess eine eigenständige Sozialisationsinstanz, wenn auch in vielen Fällen

Schulungen in den jeweiligen Rollen die Grundlage liefern.

Zu 3.: Die Fallstudien zeigen, dass sich Rollen und hierarchische Positionen unter

schiedlich zueinander verhalten. Es ist je Fall anders, wie unabhängig von der formalen

Hierarchie und von der Position einzelne Rollen agieren können. Vor allem in den rei

nen Netzwerken von KOOP3 und STARTUP agieren die Rollen unabhängig von hierar

chischen Vorgaben. In mehreren Fällen geht eine hierarchische Position mit einer Rolle

in der Softwaregestaltung einher. Bis auf STARTUP treffen hierarchisch den Softwarege

staltenden höhergestellte Personen in allen Fallstudien Entscheidungen über Ressourcen

wie IT-Budget oder Personal.

Fazit: Für die Beschäftigten bestehen im Arbeitsprozess der Softwaregestaltung zu

sätzliche Erwartungen, wenn auch in unterschiedlichem Ausmaß und abhängig von der

jeweiligen Situation. Zu den Erwartungen gehören jene, zwischen mehreren Rollen zu

wechseln, in unterschiedlichen Arbeitsprozessen mitzuarbeiten, sich einzufügen und

entsprechend anzupassen. Dazu gehört, mit ihrem jeweiligen Wissen herauszufinden,

was zu tun ist. Sie sollen mit nicht immer genau geregelten Verantwortlichkeiten und

Erwartungs-/Rollenkonflikten umgehen und vorhandene Spielräume für die Software

gestaltung nutzen. Zudem besteht die Erwartung, die Rolleneinhaltung mit Kolleg:in

nen abzustimmen und mit zu kontrollieren. Diese Erwartungen kommen zu jenen aus

6.4.3.2 hinzu: organisationale Grenzen zu überbrücken, kooperativ zu sein, selbstorga

nisiert zu arbeiten, sich auf Softwareobjekte einzulassen, mit Nicht-Wissen umzugehen

oder sich im organisationalen Netzwerk zu bewegen und zu lernen.

8. Formen und Folgen der Softwaregestaltung – die Empirie 231

Ablauf – kombiniert mit Gestaltungsnetzwerk, Primat der Kooperation, Feedbackschleifen
und Lernprozesse
IT-Projekte, Scrum und Anforderungsrunden sind in allen Fällen die wesentlichen Me

thoden dafür, den Ablauf der Anforderungserarbeitung und deren Übergabe an die Pro

grammierenden zu organisieren. Sie stellen auf unterschiedliche Weise Interdisziplina

rität her und werden immer situativ angepasst angewendet, z.B. Scrum ohne Review,
mit mehreren Product Owner:innen oder ohne Scrum Master:in. Die Fälle zeigen Fol

gendes: A) Sie verbinden für die Softwaregestaltung einen mal mehr und mal weniger
formalisierten Ablauf mit einem Netzwerk an Beziehungen für Anforderungen. B) Der
Ablauf muss vereinbar sein mit verschiedenen Handlungsorientierung, wobei der Pri

mat der Kooperation gilt. C) Für die Softwaregestaltung sind Feedbackmöglichkeiten
wichtig, die der Ablauf herstellt. D) Der Ablauf lässt sich an die jeweilige Konstellati

on und die vorhandenen Rollen anpassen lässt und er in sämtlichen Fallstudien durch
Lernprozesse geprägt ist, was seine Ausgestaltung anbelangt.

A) Die Fallstudien zeigen, dass es nicht um den Ablauf (wie IT-Projekte oder Scrum)
allein geht, sondern auch um die dazugehörenden Gestaltungsnetzwerke. Zusätzlich zu
den Projekten oder zu Scrum existieren in den Fallstudien immer horizontale Netzwer

ke. Dabei gibt es sowohl klare, formale Anforderungswege als auch informelle Beiträ

ge Einzelner. Formalisiert sind z.B. die regelmäßigen Treffen (wer teilnimmt, Turnus
etc.), das Niederschreiben der Konzepte, welche softwarebasierten Werkzeuge verwen

det werden und einzelne Rollen, um die Kommunikation unter den Beteiligten am Ar

beitsprozess der Softwaregestaltung zu organisieren.
B) Der Ablauf muss die Kombination verschiedener Handlungsorientierungen zulas

sen (wie schon bei der Projektarbeit unter 6.3 ausgeführt), weil er in unterschiedlichen
Grundkoordinationen funktionieren muss. Bei der internen Softwaregestaltung sind es
die Hierarchien und bei der firmenübergreifenden Softwaregestaltung die Marktbezie

hungen, mit denen die Softwaregestaltenden umgehen können müssen. Es wird erwar

tet, jenseits ökonomischer Kriterien oder Weisungsbefugnissen informelle Kooperati

onsmöglichkeiten herzustellen, z.B. trotz formaler Vorgaben von Führungskräften, die
primär auf eine kostengünstige Umsetzung abzielen, oder Verträgen, die kooperatives
Arbeiten erschweren, einen persönlichen Austausch und Vertrauen herzustellen.

C) Für die Softwaregestaltung ist das Feedback zentral, weil es das gegenseitige Ver

ständnis sichert. Ein großer Unterschied zwischen Scrum, IT-Projekten und den Anfor

derungsrunden ist, inwiefern Feedbacks Teil der Methode sind. Bei Scrum sind Feed

backs fester Bestandteil (siehe die Grundlagen 5.2.4). INTERN1 und INTERN2 zeigen
eine feedback-intensive Kommunikation zwischen Anwendenden, Gestaltern und Pro

grammierern, die sogar über das in Scrum Vorgesehene hinausgeht. Bei INTERN1 gibt
es noch Resonanzgruppen, in denen Anwendende Feedback zu einer Umsetzung geben.
Bei INTERN2 führt der befragte Product Owner zusätzlich noch Interviews mit Anwen

denden des Fachbereichs (für Anforderungen und nach der Umsetzung). Unabhängig
von der Methode sind allgemein Tests eine Möglichkeit für Feedbacks in allen Fallstudi

en: Softwarefirma oder IT-DL stellen eine Version der Software IT-Beratenden, Fachex

pert:innen oder Anwendenden auf einem Testsystem zur Verfügung. Diese geben dann
Rückmeldung darüber, ob Fehler auftreten oder was noch verbessert werden könnte.

232 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

D) In vielen Fällen ist der Ablauf in einem Lernprozess entstanden und die jeweilige

Organisation entwickelt ihn weiter. Im Scrum gibt es die Rolle Scrum Master:in, die für

einen reibungslosen Ablauf verantwortlich ist und versucht, den Prozess zu verbessern.

Im STARTUP gibt es einen agilen Coach, der kontinuierlich den Ablauf optimiert. An

forderungsrunden wie in KOOP1 oder INTERN2 haben sich in einem Lernprozess her

ausgebildet und sind nun fest etabliert. Der zuständige Scrum Master in INTERN2 sieht

sich als agiler Coach. Letztendlich sind im Kontext der Softwaregestaltung die Abläufe

Gegenstand von Optimierungen, die aber nicht alle Fälle gleich intensiv betreiben.

Kommunikative Beziehungen – trotz Markt oder Hierarchie
Beim Vergleich der Fallstudien fällt auf, dass Rollen und Abläufe allein nicht ausreichen,

um Software zu gestalten. Kommunikative Beziehungen sind notwendig, wenn es dar

um geht, A) Märkte und Hierarchien zu überwinden in der Kommunikation. Dann ist

ein B) bestimmtes Maß an persönlicher Beziehung wichtig, um sich auszutauschen. Zu

letzt ist C) eine gemeinsame Sprache nützlich, damit Beteiligte sich untereinander auf

Anforderungen an die Programmierenden verständigen können.17

A) Kommunikative Beziehungen trotz Markt und Hierarchie: Bei KOOP1 und KOOP2

gibt es zusätzlich zum Vertragsverhältnis zwischen IT-DL und EVU langfristige Bezie

hungen. Gleichzeitig sind jene zwischen den Firmen brüchiger. Mehrere Befragte

drücken eine Abwägung zwischen Alleingängen und Kooperation aus. Im Gegensatz

zu KOOP2 moderiert bei KOOP1 die Konflikte zwischen den Organisationen, was ge

meinsame Strategie o. ä. betrifft, ein professioneller Mediator. Im Fall PAKET existieren

kooperative, langfristige Beziehungen zu EVU. Allerdings nur zu einzelnen, mit denen

die SF regelmäßig in IT-Projekten oder in Arbeitskreisen zusammenarbeitet. Bei den

Fallstudien INTERN1 und INTERN2 existieren persönliche Beziehungen zwischen Soft

waregestaltung, Programmierenden und anwendenden Fachbereichen jenseits formaler

Hierarchien und Fachbereichsgrenzen: zum einen, weil die Product Owner:innen vorher

in Fachbereichen gearbeitet haben, und zum anderen, weil die Anforderungsmanagerin

aus INTERN1 schon länger mit dem FB zusammenarbeitet. Bei INTERN2 sieht sich der

Scrum Master als Mediator zwischen den Fachbereichen, die an der Anforderungsrunde

teilnehmen. Bei KOOP3 und beim STARTUP sind Beziehungen primär kooperativ und

die Zusammenarbeit nicht durch Markt und Hierarchie geprägt.

In allen Fallstudien sehen Befragte den direkten Kontakt zwischen Anwendenden,

Softwaregestaltenden und Programmierenden als vorteilhaft an. Dabei erwähnen einige

aus den ersten fünf Fallstudien, dass versucht wird, die direkte Kommunikation zwi

schen Softwareanwendung, -gestaltung und -programmierung zu unterbinden, z.B.

durch Führungskräfte, Anforderungsmanagende oder vertragliche Regelungen. Die

Softwarefirma von PAKET hat viele EVU als Kundschaft. Durch eine Kommunikation

beschränkt auf das Ticketsystem kann sie deren vielfältige Anfragen besser verwalten.

17 Um zwischen einer gemeinsamen Sprache, einem gemeinsamen Verständnis und einer gemein

samen Wissensbasis empirisch unterscheiden zu können, hätten noch detailliertere Fragen ge
stellt werden müssen. Das ist aber nicht passiert, weswegen im Weiteren keine entsprechend
differenzierte Darstellung erfolgt.

8. Formen und Folgen der Softwaregestaltung – die Empirie 233

Die Fallstudien lassen nicht den Schluss zu, dass der direkte Austausch innerhalb ei

ner Organisation immer einfacher oder schwieriger wäre als zwischen verschiedenen
Organisationen. Auf jeden Fall ist es einfacher im STARTUP, wo weder Führungskräfte
noch Kund:innen diese erschweren, z.B. durch ein Management, welches die Kommu

nikation untereinander auf ein Ticketsystem beschränkt, oder eine Kundschaft, die eine
funktionierende Software, aber keine aufwendigen Abstimmungen erwartet.

B) Es zeigt sich im Vergleich der Fallstudien eine enge Verbindung zwischen per

sönlichen Beziehungen und Kommunikation. In den Fällen sind die Beteiligten der
Softwaregestaltung nicht nur unpersönliche Informationsvehikel. Sie kommunizieren
ausgehend von zwischenmenschlichen Beziehungen. Diese basieren auf Langfristig

keit, Vertrauen, individuellen Kompetenzen, was Beziehungen und Kommunikation
anbelangt, und weniger auf Schulungen oder Methoden.

In den Fallstudien charakterisieren die Befragten ihre Beziehungen unterschied

lich. Die verwendeten Begriffe lassen sich drei Clustern zuordnen, die Abgrenzungen
zu marktförmigen und hierarchischen Beziehungen sowie die Emotionalität der Bezie

hungen betonen:

• Zum einen wird auf die Emotionalität und die damit zusammenhängende Kompe

tenz verwiesen: »Familie«, »freundschaftlich«, »miteinander sprechen«, »Konflikte
persönlich klären«, »sich kümmern«, »nicht mehr verfeindet sein«, »sympathisch«,
»persönliche Bindung«, »menschliche Komponente«, »sich gut kennen«.

• Es wird ein Gegensatz zum Markt betont: »keine Konkurrenz«, »Vertrauen«, »part

nerschaftlich«, »transparent«, »gemeinsam«, »miteinander, »ohne Ego-Geschich

ten«.
• Ein nicht-hierarchisches Verhältnis wird ausgedrückt: »auf Augenhöhe«, »offen/

Offenheit«, »Geben und Nehmen«.

Obwohl Befragte eine direkte Kommunikation und Beziehungen als wichtig ansehen,
gibt es keine Trainings dazu. Weder wenden die Organisationen spezielle Methoden zum
Aufbau von Beziehungen an, noch bieten sie Schulungen zum partnerschaftlichen Um

gang miteinander an. Nur EVU2 (KOOP2) schult in der Methode »Working Out Loud«,
die beim verbalen Teilen von Wissen helfen soll. Auch die Mitarbeitenden von STARTUP
haben keine Schulungen im kooperativen Handeln besucht. Ein befragter Programmie

rer des Start-ups meint, er ist es bereits aus seinen vorhergehenden Jobs gewohnt, so zu
arbeiten.

C) Bei der Sprache und dem gemeinsamen Verständnis zeigen die Fallstudien, dass
nicht jede:r jede:n immer sofort verstehen muss. Aber Wissen über den Fachbereich
und sprachliches Mitteilungsvermögen, langfristige Zusammenarbeit oder ein Rollen-
Tausch helfen bei der Kommunikation.

Eine gemeinsame Sprache und ein gemeinsames Verständnis sind wichtig für die
Softwaregestaltung. In den Fallstudien reicht es aber aus, dies mit der Zeit zu lernen.
Softwaregestaltende sind jene, die »IT-Deutsch« (Anforderungsmanagerin INTERN1)
lernen müssen. Dafür müssen Key User:innen, Anforderungsmanagende, IT-Projektlei

tende, Anwendungsbetreuende oder Product Owner:innen aber zumindest bereit sein,
es zu lernen.

234 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Dabei ist die Bedeutung von Wissen nicht eindeutig. Zum einen ist Fachwissen nicht

immer entscheidend dafür, zu verstehen, was eine andere Person sagt oder schreibt:

Softwaregestaltende zwischen Anwendung und Programmierung verfügen nicht immer

über Fachwissen oder lernen es, wenn notwendig, erst im Austausch und über die Zeit.

Der Product Owner bei INTERN2 meint, er braucht immer weniger davon. Ein Program

mierender von STARTUP sagt, er braucht das fachliche Verständnis, weil es die Kommu

nikation vereinfacht. Es ist aber nicht unbedingt notwendig. Zum anderen ist ein be

stimmtes Maß an Wissen über die Möglichkeiten von Softwaregestaltung – ob Standard

oder individuell – notwendig. Genauso erforderlich ist ein rudimentäres Wissen über

den Anwendungsbereich der Software. Einzelne Product Owner:innen wie von START

UP oder KOOP3 haben interdisziplinäres Wissen in einem Ausmaß, das es ihnen erlaubt,

selbst Anforderungen zu schreiben, mit denen Programmierende etwas anfangen kön

nen. Die Ausarbeitung einer Anforderung kann dann trotzdem noch Feedbackschleifen

beinhalten, weil mehrere Teilnehmende ihr Wissen einbringen. 8.4 geht ausführlicher

auf das Wissen der Softwaregestaltenden ein und zeigt, dass es auch stark von der Rolle

im Arbeitsprozess abhängt, welches Wissen der oder die Einzelne benötigt oder lernt.

Zudem ist grundsätzlich, wenn es um Softwaregestaltung geht, die Praxis des Arbeits

prozesses wichtiger. Das liegt daran, weil es ja um das Schreiben von Anforderungen für

Programmierende geht und damit darum, Wissen in Software zu übersetzen, und nicht,

Wissen für sich zu behalten.

Sprachliche Fertigkeiten sind neben persönlichen Beziehungen oder interdisziplinä

rem Wissen wichtig, damit sich zwei Personen überhaupt austauschen. Das zeigt sich

z.B. bei INTERN1. Die Anforderungsmanagerin unterbindet die direkte Kommunika

tion zwischen Anwendenden und Programmierenden, und zwar deshalb, weil Letztere

sich nicht für die Anwendenden verständlich ausdrücken können. Eine andere Möglich

keit, eine gemeinsame Sprache zu entwickeln, ist der Rollentausch. In einigen Fällen

werden Beratende genannt, die vorher programmiert haben, oder Product Owner:in

nen, die vorher im Fachbereich waren. Sie haben den Vorteil, dass sie die fachliche und

technische Welt kennen und dadurch besser über sie sprechen können. Zuletzt erweist

sich in vielen Fällen die längere Zusammenarbeit über Wissensgrenzen hinweg als hilf

reich (z.B. feste Ansprechpersonen zu haben), um sich immer besser zu verstehen und

eine gemeinsame Basis an Wissen und Vokabular auszubilden.

Werkzeuge – Softwaregestaltung als (teil-)integrierter digitaler Prozess
In sämtlichen Fällen gehören Ticketsysteme zum digitalen Werkzeugkasten der Soft

waregestaltung. Bei dezentralen Arbeitsprozessen der Softwaregestaltung geht es in ers

ter Linie darum, Anforderungen aufzunehmen, bei zentralisierten um Transparenz und

Abstimmungen. Koordinieren und Kommunizieren steht damit im Vordergrund und

weniger die direkte, zentrale Kontrolle einzelner Arbeitsschritte von Mitarbeitenden.

Das zeigt sich daran, dass in einigen Fällen unterschiedliche, nicht digital integrierte

Softwarelösungen nebeneinander existieren, obwohl es technisch möglich wäre, nur ei

ne (Ticket-)Software zu verwenden oder sie alle miteinander zu verbinden. Meist werden

Ticketsysteme verwendet, die aus der Softwareentwicklung/-gestaltung stammen, wie

Microsoft Azure DevOps, Jira oder von SAP.

8. Formen und Folgen der Softwaregestaltung – die Empirie 235

Von einer technischen Kontrolle durch ein softwarebasiertes Werkzeug kann nur in

sofern gesprochen werden, weil Eingabefelder und Prozesswege (der Tickets bzw. Anfor

derungen) durch Software vorgegeben sind und der Zugriff auf die verschiedenen Soft

waresysteme über Benutzer:innenrechte technisch beschränkt ist. Allerdings entschei

den unterschiedliche Mitarbeitenden und nicht nur das Management über die Priori

sierungen von Tickets, Zugang zu den Systemen oder wann der Status welcher Anforde

rung von »Konzeptionierung« in »Programmierung« oder »Test« wechselt. Es gibt kei

nen festen, maschinellen Takt. Je nach Fallstudie bestimmen vielmehr Deadlines, Reak

tionszeiten (festgelegt durch SLA) oder ad hoc zu erledigende Anforderungen wie Fehler
oder Tests den Arbeitsrhythmus. Das spielt vor allem in den Beziehungen zwischen Soft

warefirma und EVU oder IT-DL und EVU in den Fällen KOOP1, KOOP2 und PAKET eine
Rolle. Durch SLA sind Strafzahlungen festgelegt, welche bei zu langsamer Reaktion auf
bestimmte Tickets fällig werden. Oft ist es auch die staatliche Regulierung, die Termine
für eine Umsetzung vorgibt, oder das IT-Budget setzt ein Limit, was die aufgewendete
Zeit anbelangt. Das ist aber, wie gesagt, keine technisch festgelegte Zeiteinteilung.

Der durch die Transparenz sich einstellende Panoptikum-Effekt kann nicht ausge

schlossen werden. Denn die Ticketsysteme geben z.B. Auskunft darüber, welches Ticket
welchen Status hat, wer es umsetzt, wie es umgesetzt wurde. Zum einen verändert allein
das Wissen darum, dass alles digital dokumentiert ist, das Handeln der Mitarbeitenden.
Zum anderen lassen die softwarebasierten Werkzeuge nachträgliche Auswertungen zu.
Dabei entzieht sich eine direkte, persönliche Kommunikation zwischen Mitarbeitenden
nicht dieser Transparenz. Denn die Organisation erwartet von Mitarbeitenden in den
Fallstudien, dass sie die Konzepte als Tickets oder in anderer Form dokumentieren. Das
heißt, die informelle Kommunikation wird nachträglich formalisiert. Aber auch andere
digitale Werkzeuge wie E-Mail- oder Chatprogramme dokumentieren Kommunikation.
Dass das Management diese unterschiedlichen Medien zur Bewertung von Mitarbeiten

den direkt nutzt, erwähnt keiner der Befragten, ebenso wenig eine individualisierte Kon

trolle. Es ist anzunehmen, dass die Betriebsräte nicht nur in der Softwareanwendung die
individuelle Verhaltenskontrolle unterbinden, sondern auch für die Softwaregestaltung.

Ticketsysteme sind nicht die einzigen Werkzeuge, welche den Arbeitsalltag der Soft

waregestaltung prägen. Für viele EVU ist es mittlerweile Realität, dass sie drei Systeme
zur Verfügung haben: eines, auf dem die aktuelle Version der Software läuft (das Pro

duktivsystem), ein Testsystem mit zu testenden Neuerungen der Software und ein Ent

wicklungssystem, auf dem sie programmieren. Bei SAP R/3 und damit den ersten vier
Fallstudien ist die Entwicklungs- und Testumgebung integriert, d.h. die Arbeitsprozes

se von Anwendung (wenn sie testen müssen), Programmierung und Gestaltung arbeiten
mit einer Softwarelösung (Tests durchführen, Analyse der Software). Sie ist die Infra

struktur, die Softwaregestaltung in den EVU ermöglicht. Bei PAKET haben die EVU ei

ne Testumgebung, bei KOOP3 nicht, wobei es in Planung ist. Da STARTUP die Software
selbst entwickelt, ist die digitale Infrastruktur zum Testen und Programmieren entspre

chend vorhanden.

236 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwaretechnischer Zuschnitt – zwischen individuell und Standard
Der softwaretechnische Zuschnitt entscheidet darüber, ob z.B. eine Anforderung Teil ei

nes Standards wird und welche Priorisierung sie hat. Dieser Teil des Arbeitsprozesses

der Softwaregestaltung gehört zum Kernproblem der softwaretechnischen Gestaltungs

möglichkeiten (siehe 3.2). Zwischen den Fallstudien gibt es Unterschiede, wo und wer

über den Zuschnitt entscheidet, wie dadurch Synergien gehoben und wie Prioritäten

gesetzt werden. Es können sich verschiedene Gruppen bei der Entscheidung gegenüber

stehen.

Der individuelle Zuschnitt zeigt sich daran, ob einzelne Anwendende Anforderungen

einbringen können. Ob sie das tun können, hängt in den Fallstudien vor allem davon ab,

wie viele Anwendende in wie vielen unterschiedlichen EVU es gibt. Zudem zeigt sich der

individuelle Zuschnitt in den Fallstudien daran, welche Perspektive primär in die Soft

ware einfließt: jene des Managements, der Branche oder einzelner Anwendender. Dazu

gehört, welche Priorität die zu diesen Perspektiven gehörenden Anforderungen haben.

Zuletzt gibt es Fälle, in denen die Begrifflichkeiten eines individuellen Fachbereichs in
die Software einfließen – ob in deren Oberfläche oder den Quellcode.

Die Gestaltung eines Standards braucht einen aufwendigeren Koordinierungspro

zess, und entweder ein IT-DL, ein EVU oder eine Softwarefirma verantworten ihn. Da

bei fällt auf, dass es einen institutionellen Unterschied gibt, was den Grad der Stan

dardisierung anbelangt: Im regulierten Netzbereich ist es einfacher, sich auf einen ge

meinsamen Standard zu einigen, als im wettbewerbsorientierten und auf die Wünsche

der Kundschaft ausgerichteten Vertriebsbereich. Einige Fallstudien zeigen, dass es in
den EVU einen bunten Flickenteppich geben kann und es schwer herauszufinden ist,

wo und wer innerhalb der Organisation einen Standard oder eine individuell gestalte

te Software anwendet. Einer Softwarefirma fällt es weniger schwer, zentral über einen

(Branchen-)Standard zu entscheiden und diesen durchzusetzen, als wenn mehrere EVU

darüber verhandeln. Bietet STARTUP seine App auch anderen Organisationen an, wird

aus einer individuellen Software ein Standardprodukt.

Letztendlich zeigen die Fallstudien, dass eine Organisation entsprechend organisiert

sein muss, um die Möglichkeiten der Softwaregestaltung für Synergien zu erkennen.

Ob durch eine einzelne Person oder ein Gremium: Die Organisation muss fähig dazu

sein, Synergien zu erkennen. Bei KOOP1 gibt es ein Anforderungsmanagement, in dem

sich verschiedene EVU darüber austauschen. Bei INTERN2 kann die Anforderungsrun

de mehrere Fachbereiche Synergien erkennen. Im EVU3 von KOOP1 ist es Aufgabe des

Prozessmanagers, dies für die zwei Bereiche Privat- und Geschäftskundschaft zu tun.

Aber auch Einzelpersonen achten auf Synergiepotenziale: Bei INTERN1 achtet die An

forderungsmanagerin darauf und bei KOOP1 sind die IT-Beratenden dazu angehalten.

8.4. Folgen für die Arbeit der Beschäftigtengruppe der Softwaregestaltenden

Die soziotechnische Konstellation und der Arbeitsprozess der Softwaregestaltung prä

gen die Arbeit der Softwaregestaltenden in den Organisationen der Fallstudien. Dabei

ist es für die Beschäftigtengruppe der Softwaregestaltenden von Vorteil, wenn sie in ei

ner reinen Netzwerkorganisation arbeiten und nicht in einer Matrixorganisation. Das ist

8. Formen und Folgen der Softwaregestaltung – die Empirie 237

unabhängig davon, ob sie eine Individual- oder eine Standardsoftware gestalten. War

um das so ist, zeigt der Abschnitt mithilfe dreier Kategorien:

• Beschäftigungssystem: Softwaregestaltende zeichnen sich weniger durch eine hier

archische Karriere aus, sondern eher durch eine Karriere, in der es darum geht, Kom

petenzen, Erfahrungen und interessante Projekte zu sammeln. Außerdem sind Soft

waregestaltende in der Regel Akademiker:innen und flexibler in ihrer Beschäftigung
(häufigere Wechsel von Organisationen, Projekten usw.).

• Kontrolle: Softwaregestaltende arbeiten eigenständig, gemäß ihrer Rolle entlang ei

nes softwarezentrierten Arbeitsprozesses. Wobei die Grundkoordination der sozio

technischen Konstellation sich darauf auswirkt, wie stark Hierarchie oder Märkte
die Arbeit der Softwaregestaltenden mitkontrollieren.

• Wissensverteilung: Es existiert eine Praxisgemeinschaft der Softwaregestaltenden,
der es nicht darum geht, möglichst viel Wissen anzusammeln und zu konzentrieren.
Sie will Wissen in Quellcode übersetzen. Nicht das Wissen der Softwaregestalten

den allein nimmt zu, sondern vor allem das in Software materialisierte und in ver

schiedenen digitalen Quellen hinterlegte Wissen (z.B. Quellcode, Ticketsystem, Do

kumentation). So zeichnen sich Softwaregestaltende primär dadurch aus, zu wissen,
wie Softwaregestaltung funktioniert. Auch wenn Softwaregestaltende interdiszipli

när arbeiten: Die Fallstudien zeigen nicht, dass energiewirtschaftliches oder soft

waretechnisches Wissen eine notwendige Bedingung für ihre Arbeit ist. Es ist hilf

reich. Aber ob es notwendig ist und wie viel interdisziplinäres Wissen sie brauchen,
ergibt sich aus der jeweiligen Praxis im Arbeitsprozess der Softwaregestaltung.

Der Abschnitt geht zum Schluss in der Zusammenfassung auf die Unterschiede zu den
anderen zwei Gruppen der Anwendenden und Programmierenden ein. Der Vergleich
hilft, die Besonderheiten der Arbeit der Softwaregestaltenden herauszuarbeiten. Zuerst
stellt der nächste Punkt die unterschiedlichen Typen von Bedingungen vor, unter denen
die Softwaregestaltenden arbeiten, um danach die Fälle darzustellen.

8.4.1. Softwaregestaltende: zwischen Matrix- und reiner Netzwerkorganisation

Für die Arbeit der Softwaregestaltenden lassen sich die Fälle grundsätzlich darin unter

scheiden, ob sie aufgrund der soziotechnischen Konstellation und des Arbeitsprozesses
der Softwaregestaltung in einer reinen Netzwerkorganisation arbeiten oder in einer Ma

trixorganisation.
Bei einer reinen Netzwerkorganisation findet die Softwaregestaltung im Rahmen

der Grundkoordination Netzwerk statt. Die Kontrolle zeichnet sich durch eine Peer- und
Objekt-Kontrolle aus (siehe 6.4.2.1) mit dem Schwerpunkt darauf, sich abzustimmen.
Weil die formalen Hierarchien flach sind und für die Softwaregestaltenden eine Kar

riere in der Hierarchie keine Priorität hat, gibt es Kompetenzkarrieren. Die Gruppen
von Softwaregestaltenden, Softwareanwendenden und Programmierenden unterschei

den sich primär soziotechnisch aufgrund ihres Verhältnisses zur Software und weniger
durch rein soziale Hierarchien. Das heißt, sie sind nicht nur organisational getrennt
bspw. durch verschiedene Rollen oder Teams, sondern durch unterschiedliche Zugän

238 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ge und Aufgaben, was die Software anbelangt. Das Wissen der Softwaregestaltung für

den Arbeitsprozess der Softwaregestaltung ist durch Märkte oder Hierarchien nicht ge

trennt. Die Softwaregestaltenden können sich auf das Übersetzen zwischen Anwendung

und Programmieren konzentrieren: Sie können sich das interdisziplinäre Wissen in der

Praxis allein oder im Gestaltungsnetzwerk aneignen, weil das Wissen zugänglich ist und

sie nicht nur temporär Teil des Gestaltungsnetzwerks sind. Darüber hinaus besteht ei

ne gemeinsame Wissensbasis, z.B. weil die Programmierenden selbst über ausreichend

interdisziplinäres Wissen für die Zusammenarbeit verfügen.

In einer Matrixorganisation findet die Softwaregestaltung im Rahmen der Grund

koordinationen Markt oder Hierarchie statt. Es besteht eine Spannung einerseits aus

der Kontrolle durch Führungskräfte in einer Hierarchie oder Kundschaft und Verträge in
einem Markt und andererseits einer reinen Koordination bzw. einem offenen Wissens

austausch. Weil Hierarchien oder Märkte zusätzlich zu einem Netzwerk der Software

gestaltung existieren (z.B. bei IT-Projekten), können die Softwaregestaltenden sowohl

eine Karriere in der Hierarchie als auch im Netzwerk machen. Wobei es dann eine Her

ausforderung für die Organisationen darstellt, beidem gerecht zu werden. Die Gruppen

von Softwaregestaltenden, Softwareanwendenden und Programmierenden sind durch

Hierarchien und Märkte getrennt. Ebenso verteilt sich das für die Softwaregestaltung

benötigte Wissen auf Märkte und Hierarchien. Durch die Matrixorganisation ist die in

terdisziplinäre Zusammenarbeit nicht immer eingespielt und oftmals nur temporär. Das

hat zur Folge, dass die Softwaregestaltenden eine interdisziplinäre Wissensbasis mit

bringen oder diese gemeinsam mit Anwendenden und Programmierenden erarbeiten

müssen.

Tabelle 23: Idealtypen Matrix- und reine Netzwerkorganisation

Typ Kontrolle Beschäftigungssystem Wissensverteilung

Reines

NW

Peer- und Objekt-Kon
trolle, Fokus auf Koordi
nation

keine Karriereleiter, Aufgaben
und Position abhängig von Stel
lung zur Software

Wissen rein horizontal
im Gestaltungsnetzwerk
verteilt

Matrix Mischung mit Markt und
Hierarchie

Teil von Märkten oder Hierar
chien

Wissen getrennt durch
Hierarchien oder Märkte

Sind nun die einzelnen Fälle Beispiele dafür, dass Softwaregestaltung in einer rei

nen Netzwerk- oder in einer Matrixorganisation stattfindet? Antwort darauf geben die

Falldarstellungen und die Zusammenfassung am Schluss dieses Abschnitts.

8.4.2. Darstellung der Fallstudien

Die Falldarstellung der Arbeit der Softwaregestaltenden gliedert sich in die Kategorien

Beschäftigungssystem, Kontrolle und Wissensverteilung.

8. Formen und Folgen der Softwaregestaltung – die Empirie 239

8.4.2.1. INTERN1: Softwaregestaltende zwischen Fachbereich
und IT-Abteilung, Matrix

In diesem Fall, in dem ein EVU dezentral eine individuelle Software gestaltet, finden
die Softwaregestaltenden in der Matrixorganisation förderliche Bedingungen für ihre
Arbeit vor. Die Softwaregestaltenden sind zwar in die Hierarchie der Softwareanwen

dung eingebunden und das Management gibt den Rahmen vor. Allerdings lässt es die
Softwaregestaltenden weitestgehend eigenständig arbeiten. Ob sie eigene Karrierewe

ge verfolgen können und immer zu ihrer Expertise passende Aufgaben bekommen, ist
noch offen. Wie für eine Matrixorganisation typisch, arbeiten Softwaregestaltende tem

porär in Projekten und die Karrierewege entsprechen einem EVU, das primär auf die
Softwareanwendung ausgerichtet ist. Dafür konnte das EVU trotz Matrixorganisation
dafür sorgen, dass die Softwaregestaltenden sich auf die Übersetzungsarbeit von fach

lichen Bedarfen und Anforderungen konzentrieren und sich in der Praxis interdiszipli

näres Wissen aneignen, wobei sie die Abteilungsgrenzen dabei nicht behindern. Dafür
ist hilfreich, dass die Softwaregestaltenden und Programmierenden selbst über energie

wirtschaftliches Wissen verfügen und längerfristig zusammenarbeiten.
Das Beschäftigungssystem richtet sich insofern an die Softwaregestaltenden aus,

als sie nicht in einer Abteilung feststecken. Sie sind nur temporär zu Softwaregestal

tungsprojekten wie der mobilen App für Monteur:innen zugeteilt oder haben parallel
noch andere Projekte. Der befragte Teamleiter aus der IT gesteht, dass sie überlegen,
wie die Softwaregestaltenden zwischen verschiedenen Projekten wechseln können, da

mit den intrinsisch motivierten Leuten nicht langweilig wird. Dazu würde gehören, die
Karrierewege anzupassen. Eine Karriere in der Hierarchie interessiert die befragte An

forderungsmanagerin nicht. Sie will keine Führungskraft werden, sondern ist inhaltlich
motiviert.

»Wir arbeiten ja, wenn wir was Größeres haben, in einer Projektstruktur und dann
kann man da für das Projekt halt Projektleiter werden, Projektverantwortliche. Sowas
könnte ich mir eher vorstellen, weil es eine inhaltliche Arbeit ist. […] Disziplinarisch,
das nächste, was ich machen könnte, wäre Teamleiter. Hätte ich gar keine Lust drauf.«
(Anforderungsmanagerin)

In der Matrixorganisation arbeiten die Softwaregestaltenden eigenständig. Bei der Kon
trolle legt die Hierarchie bzw. das Management weder konkrete einzelne Arbeitsschritte
fest noch die Arbeitsgeschwindigkeit. Das zeigt sich daran, dass sie die digitalen Werk

zeuge vor allem zur Koordination und Kommunikation verwenden. Das Management
entscheidet über die Ressourcen wie IT-Budget und Stellenvergabe und welche Soft

waregestaltungsprojekte das EVU macht. Die Führungskräfte kontrollieren nur die Er

gebnisse oder wenn etwas im Prozessablauf auffällt:

»Also, ich glaube, solange ich liefere, interessiert es keinen, wann ich was mach. Also,
ich fühle mich nicht kontrolliert, nee.« (Anforderungsmanagerin)

Das führt dazu, dass die Softwaregestaltung als eigenständige Arbeit erlebt wird und
einer persönlichen Identifikation mit der Arbeit Raum lässt:

240 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Also das, was ich mache, ist eigentlich Handwerk und das ist das Schöne daran. Ich
habe ein Ergebnis.« (Anforderungsmanagerin)

Nur weil die Softwaregestaltung Teil der Hierarchie eines EVU ist, konzentriert sich das

Wissen über sie nicht beim Management. Vielmehr verteilt sich das Wissen auf mehrere

Abteilungen und auf jene, die (temporär) an ihr mitwirken. Dabei kann in dem Fall trotz

der Matrixorganisation das EVU einen Arbeitsprozess der Softwaregestaltung etablie

ren, der es den Softwaregestaltenden erlaubt, sich auf die Übersetzung zwischen Anwen

dung und Entwicklung zu konzentrieren, d.h. darauf, Anforderungen zu sammeln und

zu schreiben. Dabei kooperieren die Anwendenden, auch wenn die Softwaregestalten

den ihnen nicht disziplinarisch vorgesetzt sind, und die Softwaregestaltenden sammeln

interdisziplinäres Wissen an:

»Also, ich kannte die agile Arbeitsweise und die ganzen Methoden nicht. Das habe ich
alles gelernt. Ich musste sehr viel SAP lernen. […] Also, ich könnt immer noch nichts
entwickeln. Ich bin kein Entwickler. Aber wenn ich einen Fehler sehe, weiß ich, in wel
che Ecke ich den wahrscheinlich schieben muss. Wen ich brauche, welchen Entwickler:
Frontend, Backend und welche Richtung dort.« (Anforderungsmanagerin)

Dazu gehört, dass die anderen Beteiligten auch über interdisziplinäres Wissen verfügen:

Die vier Product Owner:innen waren vorher im Fachbereich und die Programmierenden

arbeiten bereits länger für den Fachbereich.

8.4.2.2. INTERN2: Softwaregestaltende in mehreren Fachbereichen, Matrix
Wie bei INTERN1 sind die Arbeitsbedingungen für die Softwaregestaltenden im EVU

in der Matrixorganisation insgesamt förderlich. Zwar gibt es einerseits in dem Fall be

reits teilweise eigene Karrierewege für Softwaregestaltende. Andererseits nennen Be

fragte das Management explizit als hinderlich für die eigene Arbeit. Denn es verfolgt

keine abteilungsübergreifende Perspektive, was für die Softwaregestaltenden hilfreich

wäre. Dafür können die Softwaregestaltenden ungehindert von Abteilungsgrenzen im
horizontal verteilten Gestaltungsnetzwerk zwischen den Fachbereichen das notwendige

Wissen sammeln und in Anforderungen übersetzen.

Was das Beschäftigungssystem anbelangt, fällt in dieser Fallstudie auf, dass es im
Gegensatz zu INTERN1 teilweise neue Karrierewege gibt und gleichzeitig alte Muster

fortbestehen. Denn das EVU bietet einzelnen Softwaregestaltenden bereits die Möglich

keit, eine für sie reizvolle Karriere zu verfolgen. Derzeit diskutiert das EVU, wie Scrum

Master:innen oder Product Owner:innen aufsteigen können. In der Zentralbereichs-IT

gibt es bereits die Möglichkeit, eine Karriere als Fachexpert:in ohne personelle Verant

wortung zu machen und auf diesem Wege in eine höhere Vergütungsgruppe zu kom

men. Andererseits hat der befragte Product Owner aus der Fachbereichs-IT seine Rolle

schon länger inne und ist in sie hineingewachsen, ohne dass sich dies in der formalen

Organisation niederschlägt (z.B. in einer neuen Stellenbezeichnung). Er hat nicht die

althergebrachte Karriere gemacht vom Teammitglied zum Teamleiter. Der Scrum Mas

ter strebt selbst als nächsten Karriereschritt die Leitung eines internen Teams inklusive

8. Formen und Folgen der Softwaregestaltung – die Empirie 241

Personalverantwortung an. Für ihn ist eine Karriere im Netzwerk, d.h. sich fachlich wei

terzuentwickeln, nur zweite Wahl.
Obwohl wie bei INTERN1 die Softwaregestaltung Teil einer Hierarchie ist, sind die

Softwaregestaltenden keiner direkten Kontrolle der Führungskräfte ausgesetzt und ar

beiten selbstständig. Wie auch bei INTERN1 steht die Ergebniskontrolle im Vordergrund
– ob beim Product Owner, Scrum Master oder der Anforderungsmanagerin. Inhaltlich
spielt die Führungskraft des Scrum Masters keine Rolle. Er setzt aber Ziele fest.

»Und sorgt eigentlich dafür, dass es mir gut geht, sage ich mal so.« (Scrum Master)

Teilweise verhindern aber bestimmte Führungskräfte z.B. aus dem Fachbereich einen
offenen Austausch. Übergreifende Entscheidungen innerhalb eines Fachbereichs oder
zwischen den Fachbereichen fallen schwer. Sie müssen sich z.B. darüber einigen, wie
die Anforderungsrunde abläuft oder wie sich das IT-Budget verteilt.

Was das Wissen anbelangt, ist für die softwaretechnische Interdisziplinarität die
Matrixorganisation ein Nachteil. Denn in diesem Fall verteilt sich das Wissen für Soft

wareanwendung, -gestaltung und -programmierung auf mehrere Fachbereiche und die
Softwaregestaltenden müssen in einer Organisation agieren, die primär auf die Soft

wareanwendung ausgerichtet ist, und entsprechend haben u.a. die Führungskräfte kein
Softwaregestaltungswissen. Doch wie auch bei INTERN1 können die Softwaregestalten

den durch den kontinuierlichen Austausch im Gestaltungsnetzwerk Wissen austauschen
– fast wie in einem reinen Netzwerk. Weder Programmierende noch Anwendende hal

ten ihr Wissen zurück. So lernen die Beteiligten voneinander und alle bauen mit der Zeit
interdisziplinäres Wissen auf. Dabei sagen Scrum Master, Product Owner und Anforde

rungsmanagerin gleichermaßen, dass für ihre Arbeit das Wissen, wie Software gestaltet
wird, wichtiger ist als Fach- oder ERP-Wissen. Die Anforderungsmanagerin meint al

lerdings, dass man ohne energiewirtschaftliches Wissen langsamer ist und vieles nicht
sofort versteht. Das Wissen lernt sie jetzt mit der Zeit in der Praxis und durch einen Kol

legen, der mehr Erfahrung hat.
Die Softwaregestaltenden kompensieren untereinander die Nachteile einer Organi

sation, die primär auf die Softwareanwendung ausgerichtet ist, indem sie sich EVU-weit
vernetzen. Der Product Owner aus dem Fachbereich tauscht sich in einem Expert:in

nenkreis mit Mitarbeitenden anderer Netzbetriebe aus, die eine ähnliche Tätigkeit wie
er haben. Im IT-Bereich gibt es einen firmenweiten, organisierten Austausch für Scrum
Master:innen und sogenannte Gilden für Software-Architekt:innen.

8.4.2.3. KOOP1: IT-DL als Heimat der Softwaregestaltenden, Matrix
Im Vergleich zu INTERN1 und INTERN2 ist es für die Arbeit der Softwaregestaltenden
von Vorteil, dass das IT-DL auf die Softwaregestaltung spezialisiert ist. Entsprechend
bietet das IT-DL die gewünschten Karrierewege, kann für die Auslastung der Software

gestaltenden sorgen und eine stetige softwaretechnische Interdisziplinarität garantie

ren. In dem Fall zeigt sich, dass für die Softwaregestaltenden ein Arbeitsmarkt existiert,
den sie für eine fachliche Karriere unabhängig von internen Hierarchien nützen können.
Der Nachteil ist in diesem Fall die Marktbeziehung zwischen IT-DL und EVU. Das führt
dazu, dass die Kundschaft (EVU) des IT-DL die Arbeit der Softwaregestaltenden mitkon

242 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

trolliert. Zudem führt es zu einer Abhängigkeit, was Wissen anbelangt: Einerseits fehlt

den meisten EVU das Wissen, um selbst die Möglichkeiten der Softwaregestaltung ein

schätzen zu können. Andererseits haben jene EVU, die selbst intern Softwaregestaltende

beschäftigen und mit dem IT-DL langfristig zusammenarbeiten, eine Ansprechperson,

mit der sie eine gemeinsame Wissensbasis teilen.

Was das Beschäftigungssystem anbelangt, zeigt sich in dem Fall statt einer fachli

chen Karriere innerhalb einer Hierarchie, dass für Softwaregestaltende eine fachliche

Karriere im Markt möglich ist. Das IT-DL ist Teil dieses Marktes für IT-Fachkräfte. Es

gibt Mitarbeitende, für die ist das IT-DL nur eine Durchgangsstation in ihrem berufli

chen Werdegang. Vor allem die Spezialisierung auf die ERP-Software von SAP bietet die

Möglichkeit, sich für eine Vielzahl anderer Firmen zu qualifizieren. Für das IT-DL be

deutet das laut einem Befragten eine stetige Personalfluktuation, was aus seiner Sicht

neue Impulse bringt und dafür sorgt, dass das IT-DL nicht überaltert.

Für die Softwaregestaltenden ist auch eine Karriere innerhalb des IT-DL möglich.

Zudem ist für sie der Vorteil einer zentralisierten Softwaregestaltung in einem IT-DL,

dass sie für mehrere EVU tätig werden können. Dadurch ist für sie in diesem Fall ein

facher möglich, was sie sich auch schon bei INTERN1 und INTERN2 gewünscht haben:

interessante Aufgaben und Projekte zu bearbeiten. Vor allem für junge Mitarbeitende

sind innovative Projekte ein stärkerer Anreiz als der Aufstieg zur Teamleitung. Der An

forderungsmanager des IT-DL meinte, dass ihn die Aufgabe motiviert, nicht die Aussicht

auf eine Karriere. Auch in den EVU haben die Softwaregestaltenden solche Wünsche. In

EVU2 gibt es bereits zwei Karrierepfade: eine Führungskraft-Karriere und Fachkarriere.

Im EVU3 spricht der Prozessmanager davon, dass er eine fachliche Karriere und keine

disziplinarische machen will.

Inwiefern ist die Matrixorganisation für die Kontrolle der Softwaregestaltenden

wichtig oder stört sie sogar bei ihrer Arbeit? Es überrascht, dass auch in diesem Fall, wie

schon bei INTERN1 und INTERN2, trotz Markt und Hierarchien die Führungskräfte

sowohl bei den EVU als auch dem IT-DL nur wenn notwendig direkt kontrollieren.

Auch wenn die Befragten aus den EVU alle unterschiedliche Positionen haben und

daher unterschiedliche Führungskräfte, berichten alle davon (ob Anwendungsbetreuer,

Anforderungsmanager oder Prozessmanager), dass sie wenig bis nur in Ausnahmefäl

len Kontakt mit ihrer Führungskraft haben. Sie können weitestgehend selbstständig

arbeiten. Die Selbständigkeit zeigt sich auch an der Arbeitsbelastung und den Zielen.

Die Arbeitsbelastung ist individuell unterschiedlich und hängt von Vorgaben des Ma

nagements ab. Ein anderer Befragter meint, er kommt durch Selbstorganisation gut hin

und hat keinen Zeitdruck.

»Es ist so bei uns, dass wir unsere Arbeitsbelastung gut selbst managen können.« (Ap
plikationsbetreuer EVU2)

Von welchen anderen Umständen die Arbeitsbelastung abhängt, ist unklar. Beide befrag

ten Prozessmanager (EVU3, EVU1) sprechen von einer hohen Arbeitsbelastung. Beim

IT-DL müssen zwar die Softwaregestaltenden bei mehreren Projekten oder Tickets für

mehrere EVU mitarbeiten. Jedoch hat diese keine direkten Folgen für die Arbeitsbelas

tung des einzelnen Beschäftigten. Das liegt z.B. daran, dass das Projektmanagement-

8. Formen und Folgen der Softwaregestaltung – die Empirie 243

Team des IT-DL Projektarbeit selbstorganisiert verteilt. Jede:r muss sich selbst fragen,
was er oder sie noch schafft.

Auch vorgegebene Ziele führen nicht automatisch dazu, dass Führungskräfte das
Handeln der Beschäftigten einschränken. Der IT-Projektleiter des EVU sieht sich durch
das IT-Budget wenig eingeschränkt. Auch in einem anderen EVU gibt es »relativ viel«
(Prozessmanager EVU3) Budget und es wird zur Verfügung gestellt und spielt keine gro

ße Rolle. Der Applikationsbetreuer (EVU2) schließt die Zielvereinbarung jährlich mit sei

ner Führungskraft ab (woran auch sein Gehalt hängt). Auch der Prozessmanager (EVU1)
hat individuelle Ziele, die aber seiner Meinung nach nicht so wichtig sind für sein Gehalt.
Beim IT-DL erarbeiten Führungskräfte ergänzend zum Arbeitsvertrag mit den einzel

nen Angestellten Ziele im Dialog. Das Unternehmen selbst hat Ziele, was Umsatz, Pro

jekte und Qualität anbelangt. Diese spielen aber laut den Befragten bei der Arbeitsbelas

tung keine Rolle. Der Anforderungsmanager des IT-DL setzt sich die intrinsischen Ziele
selbstbestimmt, wie z.B. defizitäre Projekte zu vermeiden oder besser zu werden. Die
Ziele der Firma sind für ihn sekundär. Dazu kommt, dass der Bonus, den das IT-DL aus

schüttet, für alle Mitarbeitenden gleich ist.
Was die Wissensverteilung anbelangt, können sich die Softwaregestaltenden trotz

Hierarchien innerhalb der EVU austauschen und trotz Marktbeziehungen existieren
längerfristige Beziehungen zwischen EVU und IT-DL, wodurch eine gemeinsame Wis

sensbasis nicht nur temporär besteht. Durch das vom IT-DL kooperativ organisierte
Anforderungsmanagement bestehen Gestaltungsnetzwerke in die EVU hinein und
damit eine gemeinsame Wissensbasis bei den Beteiligten. Allerdings ist die Beziehung
nicht gesichert, denn das IT-DL steht im Wettbewerb mit anderen. Wenn die Wissens

basis fehlt, fällt das schnell auf, so z.B., wenn Mitarbeitende des IT-DL noch nicht so
lange für die Energiewirtschaft tätig sind:

»[E]s gibt da teilweise Kollegen, die da neu sind bei dem Dienstleister und die machen
da irgendwas, was nicht richtig ist, weil die aber einfach die Gegebenheiten, diese
stadtwerkespezifischen Gegebenheiten nicht kennen« (Anforderungsmanager EVU2).

Manche EVU sind abhängig vom IT-DL, weil sie selbst kein Know-how in der Software

gestaltung haben. Manche bauen erst wieder Kompetenzen auf oder sammeln durch
eigene Softwaregestaltung interdisziplinäres Wissen. Es gibt in den EVU Mitarbeitende
wie Prozessmanager, die sowohl fachliches als auch softwaretechnisches Wissen mit

bringen. Die befragte Prozessmanagerin des EVU1 schätzt bei ihr das Verhältnis von
IT- zu Fachwissen mit 30:70 ein. Der Vorteil ist in diesem Fall, dass innerhalb des IT-DL
die Interdisziplinarität tägliche Praxis ist. Die befragten Programmierenden sehen sich
weniger als Teil ihrer Programmierenden-Teams als vielmehr von interdisziplinären
Teams, die sich für Projekte oder einzelne Anforderungen zu spezifischen Fachthemen
zusammenfinden. Es gibt IT-Beratende und Programmierende, die nur für ein EVU
arbeiten und sich dadurch besser mit dessen System auskennen. In einem Fall ist der
Ansprechpartner des IT-DL Programmierer und Berater zugleich, der bei der Einfüh

rung der Lösung und an ihrer individuellen Anpassung beteiligt war. Er verfügt damit
über ein umfassendes fachliches und softwaretechnisches Wissen.

244 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Schulungen dienen als Einstieg. Die einzelnen Mitarbeitenden bauen ihr Wissen

über die Jahre auf und verfügen über individuelle Wissensbestände und Spezialisie

rung – je nachdem, an welchen Projekten sie teilgenommen haben und in welchem

Fachbereich sie tätig sind.

8.4.2.4. KOOP2: Softwaregestaltende in fremdem Umfeld der EVU, Matrix
Wie im Fall von KOOP1 hat hier das IT-DL den Vorteil, sich auf die Softwaregestaltung

spezialisieren zu können. Entsprechend finden die Softwaregestaltenden dort andere

Karrierewege, eine von der Softwareanwendung unabhängige Kontrolle und eine Spe

zialisierung auf interdisziplinäres Wissen vor. Jedoch haben einzelne EVU in diesem Fall

die Softwaregestaltung wieder verstärkt selbst übernommen. Diese EVU können weder

passende Karrierewege noch eine stetige Auslastung oder immer interessante Projek

te für die Softwaregestaltenden gewährleisten. Stärker als in anderen Fällen zeigt sich

das Problem von einer Wissensverteilung in Hierarchien und Marktbeziehungen. Die

Gestaltungsnetzwerke der Softwaregestaltenden sind prekär und so fehlt manchmal die

gemeinsame Wissensbasis. Dafür sind die Softwaregestaltenden in den EVU unabhän

gig vom IT-DL, was das notwendige Wissen zur Softwaregestaltung anbelangt.

Das Besondere an dem Fall ist, dass aufgrund der ursprünglichen Spezialisierung

des IT-DL auf die Softwaregestaltung dieser sich hinsichtlich Beschäftigungssystem auf

diese ausgerichtet hat. Ähnlich wie in der Fallstudie KOOP1 nimmt nach Aussage des

befragten Bereichsleiters im IT-DL die Bedeutung von Karriereleitern ab, und die Mit

arbeitenden wollen weniger Führungskraft werden als vielmehr interessante Projekte

machen. Das Unternehmen versucht seit mehreren Jahren neben der Führungslaufbahn

neue Karrieremodelle zu entwickeln. Die Idee einer Fachexpert:innen- und Projektma

nagementlaufbahn hat das IT-DL aufgegeben. Es gibt nun Kompetenzlevel mit entspre

chenden Gehaltsbändern, bei denen Mitarbeitende durch Erfüllen bestimmter Anforde

rungen fachlich und nicht hierarchisch aufsteigen können. Was den Wechsel zwischen

Organisationen anbelangt: Wie auch bei KOOP1 wechseln IT-Fachkräfte wie IT-Beraten

de und Programmierende eher zu Wettbewerbern und nicht innerhalb des organisatio

nalen Netzwerks aus EVU und IT-DL. Die fachliche Karriere im Markt – inklusive der

Neuverhandlung des Gehalts – ist damit wie schon bei KOOP1 eine Alternative zu jener

innerhalb einer Organisation.

Ein EVU2 der Fallstudie hat zwar wieder die Softwaregestaltung übernommen. Aber

es zeigt sich, dass es dabei zu Konflikten mit den bestehenden Beschäftigungssystemen

kommt. Denn dort dominiert die Karriere in der Hierarchie. Die Befragten – IT-Koordi

nator und Projekt Coach – haben das EVU2 einige Monate nach dem Interview verlassen.

Das lag nicht daran, dass sie keine hierarchischen Karrieren machen können. Vielmehr

gründet es in der fehlenden Perspektive, dass das EVU sich zu einer agileren Organisa

tion mit flachen Hierarchien und interessanten Projekten wandeln würde.

Was die Kontrolle der Arbeit der Softwaregestaltenden anbelangt, gibt es Unter

schiede zwischen IT-DL und EVU. Das Beispiel eines IT-Beratenden beim IT-DL zeigt

exemplarisch, wie sich selbstständiges Arbeiten mit Markt und Hierarchien mischt.

Der befragte Teamleiter als Führungskraft des IT-Beratenden kümmert sich um Bud

get, Verträge, neue Projekte, Entscheidungen zu fachübergreifenden Themen und

Personalführung. Er fordert eigenständiges Arbeiten ein: stärkere Lernbereitschaft

8. Formen und Folgen der Softwaregestaltung – die Empirie 245

und Eigeninitiative. Beides sieht er als festen Bestandteil der Arbeit an. Mitarbeitende
sind gefragt, die bereit sind, sich auch über eigene Themengebiete hinaus jenseits von
Schulungen selbstständig in neue Themen einzuarbeiten. Sie sollen Unternehmer im
Unternehmer werden:

»Habe es aber geschafft, meine Philosophie ein bisschen durchzusetzen. Also, das,
was ich bei [große Beratungsfirma] erfahren habe, gelernt habe: dass der Berater der
Unternehmen ein Unternehmer im Unternehmen ist und für sich selbst verantwort
lich ist und man ihm durchaus genügend Verantwortung und Kompetenz geben kann,
auch beim Kunden vor Ort entsprechend seine Aufgaben zu übernehmen. Das hat in
den letzten Jahren eigentlich ganz gut gefruchtet.« (Teamleiter IT-DL)

Der IT-Berater gibt an, wenig Kontakt zu seiner Führungskraft zu haben, und er arbei

tet die Aufgaben ihrer Priorisierung gemäß in seinem eigenen Tempo der Reihe nach ab
(ohne feste Vorgaben für die Anzahl der umgesetzten Anforderungen o. ä.). Jedoch spie

len neben der Führungskraft für die Mitarbeitenden des IT-DL Markt-Kennzahlen eine
Rolle. Umsatzziele fließen in die Faktura-Ziele der Beratenden ein, d.h., sie müssen eine
bestimmte Anzahl an Tagen bei einem EVU sein und damit Umsatz für das IT-DL gene

rieren.
Innerhalb der EVU nehmen einzelne Befragte ihre Führungskräfte als hinderlich

oder gar überflüssig für die Softwaregestaltung wahr. Der befragte IT-Koordinator stellt
seine Führungskraft in Frage, da er alles eigenständig erledigt. Andere Führungskräfte
entscheiden über das Vorgehen bei der Softwareanpassung. Was an dem Fall auffällt: In
einer Matrixorganisation hängen die Softwaregestaltenden davon ab, dass Führungs

kräfte sie unterstützen. Führungskräfte koordinieren Projekte, sprechen bei Problemen
mit dem IT-DL. Sie fungieren als Netzwerkende, die Beteiligte eines Projekts kennen
und helfen, sich innerhalb der Firma durchzusetzen. Sie werden bei Eskalationen aktiv.
Wie auch schon in anderen Fallstudien haben Softwaregestaltende Freiheiten bei der
Zielvereinbarung. Der IT-Koordinator aus EVU2 verhandelt mit seiner Führungskraft,
was die Ziele sind:

»Ich sag auch meinem Chef ganz klar: ›Ja, kann ich noch machen‹. Oder: ›Nee, das passt
jetzt nicht, weil, ich möchte noch die anderen Themen auch sauber zu Ende bringen.‹
Und das ist auch etwas, was ich halt lernen habe müssen. Und ich glaube, das muss
jeder irgendwann lernen, seine eigenen Grenzen und halt eben auch zu sagen: Was
ist mir wichtig? Ist mir wichtig, nur Quantität rauszuballern? Und mir ist Qualität ganz
wichtig.« (IT-Koordinator Fachbereich EVU2)

Die Matrixorganisation zeigt sich in der Wissensverteilung vor allem innerhalb der
EVU. Dort besteht eine starke Trennung zur Softwareanwendung und -program

mierung. Erst mit der Zeit, oftmals temporär und abhängig von Einzelpersonen oder
einzelnen Fachbereichen, entstehen a) Gestaltungsnetzwerke zwischen Softwareanwen

dung, -gestaltung und -programmierung und b) entwickeln Führungskräfte zumindest
ein grundlegendes Verständnis für die Softwareentwicklung.

246 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Bei einer auf die Softwareanwendung ausgerichteten Organisation wie EVU2 ist erst

einmal keine gemeinsame, interdisziplinäre Wissensbasis für die Softwaregestaltung

vorhanden. Das zeigt sich an Führungskräften, die kein Wissen über die Softwarege

staltung haben, aber haben sollten, weil sie in Matrixorganisationen über den Wissens

austausch entscheiden können. Das zeigt sich an einem Softwaregestaltungsprojekt in
EVU2, bei dem es an einer gemeinsamen, interdisziplinären Wissensbasis fehlt, z.B. bei

der Zusammenarbeit zwischen IT-Abteilung und Fachbereichen. Es sind neue, für die

Softwaregestaltung geschaffene Rollen wie die IT-Koordinierenden der Fachbereiche,

die sich teamübergreifende Kompetenzen aneignen können. Sie sind für die Softwarege

staltung in mehreren Teams zuständig und können so interdisziplinäre Zusammenhän

ge verstehen lernen. Im Team Marktkommunikation des EVU2 ist die Zusammenarbeit

mit dem zuliefernden Softwareunternehmen eingespielt und die Teamleitung und ein

zelne ihrer Mitarbeitenden haben das entsprechende Wissen zur Softwaregestaltung.

Hier zeigt sich, dass es in einer Matrixorganisation von Vorteil ist, wenn die Führungs

kraft selbst mitgestaltet oder weiß, wie Softwaregestaltung funktioniert.

EVU3 hat eine andere Variante, um in einer Matrixorganisation für Softwarege

staltende eine Wissensbasis zu schaffen, damit sie mit Anwendenden und Program

mierenden zusammenarbeiten können: Das EVU hat zentral ein Team etabliert, das

selbst Wissen durch Softwaregestaltungsprojekte in unterschiedlichen Fachbereichen

aufbaut. Zugleich sorgt es dafür, dass die Matrixorganisation interdisziplinäres Gestal

tungswissen in und zwischen den Fachbereichen aufbaut.

Eine Basis interdisziplinären Wissens ist fest in der Hierarchie des IT-DL verankert.

Der befragte Teamleiter war selber einmal IT-Berater und hat fachlich und softwaretech

nisch tiefergehendes Wissen. Der IT-Berater kann programmieren und kennt sich in
einzelnen Prozessen der Energiewirtschaft aus. Insgesamt hat das IT-DL sowohl soft

waretechnisches als auch fachliches Wissen. Es kennt die ERP-Firma SAP und deren

Software sowie die EVU sehr gut. Zudem hat es aufgrund der BPO-Dienstleistungen

selbst Anwendende der Software im Haus.

8.4.2.5. PAKET: Softwaregestaltende einer Standardsoftware, Matrix
In diesem Fall, in dem eine Softwarefirma zentral eine Standardsoftware gestaltet, fin

den die Softwaregestaltenden nur bedingt förderliche Bedingungen für ihre Arbeit vor.

Die Softwaregestaltenden innerhalb der Softwarefirma sind getrennt von den vielen An

wendenden in den EVU. Die Softwaregestaltenden in den EVU, welche Einstellungen am

Standard vornehmen, sind vom Standard abhängig, den die Softwarefirma ausliefert.

Aber ob innerhalb der Softwarefirma oder der EVU: Die Softwaregestaltenden sind größ

tenteils fest einem fachlich spezialisierten Bereich wie Energiedatenmanagement oder

Marktkommunikation zugeordnet und arbeiten entsprechend kontinuierlich interdiszi

plinär. Anders als für SAP gibt es in diesem Fall keinen eigenen Arbeitsmarkt für IT-Be

ratende der industriespezifischen ERP-Software und damit weniger Karrieremöglich

keiten für die Softwaregestaltenden. Innerhalb der EVU sind Softwaregestaltende hö

hergestellt als die Anwendenden, aber Führungskräften untergeordnet. In dem Fall fällt

stärker auf als bei KOOP1 und KOOP2, dass aufgrund der Marktbeziehung die Wissens

verteilung zwischen EVU und IT-DL zu einer Abhängigkeit führt. Die EVU müssen sich

eigenständig über Neuerungen an der Software nach Updates und über die vorhandenen

8. Formen und Folgen der Softwaregestaltung – die Empirie 247

Einstellungsmöglichkeiten am Standard informieren. Der Wissensaustausch zwischen
EVU und Softwarefirma ist weniger problematisch, wenn beide aus einer Kooperation
in puncto Softwaregestaltung Vorteil ziehen. So geschieht dies z.B., wenn ausgewählte
EVU für die Gestaltung des Standards Anforderungen liefern, bewerten oder testen und
damit den Standard bereits kennen, bevor ihn die Softwarefirma ausliefert.

Das Beschäftigungssystem der Softwaregestaltenden ist davon geprägt, dass sie in
hierarchischen Organisationen angestellt sind. In den EVU gibt es für sie keine eigen

ständigen Kompetenzkarrieren. Sie machen Karrieren in der Hierarchie, und je nach
EVU oder Team kann die Softwaregestaltung Teil einer Führungsposition oder ganz aus

gelagert sein, z.B. an IT-Beratende. Was auffällt, ist, dass in einigen EVU die Team- und
Gruppenleitung Software gestaltet, d.h., sie nimmt Einstellungen an der Software vor
oder gibt Fehler-Tickets auf. Selbstständiges Arbeiten und IT-Affinität sind von Vorteil,
wenn man Karriere machen will.

»Aber im Wesentlichen ist mein Anreiz sozusagen: Ich interessiere mich für Prozesse.
Ich interessiere mich für Prozessoptimierung und habe halt sozusagen auch eine hohe
IT-Affinität. Und das ist sozusagen ein bisschen auch mein eigener Antrieb für diese
Position, in der ich jetzt bin.« (Gruppenleiter Abrechnung EVU5)

Softwaregestaltende der Softwarefirma wie IT-Beratende oder Lösungsarchitekten kön

nen für unterschiedliche EVU arbeiten, aber auch Softwaregestaltungsprojekte inner

halb der Softwarefirma durchführen. Aber anders als bei den ersten vier Fallstudien, die
SAP verwenden, sind hier die IT-Beratenden ausschließlich in der Softwarefirma ange

stellt. Sie haben als Arbeitsmarkt für eine mögliche weitere fachliche Karriere nur die
EVU, welche das Standardpaket anwenden, und keine große Anzahl an kooperierenden
Firmen wie bei SAP.

Bei der Kontrolle der Softwaregestaltenden ist wie auch in den anderen Fallstudien
die Erfolgskontrolle wesentlich. Die Führungskräfte erwarten selbstständiges Arbeiten
und eigenständiges Lernen. Zugleich sind Softwaregestaltende entweder in Hierarchien
eingebunden oder in Marktbeziehungen mit den entsprechenden Folgen. Letzteres be

deutet, dass z.B. SLA deren Arbeit mitkontrollieren. Innerhalb der Hierarchien setzen
Führungskräfte den Rahmen für die Arbeit. Das gilt für Key User:innen oder Anwen

dungsbetreuende innerhalb der EVU, Lösungsarchitekten oder IT-Beratende in der Soft

warefirma.
Eigenständiges Arbeiten und reine Erfolgskontrolle durch Führungskräfte kann zu

einer extremen Belastung werden. Das ist vor allem dann der Fall, wenn eine Person so

wohl das Tagesgeschäft der Softwareanwendung als auch der Softwaregestaltung über

nehmen muss, zusätzlich einem Termindruck ausgesetzt ist und keinen Einfluss auf die
Softwarefirma und deren Softwaregestaltung hat. So kann sich ein befragter Gruppen

leiter mit der Softwaregestaltung nur nebenher beschäftigen und es gibt keine Person in
seiner Kollegenschaft, die ihm die Softwaregestaltung abnimmt und sich mit der Soft

warefirma austauscht. Er muss sowohl Anwendungsarbeiten erledigen als auch intern
die Rolle als Anwendungsbetreuer übernehmen. Weil über einen längeren Zeitraum eine
Kombination von Termindruck durch die Regulierung und stetige Updates der Software
hinzukam, ist er fast ein Jahr aufgrund von Burnout ausgefallen.

248 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Was die Wissensverteilung anbelangt, fällt bei diesem Fall besonders auf, dass die

Softwaregestaltenden der EVU, die Einstellungen an der Standardsoftware vornehmen,

nicht Teil des Praxisnetzwerks sind, das die Standardsoftware gestaltet. Mit der Folge,

dass sie erst an dem fertigen Softwareprodukt über Neuerungen etwas lernen können.

Das Learning by Doing und damit der Aufbau von Erfahrungswissen geschieht erst in
der Anwendung der Standardauslieferung:

»Wir müssen es aber dann im […] täglichen Geschäft praktisch beginnen, die Prozes
se im Kern zu verstehen, und deswegen ist da Learning by Doing ganz häufig so, dass
man dann die Fälle im System sieht und autodidaktisch versucht, sich die Sachen so
zurechtzulegen, wie sie denn sein sollen und dann darüber den nötigen Erkenntnisge
winn zu bekommen und Worst Case hat man es gerade verstanden und dann kommt

das nächste Update und es ist schon wieder hinfällig. Also, da ist man eigentlich im
permanenten Sprint hinterherzukommen.« (Leiter EVU2)

Wobei in manchen EVU die Softwaregestaltenden privilegierten Zugang zu dem Wissen

haben und Marktbeziehungen und Hierarchien keine Hürden sind. Dann sind aber die

Softwareanwendenden noch nicht über Änderungen informiert, was zeigt, wie Hierar

chien den Wissensaustausch im Team bestimmen:

»Also, die Anwendungsbetreuer sind viel intensiver im Austausch mit dem Software
hersteller und dadurch ›persönlich betreut‹ in Anführungszeichen. Die Mitarbeiten

den, die operativ tätig sind und die Prozesse vollziehen, sind diejenigen, die es sich
selbst beibringen aktuell. Und das ist eigentlich eine Reihenfolge, die ist eigentlich
falsch.« (Betriebsrat EVU6)

Weil die Softwareanwendenden nicht Teil eines Gestaltungsnetzwerkes sind, hängt es

von ihrer Eigenmotivation ab, sich mit der Software auseinanderzusetzen. Doch fällt es

der Führungskraft eines EVU schwer, die Mitarbeitenden dazu zu bringen, eigenständig

zu lernen.

»Es ist schon so, dass die Kollegen ambitionierter sein müssten, was ihr Arbeitsumfeld

angeht. Also, sie müssten schon nach links und rechts gucken, wie man das so schön
sagt oder versuchen eigenständig sich Dokumentationen anzulesen. Es gibt von der
[Softwarefirma] unzählige Dokumente, die man sich durchlesen kann, und dann ver
steht man natürlich das Programm auch anders. Und da ist natürlich der Kollege, der
sagt: Nö, damit möchte ich mich nicht beschäftigen. Es muss mir jemand erklären.
Und wenn mir das niemand erklärt, dann…« (Gruppenleiter Anwendungsbetreuung
EVU3)

Aus Sicht des befragten Gruppenleiters wären noch mehr IT-affine Leute hilfreich, die

Anwendungsbetreuung machen und Einstellungen an der Software vornehmen können.

Die Softwaregestaltenden innerhalb der Softwarefirma arbeiten kontinuierlich in

terdisziplinär. Wobei das Wissen über die Branche wichtiger ist als jenes über die An

wendung in einzelnen EVU. Dabei sind Führungskräfte anders als in anderen Fallstudi

en eng eingebunden. Es zeigt sich der Vorteil, wenn Führungskräfte auch Wissen über

8. Formen und Folgen der Softwaregestaltung – die Empirie 249

Softwaregestaltung haben. Der Teamleiter eines befragten Programmierers hat tieferes
fachliches Wissen über die Energiewirtschaft:

»[D]er fachliche Teamleiter, […] der sich um die Prozesse kümmert, das Fachliche im
Kopf hat und uns dann genauer sagen kann: Okay, an der Stelle musst du das und das
machen. Oder wenn man halt mal Fragen hat, wenn man mal den Prozess nicht so
100 % kennt: Hier, wie ist das in den und den Spezialfällen?« (Programmierer)

Der befragte Programmierer selbst meint, bei ihm ist das Verhältnis 40 % Wissen über
die Energiewirtschaft und 60 % über die Programmierung. Das Problem an der Markt

beziehung ist für ihn, dass Programmierende schwerer an die Bedarfe der Anwendenden
in den EVU herankommen, weil sie sehr weit weg von ihnen sind.

8.4.2.6. KOOP3: Softwaregestaltung als neues Betätigungsfeld, reines Netzwerk
In dem Fall behindert die Verteilung der Softwaregestaltung auf unterschiedliche Orga

nisationen nicht die Arbeit der Softwaregestaltenden, was typisch für eine reine Netz

werkorganisation ist. Für die Beschäftigten stehen weniger Karrieren in den Hierarchien
im Mittelpunkt. Sie können ihrer intrinsischen Motivation nachgehen und das Thema
IoT für ihre jeweilige Organisation voranbringen. Die Befragten arbeiten selbstständig,
weil sie IoT auch als ihr eigenes Projekt begreifen und nicht nur als eines ihrer Vorgesetz

ten oder ihrer Kundschaft. Dabei ist das interdisziplinäre Wissen über die Möglichkei

ten der Softwaregestaltung und die Bedarfe der EVU anders als bei PAKET gleichmäßig
verteilt, für die Softwaregestaltenden gut zugänglich und es besteht eine gemeinsame
Wissensbasis.

Die Softwaregestaltenden arbeiten in einem Beschäftigungssystem, das es ihnen er

laubt, kontinuierlich an dem Thema IoT zu arbeiten. Sie arbeiten zwar flexibel an Projek

ten mit, jedoch immer zum gleichen Thema IoT und der gleichen IoT-Standardsoftware
der Softwarefirma. Es gibt sowohl in den EVU als auch dem IT-DL neue Aufgaben und
gar neue Teams für IoT. Die Beteiligten begreifen es als ihr eigenes Projekt. Die Software

gestaltung ist in diesem Fall ein klar abgegrenztes Betätigungsfeld. Aus den Interviews
geht nicht hervor, dass mit der Mitarbeit an der Softwaregestaltung – ob im EVU, beim
IT-DL oder in der Softwarefirma – eine hierarchische Karriere verbunden wäre. Weniger
ist der Aufstieg in der Hierarchie ein Anreiz als beim Thema IoT dazuzulernen, interes

sante Projekte zu machen und die Software weiterzuentwickeln.
Selbstständiges Arbeiten und damit eine indirekte Kontrolle sind vorherrschend.

Der Fokus der Beteiligten liegt auf der Koordination untereinander, was typisch für rei

ne Netzwerke ist. Die Beteiligten vor allem des IT-DL und der Softwarefirma sind intrin

sisch motiviert und sie nutzen formelle Wege vor allem dazu, um die Arbeit zu koordi

nieren. Die Zusammenarbeit ist persönlich, partnerschaftlich und auf Augenhöhe. Die
Führungskräfte fungieren bei den befragten EVU als Bindeglied in den Hierarchien, wie
es in Matrixorganisationen für die Softwaregestaltung hilfreich ist.

Trotz Organisationsgrenzen und Marktbeziehungen ist das Wissen gleichmäßig im
organisationalen Netzwerk verteilt. Die Softwaregestaltenden verfügen nach längerer
Mitarbeit im organisationalen Netzwerk über eine gemeinsame Wissensbasis, um mit

gestalten zu können. Das Besondere an dem Fall ist, dass sowohl die Softwarefirma als

250 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

auch das IT-DL und EVU1 Wissen über die Implementierung (deren Durchführung und

über Funktionalitäten und Anwendungsfelder der Software) und Erweiterung (zusätz

liche Module programmieren) der Software haben. Das Wissen, was in den Quellcode

der IoT-Software einfließt, kommt aus Implementierungsprojekten unterschiedlicher

Anwendungsfälle des IT-DL mit EVU. Wie bei den anderen Fallstudien liefert die Soft

warefirma neben der Software Wissen über Änderungen aus: Die Softwarefirma stellt

bei Updates Frequently Asked Questions (FAQ) als Dokumentation von Funktionalitä

ten und Neuerungen zur Verfügung. Das IT-DL schickt zu Updates einen Newsletter an

die EVU. Das heißt, Softwarefirma und IT-DL erwarten, dass die Empfangenden, für

die diese Informationen von Interesse sind, sie sich selbst aneignen. Somit spielt die

Marktbeziehung doch noch insofern eine Rolle, als hier kein direkter Austausch erfolgt.

Es bleibt den anwendenden Einzelnen nur, sich eigenständig einzulesen.

8.4.2.7. STARTUP: Softwaregestaltende im Kern der Organisation, reines Netzwerk
Der Fall zeigt typische Eigenschaften davon, wenn Softwaregestaltende in einem reinen

Netzwerk arbeiten: Was das Beschäftigungssystem anbelangt, können Mitarbeitende in
der rollenbasierten Organisation ihren Interessen nachgehen, indem sie Rollen wech

seln, und es geht nicht darum, in einer Hierarchie aufzusteigen. Die Kontrolle passiert

im Wesentlichen horizontal durch die Kollegenschaft und ermöglicht Eigenmotivation,

individuelle Steuerung der Arbeitsbelastung und Selbstständigkeit. Durch den kontinu

ierlichen, iterativen Austausch im Netzwerk für die Softwaregestaltung ist eine gemein

same Wissensbasis und ein unkomplizierter Zugang zum Wissen gesichert. Weil das

Wissen nicht hierarchisch oder über einen Markt verteilt ist, bestehen keine Hindernisse

für den Austausch.

Was das Beschäftigungssystem anbelangt, können die Beschäftigten nicht in einer

formalen Hierarchie aufsteigen, sondern nur Verantwortung für zusätzliche oder andere

Rollen übernehmen. Um sich darüber auszutauschen, wer welche Verantwortungsberei

che hat, gibt es regelmäßig Treffen. So geht es im STARTUP um das Arbeiten an einem

gemeinsamen Ziel und den möglichen zu teilenden Mehrwert durch eine wachsende Or

ganisation:

»Je mehr erfolgreiche Ideen wir haben, die wir umsetzen können, desto mehr Kuchen
ist halt da, der aufzuteilen ist.« (Programmierer1)

Der Primat der Softwareentwicklung zeigt sich in dem Fall daran, dass die Softwarege

staltenden Teil des stabilen Kerns der Organisation sind. In den ersten vier Fallstudien

sind die Softwareanwendenden fest in den EVU angestellt und langfristige Mitglieder

ihrer Teams. Sie sind dort auch schon länger. Es sind die Softwaregestaltenden, die sich

flexibel in einer Matrixorganisation bewegen. Hier ist es umgekehrt, weil in dem Fall die

Softwareentwicklung der Ausgangspunkt der Organisation ist. Die Anwendenden sind

flexible 450-Euro-Kräfte, die weniger verdienen, Teilzeit arbeiten und nicht studiert ha

ben. Von den anderen Beschäftigten haben alle bis auf jemanden aus dem Kommunika

tionsbereich einen akademischen Abschluss.

Bei der Kontrolle spielen Führungskräfte keine Rolle. Die Arbeit ist ein persönliches

Projekt in stetiger Auseinandersetzung mit der iterativ gestalteten Software, der Kun

8. Formen und Folgen der Softwaregestaltung – die Empirie 251

den- und Kollegenschaft. Die Product Ownerin lernt viel und meint, es macht ihr Spaß.
Sie schreibt Arbeitszeiten auf, um nicht zu viel zu arbeiten. Kontrolle gäbe es gar nicht.
Druck entsteht durch sich verantwortlich fühlen, durch die Kundschaft und die Erwar

tungen an die Software.

»Druck entsteht eher dadurch, dass ich mich für vieles verantwortlich fühle und (gera
de in einem Start-up) oft das Gefühl entsteht, dass es um die Existenz geht.« (Product
Ownerin)

Man erwartet Verantwortungsbereitschaft und Eigenverantwortung voneinander. Die
Peer-Kontrolle ist Teil der rollenbasierten Organisation.

In dem Fall behindern weder Hierarchien noch Marktbeziehungen den Wissens

austausch der Softwaregestaltenden. Das notwendige Wissen zur Softwaregestaltung
befindet sich innerhalb von STARTUP und ist gemeinsame Basis der Arbeit. Den Kern
der Organisation bilden interdisziplinäre Kreise, in denen sich regelmäßig Fach- und
IT-Wissen treffen und die Beteiligten Möglichkeiten der Softwaregestaltung mit jenen
der energiewirtschaftlichen Bedarfe abgleichen. Die Softwaregestaltenden können
als Kern der Organisation immer auf Programmierende oder Anwendende zugreifen.
Die befragte Product Ownerin meint, sie lernt durch die Teilnahme an den Kreisen
etwas über interne Abläufe und den Nutzen für die Kundschaft. Alle, die z.B. wie die
Anwendenden nicht an Kreisen teilnehmen, nehmen nicht am Wissensaustausch teil.
Das Wissen konzentriert sich damit bei den Mitarbeitenden, die dort mitmachen, und
sie können interdisziplinäres Wissen akkumulieren unabhängig von Hierarchien und
Märkten. Es ist also nicht die Hierarchie, die die Wissensverteilung bestimmt. Wenn,
dann ist die Wissensverteilung die Ursache für informelle Hierarchien.

8.4.3. Zusammenfassung

8.4.3.1. Unterschiede: zwischen reiner Netzwerk- und Matrixorganisation
Die Falldarstellungen zeigen, dass sie nicht immer klar einem der diametralen Typen von
Matrixorganisation und reiner Netzwerkorganisation entsprechen und sich teilweise
einzelne Elemente der beiden Typen vermischen. Trotzdem vereinen sie entweder mehr
Eigenschaften von dem einen oder dem anderen Typ. So gehören KOOP3 und STARTUP
zum Typ reiner Netzwerkorganisationen, die auf die Softwaregestaltung ausgerichtet
sind. Dort müssen die Softwaregestaltenden in ihrer Arbeit keine Kompromisse mit
bestehenden Strukturen eingehen. Reine Netzwerkorganisationen stellen einen Vorteil
für die wissensintensive Softwaregestaltung im Vergleich zu jenen vom Typ Matrixorga

nisation dar (INTERN1, INTERN2, KOOP1, KOOP2 und PAKET). Hier sei zum Abschluss
des Abschnitts kurz dargelegt, warum welcher Fall welchem Typ zugeordnet werden
kann.

Bei STARTUP und KOOP3 zeigt sich die Netzwerkorganisation an der Kontrolle der
Softwaregestaltung, bei der die Peer- und Objekt-Kontrolle (im Sinne Rennstams, sie

he 6.4.2.1) zentral sind, Softwaregestaltende unabhängig von Führungskräften agieren
und der Fokus auf der Koordination der Zusammenarbeit liegt. Das Beschäftigungssys

tem zeichnet sich durch Kompetenzkarrieren statt durch solche in Hierarchien aus. Es

252 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

geht um Arbeit als persönliches Projekt und darum, etwas zu lernen. Statt rein sozial in
Hierarchien eingeteilt und Führungskräften untergeordnet zu sein, unterscheiden sich

Programmierende, Softwaregestaltende und Anwendende in ihrer Position soziotech

nisch durch ihren jeweiligen Bezug zur Software. Die Softwaregestaltenden haben keine

Schwierigkeiten, auf das für ihre Arbeit notwendige Wissen zuzugreifen, weil eine lang

fristige Praxisgemeinschaft der Softwaregestaltung mit interdisziplinärer Wissensbasis

besteht und die diversen Methoden der Softwaregestaltung den Kommunikations- und

Wissensfluss sicherstellen. Entweder sind die Softwaregestaltenden durch ihre Rollen

und ihre Teilnahme in Kreisen Teil des interdisziplinär arbeitenden Kerns der Organisa

tion wie bei STARTUP. Oder Markt und Hierarchien spielen im organisationsübergrei

fenden Netzwerk eine so geringe Rolle, dass sie für ihre Arbeit keine Hürden beim Wis

sensaustausch darstellen wie bei KOOP3.

Bei den anderen Fallstudien liegen Matrixorganisationen vor. Ob in IT-Projekten,

Arbeitskreisen oder Scrum: Immer sind die Softwaregestaltenden Teil von Märkten

und/oder Hierarchien, deren Kontrolle sie unterliegen. Es besteht eine Spannung darin,

die Mitarbeitenden zu kontrollieren (ob durch Führungskräfte in Hierarchien oder

Kundschaft in Marktbeziehungen) und ihnen die notwendige Freiheit für den kom

munikativen Austausch und das Schreiben von Anforderungen zu geben, damit sie

dabei ihre Subjektivität einbringen können, z.B. in Form intrinsischer Motivation. Die

Beschäftigungssysteme für Softwaregestaltende zeichnen sich dadurch aus, dass sie

Teil von Märkten oder Hierarchien sind und dadurch entsprechende Karrierechancen

haben: in einer internen Hierarchie aufzusteigen oder in andere Organisationen zu

wechseln. Vor allem Ersteres hat ein begrenztes Potenzial, um sich rein fachlich weiter

zuentwickeln und dafür die (finanzielle) Anerkennung zu bekommen. In den Matrix-

Fallstudien ist das Wissen durch Hierarchien oder Märkte getrennt. Doch stellen die

Beteiligten Interdisziplinarität nicht nur temporär her. Es ist noch mehr als sonst bei

der Softwaregestaltung von Vorteil, wenn die oder der Einzelne viel weiß. Dann kann er

nämlich unabhängig von Hierarchien und Marktbeziehungen agieren und eine fehlende

interdisziplinäre Wissensbasis bei Anwendenden und Programmierenden ausgleichen.

Dabei ist es hilfreich, wenn Führungskräfte der EVU sich nicht nur als Anwenden

de begreifen und entsprechend auch Wissen über Software und Softwaregestaltung

haben. Sie nehmen in einer Matrixorganisation zentrale Positionen ein und können

die Softwaregestaltung unterstützen, z.B. indem sie eine abteilungsübergreifende

Zusammenarbeit fördern.

8.4.3.2. Ergebnisse: Fallvergleich je Kategorie und Vergleich
mit Anwendenden und Programmierenden

Die Falldarstellungen haben gezeigt, dass Softwaregestaltende zwar immer in organi

sationalen Netzwerken arbeiten, die reine Netzwerkorganisation jedoch Vorteile gegen

über der Matrixorganisation hat. Durch den Vergleich mit den Beschäftigtengruppen

der Anwendenden und Programmierenden arbeitet dieser Abschnitt noch einmal her

aus, was das Beschäftigungssystem, die Kontrolle und die Wissensverteilung der Soft

waregestaltenden ausmacht.

8. Formen und Folgen der Softwaregestaltung – die Empirie 253

Beschäftigungssystem – Kompetenzkarriere, flexible Beschäftigte und Akademiker:innen-Dominanz
Insgesamt zeigen die Fallstudien, dass sich neben einer allgemeinen Akademisierung ein
Karrieresystem unabhängig von Hierarchien und der energiewirtschaftlich-fachlichen
Arbeitsteilung wie z.B. Netz, Vertrieb, Handel etabliert.

Es fällt auf, dass Programmierende und Softwaregestaltende allesamt studiert ha

ben und es bei den Anwendenden mehr die Key User:innen, Prozessmanagende oder
Anwendungsbetreuende sind, die einen akademischen Abschluss haben – also eben je

ne, die sich mit der Softwaregestaltung befassen. Eine befragte Sachbearbeiterin braucht
ein abgeschlossenes Studium, um mehr Projektarbeit machen zu dürfen. Die Bedeutung
von IT-Wissen nimmt zu und hochautomatisierte und digital-integrierte Prozesse ma

chen ein tiefergehendes und breiteres fachliches Wissen für die (Fehler-)Fallbearbeitung
notwendig.

Wie die Fallstudien zeigen, haben Softwaregestaltende im Unterschied zu Program

mierenden und -anwendenden ganz eigene Karrieremöglichkeiten – und zwar unab

hängig davon, ob sie innerhalb eines EVU angestellt sind oder für einen IT-DL arbeiten.
Die meisten befragten Softwaregestaltenden wollen keine Führungskraft werden oder
in der Hierarchie aufsteigen, sondern eine Karriere als Fachexpert:innen und damit z.B.
interessante Projekte machen. Vor allem in den jüngeren Organisationen, wo es um IoT
oder Emissionshandel geht, ist die Arbeit ein persönliches Projekt der Beschäftigten, mit
dem sie sich identifizieren. Beim IT-DL von KOOP2 gibt es bereits Kompetenzkarrieren,
bei denen man durch Klettern auf definierten Kompetenzprofilen die entsprechenden
Gehaltsbänder nach oben steigt. In den bestehenden Hierarchien in den EVU sind in
einigen Fällen Kompetenzen in der Softwaregestaltung hilfreich für eine Führungskräf

tekarriere oder der Aufstieg damit verbunden, Softwaregestaltung zu koordinieren.
Eine Gemeinsamkeit zwischen Programmierenden und Gestaltenden ist, dass sie

sich auf die Vermarktung ihrer Arbeitskraft konzentrieren18, vor allem wenn sie für ein
IT-DL arbeiten. Das tun sie zum einen für das IT-DL selbst, weil es Geld damit verdient,
seine Fachkräfte zu verkaufen bzw. auszuleihen. Sie vermarkten ihre Arbeitskraft auch
für die eigene weitere Karriere, um in anderen Organisationen mehr zu verdienen oder
interessantere Projekte zu machen. Im Vergleich zu den Anwendenden haben Program

mierende und Gestaltende eine bessere Bezahlung und bessere Marktchancen. Beide
Gruppen zielen eher auf eine fachliche Karriere ab. Wenn sie in einer Matrixorganisati

on arbeiten, teilt sie die Softwaregestaltenden flexibel zu IT-Projekten zu, um sie stetig
auszulasten.

In den Fallstudien gibt es für Anwendende im Vergleich zu den anderen Gruppen
weniger Karrieremöglichkeiten. Vertiefte Softwarekenntnisse zu erwerben, kann für
sie hilfreich sein, um in der Hierarchie aufzusteigen. So bedeutet der Aufstieg als

18 Sieht man die sozialen Netzwerke von Xing und Linkedin als Wege, sich selbst zu vermarkten, un
terstützt der Feldzugang (siehe Kapitel zu Forschungsdesign und Methode, siehe 3.2.1) die These,
dass Softwaregestaltende und Programmierende sich stärker am externen Arbeitsmarkt orientie
ren: Auf den Webseiten von Xing und Linkedin sind vor allem Programmierende, IT-Beratende,
ERP-Fachleute, Product Owner:innen, Projektmanagende, Anforderungsmanagende oder Scrum
Master:innen zu finden.

254 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Key User:in einen Aufstieg über Softwaregestaltung. Einige der befragten Team- oder

Gruppenleitenden waren vorher Sachbearbeitende und damit reine Anwendende.

Kontrolle – eigenständiges Arbeiten in softwarezentrierten Prozessen
Beim Vergleich der Fallstudien überrascht, dass Führungskräfte in der Softwaregestal

tung eine ähnliche Rolle spielen wie in der Anwendung und Programmierung. Unabhän

gig vom Arbeitsprozess halten sich die Führungskräfte aus der operativen Arbeit wei

testgehend heraus. Bei allen ist der Kern der Kontrolle ein softwareintegrierter Arbeits

prozess, kombiniert mit Führungskräften, die nur in Ausnahmesituationen intervenie

ren und, wenn überhaupt, die Ergebnisse kontrollieren. Man könnte auch sagen: Die

Beschäftigten arbeiten weitestgehend selbstständig an und mit der Software, die sie in
einen digitalen Prozess integriert. Wobei die Grundkoordination (der soziotechnischen

Konstellation) zwischen Anwendung und Programmierung Folgen für die Kontrolle hat.

Kontrolleigenschaften unabhängig von Gruppenzugehörigkeit: selbstständiges Arbeiten,
softwarezentrierter Arbeitsprozess, Auswirkungen der Grundkoordination
Zuerst zu jenen Dingen, welche die Kontrolle der Arbeit unabhängig davon prägen, ob sie

Teil von Softwareanwendung, -gestaltung oder -programmierung sind: Erstens arbeiten

die Befragten eigenständig. Zweitens arbeiten alle softwarezentriert. Drittens prägt bei

allen die soziotechnische Konstellation die Arbeit.

Erstens geben in allen Fällen und für alle Gruppen die Befragten an, dass sie eigen

ständig arbeiten und die Führungskräfte nur in Ausnahmefällen eingreifen und die Ar

beitsergebnisse kontrollieren. Sie sind disziplinarische Führungskräfte, geben aber nur

selten oder gar keine Arbeitsanweisungen. Je nach Fall legen sie das Budget fest, stellen

Mitarbeitende ein, initiieren Projekte oder klären Konflikte innerhalb (z.B. mit anderen

Führungskräften oder Teams) oder zu anderen Organisationen (Softwarefirma, IT-DL,

EVU). In manchen Fällen wirken sie bei der Softwaregestaltung mit (EVU2 von KOOP2,

einige EVU bei PAKET). Einige Zitate sollen das nochmal verdeutlichen:

Anwendende:

»Wenn wir uns eine Woche lang nicht mehr zurückgemeldet haben, dann kommen

schon Fragen: Warst du überhaupt beim Arbeiten oder hast du überhaupt die Arbeit
gemacht? Wir arbeiten viel bei Kunden und wenn die etwas von uns wollen und da
ist der Monteur nicht gekommen, der meldet sich natürlich auch dann, wie es denn
aussieht, wenn er seinen Baustrom kriegt oder so.« (INTERN1 Monteur)

»Ich war sehr selbstorganisiert, tatsächlich auch schon in der Abrechnung. Und meine

Chefin hat mir da eigentlich auch immer den Weg auch so gelassen, weil ich hatte ja
meine Fälle zugewiesen. Um die habe ich mich gekümmert. […] Natürlich hat jede
Führungskraft drauf geschaut, wenn irgendwas länger liegt, wie es aussieht, warum
es länger liegt. […] Ich habe meine Arbeit immer schon, ich sag es einfach mal, gut
gemacht, so dass ich nicht kontrolliert werden musste.« (KOOP2 EVU2 Teamleiterin

Mako)

»Ja, ich bin recht frei in meiner Arbeit, tatsächlich. Ich darf sehr viel, Gott sei Dank.
Ich werde nicht so viel kontrolliert.« (KOOP2 EVU2 Sachbearbeiterin)

8. Formen und Folgen der Softwaregestaltung – die Empirie 255

Programmierende:

»Und war haben Reviews, Code Reviews: Da kontrollieren wir uns gegenseitig auf Au
genhöhe. Und wir haben verschiedene Analyse-Tools, die uns selber helfen, uns selbst
zu kontrollieren. Also, im Grunde ist eigentlich die Eigenmotivation sehr, sehr hoch
und für einen selbst, aber auch aus dem Entwicklerteam heraus. Und da gibt es eine
gewisse Kontrolle. Wobei das nicht als Kontrolle empfunden wird, sondern eher als
Unterstützung, würde ich sagen. Es gibt aber keinen, der auf meine Arbeit draufguckt.
Könnte auch glaube ich keiner.« (INTERN1 Programmierer)

Gestaltende:

»Es ist so bei uns, dass wir unsere Arbeitsbelastung gut selbst managen können.«
(KOOP1 Applikationsbetreuer EVU2)
»Aber zum großen Teil sind wir da relativ alleine unterwegs oder alleinständig19 …
eigenständig, so wollte ich sagen« (KOOP1 Anforderungsmanager IT-DL)

Zweitens sind die Befragten alle Teil eines softwarezentrierten Arbeitsprozesses mit un

terschiedlichen Schwerpunkten, welche Software sie für ihre tägliche Arbeit hauptsäch

lich verwenden (ERP-System, Ticketsystem, E-Mails, MS Excel etc.). Die Anwendenden
werden von der Software gesteuert (Monteur:innen) oder arbeiten ausschließlich mit ihr
(Sachbearbeitende, Kund:innenservice). Genauso die Programmierenden, die ihre Pro

grammierung über die Entwicklungsumgebung abarbeiten. Für die Softwaregestalten

den sind Ticketsysteme zentral. So spielt bei allen Software als ein Wissensobjekt (nach
Rennstam 2012, ausführlich unter 6.4.2.1) und damit eine Form von Objekt-Kontrolle
durch Technik eine Rolle. In allen Fällen werden die Tätigkeiten digital geführt – ob durch
Ticketsystem, Entwicklungsumgebung oder ERP-Software.

Drittens prägt die Grundkoordination die Kontrolle: Von ihr hängt der Schwerpunkt
der Kontrolle durch die Software und durch eine Gruppe (Management, Kundschaft, Kol

legenschaft) ab.
Bei KOOP3 und STARTUP ist die Software vor allem ein Bezugspunkt zur Koordina

tion und die softwarebasierten Werkzeuge fungieren mehr als Koordinationsinfrastruk

tur denn zur Kontrolle. Die Softwaregestaltenden können sie von überall aus nutzen. In
den genannten Fällen kontrollieren aufgrund der digitalen Transparenz durch die ver

wendeten Werkzeuge und Methoden die Kolleg:innen mit. Bei KOOP1, KOOP2 und PA

KET erfüllen die Ticketsysteme eine Funktion für die Kundschaft. Sie machen für diese
transparent, was die Softwarefirma bzw. das IT-DL macht, und sind die Basis für die
Überprüfung von SLA (z.B. die vereinbarten Reaktionszeiten für Tickets zu kontrollie

ren). Bei den internen Fällen ist nicht ganz klar, inwiefern das Management das Ticket

system nutzt. Keine befragte Person hat das erwähnt oder von individueller Verhaltens

kontrolle gesprochen. Trotzdem besteht intern für alle anderen Beteiligten, die an den

19 Auch wenn die Interpretation einzelner Phrasen und Wörter nicht Teil der Forschungsmethode
ist, so zeigt dieser Versprecher doch auf, wie der Arbeitsalltag für viele aussieht: Sie arbeiten viel
allein und bekommen wenig bis gar keine Anweisungen durch die Führungskraft im Arbeitsalltag.

256 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tickets arbeiten, eine Transparenz über den Arbeitsfortschritt. Keine befragte Person be

richtet davon, dass Arbeitsschritte und das Arbeitstempo durch die Software vorgegeben

sind. Vielmehr liefert die Software für jeden (Management, Kundschaft, Kollegenschaft)

eine Rückmeldung, wie viele Fälle noch offen sind, welchen Bearbeitungsstand ein Ticket

hat oder wo das nächste Strom- oder Gasnetz zu warten ist.

Je nach Grundkoordination ist der Schwerpunkt unterschiedlich, welche Gruppen

kontrollieren: Die Fallstudien unterscheiden sich, ob mehr das Management (Hier

archie), die Kundschaft (Markt) und das Gegenüber (Netzwerk) kontrolliert. Bei den

internen Softwaregestaltungen (INTERN1, INTERN2) entscheidet das Management

über die Ressourcen (IT-Budget, Stellenvergabe, Entscheidung über Projekte). Zusätz

lich zum Management gibt es bei den firmenübergreifenden Gestaltungsprozessen

(KOOP1, KOOP2, PAKET, KOOP3) noch die Kundschaft bzw. die EVU, die in Form von

SLA und Preisen kontrollierend wirken. Bei KOOP1, KOOP2 gibt es festgelegte Reakti

onszeiten für bestimmte Tickets, welche die EVU den IT-DL stellen. Bei STARTUP und

KOOP3 ist es schwer zu entscheiden, ob die Kolleg:innen oder die Kund:innen wichtiger

sind. Denn sowohl in der Kollegenschaft besteht ein stetiger Austausch als auch mit der

Kundschaft, die die App zur Anmeldung von E-Autos bzw. die IoT-Software nutzt. So

oder so ist in beiden Fällen die hierarchische Kontrolle schwach. In keinem der Fälle gibt

es eine direkte Kontrolle durch die Führungskraft in Form von konkreten Arbeitspaketen

und wie diese abzuarbeiten sind.

In der Tabelle sind die Schwerpunkte der Kontrolle durch Gruppe und Ticketsystem

je Fall aufgelistet, die mit der Grundkoordination zusammenhängen:

Tabelle 24: Vergleich Schwerpunkt der Kontrolle in Abhängigkeit zur primären Grundkoordinati
on je Fall

Fall

Primäre

Grund-
koordination

Schwerpunkt Kontrolle
durch Gruppe

Besondere Verwendung
Ticketsystem

INTERN1 Hierarchie Management (IT-Budget, Ziele) Management-Kontrolle

INTERN2 Hierarchie Management (IT-Budget, Ziele) Management-Kontrolle

KOOP1 Markt Verträge (SLA), Preise Kontrolle durch Kundschaft bei IT-DL
KOOP2 Markt Verträge (SLA), Preise Kontrolle durch Kundschaft bei IT-DL
PAKET Markt Verträge (SLA), Preise Kontrolle durch Kundschaft bei SF
KOOP3 Netzwerk Ko-Produktion Koordination

STARTUP Netzwerk Kollegenschaft/Peers und
Kundschaft

Koordination

Kontrolleigenschaften je Gruppe: Unterschiede in der qualitativen und quantitativen Intensivierung
Im Vergleich zur Gruppe der Anwendenden und Programmierenden sind die Gestal
tenden zum einen Teil eines anderen Arbeitsprozesses und allein deshalb schon anders

kontrolliert. Wie bereits in den vorhergehenden Kapiteln ausgeführt, spielt für sie in ih

8. Formen und Folgen der Softwaregestaltung – die Empirie 257

rer Arbeit Kommunikation und Kooperation eine größere Rolle. Ihre Arbeit ist weniger
durch die Software vorgegeben (z.B. bearbeiten sie nicht nur Restfälle). Für sie ist Soft

ware mehr ein Hilfsmittel. Sie sind interdisziplinär zwischen Anwendung und Entwick

lung tätig. Mehrere Befragte geben explizit an, dass sie ihre Arbeit gern machen. Ihre Ar

beit ist unterschiedlich stark formalisiert (z.B. wie genau der Ablauf des Anforderungs

managements vorgegeben ist). Sie sind einer qualitativen Intensivierung ausgesetzt. Ers

tens sind sie das, weil sie in vielen Fällen IT-, energiewirtschaftliches und Methodenwis

sen kombinieren (Key User:innen, IT-Beratende, Anwendungsbetreuende) oder zumin

dest mit den jeweiligen Expert:innen kommunizieren können müssen (Anforderungs

managende, IT-Projektmanagende). Zweitens arbeiten sie öfters gleichzeitig in mehre

ren Projekten und müssen mehrere Prozessabschnitte der Datenverarbeitung überbli

cken und die gestaltete Software ist nicht ihr alleiniger Arbeitsgegenstand. Die quantita
tive Intensivierung ist bei den Gestaltenden schwer zu beurteilen. Mehrere sprechen da

von, dass es phasenweise mal mehr und mal weniger zu tun gibt und sie selbst Grenzen
setzen müssen (durch Priorisierung oder »Nein« sagen können). Die meisten sprechen
von einer geregelten Arbeitszeit. Zudem sind die Kontexte sehr unterschiedlich: ob sie
für mehrere Kund:innen und in mehreren Projekten tätig sind oder nicht.

Die Arbeit der Programmierenden wird durch die Tests anderer und/oder durch
Code-Reviews von Kolleg:innen geprüft. Es ist durch die Ticketsysteme transparent, was
sie abgearbeitet haben, und falls es regelmäßige Treffen wie Daily bei Scrum gibt, müs

sen sie den Teammitgliedern Rede und Antwort stehen. Ihre Spezialisierung und die
meist schwierige Abschätzung des Arbeitsaufwandes geht mit einer fehlenden detail

lierten Kontrolle von außen einher. Eine qualitative Intensivierung existiert bei den be

fragten Programmierenden, weil sie fachliches mit IT-Wissen kombinieren und in ver

schiedenen Projekten, Rollen oder für mehrere Kund:innen tätig sind. Sie spitzt sich bei
Programmierenden wie im Fall eines Befragten von KOOP2 zu, der für mehrere, unter

schiedliche energiewirtschaftliche Fachbereiche entwickeln muss und dadurch entspre

chend mehr Wissen braucht. Zudem müssen aufgrund individueller Anpassungen für
einzelne EVU bei KOOP1 und KOOP2 die Programmierenden den Überblick über diese
individuellen Umsetzungen behalten. Einige Programmierende beschreiben es als po

sitiv, wenn sie sich auch mal in neue Technologien einlernen müssen. Wie bei den Ge

staltenden ist es bei den Programmierenden schwierig, pauschal von einer quantitativen
Intensivierung zu sprechen. Sie arbeiten in den untersuchten Fällen meist Programmier

aufgaben ab, für die Prioritäten vorgegeben sind. Das lässt Spielraum, um eigene Gren

zen zu setzen:

»Ich könnte mich gerne überlasten, aber ich tu’s nicht.« (Programmierer KOOP1)

Eine Intensivierung ist aber nicht ausgeschlossen, wenn z.B. eine fixe Deadline existiert:
wenn zu einem Stichtag mehrere umfangreiche Umsetzungen, z.B. aufgrund einer neu

en Regulierung, abgeschlossen werden müssen. Zwar arbeiten die Programmierenden
in einigen Fällen für mehrere EVU gleichzeitig (bei KOOP1, KOOP2, KOOP3 und PAKET).
Doch hat dies nicht zwangsweise eine quantitative Intensivierung zur Folge. Eine Pro

grammierung kann für viele EVU gleichzeitig gelten (bspw. bei einer Standardsoftware),
d.h., eine Fehlerkorrektur kann gleich mehrere Anfragen von EVU zufriedenstellen.

258 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Die Anwendenden sind hierarchisch und von der Bezahlung Programmierenden

und Gestaltenden untergeordnet. Die Anwendenden sind meist passiv und reagierend:

Sie müssen sich auf Änderungen einstellen oder erfahren erst nach Fertigstellung, was

sich geändert hat. Ihre Arbeit ist das Objekt der Gestaltung und nur wenige gestalten

mit. Vor allem wenn die Softwaregestaltung intern stattfindet, können Anwendende

eigene Wünsche äußern und der Betriebsrat die Mitgestaltung einfordern. Ihre Arbeit

ist in den meisten Fällen das, was die Software nicht erledigen kann bzw. noch nicht

in dieser abgebildet ist. Das bedeutet auch, dass sie fehlerhafte oder nicht ausgereifte

Software kompensieren müssen. Sie fungieren als Puffer für mangelhafte Softwareent

wicklung. In einem Fall ist die Cloud langsam (so ein Befragter von KOOP2), im anderen

sind in den Softwareupdates Fehler, welche die Arbeit der Anwendenden belasten (PA

KET), oder die Prozessintegration leistet der Anwendende manuell (INTERN2). Sie

müssen mit den Reaktionszeiten leben, die sich durch die Zusammenarbeit mit einem

IT-DL oder Softwareunternehmen ergeben. Diese Puffer-Position kann über Fragen

der Softwaregestaltung hinausgehen und die Anwendenden können zu allgemeinen,

operativen Puffern werden. Ein befragter Gruppenleiter, der auch operative Software

anwendet, hatte Burnout. Diesen hatte er vor allem, weil zu wenig Personal vorhanden

war, und wegen der ständigen regulatorischen Änderungen und des Termindrucks im
Bereich der Energiemengenbilanzierung, in der er tätig ist. Bei der Energiemengenbi

lanzierung müssen zu einem Stichtag nicht nur Daten, sondern vor allem Geld fließen.

Anderen Anwendenden wie der befragten Sachbearbeiterin war die Restfallbearbei

tung zu viel Routinearbeit, weswegen sie die Stelle gewechselt hat. Zudem sind die

Anwendenden direkt im Kontakt mit der Kundschaft. Der befragte Monteur meint, er

bekommt die Aggressionen der Kundschaft ab, wenn er bspw. wegen einer Baustelle

den Strom bei jemandem abstellen muss. Für einen Teil der Anwendenden findet eine

qualitative Intensivierung statt, weil sie vermehrt in Prozesszusammenhängen denken

müssen (Sachbearbeitende), mehrere Fachgebiete (Key User:innen) oder mehrere Netz

gebiete und Sparten kennen müssen (Monteur:innen). Arbeiten Anwendende im BPO-
Bereich, arbeiten sie für eine größere Kundschaft und es ist mit einer quantitativen Inten
sivierung zu rechnen. Wobei in einigen EVU diese auch unabhängig davon aufgrund von

Personalmangel oder phasenweise durch IT-Projekte entsteht.

Wissensverteilung – Praxisgemeinschaft und in Software materialisiertes Wissen

Es lassen sich grundsätzlich drei Wissensgruppen unterscheiden: Programmierung, An

wendung und Gestaltung. Dabei fällt in den Fallstudien auf, dass es für die Softwarege

staltenden weniger darum geht, viel Wissen anzusammeln. Sie sind vielmehr dazu da,

um Wissen in Software(quellcode) zu überführen. Primär geht es darum, an das notwen

dige interdisziplinäre Wissen heranzukommen und lernbereit zu sein. Wissen selbst zu

haben ist zweitrangig, wenngleich nützlich und in den meisten Fällen vorhanden. Das

Wissen von Softwaregestaltenden kann umfassend sein: Wissen über die Möglichkeiten

der Softwaregestaltung und individuelle Bedarfe der EVU oder allgemeine der Branche

zu haben. Methoden wie Scrum oder IT-Projektmanagement zu beherrschen. Manche

setzen Softwaregestaltung selbst um, wenn sie programmieren oder Einstellungen an

einer Standardsoftware vornehmen. Der Extremfall sind IT-Beratende, die sich energie

8. Formen und Folgen der Softwaregestaltung – die Empirie 259

wirtschaftlich auskennen, Anforderungen schreiben, selbst programmieren und Einstel

lungen an einer Standardsoftware vornehmen. Doch auch sie müssen sich mit Anwen

denden oder anderen Beteiligten wie IT-DL oder Softwarefirma absprechen. Die Praxis
ist deshalb so entscheidend, weil die Software sich stetig verändert, ebenso wie die Orga

nisationen und die Branche. Es muss immer wieder neu verstanden werden, was ener

giewirtschaftlich notwendig und was softwaretechnisch möglich ist. Drei Thesen stehen
im Mittelpunkt der Zusammenfassung zur Kategorie Wissensverteilung:

1. Die Softwaregestaltung ist eine Praxisgemeinschaft, in der die Softwaregestaltenden
arbeiten.

2. Für das Verständnis der Wissensverteilung ist das in Software materialisierte Wissen
entscheidend.

3. Das Management verfügt nur selten über Wissen zur Softwaregestaltung.

Erstens stellt sich der Arbeitsprozess der Softwaregestaltung in den Fallstudien als eine
Praxisgemeinschaft dar. Sie verfügt über das Wissen zu Methoden der Softwaregestal

tung, und wenn sie schon selbst kein tiefergehendes Wissen über energiewirtschaftliche
Regulierung, Standardsoftwarelösungen oder Programmierung hat, schafft sie zumin

dest die Möglichkeit, sich darüber auszutauschen – ob längerfristig oder temporär in
Projekten. Dass die Praxis wichtiger ist, als Wissen zu besitzen, zeigt sich an drei Aspek

ten: an a) dem kontinuierlichen Austausch zur Softwaregestaltung, der stattfindet und
zu Anforderungen führt (von dem bestimmte Gruppen ausgeschlossen sind), dass b) un

terschiedliche Praxis- und damit Lernbiografien entstehen und c) EVU feststellen, dass
sie nur dann Software gestalten können, wenn sie Teil dieser Praxis sind.

Zu a) In der Softwaregestaltung arbeiten Beschäftigte zwischen Anwendung und
Programmierung zusammen. Auch einzelne Anwendende wie Key User:innen sind Teil
davon. Die Gestaltenden haben Kontakte, kennen die Organisation und einzelne Umset

zungen und Methoden wie Scrum. Es besteht ein kontinuierlicher Austausch zwischen
einem Kern an Mitarbeitenden in den Fällen INTERN1, INTERN2, KOOP3, STARTUP,
genauso wie bei PAKET intern in der Softwarefirma. Bei KOOP1 und KOOP2 sind es
längere Beziehungen zwischen den Firmen und viele Treffen, welche eine gemeinsame
Praxis herstellen. Aber auch innerhalb des IT-DL und teilweise in den EVU arbeiten
die verschiedenen Gruppen kontinuierlich zusammen. Bestimmte Berufsgruppen wie
IT-Beratende erfahren einen kontinuierlichen interdisziplinären Wissenserwerb. Sie
machen nicht nur in verschiedenen Projekten mit, sondern sind sowohl fachlich nah an
den Anwendungsbereichen als auch softwaretechnisch nah an der Software dran. Die
Programmierenden verfügen in allen Fällen über energiewirtschaftliches Wissen, um
die industriespezifischen Anforderungen umzusetzen.

Zu b) Dabei bestimmt die Praxis, was die oder der Einzelne weiß. Es entstehen durch
individuelle, interdisziplinäre Praxisbiografien individuelle Lernbiografien, weil je nach
Softwaregestaltung die Softwaregestaltenden an unterschiedlichen Softwarelösungen,
an unterschiedlichen Anforderungen, Projekten, energiewirtschaftlichen Themengebie

ten und mit unterschiedlichen EVU zusammenarbeiten. Wer mitgemacht hat bei der Ge

staltung, weiß mehr darüber. Die klassische Lernbiografie von Ausbildung, dann Sach

bearbeitertätigkeit, Wechsel in ein anderes Team oder Aufstieg zur Teamleitung gibt es

260 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

immer noch. Diese wird jedoch nun durch neue Möglichkeiten ergänzt. Vor allem die

befragten Gestaltenden und Programmierenden haben mehr interdisziplinäres Wissen

und Einkommen im Laufe der Zeit gewonnen, ohne dadurch hierarchisch aufgestiegen

zu sein.

Zu c) Dass die Praxisgemeinschaft den Zugang zu Wissen sichert, zeigt sich daran,

dass das Wissen, das über Anforderungen in der Software eingeflossen ist oder doku

mentiert wurde, allein nicht ausreicht. Es macht einen Unterschied, ob man Teil der Pra

xis war bzw. ist oder nicht. Das zeigen vor allem Marktbeziehungen, die zu einer Abhän

gigkeit führen und Hürden für eine gemeinsame Praxis darstellen. Bei KOOP2 verlagert

ein EVU die Anwendung der Software zurück in das Unternehmen, um intern Wissen zu

haben und die Softwaregestaltung selbst machen zu können. Zudem bauen einige EVU

intern IT-Projektmanagement-Kompetenz auf. Innerhalb des IT-DL von KOOP1 arbei

ten die Programmierenden eng mit energiewirtschaftlichen Fachleuten zusammen, wo

durch ein stetiger Wissensaustausch besteht. Ein Klient des IT-DL von KOOP1 hat das

Wissen, was das IT-DL über die Jahre über das EVU gesammelt hat, unterschätzt. Er

hat den Wechsel zu einem anderen IT-DL bereut. Bei PAKET sind kleinere EVU abhän

gig von externem Support der Softwarefirma (z.B. durch IT-Beratende), weil sie intern

keine ERP-Fachleute haben. Bei KOOP3 schickt das IT-DL Newsletter über Softwareup

dates, die sich die EVU durchlesen können. Die reine Anwendung, die nicht an der Soft

waregestaltung teilnimmt, ist aus der Wissensgemeinschaft Softwaregestaltung ausge

schlossen. Das ist in allen Fallstudien so.

Zweitens prägt die Wissensverteilung die Arbeit der Softwaregestaltenden dahinge

hend, dass der zentrale Ort des Wissens die Software selbst ist: ob Quellcode der gestalte

ten Software oder die verwendeten Softwarewerkzeuge wie Ticketsysteme. Immer mehr

Wissen, ob über energiewirtschaftliche Regulierung, Geschäftsprozesse, Arbeitsabläufe,

Softwareänderung etc., wandert in Software. Dabei müssen die Softwaregestaltenden

alles, was sie gestaltet haben, nicht mehr aktiv wissen – auch nicht, wie es die Program

mierenden umgesetzt haben. Das zeigen alle Fallstudien: Peu à peu wächst durch Anfor

derungen die Software. In ERP-Systemen wie jenem aus der Fallstudie PAKET steckt al

les, was zum operativen Betrieb der energiewirtschaftlichen Datenverarbeitung notwen

dig ist. Dabei findet die Softwaregestaltung in einem technischen Umfeld aus lesbaren

Objekten statt. Softwaregestaltende dokumentieren in den softwarebasierten Werkzeu

gen wie Ticketsystem, Dokumentationssoftware20, MS Sharepoint oder E-Mails (inkl.

Newsletter über Updates), Programmierende im Quelltext der Software selbst.

Was alle Befragten egal welcher Gruppe sagen, ist, dass Learning by Doing für sie

wichtig ist – ob aus Dokumenten oder mit der Software selbst. Auch wenn viel Wissen

lesbar oder durch Ausprobieren und Mitmachen erlernbar ist, sieht ein Befragter Soft

ware als primäres Wissensquelle und -lager kritisch: Ein Betriebsrat findet, dass sein

EVU zu sehr auf Learning by Doing im Softwaregebrauch setzt. Es sollten wieder mehr

Schulungen stattfinden. Ein befragter Programmierer hält eine Art Führerschein für An

wendende für hilfreich, weil sie in der alltäglichen Anwendung nicht alles lernen (bspw.

die Zusammenhänge und Einstellungsmöglichkeiten in der Software). Bei PAKET sagen

20 Eine weit verbreitete Softwarelösung dafür, die auch STARTUP einsetzt, ist Confluence der Firma

Atlassian.

8. Formen und Folgen der Softwaregestaltung – die Empirie 261

mehrere befragte Personen, dass die Anwendenden eine funktionierende Software wol

len, sich nicht eigenständig mit den möglichen Einstellungen befassen möchten und in
ihrem Arbeitsalltag nicht genug dazu lernen.

Drittens verfügt das Management wie Team-, Abteilungs-, Bereichs- oder IT-Lei

tung nur in wenigen Fällen über Softwaregestaltungswissen. Größtenteils nimmt es
nicht direkt an der Softwaregestaltung teil und interveniert teilweise nur bei der Auswahl
der Anforderungen. Drei befragte Team- bzw. Gruppenleitende wirken bei der Software

gestaltung mit. Wobei es dabei immer um eine Standardsoftware geht, die nur durch
Einstellungen von den EVU verändert werden kann. Softwaregestaltungskompetenzen
haben nur wenige FK (wie z.B. Schulungen in Scrum oder IT-Projektmanagement). Das
Management setzt den Rahmen z.B. durch das IT-Budget oder kann in Matrixorgani

sationen ein wichtiger Sponsor für Softwaregestaltungsprojekte sein, indem es z.B. die
Zusammenarbeit mit anderen Abteilungen durch die Führungskräfte dort vorantreibt.
KOOP1, KOOP2 und PAKET nutzen Marktmechanismen und kaufen die Software(ge

staltung) ein. Der Nachteil ist, dass das Wissen dann nicht direkt im Zugriff des EVU-
Managements ist. Wie auch allgemein für Anwendung und Entwicklung hat das alles
zur Folge, dass das Management bzw. die Führungskräfte keine direkten, konkreten
Anweisungen mehr geben können, weil ihnen das Wissen dazu fehlt. In dem Fall, in
dem Arbeitsanweisungen gemacht werden, erstellen dies die Key User:innen (PAKET,
EVU5). In anderen Anwendungsbereichen werden keine verwendet (Sachbearbeitende
KOOP2 EVU1, Teamleitung EVU2 KOOP2, Anwendende KOOP1 EVU3, Anwendende
EVU1 KOOP1). Die Sachbearbeitenden von EVU2, KOOP2 haben nur ein Schema, wie
sie vorgehen sollen, weil die Fälle zu individuell sind.

Allgemein wird das Wissen immer umfangreicher und eine Organisation allein kann
nicht mehr darüber verfügen. Zum Beispiel sind bei INTERN1 und INTERN2 einige pro

grammierende Externe. Bei KOOP1, KOOP2, KOOP3 verteilt sich das Wissen auf mehre

re Organisationen. Die fachliche Spezialisierung der Mitarbeitenden nimmt zu und da

mit das Wissen, was ihre Führungskräfte nicht haben: u.a. durch Automatisierung, kom

plexere Regulierung, gestiegene Bedeutung von IT, höhere Ansprüche der Kundschaft,
Produktvielfalt.

8.5. Folgen für die soziotechnische Arbeitsgestaltung
der Softwareanwendung in den EVU

Ein Teil der Arbeitsgestaltung der Softwareanwendung in den EVU hängt an der Soft

waregestaltung. Der Abschnitt nimmt diesen Teil in den Blick, der sich aus dem Ver

hältnis der Arbeitsprozesse von Softwaregestaltung und Softwareanwendung ergibt. Er
lässt sich mithilfe der Kategorien Einfluss und Konflikt analysieren. Anders als im letzten
Punkt 8.4. geht es dabei nicht um einzelne Gruppen von Beschäftigten. Es geht um das
Verhältnis zweier Arbeitsprozesse zueinander, über das nicht nur die operativ Software

gestaltenden oder -anwendenden entscheiden, sondern in den Fällen, wo Hierarchien
vorliegen, das Management strategische Entscheidungen fällt, Ziele vorgibt, Ressourcen
zur Verfügung stellt und eigene Anforderungen einbringt.

Der Einfluss beider Arbeitsprozesse aufeinander betrifft vier Aspekte:

262 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Kontrollverhältnis: Wird der Arbeitsprozess der Softwareanwendung jenem der

Softwaregestaltung untergeordnet? Werden Softwareanwendung und -gestaltung

z.B. getrennt in zwei verschiedenen Organisationen kontrolliert?

• Reorganisation: Wird der Arbeitsprozess der Softwareanwendung zum Zwecke der

Softwaregestaltung reorganisiert?

• Ziele: Wie verhalten sich die jeweiligen Ziele von Softwareanwendung und -gestal

tung zueinander und wer kann sie festlegen (z.B. individuell etwas für einen An

wendungsbereich zu entwickeln oder eine skalierbare Standardsoftware; die Anwen

dungsorganisation zu reorganisieren oder nicht)?

• Partizipation: Wer gestaltet wie mit? Wer aus der Softwareanwendung hat Zugang

zur Softwaregestaltung? Welche Rollen nehmen Expert:innen ein und wie verhalten

sich Anwendenden- und Unternehmens- bzw. Managementanforderungen zuein

ander?

Für zwei der genannten Aspekte des Einflusses der Softwaregestaltung auf die Software

anwendung diskutiert der Abschnitt folgende Thesen:

1. Für die Reorganisation deutet sich in einigen EVU an, dass sie sich auf eine bestimm

te Form der Organisation zubewegen: eine auf die Softwaregestaltung ausgerichtete

softwaretechnische Prozessorganisation. Eine solche Organisation bedeutet nichts

anderes, als dass die Softwaregestaltung die Software und die Organisationen eines

End-to-end-Prozesses übergreifend und ohne die Behinderung durch Fachbereichs

grenzen ändern kann.

2. Hinsichtlich der Partizipation stellt sich die Frage, inwieweit die Anwendenden an

der Gestaltung der Software beteiligt sind und ob sich die Fälle Partizipationstypen

zuordnen lassen.

Die Konflikte zwischen Gestaltung und Anwendung sind entweder innerhalb (wie je

ne zwischen Management- und Anwendendenanforderungen) oder außerhalb der EVU

(wie z.B. zwischen individuellen Alleingängen einzelner EVU und kooperativem Stan

dard mehrerer EVU). Dabei zeigen die Fallstudien, dass Betriebsräte innerhalb der EVU

bei der soziotechnischen Arbeitsgestaltung insofern mitbestimmen, indem sie interve

nieren, aber nicht aktiv gestaltend sind. Sie spielen bei Fragen der Partizipation insofern

eine Rolle, als sie bei Rahmenbedingen mitentscheiden und weniger bei der inhaltlichen

Gestaltung der Software (z.B. wenn ein Betriebsrat einfordert, dass die Softwaregestal

tung Anforderungen der Anwendenden berücksichtigt).

Dieser Abschnitt geht in den folgenden Punkten auf die Unterschiede zwischen den

Fallstudien ein, stellt die Fälle mithilfe der Kategorien Einfluss und Konflikt einzeln dar

und fasst die Ergebnisse zusammen.

8.5.1. Soziotechnische Arbeitsgestaltung: zwischen Abhängigkeit
und Unabhängigkeit

Die Fälle lassen sich dahingehend unterscheiden, ob die EVU unabhängig oder abhängig

von IT-DL oder Softwarefirmen die Arbeit der Softwareanwendung gestalten können.

8. Formen und Folgen der Softwaregestaltung – die Empirie 263

Welcher Typ in einem Fall vorliegt, ergibt sich aus der soziotechnischen Konstellation
und dem Arbeitsprozess der Softwaregestaltung.

Bei der unabhängigen soziotechnischen Arbeitsgestaltung ist aufgrund der Arbeits

teilung die Softwaregestaltung Teil der anwendenden Organisation (EVU) und der Ein
fluss auf die soziotechnische Arbeitsgestaltung durch die Softwaregestaltung umfasst
nicht nur die Software, sondern auch den anzuwendenden Arbeitsprozess. Die Konflik
te bei der Arbeitsgestaltung sind rein intern. Je nach Grundkoordination bestehen dann
diese internen Konflikte in Hierarchien, Märkten oder Netzwerken.

Bei einer soziotechnischen Arbeitsgestaltung vom Idealtyp abhängig reduziert sich
der Einfluss der Softwaregestaltung auf die angewendete Software und ist nur über Ex

terne möglich (IT-DL, Softwarefirmen). Das liegt an der Arbeitsteilung, bei der sich die
EVU ausschließlich auf die Softwareanwendung konzentrieren. Die Konflikte in der Ar

beitsgestaltung durch Softwaregestaltung existieren entsprechend vor allem mit den ex

ternen Softwaregestaltenden. Je nach Grundkoordination bestehen dann diese Konflikte
in Hierarchien, Märkten oder in Netzwerken.

Tabelle 25: Idealtypen unabhängige und abhängige soziotechnische Arbeitsgestaltung

Typ Einfluss der Softwaregestaltung Konflikte
unabhängig intern: Software und Organisation intern
abhängig extern: nur auf Software extern

Anhand von vier Unterkategorien lässt sich der Einfluss zwischen Softwareanwen

dung und -gestaltung näher beschreiben: Kontrollverhältnis, Reorganisation, Ziele und
Partizipation.

Was das Verhältnis der Arbeitsprozesse der Softwareanwendung und Softwarege

staltung zueinander betrifft, ist bei einer unabhängigen Arbeitsgestaltung das Kontroll
verhältnis beider so, dass die Softwaregestaltung die Softwareanwendung kontrollie

ren kann, was sich z.B. darin niederschlägt, dass Softwareanwendende oder deren Füh

rungskräfte Veränderungen aufgrund der Softwaregestaltung nicht verhindern können.
Zudem ist eine wechselseitige Reorganisation von Softwaregestaltung, Software und
Softwareanwendung möglich. Bei den Zielen kann das EVU sowohl über jene der Soft

wareanwendung als auch der -gestaltung entscheiden. Ebenso kann bei der Partizipati
on das EVU entscheiden, wer an der Softwaregestaltung teilnimmt, und es ist ein direk

ter Einbezug der Anwendenden möglich.
Was das Verhältnis der Arbeitsprozesse der Softwareanwendung und Softwarege

staltung zueinander betrifft, ist bei einer abhängigen Arbeitsgestaltung das Kontrollver
hältnis beider so, dass sie sich nicht gegenseitig kontrollieren. Die Softwaregestaltung
kann bei der -anwendung keine Veränderungen durchsetzen. Auch eine Reorganisation
von Softwareanwendung und -gestaltung ist nur getrennt möglich. Die Ziele beider Ar

beitsprozesse sind getrennt: Jene des Arbeitsprozesses Softwaregestaltung sind auf den
Softwareproduzenten (IT-DL oder Softwarefirma) ausgerichtet und die vom Arbeitspro

264 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

zess der Softwareanwendung auf das EVU. Die Partizipation konzentriert sich auf Fach

expert:innen und nicht auf Anwendende bzw. entscheidet nicht das EVU darüber, wer

mitgestaltet.

Tabelle 26: Idealtypen unabhängige und abhängige soziotechnische Arbeitsgestaltung – Unterka
tegorien

Typ

Kontrollverhältnis

Softwareanwendung

(SA) – Softwaregestal
tung (SG)

Reorganisation

SA – SG
Ziele

SA – SG
Partizipation SA an
SG

unabhängig Kontrolle SA durch SG
möglich

Software, SG und
SA im Wechsel

spiel möglich

beides auf
EVU-Nutzen

ausgerichtet

direkter Einbezug
Anwendende möglich

abhängig Kontrolle SA – SG: nur
getrennt möglich

nur getrennt
möglich

Ziel SG ent
scheidet Soft
warefirma oder
IT-DL

(Branchen-)Fachleute,

anwendende Organi-
sation entscheidet
nicht

Sind nun die einzelnen Fälle Beispiele für eine unabhängige oder abhängige sozio

technische Arbeitsgestaltung der Softwareanwendung? Antwort darauf geben die Fall

darstellungen und die Zusammenfassung am Schluss dieses Abschnitts.

8.5.2. Darstellung der Fallstudien

Das Verhältnis der Arbeitsprozesse von Anwendung und Gestaltung stellt dieser Ab

schnitt für die sieben Fallstudien jeweils anhand der Kategorien Einfluss (inkl. ihrer vier

Unterkategorien) und Konflikt dar.

8.5.2.1. INTERN1: iterativer soziotechnischer Wandel

eines Fachbereichs, unabhängig

Es hat Folgen für die soziotechnische Arbeitsgestaltung des Anwendungsbereichs der

Software, dass das EVU in der Fallstudie die Möglichkeiten der individuellen Software

gestaltung dezentral für den Fachbereich Instandhaltung nutzt: Dadurch kann das EVU

unabhängig Arbeit via Software gestalten, d.h. den Arbeitsprozess der Softwareanwen

dung verändern. Das zeigt sich erstens am Einfluss. Denn das EVU hat sowohl Einfluss

auf die Gestaltung der Software als auch auf die anwendende Organisation. Zudem kann

das EVU eigenständig über die Ziele sowohl von Softwaregestaltung als auch Software

anwendung entscheiden. Der Einfluss erlaubt zuletzt eine direkte Partizipation der An

wendenden – wenn auch begrenzt. Zweitens verlaufen die Konflikte zwischen den bei

den Arbeitsprozessen innerhalb des EVU (zwischen Fachbereich und IT-Abteilung), wo

durch es diese eigenständig lösen kann. Allerdings muss sie diese Konflikte innerhalb

bestehender Hierarchien lösen, in denen das Management das Sagen hat.

8. Formen und Folgen der Softwaregestaltung – die Empirie 265

Die unabhängige Arbeitsgestaltung zeigt sich beim Einfluss auf vierfache Weise. Ers

tens zeigt sie sich am Kontrollverhältnis: Die Softwaregestaltung hat die Kontrolle über
die energiewirtschaftlichen Prozesse, weil die Anwendenden zwar die Möglichkeit ha

ben, an der Gestaltung mitzuwirken, aber nicht, diese aufzuhalten, und weil sie grund

legende Vorgaben (wie die Arbeitssteuerung über mobile Endgeräte) nicht ändern kön

nen. Das zeigt sich auch daran, dass die vier Product Owner:innen, die jeweils u.a. für
unterschiedliche Funktionalitäten der Instandhaltungssoftware zuständig sind, die be

stehenden Hierarchien aus Fachbereichen und IT nicht berücksichtigen müssen, was zu

dem den Entscheidungsaufwand verringert:

»Unsere POs, die können Dinge entscheiden. Man muss nicht wegen jedem blöden
Knopf zu drei Chefs rennen und sagen: Ist der jetzt grün oder blau? Relativ umfang

reiche Dinge entscheiden wir einfach selbst und machen das und das geht auch ganz
gut.« (Programmierer)

Zweitens gestaltet das EVU nicht nur eine individuelle Software, sondern reorganisiert
die Arbeit in der Softwareanwendung. Zum einen tut es das, weil das Gestaltungs

netzwerk aus Anforderungsmanagenden und Key User:innen Teil der Fachbereiche
geworden ist. Zum anderen ändert der Arbeitsprozess der Softwaregestaltung iterativ
den Arbeitsprozess der anwendenden Instandhalter:innen und Dispatcher:innen, in

dem er diesen nicht nur abbildet, sondern in Frage stellt und ändert. So gibt es z.B. die
Position des Meisters nicht mehr. Wechselseitig entstehen eine individuelle Software
und eine veränderte anwendende Organisation. Mittlerweile hat sich durch das iterative
Vorgehen eine Sättigung an möglichen Anforderungen vor allem bei der zentralen App
für die Arbeitssteuerung der Monteur:innen eingestellt, weswegen neue Bereiche wie
die Arbeit der Dispatcher:innen in den Blick genommen werden.

Drittens hat sich das EVU zum Ziel gesetzt, die Software ausgehend vom eigenen,
althergebrachten Status quo der Softwareanwendung zu gestalten. Das heißt, das EVU
hat als Ziel, die Anwendung inkrementell zu verändern. Es dockt dabei zwar an das Stan

dardpaket von SAP an, kann dabei aber seine eigenen Ziele verfolgen, weil es die indivi

duelle Erweiterung unabhängig von SAP gestaltet.
Zuletzt zeigt sich die unabhängige soziotechnische Arbeitsgestaltung durch die Soft

waregestaltung an der Partizipation. Denn das EVU kann selbst entscheiden, wer mit

gestaltet. Ausschließlich eigene Mitarbeitende gestalten mit. Anwendende können mo

deriert über Anforderungsmanagende oder Product Owner:innen Anforderungen auf

geben. Das heißt nicht, dass die internen Hierarchien nicht mehr gelten. Die Managem

entziele bleiben unangetastet. Die Beteiligten weichen nicht von Zielen wie der Kosten

optimierung ab. Die Partizipation durch Anwendende und deren Anforderung sind vor
allem nützlich und steigern die Akzeptanz, ohne die Ziele des Managements in Frage
zu stellen. Die Partizipation war vom Betriebsrat gewünscht, aber auch Teil eines be

wussten Change Managements, wodurch das Management Konflikte mit Beschäftigten
vermeiden wollte und auch vermieden hat.

Der kontinuierliche Fortschritt bei der Entwicklung hängt davon ab, dass die Soft

wareanwendung und -gestaltung durch die bestehende Konstellation entstehende Kon
flikte löst. Diese sind in dem Fall rein intern und so kann das EVU sie eigenständig lösen.

266 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Sie zeigen sich zum einen an der zwiespältigen Lage von Product Owner:innen und An

forderungsmanagenden, weil Erstere in der IT-Abteilung, Letztere im Fachbereich an

gesiedelt sind, Erstere Anforderungen des Managements aufnehmen und Letztere jene

aus dem Fachbereich. Zum anderen zeigen sich die Konflikte in der Zusammenarbeit

mit dem Betriebsrat.

Die Fachabteilung Instandhaltung ist nur Auftraggeber und nicht steuernd. Der

Haupt-Product-Owner aus der IT-Abteilung entscheidet über Ressourcen wie Budget

und Priorisierung. Weil nun das obere Management über den Haupt-Product-Owner

Anforderungen einbringt und unterschiedliche Vorstellungen über die Priorisierung

größerer Themen bestehen, kommt es zu Konflikten. Die Anforderungsmanagerin aus

dem Fachbereich hat es schwer:

»Also, so wie wir heute die Hierarchien haben und leben, könnte ich das nie und nim

mer durchsetzen, wenn ich jetzt da eine andere Vorstellung hätte.« (Anforderungs
managerin)

Bei diesem Konflikt zwischen Unternehmens- und Anwendendensicht hat das letzte

Wort der Haupt-Product-Owner. Nur aufgrund guter Kontakte kann der Fachbereich

seine Vorstellungen einbringen, trotz bestehender Hierarchien zwischen den Pro

duct Owner:innen aus der IT-Abteilung und dem Fachbereich. Letztendlich hätte der

Fachbereich gern die allgemeine Entscheidungshoheit (über Priorisierung, Budget,

Aufgabenverteilung). Es ist aber noch offen, ob er diese in Zukunft bekommen wird.

Für den Betriebsrat bietet die unabhängige Arbeitsgestaltung durch die interne

Softwaregestaltung mehrere Vorteile. Seine Forderung nach stärkerer Partizipation

der Monteur:innen wurde umgesetzt. Er kann bereits im Lauf der Entwicklung darauf

achten, dass keine individuelle Leistungskontrolle möglich wird. Einige der Befragten

(Programmierer, Architekt) berücksichtigen deswegen bereits bei der Konzeption, dass

sie auf die Interessen des BR eingehen. Zudem ist er gut informiert, weil er in den

entsprechenden Treffen wie andere Stakeholder der Softwareentwicklung dabei ist.

Andererseits gesteht er ein, dass er auf bestimmte Entscheidungen, die dort getroffen

werden, keinen Einfluss hat. Der Spielraum des BR, was die Gestaltung anbelangt, ist

auch bei dieser internen Softwaregestaltung beschränkt.

8.5.2.2. INTERN2: fachbereichsübergreifende Softwaregestaltung, unabhängig
Wie bei INTERN1 kann auch in diesem Fall das EVU unabhängig die Software und damit

den eigenen Arbeitsprozess der Softwareanwendung gestalten. Jedoch ist der Einfluss

der Softwaregestaltung auf die Softwareanwendung geringer. Zum einen liegt das dar

an, weil sie nur eine der Softwarelösungen, welche die Anwendenden verwendet, gestal

tet. Zum anderen ist allein die Software im Fokus und weniger die Anwendungsorgani

sation insgesamt. Das liegt vor allem daran, dass die Softwaregestaltung die Organisa

tion mehrerer Fachbereiche verändern müsste – anders als bei INTERN2. Es gibt aber

die Idee, die Team- und Abteilungssilos aufzulösen und ein integriertes Prozessteam für

die Softwaregestaltung zu schaffen (siehe dazu die Diskussion zur softwaregestaltenden

Prozessorganisation 8.5.3.4). In diesem Fall verlaufen die Konflikte vor allem zwischen

8. Formen und Folgen der Softwaregestaltung – die Empirie 267

den Fachbereichen. Allerdings kann das EVU diese, wie auch jene mit dem Betriebsrat,
eigenständig lösen, weil es interne Konflikte sind.

Auch wenn die Softwaregestaltung insofern Einfluss auf die Anwendung hat, als
dass sie iterativ die Software ändert, gibt es Unterschiede zu INTERN1. Prinzipiell ist
der Spielraum geringer als bei INTERN2, weil das EVU keine eigenständige Erweite

rung programmiert, sondern den SAP-Standard anpasst. Das Kontrollverhältnis ist
anders als bei INTERN1, weil die Softwaregestaltung dem Arbeitsprozess der Soft

wareanwendung hierarchisch nicht übergeordnet ist, sondern mit den Hierarchien der
Anwendung und Abteilungsgrenzen zu kämpfen hat. Das EVU reorganisiert die Soft

wareanwendung nur dahingehend, dass es dezentrale IT-Teams in den Fachbereichen
und Gestaltungsnetzwerke für die Anforderungsrunden etabliert hat. Tiefergehen

de organisatorische Veränderungen, wie die IT- und Fachabteilung aufzulösen und
interdisziplinäre Teams zu bilden, meidet das EVU. Das EVU setzt die Ziele der Soft

waregestaltung nur teilweise selbst. Was den softwaretechnischen Zuschnitt anbelangt,
ist sie von SAP abhängig, das einen Standard anstrebt. Was die organisatorische Aus

richtung betrifft, kann das EVU selbst entscheiden, vom Status quo aus zu gestalten
und nicht die komplette Organisation in Frage zu stellen. Doch wie bei INTERN1 erlaubt
der Einfluss eine direkte Partizipation der Anwendenden, auch wenn sich hier mehrere
Fachbereiche einigen müssen und damit die Fachbereiche voneinander abhängig sind.
Allerdings meint ein befragter Anwender, er würde in Entscheidungsprozesse über
Anforderungen nicht eingebunden, vor allem bei solchen, bei denen es um die Usability
geht und darum, die Anwendung zu vereinfachen. Für ihn sind Priorisierungen nicht
nachvollziehbar und was aus welchem Bereich umgesetzt oder nicht umgesetzt wird.

Ein Beispiel für den mangelnden Einfluss der Softwaregestaltung, was Reorganisa

tion und Kontrollverhältnis aufgrund einer fehlenden prozess- bzw. fachbereichsüber

greifenden Sicht anbelangt, ist der Fachbereich Netzanschluss. Dort gibt es zwar eine
dezentrale Fachbereichs-IT, die sich um die Digitalisierung des Fachbereichs kümmert.
Sie ist aber hierarchisch den anderen (Nicht-IT-)Teams des Fachbereichs gleichgestellt
und nicht direkt bei der Bereichsleitung angesiedelt. Sie ist im Team der Regionallei

tung. Diese ist disziplinarisch verantwortlich, müsste Entscheidungen fällen und Auf

träge vergeben, was die Softwaregestaltung anbelangt. Die Regionalleitung macht das
jedoch nicht:

»[D]. h. Prozesse, die eigentlich waagerecht laufen, die werden dauernd durch irgend
welche Hierarchien getrennt und der Leiter sagt halt: ›Nicht mein Bier. Ich kümmere
mich nicht um die Schnittstelle, weil mir tut es ja nicht weh.‹ Also, es fehlt die überge
ordnete Verantwortung für einen Prozess aus Kundensicht oder aus Dienstleistersicht.
Wir kucken eigentlich immer nur nach: Wie sind wir strukturiert aus der Historie?«
(Product Owner Netzanschluss)

Ein weiteres Beispiel für den geringen Einfluss der Softwaregestaltung auf die Software

anwendung aufgrund der Abteilungsgrenzen sind die unterschiedlichen Grade der Auto

matisierung. Unter anderem stellen die Schnittstellen zwischen Teams, die mit dem Mo

dul Work-Management bzw. Auftragsverarbeitung arbeiten, einen Bruch dar, der nicht
digital überbrückt und damit automatisiert ist. Bereiche wie Zählerwesen oder Netz

268 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

planung haben jeweils für sich eine eigene interne Organisation. Sie haben z.B. unter

schiedlich viel Budget für IT. Das erschwert ein einheitliches Vorgehen. Jeder einzelne

Bereich kann sich für sich selbst optimieren und denkt erst einmal an die Veränderun

gen bei sich. Um den gesamten End-to-end-Prozess der Auftragsverarbeitung zu opti

mieren, müssten alle Nachbarabteilungen mitmachen und Teamgrenzen überwunden

werden. Das Silo-Denken verdeutlicht der Umstand, dass aktuell niemand den gesam

ten End-to-end-Prozess Netzanschluss auswerten kann, weil er sich auf mehrere Abtei

lungen und Systeme erstreckt.

Doch hat sich durch die gemeinsame Anforderungsrunde zumindest die Wahrneh

mung auf die Organisation und die Gestaltungsmöglichkeiten verändert, indem die Be

teiligten vom gemeinsamen (Software-)Prozess aus auf die Firma blicken:

»Ja, den Eindruck hatte ich auch, dass praktisch durch diese Software, diese alten
Strukturen auf einmal feststellen: Wir haben ja was gemeinsam. Was vorher halt
einfach nicht war, weil man fachlich getrennt war, weil es eben diese Fachexperten
gab für Montage oder Hausanschluss oder was weiß ich, was es da alles gibt. Und
jetzt haben die aber doch irgendwie so bestimmte Sachen gemeinsam oder müssen

sich jetzt versuchen abzustimmen und das passt nicht mehr zu den alten Strukturen.
Das ist zumindest den Eindruck, den ich habe.« (Anforderungsmanager)

Neben den organisatorischen Brüchen innerhalb und zwischen den Fachbereichen und

Abteilungen beschränken die Vielzahl verschiedener Softwarelösungen den Einfluss des

Arbeitsprozesses der Softwaregestaltung. Der befragte Anwendende aus dem Fachbe

reich Netzanschluss verwendet zwei Systeme und zwei Oberflächen, hinter denen zwei

getrennte IT-Bereiche stecken, die jeweils getrennt Anpassungen vornehmen. Das heißt,

der Arbeitsprozess der Softwaregestaltung in Form der Anforderungsrunde betrifft nur

eine der angewendeten Softwarelösungen.

Es war eine Voraussetzung für die Etablierung des Softwaregestaltungsprozesses,

dass zwischen den Fachbereichen und der IT-Abteilung keine grundsätzlichen Konflik
te vorhanden waren (siehe die Entstehungsgeschichte der Abstimmungsrunde unter

8.3.2.2). Inhaltliche Interessengegensätze scheinen die Fachbereiche in der zentralen

Abstimmungsrunde und dezentral in ihren Teams nun konstruktiv zu verhandeln.

Die Befragten sehen den Betriebsrat nicht als inhaltlich gestaltend, sondern interve

nierend. Bei der Anforderungsrunde macht er nicht mit. Der Betriebsrat prüft vielmehr

allgemein neue Lösungen, ob sie eine individuelle Leistungskontrolle ermöglichen. Bei

Prozessoptimierungen muss das Management ihn einbinden. Manche aus der IT-Ab

teilung sehen, so ein Befragter, den Betriebsrat als Behinderung an, weil man ihm die

Lösungen vorschlagen und mit ihm diskutieren muss. Für einen anderen Befragten hat

er bisher in der Softwaregestaltung noch keine Rolle gespielt.

8.5.2.3. KOOP1: zentraler Standard oder dezentral individuell –
Wo endet die Kooperation der EVU?

Bei der soziotechnischen Arbeitsgestaltung sind die EVU in diesem Fall größtenteils ab

hängig. Das liegt zum einen daran, dass mehrere EVU gemeinsam vermittelt über ein

IT-DL kontinuierlich und kooperativ verhandeln, was sie als Standard und was sie indivi

8. Formen und Folgen der Softwaregestaltung – die Empirie 269

duell gestalten. Der Einfluss dieser zentralisierten Softwaregestaltung auf die Software

anwendung beschränkt sich im Wesentlichen auf die Software selbst. Die EVU entschei

den für sich, wie sie sich organisieren. Das bedeutet in diesem Fall, von ihrem jeweiligen
Status quo ausgehend und sich nicht radikal auf die Softwaregestaltung ausrichtend.
Das gemeinsame Ziel, einen Standard zu gestalten, widerspricht in manchen Fällen den
Zielen einzelner EVU, individuell ihre Softwareanwendung zu optimieren. Doch lässt
die zentralisierte Verhandlung zu, dass EVU zumindest Teile ihrer Software unabhän

gig von anderen gestalten. Inhaltliche Konflikte verhandeln EVU und IT-DL zwar im ge

meinsamen Anforderungsmanagement. Was die Softwaregestaltung allgemein und da

mit die soziotechnische Arbeitsgestaltung betrifft, sind einzelne EVU durch die Markt

beziehung abhängig vom IT-DL und den anderen EVU.
Bei KOOP1 besteht durch das Kontrollverhältnis keine Unterordnung der Anwen

denden unter die Bedarfe der Softwaregestaltung. Sie sind vielmehr einem Software

standard untergeordnet: dem von SAP und dann noch dem industriespezifischen, den
die EVU kooperativ gestalten. Die EVU kontrollieren die Softwareanwendung unabhän

gig von der Softwaregestaltung dieses Standards. Bei jenen EVU, die verstärkt dezentral
selbst Software gestalten, gibt es Fälle, die den Arbeitsprozess der Softwareanwendung
an die Bedürfnisse der Softwaregestaltung ausrichten.

Um zumindest Einfluss auf die Software zu haben, haben EVU im Zeitverlauf eige

ne Strukturen zur Softwaregestaltung ab- und wieder aufgebaut. In EVU3 und EVU2
wurden 2020 neu Stellen geschaffen, um intern Synergien zwischen mehreren Fachbe

reichen in der Gestaltung zu erkennen. Im EVU2 existiert ein eigenes Team, das sich
mit dem Thema Digitalisierung beschäftigt (Strategien entwickeln, eigene Fachkräfte für
IT-Projekte etc.). Das ist für den Digitalisierungsmanager der Firma Teil einer Wellen

bewegung:

»Also, so das Thema Make-or-Buy oder zentral, dezentral. Also, was habe ich zentral
und was habe ich dezentral? Das ist so kurvenartig. So alle zehn Jahre schwingt das
um. Wir müssen wieder alles dezentralisieren hin zu zentralisieren. Wahrscheinlich
ist in zehn Jahren wieder alles zentral bei uns. Und, ja, ich glaube, da gibt es keine
feste Kurve, wo sich das hin entwickelt.« (Digitalisierungsmanager EVU2)

Auch andere EVU verzichten auf Synergien durch die Kooperation zugunsten individu

eller Gestaltungswege. So hat das EVU1 eine andere Software für das Energiedatenma

nagement und die Instandhaltung, um diese alleine, unabhängig von den anderen EVU,
die mit dem IT-DL zusammenarbeiten, zu gestalten.

Aufgrund der abhängigen Arbeitsgestaltung ist die Reorganisation nur getrennt für
Softwareanwendung und -gestaltung möglich. Es gibt zwar individuelle Anpassungen
bei KOOP1, jedoch führen sie nur vereinzelt zu Reorganisationen: Ein EVU von KOOP1
betreut die Bereiche für Geschäfts- und Privatkundschaft nicht mehr durch getrennte
IT-Teams, sondern gemeinsam durch ein IT-Team, um die Prozesse beider Bereiche zu
vereinheitlichen. Die Prozesse zur Kundschaft sollen von den Softwaregestaltenden end-
to-end überblickt und optimiert werden können. Der Anstoß für die Reorganisation war,
dass die verschiedenen Bereiche ähnliche Anforderungen an die Softwaregestaltung ge

stellt haben:

270 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

»Und da ist halt dann aufgefallen, dass es teilweise bzw. eigentlich nicht teilweise,
sondern der übergreifende Teil immer der war, dass es die gleichen Anforderungen
gibt, die aber letztendlich losgelöst voneinander umgesetzt worden sind oder genau
der andere Fall, dass Team A irgendetwas umgesetzt hat, was bei Team B dazu führ
te, dass irgendwann nicht mehr funktioniert hat. Da ist man halt zum Entschluss ge
kommen, dass man eigentlich diese beiden Teams oder Funktionen zusammenbrin

gen muss, um letztendlich dort Synergien zu entwickeln.« (Prozessmanager EVU3)

Hier haben Beschäftigte und Management intern die softwaretechnischen Gestaltungs

möglichkeiten erkannt und reagieren darauf mit einer Reorganisation.

Die Abhängigkeit bei der soziotechnischen Arbeitsgestaltung zeigt sich auch an den

Zielen. Bei KOOP1 haben vor allem die kleinen EVU das Ziel, eine Standardware zu nut

zen, die günstig sein soll. Allgemein behalten die EVU ihre fachlichen Abteilungen und

hierarchisch gegliederten Strukturen bei. Wie auch schon bei den anderen Dimensio

nen des Einflusses der Softwaregestaltung auf die Softwareanwendung nutzen einzelne

EVU die Möglichkeit, mehr individuell selbst zu gestalten und sowohl was die Software

als auch die eigene anwendende Organisation betrifft, unabhängig zu entscheiden.

Die Partizipation erfolgt beim kooperativen Anforderungsmanagement bürokra

tisch reglementiert. Es ist ein formalisierter Prozess, in dem EVU im Anforderungs

management Anforderungen verhandeln und der Standard einen Konsens darstellt. In

einem EVU prüft das Management intern noch jede Anforderung, die zum IT-DL in das

Anforderungsmanagement wandert. Oder es legt z.B. das IT-Budget für Anforderungen

fest und entscheidet, welche Anwendenden mitgestalten.

Der Fall ist ein Beispiel für eine abhängige soziotechnische Arbeitsgestaltung durch

Softwaregestaltung, weil die Konflikte extern sind. Konflikte über die inhaltliche Ge

staltung lösen die EVU zwar über das IT-DL im Ablauf des Anforderungsmanagements.

Wenn kein Kompromiss gefunden wird, sieht die Softwarearchitektur und die Koope

rationsvereinbarung vor, dass einzelne EVU unabhängig davon gestalten können. Das

Kernproblem der Softwaregestaltung via Marktbeziehung (wenn auch kooperativ) bleibt

bestehen: Zwischen Kooperation, Innovation und Kostenkalkül müssen EVU und IT-DL

eine gemeinsame Basis finden. Die Folgen für die Gestaltung sind, dass die Kooperation

beschränkt bleibt und teilweise von EVU in Frage gestellt wird.

Aus Sicht von möglichen Synergien in der Softwaregestaltung wäre es ein großer Vor

teil, wenn die EVU besser kooperieren und ihre Unabhängigkeit dafür aufgeben würden.

Doch ist es für das IT-DL schwierig, etwas kooperativ zu bewegen, wenn die EVU intern

sich nicht über ihre IT-Strategie einig sind. Einen konkreten Plan oder Vorgehen, um

eine gemeinsame Strategie zu entwickeln, gibt es aktuell nicht. Das IT-DL muss sich

mit den EVU individuell zusammensetzen. Die EVU haben z.B. eigene Strategien, wel

che Softwarepakete sie einsetzen (auch von anderen IT-DL). So gibt es u.a. beim CRM-
Einsatz keine Einigkeit im Verbund, weswegen EVU3 seinen eigenen Weg geht. Ein Min

destmaß an Kooperationsbereitschaft besteht jedoch. Dies zeigt sich im Anforderungs

management, wo sich die EVU zumindest in einigen strategischen Fragen, wie z.B. der

Umstellung auf eine neue Version des ERP-Systems, einigen können.

Neben den Konflikten darüber, was Standard und was individuell ist, zeigt sich die

Abhängigkeit der EVU in der Umsetzung der Softwaregestaltung. Das betrifft die Dau

8. Formen und Folgen der Softwaregestaltung – die Empirie 271

er, den Support und die Qualität der Umsetzung. Das hat auch Folgen für die Anwen

denden, weil diese in ihrer Arbeit von einer funktionierenden Software abhängen. Für
viele Befragte ist die Reaktionszeit und der Service des IT-DL nicht immer befriedigend.
Das IT-DL verweist manche EVU bei Fragen an die Servicehotline oder sie müssen auf
Rückrufe warten. Die EVU erleben sich als Teil einer größeren Kundschaft. Manche An

forderungen erledigt das IT-DL trotz existierender regulatorischer Fristen zu langsam.
Es herrscht Misstrauen, was die Aufwandsschätzung anbelangt, weswegen einige EVU
intern wieder Know-how haben, um sie prüfen zu können.

Für die Betriebsräte in den EVU ergeben sich durch die Zusammenarbeit mit einem
IT-DL, die Projektarbeit und den stetigen Wandel der IT-Systeme verschiedene Einfluss

möglichkeiten. Allerdings betrifft das weniger die inhaltliche Softwaregestaltung. Die

se geht nicht darüber hinaus, eine Leistungskontrolle zu verhindern. Bei EVU4 ist der
Betriebsrat dank einer Betriebsvereinbarung für IT-Projekte in diese eingebunden. Er
sitzt in allen Lenkungsausschüssen und ist deshalb gut informiert. Er darf bei großen
Projekten auch bei der Beraterauswahl mitentscheiden. Bei mehreren IT-Projekten hat
er die Leistungs-/Verhaltenskontrolle geprüft und verhindert. In dem EVU ist der Be

triebsrat auf Augenhöhe mit dem Management und fährt mit zu Führungskräftetagun

gen, bei denen es u.a. um die Digitalisierungsstrategie geht. Aus seiner Sicht kann er bei
der Softwaregestaltung nicht mitmachen, weil ihm das nötige Wissen fehlt und er nur
einen eingeschränkten internen Machtbereich hat.

Der Betriebsrat aus EVU2 meint dazu:

»Da sind Leute, die sprechen eine Sprache. Ich kann mich mit denen nicht unterhal
ten. Also, ich kann mit denen ein Bier trinken. Aber fachlich… Ich kenn kein Wort von
denen. Die Rede auch kein Deutsch. Das ist natürlich eine andere Welt für uns, völlig
andere Welt.« (Betriebsrat EVU2)

In dem EVU sitzt der BR in einem Gremium, das sämtliche neuen IT-Systeme prüft.
Laut dem Applikationsbetreuer von EVU2 muss für jedes neue IT-System eine Betriebs

vereinbarung geschlossen werden. Zudem versucht der Betriebsrat von EVU2, das IT-DL
zu kontrollieren. Einmal hat er mitgewirkt, einen externen Berater zu tauschen. Er sieht
seine Firma in der Verantwortung, die Belegschaft vor negativem Einfluss von außen zu
schützen. Gleichzeitig sieht er keinen Grund, nicht auf Wettbewerb zwischen den IT-DL
zu setzen.

»Wir haben unseren ganzen IT-Bereich in mehrere Lose verteilt und die werden aus
geschrieben und entweder kriegen sie es oder kriegen es nicht […] Deswegen: Wir
nehmen den, der am besten ist, ganz deutlich.« (Betriebsrat EVU2)

Der Betriebsrat von EVU3 sagt klar, dass er die Software nicht mitgestaltet. Stattdessen
hat er Obergrenzen durchgesetzt, was die Arbeitsstunden anbelangt, und auch schon
Projekte ausgesetzt, weil die Belastung zu groß wurde. Aus seiner Sicht hat der Daten

schützer mehr Mitspracherechte bei IT-Themen als er. Auch er konzentriert sich darauf,
eine individuelle Leistungskontrolle zu verhindern.

272 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.5.2.4. KOOP2: Prekär-kooperativ – wieder unabhängiger vom IT-DL?
Im Gegensatz zu KOOP1 gestalten einige EVU in diesem Fall wieder unabhängig von an

deren ihre Software und damit die Arbeit ihrer Anwendenden – auch wenn es, wie bei

KOOP1, meist nur die Anpassung oder Erweiterung einer Standardsoftware ist. Statt

zentral einen Industriestandard wie bei KOOP1 zu gestalten, gestalten manche EVU das

bestehende ERP-System selbst individuell – durch eigene Programmierungen oder Soft

warelösungen anderer Softwarefirmen. Doch reizen diese EVU die Möglichkeiten der

Arbeitsgestaltung nicht aus, weil sie sich auf die Gestaltung der Software der Anwen

denden konzentrieren und die anwendende Organisation unangetastet lassen. Wobei es

wie bei KOOP1 Unterschiede gibt, wie stark sich einzelne EVU auf die Softwaregestal

tung einlassen und damit auf eine individuelle und unabhängige soziotechnische Ar

beitsgestaltung. Ein befragter Sachbearbeiter zeigt die für diesen Fall typischen vielfäl

tigen Formen der Softwaregestaltungen in den EVU in einer Extremform: Er muss mit

einer Cloud-Lösung von SAP arbeiten. Das hat zur Folge, dass er und sein EVU komplett

abhängig sind, was die Gestaltung der Software anbelangt.

Der Einfluss auf die soziotechnische Arbeitsgestaltung ist in diesem Fall gering, ob

wohl einige EVU unabhängig Software gestalten. Das ist so in EVU2 (ob bei einem grö

ßeren IT-Projekt, einer dezentralen Softwaregestaltung durch den Fachbereich Markt

kommunikation oder einer Softwaregestaltung in einzelnen Fachbereichen über deren

IT-Koordinierenden) und ebenso in EVU3 der Fall (wo über ein zentrales IT-Team, das

eine Entwicklungsplattform betreibt, dezentral Fachbereiche kleinere Apps gestalten).

Warum ist der Einfluss gering? In all diesen Beispielen kontrolliert der Arbeitsprozess

der Softwaregestaltung nicht jenen der Softwareanwendung. Durch die dezentrale und

individuelle Softwaregestaltung wäre zwar ein anderes Kontrollverhältnis möglich. Die

EVU nutzen es aber nicht. Sie sind intern auf die Softwareanwendung ausgerichtet. Viel

mehr geht es erst einmal darum, was sich vor allem bei EVU2 zeigt, intern Strukturen

wie eine Stabstelle für Projektmanagement aufzubauen, um eigenständig Software zu

gestalten. Zwar sind die IT-Koordinatoren der Fachbereiche im EVU2 für größere Be

reiche zuständig. Sie sind aber hierarchisch nicht so angesiedelt, dass sie fachübergrei

fende Themen vorantreiben oder gar Reorganisationen durchsetzen könnten. Stärker

noch als bei KOOP1 zeigt der Fall, dass trotz der dezentralen Softwaregestaltung in den

EVU keine grundlegende Reorganisation erfolgt. Die bestehende Organisation aus Ab

teilungen, Teams und Hierarchien bleibt unangetastet. Wie für eine Matrixorganisati

on typisch, betreiben die EVU temporär IT-Projektarbeit oder arbeiten kontinuierlich

mit Standardsoftwarefirmen von Speziallösungen zusammen. Es geht primär darum,

Software zu gestalten und weniger die Organisation der Anwendenden auf die Software

gestaltung auszurichten. Wie auch bei INTERN1, INTERN2 und KOOP1 verwenden die

EVU das Standard-ERP von SAP und dieses ergänzende Standardpakete. Sie sind da

mit einerseits von den Zielen der Softwarefirma abhängig, ein Standardprodukt profit

trächtig zu verkaufen. Andererseits sind sie unabhängig, wenn es um Anpassungen und

Erweiterungen dieser Standardsoftwarelösungen geht. Das nutzen sie für ihre Ziele, die

eigene Organisation nicht zu stark ändern zu müssen und die Software selbst gestalten

zu können. Die EVU, die wieder eigenständig Software gestalten, können eine Partizipa
tion ihrer Mitarbeitenden ermöglichen, wie es für eine unabhängige Arbeitsgestaltung

typisch ist. Dabei sind bei EVU2 die internen Hierarchien prägend. Die Anwendenden

8. Formen und Folgen der Softwaregestaltung – die Empirie 273

können nicht unabhängig von diesen Hierarchien (und Abteilungsgrenzen) die Software
und damit einen Teil ihrer Arbeit gestalten. So bespricht die Teamleitung der Marktkom

munikation mit der Softwarefirma die Anforderungen, oder IT-Koordinator:innen sam

meln Anforderungen aus den Fachbereichen ein.
Eine klare Abhängigkeit in der Arbeitsgestaltung erlebt der befragte Sachbearbeiter

von EVU1. Er muss sich einer neuen, von SAP entwickelten Cloud-Lösung für Marktkom

munikation unterwerfen. Weil es eines seiner zentralen Werkzeuge für die Arbeit ist, ist
er komplett von der Softwarefirma SAP, die sie zur Verfügung stellt, abhängig. Mehr als
Fehler aufnehmen und warten, bis sie die Softwarefirma behoben hat, kann er nicht.

In dem Fall verlaufen die Konflikte sowohl zwischen IT-DL und EVU als auch inner

halb der EVU, weil diese selbst Software gestalten. Die Konflikte zwischen IT-DL und
EVU sind weniger inhaltlicher Natur als vielmehr Beziehungskonflikte, die auf unter

schiedlichen Erwartungen beruhen. Die Konflikte zeigen sich vor allem daran, dass sich
die beteiligten EVU und das IT-DL nicht auf eine zentrale Gestaltung einigen konnten.
Diese Konflikte führten zum Ausstieg einzelner EVU aus der kooperativen Softwarege

staltung oder zur sukzessiven Rückverlagerung der Softwaregestaltung in die EVU.
Trotzdem sind die EVU noch vom IT-DL abhängig, aber weniger inhaltlich und mehr

in der Umsetzung. Ein Thema ist die Priorisierung von Anforderungen beim IT-DL. Ein
Befragter hat den Verdacht, dass seine Tickets vom IT-DL langsamer bearbeitet wur

den, weil sein EVU eine Pauschale bezahlt und ein anderes EVU pro Ticket, wodurch der
Anreiz für das IT-DL höher sei, Letzteren schneller zu bedienen. Ein anderer Befragter
ist der Ansicht, dass das IT-DL den Personal-Wünschen seiner gesellschaftenden EVU21
entgegenkommt (z.B. bekommen diese EVU ihre Wunschkandidaten für Projekte). Ein
Befragter des IT-DL sagt, er behandelt alle EVU gleich, egal ob gesellschaftendes EVU
oder nicht. Andere Konfliktpunkte sind, dass die EVU meinen, dem IT-DL fehle die Sicht
seiner Kundschaft, es sei nicht lösungsorientiert, würde Tickets zu langsam bearbeiten
und hätte zu wenige Mitarbeitende.

Innerhalb der EVU fällt auf, dass sie zwar die Möglichkeit hätten, die Konflikte zwi

schen Gestaltung und Anwendung eigenständig zu lösen. Jedoch zeigt sich, dass der Ein

fluss der Fachbereiche auf die IT-Abteilung oder der IT-Koordinierenden auf die Fach

bereiche gering ist. Dies ist womöglich auch ein Grund, warum keine organisatorischen
Änderungen stattfinden und sich manche befragte Softwaregestaltende zwar unzufrie

den mit den bestehenden Strukturen zeigen, mit diesen aber leben müssen oder das Un

ternehmen verlassen (wie das zwei Befragte einige Monate nach den Interviews getan
haben).

Der Betriebsrat ist, wie in den vorhergehenden Fallstudien auch, intervenierend tä

tig und hat die Möglichkeit mitzugestalten, weil die Softwaregestaltung wieder stärker
intern stattfindet. Der BR von EVU2 hat eine Betriebsvereinbarung IT gemacht. Diese
regelt, dass IT-Projektanträge durch den BR genehmigt werden müssen. Zudem achtet
der BR darauf, dass keine privaten Daten der Mitarbeitenden zugänglich werden und
durch Datenauswertungen des IT-Systems nicht auf einzelne Mitarbeitende und deren
Arbeit geschlossen werden kann. Aufgrund der immer vielfältigeren IT-Landschaft wür

de dem BR mehr IT-Wissen bei der Arbeit helfen.

21 EVUs, die Gesellschaftende, d.h. deren Eigentum die IT-DL sind.

274 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.5.2.5. PAKET: abhängig von der Standardsoftwarefirma

In dem Fall sind die EVU von der Softwarefirma abhängig, was die soziotechnische Ar

beitsgestaltung anbelangt. Warum? Zum einen wenden die EVU eine industriespezi

fische Standard-ERP-Lösung an, die sie nicht ändern können (und wollen). Zum an

deren bietet die Software zwar Einstellungsmöglichkeiten. Die gibt aber der Standard

vor. Selbst die wenigen EVU, die beim industriespezifischen Standard über Arbeitskreise

oder einzelne Projekte mitwirken, setzen einen Standard ein, den alle anderen EVU auch

einsetzen. So können die EVU nur den Arbeitsprozess der Softwareanwendung selbst

kontrollieren und reorganisieren. Andererseits zeigt der Fall, dass die Einstellungsmög

lichkeiten an der Standard-ERP-Software sehr umfassend sind: Wenn die EVU diesen

Teil der Softwaregestaltung nutzen, kann dies organisatorische Veränderungen in der

Softwareanwendung mit sich bringen, und zwar weitergehender als bei einigen EVU

von KOOP1, KOOP2 oder INTERN2 – nämlich auf eine Prozessorganisation hin. Die Ab

hängigkeit der EVU bei der soziotechnischen Arbeitsgestaltung zeigt sich auch an den

Konflikten, bei denen es weniger um die inhaltliche Softwaregestaltung geht als um die

Abhängigkeit vom gelieferten Standardprodukt.

Der Einfluss der Softwaregestaltung auf den Arbeitsprozess der Softwareanwen

dung ist, was das Kontrollverhältnis anbelangt, in diesem Fall gering. Die EVU können

nur die Softwareanwendung kontrollieren und weniger den Gestaltungsprozess, der

außerhalb der EVU stattfindet. Vielmehr prägt die fertige Standardsoftware die An

wendung der EVU. Mit dem geringeren Gestaltungsspielraum (vom Management bis

zu den Anwendenden in den EVU) geht eine Unterordnung der Anwendung unter die

Standardsoftware einher. Sie dient als Referenz und zur Disziplinierung von Verände

rungswünschen seitens der EVU – ob der eigenen Anwendenden oder der Kundschaft.

So nutzt EVU4 den Standard dafür, Wünsche seiner Kundschaft zu beschränken, z.B.

indem es auf die Grenzen der Abrechenbarkeit komplexer Erzeugungsanlagen durch

die Software verweist. Eine Extremform der Unterordnung der Anwendung unter

die Standardsoftware ist, wenn die Softwarefirma oder EVU die ERP-Software als

Anwendungsplattform einsetzen. Aufgrund des Funktionsumfangs und der hohen

Automatisierung der Software steckt so viel Wissen in ihr und die Aufgaben, die sie

erledigt, sind so umfangreich, dass sie eine Anwendungsplattform darstellt. Jeden, der

die Software besitzt (wie bspw. die Softwarefirma), trennt nicht mehr viel von einem

EVU:

»Also theoretisch können wir auch einfach unseren eigenen Stromversorger aufma

chen.« (Programmierer Softwarefirma)

So liegt es nahe, dass die Softwarefirma Business Process Outsourcing (BPO) anbietet.

»Es gibt aber auch Unternehmen, gerade so im Bereich der kleineren Lieferanten, so
Start-ups, wo das Unternehmen eigentlich aus einem Geschäftsführer, paar Vertrieb
lern und Marketingleuten besteht. Und die gesamte Abwicklung: Abrechnung, Markt

kommunikation, EDM22, Buchhaltung etc. pp. läuft dann oder geht dann über unsere

22 Energiedatenmanagement

8. Formen und Folgen der Softwaregestaltung – die Empirie 275

[BPO-Firmeneinheit]. Da spielen wir sozusagen Stadtwerk.« (Lösungsarchitekt Soft
warefirma)

Manche EVU bieten anderen den Betrieb der industriespezifischen ERP-Software an. In
einem Fall bedeutet das, dass die anwendenden EVU die Einstellungen, welche das be

treibende EVU an der Software vorgenommen hat, 1:1 übernehmen. Das heißt, es rich

tet sich in der Anwendung nicht nur an der Standardsoftware aus, sondern auch an den
Standardeinstellungen des betreibenden EVU.

Von den Extremfällen abgesehen, haben die EVU Einfluss auf die Einstellungen am
Standard und ob sie den Standard einsetzen. In einem Fall hat sich ein Fachbereich ge

gen ein Modul der Standardsoftware entschieden (auch wenn der befragte IT-Leiter da

gegen war). Um Einstellungen vorzunehmen, brauchen EVU Zeit und das entsprechen

de, qualifizierte Personal. Nicht in allen EVU ist es möglich, sich intern optimal auf die
Software auszurichten, weil die Softwarefirma die Updates zu kurzfristig ausliefert. Das
heißt, auch hier sind die EVU abhängig von der Softwarefirma. Aus Sicht eines Teamlei

ters (EVU2) sind sie zu sehr mit den regelmäßigen Updates der Software beschäftigt und
haben keine Zeit und kein Geld für Optimierungen. Er wird häufig von Kolleg:innen ge

fragt, ob er etwas an der Software optimieren könnte. Das würde aus seiner Sicht viel
bringen in puncto Effizienz. Ein anderer Befragter, der Teamleiter und Sachbearbeiter
zugleich ist, hat auch keine Zeit für Optimierungen, weil sich regelmäßig die Regulie

rung verändert. Manchmal kommt das Update der Softwarefirma für Änderungen erst
einige Tage vor der Frist, in der eine Regulierung in der Software umzusetzen ist. Sie ist
dann noch nicht komplett fehlerfrei und so werden Fehler auch noch Wochen nach der
Frist behoben. Er hat keine Zeit für Tests und ist froh, wenn er die Arbeit schafft, obwohl
sie mit jedem neuen Gesetz mehr wird.

Einige der befragten EVU, welche selbst Einstellungen an der Software vornehmen,
konstatieren einen Mangel an Positionen, die übergreifende Veränderungen an der Soft

ware vornehmen können:

»Oh, sehr viele. Ja, erst mal… Also aktuell ist es so, dass wir immer noch den Wunsch
haben nach einem übergeordneten Projektleiter, der eben genau solche Aufgaben
übernimmt. Aktuell versuchen wir das so ein bisschen zu machen, so nebenbei noch,
was schwierig ist, weil wir ja auch gar nicht weisungsbefugt sind.« (Anwendungsbe
treuung EVU3)

Um solche Einstellungen vornehmen zu können, gibt es bei mittelgroßen EVU in be

grenztem Umfang Reorganisationen in Form von neuen Stellen und einer Prozessaus

richtung. Es entstehen neue Aufgaben für Führungskräfte und teamübergreifende Po

sitionen, um für teamübergreifende Prozesse Einstellungen an der Standardsoftware
vorzunehmen. So hat EVU3 erst vor ein paar Jahren angefangen, Prozesse aufzuneh

men, und die Projektarbeit professionalisiert, d.h. Stellen geschaffen für Projekt- und
Prozessmanagement.

»Ich kann mich noch erinnern… vor ein paar Jahren angefangen habe, da war das so:
›Prozesse, was ist das? Das habe ich ja noch nie gehört. So was braucht doch kein

276 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Mensch.‹ Und jetzt ist es unumgänglich […] [H]eute machen wir alles in Prozessen.
Und so ist das auch mit Projekten. Früher: ›Projekte, was ist das?‹« (Gruppenleiter
EVU3)

Auch EVU2 hat festgestellt, dass Projekte mittlerweile häufig abteilungsübergrei

fend sind. EVU5 hat eine größere Reorganisation in Richtung Prozessorganisation

vorgenommen. Die Organisation teilt sich nicht mehr nach Abrechnungsarten auf (Ta

rifkundschaft, Sonderkundschaft, Einspeiser etc.), sondern nach Prozessschritten, die

sämtliche Abrechnungsarten betreffen (Marktkommunikation, Abrechnung, Zahlungs

verkehr). In Terminen der betroffenen Bereiche optimiert das EVU die Gesamtprozesse.

Jedoch steht das Ziel der Standardsoftwaregestaltung über den individuellen Wün

schen einzelner EVU. Das ist für jene EVU in Ordnung, die vor allem für wenig Geld

Software einsetzen wollen. Einerseits erwarten die EVU ein funktionierendes System,

mit dem sie ihre Arbeit erledigen können und welches die Regulierung abdeckt:

»Dadurch, dass wir ein Lizenz-System haben, ist der Softwareanbieter dafür verant
wortlich, die regulatorischen Bedingungen im System umzusetzen. Also, wenn man

einen Software-Dienstleister darauf hinweisen muss, dass er eine regulatorische Um

setzung umsetzen muss, hat er seinen Job verfehlt. […] [Das] System ist ein rein ener
giewirtschaftliches System.« (Gruppenleiter EDM EVU4)

Andererseits hat das Standardpaket Nachteile, weil die Softwarefirma Anforderungen

nur umsetzt, wenn sie auch andere EVU betreffen. Eine individuelle Entwicklung wäre

schneller in der Umsetzung:

»Also, es ist schon einfacher für uns, wenn wir die Entwicklungsveränderungen im
Haus vornehmen können und das dann einfach umgesetzt wird, als wenn wir darauf
angewiesen sind, dass es anderen auch noch so geht. Oder dass erst mal aufwendige
Beschreibungen und Tests durchgeführt werden müssen, damit der Softwareanbieter
erkennt, wo die To-dos liegen.« (Betriebsrat EVU6)

Einige EVU haben nicht nur das Ziel einer möglichst günstigen Software, sondern wollen

auch individuelle Ideen umsetzen und möglichst günstige, individuelle Prozesse haben.

Laut dem Gruppenleiter aus EVU3 würden individuelle Entwicklungen helfen, interne

Prozesse zu optimieren. Ein Befragter aus EVU1 meint, sie haben gar nicht die Ressour

cen, um von einem Standard abzuweichen, und hätten deshalb sämtliche individuellen

Entwicklungen beseitigt. Das sieht auch der IT-Leiter aus EVU2 so.

In dem Fall partizipieren nur ausgewählte EVU und Fachleute u.a. über Arbeitskrei

se an der Softwaregestaltung. Branchenfachleute haben ein größeres Gewicht bei der

Frage, wie Anforderungen zustande kommen, und weniger die Anwendenden mit ihren

individuellen Anwendungskontexten. Partizipation ist nur bei den Einstellungen mög

lich. Die überlassen die Anwendenden aber lieber anderen:

»Die Anwender sind dann einfach nur die, die sagen: ›Ich bin hier zum Abrechnen da
und mich interessiert eigentlich nicht, wie das System funktioniert, wie es funktionie
ren sollte. Für mich muss es laufen und wenn es eine Neuerung gibt, dann muss es mir

8. Formen und Folgen der Softwaregestaltung – die Empirie 277

jemand sagen.‹ Also, da muss quasi schon alles vorbereitet sein. Am besten, wenn es
eine Neuerung gibt, gibt es eine vorbereitete Doku, die beschreibt, welchen Knopf ich
wann drücken muss.« (Anwendungsbetreuung EVU3)

Die Abhängigkeit bei der soziotechnischen Arbeitsgestaltung durch Softwaregestaltung
drückt sich in dem Fall vor allem für kleinere EVU darin aus, dass bei inhaltlichen
Konflikten die Softwarefirma die Oberhand hat. Für viele stellt sich also weniger die
Frage, was in den Standard aufgenommen wird. Wenn sie den Standard so nicht wollen,
verwenden sie eine andere Software. Neben inhaltlichen Konflikten geht es vielmehr
um Leistungen, die über die Softwarelizenz hinausgehen und die EVU erwarten. Wie
schon bei KOOP1 und KOOP2 kritisieren EVU die Servicequalität bzw. erwarten einen
bestimmten Service: Erstens nehmen die EVU die formale Kommunikation über Ticket

systeme als ineffizient wahr. Zweitens erwarten die EVU, dass die Softwarefirma mehr
von sich aus über Möglichkeiten informiert, die die Software bietet. Sie haben intern
kein Wissen über die Möglichkeiten der Softwaregestaltung und sind abhängig davon,
dass die Softwarefirma darüber informiert.

Wie die EVU haben die Betriebsräte wenig Einfluss auf die Softwaregestaltung. Die
Konflikte betreffen die Implementierung der Standardsoftware. In EVU6 gibt es eine
Betriebsvereinbarung für Softwareanwendung und deren Einführung. Bei IT-Projekten
stellt das Management dem Betriebsrat »meistens« (Betriebsrat EVU6) den Ablauf des
Projekts und das Schulungskonzept für die Anwendenden vor. Bei der Umstellung auf
eine andere ERP-Software (was gerade diskutiert wird) käme es aus Sicht des Betriebs

rates zu einer Änderung an der Organisation und dieser ERP-Wechsel wäre damit mit

bestimmungsrelevant.

»Und von daher alles, […] was zu einem auch an Einführung Software bedingter Mittel
oder der Digitalisierung der Projekte angeht, unterliegt auch der Mitbestimmung, so
dass wir sowieso in letzter Konsequenz immer sagen müssen: ja oder nein. Und da
haben wir es einfach für uns so eingeführt, dass der Betriebsrat von Anfang an bei
Digitalisierung des Projektes mit dabei ist, damit ich nicht als Bremsklotz hinterher
fungiere, sondern als Mitgestalter.« (Betriebsrat EVU6)

Wie weit diese Mitgestaltung geht, konnte das Interview nicht vertiefen.

8.5.2.6. KOOP3: IoT Ko-Produktion – abhängige Standardgestaltung,
unabhängige Modulgestaltung

Der Fall ist ein Beispiel dafür, dass Softwaregestaltung nicht immer relevant sein muss
für die soziotechnische Arbeitsgestaltung eines Anwendungsbereichs. Zwar liegt in dem
Fall die zentralisierte Gestaltung einer Standard-IoT-Software vor. Jedoch hat die da

durch gegebene Abhängigkeit in der Softwaregestaltung geringe Folgen für die sozio

technische Arbeitsgestaltung. Denn es existiert kein Arbeitsprozess der Softwareanwen

dung. Es ist schlicht keine Anwendungssoftware des täglichen EVU-Geschäfts. Vielmehr
stellen die IoT-Software und die mit ihr verbundenen Sensoren eine Erweiterung der
bestehenden Dateninfrastruktur innerhalb der EVU dar, als dass sie komplizierte Ge

schäftsprozesse abbilden.

278 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

So spielt beim Einfluss weder das Kontrollverhältnis noch die Reorganisation der

Softwareanwendung eine Rolle. Bei den Zielen besteht zwar eine Abhängigkeit zwischen

IT-DL und EVU in Bezug auf die IoT-Software. Die Softwarefirma will vor allem ein ska

lierbares Produkt haben. Doch besteht ein gemeinsames Interesse mit dem IT-DL, neue

Anwendungsfelder für IoT zu erschließen und auch außerhalb der Softwarefirma Modu

le entwickeln zu können. Letztendlich lässt die Architektur eine dezentrale Entwicklung

in Form von Modulen ebenso zu, wie die IoT-Standardlösung einfach nur ohne tieferge

hende IT-Kenntnisse und nach erfolgreicher Implementierung anzuwenden.

Bei der Partizipation liefern Expert:innen, die bei der Implementierung der IoT-Lö

sung mitmachen, die Anforderungen und entwickeln dadurch neue Ideen für Erweite

rungen. Das IT-DL gibt die Anforderungen aus Implementierungsprojekten an die Soft

warefirma weiter.

Die Konflikte bestehen in dem Fall bei der abhängigen Softwaregestaltung zwar

zwischen mehreren Organisationen. Doch lösen sie die Beteiligten durch eine koopera

tive Arbeitsweise. Zudem sind nicht viele Anwendende oder Teams betroffen, weswegen

es weniger Konflikte bei der Gestaltung gibt. Nur ausgewählte Mitarbeitende in den

EVU nehmen temporär an der Implementierung teil und nutzen dann die Daten aus

den Sensoren in ihrer Arbeit. Es gibt jedoch durch die Konstellation angelegte, tieferge

hende Konfliktpotenziale, die sich allerdings noch nicht manifestiert haben: Es besteht

ein Wettbewerb zwischen IT-DL und Softwarefirma. Denn sowohl Softwarefirma als

auch IT-DL führen Implementierungsprojekte durch und das IT-DL bietet den EVU die

Einbindung der Daten in deren bestehende Softwarelandschaft an, programmiert selbst

Module und verkauft sie.

Der Betriebsrat spielt nur beim Thema individuelle Leistungskontrolle und als

Stakeholder, der mitgenommen werden sollte, eine Rolle. Das EVU1 hat den Betriebsrat

eingebunden und hatte am Anfang der Implementierung einen »relativ intensiven

Austausch« (Teamleiter IT). Es ging u.a. darum, dass Daten erhoben werden, ohne

dass Mitarbeitende mehr an einen bestimmten Ort fahren müssen, d.h., ihre Tätigkeit

hat sich verändert. Der Befragte von EVU2 betont, dass der Betriebsrat in die Projekte

eingebunden wird, vor allem wenn die Software Mitarbeiterdaten sammelt. Das IT-DL

erklärt im Normalfall dem Betriebsrat der EVU in einem ersten Termin, was gemacht

wird. Das reicht meistens aus. Nur in einem Fall, in dem Monteur:innen dauerhaft

Daten zur Netzvermessung erhoben haben, kam es zu tiefergehenden Gesprächen, die

aber zu einer Lösung führten.

8.5.2.7. STARTUP: Primat der Softwareentwicklung
Der Fall ist ein typisches Beispiel für den Primat der Softwareentwicklung: für eine un

abhängige, soziotechnische Arbeitsgestaltung durch Softwaregestaltung. STARTUP ge

staltet eine individuelle Software, und zwar anders als in anderen Fallstudien nicht aus

gehend von einer Struktur, die historisch bedingt rein auf die Softwareanwendung aus

gerichtet ist. Stattdessen dient die gesamte Organisation dazu, eine Software für den

Anwendungsbereich zu gestalten. Die Softwareanwendung ist all das, was die entwickel

te Software nicht erledigen kann. Wobei sich iterativ mit der Software die Anwendung

verändert. So hat allein STARTUP Einfluss auf Software und Organisation.

8. Formen und Folgen der Softwaregestaltung – die Empirie 279

Der unabhängige Einfluss zeichnet sich durch ein Kontrollverhältnis aus, bei dem
die Anwendung klar der Softwaregestaltung untergeordnet ist und keine Hindernisse
z.B. durch Hierarchien bestehen, die Absprachen mit der Anwendung notwendig ma

chen würden. Durch den Primat der Softwaregestaltung gab es vorher keine Anwender

organisation ohne Software, sondern die Arbeit der Anwendenden ergibt sich seit Grün

dung der Firma daraus, was für eine Software existiert und wie sie die Organisation wei

terentwickelt. Größere Reorganisationen sind aus Sicht der Softwaregestaltung nicht
notwendig, weil die Organisation von Beginn an auf diese ausgerichtet ist. Kleinere Ver

änderungen im Wechselspiel von Software und Anwendung(-sorganisation) finden aber
statt. Diese Möglichkeit eigenständig nutzen zu können, zeichnet ja die unabhängige,
soziotechnische Arbeitsgestaltung aus. Was noch typisch für eine unabhängige sozio

technische Arbeitsgestaltung ist: STARTUP kann sowohl die Ziele der Softwaregestal

tung als auch jene der Softwareanwendung festlegen. Primär kann STARTUP dadurch
Software für die eigenen Zwecke gestalten und zugleich auch noch sekundäre Ziele ver

folgen. Sekundär hat STARTUP eine Kommodifizierung der Software im Blick. Sie stellt
einen Teil der Software als White-Label anderen Firmen zur Verfügung. An der Gestal

tung partizipieren nur interne Mitarbeitende via Kreise oder Chats. Auch wenn Anwen

dende Tickets aufgeben können oder bei Tests mitmachen: Diese direkte Teilnahme wur

de von keiner befragten Person als wesentlicher Beitrag genannt. Die Anwendenden sind
aus der Softwaregestaltung größtenteils ausgeschlossen. Das liegt aber an der Entschei

dung von STARTUP, dass sie deren Input für die Gestaltung nur in geringem Umfang als
notwendig erachten.

Was die soziotechnische Arbeitsgestaltung durch Softwaregestaltung anbelangt,
gibt es wenig Konflikte, weil die Organisation auf Interdisziplinarität, Softwareent

wicklung und ein gemeinsames Ziel ausgerichtet ist. Die Anwendenden waren und sind
von Anfang an klar hierarchisch untergeordnet und es gibt auch keinen Betriebsrat,
der diese vertreten würde. Wenn es Konflikte gibt, sind alle intern, d.h. allein durch
STARTUP lösbar und betreffen die Umsetzung. So gibt es z.B. einen Konflikt zwischen
guten Ideen (d.h. offenen Anforderungen) einerseits und der Reduktion der Komplexität
der Software, fehlenden Fachkräften und begrenztem Budget andererseits.

8.5.3. Zusammenfassung

Die Softwaregestaltung gestaltet die Software und einen Teil der anwendenden Orga

nisation. Dabei unterscheiden sich die Fallstudien darin, ob die EVU unabhängig oder
abhängig jenen Teil von Arbeit und Organisation ihrer Softwareanwendenden gestalten
können, der auf die Softwaregestaltung zurückgeht. Die Zusammenfassung ordnet die
einzelnen Fälle den Typen einer unabhängigen oder abhängigen soziotechnischen Ar

beitsgestaltung zu. Sie fasst die Ergebnisse zusammen – auch zur Rolle des Betriebsrats
– und diskutiert am Schluss zwei Thesen zum Einfluss der Softwaregestaltung auf die
Softwareanwendung: Inwiefern können Anwendende direkt partizipieren? Wie würde
eine reorganisierte Prozessorganisation aussehen, welche die Möglichkeiten der Soft

waregestaltung für einen abteilungsübergreifenden Prozess ausschöpft?

280 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.5.3.1. Einordnung der Fälle zwischen abhängig und unabhängig
Die Fallstudien INTERN1, INTERN2 und STARTUP können dem Typ einer unabhängi

gen soziotechnischen Arbeitsgestaltung der Softwareanwendung und KOOP1, KOOP2,

KOOP3 und PAKET jenem einer abhängigen zugeordnet werden. Doch zeigen die Fall

darstellungen, dass sie nicht immer klar einem der diametral-gegensätzlichen Typen

entsprechen und sich teilweise abhängige und unabhängige Formen mischen.

Weil STARTUP, INTERN1 und INTERN2 unabhängig in der soziotechnischen Ar

beitsgestaltung durch die Softwaregestaltung sind, haben sie sowohl Einfluss auf die

Software als auch die Organisation von Anwendung und Entwicklung. Doch schlägt sich

diese Unabhängigkeit in den Fallstudien nicht in gleicher Weise auf das Verhältnis der

Arbeitsprozesse von Softwaregestaltung und Softwareanwendung nieder:

• Die Organisationen können eigenständig die Kontrollverhältnisse zwischen den Ar

beitsprozessen bestimmen. Doch ist nur bei STARTUP der Arbeitsprozess der Soft

waregestaltung klar führend und die Softwaregestaltung entscheidet allein darüber,

wie die Softwaregestaltung und wie die Anwendenden arbeiten. Bei INTERN2 hinge

gen haben die Anwendenden ihre eigenen Führungskräfte mit eigenem IT-Budget,

über das sie verfügen. Bei INTERN1 treibt die Softwaregestaltung in kleinen Schrit

ten Veränderungen im anwendenden Fachbereich auch gegen Widerstände voran.

• Es wäre eine wechselseitige Reorganisation von Softwaregestaltung und Software

anwendung möglich. STARTUP ist bereits von Anfang an auf die Softwareentwick

lung ausgerichtet, weswegen von Beginn an die Organisation den Arbeitsprozess der

Softwareanwendung so verändert, wie es aus Sicht der Softwaregestaltung sinnvoll

erscheint. Bei INTERN2 findet keine Reorganisation der direkten Anwendung statt.

In den anwendenden Fachbereichen existieren zu den bestehenden Strukturen er

gänzende Rollen wie Product Owner. Befragte der Fallstudie sehen in Zukunft eine

Reorganisation aller beteiligten Fachbereiche, um die Möglichkeiten übergreifender

Softwaregestaltung verwirklichen zu können. Wie das aussehen könnte, skizziert

8.5.3.4 weiter unten. INTERN1 hat sich reorganisiert, weil die mobilen Endgeräte die

Position der Meister ersetzt haben, und auch dort gibt es im anwendenden Fachbe

reich extra ergänzende Stellen für die Softwaregestaltung.

• Die anwendenden Organisationen können sowohl die Ziele der Softwaregestaltung

als auch der Anwendung festlegen. INTERN1 und INTERN2 entscheiden sich dafür,

vom Status quo aus inkrementell Software und Softwareanwendung weiter zu ge

stalten. STARTUP hat sich für den Primat der Softwareentwicklung entschieden und

dafür, zusätzlich einen Teil der Software anderen Organisationen als Standard zu

verkaufen.

• Die Organisationen können selbst entscheiden, wer mitgestaltet. Jedoch bedeutet

dies nicht, dass damit die Anwendenden alle mitgestalten dürfen. INTERN1 und IN

TERN2 beziehen ausgewählte Anwendende ein, wobei diese dann nicht das letzte

Wort darüber haben, ob das EVU die Anforderung genau so umsetzt. Bei STARTUP

liefern die Softwaregestaltenden maßgeblich den Input für Anforderungen und die

Anwendenden geben Feedback zu fertigen Umsetzungen oder melden Fehler.

8. Formen und Folgen der Softwaregestaltung – die Empirie 281

In den Fällen PAKET, KOOP3, KOOP2 und KOOP1 sind die EVU abhängig in der sozio

technischen Arbeitsgestaltung der Softwareanwendung. Softwarefirmen und IT-DL ge

stalten die Software. Beim Einfluss auf die beiden Arbeitsprozesse zeigt sich die Abhän

gigkeit auf vierfache Weise:

• Wegen des Kontrollverhältnisses der beiden Arbeitsprozesse zueinander können
die anwendenden EVU nur die Softwareanwendung kontrollieren. Das bedeutet bei
KOOP1, KOOP2 und PAKET für die EVU eine Unterordnung unter eine Standard

software. Bis auf einzelne EVU von KOOP1, KOOP2 und KOOP3 kontrollieren die
Arbeitsprozesse der Softwaregestaltung IT-DL oder Softwarefirmen.

• Die EVU können nur die Softwareanwendung reorganisieren. Das nutzen EVU un

terschiedlich. So berichten Befragte eines EVU von PAKET darüber, dass sie sich
organisatorisch immer mehr an Prozessen ausrichten und weniger nach fachlicher
Spezialisierung.

• Die EVU können nur die Ziele der Softwareanwendung festlegen, z.B. welche Rech

nungen sie noch manuell prüfen bzw. wie hoch die Automatisierung ist. Die Soft

warefirma entscheidet unabhängig z.B. darüber, was Teil des Standards wird. Doch
können über die IT-DL die EVU von KOOP1 und KOOP2 über die Ziele der zentralen
Softwaregestaltung mitentscheiden und es ist vor allem bei KOOP1 von ihrer Koope

ration abhängig, wie umfassend der Standard wird und als solcher auch noch ande

ren EVU angeboten werden kann.
• Bei PAKET und KOOP3 entscheidet die Softwarefirma, welche EVU mitgestalten und

welche Anforderungen in den Standard einfließen. Ideen und Ausarbeitungen von
Anforderungen kommen zu einem großen Teil von Fachleuten. Die Abhängigkeit bei
KOOP1 und KOOP2 ist insofern abgeschwächt, weil die EVU Gesellschaftende des
IT-DL sind und auch strategische Fragen der Softwaregestaltung mitentscheiden.
Einzelne Anwendende der EVU können aber nur vermittelt über formale Prozesse
Anforderungen aufnehmen (z.B. über das Ticketsystem) und es gibt ein zentrales An

forderungsmanagement, das über Anforderungen abstimmt (bei KOOP2 betrifft das
nur einen kleineren Teil der Softwaregestaltung).

KOOP1 und KOOP2 gehören zwar grundsätzlich zum Typ abhängig. Jedoch gestalten
einzelne EVU ihre Software unabhängig vom IT-DL oder der Softwarefirmen, Anwen

dende können direkt partizipieren und sie setzen ihre eigenen Ziele durch, indem sie Tei

le der Software individuell gestalten. Bei KOOP1 gibt es einen Bereich in einem EVU, der
sich reorganisiert, um besser Software gestalten zu können. Ein EVU von KOOP2 führt
eigenständig Softwaregestaltung durch, z.B. in Form von Projekten. Allerdings reorga

nisiert sich dieses EVU weniger, als dass es vielmehr die bestehende Organisation um
zusätzliche Stellen ergänzt. Bei KOOP3 ist die IoT-Software keine Anwendungssoftware,
sondern liefert Daten, die andere Anwendungen verarbeiten. Daher betreffen die Folgen
weniger die Gestaltung eines Anwendungsbereiches bzw. die Arbeit/Organisation der
Softwareanwendung und mehr die Gestaltung einer Software.

Die Tabelle 18 gibt einen Überblick über Kontrollverhältnis, Reorganisation, Strate

gie und Partizipation in den einzelnen Fallstudien:

282 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 27: Einfluss von Softwaregestaltung auf Softwareanwendung

 Fall Typ

Kontrollverhältnis

Softwareanwen

dung (SA) – Soft
waregestaltung

(SG)

Reorganisation

SA wegen SG Ziele SG für SA Partizipation SA
an SG

INTERN1
unabh. Phasenweise Kon

trolle SA durch SG
teilweise Reorg. SG für Status

quo

ausgewählte

Anw., moderiert

INTERN2
unabh. Kontrolle SA und SG

getrennt

Teilgestaltung

je Fachbereich
SG für Status
quo

ausgewählte

Anw., moderiert

KOOP1

abh./un

abh.

EVU: Unterordnung
SA unter Standard,
teilw. Kontrolle SG
und SA

nur vereinzelt
Reorg.

Standardware

+ koop. SG für
Status quo

bürokratisch,

moderiert, ver
handelt zwischen
EVU

KOOP2

abh./un

abh.

EVU: Unterordnung
SA unter Standard,
teilw. Kontrolle SG
und SA

keine Reorg., Standardware

+ intern SG für
Status quo

bürokratisch in
EVU und zwi
schen IT-DL und
EVU

PAKET

abh. in EVU: Unterord
nung SA unter Stan
dard

ggf. Reorg. für
übergreifende

Einstellungen

am Standard

Standardware +
Status quo

ausgewählte EVU
und Fachleute

KOOP3

abh./un

abh.

keine Anwender
software, Kooperati
on

keine Reorg. Standardware,

neue Anwen-
dungsfelder

Fachleute vermit

telt über IT-DL

STARTUP

unabh. Unterordnung SA
unter SG

Optimierung

SG

Primat Soft
wareentwick

lung + Stan
dardware

verhandelt in
Kreisen und
(Chat-)Foren

Was die Konflikte zwischen Softwaregestaltung und Softwareanwendung anbelangt,

sind sie bei den Fällen vom Typ unabhängig intern und damit durch die Organisation

selbst kontrollierbar. Bei INTERN1 besteht der Konflikt vor allem darin, dass der Fach

bereich gern selber die Hoheit über die Softwaregestaltung hätte. Aktuell hat das letzte

Wort der Haupt-Product-Owner aus der IT-Abteilung. Bei INTERN2 mussten die Fach

bereiche inkl. der IT-Abteilungen erst bereit zur Kooperation sein und nun verhandeln

die Beteiligten viele Themen in der gemeinsamen Anforderungsrunde. Bei STARTUP ha

ben die Befragten keine Konflikte genannt (leider fehlt die Perspektive der Anwendenden

aus dem Fall, weil keine Interviews mit ihnen vorliegen).

In jenen Fällen, in denen die EVU in der soziotechnischen Arbeitsgestaltung der Soft

wareanwendung abhängig sind, bestehen die Konflikte vor allem zwischen Organisatio

nen. Bei KOOP2 haben Konflikte dazu geführt, dass ein EVU die Kooperation verlassen

hat und andere EVU die Softwaregestaltung nun wieder selbst in die Hand nehmen. Die

se Aufkündigung der Kooperation hatte die Folge, dass z.B. bei einem der nun wieder

8. Formen und Folgen der Softwaregestaltung – die Empirie 283

selbst gestaltenden EVU von KOOP2 die Konflikte nun intern anfallen. KOOP1 hat ein
Set an Abläufen, Rollen und Beziehungen institutionalisiert, welche helfen, auf Konflik

te zu reagieren und stetig Erwartungen abzugleichen. Sowohl bei KOOP1, KOOP2 und
PAKET gibt es Konflikte, was die Servicequalität anbelangt, und z.B. bei PAKET finden
anwendende Fachbereiche aus den EVU, dass die Softwarefirma Fehler zu langsam be

hebt. Bei KOOP3 bestehen weniger Konflikte zwischen Anwendung und Gestaltung und
wenn überhaupt, dann innerhalb der Gestaltung, weil IT-DL und Softwarefirma mitein

ander konkurrieren.

8.5.3.2. Inwiefern handelt es sich um einen intervenierenden Betriebsrat?
In den Fallstudien nimmt der Betriebsrat eine intervenierende Rolle ein. Eine direkte
Mitgestaltung im Sinne einer Mitwirkung an Konzepten findet nicht statt. Vielmehr ver

hindert er eine individuelle Verhaltenskontrolle, lässt sich über den Stand in IT-Projek

ten informieren, entscheidet bei der Auswahl des IT-DL mit oder setzt durch, dass die
Beschäftigten bei der Softwaregestaltung einbezogen werden.

INTERN1 hat die Forderung des Betriebsrates nach einer stärkeren Partizipation der
Monteur:innen umgesetzt. Weil das EVU Software intern entwickelt, hat der BR bereits
im Prozess der Entwicklung die individuelle Leistungskontrolle verhindert und hat diese
nicht wie bei Standardsoftwareprodukten erst nachträglich ausschalten lassen. Er wird
durch die Teilnahme an den entsprechenden Sitzungen ebenso informiert wie die ande

ren an der Softwareentwicklung Beteiligten. Bei INTERN2 macht der Betriebsrat nicht
bei der Anforderungsrunde mit. Der Betriebsrat prüft vielmehr allgemein neue Lösun

gen, ob sie eine individuelle Leistungskontrolle ermöglichen. Die einen Befragten sehen
ihn als Hilfe an, wenn er frühzeitig eingebunden, überzeugt und partnerschaftlich mit
ihm umgegangen wird. Andere nehmen ihn als Hindernis wahr.

Bei KOOP1 hat im EVU4 der Betriebsrat eine Betriebsvereinbarung für IT-Projekte,
die ihm garantiert, dass er in allen Projekt-Lenkungsausschüssen sitzt und gut infor

miert ist. Teilweise entscheidet er bei der Beraterauswahl mit. Wie in den anderen Fäl

len prüft er, ob eine Software eine individuelle Leistungskontrolle ermöglicht. Er sieht
sich zwar auf Augenhöhe mit dem Management. Eine inhaltliche Gestaltung der Soft

ware ist für ihn aufgrund fehlenden Wissens und eingeschränkten internen Machtbe

reichs nicht möglich. Für den Betriebsrat aus EVU2 sprechen die ITler eine andere Spra

che, die er nicht spricht. Auch im EVU3 gestaltet der BR nicht mit. Er hat dafür gesorgt,
dass die Stunden bei Projekten begrenzt werden, damit die Mitarbeitenden nicht zu viel
arbeiten, und verhindert eine Leistungskontrolle. Bei KOOP2 gibt es eine Betriebsver

einbarung für IT-Projekte. Der BR achtet darauf, dass das Management keine Daten

auswertung auf Ebene der Mitarbeitenden machen kann. Für eine Mitgestaltung an der
Software fehlt ihm das Wissen.

Der Betriebsrat eines EVU des Falls PAKET kritisiert, dass von den Mitarbeitenden
zu viel Learning by Doing verlangt wird. Sein EVU sollte wieder mehr Schulungen anbie

ten. Auch er hat eine Betriebsvereinbarung für IT-Projekte und wird über deren Ablauf
und die in deren Zuge stattfindenden Schulungen informiert. Er sieht sich als Mitgestal

ter. Doch müssten noch Nachfragen gestellt werden, ob er konkret über die Auswahl von
Softwarepaketen mitentscheidet oder Softwareänderungen vorschlägt.

284 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Bei KOOP3 verhindert der Betriebsrat in den EVU eine Leistungskontrolle. In einem

Fall wurde er am Anfang eines IoT-Projektes eingebunden und es gab einen intensiven

Austausch. Aus Sicht des IT-DL reicht es im Normalfall, wenn er den BR über das Projekt

und dessen Stand informiert.

Im STARTUP gibt es keinen Betriebsrat.

8.5.3.3. Nehmen die Anwendenden an der Gestaltung teil?
Anstatt dass die Anwendenden direkt an der Gestaltung der Software beteiligt sind, sind

es meist ihre Repräsentant:innen oder energiewirtschaftliche Expert:innen.

Zwar haben in manchen Fällen sämtliche Anwendende theoretisch in bestimmten

Phasen die Möglichkeit, Anforderungen zu stellen oder Tickets aufzunehmen. Es ist auch

die Rede davon, dass IT-Abteilungen, IT-DL oder Softwarefirmen Anforderungen um

setzen, die viele Anwendende aus den EVU benötigen (KOOP1, INTERN2, PAKET). Doch

nehmen letztendlich nur die wenigsten Anwendenden teil und die finale Entscheidung

liegt nicht bei ihnen, sondern u.a. in Gremien, Anforderungsrunden oder bei Product

Ownern. Bei STARTUP sind die Anwendenden aus den Kreisen, die über Anforderungen

sprechen, ausgeschlossen. Bei INTERN1 und INTERN2 benennen Befragte den Konflikt

zwischen Unternehmen und Anwendenden explizit, wenn es um Anforderungen geht.

Wobei sich das Management letztendlich durchsetzt. Des Weiteren sind sie von den Soft

warefachleuten abhängig, um überhaupt etwas über die Möglichkeiten der Software

technik zu wissen und die Kosten abschätzen zu können. Es bleibt eine Ausnahme, dass

einzelne Anwendende ihre spezifischen Anforderungen durchbekommen, wie z.B. bei

INTERN1, wo es Befragte explizit erwähnt haben, oder bei INTERN2, wo der Product

Owner Interviews mit Anwendenden führt, um deren Bedarfe zu ermitteln.

Inwiefern Anwendende mitgestalten, lässt sich anhand von drei Variablen struktu

rieren: dem Zugang zur Gestaltung (direkt oder über Repräsentant:innen), der Rolle der

Expert:innen und wie sich Unternehmens- und Anwenderinteressen zueinander verhal

ten. Es lassen sich drei Typen bilden:

Bei der direkten Partizipation agieren die Anwendenden selbst als Expert:innen (z.B.

als Teil eines interdisziplinären Teams), die Anforderungen stellen und mitgestalten. Sie

haben das notwendige Wissen, um eigenständig Anforderungen formulieren zu können,

und sind dafür nicht von Expert:innen abhängig. Der Typ geht von einer Produktionsge

meinschaft aus und damit von keinem Interessengegensatz zwischen Softwareanwen

dung und Softwareentwicklung.

Beim Typ der repräsentativen Technokratie werden Anwendende vertreten: ob

durch Key User:innen, IT-Beratende oder andere Anwendende, die Anforderungen

aufnehmen. Die Softwaregestaltung sucht einen Ausgleich zwischen den Interessen der

Technokratie und den Anwendenden, indem sie bspw. ein Budget für die Umsetzung

von Anforderungen der Anwendenden zur Verfügung stellt.

Bei der kapitalistischen Technokratie geben die Anwendenden maximal Feedback zu

einer von Expert:innen entwickelten Software (z.B. durch Tests oder eingegebene Da

ten). In diesem Fall ist das Wissen (ob explizites oder implizites) der Anwendenden für

Anforderungen nicht relevant und die Software bildet einen Best-Practice-Prozess ab.

Der Klassenkonflikt zwischen Interessen von Unternehmen und Anwendenden schlägt

sich in unterschiedlichen und unvereinbaren Anforderungen an die Software nieder.

8. Formen und Folgen der Softwaregestaltung – die Empirie 285

Tabelle 28: Typen der Partizipation von Anwendenden an der Softwaregestaltung

Nr. Partizipationszyp
Zugang der
Anwenden

de
Rolle Expert:innen Interessen Unternehmen

vs. Anwendende

1 Direkte Partizipation direkt keine kongruent

2 Repräsentative Tech
nokratie indirekt beratend, vermit

telnd ausgeglichen

3 Kapitalistische Tech
nokratie keinen alleinig softwarege

staltend Konflikt

Die analytisch gebildeten Typen sollen verdeutlichen, dass keine der Fallstudien ei

ner reinen, direkten Partizipation entspricht. Es gibt immer noch Vermittelnde zwi

schen Anwendenden und Programmierenden, der Betriebsrat interveniert gegen eine
individuelle Leistungskontrolle und bestimmte Gestaltungswünsche des Managements
haben Priorität. Ansonsten sind die Fallstudien Mischformen zwischen Typ 2 und Typ 3.
Bei Fallstudien wie KOOP1 und KOOP2 hängt es von den einzelnen EVU ab, inwieweit
sie überhaupt noch mitgestalten. INTERN1 und INTERN2 suchen zwar einen Ausgleich
zwischen den Anwendenden- und Unternehmensinteressen, einzelne Anwendende kön

nen direkt Anforderungen stellen und Befragte berichten von einer Zufriedenheit mit
der Softwarelösung. Das Unternehmensinteresse übertrumpft aber letztendlich die In

teressen der Anwendenden. Beim STARTUP sind die Anwendenden weitestgehend aus

geschlossen und Fachleute der Softwaregestaltung wie Product Owner:innen gestalten
die Software. Bei PAKET und KOOP3 fließt die Expert:innenmeinung im Wesentlichen
über Arbeitskreise ein und der einzelne Anwendende in einem EVU hat wenig direkte
Mitsprache.

Letztendlich verteilt sich Partizipation wie z.B. bei KOOP1, wo verschiedene Ebe

nen entscheiden: ein strategisches Gremium des Managements für größere Projekte und
grundlegende Entscheidungen und operative Gremien für einzelne Anforderungen, die
aus unterschiedlichen EVU kommen.

8.5.3.4. Wie würde eine auf Softwaregestaltung
ausgerichtete Prozessorganisation aussehen?

Die soziotechnische Transformation durch Softwaregestaltung stellt in einigen Fällen
die bestehende Organisation in Frage. Bei INTERN2 werden die Fachbereiche (»Silos«)
in Frage gestellt und ein befragter Manager will eine team- und fachbereichsübergrei

fende Prozessoptimierung. Dafür soll es interdisziplinäre Teams geben, bei denen Soft

waregestaltende und -programmierende ohne Barrieren durch anwendende Teams oder
Fachbereiche die Arbeit der Anwendenden gestalten.

Bei INTERN1 betrifft die Softwaregestaltung bereits zwei Prozessteile (Instandhal

tung und Auftragsverarbeitung). Bei KOOP1 gibt es in einem EVU ein Team, das sich
reorganisiert, um für Geschäfts- und Privatkundschaft zusammen die Software zu ge

stalten, weil im Zuge der Softwaregestaltung das EVU viele Gemeinsamkeiten zwischen

286 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

beiden festgestellt hat. Bei PAKET gibt es in einem EVU Prozessmanagende, die team

übergreifend die Software durch Einstellungen am Standard optimieren.

Zwar hat sich dieser neue Typ von Organisation in keinem der Fälle verwirklicht.

Er sei hier aber kurz skizziert, um einige Kernthesen der Arbeit zu verdeutlichen: Es

wäre eine soziotechnische Prozessorganisation, bei der interdisziplinäre Teams an und

mit einer Software arbeiten. Programmierende und andere IT-Fachleute wären nicht

mehr Teil einer IT-Abteilung, sondern Teil der Fachabteilung. Fachleute für die ener

giewirtschaftlichen Prozesse, für ERP-Systeme und Anwendende würden kontinuierlich

eng zusammenarbeiten. Es wäre eine technikentwicklungsinduzierte Reorganisation,

weil sich das EVU so aufstellen würde, dass es die Möglichkeiten der Softwaregestal

tung optimal nutzen kann. Kern der Prozessorganisation wäre ein End-to-end-Prozess

(bspw. vom Auslesen der Zählerdaten bis zum Erstellen der Rechnung), der in einer Soft

ware abgebildet ist. Statt mehrerer Teamleitender für einzelne Prozessabschnitte gibt

es ein Prozessteam, das eine funktionsübergreifende Perspektive auf den ganzen Pro

zess einnimmt und die entsprechende Macht hat, Änderungen in jedem fachlichen An

wendungsbereich entlang des Prozesses umzusetzen. Der Ablauf wäre an Scrum aus

gerichtet und mit einem Anforderungsmanagement verbunden, deren Teilnehmende in
die Teams hinein vernetzt sind. Er würde zwischen Anwendung und Programmierung

für Feedbackschleifen inkl. Tests und Prototyping sorgen. Eine direkte Kommunikati

on zwischen den Beteiligten wäre möglich, z.B. durch regelmäßige Sprechstunden oder

Chats. Die Beziehungen wären partnerschaftlich, verbindlich, kooperativ. Alle Beschäf

tigten zeigen individuelle Verantwortungsbereitschaft gemäß ihrer Rolle. Die Anwen

denden wären aufgeteilt in Key User:innen und reine Anwendende. Erstere machen ak

tiver an der Softwaregestaltung mit und unterstützen Letztere, bei denen z.B. die Abar

beitung nicht automatisierter Fälle im Zentrum steht. Es gibt disziplinarische Führungs

kräfte, die sich vom Prozessteam unterscheiden und die Rolle von Coaches einnehmen.

Das Prozessmanagement überwacht die Kennzahlen.

Abbildung 12: Schema einer auf Softwaregestaltung ausgerichteten softwaretechnischen Prozess
organisation

8. Formen und Folgen der Softwaregestaltung – die Empirie 287

So wäre die anwendende Organisation auf die Softwaregestaltung ausgerichtet. Da

bei prüft das Prozessteam kontinuierlich, was sie individuell gestalten oder wo sie ei

ne Standardlösung einsetzen und ob sie Technologien wie maschinelles Lernen nutzen.
Dazu gehört, dass sich sowohl das Prozessteam als auch die Anwendung entsprechend
den ausgeschöpften Möglichkeiten reorganisieren (z.B. aufgrund von fortschreitender
Automatisierung). Weil Softwaregestaltung nicht immer im gleichen Umfang nötig ist,
wären manche Gestaltende und Programmierende nur phasenweise dabei und z.B. als
Externe engagiert oder noch in anderen IT-Projekten oder Prozessteams tätig.

Der Organisationstyp soll noch einmal verdeutlichen, dass nicht nur die Software,
sondern auch die Softwaregestaltung zentral für die anwendende Organisation ist und
dass die EVU in den Fallstudien im Wesentlichen noch so organisiert sind, wie es aus
rein energiewirtschaftlicher Sicht naheliegt. Eine Reorganisation würde vor allem Füh

rungsebenen wie Teamleitende betreffen. Sie würde klar zwischen Führungskräften un

terscheiden, die nur disziplinarisch verantwortlich sind, und solchen, die die soziotech

nische Arbeitsgestaltung durch Softwaregestaltung übernehmen. Wie sehr sich dabei
die Interessen des Managements jenseits der Nutzung der Technologie für die betrieb

lichen Zwecke durchsetzen, würde von betrieblichen Bedingungen abhängen, bspw. ob
ein Betriebsrat vorhanden ist oder nicht.

8.6. Synthese, Zusammenfassung und Diskussion des Fallvergleichs

Die sieben Fallstudien stellen Formen und Folgen der Softwaregestaltung in der Ener

giewirtschaft dar und werfen einen neuen Blick auf die Arbeit und die Organisationen
der Branche. Sie zeigen die Softwaregestaltung als eigenständigen Arbeitsprozess, der
in verschiedenen soziotechnischen Konstellationen stattfindet und der es den Organisa

tionen erlaubt, die Möglichkeiten der Softwareentwicklung (Standard oder individuell)
mit den Bedarfen der Energiewirtschaft zusammenzuführen. Sie zeigen, dass sich mit

hilfe des Analyserahmens die soziotechnische Konstellation, der Arbeitsprozess der Soft

waregestaltung, die Folgen für die Arbeit der Softwaregestaltenden und die soziotechni

sche Arbeitsgestaltung der Softwareanwendung für die Fallstudien darstellen, verglei

chen und Zusammenhänge zwischen ihnen untersuchen lassen. Damit haben die Fall

studien gezeigt, dass neben Methoden wie Scrum oder IT-Projekten auch noch andere
Dinge zu einer adäquaten konzeptionellen Beschreibung von Softwaregestaltung und
ihren Folgen gehören, wie z.B. organisationsübergreifende Abstimmungen, Karriere

wege für Softwaregestaltende und die Reorganisation von Abteilungen oder zumindest
die Ergänzung der anwendenden Organisation um Rollen und Abläufe für die Software

gestaltung. Software erhält als wesentliche Entität einer Organisation einen zentralen
Stellenwert dabei, Handeln in Strukturen zu erklären und zu verstehen. Zudem zeigen
die Fallstudien die Situativität des Arbeitsprozesses: Rollen, Abläufe, digitale Werkzeuge
und kommunikative Beziehung zeichnen Anpassung, Reflexivität, Phasenverläufe, Ver

handlungen und Lernprozesse aus.
Aus der Empirie konnte das Kapitel allgemeine Unterschiede für den Arbeitspro

zess der Softwaregestaltung (zentral oder dezentral), die Arbeit der Softwaregestalten

den (in einer Matrix- oder reinen Netzwerkorganisation) und die soziotechnische Ar

288 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

beitsgestaltung der Anwendung (ob unabhängig oder abhängig) herausarbeiten. Wobei

die letztere Unterscheidung zwischen unabhängiger und abhängiger Arbeitsgestaltung

sich nicht auf die zwei grundsätzlich unterschiedlichen organisatorischen Ausrichtun

gen von In- und Outsourcing bzw. Make-or-Buy reduzieren lässt. Sie ist immer ver

bunden mit einem softwaretechnischen Zuschnitt (individuell/Standard) (siehe weiter

unten, 8.6.1.3). Die Fallstudien zeigen die genannten drei idealtypischen Unterschiede

nicht immer in Reinform. Um die Fälle zu sortieren und die Ergebnisse zu systematisie

ren, stellt das Empirie-Kapitel Idealtypen vor, welche die Unterschiede zuspitzen: jeweils

vier für die soziotechnische Netzwerkarbeit und die soziotechnische Arbeitsgestaltung

der Softwareanwendung. Sie lassen sich in 4-Felder-Matrizen einsortieren (siehe Abbil

dung 15 und Abbildung 16 unten), wodurch sie auf einen Blick veranschaulichen, welche

unterschiedlichen Formen und Folgen der Softwaregestaltung es gibt.

Zudem fasst der abschließende Abschnitt des Kapitels die Ergebnisse der Fallstudien

für die einzelnen Kategorien des Analyserahmens zusammen und gleicht sie mit der

Literatur und den Konzepten aus dem 6. Kapitel ab. Er stellt ausführlich den technik

entwicklungsbezogenen Rationalisierungstyp vor, der noch einmal untermauert, dass

Softwaregestaltung Anwendungsbereiche rationalisiert und für das Verständnis der

Rationalisierung der Branche wichtig ist. Abschließend diskutieren die letzten beiden

Punkte 8.6.4 und 8.6.5 zwei Thesen: inwiefern die Softwaregestaltenden eine Konkur

renz zum Management in den EVU darstellen und inwiefern es eine industriespezifische

Softwaregestaltung gibt.

8.6.1. Synthese: Typen soziotechnischer Netzwerkarbeit
und soziotechnischer Arbeitsgestaltung

8.6.1.1. Die vier Grundtypen der soziotechnischen Netzwerkarbeit
Bei der Frage, wie Organisationen die Arbeit der Softwaregestaltenden kontrollieren,

spielen sowohl der Arbeitsprozess als auch die Arbeitsbedingungen der Softwaregestal

tenden eine Rolle. Aus beiden zusammen lässt sich eine 4-Felder-Matrix bilden, in die

sich die unterschiedlichen Fallstudien einsortieren lassen: zwischen Matrix- und rei

ner Netzwerkorganisation für die Arbeit der Softwaregestaltenden einerseits und zwi

schen dezentralem und zentralem Arbeitsprozess der Softwaregestaltung andererseits.

Wie die untenstehende Abbildung 15 darstellt, entsprechen den vier möglichen Kom

binationen dieser Unterschiede vier Idealtypen: DIREKT, ERGÄNZEND, KOORDINIE

REND und VIRTUELL. Die Eigenschaften der Idealtypen ergeben sich entsprechend aus

den idealtypischen Unterscheidungen der Fallstudien, wie sie zu Beginn der jeweiligen

Abschnitte zu den Teilen des Analyserahmens aufgeführt sind: unter 8.3.1 für den Ar

beitsprozess und 8.4.1 für die Arbeit der Softwaregestaltenden.

Im ersten Quadranten der 4-Felder-Matrix befinden sich dezentrale Arbeitsprozes

se der Softwaregestaltung, bei denen die Softwaregestaltenden in einer reinen Netz

werkorganisation arbeiten. Der Idealtyp der soziotechnischen Netzwerkarbeit für die

sen Quadranten ist DIREKT. Bei DIREKT arbeiten die Beteiligten kontinuierlich inter

disziplinär zusammen, und zwar dezentral in Abteilungen, Teams oder, wie im Fall von

STARTUP, in Form von Kreisen. Die direkte Anforderungsaufnahme, -ausarbeitung und

8. Formen und Folgen der Softwaregestaltung – die Empirie 289

-übergabe an die Programmierenden ist weder durch Markt oder Hierarchie getrennt,

wie es z.B. für ein Scrum-Team typisch ist.

Abbildung 13: Matrix Arbeitsprozess (dezentral – zentral) und Arbeitsbedingungen der Software
gestaltenden (Matrixorganisation – reine Netzwerkorganisation) und die vier Idealtypen der
soziotechnischen Netzwerkarbeit

Im zweiten Quadranten der 4-Felder-Matrix befinden sich dezentrale Arbeitsprozes

se der Softwaregestaltung, bei denen die Softwaregestaltenden in einer Matrixorgani

sation arbeiten. Der Idealtyp für diesen Quadranten ist ERGÄNZEND. INTERN1 und

INTERN2 sind Beispiele für diesen Typ, bei denen es vor allem darum geht, trotz Abtei

lungsgrenzen direkt im Anwendungsbereich Anforderungen aufzunehmen, auszuarbei

ten und von den Programmierenden der IT-Abteilung umsetzen zu lassen.

Im dritten Quadranten der 4-Felder-Matrix befinden sich zentrale Arbeitsprozesse

der Softwaregestaltung, bei denen die Softwaregestaltenden in einer Matrixorganisation

arbeiten. Der Idealtyp für diesen Quadranten ist KOORDINIEREND, weil sich mehrere

Organisationen oder Abteilungen über den softwaretechnischen Zuschnitt abstimmen.

Wie für eine zentrale Softwaregestaltung typisch, sorgt der Arbeitsprozess für die Koor

dination der Zusammenarbeit mehrerer Organisationen bzw. Organisationseinheiten.

Die Organisationen, Abteilungen oder Teams verhandeln über Anforderungen und lö

sen die dabei entstehenden Konflikte. KOOP1, KOOP2 und KOOP2 sind nur zum Teil

Beispiele dafür, weil in diesen Fallstudien neben dem zentralisierten Arbeitsprozess vor

allem bei KOOP2 noch dezentrale Arbeitsprozesse innerhalb der EVU existieren. Allen

ist jedoch gemein, dass die Softwaregestaltenden Organisations- und Abteilungsgren

zen überwinden müssen. Bei PAKET ist das der Fall, wenn die Softwarefirma in Arbeits

kreisen oder in Entwicklungsprojekten mit EVU zusammenarbeitet. Allerdings existie

ren innerhalb der Softwarefirma sowohl interdisziplinäre Teams für einzelne Module

der Standardlösung, die einer soziotechnischen Netzwerkarbeit vom Typ DIREKT na

hekommen, als auch mehrere Teams betreffende interne Projekte für größere Anforde

rungen, die eher dem Typ ERGÄNZEND entsprechen.

290 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Im vierten Quadranten der 4-Felder-Matrix befinden sich zentrale Arbeitsprozesse

der Softwaregestaltung, bei denen die Softwaregestaltenden in einer reinen Netzwerk

organisation arbeiten. Der Idealtyp für diesen Quadranten ist VIRTUELL. Dabei gestal

ten Akteur:innen zentralisiert Software, z.B. auf einer frei zugänglichen Online-(Open-

Source-)Entwicklungsplattform. Es handelt sich um ein reines Netzwerk, da die einzige

Hürde zur Teilnahme darin bestehen kann, ein Benutzer:innenkonto für die Plattform

zu haben. Wer eins hat, kann den Quellcode einsehen und sehen, wer gerade an welchem

Teil der Software arbeitet. Der Austausch über branchenspezifische Anforderungen und

softwaretechnische Möglichkeiten sowie die Lösung von Konflikten erfolgt digital. Die

Beteiligten wählen selbst, wo sie mitarbeiten bzw. welchen Beitrag sie leisten. Keine der

Fallstudien entspricht diesem Typ.

8.6.1.2. Zwei organisationale Kernstrategien der Arbeitsgestaltung in den EVU:
Ausrichtung auf Softwareanwendung vs. auf Softwareentwicklung

Auch für die soziotechnische Arbeitsgestaltung durch die industriespezifische Software

gestaltung lassen sich vier Grundtypen und eine 4-Felder-Matrix bilden. Was die so

ziotechnische Arbeitsgestaltung durch die Softwaregestaltung anbelangt, haben sich in
der Empirie die Fallstudien dahingehend unterschieden, ob bei ihnen eine unabhängi

ge oder abhängige Arbeitsgestaltung vorliegt. Dahinter verbirgt sich aber ein Verhältnis

zwischen Softwaregestaltung und Softwareanwendung, das sowohl die Organisation als

auch die Software der Softwareanwendung betrifft.

Doch zeigt bereits eine rein eindimensionale, rein organisatorische Sicht auf die

Unterschiede zwischen den Fallstudien einige gravierende Folgen für die Arbeitsgestal

tung. Dazu dient die Gegenüberstellung von Make-or-Buy bzw. ob sich ein EVU auf die

Softwareanwendung oder die Softwareentwicklung ausrichtet. Nachteile der Fremdent

wicklung bzw. organisatorische Abhängigkeiten treten hier deutlich hervor: Es bestehen

Interessengegensätze und Machtungleichgewichte. Eine anwendende Organisation wie

ein EVU kann nur die Softwareanwendung kontrollieren und entsprechend ist auch nur

für die Softwareanwendung eine interne Rationalisierung möglich. Intern ist kein ei

genes Wissen über die softwaretechnischen Möglichkeiten vorhanden. Im Wettbewerb

muss die anwendende Organisation primär auf das Mittel der Spezialisierung setzen.

Diese Nachteile existieren in den Fallstudien, in denen die EVU nicht selbst gestalten

(vor allem bei PAKET).

Die Wettbewerbsstrategie des Competing on Complexity dank selbst entwickelter Soft

ware zeichnet laut Bessen (2022) die Marktführer verschiedenster Branchen aus (wie be

reits unter 4.1 ausgeführt). Sie ist nur zu verwirklichen, wenn sich eine Organisation

auf die Softwareentwicklung ausrichtet. Die Fallstudie STARTUP zeigt noch am ehes

ten diese Strategie, wobei die Organisation eine Nische bedient und, was die Umsätze

anbelangt, mit EVU nicht konkurrieren kann. INTERN1 und INTERN2 zeigen, dass die

Typen der soziotechnischen Arbeitsgestaltung auch für einzelne Teile einer Organisati

on gelten können. Das heißt, einzelne Fachbereiche können selbst anfangen, Software

zu entwickeln.

8. Formen und Folgen der Softwaregestaltung – die Empirie 291

Tabelle 29: Unterschiede zwischen integrierter und desintegrierter Softwareentwicklung aus EVU-
Sicht

Dimension aus EVU-
Sicht

Ausrichtung auf
Softwareanwendung

Ausrichtung auf Softwareentwick
lung

Arbeitsteilung Soft
wareanwendung und
-gestaltung

desintegriert integriert

Interessen Gegensätze, Abhängigkeiten Kongruenz, Möglichkeiten ausschöp
fen

Kontrollverhältnis
Kontrolle Softwareanwendung durch
(fremdgefertigte) Software

Kontrolle Softwareanwendung durch
-gestaltung möglich: direkte Gestal
tung Anwendungsbereich

Professionalisierung
und Rationalisierung

Softwareanwendung, -gestaltung,
-programmierung getrennt

gleichzeitig: Softwareanwendung,
-gestaltung, -programmierung

Dynamik (bran
chen)fachliche und
softwaretechnische
Veränderungen

getrennt voneinander integriert, Wechselspiel

Zentrale Wettbe

werbsstrategie
Competing on Core Competency
(Anwendung oder Entwicklung)

Competing on Complexity (Anwen
dung und Entwicklung)

Mögliche Kommodifi

zierung der Software
durch

Softwarefirma Anwenderfirma (deren Geschäftsfeld
primär nicht der Verkauf von Software
ist)

Die zwei Strategietypen berücksichtigen nur die Unterscheidung auf organisatio

naler Ebene zwischen der Ausrichtung auf Softwareanwendung oder Softwareentwick

lung. Es fehlt die Unterscheidung zwischen Individual- und Standardsoftwaregestal

tung. Dies geschieht in den vier Grundtypen der soziotechnischen Arbeitsgestaltung der
Softwareanwendung, die über die klassische Unterscheidung von Make-or-Buy hinaus

gehen und soziotechnisch definiert sind.

8.6.1.3. Die vier Grundtypen der soziotechnischen Arbeitsgestaltung
durch Softwaregestaltung

Die Unterschiede im Verhältnis der Arbeitsprozesse von Softwaregestaltung und Soft

wareanwendung treten besonders deutlich hervor, wenn sie auf vier Typen reduziert
werden. Ausgehend von den softwaretechnischen Gestaltungsmöglichkeiten und den
Fallstudien, lassen sich vier Idealtypen der soziotechnischen Arbeitsgestaltung bilden.
Sie lassen sich auf den Achsen des soziotechnischen Zuschnitts zwischen individuell
und Standard und der organisatorischen Ausrichtung zwischen Softwareanwendung
und -entwicklung verorten.

292 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Abbildung 14: Matrix softwaretechnischer Zuschnitt (Standard – individuell) und organisato
rische Ausrichtung (Anwendung – Entwicklung) und die vier Idealtypen der soziotechnischen
Arbeitsgestaltung (als Verhältnis von Softwaregestaltung zu -anwendung)

Beim Idealtyp STANDARDPAKET gestaltet wie in der Fallstudie PAKET eine Soft

warefirma einen industriespezifischen Standard. Die Softwarefirma schlägt Profit aus

der Skalierung des Standardprodukts. Dafür braucht sie (Branchen-)Fachwissen für den

Standard und weniger Wissen aus individuellen Arbeitskontexten. Die anwendenden

EVU richten sich auf diesen Standard aus. Sie spezialisieren sich auf die Softwarean

wendung und zielen nicht darauf ab, sich durch eine individuelle Softwaregestaltung

von Wettbewerbern zu differenzieren. Im Arbeitsprozess der Softwaregestaltung ent

scheiden die Beteiligten für jede Anforderung, ob sie Teil des Standards wird oder

nicht. Zumindest was den kooperativ gestalteten Standard anbelangt, gehören KOOP1

und KOOP2 zu diesem Typ. Ebenso gehört KOOP3 dazu, da die IoT-Softwarefirma

Standardmodule entwickelt.

Beim Typ WERKVERTRAG entwickelt eine Softwarefirma oder ein IT-Dienstleis

tungsunternehmen (IT-DL) eine industriespezifische Software im Auftrag eines EVU.

Die anwendenden EVU richten sich auf diese für sie individuell gestaltete Software aus.

Es besteht eine beidseitige, hohe Abhängigkeit. Dies liegt zum einen am fehlenden Wis

sen über Softwareentwicklung im EVU, was u.a. zu Schwierigkeiten dabei führt, dem

finanziellen Aufwand der Umsetzungen zu schätzen oder etwas gegen eine zeitlich ver

zögerte oder mangelhafte Entwicklung zu tun. Zum anderen liegt es daran, weil der Soft

warefirma oder dem programmierenden IT-DL das Wissen über den industriespezifi

schen Anwendungsbereich fehlt. Das ist vor allem dann problematisch, wenn stetig Än

derungen notwendig sind und es sich um eine komplexe, branchenspezifische Wissens

domäne handelt. Keine Fallstudie entspricht diesem Typ. Die EVU wirken immer noch

mit an der Softwaregestaltung, wenn auch nur durch Konzepte oder Tests. Bei KOOP1

und KOOP2 gibt es EVU, die das IT-DL mit einzelnen individuellen, kleineren Program

mierungen beauftragen, wobei das IT-DL längerfristig mit den EVU zusammenarbei

tet und über EVU- und Branchenwissen verfügt, weswegen die Abhängigkeiten geringer

sind.

8. Formen und Folgen der Softwaregestaltung – die Empirie 293

Beim Typ INTERN entwickeln EVU wie in den Fallstudien INTERN1 und INTERN2
eine individuelle industriespezifische Software. Theoretisch könnten sich die EVU so or

ganisieren, dass es für den Arbeitsprozess der Softwaregestaltung nützlich ist, und z.B.
Abteilungsgrenzen auflösen. Jedoch findet in den beiden Fallstudien keine umfassende
Reorganisation für die Softwaregestaltung statt. Die EVU gestalten Software von alther

gebrachten Strukturen bzw. ihrem Status quo aus. Zudem erweitern und adaptieren die
EVU ein Standard-ERP-System und die meisten Programmierenden sind Externe. Aller

dings zeigt sich ein Lernprozess, der sich in den EVU durch unterschiedliche Grade an
organisatorischen Ergänzungen auszeichnet: von einzelnen neuen Rollen und Methoden
wie IT-Projekte oder Scrum bis hin zu umfassenden Arbeitsprozessen der Softwareent

wicklung, die jenen einer darauf spezialisierten Softwarefirma ähneln (wenn auch z.B.
über Abteilungsgrenzen hinweg organisiert).

Beim Typ PROPRIETÄRER STANDARD schöpft eine Organisation die Möglichkei

ten der Softwaregestaltung maximal aus. Sie gestaltet individuell eine eigene Software
und verkauft sie zudem auch noch anderen Unternehmen. Die Organisation ist auf die
Softwareentwicklung ausgerichtet. Ausgehend vom Primat der Softwareentwicklung
besteht der Anwendungsbereich aus jener Arbeit, den Software nicht erledigen kann.
Die Arbeit der Anwendenden reorganisiert die Organisation bei Bedarf beliebig und
kontinuierlich im Wechselspiel mit der Weiterentwicklung der Software. Sowohl eine
Differenzierung von Wettbewerbern durch individuelle Softwaregestaltung als auch ei

ne Kommodifizierung für die Teile der Software, die anderen (auch Wettbewerbern) zur
Nutzung angeboten werden, ist möglich. Zu diesem Typ gehört die Fallstudie STARTUP.

Wie für Idealtypen üblich, weichen die realen Fälle davon ab. PAKET ist zwar vom
Typ STANDARDPAKET, jedoch ergänzen einzelne EVU die Softwarelösung noch um Sys

teme anderer Softwarefirmen und es sind umfangreichere Einstellungen an der Stan

dardlösung möglich, die einige EVU eigenständig vornehmen. Der Fall STARTUP bietet
nur einen Teil seiner Lösung zur Verwendung für andere an (Teil-Kommodifizierung).
Die anderen Fallstudien passen immer einen bestehenden Standard an: Bei KOOP1 ge

lingt es dem IT-DL, einen eigenen Standard auszuprägen, stetig weiterzuentwickeln und
zu kommodifizieren, indem die beteiligten EVU für diesen bezahlen. Manche EVU von
KOOP1 gestalten zusätzlich noch selbst intern. Einige EVU, insbesondere kleinere, sind
rein anwendend. Das heißt, bei KOOP1 gehören einzelne EVU auch zum Typ INTERN
und andere EVU gehören nur zum Typ STANDARDPAKET. Bei KOOP2 ist dies ähnlich.
Wobei sich dort einzelne EVU klar aus der Kooperation verabschiedet haben und unter
den Typ INTERN fallen. KOOP3 trennt durch Modularisierung der Software den Stan

dardteil von individuellen Entwicklungen. Einige EVU verwenden das IoT-Standardpa

ket, während ein befragtes EVU selbst individuelle Erweiterungsmodule entwickelt.

8.6.1.4. Zusammenhänge zwischen den einzelnen Teilen des Analyserahmens
Es zeigen sich zwei wesentliche Zusammenhänge zwischen den Teilen des Analyserah

mens, wenn es um den Arbeitsprozess der Softwaregestaltung und die soziotechnische
Arbeitsgestaltung der Softwareanwendung geht: (1.) Wie Organisationen die Möglich

keiten der Softwaregestaltung nutzen und den Arbeitsprozess kontrollieren können. (2.)
Wie effizient Organisationen die Möglichkeiten der Softwaregestaltung zum Einsatz
bringen.

294 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Zuerst zu den typischen Zusammenhängen zwischen dem Arbeitsprozess der Soft

waregestaltung und der soziotechnischen Arbeitsgestaltung der Softwareanwendung.

Unter 8.3.1 ist der Idealtyp des dezentralen Arbeitsprozesses der Softwaregestaltung mit

dem softwaretechnischen Zuschnitt individuell und jener des zentralen Arbeitsprozes

ses mit Standard definiert. Entsprechend zeigen sich die Zusammenhänge in den Fall

studien:

• In den Fallstudien INTERN1 und INTERN2 liegen eine soziotechnische Netzwerkar

beit vom Typ ERGÄNZEND und eine individuelle soziotechnische Arbeitsgestaltung

der Anwendung vom Typ INTERN vor.

• In der Fallstudie STARTUP liegen eine soziotechnische Netzwerkarbeit vom Typ DI

REKT und eine individuelle soziotechnische Arbeitsgestaltung der Anwendung vom

Typ INTERN vor.

• In den Fallstudien KOOP1, KOOP2, KOOP3 und PAKET liegen eine soziotechnische

Netzwerkarbeit vom Typ KOORDINIEREND und eine soziotechnische Arbeitsge

staltung der Anwendung vom Typ STANDARDPAKET vor.

Allerdings sind diese Zusammenhänge in den Fallstudien nicht eindeutig, weil in eini

gen Fallstudien mehrere Arbeitsprozesse der Softwaregestaltung existieren oder einzel

ne Arbeitsprozesse nicht den Idealtypen entsprechen.

• Bei INTERN2 arbeiten mehrere Fachabteilungen zusammen und stimmen sich ab.

Sie müssen sich teilweise auf einen gemeinsamen Standard einigen.

• STARTUP bietet die individuell gestaltete Software anderen Firmen als Standard an,

weshalb die Fallstudie noch mehr zum Typ PROPRIETÄRER STANDARD gehört als

zum Typ INTERN.

• Bei KOOP1, KOOP2 und KOOP3 gibt es innerhalb der EVU Softwaregestaltung,

weswegen eine soziotechnische Netzwerkarbeit des Typs ERGÄNZEND für eine

soziotechnische Arbeitsgestaltung des Typs INTERN existiert. Zugleich gestalten

die IT-DL für manche EVU individuelle Software, weswegen eine soziotechnische

Netzwerkarbeit des Typs ERGÄNZEND in Kombination mit der soziotechnischen

Arbeitsgestaltung vom Typ WERKVERTRAG existiert.

• PAKET gestaltet unabhängig von den EVU Teile des STANDARDPAKETs mit sozio

technischer Netzwerkarbeit vom Typ ERGÄNZEND oder DIREKT.

Somit besteht zwar ein enger Zusammenhang zwischen soziotechnischer Konstellation

(Arbeitsteilung, Grundkonstellation und Architektur), soziotechnischer Netzwerkarbeit

(Arbeitsprozess, Arbeit der Softwaregestaltenden) und soziotechnischer Arbeitsgestal

tung. Abweichungen sind aber möglich und vorhanden.

Neben diesen Zusammenhängen, welche die bloße Umsetzung der Softwaregestal

tung betreffen, zeigen die Fallstudien Zusammenhänge hinsichtlich der effizienten Um

setzung dieser Möglichkeiten der Softwaregestaltung.

Erstens bietet für die Softwaregestaltung die reine Netzwerkorganisation Vorteile.

Dann müssen die Softwaregestaltenden keine Hierarchien oder Abteilungsgrenzen

überwinden und nicht mit den Spannungen zwischen Organisationen aufgrund von

8. Formen und Folgen der Softwaregestaltung – die Empirie 295

Marktbeziehungen zurechtkommen. Solche Vorteile zeigen sich in der soziotechnischen
Netzwerkarbeit des Typs DIREKT wie bei STARTUP. Dort ist die gesamte Organisation
auf die interdisziplinäre Zusammenarbeit für die Softwaregestaltung ausgerichtet und
eingespielt. Die Nachteile zeigen sich in der Fallstudie KOOP2 im EVU2. Es muss erst
noch die interne Zusammenarbeit in der Matrixorganisation lernen.

Zweitens, was die soziotechnische Arbeitsgestaltung anbelangt, nutzt eine anwen

dende Organisation die Möglichkeiten der Softwaregestaltung dann maximal, wenn sie
selbst individuell eine Software für die eigene Anwendung gestaltet und zugleich diese
Software auch noch anderen anbietet und damit Geld verdient wie beim Typ PRORIE

TÄRER STANDARD. Auch diese Vorteile nutzt exemplarisch STARTUP. Es ist eine an

wendende Softwarefirma, welche an zwei Wertschöpfungsketten teilnimmt: jener der
Energiewirtschaft und jener der Software-Industrie.

Doch egal wie effizient die Organisationen die Möglichkeiten der Softwaregestaltung
nutzen: Die soziotechnische Netzwerkarbeit der Softwaregestaltung müssen alle hinbe

kommen. Die folgenden Abschnitte fassen die Ergebnisse für jeden Teil und jede Katego

rie des Analyserahmens zusammen und stellen Bezüge zur Forschungsliteratur aus dem
6. Kapitel her.

8.6.2. Zusammenfassung je Teil des Analyserahmens

8.6.2.1. Soziotechnische Konstellation
Die Fallstudien zeigen, dass die soziotechnische Konstellation die Ausgangsbedingun

gen für die Softwaregestaltung darstellt. Zugleich stellt sie auch deren Grenzen dar,
in denen sich die Möglichkeiten der Softwaretechnik verwirklichen lassen: Vom An

wendungsbereich hängt der mögliche Digitalisierungsbeitrag der Softwaregestaltung
ab, von der Softwarearchitektur die Arbeitsteilung zwischen Anwendung und Entwick

lung, von der Arbeitsteilung wiederum die Wissensgrenzen und unabhängig davon,
wie die Grundkoordination aussieht, müssen die Beteiligten von dieser ausgehend die
Zusammenarbeit zwischen Anwendung und Entwicklung etablieren.

Je Fallstudie ist es vom Anwendungsbereich abhängig, welche Möglichkeiten für die
Softwaregestaltung bestehen. Das betrifft den Anteil der Datenverarbeitung im Anwen

dungsbereich und ob sie einen gesamten Prozess gestalten kann oder nur Teile davon.
Von beidem hängt erstens ab, was der Kern der Rationalisierungsmöglichkeit ist: z.B.
entweder eine weitgehende Automatisierung der Datenverarbeitung (so dass keine An

wendenden mehr eingreifen müssen) oder die automatisierte Steuerung von Arbeits

kräften z.B. mit mobilen Endgeräten. Zweitens hängt vom Anwendungsbereich ab, wie
komplex die abzubildenden Prozesse und Wissensdomänen sind, z.B. ob die Software
einen Prozess abbildet, der mehrere Abteilungen betrifft oder nur ein Team in einem
EVU.

Aus Sicht der Softwaregestaltung wird die Arbeitsteilung zwischen Anwendung und
Programmierung zur Wissensgrenze, die überwunden werden muss. Sie kann inner

halb oder zwischen Firmen bestehen. Es gibt Fälle, in denen Anwendung, Gestaltung
und Programmierung Teil einer Organisation sind, aber sie Abteilungsgrenzen trennen
(INTERN1, INTERN2). Es gibt Fälle, die interdisziplinär arbeiten und in denen die Wis

sensgrenzen nur noch zwischen einzelnen Beschäftigten bestehen – im STARTUP, in

296 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

nerhalb von interdisziplinären Teams in der Softwarefirma der Fallstudien PAKET und

KOOP3 oder den IT-DL von KOOP1, KOOP2 und KOOP3. Bei den zuletzt genannten fünf

Fällen betrifft die engere interdisziplinäre Zusammenarbeit jedoch Gestaltung und Pro

grammierung. Anwendende sitzen vorwiegend (außer jene der BPO-Bereiche von IT-DL

und Softwarefirma) in den EVU (PAKET, KOOP1, KOOP2, KOOP3) oder sind aus den

Kreisen ausgeschlossen, in denen schwerpunktmäßig die Softwaregestaltung stattfin

det (STARTUP).

Von der Grundkoordination ausgehend etablieren die Beteiligten die Softwarege

staltung als soziotechnische Netzwerkarbeit. Als primäre Koordinationsformen zeigen

sich in den Fällen zwischen Anwendung und Entwicklung Markt, Hierarchie oder Netz

werk. Egal welche Koordination vorliegt, die Beteiligten müssen immer einen Weg fin

den, um für die Softwaregestaltung zusammenzuarbeiten. Es reicht aus Sicht der vorlie

genden Arbeit nicht aus, dass mehrere Organisationen oder Mitarbeitende einer Organi

sation quer zur Hierarchie und Abteilungen in einer Matrixorganisation zusammenar

beiten, um von einer Netzwerkkoordination zu sprechen. Denn zur Grundkoordination

von Markt, Hierarchie oder Netzwerk gehören in der Empirie immer auch noch Kontroll

elemente wie IT-Budget, Service Level Agreements (SLA), interne Projektverträge oder

Quellcode-Reviews. Zum Beispiel sind die bei KOOP1 bestehenden Marktbeziehungen

zwischen den Firmen durch SLA detailliert vertraglich fixiert. Bei KOOP3 hingegen be

stehen zwar auch Marktbeziehungen zwischen IT-DL und Softwarefirma. Jedoch spie

len Verträge eine untergeordnete Rolle, weswegen die Grundkoordination in diesem Fall

unterm Strich das Netzwerk ist. So existieren in den Fallstudien gemischte Koordinati

onsformen, wie dies auch schon die Forschung zu IT-Projekten (6.3) oder Autoren wie

Lamoreaux/Raft/Temin (2003), Bradach/Eccles (1989) oder Wiesenthal (2000) allgemein

festgestellt haben. Was zeichnet nun eine Netzwerk-Grundkoordination aus? Sie zeich

net aus, dass wie bei STARTUP und KOOP3 ein Arbeitsprozess der Softwaregestaltung

aus Rollen, Abläufen und interpersonalen Beziehungen existiert, der ungehindert von

hierarchisch-formalen Wegen, vertraglichen Einschränkungen oder Marktkalkülen für

die Zusammenarbeit zwischen Anwendung und Programmierung sorgt.

Die IT-Abteilung der softwareanwendenden Organisationen ist in den meisten Fall

studien Teil der Arbeitsteilung zwischen Anwendung und Entwicklung. Sie ist für den

Betrieb der IT-Systeme zuständig, stellt die Programmierenden zur Verfügung, koor

diniert die als Externe eingebundenen Programmierenden und in einigen Fällen sind

die internen Softwaregestaltenden ihr zugeordnet. Auch wenn in einzelnen Fällen die

Fachbereiche eine bessere Zusammenarbeit von ihr erwarten, sind in den Fallstudien die

IT-Abteilungen insgesamt kooperativ, was die Softwaregestaltung anbelangt.

Anders als in manchen anderen Untersuchungen (vgl. Ortmann et al. 1990, Sym

on 2000, Silva 2005) zeigen die Fallstudien nur wenige Interessenkonflikte oder Macht

kämpfe. Nur bei INTERN1 hätte der Fachbereich gern die Hoheit bei der Softwarege

staltung, bekommt sie jedoch von der IT-Abteilung nicht. Die Anforderungsmanagerin

aus dem Fachbereich muss sich den Entscheidungen des in der IT-Abteilung angesiedel

ten Haupt-Product-Owners fügen. Interessenkonflikte oder Machtkämpfe existieren,

wie dies auch einige Studien thematisieren (vgl. Peled 2001, Flecker/Holtgrewe 2008,

Kaniadakis 2012, Mezihorak 2018), mehr zwischen IT-DL und EVU. Wobei es nur bei

KOOP2 zum Bruch kommt und ein EVU gar nicht mehr mit dem IT-DL arbeitet. Bei PA

8. Formen und Folgen der Softwaregestaltung – die Empirie 297

KET thematisieren EVU zwar die Abhängigkeit von der Softwarefirma. Allerdings geht
es dabei mehr um die Qualität und weniger um Kosten und es spricht keine der be

fragten Personen davon, die softwarezuliefernde Firma zu wechseln. Sonst zeigen die
Fallstudien, dass die Organisationen auf unterschiedlichen Wegen die Kooperation zwi

schen IT-DL und EVU aufrechterhalten, z.B. durch regelmäßige Treffen oder Mediato

ren. Bereits die Forschung zum IT-Alignment schlägt regelmäßigen Austausch zwischen
IT-Abteilung und Fachbereichen, Co-Lokation, gemeinsame Planung, gemeinsame Pro

jekte und Bildung von sozialem Kapital zur besseren Zusammenarbeit vor (vgl. Reich/
Benbasat 2000, Chan/Reich 2007, Masak 2006, Schlosser et al. 2015, Valorinta 2011). Ein
Befragter von EVU2 der Fallstudie KOOP2 thematisiert, dass die IT nicht die Probleme
der Fachabteilungen kennen würde, und weist damit auf ein mangelndes IT-Alignment
hin.

Die Softwarearchitektur hat sich in allen Fällen als prägend für die Softwaregestal

tung erweisen: Erstens entscheidet ihre Aufteilung z.B. in Module darüber, wie sich die
Arbeit innerhalb und zwischen den Organisationen verteilt. Zweitens bestimmt ihr soft

waretechnischer Zuschnitt (Standard, individuell), welche Abhängigkeiten zwischen Or

ganisationen oder Teilen einer Organisation bestehen.
Die Arbeitsteilung bestimmt die Softwarearchitektur durch ihren Aufbau vor allem

für die Programmierenden. In den Softwarefirmen, den IT-DL und den EVU sind die
Programmierenden spezialisiert und immer für bestimmte Teile der Software zustän

dig. Die dazugehörigen Fachleute mit dem branchenspezifischen Wissen sind ebenso
meist spezialisiert auf einzelne Teile der Software und arbeiten enger mit den jewei

ligen Programmierenden zusammen. Insofern ist einerseits Conways Law richtig (vgl.
Conway 1968) und die Entwicklungsorganisation prägt die Architektur (Spiegelungshy

pothese). Wobei in den Fallstudien die Architektur eine Ausgangsbedingung ist, welche
die Beschäftigten fortführen und nicht ändern (z.B. gibt sie SAP vor oder die IoT-Soft

warefirma). Andererseits gilt die Spiegelung nicht immer. Bei INTERN1 unterbindet die
Anforderungsmanagerin, dass Programmierende Insellösungen schreiben, d.h. mehr

mals das Gleiche programmieren. Bei KOOP1, KOOP2 und KOOP3 tauschen sich meh

rere Organisationen regelmäßig darüber aus, was sie individuell und was als Standard
gestalten. Das heißt, hier findet Kommunikation über die Softwaregestaltung jenseits
des für ein Modul zuständigen Teams aus Gestaltenden und Programmierenden statt.
Wobei wir schon beim zweiten Punkt wären:

Die Softwarearchitektur prägt in der Mehrzahl der Fälle durch ihren Zuschnitt (indi

viduell, Standard) und die daraus resultierenden Abhängigkeiten den Kommunikations

aufwand und welche Kommunikationswege zusätzlich zur Arbeitsteilung zwischen An

wendung und Entwicklung existieren müssen. Wenn z.B. mehrere EVU sich darüber ab

stimmen, wie sie einen gemeinsamen Teil der Standardsoftware gestalten, dann etablie

ren sie zusätzliche Strukturen wie in der Fallstudie KOOP1 ein Anforderungsmanage

ment. Diese Kommunikationswege spiegeln sich allerdings nicht in der Softwarearchi

tektur. Vielmehr gehen sie auf Abhängigkeiten zwischen unterschiedlichen Stakehol

dern eines gemeinsam gestalteten Softwareteils zurück.
Letztendlich ist der Literatur zuzustimmen, dass Conways Law die Kommunika

tionswege nicht festlegt und umgangen werden kann, es aber trotzdem noch prägend
ist (vgl. Colfer/Baldwin 2016, Hvatum/Kelly 2005). Die Kommunikationswege weichen

298 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

vor allem dann vom Aufbau der Softwarearchitektur ab, wenn Organisationen einen

gemeinsamen Standard gestalten und sich deswegen abstimmen müssen oder auf

mehrere Organisationen verteilte Anwendende an einer Software mitgestalten, z.B. via

Chats oder Ticketsysteme. Wie auch in der Forschung schon festgestellt, können sich

durch eine veränderte Architektur die Abhängigkeiten in einer Organisation verändern

und Abstimmungen notwendig machen (vgl. Remer 2008). Das ist bei den Fallstudien

wie KOOP1, KOOP2 und KOOP3 vor allem dann der Fall, wenn sich ein EVU entschei

det, eine Software individuell zu gestalten, und sich somit nicht mehr mit anderen

abstimmen muss. Das unterstreicht die Bedeutung des softwaretechnischen Zuschnitts

als ein Kernproblem der Softwaregestaltung und als eigenständige Kategorie, um den

Arbeitsprozess der Softwaregestaltung zu beschreiben. In den Fallstudien verhandeln

die Firmen kontinuierlich darüber, teilweise auch bezogen auf einzelne Anforderungen,

ob sie diese individuell oder als Standard umsetzen.

Was Conways Law nicht berücksichtigt, aber sich für die Kommunikation als ent

scheidend in den Fallstudien herausgestellt hat, sind die zwischenmenschlichen Bezie

hungen. Ein befragter Architekt stellt einen Zusammenhang mit der Softwarearchitek

tur her:

»Unabhängig der vielleicht potenziell möglichen Kommunikationsformen ist der Ha
bitus von Abteilungsleitern oder auch ganzen Abteilungen das Wesentliche dafür, ob
man Conways Law sehen kann oder nicht. Ich glaube, dass das quasi unabhängig des
Mediums ist. Wenn sich zwei Leute mögen, dann siehst du das quasi in der Software,
weil die gut funktioniert und gut zusammenarbeiten. Und ich habe auch schon Mo

mente gehabt, da konnte ich in der Software den Weg um die Abteilung herum se
hen.« (Software-Architekt)

In der Fallstudie KOOP2 führen die schlechten Beziehungen zwischen dem IT-DL und

einem EVU dazu, dass Letzteres sich nicht mehr von ihm betreuen lässt, wodurch auch

ein gemeinsamer Standard scheitert. Insofern zeigen die Fallstudien, dass es von einer

gelungenen Kooperation abhängt, gemeinsam eine Standardarchitektur hinzubekom

men.

Wie der im nächsten Punkt behandelte Teil des Analyserahmens zeigt, sind kommu

nikative Beziehungen grundsätzlich Teil des Arbeitsprozesses der Softwaregestaltung.

8.6.2.2. Soziotechnischer Arbeitsprozess der Softwaregestaltung
Die Fallstudien vertiefen das Verständnis darüber, wie die im 6. Kapitel beschriebenen

vier Ebenen der soziotechnischen Netzwerkarbeit die Arbeit der Softwaregestaltung

kontrollieren und dadurch Arbeitskraft transformieren. Neben der soziotechnischen

Konstellation aus Arbeitsteilung, Grundkoordination und Architektur basieren die vier

Ebenen auf dem Arbeitsprozess der Softwaregestaltung: 1. Ein von Rollen und deren Er

wartungen kontrolliertes Handeln der Softwaregestaltenden. 2. Ein mehr oder weniger

formaler Ablauf mit Gestaltungsnetzwerk, Feedbackschleifen, situativen Anpassungen

und Lernprozessen. 3. Interpersonale, kommunikative Beziehungen als Grundlage für

Kommunikation und Kooperation. 4. Softwarewerkzeuge und die gestaltete Software

selbst, die das Handeln ermöglichen und einschränken, als gemeinsame Bezugspunkte,

8. Formen und Folgen der Softwaregestaltung – die Empirie 299

die die Arbeit sämtlicher Beteiligten koordinieren und den Wissensaustausch und die
Kommunikation dokumentieren. Zudem zeigen die Fallstudien eine Flexibilität der
Ebenen von Rollen, Ablauf, kommunikativen Beziehungen und digitalen Werkzeugen.
So kompensieren in manchen Fällen z.B. engagierte Beschäftigte fehlende formalisierte
Abläufe oder ersetzt direkte Kommunikation jene rein formale über ein Ticketsystem.

Der Fallvergleich legt für die Kategorie der Rollen dar, dass, statt en détail die Arbeit
der Softwaregestaltenden in dezentralen oder zentralisierten Arbeitsprozessen festzu

legen, es darum geht, dass Arbeitende Erwartungen erfüllen. Davon existieren mehre

re: Softwaregestaltende sollen bei Bedarf mehrere Rollen übernehmen, Rollen wechseln,
unterschiedliche Rollen in den unterschiedlichen Arbeitsprozessen von Softwaregestal

tung, -anwendung und -programmierung einnehmen. Dazu gehört, dass sich die Soft

waregestaltenden in den Arbeitsprozess der Softwaregestaltung, wie er jeweils ist, einfü

gen, sich entsprechend anpassen, ggf. selbst herausfinden, was zu tun ist, die Rollenein

haltung mit anderen verhandeln und sie gegenseitig kontrollieren – z.B. dadurch, dass
Person A an Person B Erwartungen formuliert. Der Arbeitsprozess ist eine Sozialisati

onsinstanz für das Lernen von Rollen, wobei in den meisten, aber nicht in allen Schu

lungen Methoden wie Scrum oder IT-Projektmanagement Ausgangspunkte dafür sind.
Eine weitere Erwartung ist, mit den Graubereichen der Verantwortlichkeiten und mit
Erwartungs-/Rollenkonflikten umzugehen und die eigenen Spielräume zu nutzen. Das
rührt daher, dass in vielen Fällen eine Mischung aus hierarchie-/markt- und rollenba

sierter Organisation vorliegt. Zum einen sind Softwaregestaltende zwar oftmals Teil von
Hierarchien, in denen z.B. Führungskräfte Entscheidungen treffen. Zum anderen sind
die Softwaregestaltenden selbst nicht hierarchisch organisiert, weswegen sie Entschei

dungen im Dialog treffen oder Erwartungen abgleichen müssen, ohne auf Hierarchien
zur Durchsetzung zurückgreifen zu können. Somit erlauben Rollen es, situativ und un

abhängig von Hierarchien zu agieren. In Fallstudien wie KOOP3 oder STARTUP gibt es
gar keine formalen Hierarchien innerhalb des Arbeitsprozesses der Softwaregestaltung.

Für den Ablauf der Softwaregestaltung zeigen die Fallstudien, dass dieser zwar for

malisiert ist – aber unterschiedlich stark. Er ist mit einem Netzwerk an Beziehungen für
die Anforderungsgewinnung verbunden. Er ist vereinbar mit verschiedenen Handlungs

orientierungen, wobei der Primat der Kooperation gilt, um über Hierarchien und Markt

beziehungen hinweg zusammenzuarbeiten. Der Ablauf stellt in den Fallstudien Feed

backschleifen zwischen Softwareentwicklung, -anwendung und -gestaltung her und si

cher: ob durch Treffen, E-Mails, Tests, persönliche Gespräche oder Methoden wie Pro

totyping oder Resonanzgruppen. Er fügt sich in die jeweilige soziotechnische Konstel

lation ein. Was seine Ausgestaltung anbelangt, ist er in sämtlichen Fallstudien durch
Lernprozesse geprägt und kann temporär oder langfristig existieren. Die Informalität
des Ablaufs besteht mal in Ad-hoc-Absprachen via Chat, direktem, persönlichem Aus

tausch oder dass nicht formal festgelegt ist, wie Entscheidungen gefällt werden. Seien es
Entscheidungen über den Einsatz von Methoden, wer an einem Termin teilnimmt, die
Priorisierungen und Aufwandsschätzung von Tickets, wie viele Anforderungen die Pro

grammierenden in einem bestimmten Zeitraum erledigen können, oder die konkreten
Verantwortlichkeiten einer Rolle. Die in der Forschung untersuchten Lernprozesse bei
der Steuerung von organisationsübergreifender Zusammenarbeit (vgl. Mola et al. 2017,
van Fenema/Keers/Zijm 2014) zeigen sich vor allem bei KOOP1. Bei KOOP2 ist die Koope

300 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

ration daran gescheitert, dass die Beteiligten keine Mittel fanden, um Konflikte zu lösen

und Erwartungen abzugleichen.

Die Kategorie der kommunikativen Beziehungen zeigt, dass ein bestimmtes Maß

an Beziehungsfähigkeit Teil des Arbeitsprozesses der Softwaregestaltung ist und Rol

len, Abläufe oder digitale Werkzeuge nicht ausreichen. Damit ist Kommunikation kein

abstrakter, rein kognitiver Informationsaustausch. Sie gründet auf zwischenmensch

lichen Beziehungen, die Befragte mit Begriffen wie »partnerschaftlich«, »kooperativ«,

»auf Augenhöhe«, »Familie«, »Offenheit« oder »Geben und Nehmen« beschreiben. Dazu

gehören langfristige Beziehungen und direkte Kommunikation zwischen zwei Personen

verschiedener Abteilungen oder Organisationen trotz Hierarchien oder Marktbeziehun

gen. Dazu gehört eine gemeinsame Sprache, um die interdisziplinären Wissensgrenzen

zwischen IT- und Energiewirtschaft zu überwinden. Aber auch gemeinsame Begriffe,

wenn mehrere Teams innerhalb eines EVU oder mehrere EVU zusammenarbeiten, ge

hören dazu, ebenso wie die Fähigkeit, sich verständlich auszudrücken. Wenn Beziehun

gen so eine wichtige Rolle dafür spielen, dass miteinander zum Zwecke der Softwarege

staltung geredet wird, ist es naheliegend, dass in einem Fall ein professioneller Mediator

unterstützt (KOOP1). Erstaunlich ist, dass nur in einem Fall eine Befragte eine Schulung

zur Förderung der Kommunikation erwähnt (EVU2, KOOP223). Damit sind die Ergeb

nisse zum einen anschlussfähig an die Forschung darüber, dass Projektstrukturen allein

für die kooperative Zusammenarbeit nicht ausreichen und Beziehungsfaktoren wie Ko

operationsbereitschaft, Sozialkompetenz (vgl. Rüegg-Stürm/Young 2001) oder Vertrau

en (vgl. Powell 1990) notwendig sind und informelle Strukturen der Kooperationen die

Organisationen gezielt durch verschiedene Methoden erst etablieren müssen (vgl. Bol

te/Porschen 2007).

Was die digitalen Werkzeuge anbelangt, sind in sämtlichen Fällen Ticketsysteme

und zudem oftmals Entwicklungs- und Testumgebung Teil der betrieblichen Reali

tät. Manchmal werden sie kombiniert mit Chat-Gruppen, Excel-Dateien oder Microsoft

Sharepoint und natürlich: E-Mails. Je nach Fall fungieren sie neben der Koordination zur

Kontrolle der Arbeit durch Kundschaft oder Führungskraft, weil sie für diese transparent

machen, welche Anforderungen es gibt, wie lang ihre Umsetzung dauert und welchen

Status sie haben. Aber der Zeitrhythmus wird nicht durch einen digital-maschinellen

Takt bestimmt, sondern durch Erwartungen von Kundschaft und Führungskraft, die

Aufwandsschätzung durch einzelne Mitarbeitende wie Programmierende, IT-Beraten

de oder Product Owner, durch die Ad-hoc-Umsetzung einer dringenden Anforderung,

Umsetzungsfristen durch die Regulierung, die Dauer eines Sprints in Scrum oder

durch in Verträgen (SLA) festgelegte Reaktionszeiten für Tickets. Durch die Dokumen

tation der Softwaregestaltung im Ticketsystem oder anderen Softwarelösungen und

dem Quellcode selbst entsteht Transparenz über sie. Auch wenn keine befragte Person

von einer individuellen Leistungskontrolle berichtet, sind die Voraussetzungen dafür

gegeben, dass der Panoptikum-Effekt (bzw. »electric panopticum« nach Zuboff 1988)

wirkt. Wie im 6. Kapitel über die Rolle von Software bei der Arbeitskontrolle ausgeführt

(6.4.2.1), zeigen die Fallstudien, dass nicht nur eine Software eine bestimmte Funktion

23 Die Befragte hat die Working-Out-Loud-Methode (WOL) genannt.

8. Formen und Folgen der Softwaregestaltung – die Empirie 301

erfüllt: Vielmehr verwenden die Beteiligten im Arbeitsprozess mehrere Softwarelösun

gen gleichzeitig und permanent und die Software wirkt sowohl ermöglichend als auch
einschränkend, wobei die Besonderheit in der Wissensarbeit die Objektkontrolle durch
Software (vgl. Rennstam 2012) ist.

Über den softwaretechnischen Zuschnitt als Teil der softwaretechnischen Gestal

tungsmöglichkeiten (siehe 3.2) entscheidet der Arbeitsprozess der Softwaregestaltung.
Er ist ein kritischer Punkt im Arbeitsprozess, wenn es um Fragen von Konflikten, Effizi

enz und Partizipation geht. Es zeigen sich in den Fallstudien Unterschiede, wo und wer
über den Zuschnitt entscheidet, wie dadurch Synergien gehoben und wie Prioritäten ge

setzt werden. Es können sich verschiedene Gruppen bei der Entscheidung gegenüberste

hen und verhandeln müssen. Die Entscheidungsprozesse können institutionalisiert sein
oder an einzelnen Rollen hängen, die bspw. Synergien bei der Programmierung erken

nen (oder eben nicht). An der Fallstudie KOOP1 zeigt sich, dass mehrere EVU dank des
gemeinsamen, ausgefeilten Anforderungsmanagements über mehr als 10 Jahre hinweg
kontinuierlich darüber verhandeln, wo sie Synergien sehen und was sie individuell ma

chen wollen. Das heißt, mehrere EVU sind fähig, organisationsübergreifend Synergien
zu erkennen. Bei INTERN2 gibt es zum Erkennen von Synergien die Anforderungsrun

de mehrere Fachbereiche. Im EVU3 von KOOP1 ist es Aufgabe des Prozessmanagers, dies
für die beiden getrennten Anwendungsbereiche von Privat- und Geschäftskundschaft in
seiner Abteilung zu tun. Die Anforderungsmanagerin von INTERN1 versucht zu verhin

dern, dass die Programmierenden Insellösungen schreiben.
Die Flexibilität der Kommunikation in der Softwaregestaltung (6.4.4) zeigt sich

auch in den Fallstudien. Es gibt ganz unterschiedliche Faktoren, die beeinflussen, wie
die Kommunikation in den Fallstudien abläuft. Bei KOOP3 ist die IoT-Software modular,
weswegen EVU1 und IT-DL eigenständig Erweiterungen programmieren können, was
die Kommunikation mit der Softwarefirma reduziert. Bei INTERN1 kann der Fach

bereich die Anforderungen mittlerweile so formulieren, dass die Programmierenden
verstehen, was gemeint ist, wodurch weniger direkte Kommunikation notwendig ist.
Bei INTERN2 gibt es Treffen vor der Anforderungsrunde, um Anforderungen so auszu

formulieren, dass der Austausch nicht nur via Ticketsystem stattfindet. Eine frühzeitige,
direkte Kommunikation soll ein späteres Hin und Her via Ticketsystem vermeiden. Bei
KOOP1 ist das Anforderungsmanagement formalisiert, eingespielt und es gibt speziali

sierte Rollen dafür. Bei KOOP2 im EVU2 muss der Projektmanager erst noch die Abläufe
etablieren und die Beteiligten des Projekts eine gemeinsame Wissensbasis aufbauen,
um effektiv Anforderungen erarbeiten zu können. Damit zeigen sich auch die von
Srikanth/Puranam (2014) genannten drei Elemente aus Common Ground, modularer
Softwarearchitektur und direkter Kommunikation, die je nach Kontext unterschiedlich
die Kommunikation bestimmen.

Wie in der Forschung bereits beschrieben, kommen vielfältige Kommunikationska

näle zum Einsatz (vgl. Heidenreich/Kirch/Mattes 2008) und die Beschäftigten kombinie

ren direkte Kommunikation mit digitaler (Chats, Ticketsysteme, geteilte Dokumente).
Wobei alle Organisationen verbale Kommunikation, die für die Programmierung rele

vant wird, verschriftlichen – sei es im Ticketsystem, E-Mails oder anderen Softwarelö

sungen zur Dokumentation. Auffällig ist, dass viele Befragte die direkte Kommunikation
in der Softwaregestaltung bevorzugen.

302 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

8.6.2.3. Folgen für die Arbeit der Softwaregestaltenden
Die Fallstudien zeigen, dass hinter der Softwaregestaltung eine eigenständige Gruppe

von Beschäftigten steht, was Beschäftigungssystem, Kontrolle und Wissen anbelangt.

So verändert der Arbeitsprozess der Softwaregestaltung die EVU und die Energiewirt

schaft allein schon dadurch, dass ausgehend von ihm drei Gruppen zu unterscheiden

sind: Anwendende, Gestaltende und Programmierende. Auch wenn die Arbeitsprozesse

der Softwareanwendung und -programmierung nicht Gegenstand der vorliegenden Un

tersuchung sind, dienen die Aussagen aus den Interviews zur Arbeit der Anwendenden

und Programmierenden dazu, den Blick für die Eigenheiten der Softwaregestaltung zu

schärfen und zu prüfen, inwiefern sie sich voneinander unterscheiden. Doch zunächst

etwas über die Arbeit der Softwaregestaltenden:

In den Fallstudien fällt auf, dass die Führungskräfte die Softwaregestaltenden vor

allem anhand ihrer Ergebnisse und nur bei Auffälligkeiten direkt kontrollieren. Füh

rungskräfte kümmern sich um den Rahmen: Sie legen je nach Fall das Budget fest, stel

len Mitarbeitende ein, initiieren Projekte oder klären Konflikte innerhalb (z.B. mit an

deren Führungskräften oder Teams) oder zu anderen Organisationen (Softwarefirma,

IT-DL, EVU). Softwaregestaltende relativieren öfters ihre Arbeitsbelastung (z.B. weni

ger schlimm als in der Beratung) und stellen sie als verhandelbar dar. Sie sprechen öfters

davon, dass sie intrinsisch motiviert sind. Sie sind hierarchisch höhergestellt als Anwen

dende. Dabei prägt die Grundkoordination die Kontrolle ihrer Arbeit: Von ihr hängt ab,

ob mehr das Management (Hierarchie), die Kundschaft (Markt) oder die Kollegenschaft

(Netzwerk) kontrolliert. Sie sind einer qualitativen Intensivierung ausgesetzt, weil sie in
vielen Fällen IT-, energiewirtschaftliches und Methodenwissen kombinieren oder zu

mindest mit den jeweiligen Expert:innen kommunizieren können müssen, öfters gleich

zeitig oder wechselnd in unterschiedlichen Projekten und an verschiedenen Softwarelö

sungen arbeiten. Die quantitative Intensivierung ist bei den Gestaltenden nicht eindeutig.

Die einen sprechen davon, dass sie phasenweise mal mehr und mal weniger zu tun ha

ben, die anderen davon, dass sie selbst Grenzen setzen müssen und können, wieder an

dere davon, dass sie geregelte Arbeitszeiten haben.

In einigen Fallstudien sind die Softwaregestaltenden in puncto Beschäftigungssys
tem Teil eines IT-DL oder einer Softwarefirma und arbeiten mit mehreren EVU zusam

men. Dadurch aber auf eine höhere Arbeitsbelastung zu schließen, lassen die Aussagen

der Befragten nicht zu. Denn diese stellt sich für einzelne Befragte egal welcher Grup

pe als sehr unterschiedlich dar und ist nicht einfach auf einen Faktor zurückzuführen,

wie z.B. mit mehreren EVU zusammenzuarbeiten oder in einem kleinen EVU angestellt

zu sein. Sonst zeichnen sich die Gestaltenden durch ein geringeres Interesse an einer

disziplinarischen Karriere aus, mehr (Arbeits-)Marktmacht und eigenen Arbeitsmärk

ten. Die Organisationen setzen sie flexibel ein – ob innerhalb einer Matrixorganisation

oder in anderen Organisationen. Vor allem tun die Organisationen dass, wenn sie spezi

fisches Methodenwissen haben (z.B. Scrum) oder tiefere Kenntnisse einer auch in ande

ren Branchen genutzten Softwareumgebung (z.B. SAP). Das zeigt sich bei KOOP1 daran,

dass die Softwaregestaltenden das IT-DL als Durchgangsstation in ihrer Karriere sehen.

Wenn EVU anfangen, Software zu gestalten, gibt es teilweise neue Karrierewege für Soft

waregestaltende (»Kompetenzkarriere«). Wobei die herkömmlichen Karrieremuster als

Aufstieg auf einer Leiter in einer Hierarchie mit disziplinarischer Verantwortung weiter

8. Formen und Folgen der Softwaregestaltung – die Empirie 303

bestehen. Das IT-DL von KOOP2 hat schon die Kompetenzkarriere eingeführt, was dem
EVU2 aus der gleichen Fallstudie schwerer fällt. Schafft ein EVU es nicht, entsprechende
Karriereperspektiven für Softwaregestaltende zu schaffen, verlassen diese wie im Fal

le des EVU2 von KOOP2 die Organisation. Wenn ein IT-DL die Softwaregestaltung für
mehrere EVU organisiert, dann kann es einfacher mehr Möglichkeiten für die Beschäf

tigten bieten (unterschiedliche Projekte, unterschiedliche EVU). Bei STARTUP gibt es
keine formalen Hierarchien und die Segregation zwischen den Anwendenden und dem
Rest fällt auf: Die Anwendenden sind 450-Euro-Kräfte und haben nicht studiert.

Der Wissensaustausch im Gestaltungsnetzwerk entscheidet, welches Wissen in die
Software einfließt. Das Lernen ergibt sich situativ in einer Praxis, in der Software(-Ob

jekte) eine wichtige Rolle spielt(en). Die Softwaregestaltenden der unterschiedlichen
Fallstudien verfügen über sehr unterschiedliche interdisziplinäre Wissensstände. Das
Spektrum reicht von Softwaregestaltenden, die sich vor allem mit der Koordination
der Softwaregestaltung beschäftigen und nur noch wenig inhaltliches Wissen benö

tigen, bis hin zu IT-Beratenden, die nicht nur Anforderungen aufnehmen, sondern
auch gleich noch umsetzen. Bei der Wissensverteilung der Softwaregestaltung kann
von einer interdisziplinären Praxisgemeinschaft gesprochen werden. Die Praxisge

meinschaft zeigt sich zum einen dadurch, dass jemand, der davon ausgeschlossen ist,
nicht mehr Softwaregestaltung betreiben kann und von anderen abhängt, weil ihm das
Wissen fehlt. Zum anderen zeigt sie sich dadurch, dass sich die beteiligten Personen
in kontinuierlichem Austausch befinden, um Software zu gestalten. So entstehen un

terschiedliche Praxisbiografien und damit unterschiedliche Lernbiografien für jeden
einzelnen Beschäftigten. Hohlmann hat von einem Gestaltungsnetzwerk gesprochen,
welches das interdisziplinäre Wissen hat, um die SAP-Standardsoftware über das Im

plementierungsprojekt hinaus zu gestalten. In Anlehnung an Wengers Community of
Practice (1999) kann diese als Community of Practice and Software Objects bezeichnet werden.
Denn für das, was die Softwaregestaltenden wissen, sind weniger Schulungen entschei

dend und vielmehr die Praxis mit anderen und der Software. Teil der Wissensverteilung
der Softwaregestaltung sind die verwendeten, softwarebasierten Werkzeuge und die
Software selbst. In ihnen materialisiert sich das Wissen (z.B. Quellcode, Ticketsystem,
E-Mails, Dokumentationen von Umsetzungen und über Funktionalitäten). Nicht nur
Personen sind Träger des Wissens, sondern auch die Software mit dem entsprechend
hinterlegten Wissen. Auffallend bei den Interviews war, dass sowohl Anwendende, Pro

grammierende und Gestaltende sagen, dass Learning by Doing für sie wichtig ist – ob
aus Dokumenten oder mit der Software selbst. In vielen Fallstudien sind Führungskräfte
nicht Teil der Softwaregestaltung und haben entsprechend wenig Wissen über sie oder
Softwareentwicklung im Allgemeinen.

Sonst gibt es Besonderheiten je Fall, die aber alle unterschiedliche Varianten der
interdisziplinären Praxisgemeinschaft sind: Bei STARTUP ist die gesamte Organisation
durch die Kreise darauf ausgerichtet, permanenten interdisziplinären Wissensaus

tausch zu ermöglichen und eine gemeinsame Wissensbasis zu schaffen. Die Anwen

denden sind in diesem Fall weitestgehend ausgeschlossen. Was die Softwaregestaltung
anbelangt, ist der Großteil der Anwendenden selbst in Fällen wie INTERN1 vom Wissens

austausch ausgeschlossen, wo sie aktiv in die Softwaregestaltung einbezogen werden.
Ihr Wissen ziehen Softwaregestaltende und Programmierende nur temporär für die

304 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Softwaregestaltung heran. Bei KOOP1 besteht die Interdisziplinarität zentral im IT-DL

und durch langfristige Zusammenarbeit mit den EVU. Bei KOOP2 fällt bei der internen

Softwaregestaltung in EVU2 in den IT-Projekten auf, dass interdisziplinäres Wissen

zwischen IT und Fachbereichen fehlt. Das ist eine Folge davon, dass das EVU Teile der

Softwaregestaltung erst seit einigen Jahren wieder vom IT-DL zurückverlagert hat.

Die Softwarefirma von PAKET besteht aus Entwicklungsteams (Programmierenden,

Tester, Teamleitung), die auf energiewirtschaftliche Fachbereiche und die dazugehö

renden Softwaremodule der Standardsoftware spezialisiert sind. Bei KOOP3 hat das

IT-DL und die IoT-Softwarefirma Wissen über IoT und Implementierungskompetenz

für die Standardlösung, wobei das IT-DL das branchenspezifische Wissen aus den

Implementierungsprojekten mit EVU in Form von Anforderungen an die IoT-Firma

weitergibt.

Im Vergleich zu den Softwaregestaltenden fällt bei den Programmierenden und

Anwendenden auf, dass sie auch eigenständig arbeiten, die Führungskräfte nur in

Ausnahmefällen eingreifen und die Arbeitsergebnisse kontrollieren. Zudem sind sie wie

die Softwaregestaltenden Teil eines softwarezentrierten Arbeitsprozesses mit anderen

Schwerpunkten, welche Software sie für ihre tägliche Arbeit hauptsächlich verwen

den (ERP-System im Kund:innenservice, mobile Endgeräte in der Instandhaltung,

Entwicklungsumgebung und Ticketsystem in der Programmierung etc.). Auch für Pro

grammierende und Anwendende prägt die Grundkoordination von Hierarchie, Markt

und Netzwerk die Kontrolle. Die Anwendenden sind hierarchisch und von der Bezah

lung Programmierenden und Gestaltenden untergeordnet. Die Anwendenden sind

meist passiv und reagierend: Sie müssen sich auf Änderungen einstellen oder erfahren

erst nach Fertigstellung, was sich geändert hat. Ihre Arbeit ist in den meisten Fällen

das, was die Software nicht erledigen kann bzw. noch nicht in dieser abgebildet ist.

Das bedeutet auch, dass sie fehlerhafte oder nicht ausgereifte Software kompensieren

müssen. Sie fungieren als Puffer für mangelhafte Softwareentwicklung. Für einen Teil

der Anwendenden findet eine qualitative Intensivierung statt, weil sie vermehrt in Pro

zesszusammenhängen denken müssen (Sachbearbeitende), mehrere Fachgebiete (Key

User:innen) oder mehrere Netzgebiete und Sparten kennen müssen (Monteur:innen).

Arbeiten Anwendende im BPO-Bereich für mehrere EVU, ist mit einer quantitativen
Intensivierung zu rechnen. Wobei dies bei einigen EVU auch unabhängig davon auf

grund von Personalmangel oder phasenweise durch IT-Projekte entsteht. Die Arbeit der

Programmierenden wird durch die Tests anderer und/oder durch Code-Reviews von

Kolleg:innen geprüft. Es ist durch die Ticketsysteme transparent, was sie abgearbeitet

haben, und falls es regelmäßige Treffen wie Daily bei Scrum gibt, müssen sie den Team

mitgliedern Rede und Antwort stehen. Ihre Spezialisierung und die meist schwierige

Abschätzung des Arbeitsaufwandes geht mit einer fehlenden detaillierten Kontrolle von

außen einher. Eine qualitative Intensivierung existiert bei den befragten Programmie

renden, weil sie fachliches mit IT-Wissen kombinieren und wenn sie in verschiedenen

Projekten, Rollen oder für mehrere EVU tätig sind. Wie bei den Gestaltenden ist es bei

den Programmierenden schwierig, pauschal von einer quantitativen Intensivierung zu

sprechen. Sie arbeiten in den untersuchten Fällen meist Programmieraufgaben ab, für

die Prioritäten vorgegeben sind. Das lässt Spielraum, eigene Grenzen zu setzen. Eine

8. Formen und Folgen der Softwaregestaltung – die Empirie 305

Intensivierung ist aber nicht ausgeschlossen, wenn z.B. eine fixe Deadline für eine zu
programmierende Funktionalität existiert.

8.6.2.4. Folgen für die Arbeitsgestaltung in den EVU
Die Fallstudien zeigen, dass eine Folge der Softwaregestaltung ist, dass sie die Arbeit
der Softwareanwendung gestaltet. Sie ist damit Teil der Kontrolle der Softwareanwen

dung. Dies tut sie durch einen soziotechnischen Wandel von Software, Organisation und
Arbeit. Dabei dienen die Kategorien von Einfluss und Konflikten dazu, das Verhältnis
von Softwaregestaltung und -anwendung zu untersuchen. Der Fallvergleich konnte zu

sätzlich dazu vier Unterkategorien des Einflusses herausarbeiten, welche das Verhältnis
der beiden Arbeitsprozesse von Softwaregestaltung und -anwendung beschreiben hel

fen: Kontrollverhältnis, Partizipation, Reorganisation und Ziele. Zur Partizipation der
Anwendenden und einer möglichen Reorganisation der EVU hin zu einer softwaretech

nischen Prozessorganisation hat das Kapitel jeweils allgemeine Thesen diskutiert, die
hier noch einmal kurz zusammengefasst werden. Beim Konflikt zwischen Management
und Angestellten nimmt der Betriebsrat in den Fällen eine intervenierende Funktion
bei der Arbeitsgestaltung ein. Welche Rolle das Management bei der Arbeitsgestaltung
durch Softwaregestaltung überhaupt noch spielt, diskutiert Abschnitt 8.6.4 weiter un

ten.
Was den Einfluss der Softwaregestaltung auf die Arbeitsgestaltung anbelangt,

unterscheiden sich die Fallstudien dahingehend, ob sie für mehrere EVU und damit
viele Anwendende Software gestalten oder nicht. Dabei ändert der Arbeitsprozess der
Softwaregestaltung in nur wenigen Fällen nicht nur die Software, sondern auch die
Organisation der Softwareanwendung (z.B. INTERN1). Bei den Fällen, in denen EVU
intern Software gestalten, fallen die Konflikte innerhalb der Organisationen mehr auf
(z.B. zwischen Unternehmens- bzw. Management- und Anwendenden-Anforderun

gen). Bei den Fällen, in denen mehrere Organisationen zusammenarbeiten, treten die
Konflikte zwischen diesen besonders hervor. Wobei es dann vor allem darum geht,
zwischen Kooperation und individuellen Alleingängen abzuwägen und die Erwartun

gen dementsprechend abzugleichen. Bei Fallstudien der Grundkoordination Netzwerk
sind die Konflikte bezüglich der Arbeitsgestaltung schwach ausgeprägt, wie z.B. bei
STARTUP. Weder unterschiedliche Marktagierende wie IT-DL, Softwarefirma und EVU
noch unterschiedliche Abteilungen und deren Führungskräfte stehen sich gegenüber.

Je nach Fallstudie ist der Betriebsrat unterschiedlich eingebunden, fokussiert sich
aber immer auf die Folgen für die Anwendenden und interveniert. Grundsätzlich ist er
Teil des Konflikts in der Softwaregestaltung zwischen Beschäftigten und Management.
Er kann Rahmenbedingungen setzen, kann Informationen einfordern (bei entsprechen

den Betriebsvereinbarungen) und individuelle Leistungskontrolle verhindern. In den
Fallstudien fehlt ihm das Wissen, Anforderungen für die Softwaregestaltung zu stellen,
und er ist nicht in den Arbeitsprozess eingebunden. Findet die Softwaregestaltung
intern statt, kann er dafür sorgen, dass Beschäftigte mitgestalten dürfen. Bei externer
Softwaregestaltung gibt es Fälle, bei denen er bei der Auswahl von IT-DL interveniert.

Um den Einfluss der Softwaregestaltung auf die Softwareanwendung tiefergehend
zu analysieren, hat das Kapitel die Unterkategorien Kontrollverhältnis, Partizipation,
Reorganisation und Ziele verwendet. Erstens ist die soziotechnische Arbeitsgestaltung

306 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

des Anwendungsbereichs durch die Softwaregestaltung ein Kontrollverhältnis. In der

Mehrzahl der Fallstudien kontrollieren die beteiligten Organisationen die Arbeitspro

zesse von Softwaregestaltung und Softwareanwendung jeden für sich, z.B. als Teil von

unterschiedlichen Teams oder Abteilungen. In solchen Fällen haben die Führungskräfte

der Anwendung oftmals genauso viel oder gar noch mehr Macht als jene der Software

gestaltung. Wenn die gesamte Organisation von Anfang an auf die Softwareentwicklung

ausgerichtet ist, wird, wie schon unter 4.1 ausgeführt, vom Primat der Softwareentwick

lung gesprochen. Das ist bei STARTUP so, wo die Fallstudie zeigt, wie Organisationen

den Arbeitsprozess der Softwareanwendung zum Nutzen für die Softwaregestaltung or

ganisieren, um die Möglichkeiten der Softwareentwicklung auszureizen. Das bedeutet,

dass die Arbeit der Anwendenden nicht nur durch die Software kontrolliert wird, son

dern auch durch den Arbeitsprozess der Softwaregestaltung.

Eine direkte Partizipation, bei der die Anwendenden alle in die Softwaregestaltung

einbezogen werden und auch genug Wissen haben, um mitzugestalten, existiert in den

Fallstudien nicht. Selbst dann existiert sie nicht, wenn die Anwendenden Anforderungen

aufgeben können. Auch dann existiert sie nicht, wenn die EVU den Anwendungsbereich

bzw. die Softwareanwendung nicht der Softwaregestaltung unterordnen (indem z.B. die

Führungskraft der Softwaregestaltung hierarchisch mit jener der Softwareanwendung

gleichgestellt ist). In den meisten Fällen haben Anwendende nur über Vermittler Zugang

zur Softwaregestaltung oder es gibt formale Wege, Anforderungen zu stellen, bei de

nen letztendlich andere entscheiden, welche der Anforderungen wie umgesetzt werden.

Oftmals gestalten Fachleute Software und in manchen Fällen suchen die Organisatio

nen einen Ausgleich zwischen Anwendenden- und Unternehmensinteressen, wobei das

Management das letzte Wort hat. Die drei analytischen Typen der Partizipation bei der

Softwaregestaltung (siehe die Diskussion unter 8.5.3.3) untermauern diese These.

Die Arbeitsgestaltung unterscheidet sich im Fallvergleich dahingehend, welche Ziele
in puncto Softwaregestaltung die EVU selbst festlegen können – hinsichtlich ihrer Orga

nisation und der Kommodifizierung von Software. Bei Fragen der Organisation geht es

z.B. darum, ob ein EVU von seinem Status quo aus anfängt, sich so zu organisieren, ob

es selbst Software gestalten kann oder die Softwaregestaltung an einen IT-DL auslagert.

Bei der Kommodifizierung geht es darum, ob eine Softwarefirma eine Standardsoftware

programmiert, die viele EVU einsetzen und die damit skalierbar ist. Das können einzelne

Teile einer Software, Applikationen oder wie bei STARTUP Softwareteile sein, welche ei

ne Organisation selbst nutzt und gleichzeitig anderen anbietet. Auf jeden Fall zeigen die

Fallstudien, dass Software strategisch einen Unterschied machen kann und keine Stan

dardware wie Bürostühle oder Seife ist (siehe bereits 4.2.2). Strategisch macht Software

vor allem dann einen Unterschied, wenn von ihr die individuelle Wettbewerbsfähigkeit

abhängt. Das zeigt sich daran, dass es den EVU leichter fällt, einen Standard für den re

gulierten Netzbereich einzusetzen, der nicht dem Marktwettbewerb ausgesetzt ist. Für

den vertriebs- und wettbewerbsorientierten Lieferbereich fällt es EVU schwerer. Zuletzt

betreffen die Ziele, inwiefern eine Organisation mit Software oder Softwaregestaltung

Geld verdient (z.B. ob als IT-Dienstleistung oder mit einem fertigen Softwareprodukt).

Die IT-DL von KOOP1, KOOP2 und KOOP3 gehören EVU, verdienen Geld mit Software

gestaltung und Standardsoftware und die Softwarefirma von PAKET lebt allein vom Soft

waregeschäft.

8. Formen und Folgen der Softwaregestaltung – die Empirie 307

In den Fallstudien zeigt sich – viertens – der Einfluss der Softwaregestaltung auf
die -anwendung daran, ob sich die EVU reorganisieren. Es gibt Fallstudien, in denen
organisationale Hürden die Softwaregestaltung im jeweiligen Anwendungsbereich
nicht mehr bremsen. Das bedeutet aber nicht in jedem Fall, dass EVU die Anwendung
oder Entwicklung reorganisieren. Zum Beispiel verbleiben bei INTERN1 und INTERN2
die Programmierenden in der IT-Abteilung und die bestehende Arbeitsteilung zwischen
Teams bleibt bestehen (inkl. getrennter IT-Budgets). In einzelnen Fallstudien ändert
die Softwaregestaltung weder etwas an den Arbeitsabläufen noch den Arbeitsstellen,
sondern nur etwas an der Software. Im Extremfall des Primats der Softwareentwicklung
(Fall STARTUP) gab es keinen energiewirtschaftlichen Status quo und die Organisation
baut sich um die Software herum auf und verändert sich mit ihr. Von Anfang an war die
Organisation auf die Softwareentwicklung ausgerichtet. Um zu verdeutlichen, wie eine
Reorganisation im Sinne der Softwaregestaltung innerhalb eines EVU aussehen könnte,
hat die Untersuchung den Organisationstyp der auf Softwaregestaltung ausgerichteten,
softwaretechnischen Prozessorganisation ausgearbeitet (siehe 8.5.3.3). Er untermauert
die These, dass sich die untersuchten EVU (und wohl viele andere auch) noch gar nicht
auf die Softwaregestaltung ausgerichtet haben. Sie denken zwar darüber nach, doch
nutzen sie Rationalisierungspotenziale durch eine verstärkte organisationale Ausrich

tung auf die Softwaregestaltung nicht – auch wenn das EVU von INTERN2 darüber
nachdenkt.

8.6.3. Synthese: Rationalisierungstyp der technikentwicklungsbezogenen
Rationalisierung

Die Fallstudien zeigen, dass die EVU auf unterschiedliche Weise Softwaretechnikgestal

tung betreiben: mal einen Standard anpassen, mal von Grund auf etwas individuell Neu

es gestalten; mal durch einen IT-DL gestalten lassen, mal selbst gestalten. Eine andere
Variante ist, dass sie wie bei der Fallstudie STARTUP von Beginn an Arbeit und Organi

sation auf eine individuelle Softwaregestaltung ausrichten. Aber egal, wie sie es machen:
Indem sie die Möglichkeiten der Softwaregestaltung nutzen, rationalisieren sie dadurch
die Anwendungsbereiche.

Um zu untermauern, dass Softwaregestaltung die Anwendungsbereiche rationali

siert, stellt die vorliegende Untersuchung die Hypothese auf, dass es sich bei den unter

schiedlichen Ausprägungen der Softwaregestaltung in den Fallstudien um verschiede

ne Formen einer technikentwicklungsbezogenen Rationalisierungsform handelt. Dabei
rationalisieren die Organisationen – je nach Fall EVU, IT-DL, Softwarefirmen – sowohl
die soziotechnische Arbeitsgestaltung der Softwareanwendung durch die Softwarege

staltung als auch die soziotechnische Netzwerkarbeit der Softwaregestaltung selbst. Die
Softwaregestaltung zu kontrollieren, ist die Voraussetzung dafür, dass die Organisatio

nen deren Möglichkeiten der Rationalisierung zwischen Standardsynergien und indivi

dueller Differenzierung im Wettbewerb nutzen können. Damit ist nicht gesagt, dass es
einen »one best way« der Rationalisierung gibt und alle Organisationen z.B. dem Pri

mat der Softwareentwicklung folgen sollten. Technikentwicklungsbezogene Rationali

sierung ist kontingent und reflexiv und bedeutet, dass Organisationen einer Branche das
Mittel der Softwaregestaltung und -programmierung für die eigenen Zwecke und Bedin

308 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

gungen zweckorientiert im jeweiligen Kontext einsetzen. Weil sich viele Tätigkeiten und

Prozesse durch Software effizienter oder überhaupt nur noch so wettbewerbsfähig erle

digen lassen, ist diese Form der Rationalisierung Teil vieler Organisationen. Sie zeichnet

sich durch eine Dynamik zwischen Standard- und Individualsoftware, dezentraler und

zentraler Softwaregestaltung aus.

Auch wenn Kommunikation eine zentrale Rolle bei der Softwaregestaltung spielt,

unterscheidet sich die technikentwicklungsbezogene Rationalisierung von der kommu

nikativen Rationalisierung, wie sie von Rock/Ulrich/Witt (1990) beschrieben wurde. Letz

tere hat als Rationalisierungsgegenstand die sozialen Interaktionsprozesse selbst, unab

hängig davon, ob es dabei um die Softwareentwicklung geht. Das ist bei der Softwarege

staltung anders, wo die Kommunikation Mittel zum Zweck der Softwaregestaltung ist.

In Anlehnung an die Gegenüberstellung der drei Rationalisierungstypen (tayloristisch,

systemisch, kommunikativ) (vgl. ebd.: 74) führt die unten stehende Tabelle 30 die Merk

male der technikentwicklungsbezogenen Rationalisierung auf. Diese Form der Rationa

lisierung stellt eine Synthese aus dem Konzept der soziotechnischen Netzwerkarbeit, der

soziotechnischen Arbeitsgestaltung, dem Analyserahmen und dem Fallvergleich dar.

Ausgehend von diesem Rationalisierungstyp betrachtet man eine Branche und ih

re Organisationen aus einer neuen Perspektive. Gegenstand der Rationalisierung ist die

Technikgestaltung selbst und weniger die Techniknutzung. Es geht darum, die Möglich

keiten der Softwaregestaltung für einen Anwendungsbereich zu nutzen. Das bedeutet

zum einen, dass den technikentwicklungsbezogenen Rationalisierungstyp eine stetige

Dynamik aus individueller und Standardsoftwaregestaltung auszeichnet, die sowohl in

nerhalb der Organisationen als auch in der Branche zwischen Organisationen wie IT-DL,

Softwarefirmen und EVU besteht. Für einen industriespezifischen Anwendungsbereich

kann es sich im Zeitverlauf von Jahrzehnten mehrmals ändern, ob dort Unternehmen ei

ne Standardlösung einsetzen oder eine individuelle Lösung. Darüber hinaus können Or

ganisationen Software je nach Anwendungsbereich unterschiedlich nutzen. In Anwen

dungsbereichen mit einem hohen Anteil an Datenverarbeitung kann Software Arbeit er

setzen. Bei anderen steuert oder überwacht Software Arbeit, die nicht digitalisiert wer

den kann.

Anders als im Taylorismus steht deshalb nicht die Arbeitsteilung zwischen Hand-
und Kopfarbeit im Zentrum der Rationalisierung. Es geht nicht darum, dass Kopfarbei

tende die Arbeit der Handarbeitenden kontrollieren, so dass die Handarbeitenden nur

noch möglichst wenig denken müssen. Vielmehr geht es unabhängig davon, ob die An

wendenden mehr ihre Hände oder mehr ihren Kopf benutzen, um die Trennung von

Softwareanwendung, -gestaltung und -programmierung. Die einen machen die Soft

ware, welche die anderen in ihrer Arbeit anwenden, und das in vielen Fällen ihren ge

samten Arbeitstag über und ausschließlich.

Dabei sind Grundlage der technikentwicklungsbezogenen Rationalisierung keine

klar strukturierten Aufgaben. Es geht um Anforderungen, die Programmierende für die

Software eines Anwendungsbereichs umsetzen müssen. Diese müssen erst Software

gestaltende erarbeiten und den Programmierenden übergeben, so dass dann auch die

Software macht, was sie machen soll. Dabei sind die wesentlichen Mittel Wissen und

Kommunikation inkl. Feedbackschleifen zwischen Anwendung und Programmierung.

Dieser kommunikative Austausch und das Erarbeiten wissensbasierter Anforderungen

8. Formen und Folgen der Softwaregestaltung – die Empirie 309

gelingt in organisationalen und interpersonalen Netzwerken besser als in hierarchi

schen Organisationen oder Marktbeziehungen. Die soziotechnische Netzwerkarbeit der
Softwaregestaltung zeichnet aus, dass sie keiner Best Practice folgt und nicht detailliert
vorgeplant werden kann. Sie ist vielmehr situativ und abhängig von der soziotechni

schen Konstellation, zu der die Arbeitsteilung zwischen Anwendung und Entwicklung
(z.B. zwischen IT-DL und EVU oder IT-Abteilung und Fachabteilungen innerhalb eines
EUV) und die Softwarearchitektur gehört. Letztere legt fest, wer was gestalten kann
(z.B. ob Schnittstellen vorhanden oder individuelle Einstellungen an einem Standard
möglich sind) und welche Abhängigkeiten bestehen (z.B. wenn mehrere Organisationen
sich auf einen Standard verständigen müssen). Das Organisationsprinzip der Situati

vität zeigt sich an angepassten Rollen (z.B. Product Owner oder IT-Projektleitung) und
Abläufen (z.B. Scrum), welche die zu gestaltende Software als Gegenstand haben und
softwarebasierte Werkzeuge (z.B. Ticketsysteme) einsetzen.

Die Kernprobleme der soziotechnischen Interdisziplinarität und Gestaltungsmög

lichkeiten löst der Arbeitsprozess der Softwaregestaltung entweder als Teil einer Ma

trix- oder reinen Netzwerkorganisation und zentral oder dezentral. Das hat Folgen für
die Softwareanwendung: Die anwendende Organisation kann unabhängig oder abhän

gig sein und die eigene Organisation auf die Softwareentwicklung ausrichten und für
sich entscheiden, ob Synergien durch einen Standard wichtiger sind als Wettbewerbs

vorteile durch eine individuelle Software.
Die Dynamik aus Standard – individuell und dezentral – zentral zeigt sich auch

bei den möglichen Strategien. Der technikentwicklungsbezogene Rationalisierungstyp
zeichnet sich dadurch aus, dass es grundsätzlich zwei unterschiedliche Strategien gibt:
1. Spezialisierung auf Anwendung oder Entwicklung in getrennten Organisationen oder
Abteilungen; 2. Anwendung und Entwicklung gemeinsam in einer Organisation in Form
des Primats der Softwareentwicklung. Letzteres ermöglicht die Umsetzung der Stra

tegie des Competing on Complexity, die laut Bessen (2022) erfolgreiche Unternehmen
in softwareintensiven Industrien auszeichnet (Näheres siehe 4.1). Andererseits kann es
für Organisationen am effizientesten sein, für bestimmte Anwendungsbereiche eine
Standardsoftware einzusetzen und sich rein auf die Anwendung zu konzentrieren. Dass
kann sich aber, wie oben bereits geschrieben, über die Zeit ändern.

Die Softwaregestaltung zeichnet sich dadurch aus, dass selbstständiges Lernen und
Eigenmotivation wichtig sind (Subjektivität). Der Führungsstil ist nicht autoritär wie im
Taylorismus und ergebnisorientiert und Führungskräfte sind vor allem aktiv, wenn Aus

nahmen auftreten oder die Ergebnisse für sie nicht zufriedenstellend sind. Auch wenn
es in den Fallstudien nicht vorkam, so wäre der Coaching-Ansatz für die Führung wohl
der passende. Den Softwaregestaltenden geht es nicht darum, in Hierarchien aufzustei

gen oder disziplinarische Verantwortung zu übernehmen. Sie wollen interessante Pro

jekte machen und etwas dazulernen. Solche Kompetenzkarrieren schließen aber nicht
aus, dass es Gehaltsstufen gibt, auf denen Softwaregestaltende aufsteigen können. Die
eingesetzten Werkzeuge dienen in erster Linie dazu, den Softwaregestaltungsprozess
von Anwendung bis Programmierung digital zu integrieren, die Kommunikation zu er

möglichen und Wissen zu speichern (u.a. Dokumentation von Anforderungen und deren
Umsetzung).

310 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Tabelle 30: Rationalisierungstyp der technikentwicklungsbezogenen Rationalisierung, angelehnt
an Rock/Ulrich/Witt (1990: 74)

Merkmal Ausprägung

Rationalisierungsgegen

stand

Softwaregestaltung für industriespezifische Anwendungsbereiche

Arbeitsteilung Anwendung und Entwicklung (inkl. Gestaltung)
Kernaufgaben Anforderungen24

Organisationsziel Kommunikation inklusive Feedbackschleifen (mündlich oder schriftlich)
Kernkontrollform Netzwerk statt Markt oder Hierarchie
Organisationsprinzip rollen-, ablauf- und softwarebasiert; situativ je soziotechnische Konstel

lation

Besondere Organisations-
determinante

Softwarearchitektur inkl. softwaretechnischer Zuschnitt (Standard,
individuell)

Kernprobleme - softwaretechnische Interdisziplinarität
- softwaretechnische Gestaltungsmöglichkeiten: organisatorische Aus
richtung (nur auf die Softwareanwendung oder sowohl auf Softwarean
wendung wie auch -entwicklung), Zuschnitt (Standard/individuell)
Arbeitsprozess der Softwaregestaltung:
- zwischen Matrixorganisation und reiner Netzwerkorganisation
- zwischen dezentral und zentral

Rationalisierungsbereiche

soziotechnische Arbeitsgestaltung der Softwareanwendung
- zwischen unabhängig und abhängig

Strategien zwischen Competing on Core Competency (Anwendung oder Entwicklung)
und Competing on Complexity (Anwendung und Entwicklung)

Ausrichtung anwendende
Organisation

zwischen Primat der Softwareentwicklung und Anwendung Standard
software

Personalentwicklung selbstständiges Lernen in Bezug auf Software und Softwaregestaltung
Führungsstil Management by Exception and Results; Coaching
Typische Karriere fachliche Kompetenzkarriere ohne disziplinarische Verantwortung
Softwarebasierte Werkzeu

ge

prozessintegrierend von Anwendung bis Programmierung für Kommu

nikation und als Wissensspeicher

8.6.4. Neue Konkurrenz für das Management durch die Softwaregestaltenden?

Beim Arbeitsprozess der Softwaregestaltung fungieren Führungskräfte mehr als Rah

mengeber und sind nur teilweise direkt involviert. Vielmehr sind Softwaregestaltende

und Programmierende Träger der Arbeitsgestaltung. Welchen Anteil hat das Manage

ment noch an der Arbeitsgestaltung? Inwiefern gibt es Konflikte innerhalb des Manage

ments? Können die Softwaregestaltenden als Teil des Managements betrachtet werden?

24 Andere Begriffe dafür sind Konzepte, Spezifikationen, Stories, Tickets; zu Anforderungen gehört
auch mündliches oder schriftliches Feedback wie z.B. durch Tests.

8. Formen und Folgen der Softwaregestaltung – die Empirie 311

Insgesamt ist das Management abhängig von den Softwaregestaltenden. Sie können
nicht allein die optimale Nutzung der Softwaretechnik umsetzen. Bei den Arbeitskreisen
von PAKET oder der Anforderungsrunde von INTERN2 sitzen ausgewählte Expert:in

nen. Bei INTERN1 ist das Management einer neben vielen anderen Anforderungsstel

lenden. Bei KOOP1 und KOOP2 übernehmen IT-DL oder intern in den EVU IT-Projekt

leitende, Applikationsbetreuende oder Prozessverantwortliche die Softwaregestaltung.
Nur in wenigen Fällen machen Teamleitung oder Gruppenleitung bei der Softwarege

staltung operativ mit: EVU von PAKET, Teamleitung von KOOP2 oder die Geschäftsfüh

rung von STARTUP. Dabei gestalten sie dann aber nur Teile einer Software mit.
Vielmehr setzt das Management die Rahmenbedingungen. Die Kontrolle über finan

zielle und personelle Ressourcen und strategische Entscheidungen liegt beim Manage

ment. Es entscheidet über die betriebsinternen Karrieren – egal ob von Software an

wendendem, gestaltendem oder programmierendem Personal. Wenn die Softwareent

wicklung komplett ausgelagert ist, dann richtet sich der Fokus des Managements der
EVU darauf, die IT-DL, IT-Beratenden oder Softwarefirmen zu kontrollieren. Bei IN

TERN1 und INTER2 genehmigt das Management die Softwaregestaltung. Bei KOOP1 hat
das Management über die Auslagerung der IT entschieden und das Anforderungsma

nagement eingeführt. In einem EVU kontrolliert der Digitalisierungsmanager Anfor

derungen, bevor sie an das IT-DL weitergeleitet werden. Beim strategischen Anforde

rungsmanagement von KOOP1 machen die leitenden Personen der IT-Abteilungen aus
den EVU mit. Bei KOOP2 hat das Management eines EVU entschieden, wieder Teile der
Softwaregestaltung vom IT-DL zurückzuverlagern. Bei KOOP3 hat das Management des
IT-DL beschlossen, einen IoT-Bereich mit entsprechendem Personal zu gründen. Nur
beim STARTUP gibt es keine formalen Hierarchien. Doch basiert der Primat der Soft

wareentwicklung darauf, dass die Gründer über Wissen zur Softwareentwicklung ver

fügen und die softwaretechnische Interdisziplinarität verkörpern.
Dann unterscheidet es sich von Fall zu Fall, ob das Management und bestimmte Füh

rungsebenen ein Hindernis für die Softwaregestaltung sind oder diese selbst überneh

men. In Matrixorganisationen sind sie oftmals wichtige Sponsoren z.B. für IT-Projek

te, um sie abteilungsübergreifend durchzusetzen. Bei INTERN1 und INTER2 erleben
Befragte Führungskräfte auf Ebene der Fachbereichsleitung als hinderlich für die Soft

waregestaltung und es gibt Kompetenzkonflikt[e(?)] zwischen Abteilungen (IT, Fachbe

reiche). Bei KOOP2 werden Hierarchien in Frage gestellt. In einem EVU hat das Manage

ment die Hoheit über die Gestaltung vom IT-DL zurückgeholt (u.a. dadurch, dass das
EVU wieder das Projektmanagement selbst macht). Bei PAKET gibt es ein EVU, in dem
die Führungskraft eines Fachbereiches über die Wahl eines Softwareunternehmens ent

scheidet, ohne die IT-Abteilung zu fragen. Im STARTUP herrscht ein anderes Führungs

verständnis vor. Die Gründer sind höchstens informell führend aufgrund ihrer Kom

petenzen. Darüber, wer welche Rollen übernimmt, entscheiden die Mitarbeitenden ge

meinsam.
In den Fallstudien treiben die Softwaregestaltenden die Technikgestaltung in den

Organisationen voran. Sie helfen damit, ein Kernproblem des Kapitals zu lösen, wodurch
sie eine bestimmte Position für sich beanspruchen können (vgl. Armstrong 1985). So be

stimmt sich, wie schon bei Hohlmann beschrieben, ihre Position technikinduziert: Sie
sind notwendig, wie z.B. die Rolle von Key User:innen, damit die Organisation die Tech

312 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

nologie einsetzen kann (vgl. Hohlmann 2007 zum Einsatz der SAP ERP-Software). Ei

nerseits sind Softwaregestaltende, indem sie Arbeit gestalten, Teil des Managements.

Sie helfen, die Arbeit der Anwendenden zu kontrollieren. Andererseits: Wenn es um das

Beschäftigungssystem geht, ist bei den hier untersuchten Fällen noch nicht zu erken

nen, dass es zu einer direkten Konkurrenz zum existierenden Management kommt. Viel

mehr entsteht eine eigenständige Gruppe, die bestehende Karrierewege in Frage stellt

und teilweise eigene bekommt. Ob in Zukunft in den EVU vor allem Softwaregestalten

de oder -programmierende aufsteigen: Dafür gibt es keine Indizien. In den Fallstudien

sehen sie sich nicht als Teil des Managements. Programmierende und Gestaltende wol

len größtenteils keine disziplinarische Verantwortung haben und Teil des Managements

werden. Laut Pohlmann zeichnet das Management neben Funktionen wie Gestaltung,

Kontrolle und Koordination auch eine hierarchische Position aus, mit der Führung und

Weisungsbefugnisse einhergehen (vgl. Pohlmann 2017: 207f.). Das ist bei den meisten

hier befragten Softwaregestaltenden nicht der Fall und das Management hat die Arbeits

gestaltung durch Softwaregestaltung delegiert oder ausgelagert. Wie STARTUP und die

diskutierte softwaretechnische Prozessorganisation (siehe 8.5.3.3) zeigen, werden Teile

des Managements überflüssig, wenn eine Organisation sich auf die Softwaregestaltung

ausrichtet.

8.6.5. Facetten einer industriespezifischen Softwaregestaltung

Die Organisationen in den Fallstudien gestalten eine industriespezifische Software. Es

zeigen sich mehrere Eigenheiten der Softwaregestaltung in der Energiewirtschaft: die

industriespezifische Detailtiefe und Komplexität, die große Bedeutung der Regulierung,

die Arbeitsteilung zwischen großen und kleinen EVU, die lokale Verankerung der EVU,

der zögerliche Wandel und die noch offene Frage, welche Rolle Softwaregestaltung in
Zukunft für die Wettbewerbsfähigkeit von Firmen in der Branche spielen wird.

Es gibt vielfältige Wissensdomänen und ein komplexes technisches und regulato

risches Umfeld, die eine Herausforderung für die Softwaregestaltung in der Energie

wirtschaft darstellen. Im 7. Kapitel wurden einige der vielen Gesetze und Verordnun

gen genannt. Dazu kommen technisch komplexe Anlagen – ob Kraftwerke oder Netze

mit ihren Zählern, Trafostationen und verschiedenen physikalischen Eigenheiten (Gas,

Strom). Dazu kommt, dass trotz Entflechtung viele Stadtwerke noch Konzerne mit un

terschiedlichen Geschäftsfeldern inklusive Schwimmbädern und öffentlichem Nahver

kehr sind. Typisch für die Industrie ist, dass, obwohl in anderen Industrien ähnliche An

wendungsbereiche (z.B. Instandhaltung) existieren, diese trotzdem individuell sind. IN

TERN1 kann durch die interne Softwaregestaltung eine industriespezifische Instandhal

tungssoftware entwickeln, z.B. mit Notruffunktion für Monteur:innen. Die individuelle

Softwaregestaltung ist darauf ausgelegt (wie ein Befragter meint), Netzkonzession zu

bekommen. Das heißt, die Softwaregestaltung richtet sich an institutionelle Begeben

heiten, die darin bestehen, dass die netzbesitzende Organisation (meist die Kommunen)

den Netzbetrieb vergibt und spezifische Erwartungen hat.

Zudem ist die große Bedeutung der Regulierung für die Softwaregestaltung und die

damit einhergehenden stetigen Softwareanpassungen etwas Industriespezifisches. Ein

großer Teil der Softwaregestaltung wäre ohne den stetigen Wandel der Regulierung nicht

8. Formen und Folgen der Softwaregestaltung – die Empirie 313

notwendig. Das STARTUP existiert nur aufgrund einer Regulierung (Emissionshandel)
und ihre Dienstleistung ist es, diese digital umzusetzen. Für die IT-DL, Softwarefirmen
und allgemein die Softwaregestaltenden ist die sich stetig ändernde Regulierung und
die neuen Anforderungen durch die Energiewende Geschäftsgrundlage und Existenz

berechtigung. Zudem stellt die Regulierung eine Grundlage für Synergien und Koope

rationen bei der Softwaregestaltung dar: Sie ist für alle gleich, und so stellt sie einen
Ausgangspunkt dar, um zu kooperieren und zumindest für die regulierten Bereiche eine
industriespezifische Standardsoftware zu entwickeln. Das zeigt sich in der Software

gestaltung vor allem bei KOOP1 und PAKET, wo ein IT-DL bzw. eine Softwarefirma für
mehrere EVU einen Standard ausprägt. Die Unterscheidung zwischen regulierten und
wettbewerblichen Bereichen wird in der Softwaregestaltung zur Frage, was EVU koope

rativ und was sie individuell programmieren.
Das Besondere an der Energiewirtschaft in Deutschland sind die vielen Stadtwer

ke. Sie stellen einen großen Markt für Software dar. Vor allem die kleineren EVU zeigen
sich in den Fallstudien als Trittbrettfahrer, wenn es um Softwaregestaltung geht. In den
Fallstudien sind es eher die mittleren und großen EVU, die sich an der Entwicklung ei

nes Standards beteiligen. Dies geschieht bei einem IT-DL wie bei KOOP1 oder KOOP2
oder indem EVU mit Softwarefirmen Projekte machen oder extra Personal haben, um
Anforderungen zu stellen und zu testen wie bei PAKET. So profitieren die kleineren EVU
davon, was an Software entwickelt wird. Ein EVU aus PAKET oder die IT-DL von KOOP1
und KOOP2 stellten die entwickelte Software anderen (meist kleineren) EVU zur Verfü

gung. Das kann so weit gehen, dass auf dem gleichen Server für mehrere EVU die Anwen

dungssoftware läuft und sie ein EVU oder ein IT-DL betreibt und gestaltet. Bei KOOP1
und PAKET sprechen Befragte explizit davon, dass IT-DL oder Softwareunternehmen
Stadtwerke »spielen« können und dies auch tun. Es wird in den Fällen auch angeboten
(wie auch in KOOP2), einzelne Prozesse via BPO für EVU zu übernehmen, d.h. nicht nur
die Software zur Verfügung zu stellen, sondern auch die Anwendenden.

Speziell an der Branche ist zudem die Kultur, zu der Kooperationen, ein regiona

ler Bezug und zögerlicher Wandel innerhalb der EVU gehören. Einerseits erleichtert
die Kultur die Kooperation wie bei KOOP1. Die kooperative Kultur stammt wohl aus
einer Zeit, in der kein Wettbewerb herrschte und die Stadtwerke die gleichen Her

ausforderungen hatten, aber keinen gemeinsamen Markt. Immer noch gibt es eine
getrennte, regionale Verantwortung und begrenzten Wettbewerb. Gleichzeitig zeigt
KOOP2, dass Kooperationen scheitern können. Die Branche zeichnet sich zudem durch
einen regionalen Bezug aus, der sich in spezifischen Netzen (INTERN1), regionaler
Kundschaft (KOOP1, KOOP2) und regionalen Arbeitsmärkten niederschlägt (einzelne
Befragte bei KOOP2 und PAKET). Für die Softwaregestaltung bedeutet das zum einen,
die Anforderungen vor Ort aufzunehmen, und zum anderen den Vorteil, Fachkräfte
aus mittelgroßen oder kleineren Städten gewinnen zu können, weil die großen Kon

zerne und IT-Unternehmen dort meist keine Niederlassungen haben. In der Branche
zeigt sich ein zögerlicher Wandel wie bei INTERN1 und INTERN2 oder den EVU aus
KOOP1 und KOOP2: ob bei der Durchsetzung gemeinsamer Werkzeuge für die Soft

waregestaltung, der teamübergreifenden Zusammenarbeit oder der Einführung neuer
Methoden wie Scrum. Die EVU versuchen, die Wettbewerbsfähigkeit ihrer altherge

brachten Strukturen zu erhalten, und transformieren sie nur inkrementell. Bei KOOP3

314 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

fungiert das IT-DL als Mittelsmann in die Branche für das IoT-Softwareunternehmen.

Es kann als übersetzende Organisation zwischen der Start-up-Welt und der EVU-Welt

gesehen werden. Der Fall zeigt, dass innovativere Technologien wie IoT ausgelagerte

oder branchenfremde Organisationen gestalten und die EVU, wenn überhaupt, dann

eine fertige Standardlösung erweitern (wie EVU1 von KOOP3). EVU2 von KOOP2 hat

eine Person eingestellt, welche die Projektkultur fördern soll. An den althergebrachten

energiewirtschaftlichen Strukturen hält das EVU aber fest: Die funktionale Aufteilung

nach fachlichen Abteilungen und Teams bleibt bestehen (Abrechnung, Netzanschluss,

Energiehandel, IT-Abteilung etc.) und für die Softwaregestaltung ergänzt das EVU

die Organisation um Positionen für IT-Projektmanagement, IT-Koordination und Key

User:innen.

Nimmt man die Matrix der vier Typen der soziotechnischen Arbeitsgestaltung

(8.6.1.3), so ging es in keiner der Fallstudien um reine Auftragsarbeiten oder um soft

warebasierte EVU, deren proprietäre Software zu einem Standard in der Branche wird

und die sich disruptiv mithilfe von Softwareentwicklung durchsetzen können. START

UP entwickelt zwar eine proprietäre Software, die sie anderen anbietet, jedoch für eine

sehr spezielle Funktionalität (Emissionshandel). In sämtlichen anderen Fällen geht es

um Standardsoftware, die bis auf PAKET und einige EVU bei KOOP1, KOOP2, KOOP3

die EVU weiterentwickeln. Es ist und bleibt eine offene Frage, welcher der vier Typen der

Arbeitsgestaltung aktuell und in Zukunft quantitativ dominiert. Von den untersuchten

Fällen steht kein EVU kurz davor, in naher Zukunft aus dem Markt gedrängt zu werden.

Somit bestätigen die Fallstudien, was unter 7. geschrieben wurde: Das Überleben in der

Branche sichern unterschiedliche Formen der Softwaregestaltung. Wobei es variiert,

wie umfangreich der verwendete Standard ist und welche individuellen Anpassungen

die EVU vornehmen.

9. Ziel der Untersuchung, wesentliche Befunde

und weiterführende Fragestellungen

Ziel der vorliegenden Arbeit war es, die Formen und Folgen von Softwaregestaltung in
der Energiewirtschaft zu untersuchen. Die Sichtung der bisherigen Forschung hat ge

zeigt, dass es für den Arbeitsprozess der Softwaregestaltung und die Arbeit der Soft

waregestaltenden noch kein passendes Kontrollkonzept gibt. Zudem sind die Folgen un

terschiedlicher Formen von Softwaregestaltung für die Softwaregestaltenden und die
Arbeit und Organisation der Anwendung bisher überwiegend vernachlässigt worden.
Die Fallstudien stellen die Bedeutung der Softwaregestaltung für Software, Arbeit und
Organisation in den EVU und in der Branche dar. Die sich aus der Untersuchung erge

benden zentralen Befunde knüpfen an Debatten zur Kontrolle von (IT-) Wissensarbeit
und zur digitalen Transformation in der Arbeits- und Industriesoziologie an. Bevor das
Schlusskapitel auf die beiden Debatten im Einzelnen eingeht, fasst der nächste Punkt
zunächst noch einmal kurz zusammen, warum Softwaregestaltung für die Forschung
relevant ist.

9.1. Softwaregestaltung: ein wenig erforschter Arbeitsprozess
der Digitalisierung

Industriespezifische Software spielt in Firmen sämtlicher Branchen eine immer größe

re Rolle (Kapitel 4.1). In softwareintensiven Industrien, in denen Software nicht das Pro

dukt ist, ermöglicht sie gesteigerte Effizienz, Qualität und Individualität von Produkten
und Dienstleistungen.

Um die Möglichkeiten der Softwareentwicklung in industriespezifischen Anwen

dungsbereichen zu nutzen, ist Softwaregestaltung zentral. Das ist jener Teil der Ent

wicklung, der erarbeitet, welche Anforderungen Programmierende zu programmieren
haben. Mit Softwaregestaltung schaffen Organisationen die Voraussetzungen für in

dustriespezifische Software, indem sie zwei Kernprobleme lösen (Kapitel 4.2):

316 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Erstens das Problem der softwaretechnischen Interdisziplinarität, weil im Zuge der

Softwaregestaltung die Beteiligten die softwaretechnischen Möglichkeiten mit den

Bedarfen einer Branche bzw. eines branchenspezifischen Anwendungsbereiches ab

stimmen müssen.

• Zweitens das Problem der softwaretechnischen Gestaltungsmöglichkeiten, indem

a) Organisationen sich entweder auf die Softwaregestaltung oder die Anwendung ei

ner Standardsoftware ausrichten und b) die Softwaregestaltung den softwaretechni

schen Zuschnitt (individuell/Standard) erarbeitet.

In manchen Fällen wählen Unternehmen eine industriespezifische Standardsoftware ei

ner Softwarefirma. Andere Unternehmen entscheiden sich für den Primat der Software

entwicklung, der für digitale Start-ups typisch ist. Sie arbeiten seit ihrer Gründung soft

waretechnisch interdisziplinär und sind von Anfang an organisatorisch auf die Gestal

tung einer individuellen Software ausgerichtet.

Damit Organisationen die Möglichkeiten der Softwaregestaltung nützen können,

müssen sie deren Arbeit kontrollieren. Um die Kontrolle der Softwaregestaltung zu un

tersuchen, ist ein passendes Konzept notwendig, das die Eigenarten der Softwaregestal

tungsarbeit berücksichtigt. Was zeichnet die Softwaregestaltung als Arbeit aus? Sie ba

siert auf Wissen und Kommunikation und ist auf Kooperation angewiesen (5.1). Das liegt

daran, dass ihre materielle Basis Software ist. Software ist eine zeichenbasierte Tech

nologie, die aus mehreren technischen Schichten wie dem Quellcode oder der Anwen

dungsoberfläche besteht und für deren Entwicklung sprachliche Strukturierungsmittel

wie Programmiersprachen oder Begriffe wie Architektur oder Modell genutzt werden.

Zudem ändert sich Software, ist beliebig erweiterbar und kann hochkompliziert werden.

Entsprechend ändert sich das Wissen über sie, kann stetig anwachsen und sehr umfang

reich sein. Es ist Teil der Softwaregestaltung, sich auf eine sich verändernde, komple

xer werdende Software einzulassen und sich gleichzeitig tiefergehend mit branchenspe

zifischen Themen auseinanderzusetzen. Dabei sind die Perspektiven unterschiedlicher

Spezialist:innen zu berücksichtigen, weswegen nicht nur Wissen, sondern auch Kom

munikation und Kooperation zentral sind. Die Beteiligten müssen sich auf eine Gestal

tung einigen, auch wenn sie alle unterschiedliches Wissen und ihre eigene Perspektive

auf die Software haben, die Biografie der Software besser oder schlechter kennen und

sie nicht (alle) Teil der anwendenden Organisation sind.

Die Geschichte der Softwareentwicklung hat noch kein allgemeines Konzept zur

Analyse der Softwaregestaltung hervorgebracht, das auf die untersuchten Fallstudien

passen würde. Dabei ist die Softwaregestaltung in den letzten Jahrzehnten immer

wichtiger geworden (Kapitel 5.2). Es gibt ein eigenes Forschungsgebiet zur Phase der

Anforderungserarbeitung der Softwareentwicklung, wonach Kooperation, Kommu

nikation und soziale Kompetenzen wichtig sind, um eine gemeinsame Sprache und

Übersetzungsfähigkeit zwischen IT- und Branchenfachleuten herzustellen (vgl. Alvarez

2002, Ross/Chiasson 2011, Kaminski 2012, Alsanoosy et al. 2020).

Die Forschung vor allem aus der Arbeits- und Techniksoziologie zeigt, dass die Or

ganisationen in der Realität unterschiedliche Methoden (z.B. Scrum oder Projektarbeit)

oder Kontrollformen (permissive oder direkte Kontrolle) für die Softwareentwicklung

nutzen (vgl. Feuerstein 2012, Boes et al. 2018, Schulz-Schaeffer/Bottel 2018). Es gibt den

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 317

Versuch, mithilfe abstrakter Variablen wie intellektuellem und sozialem Kapital eine all

gemeine Theorie der Softwareentwicklung zu schreiben (vgl. Wohlin et al. 2015). Aller

dings vernachlässigt solch ein Ansatz strukturelle Faktoren wie eine unterschiedliche
Arbeitsteilung zwischen Anwendung und Entwicklung (ob zwischen IT- und Fachabtei

lungen, EVU und IT-Dienstleistungsunternehmen) oder Konflikte zwischen beteiligten
Gruppen wie Management und Softwareentwickelnden. Ganz zu schweigen davon, dass
die in diesem Absatz zitierte Forschung nicht zwischen industriespezifischer und ande

rer Softwareentwicklung unterscheidet und sich nicht auf die Phase der Softwaregestal

tung fokussiert.
Um geeignete, allgemeine Konzepte zur industriespezifischen Softwaregestaltung

zu entwickeln, hat die vorliegende Untersuchung die Softwareentwicklung in der En

ergiewirtschaft erforscht und entsprechende Literatur ausgewertet. Durch Branchen

analyse und Fallstudien ist eine Betrachtung der Dynamik zwischen Individual- und
Standardsoftwaregestaltung in der Branche möglich. Die Auswertung der Daten mit
der Grounded Theory erlaubt es, den konkreten Arbeitsprozess der Softwaregestaltung
zu analysieren und wesentliche Kategorien, entscheidende Kontextfaktoren sowie ihre
Folgen herauszuarbeiten. Die Datengrundlage dafür ist die Befragung diverser Beschäf

tigtengruppen, deren jeweilige Perspektiven detaillierte Beschreibungen von Arbeit und
Organisation der Softwaregestaltung liefern. Die gewonnenen Kategorien waren Aus

gangspunkt für das Konzept der soziotechnischen Netzwerkarbeit und ergeben den
Analyserahmen (8.1.3), der die sieben Fallstudien und deren Vergleich strukturiert. Er
hilft, die Unterschiede herauszuarbeiten und Idealtypen zu konstruieren.

9.2. Erster Debattenbeitrag: Softwaregestaltung
als soziotechnische Netzwerkarbeit

Wie kann eine konzeptionelle Beschreibung des Arbeitsprozesses der Softwaregestal

tung und der Arbeit der Softwaregestaltenden aussehen, die sowohl die unterschiedli

chen Konstellationen berücksichtigt, in denen sie stattfindet, als auch die Eigenheiten
von kooperativer, kommunikationsintensiver und interdisziplinärer Wissensarbeit? Die
Antwort auf diese Frage ist das Konzept der soziotechnischen Netzwerkarbeit.

Das 6. Kapitel hat ein erstes Konzept der soziotechnischen Netzwerkarbeit aus
existierender Forschungsliteratur erarbeitet. Es stellt die theoretische Lösung des
Transformationsproblems für die Softwaregestaltung dar. Es ermöglicht die begriff

liche Beschreibung digitaler Arbeitsprozesse, die über verschiedene Organisationen,
Teams oder Abteilungen verteilt sind und bei denen Subjektivität, Wissen, Kommuni

kation, Kooperation und Software im Mittelpunkt stehen (6.2). Das Besondere an dieser
Kontrolle von Wissensarbeit ist ihr Netzwerkcharakter. Um zwischen Anwendung und
Programmierung zu vermitteln, sind Subjekt, Betrieb und Organisationsnetzwerk
gleichermaßen relevant. Weder die (Software-)Technik noch das Management sind
dominierende Faktoren bei der Kontrolle der Softwaregestaltung. Das 6. Kapitel hat
noch vereinfacht zwischen vier Ebenen unterschieden. Sie zeigen sich exemplarisch bei
IT-Projekten wie ERP-Implementationen (6.3) und wirken zusammen, um die Trans

formation von Arbeitskraft zu gewährleisten (6.4). Aus Mangel an spezifischer Literatur

318 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

zur Softwaregestaltung hat das 6. Kapitel mehr allgemeine Literatur zu Wissensarbeit,

Arbeit in Netzwerken und mit Software und IT herangezogen, um das Konzept der

soziotechnischen Netzwerkarbeit zu entwickeln.

Das Empirie-Kapitel entwickelt das Konzept der soziotechnischen Netzwerkarbeit
weiter. Es besteht dort aus dem Arbeitsprozess der Softwaregestaltung und der Arbeit
der Softwaregestaltenden, wobei es auch die dazugehörigen Kategorien differenzierter

herausarbeitet. Entsprechend grenzt der aus der Empirie entwickelte Analyserahmen

klar ab: zwischen soziotechnischer Konstellation, Arbeitsprozess und Arbeit der Soft

waregestaltenden.

So ist es dann auch möglich, die typischen Unterschiede in den Fallstudien bei der

soziotechnischen Netzwerkarbeit zu konstruieren: Entweder liegt ein dezentraler oder

zentraler Arbeitsprozess vor, arbeiten die Softwaregestaltenden in einer Matrixorgani

sation oder einer reinen Netzwerkorganisation. Alte Kontrollunterschiede wie direkte

und permissive Kontrolle (vgl. Friedman 1977) oder industrialisiert und nicht-industria

lisiert (vgl. Boes et al. 2018) passen hingegen nicht zur soziotechnischen Netzwerkarbeit.

Zudem zeigt sich die Kontingenz der Softwaregestaltung in Bezug auf die sozio
technische Konstellation (ausführlicher unter 8.6.2.1). Sie ist die Ausgangsbedingung

für die Softwaregestaltung. Zugleich stellt sie auch deren Grenzen dar, in denen sich

die Möglichkeiten der Softwaretechnik verwirklichen lassen. Je Fallstudie ist es vom

Anwendungsbereich abhängig, welche Möglichkeiten für die Softwaregestaltung be

stehen. Das betrifft den Anteil der Datenverarbeitung im Anwendungsbereich und ob

sie einen gesamten Prozess gestalten kann oder nur Teile davon. Aus Sicht der Soft

waregestaltung wird die Arbeitsteilung zwischen Anwendung und Programmierung

zur Wissensgrenze, die überwunden werden muss. Sie kann innerhalb oder zwischen

Organisationen bestehen. Als primäre Formen der Grundkoordination zeigen sich

in den Fällen Markt, Hierarchie oder Netzwerk. Egal welche (Mischung der) Grund

koordination vorliegt, müssen die Beteiligten immer einen Weg finden, um für die

Softwaregestaltung zusammenzuarbeiten. Um von einer Netzwerkkoordination zu

sprechen, muss die Zusammenarbeit ungehindert von hierarchisch-formalen We

gen, vertraglichen Einschränkungen oder Marktkalkülen zwischen Anwendung und

Programmierung möglich sein (wie bei den Fallstudien STARTUP und KOOP3). Die

Softwarearchitektur hat sich in allen Fällen als prägend für die Softwaregestaltung er

wiesen: Erstens entscheidet ihre Aufteilung z.B. in Module darüber, wie sich die Arbeit

innerhalb und zwischen den Organisationen verteilt (vor allem für die Programmie

renden). Zweitens prägt die Softwarearchitektur in der Mehrzahl der Fälle durch ihren

Zuschnitt (individuell, Standard) und die daraus resultierenden Abhängigkeiten den

Kommunikationsaufwand und welche Kommunikationswege zwischen Anwendung

und Entwicklung existieren.

Dieser Abschnitt stellt zunächst die aus den Unterschieden zwischen den Fallstudien

erarbeiteten Typen der soziotechnischen Netzwerkarbeit vor (8.6.1.1), um dann genauer

auf die einzelnen Kategorien einzugehen (8.6.2) und abschließend den Beitrag zur De

batte über die Kontrolle von Wissensarbeit in der Arbeitssoziologie zu vertiefen.

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 319

9.2.1. Typische Unterschiede in der soziotechnischen Netzwerkarbeit

Die Unterschiede zwischen den Fallstudien im Arbeitsprozess der Softwaregestaltung
lassen sich zu Typen zusammenfassen. Wobei es sich um netzwerkspezifische Unter

schiede in der Kontrolle des Arbeitsprozesses und der Arbeit der Softwaregestaltenden
handelt:

1. Der Arbeitsprozess der Softwaregestaltung findet entweder dezentral statt, z.B. in
einem Team für eine individuelle Softwaregestaltung oder zentralisiert in einer Or

ganisation wie einer Softwarefirma, die ein Standardprodukt gestaltet (8.3.1).
2. Die Softwaregestaltenden arbeiten in einer Matrixorganisation, in der sie für ihre Ar

beit Hindernisse überwinden müssen, oder in einer reinen Netzwerkorganisation,
die ihnen ihre Arbeit einfacher macht, weil dort weder Hierarchien noch Marktbe

ziehungen die Zusammenarbeit zwischen Anwendung und Programmierung stören
(8.4.1).

Die vier Grundtypen der soziotechnischen Netzwerkarbeit sind von der soziotechni

schen Konstellation abhängig, die sich aus den typischen Unterschieden der sozio

technischen Netzwerkarbeit ergeben (8.6.1.1): KOORDINIEREND (zentral in einer
Matrixorganisation), DIREKT (dezentral in einer reinen Netzwerkorganisation), ER

GÄNZEND (dezentral in einer Matrixorganisation) und VIRTUELL (zentral in einer
reinen Netzwerkorganisation).

Der Typ KOORDINIEREND ist ein zentralisierter Arbeitsprozess der Softwarege

staltung in einer Matrixorganisation. Wie für einen zentralen Arbeitsprozess typisch,
konzentrieren sich Rollen wie Anforderungsmanagende auf die Koordination der An

forderungsaufnahme in unterschiedlichen Organisationen. Es existiert ein Ablauf in
Form eines Anforderungsmanagements, in dem die Beteiligten über Anforderungen
verhandeln und Konflikte lösen. Softwarelösungen wie Ticketsysteme dienen dazu,
Transparenz zwischen den Organisationen herzustellen und Abstimmungen zu orga

nisieren. Die kommunikativen Beziehungen müssen die Spannungen zwischen den
unterschiedlichen Interessen ausgleichen können und die teils bürokratischen Abläufe
ergänzen, z.B. indem auf persönlicher Ebene ein direkter Austausch stattfindet. Indem
softwaregestaltende Organisationen wie IT-DL auf die Softwaregestaltung spezialisiert
sind, können sie ein Beschäftigungssystem etablieren, das für eine entsprechende Aus

lastung sorgt. Sie können z.B. den Wünschen der Softwaregestaltenden nachkommen
und ihnen Karrieren unabhängig von Hierarchien ermöglichen (z.B. eine Karriere als
Fachexpert:in ohne personelle Verantwortung zu machen und auf diesem Wege in eine
höhere Vergütungsgruppe zu kommen). Aufgrund der Marktbeziehung zwischen z.B.
IT-DL und EVU kontrollieren Letztere die Arbeit der Softwaregestaltenden des IT-DL.
In Hierarchien sind es die Führungskräfte, welche die Arbeit der Softwaregestaltenden
kontrollieren. Zudem führt die Matrixorganisation aufgrund der Wissensverteilung
zu einer Abhängigkeit, weil eine stetige softwaretechnische Interdisziplinarität fehlt:
Einerseits fehlt den EVU bzw. einzelnen Abteilungen das Wissen, um selbst die Mög

lichkeiten der Softwaregestaltung einschätzen zu können. Andererseits fehlt der pro

grammierenden Abteilung oder Organisation Wissen über die Anwendungsbereiche.

320 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

KOOP1, KOOP2 und KOOP2 sind nur zum Teil Beispiele für diesen Typ, weil einzelne

Kategorien anders ausgeprägt sind.

Charakteristisch für den Typ DIREKT ist ein dezentraler Arbeitsprozess der Soft

waregestaltung in einer reinen Netzwerkorganisation. Typische Merkmale einer

dezentralen Softwaregestaltung sind Rollen, die direkt Anforderungen von Anwenden

den aufnehmen. Die Rollen sind Teil eines Ablaufs, der unterschiedliche Methoden

wie Scrum, Resonanzgruppen und Workshops nutzt, um Anforderungen direkt auf

zunehmen, auszuarbeiten und den Programmierenden übergeben zu können. Die

kommunikativen Beziehungen sind offen, direkt, langfristig und tief verankert im

Anwendungsbereich, nicht getrennt durch Abteilungsgrenzen und Hierarchien und

bei Bedarf mit engem Kontakt zu den Anwendenden. Die verwendeten Werkzeuge

wie Ticketsystem und Chat-Software erlauben es Beteiligten, dezentral Anforderungen

ohne bürokratische Hindernisse (wie z.B. fehlende Berechtigungen oder eine for

mal vorgegebene Abstimmung mit der Führungskraft) aufzunehmen. Ein typisches

Element der Arbeit in einem reinen Netzwerk ist ein Beschäftigungssystem, das es

den Mitarbeitenden erlaubt, in der rollenbasierten Organisation interessante und für

Softwaregestaltende adäquate Aufgaben zu bekommen. Es geht nicht darum, in einer

Hierarchie aufzusteigen (die es formal auch gar nicht gibt). Es ist eine Organisation, die

auf die Softwaregestaltung ausgerichtet ist. Weil dem so ist, findet z.B. die Software

gestaltung nicht nur temporär statt. Die Kontrolle passiert im Wesentlichen horizontal

durch die Kollegenschaft und ermöglicht Eigenmotivation, individuelle Steuerung der

Arbeitsbelastung und selbstständiges Arbeiten (z.B. wie es Scrum vorsieht). Durch den

kontinuierlichen, iterativen Austausch im Netzwerk für die Softwaregestaltung ist eine

gemeinsame Wissensbasis gesichert. Weil das Wissen nicht hierarchisch oder über

einen Markt verteilt ist, bestehen keine Hindernisse, um an es heranzukommen.

Der Typ ERGÄNZEND kombiniert einen dezentralen Arbeitsprozess mit einer Ma

trixorganisation. Bei VIRTUELLL existiert ein zentraler Arbeitsprozess der Softwarege

staltung in einer reinen Netzwerkorganisation. Die beiden Typen sind hier nicht aus

führlicher vorgestellt, weil sich die bei den beiden Typen oben ausgeführten idealtypi

schen Eigenschaften wiederholen – nur eben anders kombiniert. Zudem ist keine der

Fallstudien vom Typ VIRTUELL und es wäre noch eine weitere Untersuchung mit Fall

studien zu dieser Form industriespezifischer Softwaregestaltung notwendig.

Die vier Idealtypen unterstreichen nochmal, dass es abhängig von der Konstellation

ist, welche Rolle Management und Führungskräfte bei der Softwaregestaltung spielen.

So haben sie in der Aufbauorganisation einer Matrixorganisation ihre feste Position mit

entsprechenden Entscheidungsbefugnissen, Ressourcen und den Fokus auf die Ergeb

niskontrolle. In den Fallstudien zeigt sich allerdings, dass sie auch dort mal mehr und

mal weniger an der Softwaregestaltung teilnehmen.

9.2.2. Gemeinsame Kategorien der soziotechnischen Netzwerkarbeit

Die soziotechnische Netzwerkarbeit besteht aus dem Arbeitsprozess der Softwaregestal

tung und der Arbeit der Softwaregestaltenden. Für beide konnte die Analyse der Fallstu

dien die zentralen Kategorien herausarbeiten.

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 321

9.2.2.1. Arbeitsprozess der Softwaregestaltung
Die Transformation der Arbeitskraft im Arbeitsprozess der Softwaregestaltung basiert
auf den Rollen, einem Ablauf, kommunikativen Beziehungen, digitalen Werkzeugen und
dem softwaretechnischen Zuschnitt.

Das Konzept der Rolle hat sich als nützlich erwiesen, dem Netzwerkcharakter der
Kontrolle von Softwaregestaltungsarbeit gerecht zu werden. Weil Rollen das Handeln
durch Erwartungen leiten und nicht die konkrete Arbeitsausführung festlegen, erlauben
sie einen eigenständigen, situativ passenden Beitrag der Einzelnen und dass diese sich je
nach Konstellation der Arbeitsteilung zwischen Anwendung und Programmierung ein

fügen. Es gibt zwar feste Rollen wie Product Owner:in oder IT-Projektleitung, denen in
einigen Fällen Schulungen zugrunde liegen. In der Praxis passen die Beschäftigten ihre
Rolle in Bezug zu den anderen Beteiligten aber an. Für viele, die bei der Softwaregestal

tung mitmachen, gehört es zum Arbeitsalltag, mehrere und wechselnde Rollen einzu

nehmen. Zuletzt sind die Erwartungen nicht abhängig von Hierarchien, weshalb sie von
diesen unabhängig das Handeln leiten können. Neben den Erwartungen an spezifische
Rolle wie z.B. IT-Projektleitung kontrollieren allgemeine Erwartungen die Arbeit im Ar

beitsprozess, wie das 6. Kapitel gezeigt hat: kooperativ sein, selbstorganisiert arbeiten,
aktiv mit Softwareobjekten interagieren und sich ausgehend von ihnen zu koordinieren,
mit Nicht-Wissen umgehen können und sich im Netzwerk bewegen. Subjektivierung
(vgl. Minssen 2011) und subjektivierendes Arbeitshandeln (vgl. Böhle 2010, Bolte 2017a,
Bolte 2017b, Weishaupt/Hösl 2017) sind Kernbestandteile der Kontrolle der Arbeitskraft
durch solche Rollen.

Der Netzwerkcharakter des Ablaufs zeigt sich allgemein bei IT-Projekten, die Orga

nisationen in ganz unterschiedlichen Kontexten einsetzen. Dabei ist der Grad der For

malisierung sehr unterschiedlich (vgl. Heidling 2018: 224) und nicht entscheidend für
die Kontrolle von Arbeit. Vielmehr ist wichtig, dass selbst bei stärkerer Formalisierung
Handlungs- und Entscheidungsspielräume für einzelne Projektmitarbeitende bestehen
(vgl. Kalkowski/Mickler 2005) und während und nach ERP-Implementierungen ein ab

teilungsübergreifendes Gestaltungsnetzwerk vorhanden ist, auf dem der Ablauf basiert
(vgl. Hohlmann 2007: 353). In den Fallstudien trägt der Ablauf zur Netzwerkarbeit bei,
indem er für die Kooperation (ob temporär oder langfristig) und die Kommunikation
sorgt und beides nicht z.B. ökonomische Kalküle oder einzelne Führungskräfte unter

gräbt. Das zeigt sich an drei wesentlichen Aspekten: A) Der Ablauf schafft Möglichkeiten
für Feedback(-Schleifen) zwischen Softwareanwendung, -gestaltung und -programmie

rung durch den Einsatz diverser Methoden – ob durch Treffen, E-Mails, Tests, Chat-Pro

gramme, persönliche Gespräche oder Methoden wie Prototyping oder Resonanzgrup

pen. B) Er bindet situativ die im organisationalen Netzwerk verteilten Beteiligten z.B.
über Workshops ein. C) Er pflegt die Beziehungen durch regelmäßige Treffen, Mecha

nismen zum Abgleich von Erwartungen und zur Lösung von Konflikten. In den Fallstudi

en passiert dies z.B. durch Strategie-Treffen zwischen IT-Dienstleistungsunternehmen
(IT-DL) und EVU, Anforderungsrunden mehrerer Fachbereiche eines EVU, durch Ar

beitskreise einer Softwarefirma mit ihrer Kundschaft (EVU) oder Projektlenkungskreise.
Grundlage für den Ablauf können unterschiedliche Methoden wie Scrum, Projektarbeit
oder Anforderungsmanagement sein.

322 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Neben einem Ablauf zeichnet sich die soziotechnische Netzwerkarbeit der Software

gestaltung durch kommunikative Beziehungen zwischen Organisation(seinheiten) und

Einzelpersonen aus. Wie schon die Forschung festgestellt hat, reichen für eine koopera

tive Zusammenarbeit z.B. Projektstrukturen allein nicht aus (vgl. Rüegg-Stürm/Young

2001) und informelle Strukturen der Kooperation sind wichtig (vgl. Bolte/Porschen

2007). Zudem helfen Beziehungen, die längerfristig sind, weil Vertrauen erst mit der

Zeit aus reziproken Beziehungen und durch geteilte Interessen entsteht (vgl. Powell

1990, Uzzi 1997).

In den Fallstudien wird deutlich, welchen Beitrag interpersonale, kommunikative

Beziehungen zur Netzwerkarbeit leisten und dass hierfür technische Lösungen wie Ti

cketsysteme allein nicht ausreichen. Durch kommunikative Beziehungen, die partner

schaftlich, kooperativ, auf Augenhöhe, offen oder von einem Geben und Nehmen ge

prägt sind, können Softwaregestaltende reine Marktbeziehungen und Barrieren inner

halb von Organisationen (seien es Hierarchien oder Abteilungs- und Teamgrenzen) über

winden. Weil es bei der Softwaregestaltung darum geht, ein gemeinsames Verständnis

über energiewirtschaftliche Bedarfe und softwaretechnische Möglichkeiten zu sichern,

ist die Kommunikationskompetenz wichtig. Der Mediator in einer Fallstudie zeigt die

Verschränkung von Beziehungs- und Kommunikationskompetenz exemplarisch: Er ar

beitet an Beziehungen, z.B. indem er Konflikte löst, sorgt für den kommunikativen Aus

tausch und hat auch noch das fachliche Vokabular und Wissen, um sich verständlich ma

chen zu können und für ein gemeinsames Verständnis unter den Beteiligten zu sorgen.

Rollen wie Scrum Master:innen kümmern sich ebenso um die zwischenmenschlichen

Beziehungen. Bei einem IT-DL ist die Rolle Key Account Management dafür zuständig,

die Beziehung zu den EVU zu pflegen und bei Missverständnissen die inhaltliche Klä

rung herbeizuführen.

Neben diesen interpersonalen Beziehungen spielen auch jene zwischen Organisa

tionen und Organisationseinheiten wie Abteilungen in den Fallstudien eine Rolle. Diese

Beziehungen pflegt, wie oben beschrieben, auch der Ablauf auf unterschiedliche Weise.

Darüber hinaus basiert die erfolgreiche längerfristige Zusammenarbeit zwischen IT-DL

und EVU bei KOOP1 auf einem langjährigen Lernprozess. In den Arbeitsprozessen der

Softwaregestaltung der Fallstudien sind die in der Forschung beschriebenen Koope

rationshemmnisse oder -hindernisse (siehe 6.4.1) zwar Thema. Sie führen aber nicht

zum Abbruch des Arbeitsprozesses, weil grundsätzlich die Kooperationsbereitschaft

bestehen bleibt, auch wenn z.B. EVU überlegen, das IT-DL zu wechseln. Insofern ist

der Forschung recht zu geben, dass für eine Zusammenarbeit kooperative Beziehungen

bestehen müssen. Die Fallstudien zeigen, dass dies für ganz unterschiedliche Kon

stellationen von Arbeitsteilung und Grundkoordination zwischen Anwendung und

Entwicklung gilt.

Neben Ablauf und Beziehungen basiert die Kontrolle der Arbeit im Arbeitsprozess

der Softwaregestaltung auf der Software. Sie ist Arbeitsgegenstand und -mittel. Wie die

Literatur zeigt (siehe 6.4.2), wirkt sie nicht nur einschränkend, sondern auch ermög

lichend. Die zu gestaltende Software koordiniert als gemeinsam gestaltbares, zeichen

basiertes Bezugsobjekt die Wissensarbeit (vgl. Nicolini/Mengis/Swan 2012, vgl. Barrett/

Oborn 2010, Carugati et al. 2018, Ponte/Rossi/Zamarian 2009, Bolici/Howison/Crowston

2009 und 2016). Zudem verlangen sie und die verwendeten Software-Werkzeuge wie Ti

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 323

cketsysteme von den Anwendenden wissensevozierendes Engagement und Interaktion
(vgl. Darr 2019, Rennstam 2012). Software schränkt die Softwaregestaltung ein, indem
sie Eingabemöglichkeiten und Abläufe vorgibt (vgl. Kleemann/Matuschek 2008), digital
in einen Prozess integriert (vgl. Sauer 2018) und soziale Strukturen wie Rollen oder Rou

tinen softwaretechnisch stützt (vgl. Mutch 2010, Volkoff et al. 2007). Sie macht Arbeit
transparent und bietet Möglichkeiten der Überwachung (vgl. Zuboff 1988). In der Soft

wareentwicklung geben die softwarebasierten Werkzeuge keinen (software)maschinel

len Takt vor, sondern menschliche Intervention macht den digital-basierten Arbeitspro

zess aus (vgl. Andrews et al. 2005, Barrett 2005).
In den Fallstudien ermöglichen Softwarelösungen erstens als digitale Werkzeuge

der Softwaregestaltung die verteilte Teilnahme durch die Ein- und Ausgabe von Daten:
ob Ticketsysteme, Entwicklungs- und Testumgebungen von Softwarefirmen wie SAP,
Chat-Gruppen oder (geteilte) Excel-Dateien. Zudem stellen die Software und die dahin

terliegenden Datenbanken den zentralen Wissensspeicher für die in der Softwaregestal

tung arbeitenden Personen dar. Ticketsysteme lassen es zu, dass Anwendende oder an

dere Beteiligte aus unterschiedlichen Organisationen und Abteilungen Anforderungen
aufnehmen, wodurch sie zugleich die Softwaregestaltung dokumentieren und sie für an

dere nachvollziehbar machen. Im Quellcode selbst ist die Umsetzung dokumentiert und
manchmal existieren auch noch separate, softwarebasierte Dokumentationswerkzeuge
wie Wikis. Zweitens ist die Kontrollwirkung der softwarebasierten Werkzeuge abhän

gig von der soziotechnischen Konstellation. In Hierarchien sorgt Software für Trans

parenz (über Anforderungen, deren Bearbeitungsstatus etc.) für die Führungskraft, in
Marktbeziehungen für die Kundschaft und in reinen Netzwerkorganisationen zwischen
den gleichgestellten Peers. Auch der zeitliche Takt in der Softwaregestaltung ist konstel

lationsabhängig: Die Reaktionszeiten werden entweder durch die zwischen IT-DL und
EVU vereinbarten SLA, durch Aufwandsschätzungen von Fachleuten wie IT-Beratenden,
durch die von der Regulierung vorgegebenen Fristen oder durch die Dringlichkeit von
Ad-hoc-Fehlerbehebungen bestimmt. Letztendlich nutzen die Organisationen der Fall

studien die Software weniger zur direkten Kontrolle von Arbeit. So ist es den Arbeitenden
möglich, sich auf komplizierte Probleme einzulassen, sich mit der Software und fachli

chen Fragen tiefergehend zu beschäftigen und schwierigere Texte bzw. Anforderungen
und Software zu schreiben.

Die für Netzwerkarbeit typische verteilte Teilnahme hängt von der Softwarearchi

tektur ab und es ist Teil des Arbeitsprozesses der Softwaregestaltung, den softwaretech
nischen Zuschnitt der Software und damit einen Teil der Softwarearchitektur zu ver

waltet. In der Fallstudie KOOP1 entscheidet das Anforderungsmanagement für einzelne
Anforderungen, ob das IT-DL sie als Teil des Standards umsetzt. Bei INTERN2 priori

siert die Anforderungsrunde, was das EVU individuell programmiert. Dabei zeigen die
Fallstudien, dass die Architektur meist zentral vorgegeben ist (z.B. durch eine Software

firma). Zudem müssen Organisationen fähig sein, Synergien bei der Softwaregestaltung
zu erkennen und Abstimmungsprozesse zu etablieren, um darüber zu verhandeln, was
Teil einer Standardsoftware wird. So drückt sich in der jeweiligen Softwarearchitektur
in den Fallstudien der Netzwerkcharakter der Arbeit aus: Mal lässt die Architektur eine
dezentrale Gestaltung zu, mal nur eine zentrale.

324 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

9.2.2.2. Arbeit der Softwaregestaltenden
Zur soziotechnischen Netzwerkarbeit gehört auch, wie die Softwaregestaltenden arbei

ten, die zwischen Anwendung und Programmierung tätig sind (6.4.3 und 8.4). Die Fall

studien zeigen, dass hinter der Softwaregestaltung eine eigenständige Gruppe von Be

schäftigten steht und für die Transformation ihrer Arbeitskraft das Beschäftigungssys

tem, ihre individuelle Kontrolle und die Wissensverteilung entscheidend sind.

Die Führungskräfte kontrollieren die Softwaregestaltenden vor allem anhand ihrer

Ergebnisse und nur bei Auffälligkeiten. Führungskräfte kümmern sich um den Rahmen:

Sie legen je nach Fall das Budget fest, stellen Mitarbeitende ein, initiieren Projekte oder

klären Konflikte innerhalb (z.B. mit anderen Führungskräften oder Teams) oder zu an

deren Organisationen (Softwarefirma, IT-DL, EVU). Die Arbeitsbelastung der Software

gestaltenden ist sehr unterschiedlich. Manche Befragte beschreiben sie als verhandel

bar. Viele sprechen davon, dass sie intrinsisch motiviert sind. Wenn formale Hierarchien

vorhanden sind, stehen sie über den Anwendenden. Dabei prägt die Grundkoordination

die Kontrolle ihrer Arbeit: Von ihr hängt ab, ob mehr das Management (Hierarchie), die

Kundschaft (Markt) oder die Kollegenschaft (Netzwerk) kontrollieren.

Softwaregestaltende können in puncto Beschäftigungssystem für ein IT-DL oder ei

ne Softwarefirma arbeiten und für mehrere EVU tätig sein. Sie haben ein geringeres In

teresse an einer disziplinarischen Karriere. Wenn EVU anfangen, Software zu gestal

ten, gibt es teilweise neue zusätzliche Karrierewege für Softwaregestaltende (»Kompe

tenzkarriere«). Die herkömmlichen Karrieremuster als Aufstieg auf einer Leiter in einer

Hierarchie mit disziplinarischer Verantwortung gibt es weiterhin. Im Vergleich zu An

wendenden haben sie mehr (Arbeits-)Marktmacht und eigene Arbeitsmärkte. Die Orga

nisationen setzen sie flexibel ein – ob innerhalb einer Matrixorganisation oder in an

deren Organisationen. Das machen sie vor allem dann, wenn sie spezifisches Metho

denwissen haben (z.B. Scrum) oder tiefere Kenntnisse einer auch in anderen Branchen

genutzten Softwareumgebung (z.B. SAP). Es zeigt sich, was bereits im 6. Kapitel die For

schung feststellt: Sie erhalten Einfluss und ihre Position in den Organisationen, weil sie

für diese die Software-Technologie nutzbar machen (vgl. Armstrong 1985, Hohlmann

2007).

Bei der Wissensverteilung zeigen die Fallstudien, dass die Softwaregestaltenden

über sehr unterschiedliche interdisziplinäre Wissensstände verfügen. Das Spektrum

reicht von Softwaregestaltenden, die sich vor allem mit der Koordination der Software

gestaltung beschäftigen und nur noch wenig inhaltliches Wissen benötigen, bis hin zu

IT-Beratenden, die nicht nur Anforderungen aufnehmen, sondern auch gleich noch

umsetzen. Allgemein kann bei der Softwaregestaltung von einer interdisziplinären

Praxisgemeinschaft gesprochen werden. Die Praxisgemeinschaft zeigt sich zum einen

dadurch, dass jemand, der davon ausgeschlossen ist, nicht mehr Softwaregestaltung

betreiben kann und von anderen abhängt, weil ihm das Wissen fehlt. Zum anderen zeigt

sie sich dadurch, dass sich die beteiligten Personen in kontinuierlichem Austausch be

finden, um Software zu gestalten. So entstehen unterschiedliche Praxisbiografien und

damit unterschiedliche Lernbiografien für jeden einzelnen Beschäftigten. Hohlmann

(2007) hat von einem Gestaltungsnetzwerk gesprochen, welches das interdisziplinäre

Wissen hat, um die SAP-Standardsoftware über das Implementierungsprojekt hin

aus zu gestalten. In Anlehnung an Wengers Community of Practice (1999) kann diese als

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 325

Community of Practice and Software Objects bezeichnet werden. Denn für das, was die
Softwaregestaltenden wissen, sind weniger Schulungen entscheidend und vielmehr die
Praxis mit anderen und der Software. Teil der Wissensverteilung der Softwaregestal

tung sind die verwendeten, softwarebasierten Werkzeuge und die Software selbst. In
ihnen materialisiert sich das Wissen (z.B. Quellcode, Ticketsystem, E-Mails, Dokumen

tationen von Umsetzungen und Funktionalitäten). Nicht nur Personen sind Träger des
Wissens, sondern auch die Software mit dem entsprechend hinterlegten Wissen. Ob
aus digitalen Dokumenten oder der gestalteten Software selbst: Das Lernen ergibt sich
situativ in einer Praxis (Learning by Doing ist für die Befragten zentral), in der Soft

ware(-Objekte) eine wichtige Rolle spielt(en). In vielen Fallstudien sind Führungskräfte
nicht Teil der Softwaregestaltung und haben entsprechend wenig Wissen über sie oder
Softwareentwicklung im Allgemeinen.

9.2.3. Beitrag zur Debatte über die Kontrolle von Wissensarbeit

Das oben dargestellte Konzept der soziotechnischen Netzwerkarbeit stellt eine Ergän

zung zur Debatte über die Kontrolle von Wissensarbeit in zweifacher Hinsicht dar: Ers

tens, weil ein netzwerkförmiger Arbeitsprozess die zentrale Ebene der Kontrolle von Ar

beit ist. Zweitens, weil die Kontrolle allgemeine Netzwerkcharakteristika aufweist und es
netzwerktypische Unterschiede in der Kontrolle gibt und z.B. keine Unterschiede wie je

ne zwischen permissiver und direkter Kontrolle (vgl. Friedman: 1977). Rennstam spricht
von Wissens- statt Verhaltenskontrolle (vgl. Rennstam 2012: 1072). Dem ist zuzustim

men. Wobei es bei der Softwaregestaltung nicht nur um eine Kontrolle des Wissens, son

dern der Kommunikation über letztlich individuelle und konstellationsabhängige Anfor

derungen geht. Der Standardisierung und Formalisierung von Softwaregestaltung und
ihrer Koordination über Märkte und Hierarchien sind daher Grenzen gesetzt.

Der Netzwerkcharakter zeichnet sich erstens dadurch aus, dass nicht eine der Ebe

nen wie Subjekt, Betrieb oder Organisationsnetzwerk zentral für die Transformation der
Arbeitskraft ist, sondern die Ebenen zusammenwirken, um zwischen Anwendung und
Programmierung Software zu gestalten. Ein Teil der arbeitssoziologischen Forschung
rückt den Beitrag der Arbeitenden selbst in den Vordergrund, wenn es um die Kontrolle
von Arbeit geht.

»Vor dem Hintergrund erweiterter Selbstorganisationspotentiale sorgen die Beschäf
tigten selbst für die effiziente Transformation ihrer eigenen Arbeitskraft in reale Ar
beitsleistung« (Marrs 2010: 342).

Allgemein fußen neue Managementkonzepte mehr auf Autonomiespielräumen und we

niger auf Fremdkontrolle, wie es beim Taylorismus der Fall ist, der davon ausgeht, dass
Beschäftigte nicht gern und von sich aus effizient arbeiten, weshalb direkter Zwang und
Kontrolle notwendig sind. Der Extremfall dieser subjektbasierten Transformation der
Arbeitskraft ist jener des Arbeitskraftunternehmers von Voß und Pongratz (vgl. Marrs
2010: 339ff.). Die im 6. Kapitel zitierten Studien zu Produktmanagenden in Softwarefir

men nehmen schwerpunktmäßig eine einzelne Rolle in den Blick und wie diese Software
gestaltet (vgl. Bolte 2017a, Bolte 2017b, Weishaupt/Hösl 2017). Andere Forschende sehen

326 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

für Fragen der Kontrolle von IT-Arbeit den einzelnen Betrieb (vgl. Boes et al. 2018) oder

bei ausgelagerter IT-Arbeit die organisationsübergreifende Ebene als entscheidend an

(vgl. Flecker/Holtgrewe 2008, Mezihorak 2018).

Im Gegensatz dazu zeichnet die soziotechnische Netzwerkarbeit aus, dass Ablauf,

organisationale und interpersonale Beziehungen, Software und Softwaregestaltende

alle dazu beitragen, zwischen Anwendung und Programmierung Kooperation und

Kommunikation herzustellen, situativ Beschäftigte im Netzwerk einzubinden und allen

Beteiligten Spielräume für Wissensaneignung, -verarbeitung und Kommunikation zu

geben. Doch auch wenn das alle Arbeitsprozesse der Softwaregestaltung gemeinsam

haben, ist der Schwerpunkt der Kontrolle des Arbeitsprozesses der Softwaregestal

tung je soziotechnischer Konstellation anders und mal arbeiten nur Beschäftigte eines

Betriebs und mal mehrere Organisationen zusammen. Damit sieht die vorliegende Un

tersuchung die Transformation der Arbeitskraft als etwas an, das auf mehreren Ebenen

basiert, und folgt damit Sydow und Windeler (2000), Apitzsch (2006) oder Kalkowski/

Mickler (2015), für die Netzwerke ebenfalls aus mehreren Ebenen und Dimensionen

bestehen. Wobei diese Autor:innen die Ebene der Software vernachlässigen. Mit dem

Konzept der soziotechnischen Netzwerkarbeit schließt die vorliegende Forschungsar

beit Forschungslücken sowohl bei der Verbindung von Arbeitsprozess, organisatorischer

Ebene und unternehmensübergreifenden Beziehungen (vgl. Sydow/Helfen 2020: 225)

als auch bei »Zusammenhängen zwischen praktischer Kooperation, Netzwerkformen,

Nutzung von IuK-Techniken, Wissenstransfer und Arbeit« (Schmiede 2006: 466).

Neben der Debatte, welche Ebene zentral bei der Kontrolle von (IT-)Wissensarbeit

ist, gibt es zweitens eine Diskussion darüber, welche Kontrollunterschiede von Arbeit

existieren. Die im 5. Kapitel zitierte Forschung zur Softwareentwicklung sieht folgen

de Unterscheidungen: zwischen direkter und permissiver Kontrolle à la Friedman (1977)

(vgl. Feuerstein 2012); zwischen Industrialisierung der Kopfarbeit inkl. digitalem Fließ

band und autonom agierenden Scrum-Teams (vgl. Boes et al. 2018).

Diesen Unterscheidungen folgt die vorliegende Untersuchung nicht. Sie stimmt viel

mehr Autor:innen zu, die eine Gleichsetzung von Wissens- und Industriearbeit ableh

nen. Klar grenzen z.B. Andrews et al. (2005) die Arbeit in der Softwareentwicklung von

Fließbandarbeit ab, weil weder eingesetzte Methoden zur durchgehenden Standardisie

rung beitragen, noch die Abfolge der einzelnen Arbeitsschritte fest getaktet ist (vgl. ebd.:

63f.). Programmierende haben ihre Zeit selbst in der Hand und nur die Deadline ist di

rekt vom Management kontrolliert (vgl. Barrett 2005: 89). Auch in anderen stark digita

lisierten Arbeitsbereichen ist die Rede von digitaler Fließbandarbeit irreführend. Zum

Beispiel sind Microtasks bei Crowdwork nicht zeitlich in enge Prozessketten eingebun

den und zeitliche Verzögerungen von wenigen Minuten führen anders als am Fließband

nicht zur Störung des Gesamtprozesses. Im Vergleich zum klassischen Taylorismus ist

im Fall des Crowdworking eine erweiterte Autonomie bei zumeist eng begrenzten Hand

lungsspielräumen vorhanden (vgl. Menz/Nies/Sauer 2019: 193f.).

Die Forschung zur Subjektivierung von Arbeit am Beispiel des Produktmanagements

hat bereits herausgearbeitet (siehe 6.4.3.1), dass Softwaregestaltung ganz andere An

forderungen an die Kontrolle von Arbeit stellt. Softwaregestaltung lässt sich nicht im
Vorhinein genau finanziell bewerten und standardisieren wie z.B. die Zubereitung ei

nes Burgers, eine Massage, die Massenproduktion von Seife oder Hochleistungschips.

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 327

IT-Beratende oder IT-Projektleitende bei ERP-Implementierungen müssen komplexe
Aufgaben bearbeiten und vorher unbestimmbare Informationsmengen sammeln, deu

ten und integrieren. Es wird Selbstmanagement erwartet (vgl. Bläsche/Lappe 2006: 307).
Wissensarbeit ist an sich unbestimmt (vgl. Schmiede 2015: 51) und verlangt oftmals situa

tiv zu improvisieren, weshalb sie sich von formal-rational durchorganisierten Prozessen
unterscheidet (vgl. Stark 2017: 18f.). Der Typ der permissiven Kontrolle von Friedman ist
notwendig, weil Engagement, Kooperation, Kreativität und Qualifikation der Beschäf

tigten »nicht durch direkte Kontrolle mobilisiert werden« (Marrs 2010: 336) können, wie
es für Wissensarbeit typisch ist. Das Management muss die konkrete Arbeitsausführung
den Beschäftigten überlassen (vgl. ebd.). Mehrere Autoren erachten Situativität und lo

kale Praktiken als typisch für Softwareentwicklung (vgl. Friedman/Cornford 1989: 358,
Schulz-Schaeffer 1996, Wohlin/Smite/Moe 2015). Dabei ist IT keine reine Steuerungs-
und Kontrolltechnik für die Wissensarbeitenden, sondern eine Infrastruktur, die Mit

wirkung verlangt. Deshalb werden tayloristische und systemische Rationalisierungen
für Organisationen, die IT nutzen, dysfunktional (vgl. Rock/Ulrich/Witt 1990: 43). Einige
Autoren betonen die Dysfunktionalität einer Kontrolle von Softwareentwicklung, die zu
sehr auf Hierarchien oder Märkte setzt (vgl. Gregory et al. 2013, vgl. Felin/Zenger/Tomsik
2009: 557, vgl. Brusoni/Prencipe/Pavitt 2001: 610). Eine andere Studie zur Softwareent

wicklung hat festgestellt, dass es besser sein kann, die Werkzeuge den Kommunikations

wegen anzupassen und nicht, wie am Fließband, die Arbeitenden einer Maschine unter

zuordnen.

»One direct implication is that software tools and programs should be designed to
take advantage of the naturally occurring patterns of communication and work which
spontaneously come about as a result of large scale programming« (Waterson/Clegg/
Axtell 1997: 97).

Bei der soziotechnischen Netzwerkarbeit geht es nicht um die Unterscheidung von
direkter und permissiver Kontrolle, industrialisierter und nicht-industrialisierter Wis

sensarbeit. Es geht um eine netzwerkspezifische Form permissiver Kontrolle und ihre
typischen Netzwerkcharakteristika.

Was unterscheidet die soziotechnische Netzwerkarbeit von der permissiven Kontrol

le? Das zeigt sich nicht nur an jeder der oben genannten Kategorien zum Arbeitsprozess
der Softwaregestaltung (zwischen dezentral und zentral) und der Arbeit der Software

gestaltenden (zwischen Matrix- und reiner Netzwerkorganisation). Die soziotechnische
Netzwerkarbeit beruht zudem darauf, dass die Kategorien in ihrem Zusammenspiel ei

ne flexible, situative, verteilte und horizontale Kooperation und Kommunikation ermög

lichen. Rollen, Ablauf, kommunikative Beziehungen, digitale Werkzeuge und die Arbeit
der Softwaregestaltenden können situativ und flexibel kombiniert auftreten. So kann die
Kommunikation über vielfältige Kommunikationskanäle erfolgen – digital oder persön

lich. Mal gibt der Ablauf vor, wer mitarbeitet, mal entscheiden das die Softwaregestal

tenden eigenständig. Entscheidend ist die (temporäre) Praxisgemeinschaft sämtlicher
Beteiligter der Softwaregestaltung unabhängig von ihrer Team-, Abteilungs- oder Orga

nisationszugehörigkeit. In ihr stimmen sich die Beschäftigten über Erwartungen ab und
es ergeben sich die Rollen, der genaue Ablauf, das Wissen, die Beziehungen und die ver

328 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

wendeten Werkzeuge. Wer nicht Teil dieser Praxisgemeinschaft ist, hat nicht nur keine

Chance mitzugestalten, sondern auch keinen Zugriff auf das Wissen und es fehlen die

Möglichkeiten zu lernen. Das Wissen, das in ihr entsteht, zeigt netzwerktypische Eigen

schaften: Es ist soziotechnisch im Netzwerk auf Beschäftigte und Software verteilt. Da

bei ist eine gemeinsame Wissensbasis nicht garantiert. Das Wissen ergänzt sich erst in
der Zusammenarbeit und es existiert ein stetiger Austausch zwischen Anwendung und

Programmierung (8.4.3.2). Zu dieser netzwerkförmigen Praxisgemeinschaft gehört ein

Mindestmaß an horizontaler Transparenz, ein »nicht-hierarchisches Modell reziproker

Sichtbarkeit« (Schmidt 2012: 197), damit sich die Beteiligten in der Praxis untereinan

der eigenständig abstimmen können. Diese Transparenz zeichnet aus, dass sie sozio

technisch ist: Sie ist softwarebasiert aufgrund von softwarebasierten Werkzeugen wie

Ticketsystem oder Softwareentwicklungsumgebung, wo die Beteiligten einsehen kön

nen, wer was gerade bearbeitet und welchen Status eine Aufgabe hat. Sie ist aber nicht

ausschließlich softwarebasiert. Meist gehören noch Teamtreffen von Angesicht zu Ange

sicht dazu, die den Rahmen zur Ausübung von »peer group pressure« geben (vgl. Boes et

al. 2018: 187).

In den Fallstudien zeigen sich nicht nur die gerade genannten allgemeinen netz

werktypischen Eigenschaften. Es lassen sich auch konkrete Lösungen von Kooperations

herausforderungen in organisationalen Netzwerken erkennen. INTERN1 konnte einen

für seine Zwecke angepassten Scrum-Prozess über althergebrachte Abteilungsgrenzen

hinweg mit vielfältigen Methoden wie Workshops, Resonanzgruppen und Prototyping

etablieren. INTERN2 musste erst interne Konflikte zwischen Fachabteilungen lösen, um

einen abteilungsübergreifenden Ablauf einzurichten. Bei KOOP1 kooperieren mehrere

EVU und ein IT-DL. Sie haben einen ausgeklügelten Ablauf etabliert, um zu verhandeln,

was das IT-DL als gemeinsamen Standard und was die EVU individuell gestalten. Bei

KOOP2 ist die Kooperation teilweise prekär. An Stelle des gemeinsamen IT-DL überneh

men einzelne EVU die Softwaregestaltung wieder selbst – mit der Folge, dass diese dann

bei eigenen IT-Gestaltungsprojekten intern eine abteilungsübergreifende Kooperation

hinbekommen müssen. Bei KOOP3 funktioniert die Kooperation für die IoT-Software

gestaltung zwischen IT-DL, Softwarefirma und EVU so gut, dass weder Verträge noch

Hierarchien bei der Kontrolle der Arbeit eine große Rolle spielen. Die Softwarefirma aus

PAKET hat intern energiewirtschaftliche Fachleute, braucht aber trotzdem Input zu An

forderungen und das Feedback ausgewählter EVU für die Gestaltung der komplizierten,

industriespezifischen Standard-ERP-Software. STARTUP begreift sich anders als alt

hergebrachte EVU als Softwarefirma, ist von Beginn an auf die Softwaregestaltung aus

gerichtet (Primat der Softwareentwicklung) und arbeitet ohne formale Führungskräfte

in einer Mischung aus Scrum und Holokratie.

Ist ein Arbeitsprozess der Softwaregestaltung etabliert und wollen das Management

oder die Softwaregestaltenden selbst den Prozess weiter optimieren, müssen sie des

sen Eigenheiten berücksichtigen. Denn statt wie in einer (Standard-)Massenproduktion

ist jede Anforderung individuell in ihrer Ausarbeitung und Umsetzung. Methoden wie

Scrum betonen, dass es sich nicht um einen linearen, vorweg detailliert planbaren Pro

zess bis zur fertigen Software handelt, sondern um einen iterativen Prozess, im Laufe

dessen sich z.B. das Wissen über einen Anwendungsbereich einer Software ebenso wie

jenes über die Anwendenden ändert. Es muss möglich sein, immer wieder neues Wissen

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 329

in Anforderungen aufnehmen zu können und zu lernen. In den Fallstudien zeigt sich
keine Prozesstaktung, sondern vielmehr eine situative Synchronisierung von Arbeits

schritten – ob durch Zyklen wie bei Scrum oder Deadlines wie bei Projekten. Wobei die

se Synchronisierung des Handelns immer Interventionen, Feedback (z.B. durch Tests)
und Priorisierung durch (bestimmte) Beteiligte zulässt. Zwar ist es Teil der Software

gestaltung, dass die »Kooperations- und Kommunikationspraxis der Arbeitsteams […]
aufgedeckt, analysiert und optimiert« (Boes et al. 2018: 26) wird, z.B. durch Scrum Mas

ter:in oder die Projektleitung. Ein digitales Fließband ist aber in keiner der Fallstudien
zu beobachten. Es ist in den Fallstudien nicht das primäre Ziel, »selbst hochqualifizierte
Wissensarbeit systematisch und rational zu organisieren, um sie – mittels Transparenz
und Kontrolle sowie einer Kollektivierung von Wissen – plan- und wiederholbar zu ma

chen« (Boes et al. 2018: 180). Es geht darum, Kommunikation und Kooperation zu verbes

sern. Das schließt keine Standardisierung und Formalisierung aus. Allerdings nehmen
sie dann eine andere Form an, z.B. als Standardisierung der verwendeten Softwarewerk

zeuge oder Formalisierung des Scrum-Ablaufs und der Rollen. Dabei sind der Standar

disierung und Formalisierung klare Grenzen gesetzt, weil die Softwaregestaltung stark
von der Subjektivität der Beschäftigten abhängig bleibt und situatives Handeln zwischen
Anwendung und Programmierung möglich bleiben muss. Andere Optimierungen sind
zielführender. Wobei nur eine befragte Person erwähnt hat, dass ihr EVU Workshops
allein mit dem Ziel durchführt, die Kommunikation zwischen den Beschäftigten zu ver

bessern.
Statt den Begriff der Industrialisierung auf Softwaregestaltung anzuwenden, sind

andere Begriffe angebracht, um die netzwerkspezifischen Unterschiede deutlich zu ma

chen und nicht zu suggerieren, Softwaregestaltung sei industrialisierbar. Es steht außer
Frage, dass Organisationen die Möglichkeiten von Software nutzen, um zu automatisie

ren und Beschäftigte zu steuern. Aber für die Softwaregestaltung trifft es deshalb nicht
zu, dass »insbesondere in hochqualifizierten Feldern [die] sehr ausgeprägten – typischen
Freiheitsgrade der Angestellten« (Boes et al. 2018: 37) verschwinden. Die Freiheitsgrade
sind gerade die Ressource, welche die Organisationen nutzen wollen und müssen. Al

le Kategorien der soziotechnischen Netzwerkarbeit zeichnen sich dadurch aus, dass es
nicht um die direkte Kontrolle des Verhaltens geht.

Thompson/Laaser verwenden den Begriff der qualitativen Intensivierung, um zu be

schreiben, wenn Organisationen zusätzliche Fertigkeiten der Beschäftigten wie deren
implizites Wissen und Gefühle nutzen (vgl. Thompson/Laaser 2021: 145). Für die vorlie

gende Arbeit geht es bei qualitativer Intensivierung u.a. neben Beziehungsfähigkeit, Be

ziehungspflege, intrinsische Motivation, sich aktiv auf Software einzulassen und Lern

bereitschaft auch um ein Mehr an interdisziplinärem Wissen, thematisch unterschied

liche Projekte gleichzeitig zu machen, gesamte Prozesse zu verstehen bzw. in digitalen
Prozessen denken zu müssen und mehrere Kunden und deren IT-Landschaft zu kennen
(8.4.3.2). Andere Autorinnen sprechen von einer Psychologisierung der Arbeitswelt, bei
der emotionale und kommunikative Kompetenzen wichtiger werden (vgl. Illouz 2008),
und Firmen erwarten, dass Mitarbeitende ihre Gefühle instrumentell für die Dienstleis

tungsarbeit einsetzen (vgl. Hochschild 1990). Dabei geht es nicht nur darum, die subjek

tiven Potenziale überhaupt zu nutzen. Es geht auch um eine bestimmte Art und Wei

se, unter welchen Bedingungen und wie eine Form der Optimierung von Arbeit ausse

330 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

hen und konzeptualisiert werden kann, bei der diese Arbeit in einem Netzwerk aus Sub

jekt, Software, Ablauf und Organisation(en/-seinheiten) stattfindet. So fällt z.B. auf, dass

die Arbeitsbelastung der Befragten sehr unterschiedlich ist. Ist das womöglich typisch

für die Arbeit in Netzwerken: Wer sich gut verkaufen, im Netzwerk bewegen und selbst

Grenzen setzen kann, ist weniger belastet?

Es geht bei der Softwaregestaltung nicht darum, dass sich die oder der Einzelne

einem objektiven, weitgehend standardisierten und formalisierten Prozess unterwirft.

Statt entweder Netzwerkarbeit oder keine Netzwerkarbeit geht es bei der Software

gestaltung darum: Ab welchem Grad an Standardisierung und Formalisierung liegt

keine soziotechnische Netzwerkarbeit mehr vor und die Kontrolle der Arbeit über

Hierarchien und Märkte wird aus Sicht der Softwaregestaltung dysfunktional und die

Transformation der Arbeitskraft misslingt?

9.3. Zweiter Debattenbeitrag: Softwaregestaltung als Arbeit
an der digitalen Transformation

9.3.1. Teil der digitalen Transformation: soziotechnische Arbeitsgestaltung
der Softwareanwendung durch die Softwaregestaltung

Die Softwaregestaltung betrifft nicht nur die Softwaregestaltenden selbst (ob sie in ei

ner Matrix- oder einer Netzwerkorganisation arbeiten). Sie hat je nach soziotechnischer

Konstellation sowohl Folgen für die Software als auch für die anwendende Organisati

on. Anders als z.B. bei der Einführung eines ERP-Systems geht es nicht um die Folgen

einer fertigen Standardsoftware und deren Anpassung (6.5.4). Es geht um die Folgen des

Arbeitsprozesses der Softwaregestaltung. Wie Organisationen seine Möglichkeiten aus

schöpfen, hängt von seinem Verhältnis zur Softwareanwendung ab. Besteht das Verhält

nis in der reinen Zulieferung einer Software, dann sind beide Arbeitsprozesse getrennt

voneinander (z.B. in einer Softwarefirma und einem EVU). Beim Primat der Software

entwicklung bildet der Arbeitsprozess der Softwaregestaltung als Teil der Softwareent

wicklung den Kern der anwendenden Organisation. Der Arbeitsprozess der Software

anwendung organisiert sich um die stetig weiterentwickelte Software herum. Die vor

liegende Studie befasst sich mit den Folgen für die Softwareanwendung, die sich aus der

Softwaregestaltung ergeben, indem sie das Verhältnis von Softwaregestaltung zur Soft

wareanwendung betrachtet. Sie bezeichnet dieses Verhältnis mit dem Begriff der sozio

technischen Arbeitsgestaltung der Softwareanwendung.

Die Untersuchung nutzt zwei Kategorien, um in den Fallstudien die soziotechni

sche Arbeitsgestaltung der Softwareanwendung zu analysieren: den Einfluss beider Ar

beitsprozesse aufeinander und die Konflikte zwischen ihnen. Beide Kategorien führt der

nächste Punkt 9.3.2 näher aus.

Dabei zeigen die Fallstudien, dass Betriebsräte innerhalb der EVU die soziotechni

sche Arbeitsgestaltung mitbestimmen, indem sie intervenieren, aber nicht inhaltlich ge

stalten. Sie spielen bei Fragen der Partizipation insofern eine Rolle, als sie Rahmenbe

dingungen mitgestalten und weniger die Software selbst. So prägen sie die Partizipati

on z.B., wenn ein Betriebsrat einfordert, dass die Softwaregestaltung Anwendende via

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 331

Workshops einbezieht. Das Management fällt strategische Entscheidungen, gibt Ziele
vor, stellt Ressourcen zur Verfügung und bringt teilweise eigene Anforderungen ein.

Bevor das Schlusskapitel den Beitrag der Softwaregestaltung zur Debatte über die
digitale Transformation diskutiert, sollen vier Idealtypen verdeutlichen, welchen Unter

schied die Softwaregestaltung machen kann.

9.3.2. Zwischen unabhängiger und abhängiger soziotechnischer Arbeitsgestaltung

Die vier im Folgenden vorgestellten Idealtypen verdeutlichen die Unterschiede der
soziotechnischen Arbeitsgestaltung, die davon abhängen, wie Organisationen eines
der Kernprobleme der Softwaregestaltung lösen: jenes der softwaretechnischen Gestal

tungsmöglichkeiten. Richten sie sich organisatorisch nur auf die Softwareanwendung
aus oder (auch) auf die Softwaregestaltung? Gestalten sie eine Individual- oder eine
Standardsoftware? Bei den Typen INTERN und PROPRIETÄRER STANDARD sind
die anwendenden Organisationen unabhängig in ihrer Arbeitsgestaltung, weil sie die
Softwaregestaltung selbst in der Hand haben. Bei den Typen STANDARDPAKET und
WERKVERTRAG sind sie hingegen abhängig von anderen Organisationen wie Soft

warefirmen oder IT-DL (8.6.1.3.). Hier sind nur zwei Typen ausführlich mit sämtlichen
Kategorien und Unterkategorien dargestellt, um die Unterschiede zwischen abhängi

ger und unabhängiger soziotechnischer Arbeitsgestaltung der Softwareanwendung zu
verdeutlichen.

Beim Typ STANDARDPAKET entwickelt eine Organisation (wie z.B. in der Fallstu

die PAKET) eine industriespezifische Standardlösung, die sie verkauft. Die anwenden

den EVU sind von dieser Organisation (z.B. einer Softwarefirma) abhängig, was die so

ziotechnische Arbeitsgestaltung anbelangt. Warum? Das liegt am Einfluss, der sich an

hand von vier Kategorien beschreiben lässt: Aufgrund des Kontrollverhältnisses der Ar

beitsprozesse von Softwaregestaltung und -anwendung zueinander können die EVU nur
die Anwendung der industriespezifischen Standardlösung kontrollieren, nicht aber die
Softwaregestaltung des Standards. Sie können den Standard nur in den vorgegebenen
Möglichkeiten anpassen (z.B. durch Einstellungen). Zudem partizipieren vorwiegend
Fachexpert:innen und gestalten z.B. über Arbeitskreise oder einzelne Projekte mit. So
können die EVU nur den Arbeitsprozess der Softwareanwendung reorganisieren. Zu

letzt hat die Softwarefirma des Standardpakets das letzte Wort bei Entscheidungen über
die Ziele der Softwaregestaltung. Das betrifft zum Beispiel Entscheidungen darüber, was
in den Standard kommt und ob sie individuellen Wünschen einzelner EVU entgegen

kommt. Die Abhängigkeit der EVU bei der soziotechnischen Arbeitsgestaltung zeigt sich
auch an den Konflikten. Es sind externe Konflikte mit der Softwarefirma und die EVU
können diese daher nicht unabhängig von ihr lösen, z.B. wenn es um die inhaltliche Ge

staltung der Standardsoftware geht.
Beim Typ INTERN entwickeln EVU eine industriespezifische Software, was ihnen

eine unabhängige Arbeitsgestaltung der Anwendung ermöglicht (wie z.B. die Fallstu

dien INTERN1 und INTERN2). Die EVU haben Einfluss auf beide Arbeitsprozesse von
Softwaregestaltung und Softwareanwendung. Sie können die Ziele der Softwaregestal

tung selbst bestimmen und auf die eigenen Bedarfe ausrichten. Zu einer solchen Aus

richtung kann gehören, dass sämtliche Anwendenden unterschiedlicher Fachbereiche

332 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

partizipieren. Das Kontrollverhältnis ist so, dass die Softwaregestaltung die Software

anwendung für ihre Zwecke kontrollieren kann. Die Softwaregestaltung entscheidet, ob

sie Führungskräfte der Anwendung mitgestalten lässt und welche Anforderungen die

Programmierenden umsetzen. Die beiden Arbeitsprozesse von Softwaregestaltung und

-anwendung kann das EVU im Sinne der Softwaregestaltung reorganisieren und z.B.

Team- und Abteilungssilos auflösen und ein integriertes Prozessteam für die Software

gestaltung schaffen. Die Konflikte sind rein intern in der Organisation, z.B. zwischen

Fachbereichen oder mit dem Betriebsrat. Deshalb kann das EVU diese eigenständig lö

sen.

Beim Typ PROPRIETÄRER STANDARD schöpft eine Organisation die Möglichkei

ten der Softwaregestaltung maximal aus. Sie gestaltet für die eigenen Zwecke eine indi

viduelle Software, wobei die Softwareanwendung abhängig von der Softwaregestaltung

und der entwickelten Software organisiert ist. Zusätzlich verdienen Organisationen die

ses Typs mit dem Verkauf der Software auch noch Geld, indem sie andere Organisatio

nen als Standardsoftware anwenden. Dieser Typ trifft auf einen Teil der in der Fallstudie

STARTUP gestalteten Software zu.

Beim Typ WERKVERTRAG wird eine individuelle, industriespezifische Software

durch eine Softwarefirma oder einen IT-DL im Auftrag eines EVU gestaltet. Dem Typ

entsprechen KOOP1 und KOOP2 zum Teil, und zwar dann, wenn das IT-DL für ein

EVU eine individuelle Software gestaltet. Wobei dies dann im Rahmen der bestehenden

Kooperation geschieht und die Interviews zu diesem Fall darauf schließen lassen, dass

das EVU dann zumindest mitgestaltet und nicht nur eine Beauftragung macht, wie es

für einen reinen Werkvertrag typisch wäre.

9.3.3. Beitrag zur Debatte über die digitale Transformation

Indem Softwaregestaltung die Arbeit der Softwareanwendung prägt, ist sie ein Teil des

soziotechnischen Wandels der Arbeitswelt. Dieser wird derzeit unter dem Begriff der

digitalen Transformation diskutiert, hinter dem sich laut Pfeiffer und Schrape (2023)

aus arbeits- und industriesoziologischer Perspektive allerdings keine allgemeine Theo

rie verbirgt. Sie nennen drei Ansätze, die versuchen, die digitale Transformation theore

tisch zu fassen. Zweien davon ist die vorliegende Untersuchung in ihrer grundlegenden

Ausrichtung gefolgt, indem sie wie Apitzsch et al. (2021) die Arbeit an der Digitalisie

rung in konkreten Arbeitswelten erforscht und wie Hirsch-Kreinsen (2020) von einer in

krementellen Digitalisierung ausgeht (6.5.3). Warum das Schlusskapitel den dritten von

Pfeiffer und Schrape genannten Ansatz hier nicht weiter diskutiert, erläutert 9.3.3.2 wei

ter unten. Unabhängig vom Ansatz benennen Pfeiffer und Schrape als Forschungslücke,

wie die konkrete Gestaltung der digitalen Transformation abläuft (2023: 137). Die vor

hergehenden Kapitel haben sich damit befasst. Die folgenden Seiten erläutern, was die

vorliegende Studie von den beiden oben genannten Ansätzen unterscheidet und welche

Gemeinsamkeiten bei der Analyse der Gestaltung und des Verlaufs der digitalen Trans

formation bestehen.

Dabei sei vorweg darauf hingewiesen, dass anders als bei Hirsch-Kreinsen (2020)

und Apitzsch et al. (2021) die vorliegende Untersuchung über soziotechnischen Wan

del bzw. die digitale Transformation durch Softwaregestaltung gleichzeitig eine Unter

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 333

suchung über Softwareentwicklung ist. Bei industriespezifischer Software ist die Tech

nikgestaltung nicht mehr von der Gestaltung von Arbeit und Organisation zu trennen,
weil die Folgen der Technikgestaltung für die anwendende Organisation so gravierend
sind und davon abhängen, welche Möglichkeiten Organisationen bei der Softwaregestal

tung nutzen. Einerseits lässt sich ein Teil des Wandels der Energiewirtschaft als sozio

technischer Wandel durch Softwareentwicklung beschreiben (z.B. durch ihre Akteur:in

nen, Methoden und Wissensbestände). Indem Softwareentwicklung ein Teil von (bisher)
Nicht-IT-Branchen und -Firmen wird, prägt sie deren Organisation und Arbeitsweise.
Andererseits zeigen die Fallstudien wie auch das Konzept der soziotechnischen Netz

werkarbeit, dass industriespezifische Softwaregestaltung und damit industriespezifi

sche Softwareentwicklung ein soziologisches Problem sind. Die Analyse der Softwarege

staltung in der Energiewirtschaft und der Zusammenhänge zwischen soziotechnischer
Konstellation, Arbeitsprozess der Softwaregestaltung, Arbeit der Softwaregestaltenden
und soziotechnischer Arbeitsgestaltung der Softwareanwendung ist zugleich ein Beitrag
zum besseren Verständnis von industriespezifischer Softwareentwicklung.

9.3.3.1. Gestaltung – zwischen dezentral und zentral, zwischen Standard-
und Individualsoftware

Bei der Gestaltung der digitalen Transformation rückt Hirsch-Kreinsen die betrieb

liche Ebene in den Vordergrund und dass die Betriebe ganz unterschiedliche Wege
einschlagen können, was er anhand von drei Typen zeigt (weitreichende Digitalisierer,
selektive Digitalisierer, skeptische Unternehmen) (vgl. Hirsch-Kreinsen 2020: 43). Wie
auch Apitzsch et al. vertritt er keinen Technikdeterminismus und sieht Betriebe als ein
soziotechnisches System aus Technik, Mensch und Organisation an (vgl. ebd.: 88). Für
Apitzsch et al. (2021) hängt die Gestaltung von mehreren Ebenen ab (Betrieb, Arbeits

prozess, Subjekt, organisationales Feld, Arbeitsbeziehungen, Recht). Womit sie anders
als Hirsch-Kreinsen die überbetriebliche Ebene in den Fokus rücken. Sie konstatieren,
dass Betriebe Gestaltungsspielräume von IT nicht nutzen, weil »prozessferne Akteure
(zentrale Planungsbereiche oder externe Technikanbieter) eine dominante Rolle spielen«
(ebd.: 27). Die Partizipation betrifft »oftmals […] die reine Implementation einer bereits
vorgegebenen Technik und hängt jedenfalls stark von den vorhandenen betrieblichen
Partizipationskulturen ab« (ebd.).

Die vorliegende Untersuchung betont, dass auch die Entwicklung von Software kein
technikdeterministischer, sondern ein soziotechnischer Gestaltungsprozess ist. Zudem
ist in den Fallstudien der Betrieb eine wichtige Ebene der Gestaltung und es bestehen
große Unterschiede zwischen den EVU, wie sie die Möglichkeiten der Softwaregestal

tung nutzen. Wie die Fallstudien zeigen, kann ein dezentraler Arbeitsprozess der Soft

waregestaltung in einem EVU auch nur aus wenigen Beschäftigten bestehen, die für ei

nen Anwendungsbereich eine Software gestalten. Damit ergeben sich vielfältige Gestal

tungsmöglichkeiten innerhalb eines Betriebs. Aber wie bei Apitzsch et al. (2021) spielt bei
der Mehrzahl der Fallstudien bei der Softwaregestaltung die überbetriebliche Ebene ei

ne Rolle. So gestalten in der Fallstudie KOOP1 mehrere EVU kooperativ einen Standard,
und auch individuelle Programmierungen für einzelne EVU erledigt zum Teil das IT-DL.
Solch ein zentralisierter Arbeitsprozess der Softwaregestaltung verlangt allerdings Kom

promisse, denen sich die einzelnen Betriebe fügen müssen.

334 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Apitzsch et al. (2021) ist insofern recht zu geben, als dass die EVU oftmals eine

vorgegebene Technik in Form einer Standardsoftware einsetzen und häufig externe

technikanbietende Unternehmen wie Softwarefirmen über die Gestaltung entscheiden.

Allerdings erlaubt es der Fokus auf den Arbeitsprozess der Softwaregestaltung, die

vielfältigen Formen der Softwaregestaltung und damit der Gestaltungsmöglichkeiten in
den Blick zu nehmen. So zeigen die Fallstudien die typischen Muster einer Gestaltung

durch soziotechnische Netzwerkarbeit: Gleichzeitigkeit und Wechsel zwischen Zentra

lisierung und Dezentralisierung, zwischen Individual- und Standardsoftware, zwischen

einer rein anwendenden Organisation und einer (mit)gestaltenden Organisation. Zu

dem ist die Partizipation an der Softwaregestaltung in einem Netzwerk verteilt, bei dem

Anwendende, Betriebsrat und Management unterschiedlich stark beteiligt sind.

Es wirken nur ausgewählte EVU an der Gestaltung der industriespezifischen ERP-
Software der Fallstudie PAKET mit. Die Vielzahl der anwendenden EVU hat sehr gerin

gen Einfluss auf die Softwaregestaltung. Es zeigen sich Unterschiede, wie EVU die Ein

stellungsmöglichkeiten am Standard nutzen und sich die anwendenden Organisationen

an der Standardlösung ausrichten. In den Fallstudien, die SAP einsetzen, zeigt sich bei

des: Anwendung eines Standards und dessen individuelle Gestaltung und damit sowohl

eine Abhängigkeit und Unabhängigkeit bei der Arbeitsgestaltung der Softwareanwen

dung. In den Fällen INTERN1 und INTERN2 nehmen die EVU weitreichende Erweite

rungen oder Anpassungen des SAP-Standards selbst vor. Auch in den EVU der Fallstu

dien KOOP1 und KOOP2 können einzelne Teams eigenständig Software gestalten. Vor

allem KOOP1 zeigt die Dynamik innerhalb von EVU, dezentral Rollen und Abläufe für die

Softwaregestaltung auf- und abzubauen, Key User:innen als permanent Softwaregestal

tende und/oder flexible Softwaregestaltende wie IT-Beratende einzusetzen. Auch wenn

die vorliegende Untersuchung nicht sämtliche Arbeitsprozesse der Softwaregestaltung

der EVU ausleuchten konnte, entsteht doch vor allem bei jenen Fallstudien, für die viele

Interviews vorliegen (KOOP1, KOOP2), der Eindruck, dass die EVU an allen Ecken und

Enden Software im größeren und kleineren Umfang gestalten. Das liegt auch daran, wie

der Fall KOOP3 zeigt, dass kleinere Entwicklungen nicht aufwendig sind. In der Fall

studie erlaubt es die modulare IoT-Softwarelösung, dass sowohl EVU wie IT-DL selbst

gestaltete und programmierte Module anschließen. Ein EVU von KOOP2 etabliert ei

ne eigene, kleine Entwicklungsplattform, um kleinere Anwendungen dezentral in un

terschiedlichen Fachbereichen entwickeln zu können.

Neben diesen typischen Mustern zwischen Zentralisierung und Dezentralisierung

und Individual- und Standardsoftware zeigen sich große Unterschiede, ob EVU rein

anwendende Organisationen sind oder auch mitgestalten. In den Fallstudien sind es

die größeren EVU, die eher Ressourcen dafür haben, um selbst Software und damit die

eigene Arbeit zu gestalten. EVU und IT-DL aus vier Fallstudien (INTERN1, INTERN2,

KOOP1, KOOP2) nutzen die Entwicklungsplattform von SAP, die ermöglicht, dass

Unternehmen die ERP-Standardsoftware individuell anpassen und erweitern. Kleine

EVU fokussieren sich auf die reine Anwendung. Sie sind wie bei PAKET abhängig von

Softwarefirmen, die keine Entwicklungsplattform zur Verfügung stellen, wodurch die

EVU nur Einstellungen vornehmen können – wofür sie teilweise gar nicht die Kapazi

täten haben. Dabei kann die Gestaltung einer industriespezifischen Software und die

Abhängigkeit von der Softwarelieferfirma so weit gehen, dass eine industriespezifische

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 335

Anwendungsplattform auf Basis einer Standardsoftware entsteht, die die EVU nutzen.
Zwei Befragte sprechen davon, dass das IT-DL bzw. das Softwareunternehmen Stadt

werke »spielen« (so ein Befragter) können und dies auch tun. Sie trennt von einem EVU
nur noch, dass sie Netze besitzen oder Verträge mit Endkunden haben. Die Software,
um die notwendigen industriespezifischen Prozesse abzuwickeln, haben sie. Ein Bei

spiel dafür ist die Standard-ERP-Software, die das IT-DL von KOOP1 für mehrere EVU
betreibt und gestaltet. Das IT-DL übernimmt alle Anpassungen durch Einstellungen
an der Standardsoftware oder die Programmierung von Erweiterungen. Ein anderes
Beispiel ist die Zusammenarbeit zwischen einer Softwarefirma und einem EVU in der
PAKET-Fallstudie. Das EVU betreibt den von der Softwarefirma entwickelten industrie

spezifischen Standard mit entsprechenden Standardeinstellungen auf einem Server. In
beiden Fällen bieten IT-DL bzw. Softwarefirma an, einzelne Prozesse via BPO für EVU
zu übernehmen, d.h. nicht nur die (fertig eingestellte) industriespezifische Software
direkt nutzbar zur Verfügung zu stellen, sondern auch ihren Betrieb zu verantworten
und die Anwendenden zur Verfügung zu stellen, die die Software bedienen.

Der Fokus auf den Arbeitsprozess der Softwaregestaltung lässt es zu, in jeder Fallstu

die zu untersuchen, inwiefern Anwendende in ihn eingebunden sind. Eine direkte Parti

zipation der Anwendenden findet in den Fallstudien allerdings nur punktuell und meist
vermittelt z.B. über Key User:innen oder Anforderungsmanagende statt. Oftmals schrei

ben fachliche Expert:innen Anforderungen, welche die Software selbst gar nicht anwen

den. So bewegt sich die Softwaregestaltung in den Fallstudien zwischen einer repräsen

tativen Technokratie und einer kapitalistischen Technokratie (Näheres zu diesen Parti

zipationstypen unter 8.5.3.3). Vielmehr gehören die Softwaregestaltenden zur Gruppe
der Höherqualifizierten, die die Arbeit der Anwendenden gestalten und in den betriebli

chen Hierarchien höhergestellt sind. Die Mehrzahl der Anwendenden sind das Objekt
der Softwaregestaltung und müssen mit ihren Ergebnissen leben. So zeigen die Fall

studien, dass meistens die Grundstruktur der Technikgestaltung bleibt: Einige wenige
gestalten die Arbeit vieler. Das zeigt sich vor allem dann, wenn die Softwaregestaltung
außerhalb der anwendenden Organisation stattfindet. Ein Extremfall ist eine Cloud-An

wendung, auf deren Gestaltung der befragte Anwender und sein EVU gar keinen Einfluss
haben (EVU von KOOP2). In einem anderen Fall ist der Anwender fast ein Jahr aufgrund
von Burnout ausgefallen (EVU von PAKET), weil über einen längeren Zeitraum eine Kom

bination aus Termindruck durch die Regulierung und stetigen Updates der extern ent

wickelten Standardsoftware bestand. In beiden Fällen fungieren Anwendende als Puffer.
Sie sind zwar abhängig von einer funktionierenden Software, haben aber ihre Gestaltung
nicht in der Hand und müssen fehlerhafte oder nicht fertige Software durch ihre Ar

beit kompensieren. Eine im 6. Kapitel (6.5.4) zitierte Studie kommt zu dem Schluss, dass
nach einer ERP-Implementierung die Anwendenden mit einer nicht passenden Software
zurechtkommen mussten:

»In short, users were left to pick up the pieces after a so called ›successful‹ implemen

tation.« (Lyytinen/Newman 2015: 90)

Ob dies bei Standardsoftware oder Cloud-Lösungen häufiger vorkommt und unter wel

chen Bedingungen Anwendende als eine Art Puffer fungieren müssen, wäre noch weiter

336 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

zu untersuchen. Aber selbst bei den Fallstudien, bei denen die anwendende Organisation

eine eigene individuelle Software gestaltet, ist eine direkte Partizipation der Anwenden

den und eine Umsetzung ihrer Anforderungen nicht garantiert. STARTUP gestaltet zwar

unabhängig die eigene Software, bezieht die Anwendenden aber nur ein, um eine fertige

Umsetzung zu testen oder Feedback zu ihr zu geben.

Ob die interne Gestaltung von Software mit den Partizipationskulturen zusammen

hängt, wie Apitzsch et al. (2021) schreiben, kann die vorliegende Untersuchung nur da

hingehend stützen, dass der Betriebsrat zwar keinen direkten Input zur Softwaregestal

tung liefert, aber bei INTERN1 explizit die Beteiligung der Anwendenden angefordert

hat. Sonst interveniert er vor allem, um eine individuelle Leistungskontrolle zu verhin

dern (8.5.3.2). Software zu gestalten, um die »Potenziale einer qualifikationsorientierten

Gestaltung der Arbeit bestmöglich auszuschöpfen« (Hirsch-Kreinsen 2020: 88), kam in
keiner der Fallstudien vor. Es wäre zu untersuchen, wie so ein Prozess der Softwarege

staltung aussehen und unter welchen Bedingungen ihn ein EVU etablieren würde.

Grundsätzlich ist Hirsch-Kreinsen (2020) zuzustimmen, wenn er von »widersprüch

lichen Perspektiven für das untere und mittlere Management« (77) schreibt und davon,

dass es neue Aufgaben für das Management gibt, weil IT- und Produktionskompetenz

in manchen Managementpositionen verschmelzen (vgl. ebd.: 78). Der Blick auf die so

ziotechnische Arbeitsgestaltung durch die Softwaregestaltung zeigt, dass nicht das Ma

nagement die Technik- und Arbeitsgestaltung und damit die Rationalisierung in den Or

ganisationen allein betreibt (8.6.4). Die Führungskräfte – falls vorhanden – sind Rah

mengeber und nur teilweise direkt involviert. Sie haben die Kontrolle über finanzielle

und personale Ressourcen, fällen strategische Entscheidungen, setzen Ziele und kontrol

lieren Ergebnisse. Sie entscheiden über betriebsinterne Karrieren – egal ob von Personen

der Softwareanwendung, -gestaltung und -programmierung. Sonst unterscheidet sich

von Fall zu Fall, welche Rolle das Management und bestimmte Führungsebenen spielen:

ob sie ein Hindernis für die Softwaregestaltung sind oder diese selbst vorantreiben und

entsprechendes Wissen dazu haben. Wenn die Softwaregestaltung mehrere Abteilungen

und Teams betrifft, hängen die Softwaregestaltenden in einer Matrixorganisation davon

ab, dass die Führungskräfte die Softwaregestaltung unterstützen. Wenn die Softwarege

staltenden hierarchisch nicht höhergestellt sind, hängt es von der Kooperationsbereit

schaft anderer Führungskräfte ab, wie viel Einfluss der Arbeitsprozess der Softwarege

staltung auf die Softwareanwendung innerhalb eines EVU hat. Die Anforderungsrunde

von INTERN2 hat z.B. erst funktioniert, als die Fachbereiche kooperationswillig waren.

Basiert eine Firma auf einer Netzwerkorganisation mit flachen Hierarchien, sind Tei

le des Managements überflüssig. Lagert ein EVU die Softwaregestaltung komplett aus,

muss sich das Management zwar nicht mehr um die Kontrolle dieser Arbeit kümmern.

Es ist dafür aber von externen Softwarefirmen abhängig. Es ist offen, inwiefern Soft

waregestaltende Teil des Managements werden. Wenn nicht nur die informationsver

mittelnde Funktion des mittleren Managements durch Softwarelösungen wie ERP-Sys

teme entfällt (Hohlmann 2007: 365f.), sondern auch die der disziplinarischen Führung

bei Netzwerkarbeit und Teile der Arbeitsgestaltung zur (externen) Softwaregestaltung

wandern: Welche Hierarchien und welches Management brauchen anwendende Orga

nisationen dann überhaupt? Zudem wäre noch zu vertiefen, aus welchen Gründen sich

das Management für welche Strategie entscheidet und inwiefern und welche EVU bei der

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 337

Softwaregestaltung abhängig sind. Denn der Markt für industriespezifische Software
ist groß (7.2.1.1). Die EVU können auch einzelne, industriespezifische Module von un

terschiedlichen Softwareherstellern beziehen und so ist deren Marktmacht beschränkt.
Andererseits wird es gerade jenen EVU schwerfallen, das softwarezuliefernde Unterneh

men zu wechseln, die viel in die individuelle Anpassung und Erweiterung von z.B. SAP
investiert haben.

9.3.3.2. Verlauf – die Möglichkeiten der Softwaregestaltung ausreizen
Was den Verlauf der digitalen Transformation anbelangt, grenzen sich Hirsch-Kreinsen
(2020) und Apitzsch et al. (2021) von Ansätzen ab, die allgemein einen disruptiven Wandel
beobachten. Dabei befasst sich Hirsch-Kreinsen mit industrieller Arbeit, bei der er eine
inkrementelle Optimierung gegebener Prozesse und eine Pfadabhängigkeit ausmacht.
Die Betriebe setzen bei eingespielten Arbeitspraktiken und vorhandenen Qualifikatio

nen an, um in kleinen Schritten die Produktion durch den Einsatz von digitaler Technik
zu verbessern (vgl. Hirsch-Kreinsen 2020: 40ff.). Auch Apitzsch et al. machen eine Pfad

abhängigkeit aus, wobei sie branchenunabhängig eine strukturierte Vielfalt, Ungleich

heiten, Widersprüche und eine plurale Digitalisierung wahrnehmen (vgl. Apitzsch et al.
2021: 20f.).

Auch in den Fallstudien der vorliegenden Untersuchung zeigen sich ein inkre

menteller Wandel und Pfadabhängigkeiten. Anders als Hirsch-Kreinsen (2020) und
Apitzsch et al. (2021) fokussiert sie aber den konkreten Arbeitsprozess der Softwarege

staltung, der den soziotechnischen Wandel vorantreibt. So wird eine besondere Form
einer technikentwicklungsbezogenen Rationalisierung sichtbar und dass der Verlauf
der digitalen Transformation auch davon abhängt, inwieweit Organisationen die Mög

lichkeiten der Softwaregestaltung ausreizen. Damit erklärt das Zusammenspiel von
Arbeit, Organisation, Software und Softwaregestaltung, wie die digitale Transforma

tion verläuft. Gestalten EVU nicht nur eine Software (mit), sondern ändern auch ihre
Organisation, um die Softwaregestaltung zu optimieren? Wo liegen die Grenzen des
Einsatzes von Software in einem Anwendungsbereich und inwieweit kann der Verlauf
der Softwaregestaltung disruptive Veränderungen erklären? Setzen sich EVUs mit Indi

vidualsoftware in der Branche durch oder Softwareunternehmen bzw. IT-DL mit einer
Standardanwendungsplattform? Im Folgenden werden diese Fragen zusammenfassend
beantwortet.

Softwaregestaltung ist ein inkrementeller Wandel in Form einer technikentwick
lungsbezogenen Rationalisierung von Software und ihres Anwendungsbereichs (8.6.3).
Organisationen der Branche setzen das Mittel der Softwaregestaltung und -program

mierung für die eigenen Zwecke ein. Besonderes Kennzeichen dieses Rationalisierungs

typs ist der Fokus auf die Arbeitsteilung zwischen Softwareanwendung, -gestaltung und
-programmierung, stetiges Abgleichen branchenspezifischer Bedarfe mit software

technischen Möglichkeiten und die Dynamiken zwischen zentraler und dezentraler
Softwaregestaltung. Organisationen prüfen ausgehend von ihrem Status quo, ob in ei

nem Anwendungsbereich ein Standard oder eine individuelle Gestaltung zielführender
ist, ob sie sich auf die Kontrolle der Anwendung einer Software konzentriert oder auch
die Kontrolle des Arbeitsprozesses der Gestaltung übernimmt. Stetig ist abzuwägen
zwischen niedrigen Kosten und ausgelagerter Softwaregestaltung für einen (automa

338 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

tisierten) Standardsoftwareprozess – mit den entsprechenden Nachteilen, dass so z.B.

nur begrenzt eine individuelle Prozessgestaltung möglich ist. Gleichzeitig ist eine Stan

dardsoftware in Bereichen, in denen die Software keine Wettbewerbsvorteile bringt,

zielführender und vor allem für jene EVU die bessere Wahl, die sich mit der internen

Kontrolle der Softwaregestaltung schwertun. Zu einer individuellen Softwaregestaltung

in der eigenen Organisation müssen EVU fähig sein und die entsprechenden Methoden

und Beschäftigten organisieren können: sei es IT-Projekte durchzuführen, Scrum-

Teams aufzubauen und Product Owner:innen oder Anforderungsmanagende einzustel

len und mit Programmierenden zusammenzuarbeiten. Wie die Fallstudien zeigen, kann

ein EVU unterschiedliche Entscheidungen für die vielzähligen Anwendungsbereiche

treffen und jeweils mal eine industriespezifische Standardsoftware einsetzen und mal

eine individuell gestalten.

Neben diesem kontinuierlichen Prozess, die Möglichkeiten der Softwaregestaltung

zu prüfen, zeigen die Fallstudien, dass der Verlauf der digitalen Transformation davon

geprägt ist, dass die EVU die Möglichkeiten der Softwaregestaltung unterschiedlich aus

schöpfen. Allgemein verändern sich die EVU in den Fallstudien iterativ von ihrem Status

quo aus. Wenige EVU ändern sowohl die Software als auch ihre Organisation und z.B.

die Teamgrenzen, um die prozessübergreifende, interdisziplinäre Zusammenarbeit für

die Softwaregestaltung zu verbessern. Die anwendenden Organisationen behalten ih

re alten Strukturen aus Abteilungen und Hierarchien bei und etablieren die Software

gestaltung quer dazu, so dass eine Matrixorganisation entsteht. Teils nutzen die Orga

nisationen neuste digitale Werkzeuge, teilweise aber unterschiedliche Ticketsysteme je
Abteilung oder nur Excel und E-Mails für die Softwaregestaltung. Organisatorisch hat

nur INTERN1 die Anwendung reorganisiert und die Hierarchieebene der Meister:innen

abgeschafft – und dass nicht für den Arbeitsprozess der Softwaregestaltung, sondern

aufgrund der neu entwickelten Software. INTERN2 denkt über eine Reorganisation hin

zu einer Prozessorganisation nach, die keine Abteilungs- und Teamgrenzen mehr kennt

und einen Vorteil für den Arbeitsprozess der Softwaregestaltung bietet. Wie der Wandel

von INTERN2 aussehen könnte, wenn z.B. Team-Silos aufgelöst sind und es nur noch

Führungskräfte auf der Ebene des digitalen Gesamtprozesses gibt, zeigt das Beispiel

einer auf Softwaregestaltung ausgerichteten softwaretechnischen Prozessorganisation

(8.5.3). Bei EVU2 von KOOP2 fällt auf, wie sehr die alten Strukturen bestehen bleiben

und die Arbeitsprozesse der Softwaregestaltung sich in diese einfügen müssen. Einige

EVU von PAKET richten sich organisatorisch weniger an Abteilungen und Teams aus und

mehr an übergreifenden Prozessen, z.B. indem sie übergreifende Projekte durchführen

oder übergreifend die ERP-Software einstellen. Diese EVU haben aber, was die Stan

dardsoftware anbelangt, wenige Einflussmöglichkeiten auf die Softwaregestaltung. Un

ternehmen wie STARTUP, die den Primat der Softwareentwicklung leben und sich von

Anfang an als softwarebasierte Unternehmung begreifen, haben bei der Softwaregestal

tung einen Vorteil gegenüber all jenen, die noch an althergebrachten Strukturen festhal

ten.

Die Firmen reizen die Möglichkeiten der Verwendung von Software je nach Anwen

dungsbereich unterschiedlich aus. Denn neben dem Verhältnis der beiden Arbeitspro

zesse zueinander ist der Anteil der Datenverarbeitung im Anwendungsbereich entschei

dend dafür, was die Softwaregestaltung überhaupt leisten kann und wie weit die digitale

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 339

Transformation geht. Kann die Arbeit weitgehend in Software abgebildet werden, dann
ist eine weitgehende Automatisierung möglich und die Anwendenden bearbeiten vor

wiegend (noch) nicht automatisierbare Restfälle. Ist die eigentliche Arbeit im Anwen

dungsbereich nicht digitalisierbar, geht es um automatisierte Steuerung von Arbeits

kräften, deren Arbeit Software nicht erledigen kann. Dann werden die Anwendenden Teil
eines digitalen Prozesses, der ihre Arbeit steuert, aber nicht ersetzt. In den Fallstudien
liegt der Schwerpunkt auf Anwendungen, in denen nur Daten verarbeitet werden oder
die Arbeit gesteuert wird, also nicht wie bei Hirsch-Kreinsen (2020) auf dem Einsatz in
der Industrie zur Steuerung von Maschinen. Die Grenzen der Softwaregestaltung in ei

nem Anwendungsbereich liegen in den Fallstudien darin, dass Organisationen häufig
Software nur für einen Teil eines Prozesses gestalten. Andere Teile des Prozesses sind in
der Verantwortung anderer Teams oder Firmen. Somit hängt die Durchschlagskraft der
Softwaregestaltung auch davon ab, ob ein gesamter Arbeitsprozess der Anwendung un

ter ihrer Kontrolle ist oder nicht. Womit wir wieder beim Verhältnis der beiden Prozesse
zueinander wären.

Kann der Arbeitsprozess der Softwaregestaltung auch einen disruptiven Verlauf der
digitalen Transformation erklären? Für das Unternehmen aus der Fallstudie STARTUP
ist Softwaregestaltung im Unterschied zu den anderen der Kern von Arbeit und Organi

sation. Es ist ein Musterbeispiel dafür, die Möglichkeiten individueller Softwaregestal

tung auszureizen: Die Organisation basiert auf dem Primat der Softwareentwicklung.
Die erbrachte Leistung, mit der das Unternehmen Geld verdient, ist weitestgehend in
Software abgebildet. Zusätzlich bietet STARTUP die selbst entwickelte Software auch
noch anderen an, verdient damit Geld und ist somit ein Beispiel für den oben beschriebe

nen Typ PROPRIETÄRER STANDARD. Trotzdem passt der Begriff disruptiv für START

UP nicht. Warum? STARTUP bedient mit dem Emissionshandel für E-Mobilität nur eine
Nische, von der aus eine Disruption der Energiebranche nicht möglich ist. Es gibt auch
keine etablierte Konkurrenz, die durch die digitale Abbildung des Geschäfts zu verdrän

gen wäre.
Solche Nischen der Regulierung mit Software zu bedienen, ist typisch für die Bran

che (siehe Kapitel 7). In der Energiewirtschaft konnte sich in den Kerngeschäftsfeldern
wie Netze, Lieferung, Handel und Erzeugung noch kein EVU allein durch eine individu

elle Software (und deren Verkauf) durchsetzen (auch wenn einige EVU mit IT-Dienstleis

tungen Geld verdienen). Die meisten untersuchten EVU nutzen eine Mischung aus Stan

dardsoftwarepaketen und individuell gestalteter Software. Viele EVU müssen die Mög

lichkeiten individueller Softwaregestaltung nicht nutzen, um Gewinne zu erwirtschaf

ten und am Markt zu bestehen. Ob der Anteil an Standardsoftware in den EVU größer
oder kleiner wird, ist eine offene Frage. Damit kann die vorliegende Untersuchung für
die von Bessen (2022) beschriebene Strategie des »Competing on Complexity« (4.1) kein
exemplarisches Unternehmen in der Energiewirtschaft finden. Die IT-Landschaften der
EVU werden zwar umfangreicher. Es gibt allerdings keine Hinweise dafür, dass sie sich
gerade dadurch entscheidend am Markt durchsetzen. So erhofft sich das EVU in Fall

studie INTERN1 dank individueller Software die Instandhaltung immer besser erledigen
und sich so von konkurrierenden Firmen absetzen zu können, wenn es um die Konzes

sionsvergabe von Netzen geht. Ein EVU von KOOP1 versucht mit einem individuellen
Portal für seine Kundschaft zu punkten. Was solch eine Softwaregestaltung wirklich an

340 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

zusätzlichen Marktanteilen oder Umsätzen bringt, müsste eine weitere Untersuchung

erforschen.

Eine andere Form von starkem soziotechnischem Wandel wäre es, wenn sich eine

Softwarefirma mit einer industriespezifischen Standardlösung durchsetzt, auf der EVU

oder das Softwareunternehmen selbst sämtliche digitalen Kernprozesse der Branche ab

wickeln würden: eine Anwendungsplattform, auf der die große Mehrheit der Anwenden

den der Branche arbeitet. Das wäre allerdings vor allem eine starke Veränderung für all

jene Beschäftigten, die derzeit in den EVU oder IT-DL Software gestalten und program

mieren, weil diese ihre Arbeit verlieren würden. Solch eine neue Softwarefirma, die mit

ihrer Standardlösung den Markt erobert, zeichnet sich aktuell nicht ab. Zahlen dazu, wie

viele Anwendende auf den aktuell existierenden Anwendungsplattformen der diversen

IT-DL arbeiten, die auf den Standard-ERP-Systemen wie von SAP, SIV oder Schleupen

basieren, oder wie viele Anwendende Standard-Cloud-Angebote nutzen, gibt es jedoch

nicht (7.2.1). Das gilt auch für spezielle Standardsoftwarelösungen und Plattformen wie

für den Energiehandel. Es ist auch nicht zu unterschätzen, dass Softwarefirmen intern

nicht all das industriespezifische Wissen haben, um eine Standardsoftware zu entwi

ckeln. Sie sind von der Kooperation einzelner EVU abhängig. Es sind große Investitionen

notwendig, bevor eine Industriestandardlösung vorhanden ist. Neue anbietende Unter

nehmen wie Powercloud fangen deshalb erst damit an, für einzelne Geschäftsfelder oder

Anwendungsbereiche Lösungen anzubieten.

Letztendlich hängt ein disruptiver Verlauf der digitalen Transformation noch von

anderen Dingen wie der Softwaregestaltung ab. Hier kommt der dritte Ansatz ins Spiel,

den Pfeiffer und Schrape (2023) anführen und dem die vorliegende Untersuchung nicht

gefolgt ist, weil er weniger zur Fragestellung passt: Butollo et al. (2021) sehen Produk

tions- und Geschäftsmodelle als wichtig an, um die digitale Transformation zu unter

suchen. Wenn z.B. ein Stromlieferant den Markt erobern will, indem sie eine Discoun

ter-Strategie fährt, bietet es sich für sie möglicherweise eher an, auf eine Standardlö

sung zu setzen. Sie muss z.B. die Software nicht individuell gestalten, weil sie keine in

dividuellen Produkte anbietet. Geschäftsmodelle in die Analyse einzubeziehen, könnte

womöglich auch erklären, warum Stadtwerke, die seit über zwei Jahrzehnten eine ei

gene industriespezifische Standardsoftware haben, trotzdem nicht den Markt erobert

haben: Weil es möglicherweise nicht Teil ihrer Strategie war?1 Es ist einerseits nahelie

gend, dass die Möglichkeiten einer digitalen Disruption beschränkt sind, weil Teil des

Produktionsmodells der Energiewirtschaft eine integrierte Netz-Infrastruktur, ein phy

sikalisches Gesamtsystem (Produktion und Konsum von Strom müssen sich zu jedem

Zeitpunkt die Waage halten) und eine starke Regulierung sind. Andererseits müsste das

aber noch genauer untersucht werden. Eine offene Forschungsfrage ist darüber hinaus,

inwiefern sich kommunale, staatliche und private Unternehmen in der digitalen Trans

formation unterscheiden.

1 In einigen Bundesländern sind den wirtschaftlichen Aktivitäten von kommunalen Unternehmen

Grenzen gesetzt (7.1.2.3). Inwiefern dies in diesem Fall und in welchem Umfang bei der Digitali
sierung eine Rolle spielt, wäre zu untersuchen.

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 341

9.3.3.3. Besonderheiten der digitalen Transformation in der Energiewirtschaft
Für die digitale Transformation der Energiewirtschaft ist die Regulierung ein besonde

rer Treiber und es gibt Besonderheiten in der Dynamik zwischen Individual- und Stan

dardsoftware. Die zunehmende Digitalisierung der Branche zeigen zudem Zielkonflikte
in ihrer Governance auf, wie der folgende Abschnitt ausführt.

Das Besondere an der Energiewirtschaft ist, dass ein Teil der digitalen Transfor

mation weniger darauf zurückzuführen ist, dass Unternehmen mit Softwaregestaltung
Märkte erobern oder die Energiewende vorantreiben können, sondern vielmehr darauf,
dass die Energiewirtschaft mithilfe von Software zum Markt wird (7. Kapitel). Die von
der staatlichen Regulierung verfolgte Markt-Governance seit 1999 für Strom und 2007
für Gas basiert auf Software. Das gilt für den Wechsel des energieliefernden Unterneh

mens durch Privatkund:innen per Webseite, die diversen Transparenzvorschriften, wie
sie auf der Stromrechnung sichtbar sind (u.a. der Herkunftsnachweis für Ökostrom),
den Datenaustausch zwischen den Tausenden von energiewirtschaftlichen Organisa

tionen, den Energiehandel oder die Vermarktung von dezentralen Erzeugungsanlagen
erneuerbarer Energie via virtuelle Kraftwerke. Die Regulierung basiert auf Software

entwicklung und weil sie sich die letzten Jahrzehnte stetig geändert hat, ist auch stetige
Softwaregestaltung notwendig.

Dabei zeigt sich eine besondere Dynamik aus individueller und Standardsoftware in
der Energiewirtschaft. Das liegt wieder an der Regulierung. Für Software, die auf Regu

lierung beruhende Prozesse umsetzt, bietet sich eine Standardgestaltung an, weil die

se Prozesse für alle Unternehmen gleich sind. Das ist ein Vorteil für die Zulieferindus

trie von Software, die an der Gestaltung von Standardsoftware interessiert ist. Auf indi

viduelle Softwaregestaltung setzen EVU eher im nichtregulierten Bereich des Energie

vertriebs, um sich von der Konkurrenz abzugrenzen. Daneben ist für die Dynamik aus
Individual- und Standardsoftware in der Energiewirtschaft typisch, dass sie sich in or

ganisationsübergreifenden, regionalen Kooperationen (KOOP1, KOOP2, KOOP3) für die
Softwaregestaltung niederschlägt. In diesen verhandeln mehre Organisationen, was sie
als gemeinsamen Standard und was jede für sich individuell umsetzt. Sowohl die Bran

chenanalyse im 7. Kapitel wie auch die Fallstudien legen zwar nahe, dass größere und
mittlere EVU mehr Geld für Software ausgeben und stärker in die Softwaregestaltung
involviert sind. Doch wäre der Zusammenhang zwischen EVU-Größe und Softwarege

staltung noch näher zu untersuchen. Dies könnte zum Beispiel geschehen, indem an er

forscht, wann kleinere EVU nur fertige industriespezifische Standardpakete nutzen und
wann und wie sie selbst Software gestalten.

Software und ihre Gestaltung ist Teil der Industrie-Governance der Energiewirt

schaft geworden, weil sie eine IT-basierte Branche geworden ist. Indem die Grenzen
zwischen IT- und Energiewirtschaft verschwimmen (z.B. indem EVU IT-DL werden,
Softwarefirmen energiewirtschaftliche Geschäftsprozesse abwickeln oder digitale Start-
ups entstehen) und die Markt-Governance so sehr auf digitalen Prozessen basiert, wird
Software Teil der Governance-Strukturen der Branchen. Es geht nicht mehr nur dar

um, eine Energieinfrastruktur zu betreiben, sondern auch eine digitale Infrastruktur.
Datenschutz, IT-Sicherheit, digitale Geschäftsfelder, die Macht einzelner Softwareun

ternehmen und IT-DL sowie der IT-Fachkräftemangel treiben die EVU um. Die enorme
Bedeutung von Software schlägt sich auf den vier Ebenen der Industrie-Governance

342 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

nieder: Erstens prüfen Unternehmen ihre Strategien beim Softwareeinsatz – ob für das

gesamte Unternehmen, einzelne Wertschöpfungsstufen oder Anwendungsbereiche.

Zweitens sind Produkte wie Stromtarife der EVU digital verfügbar und lassen sich

digital verkaufen. Drittens ist der Datenaustausch entlang der Wertschöpfungskette

von Erzeugung, Handel, Netzen, Vertrieb softwarebasiert und es gibt unzählige Ko

operationen zwischen EVU zur Entwicklung von Software. Viertens schlägt sich die

gesteigerte Bedeutung von softwaretechnischer Interdisziplinarität und Wissensarbeit

in einer Akademisierung der Beschäftigten nieder. Sie arbeiten zunehmend an automa

tisierten, softwarebasierten Prozessen. Die in der Branche weitverbreiteten Betriebsräte

sind gefragt, bei der Softwaregestaltung und dem Softwareeinsatz die Interessen der

Beschäftigten zu vertreten.

Bei der Debatte über Veränderung der Governance einer Industrie durch die Libera

lisierung spielt die IT nur am Rande eine Rolle (vgl. Mayntz 2009). Doch entstehen durch

die IT Zielkonflikte in der Branche. Sie resultieren daraus, dass Software Strukturen er

möglicht, erhält und schafft, die deutlich bürokratischer und damit teurer sind als jene

vor der Liberalisierung. Lohnt sich der ganze digitale Aufwand, nur um wettbewerbli

che Strukturen und einen europäischen Strommarkt zu etablieren, um selbst kommu

nale Versorgungsunternehmen dort einzugliedern? Denn die Energiepreise sind seit Be

ginn der Liberalisierung stetig gestiegen2, viele Konsument:innen wechseln das Gas-/

Stromlieferunternehmen selten oder nie3 und die reduzierten CO2-Emissionen lassen

sich mehr auf andere, CO2-arme Produktionsanlagen und weniger auf eine zunehmend

digitale Organisation der Branche zurückführen. Für wen bietet die viele Arbeit an in

dustriespezifisch gestalteter Software eigentlich welche Vorteile?

Wer nun womit Geld verdient (ob mit Software oder Energie), sich wie durchsetzt

(dank Softwaregestaltung und/oder Softwareanwendung) und wie nachhaltig diese

Strukturen sind: Für die einzelnen Betriebe stellt sich die Frage, wo die Reise der tech

nikentwicklungsbezogenen Rationalisierung durch Softwaregestaltung in der Branche

hingeht und ob jene EVU, die führend in der Softwaregestaltung sind, in Zukunft auch

führend in der Branche sein werden. Zu einer soziotechnischen Organisation, welche

die Möglichkeiten der Softwaregestaltung (ob individuell oder Standard) für ihre Zwecke

einsetzt, gibt es aktuell in der Energiewirtschaft keine Alternative.

9.3.3.4. Folgen für die Arbeit in den EVU
Neben der soziotechnischen Arbeitsgestaltung durch Softwaregestaltung, die bedeuten

kann, dass Anwendende den Bedarfen des Arbeitsprozesses der Softwaregestaltung

untergeordnet sind, gibt es noch weitere Folgen für die Arbeit in den anwendenden

EVU. Hirsch-Kreinsen beschreibt drei Entwicklungsszenarien der Digitalisierung von

Arbeit: Substitution (Arbeit ersetzen), Upgrading (Qualifikationsniveaus steigen) und

2 Haushaltskunden: https://de.statista.com/statistik/daten/studie/914784/umfrage/entwicklung-d

er-strompreise-in-deutschland-verivox-verbraucherpreisindex/, abgerufen am 29.02.2024.
Industriekunden: https://de.statista.com/statistik/daten/studie/252029/umfrage/industriestrom

preise-inkl-stromsteuer-in-deutschland/, abgerufen am 29.02.2024.
3 https://de.statista.com/statistik/daten/studie/155532/umfrage/versorgerwechsel-der-haushalte-

in-der-stromversorgung-seit-2005/, abgerufen am 29.02.2024.

https://de.statista.com/statistik/daten/studie/914784/umfrage/entwicklung-der-strompreise-in-deutschland-verivox-verbraucherpreisindex/
https://de.statista.com/statistik/daten/studie/914784/umfrage/entwicklung-der-strompreise-in-deutschland-verivox-verbraucherpreisindex/
https://de.statista.com/statistik/daten/studie/252029/umfrage/industriestrompreise-inkl-stromsteuer-in-deutschland/
https://de.statista.com/statistik/daten/studie/252029/umfrage/industriestrompreise-inkl-stromsteuer-in-deutschland/
https://de.statista.com/statistik/daten/studie/155532/umfrage/versorgerwechsel-der-haushalte-in-der-stromversorgung-seit-2005/
https://de.statista.com/statistik/daten/studie/155532/umfrage/versorgerwechsel-der-haushalte-in-der-stromversorgung-seit-2005/

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 343

Polarisierung (zunehmend Gering- und Hochqualifizierte, weniger Mittelqualifizierte)
(vgl. Hirsch-Kreinsen 2020: 50ff.). Theoretisch können Softwaregestaltende zu allen drei
Szenarien beitragen. Sie automatisieren Arbeit durch Softwaregestaltung und erhöhen
das Qualifikationsniveau und den Anteil Hoch- und Mittelqualifizierter. Das ist in den
Fallstudien allerdings nur zum Teil der Fall. So ersetzt die individuell gestaltete Software
bei INTERN1 z.B. die Arbeit der Meister:innen in der Instandhaltung (Substitution).
Anwendende wie Monteur:innen benötigen allerdings weiterhin ihre bisherigen Qualifi

kationen. In Anwendungsbereichen mit einem hohen Anteil an Datenverarbeitung und
Automatisierung führt die Softwaregestaltung dazu, dass die Beschäftigten nur noch
die komplizierteren, nicht automatisierbaren Restfälle bearbeiten und mehr interdis

ziplinär tätig sind, wofür exemplarisch die Rolle der Key User:innen steht (Upgrading).
Ob ein zunehmender Bedarf an höherqualifizierten Softwaregestaltenden dazu führt,
dass es weniger Beschäftigte mit mittlerer Qualifikation gibt (Polarisierung), zeigt sich
nicht eindeutig. So erledigen in der Fallstudie STARTUP nur zwei bis drei Minijob-Be

schäftigte einfache Arbeit, indem sie automatisierte Prozesse prüfen und ergänzen. Die
restlichen ca. 18–22 Beschäftigten sind in der Mehrzahl mittel bis hoch qualifiziert und
nahezu allesamt Akademiker:innen. Rechnet man jene Anwendenden, welche kompli

zierte Restfälle bearbeiten und internen Support für die Softwaregestaltung komplexer
Softwarepakete wie ERP-Systeme leisten (Key User:innen), zu den Mittelqualifizierten,
dann würden in solchen EVU wenige Geringqualifizierte übrigbleiben und die Mehrzahl
wären mittel bis hoch qualifizierte Anwendende, Gestaltende und Programmierende.

In den Fallstudien fällt zudem auf, dass die Anwendenden der EVU vom Wandel der
Software durch den Betrieb, für den sie arbeiten, geschützt sind. Selbst wenn Betrie

be Anwendungsplattformen einsetzen, werden deren Anwendende nicht gleich zu Gig-
Arbeitenden. Eindeutige Folgen der Softwaregestaltung für sämtliche Anwendende wie
z.B. mehr Routinearbeit, eine stärkere soziale Isolation oder eine Dequalifizierung ha

ben die Fallstudien nicht gezeigt. Für eine fundierte Aussage dazu wären quantitative
Daten notwendig.

9.4. Methodische Grenzen und weiterführende Fragestellungen

Was hat das alles mit Max Weber zu tun, der am Anfang der Untersuchung zitiert wurde?
Das wäre en détail noch herauszuarbeiten. Doch weder durch den Begriffsapparat von
Weber noch von jenem z.B. von Giddens’ Strukturationstheorie wollte sich die vorlie

gende Arbeit einschränken und überfordern lassen. Es war das primäre Ziel, eine eigene
soziotechnische Begriffsbildung zu betreiben, welche den Besonderheiten der Software

gestaltung gerecht wird. Mit welchen bestehenden theoretischen Ansätzen die hier ent

wickelten Konzepte am besten kompatibel sind, wäre eine noch zu leistende Aufgabe.
Das Methoden-Kapitel hat bereits weitere Grenzen der vorliegenden Untersuchung

genannt. Darunter waren auch die allgemeinen Grenzen qualitativer Untersuchungen.
Um die Grenze der Verallgemeinerung zu überwinden, wäre die Erforschung anderer
Branchen naheliegend. Ziegler hat ähnliche Phänomene wie die in der vorliegenden Ar

beit in einem großen Industriekonzern und dessen Bemühungen, im IoT-Bereich ein
Geschäftsfeld aufzubauen, untersucht. Auch dort gibt es crossfunktionale Teams, wel

344 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

che die Linienorganisation ersetzen (vgl. Ziegler: 264f.). Auch dort ist die Herausforde

rung, agile Methoden und standardisierte Prozesse in einer Organisation zu vereinen

(vgl. ebd.: 266). Und auch dort wird reorganisiert, um »domänenübergreifende[…] Orga

nisationseinheiten« (ebd.: 282) aufzubauen. Lässt sich das hier vorliegende Analysesche

ma also verallgemeinern auf sämtliche Formen und Orte der Softwaregestaltung? Wie

und wer gestaltet Software für die Versicherungswirtschaft oder für Banken und gibt es

dort auch vielfältige Kooperationen? Gestalten die softwareanwendenden Organisatio

nen in anderen Branchen mehr oder weniger individuell? Sind sie mehr oder weniger

abhängig in der soziotechnischen Arbeitsgestaltung der Softwareanwendung? Wie sieht

eine größere Organisation in der Logistik, dem Online-Handel oder der Verwaltung aus,

in der von Anfang an der Primat der Softwareentwicklung gilt? Wie unterscheidet sich

z.B. die industriespezifische Softwareentwicklung zwischen Amazon und Zalando? Zu

dem wirkt der Sprung vom Arbeitsprozess der Softwaregestaltung zur industriespezi

fischen Anwendungsplattform noch groß. Die gesamte Organisation hinter der Anwen

dungsplattform hat z.B. die Fallstudie PAKET nicht untersucht. Es gibt sicherlich noch

mehr Faktoren als die Softwaregestaltung, die maßgeblich dafür sind, dass eine Anwen

dungsplattform entsteht.

Zudem konnte die Frage nicht ausführlich beantwortet werden, welchen Unter

schied es für die Tätigkeit der einzelnen Anwendenden macht, wenn sie mit einer

individuell gestalteten Software arbeiten. Dafür müssten deutlich mehr Anwendende

befragt werden und es wäre bspw. die Untersuchung unterschiedlicher Formen der

Softwaregestaltung für den gleichen Anwendungsbereich notwendig. Es gibt wahr

scheinlich auch Unterschiede zwischen Beschäftigtengruppen, was das IT-Budget für

Softwaregestaltung angeht. Können Beschäftigte aus dem Energiebörsenhandel mehr

Änderungen mit dem Hinweis einfordern, dass sie dadurch bessere Ergebnisse erzie

len? Fällt dies Beschäftigten aus dem Kundenservice schwerer, weil sie ihre Tätigkeiten

formalisierter und standardisierter erledigen müssen? Auch könnten Fragen von Parti

zipation vertieft werden. Es gibt eine seit langem geführte Diskussion dazu (vgl. Becker/

Brinkmann 2017). Unterschiede zu Partizipationstypen wie jenem des »democratic

Taylorism« (Adler 1995) könnten herausgearbeitet werden.

Es ist noch offen, wie sich das softwaretechnische, interdisziplinäre Wissen nun

genau zusammensetzt: Der Unterscheidung von Hohlmann (2007) von Organisations-,

Prozess- und Technologiewissen wurde in dieser Arbeit nicht gefolgt und anders als

Hohlmann spricht diese Arbeit nicht von Integrationswissen, sondern von interdis

ziplinärem Wissen. Wie sieht aber dann die Zusammensetzung aus? Welches Wissen

ist für wen in welcher Organisation nun zentral für die Softwaregestaltung: über den

Anwendungsbereich, über ein einzelnes EVU, die Regulierung, das ERP-Paket und

sein Customizing, über Programmierung, Methoden und Kompetenzen der Software

gestaltung, spezifisches Wissen einzelner Anwendender? Wo spielt welches implizite

Wissen eine Rolle, in welcher Phase der Softwareentwicklung und wo ist explizites

Wissen über Regulierung oder Geschäftsprozesse wichtiger? Wie wichtig sind betrieb

liche Qualifikationen? Einerseits sind betriebsspezifische Qualifikationen nützlich

(langfristige Zusammenarbeit mit externen Entwickelnden, langfristige Zusammen

arbeit mit IT-DL, lange Betriebszugehörigkeit von Anwendenden, Programmierenden

9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen 345

oder Gestaltenden). Andererseits wechseln die EVU trotzdem den IT-DL und es gibt
Personalfluktuation in den Organisationen.

Zudem bietet die vorliegende Forschungsarbeit vielfältige Anknüpfungspunkte
zu anderen Forschungsgebieten wie zur Labour Process Theory. Dort gibt es zwar
Forschungsarbeiten zur Softwareentwicklung, aber keine zum Arbeitsprozess der Soft

waregestaltung. In der Organisationssoziologie sieht Carlile (2004) zur Überwindung
von Wissensgrenzen ein gemeinsames Verständnis, eine gemeinsame Sprache, gute
Beziehungen und gemeinsame Interessen als wichtig an. Welchen Beitrag kann die vor

liegende Untersuchung zu diesem Forschungsfeld der Wissensgrenzen leisten? Es gibt
Anknüpfungspunkte zum Thema Innovationen in Organisationen, zum Requirements
Engineering bzw. Anforderungsmanagement in der Informatik oder zu neuen beruf

lichen Identitäten und Professionalisierungen in der Berufsforschung: Qualifikation,
Karrierewege, Arbeitsweise, Gehalt und Tätigkeiten der Softwaregestaltenden. Eine tie

fergehende Auseinandersetzung mit der Techniksoziologie erscheint notwendig, ob mit
den Arbeiten von Pollock et al. (2007) zur »generification work« bei Standardsoftware

paketen oder zur digitalen Transformation u.a. durch Plattformen (vgl. Dolata/Schrape
2023).

Es fehlt an Forschung zu Wertschöpfungsketten von Software in der Soziologie oder
der Wirtschaftsgeografie. Was ist der Unterschied zu anderen Wertschöpfungsketten?
Dafür sind andere Konzepte notwendig wie jene der Global Production Networks (Hen

derson et al. 2002, Coe et al. 2008) oder Global Value Chains (vgl. Gereffi et al. 2005). Denn
Software ist nichts, was wie in der Automobilwirtschaft die Fahrzeughersteller (OEM)
weiterverarbeiten oder montieren. Softwaregestaltung entscheidet über die Organisa

tions- und Arbeitsgestaltung. Der Wechsel der zuliefernden Softwarefirma hat entspre

chend andere Folgen, als wenn ein Unternehmen ein Teil einer Maschine von einem an

deren Zulieferer bezieht. Die Untersuchung konnte auch nicht der Frage nachgehen,
warum EVU sich für welche Möglichkeiten zwischen Standard- und Individualsoftware

gestaltung entscheiden. Spielt dabei das organisationale Feld der Energiewirtschaft (vgl.
Bleicher 2006) eine Rolle, in dem eine Form der Isomorphie wirkt (vgl. DiMaggio/Powell
1983)?

Es wäre theoretisch zu klären, wie sich die Begriffe von Macht, Herrschaft, Koordina

tion, Steuerung, Governance, Kontrolle und Transformation der Arbeitskraft analytisch
trennscharf auseinanderhalten lassen. Dazu gehört, Ansätze wie die Unterscheidung
zwischen technischer, bürokratischer und direkter Kontrolle (vgl. Edwards 1979), Input-,
Verhaltens-, Ergebnis-, Clan- und Selbstkontrolle (vgl. Wiener et al. 2016), normative
Kontrolle durch Professionen und Firmenkultur (vgl. Kunda 1992, Fleming/Sturdy 2011)
und neuere Ansätze des algorithmischen Managements zu reflektieren und voneinander
theoretisch abzugrenzen. Inwiefern sind die Ergebnisse dieser Arbeit anschlussfähig an
Arbeiten von Vincent August zum Thema Kybernetik und Herrschaft durch Netzwerke
(vgl. August 2019, August 2021)? Ist eine neue Theorie der Macht und Herrschaft not

wendig, wenn Technik, Organisation und Arbeit so eng verzahnt sind, sich wechselseitig
verändern und auf mehrere Organisationen verteilt sind?

Literatur

A. T. Kearney, BDEW, & IMP3rove. (2018). Digital@EVU – Wo steht die deutsche Energie
wirtschaft? https://www.bdew.de/media/documents/201802_Paper-Digital-EVU.pd
f. Zugegriffen: 24. Mai 2023.

A. T. Kearney, BDEW, & IMP3rove. (2019). Digital@EVU – Wo steht die deutsche Energie
wirtschaft? https://www.bdew.de/media/documents/Pub_20190401_Studie-Digital-
EVU_WDcoFda.pdf. Zugegriffen: 24. Mai 2023.

Adler, P. (1995). ›Democratic Taylorism‹: The Toyota production system at NUMMI. In
S. Babson (Hg.), Lean Work: Empowerment and Exploitation in the Global Auto Industry
(S. 207–219). Detroit, MI: Wayne State University Press.

Adler, P. S. & Borys, B. (1996). Two types of bureaucracy: Enabling and coercive. Adminis
trative Science Quarterly, 41(1), 61–89.

Adler, P. S. & Heckscher, C. (2006). Towards collaborative community. In P. S. Adler &
C. Heckscher (Hg.), The Firm as a Collaborative Community: Reconstructing Trust in the
Knowledge Economy (S. 11–105). Oxford: Oxford University Press.

Ahrne, G. & Brunsson, N. (2011). Organization outside organizations: The significance of
partial organization. Organization, 18(1), 83–104.

Alsanoosy, T., Spichkova, M. & Harland, J. (2020). Cultural influence on requirements
engineering activities: A systematic literature review and analysis. Requirements En
gineering, 25, 339–362.

Alvarez, R. (2002). Confessions of an information worker: a critical analysis of informa

tion requirements discourse. Information and Organization, 12(2), 85–107.
Ambrosius, G. (2012). Geschichte der Stadtwerke. In D. Bräunig & W. Gottschalk (Hg.),

Stadtwerke. Grundlagen, Rahmenbedingungen, Führung und Betrieb (S. 35–51). Baden-Ba

den: Nomos.
Andelfinger, U. (1997). Diskursive Anforderungsanalyse: Ein Beitrag zum Reduktionsproblem bei

Systementwicklungen in der Informatik. Frankfurt a.M.: Peter Lang.
Andreessen, M. (2011, August 20). Why Software Is Eating the World. Wall Street Jour

nal. https://online.wsj.com/article/SB10001424053111903480904576512250915629460
.html. Zugegriffen: 17. Oktober 2022.

Andrews, C. K., Lair, C. D. & Landry, B. (2005). The labor process in software startups:
Production on a virtual assembly line? In R. Barrett (Hg.), Management Labour Pro

https://www.bdew.de/media/documents/201802_Paper-Digital-EVU.pdf
https://www.bdew.de/media/documents/201802_Paper-Digital-EVU.pdf
https://www.bdew.de/media/documents/Pub_20190401_Studie-Digital-EVU_WDcoFda.pdf
https://www.bdew.de/media/documents/Pub_20190401_Studie-Digital-EVU_WDcoFda.pdf
https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html

348 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

cess and Software Development: Reality Bytes (Bd. 13, S. 45–75). London; New York, NY:

Routledge.

Apitzsch, B. (2006). Unternehmensnetzwerke und soziale Einbettung: Begriffliche Bestimmun
gen, Funktionen und Entstehungsbedingungen. Duisburg: Duisburger Beiträge zur so

ziologischen Forschung. https://www.ssoar.info/ssoar/handle/document/11455. Zu

gegriffen: 24. Mai 2023.

Apitzsch, B. (2010). Flexible Beschäftigung, neue Abhängigkeiten. Projektarbeitsmärkte und ihre
Auswirkungen auf Lebensverläufe. Frankfurt a.M.: Campus.

Apitzsch, B., Buss, K.-P., Kuhlmann, M., Weißmann, M. & Wolf, H. (2021). Arbeit in und

an Digitalisierungen. Ein Resümee als Einführung. In K.-P. Buss, M. Kuhlmann, M.

Weißmann, H. Wolf, & B. Apitzsch (Hg.), Digitalisierung und Arbeit: Triebkräfte – Ar
beitsfolgen – Regulierung (S. 9–39). Frankfurt; New York: Campus Verlag.

Armstrong, P. (1985). Changing management control strategies: The role of competition

between accountancy and their organisational professions. Accounting, Organizations
and Society, 10(2), 129–148.

August, V. (2019). Von ›Unregierbarkeit‹ zu Governance: Neoliberale, teleologische und

technologische Staatskritik. In A. Cavuldak (Hg.), Die Grammatik der Demokratie. Das
Staatsverständnis von Peter Graf Kielmannsegg (S. 287–312). Baden-Baden: Nomos.

August, V. (2021). Technologisches Regieren: Der Aufstieg des Netzwerk-Denkens in der Krise der
Moderne. Foucault, Luhmann und die Kybernetik. Bielefeld: transcript.

Baethge, M. (1996). Zwischen Computer und Kunden – Rationalisierung und neue Ar

beitskonzepte in den Dienstleistungen. In H.-J. Braczyk, H.-D. Ganter, & R. Seltz

(Hg.), Neue Organisationsformen in Dienstleistung und Verwaltung (S. 15–28). Stuttgart:

Kohlhammer.

Bähr, J. & Erker, P. (2017). NetzWerke: Die Geschichte der Stadtwerke München. München:

Piper.

Barrett, M. & Oborn, E. (2010). Boundary object use in cross-cultural software develop

ment teams. Human Relations, 63(8), 1199–1221.

Barrett, R. (2005). Managing the software development labour process: Direct control,

time and technical autonomy. In R. Barrett (Hg.), Management Labour Process and Soft
ware Development: Reality Bytes (S. 76–99). London; New York, NY: Routledge.

Baudach, T. (2018). Organisation von Wissensarbeit: Entwicklung eines gedanklichen Bezugs
rahmens vor dem Hintergrund von Zukunftsannahmen sowie theoretischen Bezügen zur Ar
beits- und Organisationsforschung. Baden-Baden: Nomos.

Baukrowitz, A. (2006). Einführung. In A. Baukrowitz, T. Berker, S. Pfeiffer, R. Schmiede,

& M. Will (Hg.), Informatisierung der Arbeit – Gesellschaft im Umbruch (S. 81–87). Berlin:

Edition Sigma.

Baukrowitz, A., Berker, T., Boes, A., Pfeiffer, S., Schmiede, R. & Will, M. (Hg.). (2006).

Informatisierung der Arbeit – Gesellschaft im Umbruch. Berlin: Edition Sigma.

Baukrowitz, A., Boes, A. & Eckhardt, B. (1994). Software als Arbeit gestalten: konzeptionel
le Neuorientierung der Aus- und Weiterbildung von Computerspezialisten. Opladen: West

deutscher Verlag.

BDEW (Hg.). (2016). Die digitale Energiewirtschaft. Agenda für Unternehmen und Po

litik. https://www.bdew.de/media/documents/Pub_20160501_Digitale-Energiewirt

schaft.pdf. Zugegriffen: 24. Mai 2023.

https://www.ssoar.info/ssoar/handle/document/11455
https://www.bdew.de/media/documents/Pub_20160501_Digitale-Energiewirtschaft.pdf
https://www.bdew.de/media/documents/Pub_20160501_Digitale-Energiewirtschaft.pdf

Literatur 349

BDEW (Hg.). (2019). Zahl der Unternehmen in den einzelnen Marktbereichen. https://
www.bdew.de/media/documents/Marktteilnehmer_Energie_aktuell_online_o_hal
bjaehrlich_Ki_05112019.pdf. Zugegriffen: 24. Mai 2023.

Bechky, B. A. (2006). Gaffers, gofers, and grips: Role-based coordination in temporary
organizations. Organization Science, 17(1), 3–21.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et
al. (2001). The Agile Manifesto. Manifesto for Agile Software Development. http://agilem
anifesto.org/. Zugegriffen: 20. Juli 2022.

Becker, P. (2010). Aufstieg und Krise der deutschen Stromkonzerne. Zugleich ein Beitrag zur Ent
wicklung des Energierechts. Bochum: Ponte Press.

Becker, K. & Brinkmann, U. (2017). Partizipation. In H. Hirsch-Kreinsen & H. Minssen
(Hg.), Lexikon der Arbeits- und Industriesoziologie (2. Auflage, S. 254–258). Baden-Baden:
Nomos.

Berlo, K., Herr, C., Wagner, O. & Companie, M. (2018). Explorative Untersuchung zu Er
folgspotentialen bei neugegründeten Stadtwerken: Eine Sondierungsstudie zur kommunalen
Energieversorgung. Ergebnisse einer Befragung bei neugegründeten Stadtwerken im Energie
bereich (No. 16). Wuppertal: Wuppertal Institut für Klima, Umwelt, Energie.

Bessen, J. (2022). The New Goliaths: How Corporations Use Software to Dominate Industries, Kill
Innovation, and Undermine Regulation. New Haven, CT; London: Yale University Press.

Bjørn-Andersen, N. & Raymond, B. (2014). The impact of IT over five decades – Towards
the ambient organization. Applied ergonomics, 45(2), 188–197.

Bläsche, A. & Lappe, L. (2006). Veränderung der Arbeitsprozesse bei der Anpassung und
Implementierung betriebswirtschaftlicher Standardlösungen. In A. Baukrowitz, T.
Berker, A. Boes, S. Pfeiffer, R. Schmiede, & M. Will-Zocholl (Hg.), Informatisierung der
Arbeit – Gesellschaft im Umbruch (S. 302–308). Baden-Baden: Nomos.

Bleicher, A. (2006). Die Institutionalisierung eines organisationalen Feldes – das Beispiel der
Elektrizitätswirtschaft. Universität Hannover, Hannover. Abgerufen von https://opus4
.kobv.de/opus4-btu/frontdoor/deliver/index/docId/322/file/Bleicher_Diss.pdf. Zu

gegriffen: 24. Mai 2023.
Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of

the 28th international conference on Software engineering (S. 12–29). Association for Com

puting Machinery. https://doi.org/10.1145/1134285.1134288. Zugegriffen: 24. Mai 2023
Boes, A. & Kämpf, T. (2017). Informations- und Wissensarbeit. In H. Hirsch-Kreinsen

& H. Minssen (Hg.), Lexikon der Arbeits-und Industriesoziologie (2. Auflage, S. 184–187).
Baden-Baden: Nomos.

Boes, A., Kämpf, T., Gül, K., Langes, B., Lühr, T., Marrs, K. & Ziegler, A. (2016). Digitali

sierung und »Wissensarbeit«: Der Informationsraum als Fundament der Arbeitswelt
der Zukunft. Aus Politik und Zeitgeschichte, 66(18), 32–39.

Boes, A., Kämpf, T., Langes, B. & Lühr, T. (2018). »Lean« und »agil« im Büro: Neue Organisa
tionskonzepte in der digitalen Transformation und ihre Folgen für die Angestellten. Bielefeld:
transcript.

Boes, A., Kämpf, T. & Ziegler, A. (2020). Arbeit im Informationsraum – Informatisierung
als Perspektive für ein soziologisches Verständnis der digitalen Transformation. In
S. Maasen & J.-H. Passoth (Hg.), Soziologie des Digitalen – Digitale Soziologie? (Bd. Son

derband 23, S. 305–325). Baden-Baden: Nomos.

https://www.bdew.de/media/documents/Marktteilnehmer_Energie_aktuell_online_o_halbjaehrlich_Ki_05112019.pdf
https://www.bdew.de/media/documents/Marktteilnehmer_Energie_aktuell_online_o_halbjaehrlich_Ki_05112019.pdf
https://www.bdew.de/media/documents/Marktteilnehmer_Energie_aktuell_online_o_halbjaehrlich_Ki_05112019.pdf
http://agilemanifesto.org/
http://agilemanifesto.org/
https://opus4.kobv.de/opus4-btu/frontdoor/deliver/index/docId/322/file/Bleicher_Diss.pdf
https://opus4.kobv.de/opus4-btu/frontdoor/deliver/index/docId/322/file/Bleicher_Diss.pdf
https://doi.org/10.1145/1134285.1134288

350 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Boes, A. & Pfeiffer, S. (2006). Informatisierung der Arbeit – Gesellschaft im Umbruch. Ei

ne Einführung. In A. Baukrowitz, T. Berker, S. Pfeiffer, R. Schmiede, & M. Will (Hg.),
Informatisierung der Arbeit – Gesellschaft im Umbruch. Berlin: Edition Sigma.

Bogner, A. & Menz, W. (2002). Expertenwissen und Forschungspraxis: Die modernisie

rungstheoretische und die methodische Debatte um die Experten. In A. Bogner, B.
Littig, & W. Menz (Hg.), Das Experteninterview. Theorie, Methode, Anwendung (S. 7–29).
Wiesbaden: VS Verlag für Sozialwissenschaften.

Böhle, F. (2010). Arbeit als Handeln. In F. Böhle, G. G. Voß, & G. Wachtler (Hg.), Handbuch
Arbeitssoziologie (S. 151–176). Wiesbaden: VS Verlag für Sozialwissenschaften.

Bolici, F., Howison, J. & Crowston, K. (2009). Coordination without discussion?
Socio-technical congruence and stigmergy in free and open source software
projects. Gehalten auf der International Conference on Software Engineering,
Vancouver BC. https://crowston.syr.edu/sites/crowston.syr.edu/files/Coordin
a t i o n %20without %20discussion %3F %20Socio-technical %20congruence.pdf.
Zugegriffen: 24. Mai 2023.

Bolici, F., Howison, J. & Crowston, K. (2016). Stigmergic coordination in FLOSS develop

ment teams: Integrating explicit and implicit mechanisms. Cognitive Systems Research,
38, 14–22.

Boltanski, L. & Chiapello, È. (2003). Der neue Geist des Kapitalismus. Konstanz: UVK Ver

lagsgesellschaft mbH.
Bolte, A. (2017a). Tätigkeit und Arbeitsprozess. In F. Böhle (Hg.), Arbeit als Subjektivierendes

Handeln. Handlungsfähigkeit bei Unwägbarkeiten und Ungewissheit (S. 473–484). Wiesba

den: Springer VS.
Bolte, A. (2017b). Unwägbarkeiten. In F. Böhle (Hg.), Arbeit als Subjektivierendes Han

deln. Handlungsfähigkeit bei Unwägbarkeiten und Ungewissheit (S. 487–492). Wiesbaden:
Springer VS.

Bolte, A. & Porschen, S. (2007). Die Organisation des Informellen: Modelle zur Organisation
von Kooperation im Arbeitsalltag. Wiesbaden: Springer VS.

Bontrup, H.-J. & Marquardt, R.-M. (2010). Kritisches Handbuch der deutschen Elektrizi
tätswirtschaft: Branchenentwicklung, Unternehmensstrategien, Arbeitsbeziehungen. Berlin:
Edition Sigma.

Boonstra, A. (2006). Interpreting an ERP-implementation project from a stakeholder
perspective. International Journal of Project Management, 24(1), 38–52.

Boonstra, A. & de Vries, J. (2015). Information system conflicts: Causes and types. Inter
national Journal of Information Systems and Project Management, 3(4), 5–20.

Boudreau, M.-C. & Robey, D. (2005). Enacting integrated information technology: A hu

man agency perspective. Organization Science, 16(1), 3–18.
Bradach, J. L. & Eccles, R. G. (1989). Price, authority, and trust: From ideal types to plural

forms. Annual Review of Sociology, 15(1), 97–118.
Bräunig, D. (2012). Entflechtung von Stadtwerken als Konsequenz des europäischen En

ergiebinnenmarktes. In D. Bräunig & W. Gottschalk (Hg.), Stadtwerke. Grundlagen,
Rahmenbedingungen, Führung und Betrieb (S. 419–437). Baden-Baden: Nomos.

Brede, H. (2012). Führung und Marketing von Stadtwerken. In D. Bräunig & W.
Gottschalk (Hg.), Stadtwerke. Grundlagen, Rahmenbedingungen, Führung und Betrieb
(S. 305–319). Baden-Baden: Nomos.

https://crowston.syr.edu/sites/crowston.syr.edu/files/Coordination
https://crowston.syr.edu/sites/crowston.syr.edu/files/Coordination

Literatur 351

Breuer, F., Dieris, B. & Lettau, A. (2009). Reflexive Grounded Theory: Eine Einführung für die
Forschungspraxis. Wiesbaden: VS Verlag für Sozialwissenschaften. Zugegriffen: 24.
Mai 2023.

Brinkmann, U. & Dörre, K. (2006). Wissensarbeit und Kontrolle im neuen Marktregime.
In A. Baukrowitz, T. Berker, S. Pfeiffer, R. Schmiede, & M. Will (Hg.), Informatisierung
der Arbeit – Gesellschaft im Umbruch (S. 132–144). Berlin: Edition Sigma.

Brödner, P. (2014). Durch »Information« desinformiert? Zur Kritik des Paradigmas der
Informationsverarbeitung. AIS-Studien, 7(1), 42–59.

Brown, J. S. & Duguid, P. (2001). Knowledge and organization: A social-practice perspec

tive. Organization Science, 12(2), 198–213.
Brusoni, S., Prencipe, A. & Pavitt, K. (2001). Knowledge specialization, organizational

coupling, and the boundaries of the firm: Why do firms know more than they make?
Administrative Science Quarterly, 46(4), 597–621.

Bundesstelle für Energieeffizienz (BfEE) (Hg.). (2019). Empirische Untersuchung des
Marktes für Energiedienstleistungen, Energieaudits und andere Energieeffizienz

maßnahmen im Jahr 2018. Endbericht 2019 – BfEE 17/2017, Eschborn. https://www.
bfee-online.de/SharedDocs/Downloads/BfEE/DE/Energiedienstleistungen/markte
rhebung2019.pdf;jsessionid=55257773B7302115604EF5B4241D21A1.intranet662?__bl
ob=publicationFile&v=2. Zugegriffen: 24. Mai 2023.

Butollo, F., Feuerstein, P. & Krzywdzinski, M. (2021). Was zeichnet die digitale Trans

formation der Arbeitswelt aus? Ein Deutungsangebot jenseits von Großtheorien und
disparater Empirie. AIS-Studien, 14(2), 27–44.

Carlile, P. R. (2004). Transferring, translating, and transforming: An integrative
framework for managing knowledge across boundaries. Organization Science, 15(5),
555–568.

Carmel, E. & Sawyer, S. (1998). Packaged software development teams: What makes them
different? Information Technology & People, 11, 7–19.

Carugati, A., Fernández, W., Mola, L. & Rossignoli, C. (2018). My choice, your problem?
Mandating IT use in large organisational networks. Information Systems Journal, 28(1),
6–47.

Cascio, W. F. & Montealegre, R. (2016). How technology is changing work and orga

nizations. Annual Review of Organizational Psychology and Organizational Behavior, 3,
349–375.

Castell, M. (2001). Das Informationszeitalter: Der Aufstieg der Netzwerkgesellschaft (Bd. 1). Les

ke und Budrich: Opladen.
Chan, Y. E. & Reich, B. H. (2007). IT alignment: What have we learned? Journal of Informa

tion Technology, 22(4), 297–315.
Chandler, A. D. (1990). Scale and Scope. The Dynamics of Industrial Capitalism. Cambridge,

Mass.: Belknap.
Charmaz, K. (2014). Constructing Grounded Theory (2nd Edition.). London: Sage.
Coe, N. M., Dicken, P. & Hess, M. (2008). Global production networks: Realizing the po

tential. Journal of Economic Geography, 8(3), 271–295.
Colfer, L. J. & Baldwin, C. Y. (2016). The mirroring hypothesis: theory, evidence, and ex

ceptions. Industrial and Corporate Change, 25(5), 709–738.

https://www.bfee-online.de/SharedDocs/Downloads/BfEE/DE/Energiedienstleistungen/markterhebung2019.pdf;jsessionid=55257773B7302115604EF5B4241D21A1.intranet662?__blob=publicationFile&v=2
https://www.bfee-online.de/SharedDocs/Downloads/BfEE/DE/Energiedienstleistungen/markterhebung2019.pdf;jsessionid=55257773B7302115604EF5B4241D21A1.intranet662?__blob=publicationFile&v=2
https://www.bfee-online.de/SharedDocs/Downloads/BfEE/DE/Energiedienstleistungen/markterhebung2019.pdf;jsessionid=55257773B7302115604EF5B4241D21A1.intranet662?__blob=publicationFile&v=2
https://www.bfee-online.de/SharedDocs/Downloads/BfEE/DE/Energiedienstleistungen/markterhebung2019.pdf;jsessionid=55257773B7302115604EF5B4241D21A1.intranet662?__blob=publicationFile&v=2

352 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Collins, C. S. & Stockton, C. M. (2018). The central role of theory in qualitative research.

International Journal of Qualitative Methods, 17(1).

Conrad, L. (2017). Organisation im soziotechnischen Gemenge: Mediale Umschichtungen durch
die Einführung von SAP. Bielefeld: transcript.

Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28–31.

Corvera Charaf, M., Rosenkranz, C. & Holten, R. (2013). The emergence of shared un

derstanding: applying functional pragmatics to study the requirements development

process. Information Systems Journal, 23(2), 115–135.

Cullmann, A., Nieswand, M., Seifert, S. & Stiel, C. (2016). Trend zur (Re-)Kommunalisie

rung in der Energieversorgung: Ein Mythos? DIW-Wochenbericht, 83(20), 441–447.

Crowston, K. & Myers, M. D. (2004). Information technology and the transformation

of industries: Three research perspectives. The Journal of Strategic Information Systems,
13(1), 5–28.

D’Adderio, L. (2003). Configuring software, reconfiguring memories: the influence of in

tegrated systems on the reproduction of knowledge and routines. Industrial and Cor
porate Change, 12(2), 321–350.

Darr, A. (2019). Automatons, sales-floor control and the constitution of authority. Human
Relations, 72(5), 889–909.

Degele, N. (2000). Informiertes Wissen: eine Wissenssoziologie der computerisierten Gesellschaft.
Frankfurt a.M.; New York: Campus.

Dery, K., Grant, D., Harley, B. & Wright, C. (2006). Work, organisation and enterprise

resource planning systems: an alternative research agenda. New Technology, Work and
Employment, 21(3), 199–214.

Deterding, N. M. & Waters, M. C. (2021). Flexible coding of in-depth interviews: A

twenty-first-century approach. Sociological Methods & Research, 50(2), 708–739.

DGS, & BDS (Hg.). (2017, Juni 10). Ethik-Kodex der Deutschen Gesellschaft für So

ziologie (DGS) und des Berufsverbandes Deutscher Soziologinnen und Soziologen

(BDS). https://soziologie.de/fileadmin/user_upload/dokumente/Ethik-Kodex_2017

-06-10.pdf. Zugegriffen: 4. Mai 2023

DiMaggio, P. J. & Powell, W. W. (1983). The iron cage revisited: Institutional isomor

phism and collective rationality in organizational fields. American Sociological Review,

147–160.

Dolata, U. & Schrape, J.-F. (2023). Politische Ökonomie und Regulierung digitaler Platt

formen. In T. Carstensen, S. Schaupp, & S. Sevignani (Hg.), Theorien des digitalen Ka
pitalismus. Arbeit und Ökonomie, Politik und Subjekt. Berlin: Suhrkamp.

Doleski, O. D. (2016). Utility 4.0: Transformation vom Versorgungs- zum digitalen Energie
dienstleistungsunternehmen. Wiesbaden: Springer Vieweg.

Dörre, K. (2001). Das deutsche Produktionsmodell unter dem Druck des Shareholder Va

lue. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 53(4), 675–704.

Edeling, T., Stölting, E. & Wagner, D. (2004). Öffentliche Unternehmen zwischen Privatwirt
schaft und öffentlicher Verwaltung. Eine empirische Studie im Feld kommunaler Versorgungs
unternehmen. Opladen: VS Verlag für Sozialwissenschaften.

Edwards, R. (1981). Herrschaft im modernen Produktionsprozess. Frankfurt a.M.; New York:

Campus.

https://soziologie.de/fileadmin/user_upload/dokumente/Ethik-Kodex_2017-06-10.pdf
https://soziologie.de/fileadmin/user_upload/dokumente/Ethik-Kodex_2017-06-10.pdf

Literatur 353

Elbanna, A. R. (2007). Implementing an integrated system in a socially dis-integrated
enterprise: A critical view of ERP enabled integration. Information Technology & People,
20(2), 121–139.

Ellguth, P. & Kohaut, S. (2017). Tarifbindung und betriebliche Interessenvertretung: Er

gebnisse aus dem IAB-Betriebspanel 2016. WSI-Mitteilungen, 70(4), 278–286.
Esposito, E. (1993). Der Computer als Medium und Maschine. Zeitschrift für Soziologie,

22(5), 338–354.
Faraj, S. & Sproull, L. (2000). Coordinating expertise in software development teams.

Management Science, 46(12), 1554–1568.
Felin, T., Zenger, T. R. & Tomsik, J. (2009). The knowledge economy: emerging orga

nizational forms, missing microfoundations, and key considerations for managing
human capital. Human Resource Management: Published in Cooperation with the School of
Business Administration, The University of Michigan and in alliance with the Society of Human
Resources Management, 48(4), 555–570.

Feuerstein, P. (2012). Viele Wege führen nach Indien: Reorganisation von Arbeit im Zuge der In
ternationalisierung der IT-Industrie. Göttingen: Universitätsverlag Göttingen.

Fischbach, R. (2016). Weshalb sind Softwareprojekte schwierig? In F. Fuchs-Kittowski
& W. Kriesel (Hg.), Informatik und Gesellschaft. Festschrift zum 80. Geburtstag von Klaus
Fuchs-Kittowski (S. 393–402). Berlin: Peter Lang.

Flecker, J., Haidinger, B. & Schönauer, A. (2013). Divide and serve: The labour process in
service value chains and networks. Competition & Change, 17(1), 6–23.

Flecker, J. & Hermann, C. (2011). The liberalization of public services: Company reactions
and consequences for employment and working conditions. Economic and Industrial
Democracy, 32(3), 523–544.

Flecker, J. & Holtgrewe, U. (2008). Überbetriebliche Arbeitsteilung: Auslagerung von Un

ternehmensfunktionen und die Folgen für Arbeit und Beschäftigung. Wirtschaft und
Gesellschaft, 34(3), 307–336.

Flecker, J. & Meil, P. (2010). Organisational restructuring and emerging service value
chains: Implications for work and employment. Work, Employment & Society, 24(4),
680–698.

Fleming, P. & Sturdy, A. (2011). ›Being yourself‹ in the electronic sweatshop: New forms
of normative control. Human Relations, 64(2), 177–200.

Floyd, C. (1992). Software Development as Reality Construction. In C. Floyd, H. Zül

lighoven, R. Budde, & R. Keil-Slawik (Hg.), Software Development and Reality Construc
tion (S. 86–100). Berlin, Heidelberg: Springer Berlin Heidelberg.

Foerderer, J., Kude, T., Schuetz, S. W. & Heinzl, A. (2019). Knowledge boundaries in en

terprise software platform development: Antecedents and consequences for platform
governance. Information Systems Journal, 29(1), 119–144.

Ford, R. C. & Randolph, W. A. (1992). Cross-functional structures: A review and integra

tion of matrix organization and project management. Journal of Management, 18(2),
267–294.

Frederick, J. & Zierau, T. (2011). SAP for Utilities: Das umfassende Handbuch für Energieversor
ger. Bonn: Galileo Press.

Friedman, A. (1977). Responsible autonomy versus direct control over the labour process.
Capital & Class, 1(1), 43–57.

354 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Friedman, A. L. & Cornford, D. S. (1993). Computer Systems Development: History, Organiza
tion and Implementation (2. Aufage.). Chichester: Wiley.

Friese, S. (2016). Grounded Theory computergestützt und umgesetzt mit ATLAS. ti. In

C. Equit & C. Hohage (Hg.), Handbuch Grounded Theory: Von der Methodologie zur For
schungspraxis (S. 483–507). Weinheim: Beltz Juventa.

Fromme, H. (2022, April 22). Allianz scheitert mit IT-Strategie. SZ, S. 16. München.

Funken, C. (2001). Modellierung der Welt. Wissenssoziologische Studien zur Software-Entwick
lung. Opladen: Leske + Budrich.

Funken, C., Stoll, A. & Hörlin, S. (2011). Die Projektdarsteller: Karriere als Inszenierung: Para
doxien und Geschlechterfallen in der Wissensökonomie. Wiesbaden: VS Verlag für Sozial

wissenschaften.

Gerber, C. & Krzywdzinski, M. (2019). Entgrenzung in der digitalen Onlinearbeit am

Beispiel von Crowdwork. In H. Hanau & W. Matiaske (Hg.), Entgrenzung von Arbeits
verhältnissen: Arbeitsrechtliche und sozialwissenschaftliche Perspektiven (S. 25–48). Baden-

Baden: Nomos.

Gereffi, G., Humphrey, J. & Sturgeon, T. (2005). The governance of global value chains.

Review of International Political Economy, 12(1), 78–104.

Gerst, D. (2006). Von der direkten Kontrolle zur indirekten Steuerung: eine empirische Untersu
chung der Arbeitsfolgen teilautonomer Gruppenarbeit. München: Hampp.

Giddens, A. (1988). Die Konstitution der Gesellschaft. Frankfurt a.M.; New York: Campus.

Gläser, J. & Laudel, G. (2006). Experteninterviews und qualitative Inhaltsanalyse als Instru
ment rekonstruierender Sozialforschung (2., durchges. Auflage). Wiesbaden: VS Verlag

für Sozialwissenschaften.

Gloger, B. (2009). Scrum. Produkte zuverlässig und schnell entwickeln. München: Carl Hanser.

Gottschalk, W. (2012). Strukturen und Organisation von Stadtwerken. In D. Bräunig &
W. Gottschalk (Hg.), Stadtwerke. Grundlagen, Rahmenbedingungen, Führung und Betrieb
(S. 53–73). Baden-Baden: Nomos.

Grant, D., Hall, R., Wailes, N. & Wright, C. (2006). The false promise of technological

determinism: The case of enterprise resource planning systems. New Technology, Work
and Employment, 21(1), 2–15.

Gregory, R. W., Beck, R. & Keil, M. (2013). Control balancing in information systems de

velopment offshoring projects. MIS Quarterly, 73(4), 1211–1232.

Griese, H. M. (2002). Rolle. In G. Endruweit & G. Trommsdorff (Hg.), Wörterbuch der Sozio
logie (2., völlig neubearb. u. erw. Auflage, S. 458–462). Stuttgart: Lucius und Lucius.

Grimshaw, D., Cooke, F.-L., Grugulis, I. & Vincent, S. (2002). New technology and chang

ing organisational forms: implications for managerial control and skills. New Technol
ogy, Work and Employment, 17(3), 186–203.

Guillemette, M. G. & Paré, G. (2012). Toward a new theory of the contribution of the IT

function in organizations. MIS Quarterly, 36(2), 529–551.

Hägler, M. (2022, Mai 13). Volkswagen ringt mit der Software. SZ, S. 14. München.

Hall, P. A. & Soskice, D. (2001). Varieties of capitalism: the institutional foundations of compar
ative advantage. Oxford: Oxford University Press.

Heckscher, C. (2015). From bureaucracy to networks. S. Edgell, H. Gottfried, & E. Granter,
The SAGE Handbook of the Sociology of Work and Employment, 245–258.

Literatur 355

Heidenreich, M., Kirch, B. & Mattes, J. (2008). Die organisatorische Einbettung von In

formationstechnologien in einem globalen Entwicklungsprojekt. In C. Funken & I.
Schulz-Schaeffer (Hg.), Digitalisierung der Arbeitswelt. Zur Neuordnung formaler und in
formeller Prozesse in Unternehmen (S. 193–219). Wiesbaden: VS Verlag für Sozialwissen

schaften.
Heidling, E. (2018). Projektarbeit. In F. Böhle, G. G. Voß, & G. Wachtler (Hg.), Handbuch

Arbeitssoziologie. Band 2: Akteure und Institutionen (S. 207–236). Wiesbaden: Springer
VS.

Helfen, M. & Wirth, C. (2020). Management von Arbeit in pluralen Netzwerkorganisatio
nen: Trends, Deutungen und Handlungsoptionen. Forschungsförderung Working Pa

per, Düsseldorf. https://www.boeckler.de/fpdf/HBS-007692/p_fofoe_WP_185_2020
.pdf. Zugegriffen: 11. Juli 2023.

Hellermann, J. (2000). Örtliche Daseinsvorsorge und gemeindliche Selbstverwaltung. Zum kom
munalen Betätigungs- und Gestaltungsspielraum unter den Bedingungen europäischer und
staatlicher Privatisierungs- und Deregulierungspolitik (Bd. 54). Tübingen: Mohr Siebeck.

Henderson, J., Dicken, P., Hess, M., Coe, N. & Yeung, H. W.-C. (2002). Global production
networks and the analysis of economic development. Review of International Political
Economy, 9(3), 436–464.

Herrigel, G. (2010). Manufacturing possibilities: creative action and industrial recomposition in
the United States, Germany, and Japan. Oxford [u.a.]: Oxford University Press.

Herrmann, B. J. (2012). Kommunale Strom- und Gaswirtschaft im Zeitalter der Anreiz

regulierung. In D. Bräunig & W. Gottschalk (Hg.), Stadtwerke. Grundlagen, Rahmenbe
dingungen, Führung und Betrieb (S. 285–304). Baden-Baden: Nomos.

Hirschfeld, K. (2000). Auf verschlungenen Pfaden zum High-Tech-Produkt. Das Digital

funkkonsortium – eine strategische Allianz und ihre Folgen. In F. Naschold, C. Dör

renbächer, H.-R. Meißner, & L. Renneke (Hg.), Kooperieren über Grenzen (S. 232–288).
Heidelberg: Physica.

Hirschheim, R. & Klein, H. K. (2012). A glorious and not-so-short history of the informa

tion systems field. Journal of the Association for Information Systems, 13(4), 5.
Hirsch-Kreinsen, H. (1995). Dezentralisierung: Unternehmen zwischen Stabilität und

Desintegration. Zeitschrift für Soziologie, 24(6), 422–435.
Hirsch-Kreinsen, H. (2002). Unternehmensnetzwerke – revisited. Zeitschrift für Soziolo

gie, 31(2), 106–124.
Hirsch-Kreinsen, H. (2020). Digitale Transformation von Arbeit: Entwicklungstrends und Ge

staltungsansätze. Stuttgart: Kohlhammer.
Hohlmann, B. (2007). Organisation SAP – soziale Auswirkungen technischer Systeme. Aachen:

Shaker.
HolacracyOne. (2023). Holacracy Constitution. Version 5.0. Holacracy. https://www.hola

cracy.org/constitution/5. Zugegriffen: 17. Mai 2023.
Holtgrewe, U. (2014). New new technologies: The future and the present of work in infor

mation and communication technology: The future and present of work in ICT. New
Technology, Work and Employment, 29(1), 9–24.

Höpner, M. (2003). Wer beherrscht die Unternehmen? Shareholder Value, Managerherrschaft
und Mitbestimmung in Deutschland. Frankfurt a.M.; New York: Campus.

https://www.boeckler.de/fpdf/HBS-007692/p_fofoe_WP_185_2020.pdf
https://www.boeckler.de/fpdf/HBS-007692/p_fofoe_WP_185_2020.pdf
https://www.holacracy.org/constitution/5
https://www.holacracy.org/constitution/5

356 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Howcroft, D. & Richardson, H. (2012). The back office goes global: Exploring connec

tions and contradictions in shared service centres. Work, Employment & Society, 26(1),

111–127.

Hvatum, L. & Kelly, A. (2005). What do I think about Conway’s Law now? Conclusions

of a EuroPLoP 2005 focus group. Gehalten auf der European Conference on Pattern

Languages of Programs, Kloster Irsee. https://www.allankelly.net/static/presentati

ons/EuroPLoP2005/ConwaysLawFocusGroup.pdf. Zugegriffen: 24. Mai 2023.

Illouz, E. (2008). Saving the Modern Soul: Therapy, Emotions, and the Culture of Self-

Help. Berkeley u.a.: University of California Press.

Jacobsen, H., Blazejewski, F. & Graf, P. (2017). Der verdeckte Transformationsprozess

der Energieversorger – Kollisionen von Rechtfertigungsordnungen. In S. Giaco

velli (Hg.), Die Energiewende aus wirtschaftssoziologischer Sicht (S. 93–117). Wiesbaden:

Springer VS.

Joerges, B., Czamiawska, B., Handelshögskolan, Göteborgs universitet, Gothenburg

University, Gothenburg Research Institute (GRI), & School of Business, E., and Law.

(1998). The Question of Technology, or How Organizations Inscribe the World. Orga
nization Studies, 19(3), 363–385.

Jürgens, U. (2007). Industrielle Entwicklungsdynamik und neue Formen der Governan

ce. In U. Jürgens (Hg.), Arbeitspolitik im Wandel. Entwicklung und Perspektiven der Arbeits
politik. (S. 117–152). Berlin: Edition Sigma.

Kalkowski, P. & Mickler, O. (2005). Projektorganisation in der IT- und Medienbranche. Heraus
forderungen an Management, Mitarbeiter und Interessenvertretung (Bd. 141). Düsseldorf:

Edition der Hans-Böckler-Stiftung.

Kalkowski, P. & Mickler, O. (2015). Kooperative Produktentwicklung: Fallstudien aus der Auto
mobilindustrie, dem Maschinenbau und der IT-Industrie. Baden-Baden: Edition Sigma.

Kaminski, A. (2012). Wie entsteht Software? Übersetzungen zwischen vertrautem Kon

text und formalem System: Die heiße Zone des Requirements Engineerings. In C.

Schilcher & M. Will-Zocholl (Hg.), Arbeitswelten in Bewegung (S. 85–123). Wiesbaden:

VS Verlag für Sozialwissenschaften.

Kaniadakis, A. (2012). ERP implementation as a broad socio-economic phenomenon:

The agora of techno-organisational change. Information Technology & People, 25(3),

259–280.

Kelle, U. & Kluge, S. (2010). Vom Einzelfall zum Typus: Fallvergleich und Fallkontrastierung in
der qualitativen Sozialforschung (2., überarb. Auflage). Wiesbaden: VS Verlag für Sozi

alwissenschaften.

Kern, H. & Schumann, M. (1984). Das Ende der Arbeitsteilung? Rationalisierung in der indus
triellen Produktion: Bestandsaufnahme, Trendbestimmung. München: Beck.

Kleemann, F. & Matuschek, I. (2008). Informalisierung als Komplement der Informa

tisierung von Arbeit. In C. Funken & I. Schulz-Schaeffer (Hg.), Digitalisierung der
Arbeitswelt. Zur Neuordnung formaler und informeller Prozesse in Unternehmen (S. 43–67).

Wiesbaden: VS Verlag für Sozialwissenschaften.

Klemm, M. & Liebold, R. (2017). Qualitative Interviews in der Organisationsforschung.

In S. Liebig, W. Matiaske, & S. Rosenbohm (Hg.), Handbuch Empirische Organisations
forschung (S. 299–324). Wiesbaden: Springer Gabler.

https://www.allankelly.net/static/presentations/EuroPLoP2005/ConwaysLawFocusGroup.pdf
https://www.allankelly.net/static/presentations/EuroPLoP2005/ConwaysLawFocusGroup.pdf

Literatur 357

Klischewski, R. (2009). Anarchie – ein Leitbild für die Informatik. In D. Krause & E.
J. Simon (Hg.), Im Widerspruch. Arno Rolf zum 65 (S. 75–88). Hamburg: Universität
Hamburg. http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/130/. Zuge

griffen: 25. April 2023.
Knoblauch, H. (1996). Arbeit als Interaktion: Informationsgesellschaft, Post-Fordismus

und Kommunikationsarbeit. Soziale Welt, 47(3), 344–362.
Ko, D.-G. & Kirsch, L. J. (2017). The hybrid IT project manager: One foot each in the IT

and business domains. International Journal of Project Management, 35(3), 307–319.
Kocyba, H. (1999). Wissensbasierte Selbststeuerung: Die Wissensgesellschaft als arbeits

politisches Kontrollszenario. In W. Konrad & W. Schumm (Hg.), Wissen und Arbeit.
Neue Konturen von Wissensarbeit (S. 92–119). Wiesbaden: VS Verlag für Sozialwissen

schaften.
Kolloch, M. & Golker, O. (2016). Staatliche Regulierung und Digitalisierung als Anteze

denzien für Innovationen in der Energiewirtschaft am Beispiel von REMIT. Zeitschrift
für Energiewirtschaft, 40(1), 41–54.

Kopplin, I. (2022, Juni 28). Siemens kauft Brightly Software. FAZ, S. 19. Frankfurt a.M.
Kotlarsky, J., van Fenema, P. C. & Willcocks, L. P. (2008). Developing a knowledge-based

perspective on coordination: The case of global software projects. In J. Kotlarsky, I.
Ilan, & P. C. van Fenema (Hg.), Knowledge Processes in Globally Distributed Contexts. Tech
nology, Work and Globalization (S. 74–105). London: Palgrave Macmillan.

Kruse, J. (2015). Qualitative Interviewforschung. Ein integrativer Ansatz (2. überarbeitete und
ergänzte Auflage). Weinheim; Basel: Beltz Juventa.

Kunda, G. (1992). Engineering culture. Control and commitment in a high-tech corporation.
Philadelphia, PA: Temple University Press.

Lamoreaux, N. R., Raff, D. M. & Temin, P. (2003). Beyond markets and hierarchies: To

ward a new synthesis of American business history. The American Historical Review,
108(2), 404–433.

Lee, M. Y. & Edmondson, A. C. (2017). Self-managing organizations: Exploring the limits
of less-hierarchical organizing. Research in Organizational Behavior, 37, 35–58.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9), 1060–1076.

Lenk, K. (2016). Gedanken zur Gestaltung technikdurchtränkter Arbeitsorganisation. In
F. Fuchs-Kittowski & W. Kriesel (Hg.), Informatik und Gesellschaft. Festschrift zum 80.
Geburtstag von Klaus Fuchs-Kittowski (Bd. 80, S. 351–360). Berlin: Peter Lang.

Levina, N. & Vaast, E. (2005). The emergence of boundary spanning competence in prac

tice: Implications for implementation and use of information systems. MIS Quarterly,
29(2), 335.

Ley, T. (2010). Einführung in die Methode der objektiv-hermeneutischen Sequenzanalyse. Frank

furt a.M.: Verlag für Polizeiwissenschaft.
Light, B. & Wagner, E. (2006). Integration in ERP environments: rhetoric, realities and

organisational possibilities. New Technology, Work and Employment, 21(3), 215–228.
Longen, J. (2015). Technikeinsatz und Verlagerungsprozesse in Unternehmensnetzwerken: Die Or

ganisation von Callcenter-Dienstleistungen in Deutschland. Wiesbaden: Springer VS.
Lütjen, H., Tietze, F. & Nuske, T. (2014). Innovationskooperationen von Stadtwerken: Eine em

pirische Untersuchung von Treibern und Barrieren. Norderstedt: Books on Demand.

http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/130/

358 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Lyytinen, K. & Newman, M. (2015). A tale of two coalitions – marginalising the users
while successfully implementing an enterprise resource planning system. Informati
on Systems Journal, 25(2), 71–101.

Mahr, B. (2009). Die Informatik und die Logik der Modelle. Informatik-Spektrum, 32(3),
228–249.

Mann, F. C. & Williams, L. K. (1960). Observations on the dynamics of a change to elec

tronic data-processing equipment. Administrative Science Quarterly, 5(2), 217–256.
Marquardt, R.-M. & Bontrup, H.-J. (2010). Beschäftigungsbedingungen und Unterneh

menskultur in der Elektrizitätswirtschaft. WSI-Mitteilungen, 63(6), 291–298.
Marrs, K. (2010). Herrschaft und Kontrolle in der Arbeit. In F. Böhle, G. G. Voß, &

G. Wachtler (Hg.), Handbuch Arbeitssoziologie (S. 331–356). Wiesbaden: VS Verlag für
Sozialwissenschaften.

Martin, J. L. (2017). Thinking Through Methods: A Social Science Primer. Chicago, IL: Univer

sity of Chicago Press.
Masak, D. (2006). IT-Alignment. IT-Architektur und Organisation. Heidelberg: Springer.
Massimo, F. (2022, Mai 23). How Amazon Invented »Plat-Fordism«. https://jacobin.co

m/2022/05/amazon-fordism-capitalism-logistics-vertical-horizontal-integration.
Zugegriffen: 12. April 2023.

Mayntz, R. (2009). The Changing Governance of Large Technical Infrastructure Systems
(2008). In R. Mayntz (Hg.), Über Governance: Institutionen und Prozesse politischer Rege
lung (S. 121–150). Frankfurt a.M.; New York: Campus.

Menz, W., Nies, S. & Sauer, D. (2019). Digitale Kontrolle und Vermarktlichung: Beschäf

tigtenautonomie im Kontext betrieblicher Strategien der Digitalisierung. PROKLA.
Zeitschrift für kritische Sozialwissenschaft, 49(195), 181–200.

Merkens, H. (2012). Auswahlverfahren, Sampling, Fallkonstruktion. In U. Flick, E.
von Kardorff, & I. Steinke (Hg.), Qualitative Forschung: ein Handbuch (9. Auflage,
S. 286–299). Reinbek: Rowohlt Taschenbuch.

Meuser, M. & Nagel, U. (2002). ExpertInneninterviews – vielfach erprobt, wenig be

dacht. In A. Bogner, B. Littig, & W. Menz (Hg.), Das Experteninterview. Theorie, Methode,
Anwendung (S. 71–93). Wiesbaden: VS Verlag für Sozialwissenschaften.

Meves, A.-K. (2021, Juni 24). RWE: Kommunale Aktionäre formieren sich neu. https://w
ww.derneuekaemmerer.de/beteiligungen/stadtwerke/rwe-kommunale-aktionaere
-formieren-sich-neu-18734. Zugegriffen: 7. Juni 2023.

Mezihorak, P. (2018). Competition for control over the labour process as a driver of relo

cation of activities to a shared services centre. Human Relations, 71(6), 822–844.
Mingers, J. & Willcocks, L. (2014). An integrative semiotic framework for information

systems: The social, personal and material worlds. Information and Organization, 24(1),
48–70.

Minssen, H. (1999). Von der Hierarchie zum Diskurs? Die Zumutungen der Selbstregulierung.
München: Hampp.

Minssen, H. (2011). Arbeit in der modernen Gesellschaft. Eine Einführung. Wiesbaden: VS Ver

lag für Sozialwissenschaften.
Miozzo, M. & Grimshaw, D. (2005). Modularity and innovation in knowledge-inten

sive business services: IT outsourcing in Germany and the UK. Research Policy, 34(9),
1419–1439.

https://jacobin.com/2022/05/amazon-fordism-capitalism-logistics-vertical-horizontal-integration
https://jacobin.com/2022/05/amazon-fordism-capitalism-logistics-vertical-horizontal-integration
https://www.derneuekaemmerer.de/beteiligungen/stadtwerke/rwe-kommunale-aktionaere-formieren-sich-neu-18734
https://www.derneuekaemmerer.de/beteiligungen/stadtwerke/rwe-kommunale-aktionaere-formieren-sich-neu-18734
https://www.derneuekaemmerer.de/beteiligungen/stadtwerke/rwe-kommunale-aktionaere-formieren-sich-neu-18734

Literatur 359

Mola, L., Russo, I., Giangreco, A. & Rossignoli, C. (2017). Who knows what? Reconfigur

ing the governance and the capabilities of the supply chain between physical and dig

ital processes in the fashion industry. Production Planning & Control, 28(16), 1284–1297.
Monstadt, J. (2004). Die Modernisierung der Stromversorgung. Regionale Energie- und Kli

mapolitik im Liberalisierungs- und Privatisierungsprozess. Wiesbaden.
Monteiro de Carvalho, M. (2013). An investigation of the role of communication in IT

projects. International Journal of Operations & Production Management, 34(1), 36–64.
Mormann, H. (2016). Das Projekt SAP: Zur Organisationssoziologie betriebswirtschaftlicher

Standardsoftware. Bielefeld: transcript.
Morozov, E. (2019, Februar 4). Capitalism’s New Clothes. Shoshana Zuboff ’s new book

on »surveillance capitalism« emphasizes the former at the expense of the latter.
The Baffler. https://thebaffler.com/latest/capitalisms-new-clothes-morozov. Zuge

griffen: 11. Juli 2023.
Müller, N. (2010). Reglementierte Kreativität: Arbeitsteilung und Eigentum im computerisierten

Kapitalismus. Berlin: Edition Sigma.
Müller, S. (2021, Juli 1). Stromnetz Berlin ist wieder im Eigentum des Landes Ber

lin. Vattenfall Newsroom. https://group.vattenfall.com/de/newsroom/pressemitteilu
ngen/2021/stromnetz-berlin-ist-wieder-im-eigentum-des-landes-berlin. Zugegrif

fen: 7. Juni 2023.
Mutch, A. (2010). Technology, organization, and structure – A morphogenetic approach.

Organization Science, 21(2), 507–520.
Nicolini, D., Mengis, J. & Swan, J. (2012). Understanding the role of objects in cross-dis

ciplinary collaboration. Organization Science, 23(3), 612–629.
Ortmann, G., Windeler, A., Becker, A. & Schulz, H.-J. (1990). Computer und Macht in Orga

nisationen. Mikropolitische Analysen. Wiesbaden: Springer Fachmedien.
Overbeck, H. (2017). Dienstleistungsarbeit. In H. Hirsch-Kreinsen & H. Minssen (Hg.),

Lexikon der Arbeits- und Industriesoziologie (2. Auflage, S. 103–106). Baden-Baden: No

mos.
Päffgen, J. & Sperling, C. (2019, Juni 24). EPEX: Datenpanne, Decoupling, Desaster? ht

tps://www.next-kraftwerke.de/energie-blog/epex-decoupling. Zugegriffen: 23. Juni
2023.

Peled, A. (2001). Outsourcing and political power: Bureaucrats, consultants, vendors and
public information technology. Public Personnel Management, 30(4), 495–514.

Peter, L. (1993). »Jeder irgendwie für sich allein«? Probleme und Chancen sozialer Inter

aktion am Arbeitsplatz. Zeitschrift für Soziologie, 22(6), 416–432.
Pfeiffer, S. (2021). Digitalisierung als Distributivkraft: Über das Neue am digitalen Kapitalismus.

Bielefeld: transcript.
Pfeiffer, S., Sauer, S. & Ritter, T. (2014). Agile Methoden als Werkzeug des Belastungsma

nagements? Eine arbeitsvermögensbasierte Perspektive. Arbeit, 23(2), 119–132.
Pfeiffer, S. & Schrape, J.-F. (2023). Digitale Transformation von Arbeit. In H. Hirsch-

Kreinsen, S. Pfeiffer, M. Will-Zocholl, & R. Bohn (Hg.), Lexikon der Arbeits- und In
dustriesoziologie (3., aktualisierte und erweiterte Auflage, S. 134–138). Baden-Baden:
Nomos.

Pohlmann, M. (2017). Management. In H. Hirsch-Kreinsen & H. Minssen (Hg.), Lexikon
der Arbeits- und Industriesoziologie (2. Auflage, S. 207–211). Baden-Baden: Nomos.

https://thebaffler.com/latest/capitalisms-new-clothes-morozov
https://group.vattenfall.com/de/newsroom/pressemitteilungen/2021/stromnetz-berlin-ist-wieder-im-eigentum-des-landes-berlin
https://group.vattenfall.com/de/newsroom/pressemitteilungen/2021/stromnetz-berlin-ist-wieder-im-eigentum-des-landes-berlin
https://www.next-kraftwerke.de/energie-blog/epex-decoupling
https://www.next-kraftwerke.de/energie-blog/epex-decoupling

360 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Pollock, N. & Williams, R. (2009). Software and Organisations: The Biography of the Enterprise-
Wide System or How SAP Conquered the World. London; New York, NY: Routledge.

Pollock, N., Williams, R. & D’Adderio, L. (2007). Global software and its provenance:

Generification work in the production of organizational software packages. Social
Studies of Science, 37(2), 254–280.

Pongratz, H. J. & Voß, G. G. (1997). Fremdorganisierte Selbstorganisation. Eine soziolo

gische Diskussion aktueller Managementkonzepte. German Journal of Human Resource
Management, 11(1), 30–53.

Ponte, D., Rossi, A. & Zamarian, M. (2009). Cooperative design efforts for the develop

ment of complex IT-artefacts. Information Technology & People, 22(4), 317–334.

Powell, W. W. (1990). Neither market nor hierarchy – Network forms of organization.

Research in Organizational Behavior, 12, 295–336.

Puranam, P., Alexy, O. & Reitzig, M. (2014). What’s »new« about new forms of organizing?

Academy of Management Review, 39(2), 162–180.

Püttner, G. (2012). Stadtwerke zwischen Daseinsvorsorge und Wettbewerb. In D. Bräu

nig & W. Gottschalk (Hg.), Stadtwerke. Grundlagen, Rahmenbedingungen, Führung und
Betrieb (S. 139–153). Baden-Baden: Nomos.

Ralph, P. (2015). The sensemaking-coevolution-implementation theory of software de

sign. Science of Computer Programming, 101, 21–41.

Ramioul, M. & De Vroom, B. (2009). Global value chain restructuring and the use of knowledge
and skills. HIVA-KU Leuven; Leuven.

Reich, B. H. & Benbasat, I. (2000). Factors that influence the social dimension of align

ment between business and information technology objectives. MIS Quarterly, 24(1),

81–113.

Remer, S. (2008). Soziale Strukturen und Informationstechnologie Die organisatorische Bedeu
tung von »Service Oriented Architectures«. Technische Universität. Abgerufen von http:/

/tuprints.ulb.tu-darmstadt.de/1191/2/Soziale_Strukturen_und_Informationstechn

ologie.pdf. Zugegriffen: 27. Februar 2024.

Rennstam, J. (2012). Object-control: A study of technologically dense knowledge work.

Organization Studies, 33(8), 1071–1090.

Robertson, B. J. (2007). Organization at the leading edge: Introducing HolacracyTM. Inte
gral Leadership Review, 7(3), 1–13.

Robertson, P. L. & Verona, G. (2006). Post-Chandlerian Firms: Technological Change and

Firm Boundaries. Australian Economic History Review, 46(1), 70–94.

Robey, D. & Sahay, S. (1996). Transforming work through information technology: A com

parative case study of geographic information systems in county government. Infor
mation Systems Research, 7(1), 93–110.

Rock, R., Ulrich, P. & Witt, F. H. (1990). Dienstleistungsrationalisierung im Umbruch. Opla

den: Westdeutscher Verlag.

Rödl und Partner. (2017). Energiewirtschaft: Digitalisierung der Geschäftsprozesse und IT im
Unternehmen transformieren – Potenziale nachhaltig nutzen. Nürnberg/Köln: Rödl & Part

ner.

Rohracher, H. (2007). Die Wechselwirkung technischen und institutionellen Wandels in
der Transformation von Energiesystemen. In U. Dolata & R. Werle (Hg.), Gesellschaft
und die Macht der Technik (S. 133–151). Frankfurt a.M.; New York: Campus.

http://tuprints.ulb.tu-darmstadt.de/1191/2/Soziale_Strukturen_und_Informationstechnologie.pdf
http://tuprints.ulb.tu-darmstadt.de/1191/2/Soziale_Strukturen_und_Informationstechnologie.pdf
http://tuprints.ulb.tu-darmstadt.de/1191/2/Soziale_Strukturen_und_Informationstechnologie.pdf

Literatur 361

Ross, A. & Chiasson, M. (2011). Habermas and information systems research: New direc

tions. Information and Organization, 21(3), 123–141.
Roth, I. (2018, Mai). Digitalisierung in der Energiewirtschaft. Technologische Trends und

ihre Auswirkungen auf Arbeit und Qualifizierung. Working Paper Förschungsförde

rung, Nummer 73. https://www.boeckler.de/pdf/p_fofoe_WP_073_2018.pdf. Zuge

griffen: 19. September 2018.
Rüegg-Stürm, J. & Young, M. (2001). Die Bedeutung neuer netzwerkartiger Führungs-

und Organisationsformen für die Dynamisierung von Unternehmungen. Die Unter
nehmung, 55(3), 187–213.

Sack, D. (2018). Zwischen europäischer Liberalisierung und Energiewende – Der Wandel
der Governanceregime im Energiesektor (1990–2016). In L. Holstenkamp & J. Radtke
(Hg.), Handbuch Energiewende und Partizipation (S. 81–99). Wiesbaden: Springer VS.

Sahaym, A., Steensma, H. K. & Schilling, M. A. (2007). The influence of information tech

nology on the use of loosely coupled organizational forms: An industry-level analysis.
Organization Science, 18(5), 865–880.

Sander, C. (2009). Kooperationen kommunaler Energieversorger: eine empirische Bestandsauf
nahme (No. 78). Münster: Westfälischen Wilhelms-Universität Münster.

Sarshar, K., Loos, P. & Weber, M. (2006). Einsatz der Informationsmodellierung bei der
Einführung betrieblicher Standardsoftware. Wirtschaftsinformatik, 48(2), 120–127.

Sauer, D. (2017). Systemische Rationalisierung/Wertschöpfungsketten. In H. Hirsch-
Kreinsen & H. Minssen (Hg.), Lexikon der Arbeits- und Industriesoziologie (2. Auflage,
S. 285–289). Baden-Baden: Nomos.

Sauer, D. (2018). Vermarktlichung und Vernetzung der Unternehmens- und Betriebsor

ganisation. In F. Böhle, G. G. Voß, & G. Wachtler (Hg.), Handbuch Arbeitssoziologie.
Band 2: Akteure und Institutionen (S. 177–206). Wiesbaden: Springer VS.

Schäfer, M. (2014). Kommunalwirtschaft: eine gesellschaftspolitische und volkswirtschaftliche
Analyse. Wiesbaden: Springer Gabler.

Schaupp, S. (2021). Technopolitik von unten. Algorithmische Arbeitssteuerung und kybernetische
Proletarisierung. Berlin: Matthes & Seitz.

Schimank, U. & Hamp, A. (2010). Handeln und Strukturen: Einführung in die akteurtheoreti
sche Soziologie (4., völlig überarbeitete Auflage). Weinheim: Juventa Verlag.

Schiek, D. (2022). Schriftliche Online-Interviews in der qualitativen Sozialforschung: zur
methodologischen Begründung einer neuen Forschungspraxis. Forum Qualitative So
zialforschung, 23(1).

Schilcher, C. & Diekmann, J. (2012). Arbeit, Informatisierung und die neue Rolle des Wis

sens. In C. Schilcher & M. Will-Zocholl (Hg.), Arbeitswelten in Bewegung (S. 25–57).
Wiesbaden: VS Verlag für Sozialwissenschaften.

Schlosser, F., Beimborn, D., Weitzel, T. & Wagner, H.-T. (2015). Achieving social align

ment between business and IT – An empirical evaluation of the efficacy of IT gover

nance mechanisms. Journal of Information Technology, 30(2), 119–135.
Schmiede, R. (2006). Wissen und Arbeit im »Informational Capitalism«. In A. Baukro

witz, T. Berker, S. Pfeiffer, R. Schmiede, & M. Will (Hg.), Informatisierung der Arbeit –
Gesellschaft im Umbruch (S. 457–492). Berlin: Edition Sigma.

Schmiede, R. (2015). Homo faber digitalis? Zur Dialektik von technischem Fortschritt
und Arbeitsorganisation. Mittelweg 36, 24(6), 37–58.

https://www.boeckler.de/pdf/p_fofoe_WP_073_2018.pdf

362 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Schmiede, R. (2017). Informationsgesellschaft. In H. Hirsch-Kreinsen & H. Minssen
(Hg.), Lexikon der Arbeits-und Industriesoziologie (2. Auflage, S. 187–190). Baden-Baden:
Nomos.

Schmierl, K. & Pfeiffer, S. (2005). Lego-Logik der kapitalistischen »Netzwerkökonomie »
– Theoretische Spekulationen zum Wandel von Betrieb und Technik. Die Organisation
der Arbeit. München/Mering: Hampp, 43–66.

Schöneich, M. (2012). Strukturwandel der Stadtwerke. In D. Bräunig & W. Gottschalk
(Hg.), Stadtwerke. Grundlagen, Rahmenbedingungen, Führung und Betrieb (S. 73–93). Ba

den-Baden: Nomos.
Schulz, M. & Ruddat, M. (2012). »Let’s talk about sex!« Über die Eignung von Telefonin

terviews in der qualitativen Sozialforschung. Forum Qualitative Sozialforschung, 13(3).
Schulz-Schaeffer, I. (1996). Software-Entwicklung zwischen Ingenieur- und Design

wissenschaft: Überzeugungskraft und nützliche Widersprüchlichkeit von Software-
Engineering und Software-Gestaltung. In H. D. Hellige (Hg.), Technikleitbilder auf
dem Prüfstand: Das Leitbild-Assessment aus informatik- und computerhistorischer Sicht
(S. 115–140). Berlin: Edition Sigma.

Schulz-Schaeffer, I. (1999). Technik und die Dualität von Ressourcen und Routinen:
zur sozialen Bedeutung gegenständlicher Technik. Zeitschrift für Soziologie, 28(6),
409–428.

Schulz-Schaeffer, I. & Bottel, M. (2018). Die Herstellung transnational mobiler Arbeits

tätigkeiten in der Softwareentwicklung. In S. Quack, I. Schulz-Schaeffer, K. Shire, &
A. Weiß (Hg.), Transnationalisierung der Arbeit (S. 99–127). Wiesbaden: Springer VS.

Schulz-Schaeffer, I. & Funken, C. (2008). Das Verhältnis von Formalisierung und Infor

malität betrieblicher Arbeits- und Kommunikationsprozesse und die Rolle der Infor

mationstechnik. In C. Funken & I. Schulz-Schaeffer (Hg.), Digitalisierung der Arbeits
welt. Zur Neuordnung formaler und informeller Prozesse in Unternehmen (S. 11–39). Wies

baden: VS Verlag für Sozialwissenschaften.
Schwarz, G. M. & Brock, D. M. (1998). Waving hello or waving good-bye? Organizational

change in the information age. The International Journal of Organizational Analysis, 6(1),
65–90.

Schwintowski, H.-P. (2012). Public Corporate Governance öffentlicher Unternehmen für
Stadtwerke. In D. Bräunig & W. Gottschalk (Hg.), Stadtwerke. Grundlagen, Rahmenbe
dingungen, Führung und Betrieb (S. 319–343). Baden-Baden: Nomos.

Seeliger, A., Michalik, S., Roller, J. & Kühnhenrich, D. (2019). Bürokratiekosten der Ener

giewende. WISTA – Wirtschaft und Statistik, 71(6), 59–72.
Sesay, A. & Ramirez, R. (2016). Theorizing the IT Governance role in IT sourcing research.

AMCIS 2016 Proceedings. 15.
https://aisel.aisnet.org/amcis2016/SCU/Presentations/15. Zugegriffen: 24. Mai
2023.

Shaikh, M. & Henfridsson, O. (2017). Governing open source software through coordina

tion processes. Information and Organization, 27(2), 116–135.
Siegele, L. & Zepelin, J. (2009). Matrix der Welt: SAP und der neue globale Kapitalismus. Frank

furt a.M.; New York: Campus.

https://aisel.aisnet.org/amcis2016/SCU/Presentations/15

Literatur 363

Silva, L. & Backhouse, J. (1997). Becoming part of the furniture: The institutionalization
of information systems. In A. S. Lee, Liebenau J. & DeGross J. I. (Hg.), Information
Systems and Qualitative Research (S. 389–414). Boston (MA): Springer.

Silva, L. O. (2005). Theoretical Approaches for Researching Power and Information Sys

tems: The Benefit of a Machiavellian View. In D. Howcroft & E. M. Trauth (Hg.), Hand
book of Critical Information Systems Research: Theory and Application (S. 47–69). Chelten

ham: Edward Elgar.
Song, M., Berends, H., Van der Bij, H. & Weggeman, M. (2007). The effect of IT and co-

location on knowledge dissemination. Journal of Product Innovation Management, 24(1),
52–68.

Sonnenholzner, J. (2020). Horch, was kommt von draußen rein. Outsourcing – Nur ein
verschwindend geringer Teil der IT entsteht in den Stadtwerken selbst. Ohne Offen

heit für externes Wissen geht es nicht mehr. Was jedoch ist das richtige Maß? ZfK –
Zeitung für kommunale Wirtschaft, (1), 13.

Sperling, C. (2019, Februar 11). Wer die Netzfrequenz stört. https://www.next-kraftwer
ke.de/energie-blog/stromnetzfrequenz. Zugegriffen: 28. April 2023.

Srikanth, K. & Puranam, P. (2014). The firm as a coordination system: Evidence from soft

ware services offshoring. Organization Science, 25(4), 1253–1271.
Srnicek, N. (2017). Platform Capitalism. Cambridge; Malden, MA: Polity Press.
Staab, P. (2019). Digitaler Kapitalismus: Markt und Herrschaft in der Ökonomie der Unknapp

heit. Berlin: Suhrkamp.
Stadtwerke München GmbH (Hg.). (2023, April). Geschäftsbericht 2022. https://www.s

wm.de/dam/doc/swm/swm-geschaeftsbericht.pdf. Zugegriffen: 20. April 2023.
Statistisches Bundesamt (Hg.). (2011, Juli 13). 2020 Beschäftigung, Umsatz, Investi

tionen und Kostenstruktur der Rechtlichen Einheiten in der Energieversorgung,
Wasserversorgung, Abwasser- und Abfallentsorgung, Beseitigung von Umweltver

schmutzungen. https://www.destatis.de/DE/Themen/Branchen-Unternehmen/En
ergie/Beschaeftigte-Umsatz-Investitionen/Publikationen/Downloads-Beschaeftigt
e/beschaeftigung-umsatz-kostenstruktur-2040610207004.pdf?__blob=publication
File. Zugegriffen: 2. Mai 2023.

Statistisches Bundesamt (Hg.). (2022, Juni 3). 2009 Beschäftigung, Umsatz, Investi

tionen und Kostenstruktur der Rechtlichen Einheiten in der Energieversorgung,
Wasserversorgung, Abwasser- und Abfallentsorgung, Beseitigung von Umweltver

schmutzungen. Zugegriffen: 22. Juli 2019.
Steinke, I. (2012). Gütekriterien qualitativer Forschung. In U. Flick, E. von Kardorff, &

I. Steinke (Hg.), Qualitative Forschung: Ein Handbuch (9. Auflage, S. 319–331). Reinbek:
Rowohlt Taschenbuch.

Strulik, T. (2017). Wissensgesellschaft. In H. Hirsch-Kreinsen & H. Minssen (Hg.), Lexi
kon der Arbeits- und Industriesoziologie (2. Auflage, S. 322–325). Baden-Baden: Nomos.

Sutton, R. I. & Staw, B. M. (1995). What theory is not. Administrative Science Quarterly, 40(3),
371–384.

Svejvig, P. & Jensen, T. B. (2013). Making sense of enterprise systems in institutions: A
case study of the re-Implementation of an accounting system. Scandinavian Journal of
Information Systems, 25(1), 3–36.

https://www.next-kraftwerke.de/energie-blog/stromnetzfrequenz
https://www.next-kraftwerke.de/energie-blog/stromnetzfrequenz
https://www.swm.de/dam/doc/swm/swm-geschaeftsbericht.pdf
https://www.swm.de/dam/doc/swm/swm-geschaeftsbericht.pdf
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Beschaeftigte-Umsatz-Investitionen/Publikationen/Downloads-Beschaeftigte/beschaeftigung-umsatz-kostenstruktur-2040610207004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Beschaeftigte-Umsatz-Investitionen/Publikationen/Downloads-Beschaeftigte/beschaeftigung-umsatz-kostenstruktur-2040610207004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Beschaeftigte-Umsatz-Investitionen/Publikationen/Downloads-Beschaeftigte/beschaeftigung-umsatz-kostenstruktur-2040610207004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Beschaeftigte-Umsatz-Investitionen/Publikationen/Downloads-Beschaeftigte/beschaeftigung-umsatz-kostenstruktur-2040610207004.pdf?__blob=publicationFile

364 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Swan, J. & Scarbrough, H. (2005). The politics of networked innovation. Human Relations,
58(7), 913–943.

Sydow, J. & Helfen, M. (2020). Work and Employment in Fluid Organizational Forms.
In B. J. Hoffman, M. K. Shoss, & L. A. Wegman (Hg.), The Cambridge Handbook of the
Changing Nature of Work (S. 214–236). Cambridge: Cambridge University Press.

Sydow, J. & Windeler, A. (2000). Steuerung von und in Netzwerken – Perspektiven, Kon

zepte, vor allem aber offene Fragen. In J. Sydow (Hg.), Steuerung von Netzwerken. Kon
zepte und Praktiken (S. 1–24). Opladen: Westdeutscher Verlag.

Symon, G. (2000). Information and communication technologies and the network orga

nization: A critical analysis. Journal of Occupational and Organizational Psychology, 73(4),
389–414.

Thompson, P. & Laaser, K. (2021). Beyond technological determinism: Revitalising labour
process analyses of technology, capital and labour. Work in the Global Economy, 1(1–2),
139–159.

Thornberg, R. (2012). Informed grounded theory. Scandinavian Journal of Educational Re
search, 56(3), 243–259.

Tiwana, A. & Kim, S. K. (2016). Concurrent IT sourcing: Mechanisms and contingent ad

vantages. Journal of Management Information Systems, 33(1), 101–138.
Trianel GmbH (Hg.). (2022). Geschäfts- und Nachhaltigkeitsbericht 2021. https://www.

trianel.com/fileadmin/user_upload/unternehmen/zahlen_und_fakten/trianel-gesc
haefts-und-nachhaltigkeits-bericht-2021.pdf. Zugegriffen: 28. April 2023.

Tsamenyi, M., Cullen, J. & González, J. M. G. (2006). Changes in accounting and finan

cial information system in a Spanish electricity company: A new institutional theory
analysis. Management Accounting Research, 17(4), 409–432.

Upadhya, C. (2009). Controlling offshore knowledge workers: Power and agency in In

dia’s software outsourcing industry. New Technology, Work and Employment, 24(1), 2–18.
Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of

embeddedness. Administrative science quarterly, 35–67.
Valorinta, M. (2011). IT alignment and the boundaries of the IT function. Journal of Infor

mation Technology, 26(1), 46–59.
van Fenema, P. C., Keers, B. & Zijm, H. (2014). Interorganizational Shared Services: Cre

ating Value Across Organizational Boundaries. In T. Bondarouk (Hg.), Shared Services
as a New Organizational Form (S. 175–217). Bingley: Emerald Group Publishing Lim

ited.
Vitols, S. (2002). Shareholder value, management culture and production regimes in the

transformation of the German chemical-pharmaceutical industry. Competition and
Change, 6(3), 309–325.

Vogel, O., Arnold, I., Chughtai, A., Ihler, E., Kehrer, T., Mehlig, U. & Zdun, U. (2009).
Software-Architektur. Grundlagen – Konzepte – Praxis (2. Auflage). Heidelberg: Spektrum
Akademischer Verlag.

Volkoff, O., Strong, D. M. & Elmes, M. B. (2007). Technological embeddedness and orga

nizational change. Organization Science, 18(5), 832–848.
von Jouanne-Diedrich, H., Zarnekow, R. & Brenner, W. (2005). Industrialisierung des

IT-Sourcings. HMD-Praxis der Wirtschaftsinformatik, 245, 18–27.

https://www.trianel.com/fileadmin/user_upload/unternehmen/zahlen_und_fakten/trianel-geschaefts-und-nachhaltigkeits-bericht-2021.pdf
https://www.trianel.com/fileadmin/user_upload/unternehmen/zahlen_und_fakten/trianel-geschaefts-und-nachhaltigkeits-bericht-2021.pdf
https://www.trianel.com/fileadmin/user_upload/unternehmen/zahlen_und_fakten/trianel-geschaefts-und-nachhaltigkeits-bericht-2021.pdf

Literatur 365

von Petersdorff, W. (2013, November 17). Lichtblick macht den Strom schlau. FAZ, S. 28.
Frankfurt a.M.

Vormbusch, U. (2002). Diskussion und Disziplin. Gruppenarbeit als kommunikative und kalku
lative Praxis. Frankfurt a.M.; New York: Campus.

Voß, J.-P. & Bauknecht, D. (2007). Der Einfluss von Technik auf Governance-Innovatio

nen: Regulierung zur gemeinsamen Netznutzung in Infrastruktursystemen. In U.
Dolata & R. Werle (Hg.), Gesellschaft und die Macht der Technik. Sozioökonomischer und in
stitutioneller Wandel durch Technisierung (S. 109–131). Frankfurt a.M.; New York: Cam

pus.
Walker, E.-M. (2016). »Dadurch wird unsere Arbeit weiter nach vorne verlagert in der

Prozesskette.« Organisationale Anerkennungsphänomene bei der Einführung eines
digitalen Warenwirtschaftssystems. AIS Studien, 9(1).

Waterson, P. E., Clegg, C. W. & Axtell, C. M. (1997). The dynamics of work organization,
knowledge and technology during software development. International Journal of Hu
man-Computer Studies, 46(1), 79–101.

Weber, M. (1980). Wirtschaft und Gesellschaft. Grundriß der verstehenden Soziologie (5. rev.
Auflage). Tübingen: Mohr.

Weber, M. (1988). Gesammelte Politische Schriften. (J. Winckelmann, Hg.). Tübingen: Mohr.
Weishaupt, S. & Hösl, G. (2017). Subjektivierendes Arbeitshandeln beim Produktma

nagement. In F. Böhle (Hg.), Arbeit als Subjektivierendes Handeln. Handlungsfähigkeit bei
Unwägbarkeiten und Ungewissheit (S. 493–506). Wiesbaden: Springer VS.

Weizenbaum, J. (1978). Die Macht der Computer und die Ohnmacht der Vernunft (14. Auflage).
Frankfurt a.M.: Suhrkamp.

Wenger, E. (1999). Communities of Practice: Learning, Meaning, and Identity. Cambridge, MA:
Cambridge University Press.

Weyer, J. (2010). Netzwerke in der Techniksoziologie. Karriere und aktueller Stellen

wert eines Begriffs. In C. Stegbauer & R. Häußling (Hg.), Handbuch Netzwerkforschung
(S. 847–855). Wiesbaden: VS Verlag für Sozialwissenschaften.

Wiener, M., Mähring, M., Remus, U. & Saunders, C. (2016). Control configuration and
control enactment in information systems projects. MIS Quarterly, 40(3), 741–774.

Wiesche, M., Jurisch, M. C., Yetton, P. W. & Krcmar, H. (2017). Grounded theory method

ology in information systems research. MIS Quarterly, 41(3), 685–701.
Wiesenthal, H. (2000). Markt, Organisation und Gemeinschaft als »zweitbeste« Verfah

ren sozialer Koordination. In R. Werle & U. Schimank (Hg.), Gesellschaftliche Komple
xität und kollektive Handlungsfähigkeit (S. 44–73). Frankfurt a.M.; New York: Campus.

Wilkesmann, U. (2005). Die Organisation von Wissensarbeit. Berliner Journal für Soziolo
gie, 15(1), 55–72.

Williams, P. (2002). The competent boundary spanner. Public Administration, 80(1),
103–124.

Williamson, O. E. (1985). The Economic Institutions of Capitalism: Firms, Markets, Relational
Contracting. New York: Free Press.

Willke, H. (1998). Organisierte Wissensarbeit. Zeitschrift für Soziologie, 27(3), 161–177.
Windeler, A. & Wirth, C. (2010). Betriebliche und überbetriebliche Organisation: Netz

werke und Arbeit. In F. Böhle, G. G. Voß, & G. Wachtler (Hg.), Handbuch Arbeitssozio
logie (S. 569–596). Wiesbaden: VS Verlag für Sozialwissenschaften.

366 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Windolf, P. (Hg.). (2005). Finanzmarkt-Kapitalismus. Analysen zum Wandel von Produktions
regimen. Wiesbaden: VS Verlag für Sozialwissenschaften.

Wohlin, C., Šmite, D. & Moe, N. B. (2015). A general theory of software engineering: Bal

ancing human, social and organizational capitals. Journal of Systems and Software, 109,

229–242.

Wolff, B., Fuchs-Kittowski, K., Klischewski, R., Möller, A. & Rolf, A. (1999). Organisati

onstheorie als Fenster zur Wirklichkeit. In J. Becker, W. König, R. Schütte, O. Wendt

& S. Zelewski (Hg.), Wirtschaftsinformatik und Wissenschaftstheorie. Bestandsaufnahme
und Perspektiven (S. 289–327). Wiesbaden: Gabler.

Wood, A. J., Graham, M., Lehdonvirta, V. & Hjorth, I. (2019). Good gig, bad gig: autonomy

and algorithmic control in the global gig economy. Work, Employment and Society, 33(1),

56–75.

Wu, Q., Zhang, H., Li, Z. & Liu, K. (2019). Labor control in the gig economy: Evidence

from Uber in China. Journal of Industrial Relations, 61(4), 574–596.

Zammuto, R. F., Griffith, T. L., Majchrzak, A., Dougherty, D. J. & Faraj, S. (2007). Infor

mation Technology and the Changing Fabric of Organization. Organization Science,
18(5), 749–762.

ZDNet Staff. (2004, Juli 20). Understanding software as a commodity. What does it

mean to commoditise software? And is the definition of what a commodity is actu

ally clear? https://www.zdnet.com/article/understanding-software-as-a-commodit

y/. Zugegriffen: 12. April 2023.

ZfK. (2019a, Februar 25). Vattenfall und EnBW kooperieren bei White-Label-Lö

sung. https://www.zfk.de/unternehmen/nachrichten/vattenfall-und-enbw-kooper

ieren-bei-white-label-loesung. Zugegriffen: 12. April 2023.

ZfK. (2019b, Juni 3). EnBW und Powercloud bieten Komplettlösung für Lieferan

ten. https://www.zfk.de/digitalisierung/it/enbw-und-powercloud-bieten-komplett

loesung-fuer-lieferanten. Zugegriffen: 12. April 2023.

ZfK. (2022a, Februar 1). Plattform für Mieterstrom, Elektromobilität, Heizkostenverord

nung und Co. https://www.zfk.de/digitalisierung/it/plattform-fuer-hkvo-mieterstr

om-elektromobilitaet-und-co. Zugegriffen: 12. April 2023.

ZfK. (2022b, Juli 2). Chancen und Herausforderungen von Smart-City-Plattfor

men. https://www.zfk.de/digitalisierung/smart-city-energy/chancen-und-herausf

orderungen-von-smart-city-plattformen. Zugegriffen: 12. April 2023.

Zhu, K. X. & Zhou, Z. Z. (2012). Research note – Lock-in strategy in software compe

tition: Open-source software vs. proprietary software. Information Systems Research,

23(2), 536–545.

Ziegler, A. (2020). Der Aufstieg des Internet der Dinge: Wie sich Industrieunternehmen zu Tech-
Unternehmen entwickeln. Frankfurt a.M.; New York: Campus.

Zuboff, S. (1988). The Age of the Smart Machine. New York, NY: Basic Books.

Zuboff, S. (2018). Das Zeitalter des Überwachungskapitalismus. Frankfurt a.M.; New York:

Campus Verlag.

https://www.zdnet.com/article/understanding-software-as-a-commodity/
https://www.zdnet.com/article/understanding-software-as-a-commodity/
https://www.zfk.de/unternehmen/nachrichten/vattenfall-und-enbw-kooperieren-bei-white-label-loesung
https://www.zfk.de/unternehmen/nachrichten/vattenfall-und-enbw-kooperieren-bei-white-label-loesung
https://www.zfk.de/digitalisierung/it/enbw-und-powercloud-bieten-komplettloesung-fuer-lieferanten
https://www.zfk.de/digitalisierung/it/enbw-und-powercloud-bieten-komplettloesung-fuer-lieferanten
https://www.zfk.de/digitalisierung/it/plattform-fuer-hkvo-mieterstrom-elektromobilitaet-und-co
https://www.zfk.de/digitalisierung/it/plattform-fuer-hkvo-mieterstrom-elektromobilitaet-und-co
https://www.zfk.de/digitalisierung/smart-city-energy/chancen-und-herausforderungen-von-smart-city-plattformen
https://www.zfk.de/digitalisierung/smart-city-energy/chancen-und-herausforderungen-von-smart-city-plattformen

Anhang

Übersicht Interviews

Tabelle 31: Übersicht Interviews

Fall Position Organisation Datum Dauer Geschlecht
INTERN1 Teamleiter IT EVU 14.07.2020 01:55:11 m
INTERN1 Software-Architekt EVU 24.11.2021 01:16:24 m
INTERN1 Betriebsrat EVU 01.12.2021 00:56:24 m
INTERN1 Programmierer EVU 14.12.2021 01:12:12 m
INTERN1 Monteur EVU 25.02.2022 00:44:59 m
INTERN1 Anforderungsmanagerin EVU 16.05.2022 00:56:54 w
INTERN2 IT-Manager Fachbereich EVU 02.07.2020 01:51:53 m
INTERN2 Programmierer EVU 15.07.2021 00:54:47 m
INTERN2 Product Owner EVU 15.07.2021 01:01:59 m
INTERN2 Anforderungsmanagerin EVU 28.07.2021 00:58:53 w
INTERN2 Anwender EVU 03.08.2021 01:05:36 m
INTERN2 Scrum Master EVU 15.10.2021 01:10:49 m
INTERN2 Betriebsrat EVU 18.11.2021 00:56:54 m
INTERN2 Manager Abteilung EVU 03.12.2021 00:54:00 m
KOOP1 Digitalisierungsmanager IT-DL 17.03.2020 01:19:57 m
KOOP1 Anforderungsmanager IT-DL 25.03.2020 01:35:47 m
KOOP1 Key Account Manager IT-DL 21.04.2020 01:30:17 m
KOOP1 Manager IT-DL 28.04.2020 01:28:09 m
KOOP1 Prozessmanagerin EVU1 19.05.2021 00:58:20 w
KOOP1 Betriebsrat EVU3 29.07.2021 00:54:39 m

368 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

KOOP1 Programmierer1 IT-DL 16.09.2021 00:38:09 m

KOOP1 Programmierer2 IT-DL 14.10.2021 01:00:25 m

KOOP1 Digitalisierungsmanager EVU2 19.10.2021 00:38:54 m

KOOP1 Betriebsrat EVU2 03.11.2021 01:00:06 m

KOOP1 Anwenderin EVU1 18.11.2021 00:47:14 w

KOOP1 Anforderungsmanager EVU2 18.11.2021 01:25:47 m

KOOP1 Betriebsrat EVU4 23.11.2021 01:07:51 m

KOOP1 Applikationsbetreuer EVU2 30.11.2021 01:11:13 m

KOOP1 Prozessmanager EVU3 02.12.2021
07.12.2021

00:58:14
00:32:29

m

KOOP1 Anwenderin EVU3 16.12.2021 00:58:23 w

KOOP1 Teamleiter EVU2 20.05.2022 00:51:38 m

KOOP2 Sachbearbeiter EVU1 21.04.2020 00:50:39 m

Fall Position Organisation Datum Dauer Geschlecht

KOOP2 Teamleiter Beratung/Entwicklung IT-DL 15.06.2020 02:38:46 m

KOOP2 IT-Berater IT-DL 23.07.2020 01:27:53 m

KOOP2 Abteilungsleiter IT-DL 07.08.2020 01:27:09 m

KOOP2 Programmierer IT-DL 15.09.2021 00:52:20 m

KOOP2 Change Managerin EVU2 16.09.2021 00:53:07 w

KOOP2 IT-Projektleiter EVU2 29.10.2021 00:50:29 m

KOOP2 Manager Digitalisierung EVU3 21.01.2022 00:51:37 m

KOOP2 IT-Koordinator EVU2 27.01.2022 00:56:26 m

KOOP2 Sachbearbeiterin EVU2 11.02.2022 00:55:45 w

KOOP2 Betriebsrätin EVU2 16.02.2022 00:58:43 w

KOOP2 Teamleiterin EVU2 01.03.2022 01:04:29 w

KOOP3 Teamleiter EVU1 30.03.2020 01:10:19 m

KOOP3 Programmierer Softwarefir

ma

22.04.2021

29.04.2021

00:28:57
00:20:04

m

KOOP3 Teamleiter und Product Owner IT-DL 13.10.2021 00:56:51 m

KOOP3 Gruppenleiter EVU3 22.10.2021 00:46:45 m

PAKET
Lösungsarchitekt

Softwarefir

ma 01.04.2020 00:46:38
m

PAKET
Partnermanager

Softwarefir

ma 01.04.2020 00:39:54
m

PAKET
Führungskraft

Softwarefir

ma 08.04.2020 00:40:17
m

PAKET IT-Leiter EVU1 18.05.2020 01:14:06 m

Anhang 369

PAKET IT-Leiter EVU2 04.03.2021 01:31:21 m
PAKET Teamleiter EVU2 06.05.2021 01:22:11 m
PAKET Anwendungsbetreuerin EVU3 12.10.2021 01:01:08 w
PAKET Gruppenleiter EVU4 29.10.2021 00:52:00 m
PAKET Teamleiterin EVU5 29.11.2021 01:11:23 w

PAKET Programmierer Softwarefir

ma 09.12.2021 01:04:24 m

PAKET Gruppenleiter EVU3 23.02.2022 00:45:12 m
PAKET Betriebsrätin EVU6 15.07.2022 00:56:40 w
START

UP Programmierer1 Start-up
23.01.2023 00:36:04 m

START

UP Programmierer2 Start-up
17.02.2023 00:35:51 m

START

UP
Product Ownerin Start-up 04.10.2022 per

E-Mail w

Leitfaden für Interviews

Der Leitfaden stellt eine Sammlung von Fragen dar, aus denen je nach Interview dann die
entsprechenden ausgewählt oder bei speziellen Interviews zusätzliche formuliert wur

den. Am Kopf des Leitfadens hatte ich immer die folgende Gedächtnisstütze für mich
angebracht:

Zur Erinnerung: Was vor dem Interview gesagt werden muss

• Ziel der Untersuchung, Rolle, die das Interview für die Erreichung des Ziels spielt
• Meine Hintergrund als IT-Berater
• Hinweis: Daten sind geschützt und Anonymität der Untersuchung ist gesichert

Zur Erinnerung: Bitte beachten

• Erfahrungen, Wissen, Hintergrund, Meinung: hypothetische/erzählanregende/detaillieren
de Fragen

• sozialer Prozess soll rekonstruiert werden können
• offen = Frage hat keinen Einfluss auf die Antwort
• Pausen zulassen
• Nicht Verstandenes klären, Details erfragen (Teile der Antwort wiederholen/präzisieren;

»Könnten Sie das bitte nochmal erklären?«)

370 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

Einstieg/Kernfragen

• Was ist Ihre Position im Unternehmen und wie sind Sie dazu gekommen?

• Beschreiben Sie bitte, was Ihre Tätigkeiten sind!
• Wie sieht ein gewöhnlicher Arbeitstag bei Ihnen aus?
• Mit welcher Software arbeiten Sie?
• Haben Sie auch schon einmal mit einer anderen Software gearbeitet?
• Was hat sich, seitdem Sie in der Firma arbeiten, Wesentliches geändert, was die Soft

ware anbelangt?
• Was hat sich sonst Wesentliches verändert?
• Inwiefern waren Sie in Projekten beteiligt die letzten Jahre?
• Wie verhält sich der Arbeitsanteil von Projekt- zur Linienarbeit?
• Mit welchen anderen Abteilungen Ihrer Firma müssen Sie sich für Ihre Arbeit ab

stimmen?

• Inwiefern arbeiten Sie mit Ihrer IT-Abteilung zusammen?

• Welche Aufgaben übernimmt Ihre interne IT?
• Inwiefern arbeiten Sie mit externen IT-DL zusammen?

• Sind Sie Teil eines Teams?

• Wie viele Mitarbeiter hat dieses Team?

• Wie verortet sich das Team in der Organisation?
• Welche Qualifikationsprofile sind vorhanden?
• Wie hoch ist der Automatisierungsgrad in Ihrem Arbeitsbereich?
• Welche Folgen hatte das für Ihre Arbeit?
• Wie könnte aus Ihrer Sicht der Automatisierungsgrad erhöht werden?
• Inwiefern arbeiten Sie mit dem Softwareanbieter zusammen?

• Sind Sie an irgendwelchen Treffen bezüglich der Software beteiligt?
• Inwiefern können Sie Anforderungen aufnehmen bzw. Änderungsvorschläge für die

Software machen?

• Inwiefern arbeiten Sie mit einem Ticketsystem?

• Wie viele Tickets haben Sie abgearbeitet?
• Inwiefern nehmen Sie selber Einstellungen an der Software vor?
• Wie stark verwenden Sie den Standard der Software?
• Welche Rolle spielen individuelles Customizing oder Programmierung?

• Was wurde individuell programmiert?

• Inwiefern sind Sie an Softwaretests beteiligt?
• Welche Rolle spielen Key User beim Einsatz der Software?
• Welche Rolle spielen Berechtigungen für Ihre Arbeit?
• Inwiefern ist Ihr Zugriff beschränkt?
• Inwiefern haben Sie einen Überblick über den gesamten Prozess?
• Inwiefern spielen Arbeitsanweisungen eine Rolle in Ihrer Arbeit?
• Inwiefern spielen Dokumentationen zur Software eine Rolle?
• Was könnte aus Ihrer Sicht helfen, damit die Arbeit in Ihrem Bereich effizienter wird?

(bspw. Anwender schulen, automatisieren, Usability steigern)

Anhang 371

• Was könnte aus Ihrer Sicht helfen, damit der teamübergreifende Prozess effizienter
wird?

• Inwiefern könnte die Software verbessert werden?
• Inwiefern könnte die Zusammenarbeit mit den Kollegen verbessert werden?
• Inwiefern könnte die Zusammenarbeit mit der IT verbessert werden?
• Inwiefern könnte die Zusammenarbeit mit dem Softwareanbieter verbessert wer

den?

Vertiefend: Ihre Arbeitsbedingungen

• Was waren die letzten Schulungen, die Sie besucht haben?
• Welche Rolle spielt Learning by Doing für Sie?
• Würden Sie gerne mehr von anderen lernen/wissen?
• Welches Wissen oder Qualifikation wäre für Ihre Arbeit noch hilfreich?
• Inwiefern spielt fachliche Wissen eine Rolle? (Prozesse, Branche, Organisation)
• Wie ist das Verhältnis zwischen Softwarewissen und fachlichem Wissen in Ihrer Ar

beit?
• Welche Rolle spielt Ihre Führungskraft bei Ihrer Arbeit?
• Welche Entscheidungen trifft die Führungskraft?
• Wie werden Ihnen Ihre Aufgaben zugewiesen?
• Inwiefern können Sie Ihre Arbeit eigenständig planen und ausführen?
• Welche Rolle spielen Zielvorgaben in Ihrer Arbeit?
• In welcher Form wird Ihre Arbeit kontrolliert?
• Wie viel Zeit arbeiten Sie alleine vor sich hin?
• Inwiefern können Sie Verbesserungsvorschläge einbringen?
• Inwiefern können Sie anbringen, wenn Sie etwas frustriert?
• Inwiefern haben Sie Kundenkontakt?

Vertiefend: Team

• Gibt es regelmäßige Teamtreffen?
• Um was geht es bei den Teamtreffen? (detaillierte Planung, Priorisierung, Kontrolle,

Austausch)
• Welche Rolle spielt die Kommunikation zwischen den Teammitgliedern bei der Ar

beit?
• Inwiefern findet ein Wissensaustausch statt?
• Wie könnte die Zusammenarbeit verbessert werden?
• Inwiefern spielen konkrete Arbeitsanweisungen eine Rolle?
• Wie werden die Aufgaben verteilt?
• Inwiefern ist jede:r Spezialist:in in seinem bzw. ihrem Gebiet und arbeitet selbst

ständig?
• Welche Rolle spielt Ihre Führungskraft im Team?

372 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Gibt es Zielvorgaben für das Team?

• In welcher Form wird die Arbeit im Team kontrolliert?

Vertiefend wenn IT-DL: Austausch mit EVU

• Betreuen Sie unterschiedliche EVU?
• Wie sieht die Zusammenarbeit mit diesen aus?
• Wie wird hauptsächlich kommuniziert?

• Inwiefern arbeiten Sie mit deren IT-Abteilung zusammen?

• Inwiefern arbeiten Sie mit Anwendenden direkt zusammen?

• Mit wem arbeiten Sie sonst noch zusammen?

• Welche Rolle spielen regelmäßige Treffen?
• Wie viele Mitarbeiter sind dort und welche Aufgaben erledigen sie?
• Inwiefern spielen die Verträge eine Rolle bei der Zusammenarbeit?

• Inwiefern spielen Berechtigungen eine Rolle?
• Inwiefern spielen die Führungskräfte eine Rolle bei der Zusammenarbeit?

• Wie würden Sie die Beziehung zu den EVU beschreiben?
• Inwiefern spielt eine gute persönliche Beziehung eine Rolle?
• Wie könnte die Zusammenarbeit verbessert werden?
• Inwiefern haben EVU fachliches Wissen?

• Inwiefern haben EVU Systemwissen (EDM)?

• Inwiefern haben EVU Wissen zur Regulierung?
• Inwiefern haben EVU Wissen zu Softwareentwicklung?
• Inwiefern findet ein Wissensaustausch statt?
• Inwiefern gibt es Interessengegensätze?
• Inwiefern gibt es Konfliktlösungsmechanismen?

• Wie können Kunden Verbesserungsvorschläge einbringen?
• Inwiefern ist Software für Kunden individualisiert?
• Wer übernimmt die Projektleitung bei Projekten zusammen mit den Kunden?
• Wie laufen die Tests ab?
• Wie läuft die Produktivsetzung ab?
• Wie ist Betrieb/Wartung organisiert? DevOps?
• Inwiefern ist Support und Entwicklung/Projekte getrennt?
• Wie werden Anwender über Änderungen informiert?

Vertiefend wenn EVU: IT Org

• Haben Sie eine hausinterne IT-Abteilung?
o Was macht die?
o Wie viele Mitarbeiter?

o Auch Programmierer?

o Anwendungsbetreuer?

o Wie viele SAP-Experten? (die hohes Systemwissen haben, d.h. bspw. customizen kön
nen)

Anhang 373

• Inwiefern sammelt die interne IT Anforderungen und gibt sie an den IT-DL weiter?
• Oder haben die Fachbereiche selber Kontakt IT-DL?
• Inwiefern arbeiten Sie mit der IT zusammen?
• Werden IT-Projekte von der IT-Abteilung durchgeführt oder gibt es ein separates Pro
jektteam?

• Wer kümmert sich um die Architektur der IT?
• Wer kümmert sich um das Thema IT-Sicherheit?
• Inwiefern spielen externe Arbeitskräfte eine Rolle (Freelancer, Berater etc.)?
• Inwiefern werden Sie als Externer anders eingebunden als Interne?
• Haben Sie andere Qualifikationsprofile?
• Erledigen Sie andere Aufgaben?
• Inwiefern findet ein Wissensaustausch statt?
• Wie werden Anforderungen an die IT übergeben bzw. gesammelt?
• Inwiefern spielt ein Ticketsystem eine Rolle?
• Inwiefern spielen E Mails zusätzlich noch eine Rolle?
• Oder gibt es noch andere Kommunikationskanäle? (Sharepoint etc.)
• Inwiefern spielen regelmäßige Treffen eine Rolle?
• Inwiefern werden diese von Ihnen beauftragt?
• Gab es eine Lernkurve in puncto Zusammenarbeit?
• Inwiefern gibt es unterschiedliche Erwartungen?
• Inwiefern gibt es Konfliktlösungsmechanismen?
• Welche Methoden werden eingesetzt bei der Zusammenarbeit mit der IT/
Fachbereich? (Kanban?)

• Gibt es eine Digitalisierungsstrategie? Wie sieht diese aus?
• Inwiefern gibt es eine strategische Abstimmung zwischen IT-Abteilung und den Fach
bereichen?

• Wie viele Anwender hat IS-U bei Ihnen?
• Inwiefern haben diese unterschiedliche Berechtigungen?
• Verwenden Sie noch andere Softwarepakete für die energiewirtschaftlichen Prozesse?

Vertiefend Softwareentwicklung/IT:

• Haben Sie auch etwas mit den Programmierenden zu tun?
• Inwiefern ist der Entwicklungsprozess formalisiert?
• Gibt es Richtlinien für die Quellcode-Codierung, die Kommentierung?
• Wer kümmert sich um die Architektur der IT?
• Wie werden Anforderungen an die IT übergeben bzw. gesammelt?
• Gibt es ein festes IT-Budget für Sie bzw. Ihre Abteilung?
• Inwiefern spielt ein Ticketsystem eine Rolle?
• Inwiefern spielen E Mails zusätzlich noch eine Rolle?
• Oder gibt es noch andere Kommunikationskanäle? (Sharepoint etc.)
• Welche Rolle spielen regelmäßige Treffen?
• Wie viele Mitarbeiter sind dort und welche Aufgaben erledigen sie?
• Was waren größere Projekte in den letzten Jahren, bei denen die IT involviert war?

374 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Inwiefern spielen die Verträge eine Rolle bei der Zusammenarbeit?

• Inwiefern spielen die Führungskräfte eine Rolle bei der Zusammenarbeit?

• Wie würden Sie die Beziehung zur IT beschreiben?
• Inwiefern spielt eine gute persönliche Beziehung eine Rolle?
• Wie würden Sie die Zusammenarbeit mit der IT beschreiben?
• Wie könnte in der Zusammenarbeit mit der IT-Abteilung verbessert werden?
• Inwiefern hat die IT fachliches Wissen?

• Inwiefern findet ein Wissensaustausch statt?
• Inwiefern gibt es Interessengegensätze?
• Inwiefern gibt es Konfliktlösungsmechanismen?

• Wie wird diese betreut bzw. weiterentwickelt?
• Inwiefern spielen externe Arbeitskräfte eine Rolle (Freelancer, Berater etc.)?
• Inwiefern werden diese von Ihnen beauftragt?
• Inwiefern werden Sie als Externer anders eingebunden als Interne?
• Haben Sie andere Qualifikationsprofile?
• Erledigen Sie andere Aufgaben?
• Inwiefern findet ein Wissensaustausch statt?
• Welche Methoden werden eingesetzt bei der Zusammenarbeit mit der IT/

Fachbereich? (Kanban?)

Vertiefend Wissen/Qualifikation

• Was waren die letzten Schulungen, die Sie besucht haben?
• Inwiefern war die Schulung in IPMA/PRINCE2 hilfreich?
• Inwiefern spielt fachliches Wissen eine Rolle? (Prozesse, Branche, Organisation)
• Inwiefern wäre mehr Wissen über die Branche hilfreich?
• Inwiefern wäre mehr Wissen über die fachlichen Prozesse hilfreich?
• Inwiefern spielt IT-Wissen eine Rolle? (Software, Architektur, Entwicklung)
• Arbeiten Sie selber mit SAP? Inwiefern wäre weiteres SAP-Wissen hilfreich?
• Welches Wissen oder Qualifikation wäre für Ihre Arbeit noch hilfreich?
• Wie ist das Verhältnis von IT- und energiewirtschaftlichem Wissen in der Arbeit: Was

nimmt welchen Anteil ein?
• Welche Rolle spielt Learning by Doing?

Vertiefend falls vorhanden: Externe

• Inwiefern arbeiten Sie mit SAP/Softwareanbieter zusammen?

• Inwiefern nehmen Sie eine Lernkurve in puncto Zusammenarbeit mit Externen
wahr?

• Inwiefern nehmen Sie eine Lernkurve bei sich selbst wahr in puncto Zusammenar

beit?

• Inwiefern spielen die Verträge eine Rolle bei der Zusammenarbeit?

• Inwiefern spielen die Führungskräfte eine Rolle bei der Zusammenarbeit?

Anhang 375

• Inwiefern spielt Fakturieren eine Rolle?
• Inwiefern spielt es eine Rolle, von den Externen etwas zu lernen?
• Inwiefern spielt eine gute persönliche Beziehung eine Rolle?
• Inwiefern spielt »auf Augenhöhe sein« eine Rolle?
• Gab es mal ein größeres Projekt zur Softwareentwicklung/Anpassung, wo Dritte be

teiligt waren?
• Zu den Dritten: Kannte man sich vorher? Was haben die gemacht? Welches Wis

sen haben die eingebracht? Inwiefern war diese Zusammenarbeit anders als andere?
Wie sahen die Verträge aus?

• Was war der Auslöser für die Entwicklung/Anpassung?
• Gibt es neben Projekten auch noch andere Formen der Zusammenarbeit mit Kun

den?
• Welche Rolle spielen regelmäßige Treffen?
• Welche Rolle spielen die Fachbereiche?
• Welche Rolle spielt die IT?
• Inwiefern findet ein Wissensaustausch statt?
• Welche Rolle spielt das Wissen über die Firmen und deren Prozesse?
• Inwiefern spielt branchenspezifisches Wissen bei der Entwicklung von IT-Lösungen

(Regulierung, Politik etc.) eine Rolle?
• Inwiefern gibt es Unterschiede zwischen Netz und Vertrieb beim Einsatz von EDM?

(Anreizregulierung…)
• Wie könnte die Zusammenarbeit verbessert werden?

Falls beteiligt: Projekt XY

• Was ist/war Ihre Rolle in dem Projekt?
• Was war der Auslöser für die Entwicklung/Anpassung?
• Welche Zielvorgaben gibt es?
• Welche Funktion soll die Software erfüllen?
• Wer sind die Anwendenden der Software?
• Wie integriert sich die Lösung in die bestehende IT-Landschaft?
• Handelt es sich um eine Eigenentwicklung oder um die Anpassung einer Standard

software?
• Inwiefern macht das aus Ihrer Sicht einen Unterschied?
• Wie ist das Projekt bisher verlaufen?
• Was ist eine besondere Herausforderung bei dem Projekt?
• Welche Rollen spielen Vorgaben für die Projektarbeit? (Handbücher etc.)
• Welche Rollen spielen bestimmte Methoden für die Projektarbeit?
• Inwiefern spielen Quality Gates oder Meilensteine eine Rolle?
• Inwiefern war die Planung detailliert?
• Gibt es ein Budget und feste Deadlines?
• Gibt es für die einzelnen Teilnehmer des Projektes Ziele?
• Welche Methoden werden eingesetzt? (Scrum etc.)

376 Johannes Sonnenholzner: Formen und Folgen der Softwaregestaltung

• Welche Werkzeuge? (Jira etc.)
• Wer hat alles mitgearbeitet?

• Welche Rolle hat der Fachbereich gespielt?
• Inwiefern haben Sie mit der Netze-IT zusammengearbeitet?

• Inwiefern haben Sie mit der Konzern-IT zusammengearbeitet?

• Welche Rolle hat die externe Softwarefirma/IT-DL etc. gespielt?
• Wie wurden die Teilnehmer ausgewählt?
• Wie lief die Projektkoordination ab?
• Gibt es regelmäßige Treffen, Veranstaltungen o. ä.?
• An welchen Treffen oder an welchen Austauschen nehmen Sie teil?
• Nehmen Sie an den Stand-ups teil?
• Wie laufen diese Treffen ab?
• Inwiefern tauschen sich die Mitarbeiter sonst noch aus?
• Wie wurden Aufgaben verteilt?
• Wie ist Arbeit organisiert? (Autonom etc.)
• Waren alle an einem Ort?
• Arbeiten die Projekt-Teilnehmer noch woanders mit?

• Welche Rolle spielte IT-Wissen bei der Zusammensetzung der Beschäftigten?
• Waren unterschiedliche Qualifikationsprofile involviert?
• Wer brachte welches Wissen ein?
• Welche Rolle haben externe Mitarbeiter gespielt?
• Kannten man sich vorher?
• Was haben die gemacht?

• Welches Wissen haben die eingebracht?
• Inwiefern war diese Zusammenarbeit anders als andere?
• Wie sahen die Verträge aus?
• Gibt es Regeln für die Zusammenarbeit?

• Inwiefern spielt informeller Austausch eine Rolle?
• Inwiefern kommt es zu einem Wissenstransfer?

• Wie unterschied sich die Zusammenarbeit zwischen Internen und Externen?
• Gibt es regelmäßigen Austausch?
• Wie war die Kommunikation organisiert?
• Was waren zentrale Herausforderungen in der Zusammenarbeit mit den Externen?
• Was war anders als bei anderen Kooperationen?
• Welche Rolle spielen die Führungskräfte? (wenn TN für andere Wertströme, Projekte

etc. arbeiten)
• Inwiefern spielte zentrales Controlling eine Rolle?
• Welche Softwareentwicklungsmethoden, Programmiersprachen und Entwick

lungsumgebung wurden eingesetzt?
• Welche Regeln gibt es für die Programmierung?

• Gibt es Richtlinien für die Quellcode-Codierung, die Kommentierung?

• Inwiefern wird die Softwarequalität kontrolliert?
• Ist der Entwicklungsprozess formalisiert?

Anhang 377

• Wie kam es zu der Softwarearchitektur?
• Was waren die Prioritäten? (Wartbark., Sicherheit, Performance, schnelle Ums., Fle

xibilität etc.)
• Inwiefern müssen Sie sich mit IT-Architekten in der IT abstimmen?

• Wie werden Daten und Datenflüsse integriert?
• Inwiefern wäre auch eine andere Lösung möglich gewesen?
• Inwiefern waren Anwendende an der Entwicklung beteiligt?
• Wer wurde sonst alles mit eingebunden (Stakeholder)?
• Wie laufen die Tests ab?
• Werden automatisierte Tests oder Unit-Tests eingesetzt?
• Wie läuft Produktivsetzung ab?
• Wie ist Betrieb/Wartung organisiert? (DevOps?)
• Wie wurde dokumentiert?

• Wie hat sich die Arbeit durch die Lösung verändert? (Verlagerung Tätigkeiten, Wis

senstransfer etc.)
• Wurden die betroffenen Bereiche reorganisiert?
• Sind neue Tätigkeiten entstanden?
• Welche Rolle spielt Automatisierung?

• Inwiefern wird das Projekt evaluiert?

Abschluss

• Wie sehen mögliche Karrierewege für Sie aus?
• Wie würden Sie Ihre Arbeitsbelastung beschreiben?
• Welche Rolle haben Betriebsräte und Gewerkschaften bei dem Thema Kooperatio

nen und Digitalisierung ge-spielt?
• Gibt es aus Ihrer Sicht noch etwas Wichtiges, was wir noch nicht angesprochen ha

ben?

• Kennen Sie noch jemanden, der sich für ein Interview zur Verfügung stellen würde?

	Cover

	Inhalt
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Abkürzungen
	Danksagung
	1. Einleitung: Softwaregestaltung als Kind von Bürokratie und Rationalismus
	2. Untersuchungsgegenstand und Gliederung
	2.1. Forschungsgegenstand und ‑fragen: Formen und Folgen von Softwaregestaltung
	2.2. Vorgehen: empirische, qualitativ‐explorative Untersuchung der Energiewirtschaft
	2.3. Zusammenhang von Fragestellung, Technologie, Praxis und Theorie
	2.4. Überblick über Kapitel und Argumentation

	3. Forschungsdesign und ‑methode
	3.1. Methode
	3.1.1. Qualitative Sozialforschung: Expert:inneninterviews für Fallstudien
	3.1.2. Bezug zu Forschungsstand und Theorieentwicklung
	3.1.3. Selbst‐Positionierung

	3.2. Forschungsverlauf
	3.2.1. Feldzugang und Sampling
	3.2.2. Ausgangsforschungsfragen und letztendliche Leitfragen
	3.2.3. Weiterer Forschungsverlauf und durchgeführte Interviews

	3.3. Kodierung, Kategorisierung und Fallvergleich
	3.4. Grenzen der Untersuchung
	3.5. Forschungsethik und Datenschutz

	4. Softwaregestaltung als Teil der Digitalisierung
	4.1. Primat der Softwareentwicklung in Nicht‐IT‐Branchen und ‑Betrieben
	4.2. Die zwei Kernprobleme der Softwaregestaltung
	4.2.1. Softwaretechnische Interdisziplinarität
	4.2.2. Softwaretechnische Gestaltungsmöglichkeiten

	5. Softwaregestaltung basiert auf Wissen und Kommunikation
	5.1. Technische Grundlagen: Software als Ergebnis menschlicher Textarbeit
	5.1.1. Verarbeiten und verstehen: Arbeitsteilung zwischen Menschen und Maschinen
	5.1.2. Konkret und abstrakt: mehrere Schichten, sprachliche Strukturierung
	5.1.3. Zwischen Text und Blackbox: Grenzen der Gestaltung und des Verstehens

	5.2. Softwareentwicklung: vom einsamen Nerd zum kollektiven Kommunikationsprozess
	5.2.1. Vom schnellen Reparieren zum iterativen, kollektiven Kommunikationsprozess
	5.2.2. Kommunikationskompetenz und ‑kern: Anforderungsmanagement
	5.2.3. Kommunikation und Wissen organisieren: Local Practice statt Best Practice

	5.3. Zwischenfazit: Softwaregestaltung als soziologisches Problem

	6. Softwaregestaltung – konzeptionelle Grundlagen
	6.1. Softwaregestaltung als Arbeitsprozess: Die Lösung des Transformationsproblems durch soziotechnische Netzwerkarbeit
	6.2. Weder Markt noch Hierarchie: Netzwerke als analytische Grundlage
	6.2.1. Theoretisch: Netzwerke in Abgrenzung zu Markt und Hierarchie
	6.2.2. Organisatorisch: Netzwerke aus und in Organisationen
	6.2.3. Technisch: digitale Netzwerke

	6.3. Ein Beispiel für soziotechnische Netzwerkarbeit: IT‑Projekte in Matrixorganisationen
	6.4. Soziotechnische Netzwerkarbeit: die Ebenen Beziehungen, Software und Wissensarbeitende
	6.4.1. Organisationale und interpersonelle Beziehungen
	6.4.1.1. Arbeitsteilung zwischen Anwendung und Entwicklung – die IT‑Abteilung
	6.4.1.2. Übergreifende Zusammenarbeit trotz unterschiedlicher Interessen
	6.4.1.3. Netzwerkstrukturen reichen nicht: Vertrauen, Reziprozität und Kooperationsbereitschaft

	6.4.2. Software kontrolliert und strukturiert das Netzwerk
	6.4.2.1. Software kontrolliert die Softwaregestaltung: einschränkend und ermöglichend
	Ermöglichen und Koordinieren: Software als zentrales Organisationsobjekt
	Einschränken und Überwachen: Software gibt Rollen, Abläufe und Eingabemöglichkeiten vor und liefert Kennzahlen

	6.4.2.2. Prägt die Organisation: die Softwarearchitektur

	6.4.3. Softwaregestaltende: Arbeiten zwischen Anwendung und Programmierung
	6.4.3.1. Wissensarbeit Softwaregestaltung: Vermitteln zwischen Anwendung und Programmierung
	6.4.3.2. Rollen der Softwaregestaltenden: erwartungsgeleitetes Handeln
	Softwaregestaltung als erwartete Subjektivität: Rollen, Subjektivierung und subjektivierendes Arbeitshandeln
	Softwaregestaltung als Erfüllen multipler Erwartungen
	Netzwerkspezifische Erwartungen: Grenzen zu überbrücken und kooperativ zu sein
	Wissensarbeitsspezifische Erwartung: selbstorganisiert zu arbeiten
	Softwarespezifische Erwartung: mit Software interagieren und Beziehung zum Austausch über sie aufbauen
	Softwaregestaltungsspezifische Erwartung: mit Nicht‐Wissen in Kontext von softwaretechnischer Interdisziplinarität umzugehen
	Netzwerkspezifische Erwartung: sich im Netzwerk zu bewegen und zu lernen (neue Karrieremöglichkeiten)

	6.4.3.3. Softwaregestaltende als Konkurrenz zum Management? Neue Kompetenzen und Aufgaben

	6.4.4. Flexibilität bei der Kommunikation und beim Wissensaustausch

	6.5. Folgen der Softwaregestaltung: Soziotechnische Arbeitsgestaltung der Softwareanwendung durch die Softwaregestaltung
	6.5.1. Softwaregestaltung – eine Form der Rationalisierung der Softwareanwendung?
	6.5.2. Unterschied zu Informatisierung und Informationsraum
	6.5.3. Softwaregestaltung: inkrementell mehr Software in diversen Anwendungsbereichen
	6.5.4. Folgen von Standardsoftware für die Arbeitsgestaltung der Softwareanwendung

	6.6. Zwischenfazit: Softwaregestaltung als soziotechnische Netzwerkarbeit und soziotechnische Arbeitsgestaltung

	7. Industriespezifische Aspekte der Softwaregestaltung in der Energiewirtschaft
	7.1. Industriestrukturen der Energiewirtschaft und ihr Verhältnis zur Digitalisierung
	7.1.1. Ansatz der Industrie‐Governance
	7.1.2. Corporate Governance: Zwischen Daseinsvorsorge und Wettbewerb
	7.1.2.1. Rechtsform und eigenständige Unternehmensführung
	7.1.2.2. Unternehmensstruktur: Entflechtung der Unternehmen
	7.1.2.3. Eigentümerstruktur und Unternehmensziele
	7.1.2.4. Marktrollen, Geschäftsfelder und Regulierung
	Subventionierung Erneuerbare Energien

	7.1.3. Produktmarkt‐Governance: staatliche Regulierung und Digitalisierung
	7.1.3.1. Wechsel Stromlieferant, Energierechnung und Stromhandel
	7.1.3.2. Zentrale Systemsteuerung, IT‑Sicherheit und Standards

	7.1.4. Prozess‐Governance: Systemstabilität und regulierter Datenaustausch
	7.1.4.1. Regulierter Datenaustausch entlang der Wertschöpfungskette
	7.1.4.2. Typisch für die Branche: Kooperationen und Beteiligungen

	7.1.5. Governance industrieller Beziehungen: Betriebsräte und Akademisierung

	7.2. Folgen der Industriestrukturen für die Softwareentwicklung
	7.2.1. Digitalisierungsstrategien zwischen Anwendung und Entwicklung
	7.2.1.1. Vielfältige Zulieferindustrie für Standardsoftware
	7.2.1.2. Unterscheiden sich große und kleine EVU?
	7.2.1.3. Software als Geschäftsfeld der EVU

	7.2.2. Wechselspiel von Regulierung und Softwareentwicklung
	7.2.2.1. Markt‐Governance dank Software: Wechsel Lieferfirma, Transparenz und Datenaustausch
	7.2.2.2. Softwareentwicklung für den Stromhandel: Markt ermöglichen, Geld verdienen und neue Risiken
	7.2.2.3. Dezentrale Erzeugungsanlagen gebündelt vermarkten: virtuelle Kraftwerke

	7.2.3. Softwaregestaltende: gesteigerte Interdisziplinarität und Intervention Betriebsrat

	7.3. Fazit: Software und Softwareentwicklung als Bausteine der Industrie‑Governance

	8. Formen und Folgen der Softwaregestaltung – die Empirie
	8.1. Einführung: Vorgehen und Kurzvorstellung der sieben Fallstudien
	8.1.1. Kurzvorstellung der Fallstudien: Wie sie die Kernprobleme der softwaretechnischen Gestaltungsmöglichkeiten und Interdisziplinarität lösen
	8.1.1.1. INTERN1: erweitertes Scrum für die mobile Auftragssteuerung der Netz‑Instandhaltung
	8.1.1.2. INTERN2: zentrale Anforderungsrunde mehrerer Fachbereiche für die Auftragsverarbeitung
	8.1.1.3. KOOP1: kooperativ verhandelte, industriespezifische Erweiterung und Anpassung einer Standard‐ERP‐Software
	8.1.1.4. KOOP2: prekäre Kooperation für eine industriespezifische Erweiterung und Anpassung einer Standard‐ERP‐Software
	8.1.1.5. PAKET: industriespezifische ERP‐Standardsoftware entwickelt durch eine Softwarefirma
	8.1.1.6. KOOP3: Ko‑Produktion einer IoT‐Software für stadtwerksnahe Anwendungen
	8.1.1.7. STARTUP: Primat der Softwareentwicklung für den digitalen Emissionshandel (E‑Mobilität)

	8.1.2. Unterschiedliche Möglichkeiten der Softwaregestaltung: zwischen Standard‐ oder Individualsoftware und Überblick über die Fallstudien
	8.1.3. Der Analyserahmen
	8.1.3.1. Die vier Teile und ihre Kategorien

	8.1.4. Was sind große, mittlere und kleine EVU?

	8.2. Soziotechnische Konstellation als Ausgangssituation der Softwaregestaltung
	8.2.1. Darstellung der Fallstudien
	8.2.1.1. INTERN1: Erweiterung ERP‐Software durch IT‐ und Fachabteilung zur Steuerung der Instandhaltung, hierarchisch
	8.2.1.2. INTERN2: Anpassung ERP‐Software durch mehrere Fachbereiche und die IT‐Abteilung zur Auftragsdatenverarbeitung, hierarchisch
	8.2.1.3. KOOP1: Erweiterung und Anpassung ERP‐Software durch IT‑DL und EVU zur Datenverarbeitung, marktbasiert
	8.2.1.4. KOOP2: Erweiterung und Anpassung ERP‐Software durch IT‑DL und EVU zur Datenverarbeitung, marktbasiert
	8.2.1.5. PAKET: Entwicklung industriespezifischer Standard‐ERP‐Software durch Softwarefirma zur Datenverarbeitung, marktbasiert
	8.2.1.6. KOOP3: Ko‑Produktion einer IoT‐Anwendung zwischen Softwarefirma und IT‐DL zur Überwachung, netzwerkförmig
	8.2.1.7. STARTUP: Primat der Softwareentwicklung in einer Organisation zur Datenverarbeitung, netzwerkförmig (rollenbasiert)

	8.2.2. Zusammenfassung
	8.2.2.1. Überblick über zentrale Unterschiede und ihre Folgen
	8.2.2.2. Ergebnisse des Fallvergleichs je Kategorie
	Arbeitsteilung – wie die Wissensgrenzen verlaufen
	Grundkoordination – Ausgangspunkt von Kommunikation und Kooperation
	Softwarearchitektur – Grundstruktur der Arbeitsteilung in Organisationen und Organisationsnetzwerken
	Anwendungsbereich – Ausgangspunkt und Grenze für den Beitrag von Software zur Arbeit

	8.3. Formen des soziotechnischen Arbeitsprozesses der Softwaregestaltung
	8.3.1. Arbeitsprozess der Softwaregestaltung: zwischen zentral und dezentral
	8.3.2. Darstellung der Fallstudien
	8.3.2.1. INTERN1: erweitertes Scrum, Gestaltungsnetzwerke, langfristige Beziehungen, dezentral
	Rollen: Product Owner:innen, Anforderungsmanagende, Key User:innen
	Ablauf: Scrum, Resonanzgruppen, Workshops
	Kommunikative Beziehungen: zugänglich, offen, interdisziplinär und gut vernetzt
	Digitale Werkzeuge: dezentraler Input dank Ticketsystem und Chat‐Kanal
	Softwaretechnischer Zuschnitt: individuelle Anforderungen der Anwendenden

	8.3.2.2. INTERN2: gemeinsame Anforderungsrunde mehrerer Fachbereiche, dezentral
	Rollen: Scrum Master, Product Owner, Anforderungsmanager
	Ablauf: Anforderungsrunde, Refinement‐Termine, IT‑Teams in Fachbereichen, Tests
	Kommunikative Beziehungen: Kooperationsbereitschaft und direkte Kommunikation
	Digitale Werkzeuge: mehrere Softwarelösungen, um Anforderungen zu sammeln
	Softwaretechnischer Zuschnitt: größter Nutzen für das Unternehmen

	8.3.2.3. KOOP1: zentralisiertes Anforderungsmanagement, um Standard zu verhandeln
	Rollen: Anforderungsmanagende, IT‑Beratende, Key User:innen, Anwendungsbetreuende & Co. – zwischen und innerhalb der Organisationen
	Ablauf: zentral organisiertes Anforderungsmanagement und dezentrale Softwaregestaltung
	Kommunikative Beziehungen: partnerschaftlich und bei Bedarf direkt
	Digitale Werkzeuge: mehrere Ticketsysteme und ERP‐Entwicklungsumgebung
	Soziotechnischer Zuschnitt: zentrale Synergien durch gemeinsamen Standard und dezentrale Abweichungen

	8.3.2.4. KOOP2: EVU und IT‑DL zwischen dezentraler und zentraler Softwaregestaltung
	Rollen: verteilte Rollen für zentralisierte und dezentrale Softwaregestaltung (IT‐koordinierender Fachbereich, Key User:innen, IT‑Projektleitende & Co.)
	Ablauf: dezentral und zentralisiert in den EVU
	Kommunikative Beziehungen: prekäre Beziehungen, direkte Kommunikation und hinderliche Hierarchien
	Digitale Werkzeuge: Ticketsysteme, MS Excel und E‑Mails
	Softwaretechnischer Zuschnitt: Synergien über gemeinsame Projekte und Release des IT‑DL

	8.3.2.5. PAKET: zentrale Softwaregestaltung durch eine Softwarefirma
	Rollen: verteilte Fachexpert:innen zwischen allgemeinem Branchen‐ und firmenspezifischen Anwendungswissen
	Ablauf: innerhalb und zwischen Organisationen – etablierte Kommunikationswege in der Softwarefirma und Einbindung von Branchenexpert:innen
	Kommunikative Beziehungen: zwischen reiner Zulieferbeziehung, Formalisierung und partnerschaftlicher, direkter Kommunikation
	Digitale Werkzeuge: Ticketsystem – digitale Vernetzung und Detaillierung
	Softwaretechnischer Zuschnitt: zentrale Standardisierung und Priorisierung durch die Softwarefirma

	8.3.2.6. KOOP3: zentrale Softwaregestaltung durch Softwarefirma in Ko‑Produktion mit IT‑DL
	Rollen: Projektmanager, Account Manager, Product Owner
	Ablauf: Anforderungstreffen, Projekte, Scrum
	Kommunikative Beziehungen: Reziprozität und persönliche Beziehungspflege
	Digitale Werkzeuge: Ticketsystem, Test‐Accounts
	Softwaretechnischer Zuschnitt: zentral durch IoT‐Softwarefirma

	8.3.2.7. STARTUP: dezentral in Kreisen – eklektische Mischung aus Holokratie und Scrum
	Rollen: Product Owner, Gründer, Solution Architect
	Ablauf: Kreise, Scrum
	Kommunikative Beziehungen: flexibler, direkter und offener Austausch
	Digitale Werkzeuge: vor allem für direkten Input – Ticketsystem, Chats, E‑Mails
	Softwaretechnischer Zuschnitt: individuell und eigenständig durch Start‐up

	8.3.3. Zusammenfassung
	8.3.3.1. Unterschiede zwischen dezentralen und zentralisierten Arbeitsprozessen der Softwaregestaltung
	8.3.3.2. Ergebnisse des Fallvergleichs je Kategorie
	Rollen – situativ, teils mehrere und wechselnde Rollen übernehmen
	Ablauf – kombiniert mit Gestaltungsnetzwerk, Primat der Kooperation, Feedbackschleifen und Lernprozesse
	Kommunikative Beziehungen – trotz Markt oder Hierarchie
	Werkzeuge – Softwaregestaltung als (teil‑)integrierter digitaler Prozess
	Softwaretechnischer Zuschnitt – zwischen individuell und Standard

	8.4. Folgen für die Arbeit der Beschäftigtengruppe der Softwaregestaltenden
	8.4.1. Softwaregestaltende: zwischen Matrix‐ und reiner Netzwerkorganisation
	8.4.2. Darstellung der Fallstudien
	8.4.2.1. INTERN1: Softwaregestaltende zwischen Fachbereich und IT‑Abteilung, Matrix
	8.4.2.2. INTERN2: Softwaregestaltende in mehreren Fachbereichen, Matrix
	8.4.2.3. KOOP1: IT‑DL als Heimat der Softwaregestaltenden, Matrix
	8.4.2.4. KOOP2: Softwaregestaltende in fremdem Umfeld der EVU, Matrix
	8.4.2.5. PAKET: Softwaregestaltende einer Standardsoftware, Matrix
	8.4.2.6. KOOP3: Softwaregestaltung als neues Betätigungsfeld, reines Netzwerk
	8.4.2.7. STARTUP: Softwaregestaltende im Kern der Organisation, reines Netzwerk

	8.4.3. Zusammenfassung
	8.4.3.1. Unterschiede: zwischen reiner Netzwerk‐ und Matrixorganisation
	8.4.3.2. Ergebnisse: Fallvergleich je Kategorie und Vergleich mit Anwendenden und Programmierenden
	Beschäftigungssystem – Kompetenzkarriere, flexible Beschäftigte und Akademiker:innen‐Dominanz
	Kontrolle – eigenständiges Arbeiten in softwarezentrierten Prozessen
	Kontrolleigenschaften unabhängig von Gruppenzugehörigkeit: selbstständiges Arbeiten, softwarezentrierter Arbeitsprozess, Auswirkungen der Grundkoordination
	Kontrolleigenschaften je Gruppe: Unterschiede in der qualitativen und quantitativen Intensivierung
	Wissensverteilung – Praxisgemeinschaft und in Software materialisiertes Wissen

	8.5. Folgen für die soziotechnische Arbeitsgestaltung der Softwareanwendung in den EVU
	8.5.1. Soziotechnische Arbeitsgestaltung: zwischen Abhängigkeit und Unabhängigkeit
	8.5.2. Darstellung der Fallstudien
	8.5.2.1. INTERN1: iterativer soziotechnischer Wandel eines Fachbereichs, unabhängig
	8.5.2.2. INTERN2: fachbereichsübergreifende Softwaregestaltung, unabhängig
	8.5.2.3. KOOP1: zentraler Standard oder dezentral individuell – Wo endet die Kooperation der EVU?
	8.5.2.4. KOOP2: Prekär‐kooperativ – wieder unabhängiger vom IT‑DL?
	8.5.2.5. PAKET: abhängig von der Standardsoftwarefirma
	8.5.2.6. KOOP3: IoT Ko‑Produktion – abhängige Standardgestaltung, unabhängige Modulgestaltung
	8.5.2.7. STARTUP: Primat der Softwareentwicklung

	8.5.3. Zusammenfassung
	8.5.3.1. Einordnung der Fälle zwischen abhängig und unabhängig
	8.5.3.2. Inwiefern handelt es sich um einen intervenierenden Betriebsrat?
	8.5.3.3. Nehmen die Anwendenden an der Gestaltung teil?
	8.5.3.4. Wie würde eine auf Softwaregestaltung ausgerichtete Prozessorganisation aussehen?

	8.6. Synthese, Zusammenfassung und Diskussion des Fallvergleichs
	8.6.1. Synthese: Typen soziotechnischer Netzwerkarbeit und soziotechnischer Arbeitsgestaltung
	8.6.1.1. Die vier Grundtypen der soziotechnischen Netzwerkarbeit
	8.6.1.2. Zwei organisationale Kernstrategien der Arbeitsgestaltung in den EVU: Ausrichtung auf Softwareanwendung vs. auf Softwareentwicklung
	8.6.1.3. Die vier Grundtypen der soziotechnischen Arbeitsgestaltung durch Softwaregestaltung
	8.6.1.4. Zusammenhänge zwischen den einzelnen Teilen des Analyserahmens

	8.6.2. Zusammenfassung je Teil des Analyserahmens
	8.6.2.1. Soziotechnische Konstellation
	8.6.2.2. Soziotechnischer Arbeitsprozess der Softwaregestaltung
	8.6.2.3. Folgen für die Arbeit der Softwaregestaltenden
	8.6.2.4. Folgen für die Arbeitsgestaltung in den EVU

	8.6.3. Synthese: Rationalisierungstyp der technikentwicklungsbezogenen Rationalisierung
	8.6.4. Neue Konkurrenz für das Management durch die Softwaregestaltenden?
	8.6.5. Facetten einer industriespezifischen Softwaregestaltung

	9. Ziel der Untersuchung, wesentliche Befunde und weiterführende Fragestellungen
	9.1. Softwaregestaltung: ein wenig erforschter Arbeitsprozess der Digitalisierung
	9.2. Erster Debattenbeitrag: Softwaregestaltung als soziotechnische Netzwerkarbeit
	9.2.1. Typische Unterschiede in der soziotechnischen Netzwerkarbeit
	9.2.2. Gemeinsame Kategorien der soziotechnischen Netzwerkarbeit
	9.2.2.1. Arbeitsprozess der Softwaregestaltung
	9.2.2.2. Arbeit der Softwaregestaltenden

	9.2.3. Beitrag zur Debatte über die Kontrolle von Wissensarbeit

	9.3. Zweiter Debattenbeitrag: Softwaregestaltung als Arbeit an der digitalen Transformation
	9.3.1. Teil der digitalen Transformation: soziotechnische Arbeitsgestaltung der Softwareanwendung durch die Softwaregestaltung
	9.3.2. Zwischen unabhängiger und abhängiger soziotechnischer Arbeitsgestaltung
	9.3.3. Beitrag zur Debatte über die digitale Transformation
	9.3.3.1. Gestaltung – zwischen dezentral und zentral, zwischen Standard‐ und Individualsoftware
	9.3.3.2. Verlauf – die Möglichkeiten der Softwaregestaltung ausreizen
	9.3.3.3. Besonderheiten der digitalen Transformation in der Energiewirtschaft
	9.3.3.4. Folgen für die Arbeit in den EVU

	9.4. Methodische Grenzen und weiterführende Fragestellungen

	Literatur
	Anhang
	Übersicht Interviews
	Leitfaden für Interviews

