Self-selection in migration and returns to unobservable skills

Dostie, Benoît; Léger, Pierre Thomas

IZA Discussion Papers, No. 1942

Suggested Citation: Dostie, Benoît; Léger, Pierre Thomas (2006) : Self-selection in migration and returns to unobservable skills, IZA Discussion Papers, No. 1942, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/33346

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
IZA DP No. 1942

Self-Selection in Migration and Returns to Unobservable Skills

Benoit Dostie
Pierre Thomas Léger

January 2006
Self-Selection in Migration and Returns to Unobservable Skills

Benoit Dostie
HEC Montréal, CIRPÉE, CIRANO
and IZA Bonn

Pierre Thomas Léger
HEC Montréal, CIRPÉE, CIRANO

Discussion Paper No. 1942
January 2006

IZA
P.O. Box 7240
53072 Bonn
Germany

Phone: +49-228-3894-0
Fax: +49-228-3894-180
Email: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit company supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

Self-Selection in Migration and Returns to Unobservable Skills*

Several papers have tested the empirical validity of the migration models proposed by Borjas (1987) and Borjas, Bronars, and Trejo (1992). However, to our knowledge, none has been able to disentangle the separate impact of observable and unobservable individual characteristics, and their respective returns across different locations, on an individual's decision to migrate. We build a model in which individuals sort, in part, on potential earnings - where earnings across different locations are a function of both observable and unobservable characteristics. We focus on the inter-provincial migration patterns of Canadian physicians. We choose this particular group for several reasons including the fact that they are paid on a fee-for-service basis. Since wage rates are exogenous, earning differentials are driven by differences in productivity. We then estimate a mixed conditional-logit model to determine the effects of individual and destination-specific characteristics (particularly earnings differentials) on physician location decisions. We find, among other things, that high-productivity physicians (based on unobservables) are more likely to migrate to provinces where the productivity premium is greater, while low-productivity physicians are more likely to migrate to areas where the productivity premium is lower. These results are consistent with a modified Borjas model of self-selection in migration based on both unobservables and observables.

JEL Classification: J24, J61, C23, C35

Keywords: migration, self-selection, earnings, longitudinal data, productivity

Corresponding author:

Benoit Dostie
Institute of Applied Economics
HEC Montréal, University of Montréal
Montréal (Québec), H3T 2A7
Canada
Email: benoit.dostie@hec.ca

* We are grateful to seminar participants at the University of Calgary, Laval, HEC Montréal, CERF (McMaster University) and the 6th European Health Economics Workshop (Liège, Belgium). We also thank Gera Surendra, Richard Roy, David Gray, Jan Erik Askildsen, and Howard Thomas for their comments. The authors gratefully acknowledge funding from SSHRC, FQRSC and HEC Montréal. The usual caveats apply.
1 Introduction

The theoretical and empirical economic literature on who migrates and to where is quite vast. The economic model of migration posits that individuals will migrate if the expected utility of moving to an alternative location is greater than the expected utility of remaining in their current location (net of transaction costs). Specifically, holding everything else constant, individuals will migrate to the location which yields them the highest expected earnings. How much an individual will earn across different locations is likely to depend on both individual-specific and location-specific characteristics. Thus, for a heterogeneous population, the returns associated with migrating across different locations are also likely to be heterogeneous. In fact, in Borjas (1987) and Borjas, Bronars, and Trejo (1992), the authors argue that different locations are characterized by their own wage generating process, each characterized by a mean wage-rate and a return to individual skills. In such an environment, highly-skilled individuals will wish to migrate to regions with a high-skills premium (i.e., regions with a relatively large variance in wages conditional on mean wages) whereas low-skilled individuals will wish to migrate to regions with a relatively low-skills premium (i.e., regions with a relatively small variance in wages conditional on mean wage).

Self-selection by workers based on skills is recently tested by Hunt and Mueller (2004) using Canadian and American data. They use micro-level data to predict location-specific mean wages (separately for males and females) as well as location-specific returns to skills. By using these predicted location-specific mean wages and returns to skills as well as each individual’s wage-rate, they can classify individuals according to their skill-level. They then test the Borjas model of selection in a nested-logit framework. That is, they test whether individuals with greater skills are more likely to migrate, ceteris paribus, to ar-
eas with a greater skills premium. Their findings support Borjas’ model. The
authors do not, however, disaggregate observable and unobservable skills and
their respective returns across locations in the migration decision. Furthermore,
they do not estimate their model separately for each location of origin and so
they cannot allow for both origin and destination specific effects when consid-
ering the migration decision. In a recent paper, Chiquiar and Hanson (2005)
using American and Mexican data test the Borjas model of migration with a
non-parametric approach. Their results are inconsistent with Borjas’ model and
suggest instead intermediate selection. Although their focus is more on who mi-
grates and not on why individuals migrate, they do not consider unobserved

Although the above papers have tested the empirical validity of the migration
models proposed by Borjas (1987) and Borjas, Bronars, and Trejo (1992), to our
knowledge none has been able to disentangle the separate impact of observable
and unobservable individual characteristics, and their respective returns across
different locations, on an individual’s decision to migrate. In this paper, we
address these limitations and show that: (i) unobservable characteristics, and
their relative returns across different locations, play an important role in the
migration decisions of individuals, and (ii) ignoring unobservable characteristics
may actually lead to false rejection of the Borjas model of selection in migration.

In order to test the Borjas model of migration while considering the separate
contribution of observable and unobservable characteristics in earnings, we focus
on a particular set of workers: Canadian physicians. We choose this particular
group of workers for several reasons. First, in Canada physicians are often sin-
gled out as a highly-skilled group who frequently experience both international

\footnote{They also make the limiting assumption that Mexican immigrants living in the US are
not systematically different from those who did not migrate to the US (i.e., who remained
in Mexico). Furthermore, they assume that the return to schooling is higher in all areas of
Mexico than in the all areas of the United-States.}
and interprovincial migration (Finnie (2001) and Barrett (2001)). Furthermore, focusing on physicians allows us to study the migration decisions of a relatively homogenous set of workers which permits us to avoid issues related to different wage-generating processes across different occupations. Finally, and most importantly, Canadian physicians are generally paid on a fee-for-service basis which are set at the provincial level. That is, unlike most other groups of workers, physicians face exogenous wage-rates (where fee-for-service rates vary uniquely by physician specialty, province of practice, and year).

In the traditional Borjas setup, observationally identical individuals face different wage-rates because of varying skill levels. This is not the case in our setup given that all observationally equivalent physicians (i.e., those with the same specialty who practice in the same province in the same year) face identical wage-rates. Thus, within group, differences in earnings are not reflected in differences in wages-rates but, rather, differences in their ability to attract and treat patients. Consequently, in our setup, highly skilled physicians are not defined by their ability to garner a higher wage-rate but rather their ability to make greater earnings given a fixed wage-rate. Even though some of the variation in earnings is due to observable demographic and human capital characteristics (as well as different returns to such characteristics across locations), much of the variation in earnings is left unexplained. Exploiting the exogeneity of wages, we can predict (for each physician) the unobserved component which contributes to total earnings - what we call the physician’s unobserved productivity and which serves as our measure of unobserved skills. This allows us to estimate the precise role of observable and unobservable components in the earnings equation (and their respective returns across different locations) on migration decisions. It also allows us to test whether or not individuals with greater unobservable productivity are more likely to migrate to locations where
the productivity-premium is greater.

We develop and estimate a two-stage model of earnings determination and migration decisions. Specifically, we first estimate province-specific earnings equations and use the estimated parameters to predict each physician’s potential earnings (based on both observable and unobservable individual and location-specific characteristics) for each possible destination. We then estimate a mixed conditional-logit model to examine the effects of individual and destination-specific characteristics (particularly earning differentials) on physician location decisions. This allows us to disentangle the role and the relative importance of observable and unobservables characteristics and their respective returns across different locations on physician migration decisions.²

Our results show that unobservable physician characteristics and their returns across different locations are an important element in the migration decision. In fact, omitting such unobservables can lead to false and counter intuitive results. For example, we find that individuals in certain provinces appear to migrate to provinces where they would earn less if potential earnings across different locations were based exclusively on the individual’s observable characteristics and the province-specific returns to such characteristics. However, including unobserved productivity in the income-generating process shows that individuals do, in fact, migrate to locations where they can expect to earn more.

²Several studies have specifically examined the practice location and/or migration decisions of physicians in particular (Hurley (1991); Dionne, Langlois, and Lemire (1987); Benarroch and Grant (2004)). Although previous research suggests that certain personal characteristics as well as differences in potential income across jurisdictions may help explain physician migration, several limitations should be mentioned (limitations which are often similar to those in the migration literature in general). First, many studies examine only the initial practice location of recent medical students. As a result, understanding the migration decisions of physicians over the course of their careers is impossible. Furthermore, many studies are based on aggregate flow data. Therefore, they are unable to provide information on who, within a given population, is likely to migrate. Finally, they do not consider the role of observables and unobservables, and their returns across different locations, on the migration decisions of physicians.
iders both observable and unobservable components of earnings. That is, we find that high-productivity physicians (based on unobservables) are more likely to migrate to provinces where the productivity premium is greater while low-productivity physicians are more likely to migrate to areas where the productivity premium is lower.

The remainder of the paper is organized as follows. In section 2 we present the theoretical model. In section 3 we discuss the data used in estimation. The statistical model of earnings and migration is presented in section 4. Results are presented and discussed in section 5. Finally, conclusions are drawn in section 6.

2 Theoretical Model

In this section we present a modified version of Borjas’ model of earnings determination and migrant selection. In Borjas’ model, the natural logarithm of individual \(i \)'s wage in region \(j \) is given by:

\[
\ln(w_{ij}) = \mu_j + \phi_j(v_i - \bar{v}),
\]

(1)

where \(\mu_j \) denotes the mean log wage in area \(j \), \(\phi_j \) denotes the returns to skills, \(v_i \) is the individual’s skill level and \(\bar{v} \) is the average skill level. Thus, an individual’s wage in location \(j \) is a function of the region-specific average log wage, the individual’s location in the skills distribution and the region-specific returns to such skills. As a result, spatial variation in wages is a function of both the mean wage-rate (\(\mu_j \)) and the returns to skills (\(\phi_j \)) (assuming identical skills distributions across locations). Consequently, individuals will wish to sort on both of these components in order to maximize their earnings. For example, conditioning on identical mean wages across two locations, an individual with
high skills (i.e., \(v_i - v > 0 \)) will wish to migrate to an area with a high-skills premium while a low-skill individual \((v_i - v < 0) \) will wish to migrate to an area with a low-skills premium.

In our setting, however, physician wages are characterized by a simple deterministic function which reflects the fee-for-service setting in Canada:

\[
\ln(wage_{ijt}) = f(specialty_i, province_j, year_t).
\]

That is, physicians of the same specialty \((i) \) who practise in the same province \((j) \) in the same year \((t) \) face an identical wage-rate (or fee-for-service). Thus, within a particular specialty-year-province triplet, the wage distribution is degenerate. Although wages do not vary within a same triplet, earnings do. Such variations in physician earnings reflect differences in the number of services performed (or equivalently, the physician’s work effort or productivity):

\[
earnings_{ijt} = \text{number of services}_{it} \times wage_{ijt}.
\]

The number of services performed by a given physician depends on the number of patients the physician can attract and treat which in turn may be influenced by many variables including the physician’s specialty, medical training, reputation, productivity, and taste for leisure. It may also be influenced by local market conditions including the demand for health care services as well as any limits placed on the total number of services performed by a particular physician. For example, in certain provinces such as Quebec, physicians face limits on the total number of services that they may provide (i.e., earnings ceilings). As a result, physicians may turn away patients because they may not be (fully) remunerated for their services. Such a ceiling limits the earnings potential of some physicians, but likely increases the earning potential of others (i.e., those who would have
difficulty attracting patients).

As a result, we can rewrite:

\[
earnings_{ijt} = g(\phi_1(observables_{it}), \phi_2(unobservables_{i})) \ast f(specialty_i, province_j, year_t),
\]

where \(g \) represents a function translating the physician’s observable characteristics and unobservable characteristics and their relative returns (\(\phi_1 \) and \(\phi_2 \), respectively) into the number of services performed.

In our model, physician self-selection across different provinces is based on observable and unobservable characteristics and their province-specific returns. It is also based on the province-specific wage-rates (or fee-for-service rates). Based on this modified version of the Borjas selection model, a physician who has difficulty attracting patients (for example, because of a bad reputation) may wish to migrate to an area where there is excess demand for medical services (i.e., where the ‘productivity-premium’ is low). This may occur even if the fee-for-service rate is lower. On the other hand, a physician who has no difficulty attracting patients may wish to migrate to a province where the ‘productivity-premium’ is high (which may occur even if the fee-for-service rate and/or total demand is lower).

3 Data

This paper makes use of several complementary data sets. The National Physician Database (NPDB) includes information on almost all Canadian physicians who practiced during the 1989-1997 period.\(^3\) The data, collected separately by

\(^3\)Excluded from the data set are physicians: (i) who were inactive, (ii) who were not paid via fee-for-service, (iii) whose total billings were less than $10,000 or more than $500,000, (iv) who were under 25 or over 85 years old (v) who were born before 1910 or after 1975, and (vi) who made a formal request to be removed.
each province on a yearly basis, include information on several physician characteristics such as: age, date of birth, sex, language spoken, year of graduation and medical school attended, area of specialization, as well as the physician’s total annual billings. Because each physician is assigned a unique identification number, we are able to follow each physician over time.\(^4\) However, because the data are collected at the provincial level, physicians are not tracked when they leave a given province for another or for abroad. It is important to note that only active physicians who are paid on a fee-for-service basis are included in this data set. It is this sample that we use for estimation.

The second data set, the Southam Medical Data Base (SMDB), is a national data set containing very similar information to the NPDB and collected over the same period. Although it does not contain the physician’s billing information it does include his or her postal code. Given that it is a Canada-wide panel data set, it allows us to track physicians from one geographical location to another. Thus, we are able to observe when a physician moves to a different province or abroad. Because the NPDB and the SMDB contain many common variables (such as the physician’s date of birth, year of graduation, medical school attended, and medical specialty), they can be merged to form a single panel which includes many demographic characteristics and the physician’s total billings and where we observe all physicians over-time and over geographical areas.\(^5\)

The merged data sets include yearly information on 49,046 physicians working in Canada between 1989 and 1997. Each physician is observed for up to

\(^4\)Medical Specialties include: General Practitioner/Family Medicine, Internal Medicine, Dermatology, Neurology, Pediatrics, Physical Medicine and Rehabilitation, Public Health, Emergency Medicine, General Surgery, Cardiovascular and Thoracic Surgery, Neurosurgery, Obstetrics and Gynecology, Ophthalmology, Otolaryngology, Orthopedic Surgery, Plastic Surgery, Urology, Anesthesia, Nuclear Medicine, Medical Microbiology, Pathology, Radiology-Diagnostic, Radiology-Therapeutic, Occupational Medicine, Medical Biochemistry, Medical Scientist.

\(^5\)In a handful of cases, more than one physician shared the same values on all common variables used for merging the data sets. These physicians were excluded.
10 years with 28,897 physicians observed in 1989 and 33,229 observed in 1998 (see Table 1). Several summary statistics are worth noting and are provided for 1989 (the first year of our panel). First, 21 per cent of physicians are female (although the graduating class of physicians is approximately 50 percent female). The average age of physicians is 45. Furthermore, physicians self-identified as English-speaking represent approximately 78 per cent of the physician workforce and the remainder are self-identified as French-speaking. Finally, 60 per cent of physicians are coded as specialists while 40 per cent are coded as GPs or Family Physicians. Table 1 also summarizes migration patterns over this decade. For example, between 1992 and 1993, 2,715 out of 33,079 physicians (or 8.21 per cent) in our sample emigrated either from one province to another, or from a Canadian province to the United-States or abroad. Given that the large majority of moves were interprovincial, inter-provincial migration is likely to have a bigger effect on the pool and composition of practising physicians than international migration.

Table 2 summarizes aggregate migration patterns for the 1989 to 1997 period for the sample discussed above. That is, it summarizes total migration from each province (source) to each of the other provinces, the United-States or abroad (destination). For example, during the 1989-1997 period, 2,817 physicians in the sample migrated from Quebec to Ontario, while 2,697 physicians migrated from Ontario to Quebec.\(^6\)

4 Statistical Model of Migration and Earnings

As noted above, unobserved skills generally refer to the set of skills and abilities which are unobservable to the econometrician (and are generally difficult to

\(^6\)These summary statistics are consistent with the literature on physician migration (see for example, McKendry (1996), Health Canada (1995) and Benarroch and Grant (2004)).
measure) but nonetheless contribute to an individual’s wage. However, as we discussed above, wage-rates are exogenous in our framework and thus skills (or, equivalently, productivity in our setting) are assumed to contribute to higher earnings via the number of services performed. Data requirements for studies on the unobservable component which contributes to higher earnings are quite extensive as migrants must be observed long enough for the econometrician to infer them. Because our data set allows us to observe individuals prior to and post interprovincial-migration, we construct a model which allows us to estimate: (i) the link between individual characteristics and migration (including the choice of destination), (ii) the importance of potential earning differentials on migration, and (iii) whether, and to what extent, individuals consider both observable and unobservable components of earnings (and their returns across different locations) when making migration decisions.

To analyze the migration decisions of individuals, we use a discrete choice model. We define the utility for physician \(i \) in location (or province) \(j \) in year \(t \) to be:

\[
U_{ijt} = \beta'X_{ijt} + \alpha'_jV_{it} + \theta_{ij} + \varepsilon_{ijt}
\]

where \(X_{ijt} \) denotes the vector which includes the two different components of individual \(i \)’s predicted wage in location \(j \), that is, the component based exclusively on observable characteristics \{denoted as \(\ln \text{earnings}_{ijt} \}\) and the component based on unobservable characteristics \{denoted as \(\hat{\mu}_{ij} \}\) (i.e., \(X_{ijt} = \{\ln \text{earnings}_{ijt}, \hat{\mu}_{ij}\} \)). We discuss both of these components in greater detail below. \(V_{it} \) denotes a vector of observable individual characteristics which directly affect the physician’s utility of being in location \(j \) but which are (unlike \(X_{ijt} \)) invariant to the location choice. \(V_{it} \) include the physician’s age, sex, language spoken (English or French), specialty type (according to the NPDB
classification as well as a series of year dummies:

\[V_{it} = \{1, age_{it}, sex_{i}, language_{i}, specialty_{i}, year_{i}\}. \]

(6)

Note that the constant term in the \(V \) vector captures everything that is specific to the province which does not vary over time (for example, climate or general amenities). Time dummies, on the other hand, take into account time-varying differences between provinces which could affect a physician’s utility in province \(j \) (for example, the level of health care funding or amenities in a given year or, migration costs in general). \(\theta_{ij} \) (where \(\theta_{ij} = \lambda_{j} \theta_{i} \)) represents a random component which is composed of an individual effect \(\theta_{i} \) (that we assume to be normally distributed with mean 0 and variance \(\sigma_{\theta}^2 \) normalized to 1) and a choice specific loading factor \(\lambda_{j} \).

Note that \(\theta_{i} \) is assumed to be independent of the values of any regressor and that the identification of the load factor \(\lambda_{j} \) is achieved through the observation of the same physician across multiple location choices \(j \). Thus, the unobservable component for choice \(j \) is given by \(\lambda_{j} \theta_{i} \) where the covariance between \(\lambda_{j} \theta \) and \(\lambda_{j'} \theta \) is \(\lambda_{j} \lambda_{j'} \). As a result, in a model without covariates, different choices would be negatively (positively) correlated if \(\lambda_{j} \lambda_{j'} \) is negative (positive).

Finally, \(\varepsilon_{ijt} \) denotes a type I extreme value error term.

In order to define \(X_{ijt} = \{\ln \text{earnings}_{ijt}, \hat{\mu}_{ij}\} \), we must first define and estimate the income generating process. This earnings generating process for
province \(j \) (which is estimated separately for each \(j \)) is given by:

\[
\ln \text{earnings}_{ijt} = \delta_{0j} + \delta'_1(j) (wage)_{ijt} + \delta_2 sex_i + \\
\delta_3 School_{foreign} + \\
\delta_4 age_{it} + \delta_5 age_{it}^2 + \mu_{ij} + v_{ijt},
\]

(7)

where \(wage \) denotes the wage-rate for physician \(i \) at time \(t \), \(sex \) denotes the physician’s sex, \(School_{foreign} \) is a dummy variable which captures whether or not the physician graduated from a non-Canadian medical school and \(age \) denotes the physician’s age. Finally, \(\mu \) denotes a physician-specific time-invariant unobserved effect which affects earnings (i.e., his or her unobserved productivity) while \(v \) is a standard error term.

As noted above, the wage-rate is modelled as a deterministic function to reflect the fee-for-service setting in Canada which are set annually at the provincial level and are based uniquely on the specialty-type (i.e., fees are defined uniquely by their year, specialty and province):

\[
wage_{ijt} = f_j (specialty_i * year_t).
\]

(8)

For a given province \(j \), the income generating function is given by (7) but where \(wage_{ijt} \) is replace by a series of year-specialty dummies. As a result, (7) becomes:

\[
\ln \text{earnings}_{ijt} = \delta_{0j} + \delta'_1 (specialty_i * year_t) + \delta_2 sex_i + \\
\delta_3 School_{foreign} + \\
\delta_4 age_{it} + \delta_5 age_{it}^2 + \mu_{ij} + v_{ijt}.
\]

(9)

Using (9), we can predict earnings (more specifically, predict the observable
and unobservable components of earnings) for each individual for each potential destination j. To do so, we first estimate (9) separately for each province of origin and obtain a vector of estimated parameters $\hat{\delta}_j$ (one vector for each province). We use the best-linear-unbiased predictor for the individual’s random component $\hat{\mu}_i$. Finally, we estimate the variance of $\hat{\mu}_{ij}$ for each location j denoted as $\hat{\sigma}^2_{\mu_j}$. Thus, provinces with a larger variance in the individual-specific (productivity) component of earnings can be considered provinces with a larger productivity-premium.

Using the estimated parameters, $\hat{\delta}$, we first predict earnings for each individual if they were to migrate to alternative province k based exclusively on observable characteristics, i.e.\(^{11}\),

$$
\ln\text{earnings}_{ikt} = \delta_{0k} + \delta_{1k}(\text{specialty}_i \times \text{year}_t) + \delta_{2k}\text{sex}_i +
\delta_{3k}\text{School}_{\text{foreign}} + \delta_{4k}\text{age}_{it}.
$$

(10)

Then, using $\hat{\mu}_i$ and $\hat{\sigma}^2_{\mu_j}$, we calculate for each individual i the unobserved components of earnings (to be included in the vector X_{ijt}) for individual i denoted as $\hat{\mu}_{ik}$ if he migrated to province k from province j (assuming that he or she retained his or her location (position) on the unobserved distribution of μ):

$$
\hat{\mu}_{ik} = \frac{\hat{\mu}_i}{\hat{\sigma}^2_{\mu_j}} \times \hat{\sigma}^2_{\mu_k}.
$$

(11)

From equation (11) we see that a high-productivity individual (i.e., with a positive $\hat{\mu}_i$) would migrate to a location where the returns to productivity are higher than in their current location ($\hat{\sigma}^2_{\mu_k}$ is greater that $\hat{\sigma}^2_{\mu_j}$) in order to increase his earnings, whereas a low productivity individual (i.e., with a negative $\hat{\mu}_i$) would

\(^{11}\)Even if a certain kind of specialist is present in a particular province in a given year, it is possible that this is not the case for all years. For these specific cases, we run a simpler model where time and specialty dummies are not interacted and predict wages accordingly.
migrate to a location where the returns to productivity are lower than in their current location ($\hat{\sigma}_{\mu k}^2$ is greater than $\hat{\sigma}_{\mu j}^2$).

As noted above, physicians will migrate to location d_j if doing so yields them greater utility than migrating to any other location (or staying in the current location). Given our assumption about the distribution of ε_{idt}, the probability that a physician from a given province will migrate to location d_j is given by:

$$P(Y_{idt} = d_j) = \frac{e^{\beta'X_{idt} + \alpha'_jV_{idt} + \theta_{ij}}}{\sum_{d=1}^{D} e^{\beta'X_{idt} + \alpha'_dV_{idt} + \theta_{id}}}.$$ \hspace{1cm} (12)

Estimation is done by maximizing the marginal likelihood and integrating out the heterogeneity components θ_i. We use Gauss-Hermite Quadrature to approximate the normal integral.

We estimate the above model for three different provinces of origin: Ontario, Quebec, and British Columbia. Furthermore, we exclude Newfoundland (3643 observations or 852 physicians) and Prince-Edward Island (852 observations or 155 physicians) as potential destination provinces since these provinces have too few physicians (and too few specialists) to credibly estimate earnings equations, and these provinces experience too little in- and out-migration (in terms of observations) to be included. We also drop four specialties across all provinces for similar reasons: Public Health, Occupational Medicine, Medical Biochemistry and Medical Scientist (for a total of 447 observations).

5 Results

In Table 3 we present results from the estimation of regression (9) for each province. Regression results suggest that many individual characteristics are important determinants of earnings (with different relative importance across

\footnote{We do not estimate the model for other provinces as there are not enough physicians of all types (i.e., specialties) who migrate to all alternative locations in all years.}
provinces). In fact, we find that the returns to many individual characteristics such as sex, age, language, specialty, and school of graduation vary across provinces. For example, we find that females generally earn less than their male counterparts (across all provinces), while French speaking physicians earn more than their English counterparts in Quebec (a French-speaking province), but less in Ontario. These results suggest that physicians should sort across provinces based in part on these observable individual characteristics and their relative returns in different locations. Finally, Table 3 also presents estimation results for the variance of the unobserved random effect (σ_μ) as well as the variance of the unobserved iid error term (σ_v). If we interpret the former variance as the province-specific productivity premium, the modified version of Borjas’ model of selection predicts that physicians with greater unobserved productivity (greater μ_j) will wish to migrate to provinces with a greater σ_μ.

Tables 4, 5 and 6 present the results from the estimation of the mixed conditional-logit model given by (12) for physicians initially practising in Ontario, Quebec and British Columbia, respectively. In what follows we only present results from the model with unobserved heterogeneity since the more simple model without unobserved heterogeneity is easily rejected using a likelihood-ratio test. We also do not show results from a model where we include only one specialty dummy (i.e., assuming that all specialties have the same propensity to migrate) as it was rejected in favour of the more general model with a dummy for each specialty type.

Results suggest that individual characteristics are important determinants of migration and that their relative importance is different across origins and destinations. For example, we find that female physicians initially practising in

\footnotesize
\begin{enumerate}
 \item This likelihood ratio test is equivalent to a Wald test with the null hypothesis that all load factors are equal to zero. Rejecting the null is also equivalent to rejecting the IIA assumption.
 \item It is important to recall that in all earnings regressions, all year-speciality specific effects (which include the fee-for-service rates) are controlled for but are omitted for presentation sake.
\end{enumerate}
Ontario, Quebec and British Columbia, are less likely to migrate to all provinces than their male counterparts, although the effect varies across origins and destinations. Our results also suggest that age and country of medical training also affect the likelihood of migration (and are different across origins and destinations).15,16

Results relating to the effect of potential earning differentials on the likelihood of migrating are somewhat surprising. Our results suggest that potential earnings differentials based solely on the physician’s observable characteristic and the province-specialty specific wage-rates are positive but not statistically significant in an Ontarian physician’s migration decision. This partial result would seem to suggest that physicians in Ontario do not migrate to other provinces in order to get greater expected earnings. For physicians initially in Quebec and British Columbia, they appear to migrate to provinces which yield them lower total earnings, when considering only observable physician characteristics and their returns across different locations. However, expected earnings across different provinces are not based solely on observable characteristics, the returns to such observables, and the province-specialty specific wage-rate. They also depend on a physician’s unobservable productivity and the returns to such productivity. In fact, our results suggest that physicians who initially practise in Ontario, Quebec and British Columbia, are more likely to migrate if they can earn more elsewhere, where the difference in earnings across locations is based on unobservable productivity. Because of the relative importance of un-

15Our results with respect to the effect of age and sex are in line with the general migration literature as well as the literature on physician migration. That is, older females are less likely to migrate than their younger male counterparts (see for example, Schlottmann and Jr. (1981), Sandefur and Scott (1981), Pissarides and Wadsworth (1989), Antolin and Bover (1997), Axelsson and Westerlund (1998), and Nivalainen (2004))

16It is important to note that the language spoken by the physician (French or English) is included in the mixed conditional logit model for physicians initially practising in Quebec. Results show that English physicians are more likely than French physicians to migrate to all provinces. These results are consistent with results found in (Robinson and Tomes (1982)) who study migration in a Canadian context.
observables in the earnings equation, results show that physicians do consider potential earning differentials across locations when making their migration decisions and they are more likely to migrate if doing so will lead to greater total earnings. Given that earning more, based on unobservables, is associated with the physician’s unobserved productivity and productivity-premium differences across provinces, our results show that physicians with higher productivity (i.e., a higher $\hat{\mu}_i$) are more likely to migrate to areas with a higher productivity premium (i.e., to provinces with a higher variance in the unobservable component of earnings). This result supports a modified self-selection model in migration à la Borjus based on unobservable productivity differences and relative productivity premiums across provinces.

These results are important in several respects. First, they suggest that sorting based on observables and unobservables need not go in the same direction (as is implied by the literature based solely on observables). That is, a physician may move to increase his or her total earnings even though total earnings would appear to decrease if only observable characteristics were considered. And, although results based solely on observables may not be consistent with Borjus’ model of selection in migration, allowing for sorting to be based on both observables and unobservables (and the returns to these across different locations) leads to results which are consistent.

6 Conclusion

In this paper, we examine self-selection of workers based on observable and unobservable characteristics and their respective returns across regions. In order to do so, we focus on the inter-provincial migration of physicians in part because physicians are paid on a fee-for-service basis (which are province-year-specialty specific). This allows us to decompose physician earnings into ob-
servable and unobservable components. The observable component includes individual physician characteristics and controls for exogenous fee-for-service rates. The unobservable component captures unobservable individual productivity which contribute to the physician’s total earnings. We then estimate the impact of both of these components on the physician’s likelihood of migrating and choice of destination. This allows us to test whether or not physicians migrate in order to gain greater earnings. More specifically, we test whether or not physicians migrate for potentially higher earnings assuming that potential earnings are based on observable and unobservable components separately. We find that migration decisions and earnings are negatively (or insignificantly) correlated when only considering the observable characteristics in the earnings equation (a result which seems to be counter-intuitive). However, our results suggest that physicians are sorting based on the unobservable component in total earnings. More specifically, we find that physicians who are (unobservably) more productive are more likely to migrate to provinces where there exists a larger productivity premium while those who are (unobservably) less productive are more likely to migrate to provinces where there exists a smaller productivity premium. These results are consistent with the idea that individuals migrate, in part, to increase their total earnings. They are also consistent with a modified Borjas model where self-selection of workers based on unobserved productivity.

Our results also shed light on the relative importance of observables and unobservables in the migration decision and potential policy implications. For example, our results suggest that exogenous increases in fee-for-service rates (which are part of the vector of observables in the earnings equations) may not decrease the out-migration of physicians (or increase the in-migration of physicians) as migration is insignificantly (or even negatively) correlated with earnings differentials based on such observables. Our results do suggest, however,
that unobserved productivity and returns to unobserved productivity are positively correlated in the migration decision. This would suggest that provinces that wish to retain or attract physicians may wish to exploit this dimension (possibly by eliminating limits on the amount of services a physician may perform in a given year).

References

Table 1: Total yearly migration

<table>
<thead>
<tr>
<th>Year</th>
<th># Physicians</th>
<th>International</th>
<th>%</th>
<th>Interprovincial</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>% with a move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-1989</td>
<td>28,897</td>
<td>115</td>
<td>0.40</td>
<td>2,241</td>
<td>7.76</td>
<td>2,356</td>
<td>8.15</td>
<td></td>
</tr>
<tr>
<td>1989-1990</td>
<td>29,284</td>
<td>121</td>
<td>0.41</td>
<td>2,219</td>
<td>7.58</td>
<td>2,340</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>1990-1991</td>
<td>30,592</td>
<td>198</td>
<td>0.65</td>
<td>2,425</td>
<td>7.93</td>
<td>2,623</td>
<td>8.57</td>
<td></td>
</tr>
<tr>
<td>1991-1992</td>
<td>31,507</td>
<td>233</td>
<td>0.74</td>
<td>2,428</td>
<td>7.71</td>
<td>2,661</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>1992-1993</td>
<td>33,079</td>
<td>322</td>
<td>0.97</td>
<td>2,393</td>
<td>7.23</td>
<td>2,715</td>
<td>8.21</td>
<td></td>
</tr>
<tr>
<td>1993-1994</td>
<td>33,210</td>
<td>279</td>
<td>0.84</td>
<td>2,215</td>
<td>6.67</td>
<td>2,494</td>
<td>7.51</td>
<td></td>
</tr>
<tr>
<td>1994-1995</td>
<td>33,581</td>
<td>336</td>
<td>1.00</td>
<td>2,579</td>
<td>7.68</td>
<td>2,915</td>
<td>8.68</td>
<td></td>
</tr>
<tr>
<td>1995-1996</td>
<td>33,477</td>
<td>264</td>
<td>0.79</td>
<td>2,491</td>
<td>7.44</td>
<td>2,755</td>
<td>8.23</td>
<td></td>
</tr>
<tr>
<td>1996-1997</td>
<td>33,229</td>
<td>250</td>
<td>0.75</td>
<td>2,461</td>
<td>7.41</td>
<td>2,711</td>
<td>8.16</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Migratory Flows

<table>
<thead>
<tr>
<th>From/To</th>
<th>NFLD</th>
<th>PEI</th>
<th>NS</th>
<th>NB</th>
<th>QC</th>
<th>ONT</th>
<th>MAN</th>
<th>SASK</th>
<th>ALB</th>
<th>BC</th>
<th>For</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFLD</td>
<td>0</td>
<td>5</td>
<td>38</td>
<td>19</td>
<td>70</td>
<td>139</td>
<td>6</td>
<td>5</td>
<td>32</td>
<td>39</td>
<td>26</td>
<td>380</td>
</tr>
<tr>
<td>PEI</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>23</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>69</td>
</tr>
<tr>
<td>NS</td>
<td>22</td>
<td>3</td>
<td>44</td>
<td>0</td>
<td>444</td>
<td>444</td>
<td>44</td>
<td>25</td>
<td>63</td>
<td>153</td>
<td>116</td>
<td>1,152</td>
</tr>
<tr>
<td>NB</td>
<td>9</td>
<td>1</td>
<td>45</td>
<td>0</td>
<td>157</td>
<td>248</td>
<td>35</td>
<td>22</td>
<td>45</td>
<td>91</td>
<td>49</td>
<td>704</td>
</tr>
<tr>
<td>QC</td>
<td>108</td>
<td>10</td>
<td>252</td>
<td>156</td>
<td>0</td>
<td>2,817</td>
<td>269</td>
<td>227</td>
<td>764</td>
<td>1,110</td>
<td>433</td>
<td>6,153</td>
</tr>
<tr>
<td>ONT</td>
<td>144</td>
<td>30</td>
<td>406</td>
<td>242</td>
<td>2,697</td>
<td>0</td>
<td>321</td>
<td>309</td>
<td>774</td>
<td>1,418</td>
<td>676</td>
<td>7,132</td>
</tr>
<tr>
<td>MAN</td>
<td>9</td>
<td>5</td>
<td>55</td>
<td>39</td>
<td>280</td>
<td>327</td>
<td>0</td>
<td>13</td>
<td>73</td>
<td>161</td>
<td>94</td>
<td>1,056</td>
</tr>
<tr>
<td>SASK</td>
<td>10</td>
<td>5</td>
<td>17</td>
<td>25</td>
<td>217</td>
<td>337</td>
<td>20</td>
<td>0</td>
<td>128</td>
<td>194</td>
<td>126</td>
<td>1,080</td>
</tr>
<tr>
<td>ALB</td>
<td>35</td>
<td>4</td>
<td>77</td>
<td>52</td>
<td>747</td>
<td>779</td>
<td>65</td>
<td>69</td>
<td>0</td>
<td>353</td>
<td>215</td>
<td>2,403</td>
</tr>
<tr>
<td>BC</td>
<td>36</td>
<td>8</td>
<td>123</td>
<td>81</td>
<td>1,062</td>
<td>1,268</td>
<td>113</td>
<td>111</td>
<td>302</td>
<td>0</td>
<td>282</td>
<td>3,402</td>
</tr>
<tr>
<td>Total</td>
<td>373</td>
<td>71</td>
<td>1,018</td>
<td>662</td>
<td>5,474</td>
<td>6,398</td>
<td>878</td>
<td>785</td>
<td>2,192</td>
<td>3,537</td>
<td>1,272</td>
<td></td>
</tr>
</tbody>
</table>

Total emigration from a province includes emigration to all provinces, territories and abroad.
Table 3: Ln-Earnings Regressions

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>NB</th>
<th>QC</th>
<th>ONT</th>
<th>MAN</th>
<th>SASK</th>
<th>ALB</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy variable: 1 if speaks english</td>
<td>0.173</td>
<td>-0.020</td>
<td>-0.070***</td>
<td>0.271***</td>
<td>0.034</td>
<td>-0.342</td>
<td>0.249*</td>
<td>0.278**</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td>(0.056)</td>
<td>(0.015)</td>
<td>(0.043)</td>
<td>(0.188)</td>
<td>(0.321)</td>
<td>(0.144)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Dummy variable: 1 if female</td>
<td>-0.281***</td>
<td>-0.397***</td>
<td>-0.369***</td>
<td>-0.377***</td>
<td>-0.421***</td>
<td>-0.336***</td>
<td>-0.308***</td>
<td>-0.392***</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.056)</td>
<td>(0.015)</td>
<td>(0.013)</td>
<td>(0.044)</td>
<td>(0.046)</td>
<td>(0.025)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Dummy variable: 1 if foreign diploma</td>
<td>-0.092**</td>
<td>-0.080</td>
<td>0.046**</td>
<td>0.051***</td>
<td>0.210***</td>
<td>0.192***</td>
<td>0.096***</td>
<td>0.048**</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.059)</td>
<td>(0.019)</td>
<td>(0.013)</td>
<td>(0.040)</td>
<td>(0.037)</td>
<td>(0.025)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Age (in years)</td>
<td>0.160***</td>
<td>0.144***</td>
<td>0.140***</td>
<td>0.156***</td>
<td>0.132***</td>
<td>0.148***</td>
<td>0.171***</td>
<td>0.172***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Age squared divided by 100</td>
<td>-0.166***</td>
<td>-0.153***</td>
<td>-0.153***</td>
<td>-0.161***</td>
<td>-0.137***</td>
<td>-0.152***</td>
<td>-0.179***</td>
<td>-0.182***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.855***</td>
<td>8.512***</td>
<td>8.492***</td>
<td>7.945***</td>
<td>8.529***</td>
<td>8.594***</td>
<td>7.609***</td>
<td>7.598***</td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.215)</td>
<td>(0.056)</td>
<td>(0.065)</td>
<td>(0.244)</td>
<td>(0.362)</td>
<td>(0.177)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>(\sigma_\mu)</td>
<td>0.642</td>
<td>0.644</td>
<td>0.621</td>
<td>0.662</td>
<td>0.680</td>
<td>0.610</td>
<td>0.619</td>
<td>0.617</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>0.380</td>
<td>0.370</td>
<td>0.370</td>
<td>0.393</td>
<td>0.352</td>
<td>0.381</td>
<td>0.389</td>
<td>0.379</td>
</tr>
<tr>
<td># Observations</td>
<td>9331</td>
<td>5471</td>
<td>76152</td>
<td>104333</td>
<td>8774</td>
<td>7115</td>
<td>22643</td>
<td>36602</td>
</tr>
<tr>
<td># Physicians</td>
<td>1661</td>
<td>974</td>
<td>11384</td>
<td>16684</td>
<td>1602</td>
<td>1346</td>
<td>3841</td>
<td>6154</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
Includes cross year * specialty dummies
Newfoundland and PEI as well as specialists in public health, occupational medicine, medical biochemistry, medical scientist are excluded
Table 4: Mixed Conditional Logit

<table>
<thead>
<tr>
<th>Individual characteristics</th>
<th>NS</th>
<th>NB</th>
<th>QC</th>
<th>MAN</th>
<th>SASK</th>
<th>ALB</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy variable: 1 if female</td>
<td>-0.942 ***</td>
<td>-1.356 ***</td>
<td>-1.344 ***</td>
<td>-1.559 ***</td>
<td>-1.257 ***</td>
<td>-1.014 ***</td>
<td>-1.116 ***</td>
</tr>
<tr>
<td>Age (in years)</td>
<td>-0.031</td>
<td>-0.053</td>
<td>0.022</td>
<td>-0.030</td>
<td>-0.015</td>
<td>-0.030</td>
<td>0.022</td>
</tr>
<tr>
<td>Age squared divided by 100</td>
<td>-0.068</td>
<td>-0.054</td>
<td>-0.158 ***</td>
<td>-0.058</td>
<td>-0.086</td>
<td>-0.073 **</td>
<td>-0.135 ***</td>
</tr>
<tr>
<td>Dummy variable: 1 if foreign diploma</td>
<td>0.138</td>
<td>-0.202</td>
<td>0.388 ***</td>
<td>-0.847 ***</td>
<td>0.439 ***</td>
<td>-0.243 **</td>
<td>-0.308 ***</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.063 ***</td>
<td>-4.814 ***</td>
<td>-6.441 ***</td>
<td>-7.389 ***</td>
<td>-7.132 ***</td>
<td>-4.266 ***</td>
<td>-6.020 ***</td>
</tr>
</tbody>
</table>

Choice attributes							
Predicted lnpay	0.031						
Predicted μ	0.964 ***						

| Unobserved heterogeneity | | | | | | | |
| λ | 2.805 *** | 2.550 *** | 4.316 *** | -3.001 *** | 3.645 *** | 2.707 *** | 3.608 *** |

$L = -24151.14$

Standard errors in parentheses

* significant at 10%; ** significant at 5%; *** significant at 1%

Each destination branch includes year dummies (8) and specialty dummies (up to 23)
Table 5: Mixed Conditional Logit

<table>
<thead>
<tr>
<th>FROM QUEBEC</th>
<th>TO NS</th>
<th>TO NB</th>
<th>TO ONT</th>
<th>TO MAN</th>
<th>TO SASK</th>
<th>TO ALB</th>
<th>TO BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy variable: 1 if speaks english</td>
<td>0.937 ***</td>
<td>0.458 ***</td>
<td>0.512 ***</td>
<td>-0.701 ***</td>
<td>0.401 **</td>
<td>0.487 ***</td>
<td>0.814 ***</td>
</tr>
<tr>
<td>(0.149)</td>
<td>(0.157)</td>
<td>(0.073)</td>
<td>(0.261)</td>
<td>(0.163)</td>
<td>(0.102)</td>
<td>(0.085)</td>
<td></td>
</tr>
<tr>
<td>Dummy variable: 1 if female</td>
<td>-0.017</td>
<td>-0.562 ***</td>
<td>-0.260 ***</td>
<td>-2.267 ***</td>
<td>-0.564 ***</td>
<td>-0.363 ***</td>
<td>-0.284 ***</td>
</tr>
<tr>
<td>(0.139)</td>
<td>(0.183)</td>
<td>(0.071)</td>
<td>(0.245)</td>
<td>(0.169)</td>
<td>(0.107)</td>
<td>(0.086)</td>
<td></td>
</tr>
<tr>
<td>Age (in years)</td>
<td>-0.046</td>
<td>-0.018</td>
<td>0.002</td>
<td>0.527 ***</td>
<td>-0.077</td>
<td>-0.067</td>
<td>0.091 ***</td>
</tr>
<tr>
<td>(0.059)</td>
<td>(0.096)</td>
<td>(0.022)</td>
<td>(0.099)</td>
<td>(0.051)</td>
<td>(0.034)</td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>Age squared divided by 100</td>
<td>0.010</td>
<td>-0.045</td>
<td>-0.034</td>
<td>-0.688 ***</td>
<td>0.079</td>
<td>-0.027</td>
<td>-0.119 ***</td>
</tr>
<tr>
<td>(0.063)</td>
<td>(0.111)</td>
<td>(0.023)</td>
<td>(0.099)</td>
<td>(0.053)</td>
<td>(0.037)</td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>Dummy variable: 1 if foreign diploma</td>
<td>-0.755 ***</td>
<td>0.311</td>
<td>-0.333 ***</td>
<td>-1.273 ***</td>
<td>-1.548 ***</td>
<td>-0.416 ***</td>
<td>-1.084 ***</td>
</tr>
<tr>
<td>(0.227)</td>
<td>(0.261)</td>
<td>(0.105)</td>
<td>(0.375)</td>
<td>(0.339)</td>
<td>(0.137)</td>
<td>(0.140)</td>
<td></td>
</tr>
<tr>
<td>(1.434)</td>
<td>(1.973)</td>
<td>(0.500)</td>
<td>(2.191)</td>
<td>(1.291)</td>
<td>(0.815)</td>
<td>(0.589)</td>
<td></td>
</tr>
</tbody>
</table>

Choice attributes
- Predicted lnpay: -0.089 **
 (0.042)
- Predicted μ: 0.264 **
 (0.126)

Unobserved heterogeneity
- λ: 2.579 ***
 (0.170)
- 2.040 ***
 (0.131)
- 2.376 ***
 (0.035)
- -4.543 ***
 (0.178)
- 2.787 ***
 (0.167)
- 2.792 ***
 (0.100)
- 2.459 ***
 (0.056)

$L = -20722.48$

Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
Each destination branch includes year dummies (8) and specialty dummies (up to 23)
Table 6: Mixed Conditional Logit

<table>
<thead>
<tr>
<th>FROM BRITISH COLUMBIA</th>
<th>NS</th>
<th>NB</th>
<th>QC</th>
<th>ONT</th>
<th>MAN</th>
<th>SASK</th>
<th>ALB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy variable: 1 if female</td>
<td>-0.006</td>
<td>-1.714 **</td>
<td>-1.092 ***</td>
<td>-1.076 ***</td>
<td>-0.129</td>
<td>-1.650 ***</td>
<td>-0.811 ***</td>
</tr>
<tr>
<td>(0.274)</td>
<td>(0.766)</td>
<td>(0.184)</td>
<td>(0.143)</td>
<td>(0.709)</td>
<td>(0.454)</td>
<td>(0.149)</td>
<td></td>
</tr>
<tr>
<td>Age (in years)</td>
<td>0.074</td>
<td>0.125</td>
<td>0.085</td>
<td>-0.049</td>
<td>-0.167</td>
<td>-0.364 ***</td>
<td>-0.015</td>
</tr>
<tr>
<td>(0.108)</td>
<td>(0.217)</td>
<td>(0.055)</td>
<td>(0.044)</td>
<td>(0.265)</td>
<td>(0.098)</td>
<td>(0.065)</td>
<td></td>
</tr>
<tr>
<td>Age squared divided by 100</td>
<td>-0.187</td>
<td>-0.232</td>
<td>-0.248 ***</td>
<td>-0.076</td>
<td>0.022</td>
<td>0.272 ***</td>
<td>-0.112</td>
</tr>
<tr>
<td>(0.122)</td>
<td>(0.236)</td>
<td>(0.059)</td>
<td>(0.048)</td>
<td>(0.325)</td>
<td>(0.104)</td>
<td>(0.078)</td>
<td></td>
</tr>
<tr>
<td>Dummy variable: 1 if foreign diploma</td>
<td>0.009</td>
<td>0.197</td>
<td>0.904 ***</td>
<td>0.531 ***</td>
<td>1.410 **</td>
<td>0.869 ***</td>
<td>0.172</td>
</tr>
<tr>
<td>(0.305)</td>
<td>(0.277)</td>
<td>(0.165)</td>
<td>(0.48)</td>
<td>(0.325)</td>
<td>(0.104)</td>
<td>(0.135)</td>
<td></td>
</tr>
<tr>
<td>(2.502)</td>
<td>(4.529)</td>
<td>(1.251)</td>
<td>(0.983)</td>
<td>(5.155)</td>
<td>(2.073)</td>
<td>(1.315)</td>
<td></td>
</tr>
</tbody>
</table>

Choice attributes

Predicted lnpay | -0.119 * | (0.061)

Predicted μ | 1.063 *** | (0.174)

Unobserved heterogeneity

λ | 2.352 *** | 2.486 *** | 4.732 *** | 3.622 *** | -5.619 *** | 2.580 *** | 1.580 *** |
| (0.365) | (0.352) | (0.162) | (0.123) | (0.649) | (0.281) | (0.114) |

$L = -10853.95$

Standard errors in parentheses

* significant at 10%; ** significant at 5%; *** significant at 1%

Each destination branch includes year dummies (8) and specialty dummies (up to 23)