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Abstract

We combine 2008-2023 county-level yield data with 30-meter crop classification imagery
to test whether crop diversity mitigates yield losses from weather shocks. Diversity is mea-
sured with the exponential Shannon index, capturing county-level species richness and even-
ness as the effective number of crops. Two-way fixed-effects regressions replicate standard
nonlinear damages from extreme heat and precipitation, but show that each additional effec-
tive crop attenuates heat impacts for corn and soybean and moderates winter wheat losses
in unusually wet years. Resilience benefits are concentrated in rainfed counties, where irri-
gation offers limited protection, indicating that diversification can complement water-based
adaptation to climate change.
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1 Introduction

Over recent decades, U.S. land allocation has become increasingly specialized: more than half
of the national land area is in agricultural use, and about two-thirds of harvested cropland
is devoted to corn, soybeans, and winter wheat (USDA NASS, 2017). Over the same period,
extreme heat and moisture shocks have intensified, generating well-documented nonlinear yield
losses (Schlenker and Roberts, 2009; Carleton and Hsiang, 2016) and growing yield volatility
(Renard et al., 2023). While mitigation requires global coordination, adaptation is largely local.
Adjusting the crop mix is a private margin that can deliver agronomic services (Di Falco and
Chavas, 2008; Landis, 2017; Nelson and Burchfield, 2021) and complement resource intensive
strategies such as irrigation (Scanlon et al., 2012).!. We ask whether crop diversity can serve as
an adaptation margin by reducing the marginal damage from weather shocks and, if so, where
those gains are concentrated.

To address these questions, we leverage 2008 to 2023 30-meter Cropland Data Layer imagery
from the U.S. Department of Agriculture (2024a) together with county-year yield data for corn,
soybean, and winter wheat (USDA NASS, 2024b). We construct an annual county-level measure
of crop diversity based on the exponential Shannon index, which captures both the richness of
the crop mix and the evenness of cropland shares as the effective number of crops.> We then in-
teract this diversity index with plausibly exogenous within-county year-to-year temperature and
precipitation shocks in two-way fixed-effects regressions. This design treats short run weather
variation as quasi-random (e.g., Deschénes and Greenstone, 2007; Dell et al., 2014; Auffham-
mer et al., 2013; Mérel and Gammans, 2021) and allows us to quantify how crop diversification
mediates the response of U.S. crop yields to heat and precipitation shocks.

Our specification follows the climate-economics literature. Temperature shocks are mea-
sured as cumulative heat exposure over the growing season using growing degree hours (GDH)

and harmful degree hours (HDH) (e.g. Schlenker and Roberts, 2009; Carleton and Hsiang,

! Ecological research shows that diversity enhances key ecosystem services (Cardinale et al., 2012), including
pollination, pest control, water retention, and nutrient cycling (Swinton et al., 2007; Nelson and Burchfield,
2021) These services are crucial for plant resilience to stressors such as heat waves and precipitation variability.

2 A one-unit increase in this index corresponds to cultivating one additional crop in equal proportion to the others.
We later consider richness and Simpson indices as alternative diversity measures, which differ in their sensitivity
to rare species. See section 2.1.



2016), and total growing season precipitation is summarized by county-specific terciles (Burgess
et al., 2017).% Consistent with existing studies, extreme heat has a large negative effect on
yields: a 1,000-hour increase in HDH (about one standard deviation) reduces corn, soybean
and winter wheat yields by 14.1%, 19.4%, and 11.8%, respectively (p<0.01). Rainfall effects
are concave: years in the lowest tercile cut corn and soybean yields by 3.3% and 4.2% (p<0.01),
while the highest tercile lowers corn and wheat yields by 1.0% and 1.8% (p<0.01).

We then quantify resilience by allowing the marginal effect of each weather variable to vary
with crop diversity through interaction terms. The associated coefficients measure how a one-
unit increase in the exponential Shannon index affects the yield impact associated with a given
weather shock. The results show that diversity partially offsets the damage from extreme heat
and low precipitation for corn and soybean. Quantitatively, a one-unit increase in diversity
reduces the HDH effect by about 8.4% for corn and 6.1% for soybean (p<0.01). Under drought
(first rainfall tercile), the resilience effect of diversity corresponds to a 15.2% (p<0.05) offset
of the main effect for corn and 9.5% (p<0.10) for soybean. For winter wheat, the only robust
resilience effect appears under high rainfall, where diversity attenuates yield declines by around
30% (p<0.10).

To account for heterogeneity in weather impacts and resilience, we estimate the model sep-
arately by irrigation status for corn and winter wheat.* Three key findings emerge. First, irri-
gation mitigates the direct effect of extreme heat on corn yields, but the diversity interaction is
larger in rainfed counties: a one-unit increase of diversity offsets about 5% of the HDH effect
for corn (p<0.1) and about 23% for winter wheat (p<0.1). Second, in rainfed regions, diver-
sity mitigates both low and high rainfall shocks to corn yields: a one-unit increase in diversity
offsets about 37% of the low rainfall loss (p<0.01) and 53% of the high rainfall loss (p<0.05).
Third, for winter wheat extreme heat impacts tend to be larger in irrigated counties, although
we find some evidence that diversity offsets extreme heat yield losses for rainfed winter wheat.
A one-unit increase in diversity offses negative impacts of HDH by around 22% (p<0.1). Over-

all, this indicates a complementarity between irrigation and diversity as an adaptation strategy

3 GDH captures heat accumulation up to a temperature threshold that is detrimental to crop growth, while HDH
measures exposure to temperatures exceeding that threshold. Precipitation is summed over the growing season
and classified into terciles using each county’s historical distribution during the study period.

* For soybean there is virtually no irrigated cropland area, so it is not considered in this analysis.



to weather shocks in the context of climate change.

We also extend the analysis to alternative diversity indices. Species richness (a count of
crops) provides similar results for corn: interactions with HDH and low rainfall shocks are
positive, indicating that diversity offsets heat and drought losses. Results based on the Simpson
index, which instead captures dominance or concentration, confirm these findings. For soybean
and winter wheat, interaction estimates using richness and Simpson are smaller and less precise
than with Shannon. These patterns suggests that resilience effects are primarily tied to evenness
in the crop mix (captured by Shannon), rather than to the simple number of species or to
acreage concentration. Lastly, we also re-estimate the model based on landscape diversity, which
includes non-cultivated vegetation. We find that crop-based diversity drives the main resilience
effects and average yield associations, although landscape diversity also contributes.

Lastly, we run a number of robustness checks. First, we consider the concern that diversity
measure is endogenous. We re-estimate our main specification using lagged diversity values and
fix diversity at its first observed value. Our results show that estimates for interaction terms are
consistent across specification, whereas direct effects of diversity on yields are sensitive to the
use of lagged values, suggesting that these estimates should interpreted as descriptive rather
than causal. Second, we include quadratic time trends in the analysis, and confirm robust-
ness of our main results. Overall, these checks reinforce the main resilience results discussed
above, namely that diversity provides resilience benefits for corn and soybean in the presence of
extreme temperature shocks, and for winter wheat in unusually wet years.

Our study is related to several strands of literature. First, it adds to the growing economics
literature on the value of crop diversity in agricultural production and ultimately in farmer
revenues (Di Falco, 2012; Sodjahin et al., 2025; Nicita and Mendelsohn, 2024; Burchfield et al.,
2019). While these studies focus on understanding how regional and farm level crop mix affects
production, they do not account for the interaction with climate stress. To the best of our
knowledge, we are the first to use highly disaggregated data to examine the yield benefits of
crop diversity in the context of climate change.

However, a number of studies investigate the potential of crop diversity to buffer against
weather shocks either in very specific and local agroecosystems or at a very aggregated level.

Based on Italian data, Di Falco and Chavas (2008) find that increased crop diversity strengthens



the resilience of the ecosystem and helps counteract the detrimental effects of decreased pre-
cipitation and droughts on wheat yield. Auffhammer and Carleton (2018) use administrative
data for the production of 20 crops and find that Indian districts with a more diverse crop mix
are more resilient to droughts. Similarly, Renard et al. (2023) uses national data spanning 58
years and concludes that diversifying crop varieties within countries can temper the negative
consequences of droughts and higher temperatures on farm output. Relative to these study,
we provide a systematic investigation of both temperature and precipitation shocks and include
diversity measure based on land use imagery.

Second, our work relates to a literature on how crop diversification might be a suitable adap-
tation strategy to cope with environmental risk, especially for farmers in developing countries
(e.g. Amare and Balana, 2023; Bozzola and Smale, 2020; Di Falco and Chavas, 2009; Di Falco
et al., 2010; Ferry and de Montalembert, 2025). For example, Bozzola and Smale (2020) find
that smallholder farmers in Kenya respond to past climate shocks by increasing crop diversifica-
tion, which enhances income and reduces risk. Both crop richness and evenness are associated
with lower income variability, particularly for vulnerable farmers, while crop specialization in-
creases risk exposure.

Third, our findings contribute to a broader literature on climate change and its implication
for agricultural production (e.g., Dell et al., 2014) by providing novel evidence on the relation-
ship between weather variables and crop yields. The association between extreme weather
events and agricultural production is documented in numerous studies, including those by
Schlenker and Roberts (2009), Schauberger et al. (2017), Jayachandran (2006), lizumi and
Ramankutty (2015), Fezzi and Bateman (2015), Ochieng et al. (2016), Chen et al. (2016),
among others. We add to this literature by discussing crop diversity in the context of alternative
adaptation strategies, including irrigation.

The remainder of this paper is organized as follows. Section 2 provides information on the
data and the empirical strategy used in the analysis. Section 3 reports our main results and

robustness checks. Finally, section 4 briefly discusses our results and concludes.



2 Empirical strategy

This section explains our empirical strategy to identify the extent to which local crop diversity
buffers yields against weather shocks. We first describe the county-level dataset we assemble
and the construction of our diversity index. We then lay out the econometric model and identi-
fication strategy that exploits within-county weather variation to estimate the resilience effects

of diversity.

2.1 Data

We assemble a panel dataset for all 3,108 counties in the contiguous United States over 2008-
2023. The dataset combines (i) county-level yields for corn, soybean, and winter wheat, (ii)
daily weather variables aggregated to growing season harmful and growing degree hours as
well as tercile indicators for precipitation, (iii) several measures of crop diversity, and (iv) the
share of cropland under irrigation. Table 1 provides summary statistics by crop. In the following,
we detail data sources and the construction of each variable.

Agricultural yields. County-level agricultural production, acreage and yield figures are taken
from the USDA NASS database (USDA NASS, 2024b). The data are derived from quarterly and
annual farm surveys complemented by administrative checks. We focus on the three major U.S.
field crops: corn, soybean, and winter wheat. These three crops together accounted for around
65% of total harvested cropland in 2017 (USDA NASS, 2017). For each crop in each county-
year, yield is calculated as production divided by harvested acreage and is measured in bushels
per acre (bu/acre). Note that winter wheat is planted in year t-1 and harvested in year t, so that
the first year of observation is 2009. Table 1 shows the large spatial and temporal variability in
yields corn ranges from roughly 10 to 277 bu/acre, soybean from 3.6 to 80 bu/acre, and winter
wheat from 6 to 155 bu/acre, with the highest values concentrated in the Midwestern “Corn
Belt” and other high-productivity zones.

Weather variables. We retrieve hourly air temperature data from ERA5 reanalysis at 0.25°x
0.25°(around 27km by 27km) resolution (Hersbach et al., 2024). Daily precipitation data are
from PRISM Climate Group, Oregon State University (2024) and recovered at a 4km by 4km

resolution. For each crop, we obtain cumulative exposure to heat and water by temporally ag-



Table 1: Summary statistics for corn, soybean and winter wheat

Variable Mean SD Min Max
Corn (N = 24,371)
Yields 147.01 39.54 10.40 277.10
GDH (in 10,000) 5.09 0.82 1.61 7.99
HDH (in 1,000) 1.22 1.28 0 17.11
Crop diversity 3.97 1.50 1.18 16.03
Irrigation share 0.22 0.30 0 1.00
Soybean (N = 19,158)
Yields 45.05 10.83 3.60 80.40
GDH (in 10,000) 4.63 1.03 0 6.83
HDH (in 1,000) 0.68 0.77 0 8.28
Crop diversity 3.99 1.41 1.36 10.85
Irrigation share <0.01 0.002 0 0.27
Winter Wheat (N=11,087)
Yields 58.85 16.81 6.20 154.50
GDH (in 10,000) 6.90 1.00 3.05 11.75
HDH (in 1,000) 0.26 0.31 0 3.76
Crop diversity 4.12 1.52 1.31 16.03
Irrigation share 0.14 0.24 0 1.00

Notes: N is county-year observations. Yields are reported in bushels per acre.
Growing degree hours (GDH) is measured in 10,000°C-hours, harmful degree
hours (HDH) is in 1,000°C-hours. The diversity index is the exponential of
the Shannon index, so the mean is the effective number of crops (see text).
The irrigation share is representative of the 2015 irrigation and thus constant
over the study period. For soybean there is virtually no irrigated cropland

area.

gregating weather variables over the respective county boundaries and growing season calendar
following the state-level crop calendar given by Sacks et al. (2010).°

Temperature indices follow Schlenker et al. (2006) and capture cumulative heat exposure
split into GDH and HDH. This parsimoniously captures non-linearities identified in the literature

documenting a yield-climate relationship (e.g. Schlenker and Roberts, 2009). Formally, GDH

and HDH indices are defined as follows:

C
g

GDHj; = Z(min(zﬁ’Thigh) — Tiow) (T} > Tiow),

h=1

> Sacks et al. (2010) provide a state-specific calendar for the growing season of different crops. We use the median
planting and harvesting dates in each state. Therefore, the number of hours in a growing season, nj, is county
and crop-dependent. However, this calendar is fixed in time, and we therefore abstract from any calendar shifts

over 2008-2023.



c
n;

HDHZCt = Z(CTZ; - Thigh)l(ﬂifl > Thigh)
h=1

where n¢ is the total number of hours in the respective growing season of crop c in county i, T/
is hourly temperature(°C) in county 4 and year ¢, and 7,4, and 74, are thresholds defined for
each crop: 74, is set to 8°C for corn and soybean, 0°C for winter wheat (Aragdn et al., 2021;
Burchfield et al., 2019); 74,4, is 29°C for corn, 30°C for soybean and winter wheat (Schlenker
and Roberts, 2009; Burchfield et al., 2019). In the regressions, GDH is expressed in 10,000°C-
hours, and HDH is in 1,000°C-hours.

Precipitation indicators are based on total growing season rainfall in county 7 during year ¢,
P¢,, and compared with the county’s own historical distribution (2008-2023). Following Burgess
et al. (2017), we create tercile dummies 1{P{, € tercile k} corresponding to low / high rainfall
and omit the middle tercile to capture “normal” conditions. We model rainfall as the sum of daily
precipitation over the growing season, rather than high frequency extremes, because cumulative
rainfall better accounts for potential water storage capacity that crops experience. Moreover,
using terciles (rather than absolute thresholds) focuses on deviations from the local conditions
to which farming practices are adapted, and balances statistical power with tractability.

Figure 1 illustrates county-level changes between 2008-2010 and 2021-2023 (three year
means at each endpoint) in corn yields and in the three weather variables used in the regression.
Each map is paired with a county histogram to show the distribution of changes. We observe that
most corn-growing counties experienced an increase in GDH, with few exceptions in counties
located in the Grand Lake region and the south eastern Coastal Plain. However, we also observe
a rise in HDH and a decrease in growing season rainfall in some areas. Similar figures for
soybean and winter wheat are displayed in the Appendix Al and A2 respectively, indicating the
same broad warming pattern. The main difference concerns extreme heat: Table 1 shows that
corn is the most affected crop with an average of 1,200 degree hours above 29°C. In contrast,
winter wheat experiences the least heat exposure because its growing season occurs outside of

the summer months.

Crop Diversity. We measure crop diversity with the USDA Cropland Data Layer, which clas-

sifies 30 meter by 30 meter pixels into more than one hundred crop and land cover classes



Figure 1: County-level changes in corn yield, growing and harmful degree hours, and growing
season rainfall, 2008-2023
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Notes: This figure reports differences in corn yield and weather variables between 2008-2010 and 2021-2023 three year averages for
all counties with non-suppressed observations in at least one year of each window. Histograms below the maps give the distribution
of county changes. Upper left panel shows difference in corn yield in bu/acre. The upper right panel displays difference in growing
degree hours (in 10,000°C-hours) and the lower left panel shows difference in harmful degree hours (in 1,000°C-hours). The lower
right panel presents the difference in cumulative growing season rainfall (cm).

each year (USDA NASS, 2024a). For each county ¢ and year ¢, we follow Aramburu Merlos and
Hijmans (2020) and compute a diversity index D;; defined as the exponential of the Shannon

entropy index:
Sit
Dyt = exp _Z(pictlnpict)

c=1

where p; is the share of cropland area covered with crop c in county 7 and year ¢, and Sj; is



Figure 2: Spatial distribution of Shannon crop diversity
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Notes: This figure reports the geographical distribution of the Shannon crop diversity index for the period 2008-2023. The left
panel shows the average value of the exponential Shannon index for each county. The right panel displays the change in that index
between 2008-2010 and 2021-2023 three year averages. Histograms below each map give the distribution of county averages and
changes, respectively.

the total number of crop species in the county.® The exponential transformation of the Shannon
index delivers “effective number of species” or “hill number”. It is the equivalent number of
equally common species that would be needed to get the same diversity value as the actual
dataset. A higher value of D;; thus indicates both richer and more even portfolio of crops.”
Figure 2 maps the geographical distribution of the exponential Shannon index of crop di-
versity. The left panel displays the county mean for 2008-2023, revealing significant variation,
with high diversity regions primarily located in the North, the Southeast, and California. In
contrast, the Western regions and most of the Northeast exhibit relatively low levels of crop
diversity. This latter area is characterized by extensive grain crop agriculture, particularly in the

Corn and Soybean Belt. The right panel plots the change in the index between 2008-2010 and

6 S;; encompasses 107 cultivated crops such as corn, cotton, rice, various fruits and vegetables. Cropland area
refers to the county land area after removing land types that are unrelated to vegetation such as developed
(concrete), water, or barren. We exclude these items for the calculation of the index and list them in the appendix
Table B1. Moreover, we do not consider temporal diversity such as crop rotation, but we account for double
cropping within a growing season and treat it as a separate items in the calculation of the diversity index. In a
subsequent step, we also include the 12 non-cultivated crop categories, which include forest, wetlands, grass or
pasture lands. We come back to this below.

Note that D;; = n would indicate a situation in which the county would have the same diversity as a hypothetical
field planted evenly to n crops.



2021-2023. Over the 15 year study period, crop diversity has remained relatively stable in most
counties, though there has been a notable increase in the North. Table 1 indicate an average of
about 4 crop equivalent per county. However, we also observe a wide range, with some coun-
ties exhibiting monoculture practices, while others exhibit up to 16 different crops in terms of
effective species.

We also consider two alternative indices drawn from Hill’s diversity continuum (Hill, 1973).
First, we consider species richness as S;;, which is the number of cultivated crop species in
county ¢ and year ¢. Richness is sensitive to any crop species present in a given area, regardless

of its relative importance. Second, we use the Simpson index, which is defined as:

1

Dit = ——5
Sit 2
Zcélpict

Simpson gives more weight to abundant species and down weights rare ones. Whittaker (1965)
suggests one should interpret this measure as a dominance or concentration. Our main analysis
relies on the Shannon index because it lies between these two extremes, balancing sensitivity to
rare crops (richness) with sensitivity to evenness (Simpson) (Di Falco and Chavas, 2008).

Figure A3 shows the geographical distribution of the long run average and the 2008-2023
change in richness and Simpson indices. The richness map shows highly diverse agricultural
lands in the Central Valley of California (large variety of nuts, fruits, and vegetables) whereas
the Corn and Soybean Belt in the central United States exhibits much lower richness. The
Simpson index instead rises when cropland is spread more evenly across the species that are
present. Values are highest in eastern counties, suggesting that few crop species are cultivated,
but in even proportions. One might also note that richness increased in almost all counties
between 2008 and 2023, whereas the Simpson index moves little.

Irrigation. County irrigation status is derived from GAEZ +2015 dataset (Frolking et al.,
2020), which reports 2015 crop specific irrigated and rainfed areas on a 5 arc minute (approx.
3km) resolution. Grid cells are aggregated to county boundaries, and following Schauberger
et al. (2017) we classify counties based on the share of irrigated area for each crop. Specifically,
a county is irrigated if its irrigation share > 0.75, rainfed when its irrigation share < 0.1, and
mixed otherwise. Based on these thresholds, Table 1 shows that about 22% of U.S. corn land

is irrigated, compared to 14% for winter wheat, whereas soybeans only has five counties that

10



exceed the 10% threshold.® Appendix Figure A4 maps the resulting irrigation categories for

each crop.

2.2 Econometric estimation

We aim to estimate the causal impact of weather shocks on county-level yields of corn, soybean,
and winter wheat, and to assess how crop diversity moderates those impacts. Our strategy
exploits a panel of U.S. counties and we estimate two-way fixed effects regressions that absorb
both county and year heterogeneity (Deschénes and Greenstone, 2007; Blanc and Schlenker,
2017). Following Carleton and Hsiang (2016), causal identification comes from within-county,
year-to-year variation in weather, which is widely regarded as quasi-random with respect to
local economic conditions (see also Dell et al., 2014; Auffhammer and Carleton, 2018). Under
this assumption weather fluctuations are plausibly exogenous and coefficients on the weather
variables can be interpreted as causal.

Formally, for each crop ¢ we start by estimating the following regression:
log(Yi§) = 5° Wi, + af + 6 + e, €Y

where Y;§ denotes yield for crop c in county i and year t, W¥, is a vector of our four weather
variables: GDH, HDH, and indicators for low and high rainfall terciles. Including both temper-
ature and precipitation terms limits potential omitted variable bias (Auffhammer et al., 2013),
and later allows us to separately quantify diversity-temperature and diversity-precipitation in-
teractions, see below. Equation (1) also includes county fixed effects af and year fixed effects
d¢. Standard errors are clustered at the county level to account for serial correlation in the error
term e,.

In equation (1), the vector 3¢ quantify causal semi-elasticities of yields with respect to de-
viation in temperatures and precipitations during the growing season. The implied relationship
is:

BYWES, = BSGDHS, + BSHDHY, + BSRAINIow, + BSRAINhight, ,

8 These five counties are all adjacent to the border with Mexico. From table 1, we know that the county with the
highest irrigation share for which yield data is available has an irrigation share of 27%.

11



so that, for example, /35 gives the approximate percentage change in yield associated with 1,000
additional harmful degree hours. This strategy offers the advantage of parsimony, requiring the
estimation of only a few coefficients, while still capturing the underlying nonlinear yield-weather
relationship. Mérel and Gammans (2021) show that in large spatial panels (such as counties
in contiguous United States) where most temperature variation is cross-sectional rather than
time-series, coefficients on degree hour measures mainly reflect the long run climatic gradient.
The same dominance cross-sectional variability is not observed for precipitation, which exhibits
greater year on year variability within counties.

Based on this specification, we test whether crop diversity modulates the yield response to
whether shocks, a diversity resilience effect. In particular, we extend equation (1) by adding the

Shannon index D;; and its interactions with the four weather variables:
log(Yg) = B WE + 7" WDy + ¢°Dyy + of + 65 + €5, (2)

where elements in the vector of interest v¢ measure resilience: each element shows how a
one-unit increase in the diversity index changes the yield semi-elasticity with respect to a given
weather variable. The coefficient ¢¢ captures the direct yield effect of a unit increase in the
diversity index. Note that all regressors are centered at their respective means, so that the main
effect coefficients are estimated at representative growing season conditions. As in equation (1),
we include county and year fixed effects and cluster standard errors at the county level.

We further use equation (2) to document crop-diversity resilience along three dimensions.
First, for corn and winter wheat we estimate the model separately for rainfed (<10% irrigated
cropland), mixed (10-75%), and irrigated (>75%) counties. Soybean is excluded from this
analysis because fewer than 1% of soybean growing counties meet the 10 percent irrigation
threshold. Second, beyond the baseline Shannon index which accounts for both species richness
and evenness, we re-estimate equation (2) with two alternative diversity indices: (i) species
richness, a simple count of crop species, and (ii) the Simpson index, which increases as cropland
area becomes concentrated in a few crops. This implies that the interaction terms with richness
indicates how adding one more crop species changes the yield response to a weather shock,
whereas the interactions with Simpson capture how increased concentration and lower evenness

modifies that response, reversing the sign capturing resilience of increased diversity. Third, we

12



extend the calculation of the index to include both cultivated and non-cultivated items listed
in the Cropland Data Layer (USDA NASS, 2024a). This accounts for the fact that yields may
depend on the composition of the entire landscape rather than on the crop mix alone (Nelson
and Burchfield, 2021). Comparing results for crop-based and landscape-based Shannon indices
provides evidence about the channels for yield and resilience benefits of diversity.”

Importantly, one potential concern with identification is that crop diversity D;; may be cho-
sen in response to unobserved yield determinants, so the main effect coefficient ¢¢ cannot be
interpreted causally. Following the argument in Angrist and Krueger (1999), however, the in-
teraction Wi, D;; can still be treated as exogenous because the vector WY, is plausibly random
once county and year fixed effects are controlled for.!° This allows us to interpret the interaction
coefficients 7¢ as the causal effect of crop diversity on the yield response to weather shocks, even
though ¢° need not be causal.

Existing studies suggest that U.S. farmers adjust crop portfolios only slowly, if at all, in
response to weather variations. Burke and Emerick (2016) find negligible adaptation in either
crop choice or input use, and Annan and Schlenker (2015) show that federal crop insurance,
which covers around 80% of corn and soybean cropland, further reduces incentives to reallocate
land in response to weather shocks. These institutional features mitigate concerns that our
diversity measure is endogenous. We address the issue with two robustness checks. First, we
re-estimate equation (2) using lagged diversity values (D; 1), allowing diversity to influence
yields only through pre-determined agronomic channels (e.g., soil quality or water retention).
Second, we fix diversity at its first observed value, namely D, 2903 for corn and soybean, and
D; 2009 for winter wheat to account for the growing season that spans two calendar years. This
eliminates any contemporaneous link between D; 508/2009 @and the error term. Consistency of
the coefficients across these specifications would strengthen the claim that the main effect of

diversity can be interpreted as a causal relationship.

° We note that a limitation of using the Cropland Data Layer (USDA NASS, 2024a) for assessing landscape diversity
is that non-crop classes are recorded in broad categories (e.g., four types of forests), whereas crop classes are
reported at a higher resolution. We provide a list of all non-cultivated categories in Table B2 of the Appendix.

19" Specifically, we assume that after accounting for crop diversity (D;;) and fixed effects (o; and §;), the weather
variables (Wj¢) do not directly influence the unobserved determinants of yields. Formally,

Eleit | Wit, Dit, i, 0¢) = 0

Thus any remaining variation in yields (e;:) is not systematically related to the weather variables.
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Lastly, we re-estimate equation (2) with quadratic time trends to capture unobserved ef-
fects associated with an upward trend in yields over time. We use three alternative approaches
to capture regional trends in a flexible manner: (i) as a common quadratic trend across all
counties, (ii) state-specific quadratic trends, or (iii) county-specific quadratic trends. These al-
ternative specifications flexibly control for smooth nonlinear, unobserved factors at different
spatial scales, such as technological progress (e.g. better seeds or fertilizers) or shifts in farmer
behavior. However, we note that county-level quadratic time trends imply a risk of overfitting
and absorbing economically meaningful variation, so that results from that specification should

be interpreted with caution.

3 Results

This section reports the empirical results. First, we quantify the impact of weather shocks on
crop yields and document how increased crop diversity influences this relationship. Second,
we investigate heterogeneity effects across irrigation status. Third, we report estimates using
alternative diversity indices. Finally, we compare the effects of crop diversity with those of

landscape compositional diversity. We close with robustness checks.

3.1 Main results

Table 2 presents the results for OLS estimation of equation (1) in the odd-numbered columns
and equation (2) in the even-numbered columns for the three crops analyzed. The outcome vari-
able is the logarithm of crop yields (in bushels per acre), and we capture the impact of growing
temperatures with GDH over the growing season (in 10,000) and harmful temperatures with
HDH (in 1,000), both measured over the local growing season for each crop. The impact of low
/ high rainfall during the growing season are represented by two indicator variables capturing
bottom and top precipitation terciles. Lastly, crop diversity is measured by the exponential Shan-
non entropy index and interacted with measures of temperatures and rainfall. All specifications
further include county and year fixed effects, and standard errors clustered at the county-level
are reported in parentheses.

Results from the benchmark specifications (odd columns) are highly consistent with the
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Table 2: Yields, weather shocks and crop diversity

Corn Soybean Winter wheat
(D ) 3 @ (5) (6)

GDH 0.020** 0.020** 0.003 0.006 -0.062"*  -0.057***
(0.009) (0.009) (0.0209) (0.009) (0.009) (0.009)
x Shannon 0.009** -0.002 -0.010***
(0.004) (0.003) (0.003)
HDH -0.141**  -0.143**  -0.194**  -0.196"*  -0.118**  -0.123***
(0.005) (0.005) (0.006) (0.006) (0.013) (0.014)

x Shannon 0.012*** 0.012%** 0.002
(0.003) (0.003) (0.008)

Low rainfall -0.033**  -0.032***  -0.042***  -0.041*** 0.008* 0.008*
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

x Shannon 0.005** 0.004* 0.003
(0.002) (0.002) (0.003)
High rainfall  -0.010***  -0.010*** 0.008*** 0.007*** -0.018**  -0.018***
(0.003) (0.003) (0.002) (0.002) (0.004) (0.004)

x Shannon 0.00001 -0.00007 0.006*
(0.002) (0.002) (0.003)
Shannon 0.021*** 0.005 0.017***
(0.005) (0.004) (0.006)

Observations 24,371 24,371 19,158 19,158 11,087 11,087

Counties 2,127 2,127 1,716 1,716 1,471 1,471

R? 0.733 0.735 0.768 0.732 0.742 0.744

Within R2 0.149 0.159 0.245 0.249 0.027 0.031

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent vari-
able. GDH measure growing degree hour (in 10,000) and HDH are harmful degree hour (in 1,000).
Low rainfall and High rainfall are indicator variables for the first and third terciles of the precipitation
distribution, respectively. Diversity is measured with we use the exponential Shannon index (the effec-
tive number of crops). Independent variables are mean-centered. All specifications include county and
year fixed effects. Standard errors are clustered at the county level and reported in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

existing literature that documents large, nonlinear temperature impacts to U.S. crops (e.g.,
Schlenker and Roberts, 2009; Schauberger et al., 2017). In particular, the coefficient on HDH is
negative and highly significant for all three crops (p<0.01), implying that an increase of 1,000
in HDH (approx. 1 standard deviation), reduces yields by 14.1% for corn, 19.4% for soybeans
and and 11.8% for winter wheat. An increase of moderate heat exposure (GDH) has a positive
and statistically significant impact on corn yields, but no impact on soybean yields and a nega-
tive and statistically significant impact on wheat yields. While the result for winter wheat may
seem surprising, it is consistent with the spring heat penalties reported in both Schauberger et al.

(2017) and Tack et al. (2015). Results in Table 2 further show that years with relatively low
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precipitations imply lower yields for corn (-3.3%, p<0.01) and soybean (-4.2%, p<0.01) rela-
tive to years with moderate rainfall. For winter wheat yield the effect of low rainfall is slightly
positive and marginally significant (+0.8%, p<0.1). Years with relatively high rainfall imply
lower yields for corn (-1%, p<0.01) and wheat (-1.8%, p<0.01), but higher yields for soybean
(+0.8%, p<0.01). These coefficients are in line with the moisture stress gradients documented
by Schlenker and Roberts (2009).

Columns 2, 4 and 6 of Table 2 quantify the effect of crop diversity (Shannon index) on yields
and interactions with weather variables. The main effect coefficients are positive for corn and
winter wheat and statistically insignificant for soybean. Quantitatively, a unit increase in the
exponential Shannon index (corresponding to one additional crop cultivated evenly across the
county) is associated with a 2.1% higher corn yield (column 2, p<0.01) and a 1.7% winter
wheat yield (column 6, p<0.01). The soybean estimate (column 4) is near zero, in line with
Burchfield et al. (2019). These effects are consistent with a general finding in the literature that
average yield increases with crop diversity (Smale et al., 1998; Di Falco and Perrings, 2005).
We note that the coefficients of the effects of weather variables on yields stay stable with the in-
clusion of the crop diversity variable, as none of the differences are statistically significant. This
suggests that changes in diversity are not correlated with weather shocks, mitigating concerns
of a potential bad control bias.

More interestingly, crop diversity tends to make yields more resilient to weather shocks. First,
we find that it mitigates the negative impact of extreme temperatures. More specifically, a unit
increase in the Shannon index reduces the negative yields effect of HDH by 1.2 pp (p<0.01) for
corn (column 2) and soybean (column 4), offsetting 8.4% and 6.1% of the direct HDH impact,
respectively. The corresponding interaction for winter wheat (column 6) is small and statistically
insignificant. Second, we also find evidence of increased resilience against low and high levels
of precipitation. For low rainfall, the coefficient for corn falls by 0.5pp (p<0.05) and 0.4 pp
for soybean (p<0.1), implying offsets of 15% and 10%, respectively. The wheat interaction
remains statistically insignificant. Under high rainfall, only winter wheat exhibits a significant

interaction (-0.6 pp, p<0.1).
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Table 3: Yields effects by irrigation status

Corn Winter wheat
Rainfed Mixed Irrigated Rainfed Mixed Irrigated
(D 2 3 @) (5) (6)
GDH 0.078*** -0.089*** -0.059** -0.021 -0.068***  -0.081***
(0.013) (0.015) (0.028) (0.013) (0.017) (0.021)
x Shannon 0.009 0.017*** 0.002 -0.007** -0.018*** -0.010
(0.006) (0.006) (0.011) (0.004) (0.005) (0.010)
HDH -0.208*** -0.118*** -0.046*** -0.086*** -0.153*** -0.174***
(0.009) (0.006) (0.010) (0.018) (0.022) (0.033)
x Shannon 0.011* 0.008** 0.002 0.019* 0.006 -0.024
(0.007) (0.004) (0.004) (0.010) (0.011) (0.016)
Low rainfall -0.028**  -0.036**  -0.028*** 0.018*  -0.036*** -0.003
(0.004) (0.006) (0.008) (0.005) (0.011) (0.021)
x Shannon 0.010*** 0.005 -0.003 0.004 0.007 0.021**
(0.003) (0.004) (0.005) (0.004) (0.008) (0.010)
High rainfall -0.013*** -0.010* -0.013* -0.027*** 0.019* -0.003
(0.003) (0.005) (0.008) (0.004) (0.010) (0.020)
x Shannon 0.007** -0.002 0.002 0.005 0.004 -0.015
(0.003) (0.004) (0.005) (0.003) (0.006) (0.009)
Shannon 0.042*** 0.032*** -0.027*** 0.023*** 0.002 0.017
(0.007) (0.006) (0.008) (0.007) (0.009) (0.015)
Observations 14,058 7,484 2,781 7,814 2,689 584
Counties 1,119 680 315 971 398 102
R? 0.741 0.736 0.829 0.722 0.729 0.858
Within R? 0.214 0.181 0.076 0.019 0.07 0.166

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent
variable. GDH measure growing degree hour (in 10,000) and HDH are harmful degree hour (in 1,000).
Counties are classified as irrigated if the share of cultivated irrigated area is larger than 75%, rainfed
if the irrigation share is smaller than 10%, and mixed in between. Low rainfall and High rainfall are
indicator variables for the first and third terciles of the precipitation distribution, respectively. Diversity
is measured with we use the exponential Shannon index (the effective number of crops). Independent
variables are mean-centered. All specifications include county and year fixed effects. Standard errors
are clustered at the county level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

3.2 Results by irrigation status

Table 3 reports results for the baseline model for corn and winter wheat separately by irrigation
status.!! A county is classified as rainfed when irrigated cropland accounts for less than 10% of
total cropland area, irrigated when the share is larger than 75%, and mixed otherwise. All spec-
ifications replicate the presentation used in Table 2 and include county and year fixed effects.

Standard errors are clustered at the county level and reported in parentheses.

1 As discussed above, rainfed production dominates for corn and winter wheat, particularly in the Midwestern

states. For soybean, production is rainfed with only a few exceptions, so that it is not considered here.
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Starting with results for corn, we observe that HDH have a more pronounced negative im-
pact in rainfed counties compared to irrigated counties. A 1,000 increase in HDH lowers corn
yields by more than 20% (p<0.01), compared to around 12% (p<0.01) in mixed and 4.6%
(p<0.01) in predominantly irrigated counties. In rainfed counties, an increase of the Shannon
index by one unit offsets the negative impact of HDH by 1.1 pp (p<0.1) and in mixed counties
by 0.8 pp (p<0.05). No significant resilience effect is estimated in irrigated counties. Crop di-
versity also mitigates the negative effect of rainfall shocks in rainfed regions. Specifically, while
low rainfall years imply a decline in corn yields by 2.8% (p<0.01), a unit increase in crop di-
versity offsets that impact by 1 pp (p<0.01). Similarly, the loss of corn yields with high rainfall
is 1.3% (p<0.01), and the corresponding offset is 0.7 pp (p<0.05). Lastly, the direct yield as-
sociation with crop diversity is positive for rainfed and mixed counties (respectively 4.2% and
3.2%, p<0.01), but negative in irrigated counties (-2.7%, p<0.01). This observation aligns with
findings for irrigated cereal systems in Pakistan reported in Smale et al. (1998).

For winter wheat, the pattern for extreme heat is reversed, as the marginal impact of HDH
in rainfed counties is around -8.6% (p<0.01) and -17.4% (p<0.01) in irrigated counties. In
rainfed counties, a unit increase in the Shannon index attenuates this loss by 1.9pp (p<0.1),
whereas the interaction is not statistically significant in mixed and irrigated counties.!? We
further find that crop diversity contributes to drought resilience of winter wheat only when
irrigation is present. In irrigated counties, low rainfall years do not affect average yields, but the
interaction with the Shannon index is positive (2.1 pp, p<0.05), indicating that more even crop
mixes raise yields under moisture deficits even with irrigation. Finally, the positive association
between diversity and winter wheat yields is largest in rainfed counties, as a unit increase of
Shannon is associated with a 2.3% (p<0.01) gain in yields, whereas the effects are smaller and

not statistically significant for mixed and irrigated counties.

3.3 Alternative indices for crop diversity

This section explores results for equation (2) based on two alternative measures of crop diver-

sity: county-level richness and the Simpson index, which measures concentration rather than

12 1t is important to approach these findings cautiously, as the sample size of counties using irrigation is relatively
small, and the number of hours with harmful temperatures is also limited (refer to Table 1).
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Table 4: Yields effects for alternative crop diversity indices

Corn Soybean Winter wheat
Richness Simpson Richness Simpson Richness Simpson
D (2 €)) (€] ) (6)

GDH 0.022** 0.022** 0.002 0.002 -0.063***  -0.061***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

x Index 0.0003 0.0005 0.0006* -0.0005*** -0.0002 -0.0006
(0.0005) (0.0003) (0.0003) (0.0002) (0.0004) (0.0004)
HDH -0.139*** -0.148™** -0.198*** -0.193**  -0.115**  -0.114***
(0.005) (0.005) (0.007) (0.006) (0.013) (0.013)

x Index 0.001*** -0.002*** -0.002*** 0.0004 -0.0008 0.0004
(0.0004) (0.0003) (0.0006) (0.0003) (0.0013)  (0.0013)

Low rainfall -0.033*** -0.033*** -0.041*** -0.042*** 0.007 0.007*
(0.003) (0.003) (0.003) (0.003) (0.005) (0.004)

x Index 0.00009  -0.0005***  -0.0008**  -0.0006*** 0.0008 0.001**
(0.0003) (0.0002) (0.0003) (0.0002) (0.0005) (0.0004)
High rainfall ~ -0.010*** -0.011*** 0.007*** 0.008*** -0.017***  -0.018***
(0.003) (0.003) (0.002) (0.002) (0.004) (0.004)
x Index -0.0006** -0.0003 0.00003 0.0002 0.0002 -0.0008*
(0.0003) (0.0002) (0.0003) (0.0002) (0.0005)  (0.0004)

Index 0.001*** -0.001*** 0.001*** -0.0005* 0.002*** 0.0002
(0.0004) (0.0003) (0.0003) (0.0003) (0.0006)  (0.0007)

Observations 24,371 24,371 19,158 19,158 11,087 11,087

Counties 2,127 2,127 1,716 1,716 1,471 1,471

R? 0.733 0.733 0.769 0.769 0.743 0.743

Within R? 0.152 0.151 0.247 0.246 0.029 0.029

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent variable.
GDH measure growing degree hour (in 10,000) and HDH are harmful degree hour (in 1,000). Low rainfall
and High rainfall are indicator variables for the first and third terciles of the precipitation distribution,
respectively. In odd columns the index refers to the richness index (species count), and in even columns
we use the Simpson index (species concentration). Independent variables are mean-centered. All specifica-
tions include county and year fixed effects. Standard errors are clustered at the county level and reported

in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

For corn interactions with extreme weather shocks show consistency with the resilience ef-

county level appear in parentheses.
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evenness. Table 4 reports the resulting OLS regression results for corn, soybean and winter

wheat. All specifications include county and year fixed effects. Standard errors clustered at the

fects discussed for the Shannon index, but highlights the importance of how diversity is defined.
Specifically, a higher species count (richness) continues to offset heat damage (positive HDH
interaction), although the magnitude is an order of magnitude smaller than with Shannon. By
contrast, greater concentration (higher Simpson) amplifies heat-stress losses (negative HDH in-

teraction) and worsens the low-rainfall penalty, the opposite of what we observe for richness



and Shannon. This suggests that results in Table 2 (column 2) are mainly driven by evenness
rather by the marginal crop. When diversity is measured as concentration (Simpson), counties
that specialize more heavily in a smaller number of crops experience larger yield losses under
heat and drought, reversing the protective pattern seen with the Shannon and richness indices.

For soybean and winter wheat, the resilience effects estimated for richness and Simpson
indices diverge from those obtained with the Shannon index. For soybean, neither richness nor
Simpson reproduces the positive offsets to extreme heat (HDH) and low rainfall shocks reported
in Table 2, as coefficients are small and either insignificant or estimated with inconsistent signs.
For winter wheat, the positive interaction for high rainfall shocks estimated with the Shannon
index becomes insignificant when diversity is measured by richness and becomes negative when
measured by Simpson, while all other interactions remain close to zero. These inconclusive
results suggest that the resilience effects documented above are linked to evenness in the crop
mix rather than to the simple number of species or to surface concentration, supporting our use
of the Shannon index as the primary diversity measure.

Overall, we also confirm a direct association of diversity and yields for all crops, as measured
by the main effects. Richness enters with a positive coefficient for all three crops, whereas the
Simpson index yields negative coefficients for corn and soybean and an insignificant coefficient
for winter wheat. While these direct estimates should be interpreted as correlational rather than
causal, all indices suggest that yields rise with the number of crops and with evenness, but fall

when a single crop dominates.

3.4 Landscape diversity

In Table 5, we report results comparing our baseline specification that uses a Shannon index
calculated from cultivated crops only (reproduced from the even columns of Table 2) and a
specification based on a Shanon index incorporating both cultivated and non-cultivated items
listed in the Cropland Data Layer (USDA NASS, 2024a). The crop only diversity estimates appear
in the left panel, the landscape diversity estimates in the right panel. All specifications include
county and year fixed effects, and we report standard errors clustered at the county-level in
parentheses.

Results suggest that the main effect of diversity on yields is stronger when considering crop
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Table 5: Yields effects for crop vs. landscape diversity

Crop diversity Landscape diversity
Corn Soybeans  Winter wheat Corn Soybeans  Winter wheat
M (2 3 ) (5) (6)
GDH 0.020** 0.006 -0.057*** 0.019** 0.005 -0.059***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
x Shannon 0.009** -0.002 -0.010*** 0.009*** 0.0003 -0.008***
(0.004) (0.003) (0.003) (0.003) (0.002) (0.002)
HDH -0.143***  -0.196*** -0.123*** -0.140"**  -0.194*** -0.119***
(0.005) (0.006) (0.0149) (0.005) (0.006) (0.014)
x Shannon 0.012%** 0.012%** 0.002 0.005* 0.007*** 0.011
(0.003) (0.003) (0.008) (0.002) (0.003) (0.007)
Low rainfall -0.032**  -0.041*** 0.008* -0.033***  -0.041*** 0.008*
(0.003) (0.003) (0.004) (0.003) (0.003) (0.004)
x Shannon 0.005** 0.004* 0.003 0.004*** 0.002 0.010™**
(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
High rainfall  -0.010***  0.007*** -0.018*** -0.009***  0.008*** -0.017***
(0.003) (0.002) (0.004) (0.003) (0.002) (0.004)
x Shannon 0.00001 -0.00007 0.006* 0.0006 0.002 0.003
(0.002) (0.002) (0.003) (0.002) (0.001) (0.002)
Shannon 0.021*** 0.005 0.017*** 0.016** 0.0002 0.010**
(0.005) (0.004) (0.006) (0.003) (0.003) (0.004)
Observations 24,371 19,158 11,087 24,371 19,158 11,087
Counties 2,127 1,716 1,471 2,127 1,716 1,471
R? 0.735 0.769 0.744 0.733 0.769 0.743
Within R? 0.159 0.249 0.031 0.154 0.247 0.031

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent variable. GDH
measure growing degree hour (in 10,000) and HDH are harmful degree hour (in 1,000). Low rainfall and High
rainfall are indicator variables for the first and third terciles of the precipitation distribution, respectively. Di-
versity is measured with we use the exponential Shannon index (the effective number of crops). Independent
variables are mean-centered. Landscape diversity includes vegetation types that are not cultivated. All specifi-
cations include county and year fixed effects. Standard errors are clustered at the county level and reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.

diversity as opposed to landscape diversity. A unit increase in the crop-based Shannon index
raises corn yields by 2.1% and winter wheat yields by 1.7%, whereas the corresponding land-
scape coefficients fall to 1.6% and 1.0%, whereas estimates for soybean remain statistically
insignificant. Consistent with Nelson and Burchfield (2021), this suggests that yield gains are
concentrated in the cropped portion of the landscape, although our panel fixed effect estimation
implies a more modest incremental contribution of non-crop area.

Estimates for interaction terms further confirm that crop diversity is the primary channel
for resilience effects. For corn and soybeans, coefficients decline from 0.012 to 0.005 and from
0.012 to 0.007, respectively, when we broaden the index to the landscape. Resilience effects

for low rainfall events also decline. Nonetheless, all coefficients are positive. In contrast, for
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winter wheat, we observe a positive and statistically significant coefficient for the interaction
between low rainfall and landscape diversity, while no such effect is found for crop diversity.
This suggests that, at the average, landscape diversity contributes to enhancing yield benefits
during years with low precipitation (see Tamburini et al., 2020). Across all three crops, GDH and
high rainfall effects remain small and of the same sign in both specifications. Taken together,
the results imply that evenness within the cropped area delivers the dominant share of yield and
resilience benefits, while additional heterogeneity from non-crop vegetation provides smaller,

crop-specific gains.

3.5 Results for robustness checks

We now report results for two robustness checks. First, we replace the contemporaneous Shan-
non index D;; with (i) its one-year lag (D;;—1) and (ii) a time-invariant value measured at the
beginning of the sample period. Second, we augment the baseline specification with quadratic
time trends: (i) a single trend common to all counties, (ii) state-specific trends, and (iii) county-
specific trends. These trends control for changes in crop diversity and other unobserved factors

affecting yields over time.

3.5.1 Robustness: lagged and pre-determined diversity

Table 6 presents the results using the one-year lag of the Shannon index (D; ;) and a value of
the index that is econometrically pre-determined in the time series sense, namely 2008 for corn
and soybean and 2009 for winter wheat (denoted D; 2008 and D; 2009, respectively).! We follow
the same structure as for Table 2, and include county and year fixed effects in all specifications.
Standard errors clustered at the county-level are reported in parentheses.

Overall, the interaction terms that capture resilience to extreme weather shocks are largely
unaffected by the timing assumptions. For all three crops, the interaction with HDH remains
positive and highly statistically significant, and its magnitude approximately doubles when crop
diversity is held fixed. This indicates that resilience to temperature shocks is not driven by

contemporaneous crop-mix changes. Positive offsets to low rainfall years also persist, although

13 For winter wheat the growing season spans two calendar years, with the first yield data observed in 2009. Results
are similar if we use the Shannon index computed for 2008.
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Table 6: Yields effects with lagged and predetermined crop diversity indices

Corn Soybean Winter wheat
D1 D; 2008 D1 D; 2008 D1 D; 2009
€] 2 3) @ (5) (6)
GDH 0.026*** 0.022** 0.018* 0.014 -0.067*** -0.058***
(0.009) (0.009) (0.009) (0.009) (0.010) (0.009)
x Shannon -0.001 -0.028*** -0.009*** -0.018*** -0.012*** -0.017***
(0.004) (0.004) (0.003) (0.005) (0.003) (0.003)
HDH -0.144*** -0.151*** -0.197*** -0.205*** -0.109*** -0.128***
(0.005) (0.006) (0.006) (0.006) (0.015) (0.014)
x Shannon 0.012%** 0.026*** 0.012%** 0.023*** 0.007 0.012*
(0.003) (0.003) (0.003) (0.003) (0.007) (0.007)
Low rainfall -0.029*** -0.032*** -0.040*** -0.041*** 0.004 0.009*
(0.003) (0.003) (0.003) (0.003) (0.005) (0.005)
x Shannon 0.007*** 0.003 0.004** 0.006*** 0.003 0.006*
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
High rainfall -0.013*** -0.010*** 0.007*** 0.007*** -0.022*** -0.018***
(0.003) (0.003) (0.002) (0.002) (0.004) (0.004)
x Shannon -0.0003 0.001 -0.0006 -0.0001 0.011*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
Shannon 0.012%** -0.012*** -0.009
(0.004) (0.004) (0.005)
Observations 22,796 24,371 17,965 19,158 10,160 11,087
Counties 2,107 2,127 1,707 1,716 1,442 1,471
R? 0.732 0.736 0.774 0.771 0.744 0.744
Within R?2 0.157 0.162 0.254 0.255 0.032 0.032

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent vari-
able. GDH measure growing degree hour (in 10,000) and HDH are harmful degree hour (in 1,000).
Low rainfall and High rainfall are indicator variables for the first and third terciles of the precipitation
distribution, respectively. Diversity is measured with we use the exponential Shannon index (the ef-
fective number of crops). Independent variables are mean-centered. The table compares results when
using Shannon lagged (D;_1) vs. Shannon predetermined (Dsgps Or Daggg) as the diversity specifi-
cation. All specifications include county and year fixed effects. Standard errors are clustered at the

county level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

they become imprecise for corn in the fixed specification. For winter wheat, we observe a strong

resilience effect in unusually wet years. Quantitatively, the offsetting effect corresponds to 50%

(p<0.01) and 44% (p<0.01) for lagged and pre-determined specification, respectively.

We also note that the main diversity coefficient estimated in the lagged regression remains
positive for corn, but turns negative for soybean and becomes statistically insignificant for winter

wheat. This suggests that the coefficient ¢¢ should be interpreted as descriptive rather than

causal.
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Table 7: Yields effects with quadratic time trends

Corn Soybean Winter wheat
@™ @ 3 (€] ©) © @ ® )]
GDH 0.020** 0.021** 0.024** 0.006 0.014 0.016* -0.057*** -0.070*** -0.074***
(0.009) (0.009) (0.010) (0.009) (0.009) (0.010) (0.009) (0.009) (0.011)
x Shannon 0.009** 0.007* 0.007 -0.002 -0.001 -0.004 -0.010*** -0.009*** -0.009***
(0.004) (0.004) (0.005) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
HDH -0.143*** -0.141*** -0.146*** -0.196*** -0.194** -0.195*** -0.123*** -0.118*** -0.119***
(0.005) (0.005) (0.006) (0.006) (0.006) (0.007) (0.014) (0.014) (0.015)
x Shannon 0.012*** 0.012%** 0.013*** 0.012%** 0.013*** 0.014*** 0.002 0.005 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.008) (0.008) (0.009)
Low rainfall -0.032%** -0.036*** -0.039*** -0.041*** -0.043*** -0.043*** 0.008* 0.007 0.006
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.005)
% Shannon 0.005** 0.006™** 0.007*** 0.004* 0.004** 0.003 0.003 0.003 0.006*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
High rainfall -0.010%** -0.008*** -0.010*** 0.007*** 0.009*** 0.009*** -0.018*** -0.016*** -0.019***
(0.003) (0.003) (0.003) (0.002) (0.002) (0.003) (0.004) (0.004) (0.004)
x Shannon 0.00001 0.001 -0.0003 -0.0001 0.0002 -0.0004 0.006* 0.007** 0.009***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
Shannon 0.021*** 0.020*** 0.023*** 0.005 0.008** 0.009** 0.017*** 0.018*** 0.021***
(0.005) (0.005) (0.006) (0.004) (0.004) (0.004) (0.006) (0.006) (0.007)
Observations 24,371 24,371 24,371 19,158 19,158 19,158 11,087 11,087 11,087
Counties 1,334 1,334 1,334 1,627 1,627 1,627 1,024 1,024 1,024
R? 0.735 0.739 0.762 0.769 0.776 0.800 0.744 0.749 0.787
Within R? 0.159 0.156 0.171 0.249 0.247 0.260 0.031 0.033 0.039
Time Trend Common State County Common State County Common State County

Notes: OLS regressions reported with the log of crop yields in bushels per acre as the dependent variable. GDH measure growing degree hour (in
10,000) and HDH are harmful degree hour (in 1,000). Low rainfall and High rainfall are indicator variables for the first and third terciles of the
precipitation distribution, respectively. Diversity is measured with we use the exponential Shannon index (the effective number of crops). Independent
variables are mean-centered. Columns 1, 4, and 7 include a single trend for all counties; columns 2, 5, and 8 include state-specific trends and columns
3, 6 and 9 include county-specific trends. All specifications include county and year fixed effects. Standard errors are clustered at the county level and

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

3.5.2 Robustness: time trends

Table 7 reports results with quadratic time trends: a single trend for all counties (columns 1, 4,
and 7), state-specific trends (columns 2, 5, and 8) and county-specific trends (columns 3, 6 and
9). The content of the table follows that of Table 2, and we include county and year fixed effects
in all specifications. Standard errors clustered at the county-level are reported in parentheses.
The results with time trends confirm previous conclusion. Resilience effects estimated from
interaction terms are consistent, although statistical inference can differ sightly. In particular,
these results confirm a strong resilience effect for corn and soybean associated of HDH damages,
and confirms that diversity attenuates winter wheat losses in unusually wet years. This lends
support to the underlying identifying assumption and suggests that our findings are not driven

by omitted, gradually evolving trends in yield growth.
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4 Discussion and conclusion

In this paper, we have combined county-level yield data, high frequency weather observation,
and high resolution cropland data to quantify how crop diversity mediates U.S. yield responses
to weather shocks over 2008-2023. We measure crop diversity with the exponential Shannon
index and estimate two-way fixed-effect regressions in which temperature and precipitation
shocks are treated as plausibly exogenous. The interaction between weather variables and the
diversity index identifies a resilience channel, showing that a more even crop portfolio reduces
the marginal damage from extreme heat and moisture deficit.

Our results show that crop diversity matters both on average and in extreme weather. In
line with Nelson and Burchfield (2021) and Burchfield et al. (2019), the Shannon index is
positively and statistically significantly associated with corn and winter wheat yields, indicating
that even outside extreme weather events diversity supports agricultural productivity. However,
robustness checks with lagged diversity suggest that this main association may not be causal.
More importantly, we report robust evidence that crop diversity mitigates yield losses from HDH
exposure for corn and soybean. A resilience effect is also estimated for winter wheat in high
rainfall years.

This evidence suggests that crop diversification can be part of climate adaptation policy, es-
pecially in regions that cannot rely indefinitely on irrigation. In particular, while irrigation can
buffer crop production against weather shocks, it increasingly relies on unsustainable ground-
water use. Scanlon et al. (2012) estimate that 60% of U.S. irrigation depends on groundwater.
In the High Plains, 30% of the aquifer has already been depleted (Steward et al., 2013). Na-
tionally, the share of groundwater in total withdrawals rose from 25% to nearly 30% between
2010 and 2015, with over half used for irrigation (Graham et al., 2021). Crop diversification
therefore offers a complementary strategy for managing climate risk. Policy instruments such as
crop-insurance premium discounts for diversified rotations, conservation payments that encour-
age minor crops, and technical assistance for non-traditional crops could facilitate an increase
of crop diversity.

Our analysis is also subject to a number of limitations and caveats that could guide fu-
ture research. First, our measure of diversity does not account for temporal practices such as

multi-year rotations or fallowing. Integrating those practices could reveal additional resilience
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mechanisms. Second, although the interaction coefficients appear causal, the level association
between diversity and yields may still be confounded by unobserved management choices. De-
signs that exploit exogenous land-use shocks could clarify the direct benefit of crop diversity
on yields, and would contribute to a better understanding of how diversity can be harnessed to

promote agricultural productivity at the macro level.
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Appendix A Figures

Figure Al: County-level changes in soybean yield,

growing and harmful degree hours, and
growing-season rainfall, 2008-2023
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Notes: This figure reports differences in soybean yield and weather variables between 2008-2010 and 2021-2023 three year averages
for all counties with non-suppressed observations in at least one year of each window. Histograms below the maps give the
distribution of county changes. Upper left panel shows difference in corn yield in bu/acre. The upper right panel displays difference

in growing degree hours (in 10,000°C-hours) and the lower left panel shows difference in harmful degree hours (in 1,000°C-hours).
The lower right panel presents the difference in cumulative growing-season rainfall (cm).
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Figure A2: County-level changes in winter wheat yield, growing and harmful degree hours, and
growing-season rainfall, 2008 2023
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Notes: This figure reports differences in winter wheat yield and weather variables between 2008-2010 and 2021-2023 three year
averages for all counties with non-suppressed observations in at least one year of each window. Histograms below the maps give
the distribution of county changes. Upper left panel shows difference in corn yield in bu/acre. The upper right panel displays
difference in growing degree hours (in 10,000°C-hours) and the lower left panel shows difference in harmful degree hours (in
1,000°C-hours). The lower right panel presents the difference in cumulative growing-season rainfall (cm).
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Figure A3: Spatial distribution of richness and Simpson crop diversity

wle e
F 60 > 30
; L |
20
40
n ¢ 10
-
20 0
\
Mo
10 20 30 40 50 60
Richness -10 0 10 20 30
(capped at 95-percentile) A Richness
! o o I 25
» Y
o v 0
-25
-50
|
0 10 20 30 40 50 60 -50 25 0 25 50
Simpson (hill) A Simpson (Hill)
(capped at 95-percentile) capped at 95-percentile

Notes: This figure reports the geographical distribution of the richness and Simpson crop diversity indices for the period 2008-2023.
The two upper panels show the average value of the indexes for each county. The two bottom panels displays the change in each
respective index between 2008-2010 and 2021-2023 three-year averages. Histograms below each map give the distribution of
county averages and changes, respectively. To improve legibility Simpson values have been capped at their 95 percentile.
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Figure A4: Irrigation status by crop
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Notes: This figure reports irrigation status derived from the GAEZ+2015 dataset (Frolking et al., 2020), which reports irrigated and
rainfed cropland area for 2015. For each county we compute the irrigation share and classify counties as rainfed (< 0.1), irrigated
(> 0.75) and mixed in between (Schauberger et al., 2017). The accompanying histograms show the distribution of irrigation
shares.
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Appendix B Tables

Table B1: Omitted items in the cropland data layer

Clouds/No Data
Developed
Nonag/Undefined
Water

Barren

Open Water

Perennial Ice/Snow
Developed/Open Space
Developed/Low Intensity
Developed/Med Intensity
Developed/High Intensity

Table B2: Cropland data layer categories considered non-cultivated

Other Hay/Non Alfalfa

Sod/Grass Seed
Switchgrass
Wetlands
Woody Wetlands

Herbaceous Wetlands

Deciduous Forest
Evergreen Forest
Mixed Forest
Forest
Grass/Pasture
Shrubland
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