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Abstract

We estimate a New Keynesian model that allows endogenous transitions between a target equi-

librium, with inflation fluctuating around the central bank’s target and interest rates typically

positive, and a low-inflation equilibrium, where the effective lower bound binds and de-anchored

expectations keep inflation persistently below target. The model is estimated using Bayesian

methods, employing an ensemble MCMC sampler with a particle filter to handle nonlinearities.

We find that the United States remained in the target equilibrium after the global financial

crisis, the euro area transitioned to the low-inflation equilibrium in 2015, with the subsequent

inflation surge initiating a return to the target equilibrium in 2021, and Japan entered the low-

inflation equilibrium in the early 2000s. Bayes factors strongly favor the equilibrium-transition

model over an alternative specification in which the lower bound binds only occasionally and

expectations remain anchored.
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1 Introduction

The global financial crisis of 2008–2009 prompted central banks to lower policy rates to the effec-

tive lower bound (ELB). Despite the use of unconventional monetary policy measures, inflation in

economies such as the United States and the euro area remained persistently below target. Declin-

ing estimates of the natural rate of interest (see, e.g., Holston et al., 2017) heightened concerns that

the ELB would bind more frequently, complicating the stabilization of inflation and inflation expec-

tations (see the strategy reviews of the Federal Reserve and the ECB concluded in 2020 and 2021,

respectively). In the euro area, de-anchoring of inflation expectations began after the ELB became

binding (see, e.g., Nautz et al., 2017; Natoli and Sigalotti, 2018; Corsello et al., 2021; Christoffel

and Farkas, 2025), whereas evidence for the United States is less clear (see, e.g., Strohsal et al.,

2016; Grishchenko et al., 2019; Fischer, 2023). Japan’s experience shows that low interest rates

and low inflation can persist for decades.

While global inflation has risen since 2021 the prospect of renewed low-inflation, low-interest-rate

episodes remains salient. The increase in natural interest rates observed during the inflation surge

appears to have been temporary, and estimates of r∗ have largely reverted to the record lows of the

previous decade.1 Using interest-rate derivatives, Cho et al. (2025) estimate that the probability

of the U.S. economy returning to the ELB is 9% at medium- to long-horizon. In Switzerland,

inflation and the policy rate have already returned to near-zero levels after a mild increase in

inflation between 2021 and 2023.

Existing solution algorithms for macroeconomic models with an ELB typically assume an occa-

sionally binding constraint and that long-run inflation expectations remain anchored at the target

(e.g., Guerrieri and Iacoviello, 2015; Holden, 2016; Boehl, 2022). Once shocks fade, these models

return to the standard steady state, implying that recurrent adverse shocks or highly persistent

shock effects are required to generate long spells of low interest rates and low inflation. The same

applies to studies that incorporate an occasionally binding ELB in model estimation (e.g., Richter

and Throckmorton, 2016; Gust et al., 2017; Kulish et al., 2017; Aruoba et al., 2021; Boehl and

Strobel, 2024).

To address these limitations, we estimate a New Keynesian model in which inflation expectations

1U.S. estimates based on Laubach and Williams (2003) have declined but remain somewhat above their post-GFC
levels, whereas the estimates of Holston et al. (2017) for the United States and the euro area have returned to levels
close to the record lows of the previous decade (see https://www.newyorkfed.org/research/policy/rstar).
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can de-anchor, allowing the economy to transition from a target equilibrium, where inflation fluctu-

ates around the target and the policy rate is mostly above the ELB, to a low-inflation equilibrium,

where inflation remains persistently below target and the ELB binds most of the time. These two

equilibria correspond to fluctuations around the two steady states of New Keynesian models with

an ELB (e.g., Benhabib et al., 2001a). Crucially, the economy can remain in the low-inflation

equilibrium even after shocks have dissipated, provided long-run inflation expectations have fallen

below the target.

The model and expectation-formation framework build on Lansing (2021). Agents form expecta-

tions as a weighted average of rational-expectations forecasts for the target and low-inflation equi-

libria, with the weights evolving according to past forecast performance in the sense of Hommes

and Brock (1997). The weights can be interpreted as the perceived probabilities that the economy

is in each equilibrium. Persistently low inflation raises the weight on the low-inflation equilib-

rium, potentially de-anchoring expectations from the target and triggering a transition toward the

low-inflation equilibrium. Empirical evidence in Carvalho et al. (2023) shows that imperfect infor-

mation and past forecast errors are central to the formation of long-term inflation expectations.

The model also incorporates permanent shifts in the natural rate of interest, which change the

frequency and duration of ELB episodes and thereby affect the central bank’s ability to stabilize

inflation, the likelihood of de-anchoring, and the probability of a transition to the low-inflation

equilibrium. This framework is well suited to environments in which the data reflect a mixture of

equilibria—as in an incomplete transition to the low-inflation equilibrium—or to episodes in which

a prolonged period of low inflation and low interest rates is followed by an inflation surge that lifts

inflation expectations, as observed since mid-2021.

We estimate the model for the United States, the euro area, and Japan using Bayesian methods.

Given the model’s nonlinear structure, the likelihood function is evaluated with the bootstrap

particle filter (Herbst and Schorfheide, 2016). This approach is computationally demanding, and

the commonly used Random-Walk Metropolis–Hastings algorithm offers limited scope for paral-

lelization. To address this, we implement the Differential-Independence Mixture Ensemble (DIME)

sampler developed by Boehl (2024), which builds on the Differential Evolution Markov Chain al-

gorithm of ter Braak and Vrugt (2008), allows for efficient parallel computation and reduces the

risk of getting stuck in a local maxima.
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Our contribution to the literature is threefold. First, to our knowledge, no previous study has

estimated a nonlinear model that allows for endogenous transitions to a low-interest rate and low-

inflation equilibrium. Prior work either employs a calibrated equilibrium-transition model (Lansing,

2021), estimates a linear version on a sample excluding the ELB and uses those estimates to param-

eterize a two-equilibria model (Aruoba et al., 2018), or assumes the economy is permanently in the

low-inflation equilibrium so that linear estimation suffices (Cuba-Borda and Singh, 2024). Second,

we provide the first application of such a model to the euro area. Earlier studies have focused on

the United States (Lansing, 2021), Japan (Cuba-Borda and Singh, 2024), or both (Aruoba et al.,

2018). We view the euro area as particularly informative: between 2010 and 2020, the risk of

transitioning to the low-inflation equilibrium was arguably greater than in the United States, given

the larger decline in inflation and lower long-term inflation expectations. For Japan, by contrast,

it is widely acknowledged that the economy has been in the low-inflation equilibrium for many

years. Third, we systematically assess the empirical relevance of the equilibrium-transition model

by comparing its fit and parameter estimates with those of two single-equilibrium specifications.

While both alternatives are considered for all three economies, for the United States and the euro

area the target-equilibrium model with anchored long-run inflation expectations and an occasion-

ally binding ELB—that is, a standard New Keynesian model with an ELB—is of primary interest.

For Japan, the low-inflation equilibrium, in which expectations are anchored at minus the natural

rate and interest rates deviate only temporarily from the ELB, is of primary interest.

We find that the United States remained in the target equilibrium during the post–global financial

crisis period of low inflation and interest rates. The euro area transitioned to the low-inflation

regime in 2015. As inflation temporarily rose toward target around 2018, the euro area economy

was best characterized as a mixture of the target and low-inflation equilibria. Following the inflation

surge beginning in 2021, the euro area returned to the target equilibrium. Japan appears to have

entered the low-inflation equilibrium in the early 2000s, although estimates are volatile. Until 2013,

Japan’s inflation target was only 1%, implying a narrow gap between the target and the average

inflation rate in the low-inflation equilibrium—estimated as the negative of the natural rate, which

was close to zero at the time—making it difficult to distinguish the two equilibria precisely.

Bayes factor and the Kass–Raftery statistic provide strong evidence in favor of the transition-

equilibrium specification relative to single-equilibrium specifications across all three economies.

3



Posterior parameter estimates differ markedly across models, indicating that specifications without

equilibrium transitions may yield unreliable estimates when the sample includes extended periods

of low inflation and interest rates—even if inflation subsequently returns to target. This point

is especially important given that Aruoba et al. (2018) show that dynamics differ substantially

between the target and low-inflation equilibria, while Lansing (2021) shows that transitions across

equilibria generate dynamics distinct from those in the target equilibrium. Accordingly, policy

analyses based on models with anchored expectations and only an occasionally binding ELB may

be misleading.

Several papers are closely related to ours. Benhabib et al. (2001a) show that the ELB constraint

generates, alongside the standard target steady state, a second steady state in which the ELB binds

and inflation equals the negative of the steady-state real interest rate, with an infinite number of

equilibrium paths connecting the two. In subsequent work, they demonstrate that a standard

Taylor rule cannot rule out convergence to the low-inflation steady state (Benhabib et al., 2001b).

We focus on two local equilibria relevant at low interest rates: fluctuations around the target steady

state and fluctuations around the low-inflation steady state. In light of the secular decline in the

natural rate of interest, the latter is relevant not only for persistent deflation but also for episodes

of persistently low but positive inflation.

Theoretical papers study New Keynesian models with target and low-inflation equilibria. For

example, Armenter (2018) shows that inflation, price-level, or nominal GDP targeting may not be

sufficient to prevent convergence to a low-inflation equilibrium. Mertens and Ravn (2014), Nakata

and Schmidt (2022), and Bilbiie (2022) show that policy effects at the ELB depend on whether

the liquidity trap is driven by fundamental or non-fundamental shocks. Schmitt-Grohé and Uribe

(2017) add downward nominal wage rigidity to a model with non-fundamental traps to explain

why ELB recessions often yield jobless recoveries. Christoffel and Farkas (2025) develop a model in

which inflation expectations may de-anchor and agents update a time-varying perceived inflation

target from past inflation outcomes, though they do not consider the low-inflation equilibrium that

is the focus of this paper.

Empirical work on two-equilibria models is more limited. Aruoba et al. (2018) examine whether the

liquidity traps in the United States and Japan are driven by non-fundamental shocks that induce

switches to a low-inflation equilibrium, or by adverse fundamental shocks generating temporary
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ELB episodes with expectations anchored at the target. They solve a nonlinear model with global

methods and use a particle filter to recover the sequence of shocks consistent with the data, esti-

mating the probability of being in each equilibrium. Consistent with our results, they find that the

United States likely remained in the target equilibrium, while Japan switched to the low-inflation

equilibrium. In their framework, transitions occur exogenously via sunspot shocks. Lansing (2021)

instead allows for endogenous equilibrium switching. He finds that the probability of the target

equilibrium declines for the U.S. economy after the global financial crisis but remains above 50 per-

cent by the end of the sample in 2018, and in one specification stays near one—again in line with our

findings. Cuba-Borda and Singh (2024) distinguish between non-fundamental expectations-driven

and secular stagnation liquidity traps for Japan, where the latter involves a permanent decline of

the natural rate below zero, and find stronger support for the expectations-driven case. Fischer

(2023) estimates a model in which agents switch endogenously between constant-gain learning and

random-walk forecasts. He finds that de-anchoring can generate deflationary spirals when the ELB

binds and evaluates policy measures to prevent such outcomes.

The remainder of the paper proceeds as follows. Section 2 introduces the model with two equilibria

and describes the transition mechanism. Section 3 describes the estimation methodology. In

Section 4 the estimation results and equilibrium probabilities are discussed. Section 5 compares

the transition model to single-equilibrium models. Section 6 shows robustness checks. Finally,

Section 7 concludes.

2 Model Environment

We employ a small-scale New Keynesian model with an ELB constraint. This choice offers three

advantages over larger-scale models. First, the framework is well established in the literature, which

facilitates a clear analysis of how allowing for equilibrium transitions alters the model’s dynam-

ics. Second, the small number of state variables substantially reduces the computational burden

associated with solving and estimating the model. Third, endogenous transitions between target

and low-inflation equilibria can generate richer dynamics, in which case the additional frictions

embedded in larger models may be unnecessary for matching the data.
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2.1 Core Model Equations

The IS curve in equation (1) can be derived from the consumption Euler equation, while the

Phillips curve in equation (2) follows from the profit-maximization problem of firms operating

under monopolistic competition and subject to price-setting frictions:

yt = Êtyt+1 − α(it − Êtπt+1 − rt) + vt, (1)

πt = βÊtπt+1 + κyt + ut. (2)

Here, yt denotes the output gap, πt the quarterly inflation rate, it the nominal interest rate, and rt

the short-run natural interest rate. The operator Êt represents expectations formed by agents who

account for the possibility that the economy may transition between the target and low-inflation

equilibria. The specific expectation-formation mechanism is described below.

The supply shock ut and demand shock vt are modeled as first-order autoregressive processes, with

persistence parameters ρu and ρv, respectively. The innovations, ϵu,t and ϵv,t, are assumed to be

mean-zero and normally distributed with variances σ2
ϵu and σ2

ϵv :

ut = ρuut−1 + ϵu,t, (3)

vt = ρvvt−1 + ϵv,t. (4)

Unlike standard frameworks, the natural interest rate is allowed to vary in the long run. The

long-run natural rate, r∗t , follows a random walk, while the short-run natural rate, rt, is a weighted

average of its lagged value and the long-run rate:

r∗t = r∗t−1 + ηt, (5)

rt = ρrrt−1 + (1− ρr)r
∗
t + ϵt. (6)

The shocks ηt and ϵt are mean-zero and normally distributed with variances σ2
η and σ2

ϵ , respectively,

generating permanent or temporary fluctuations in the natural interest rate.

The central bank sets the nominal interest rate according to a policy rule subject to the ELB,
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which is assumed to be zero:

it = max{0, ρit−1 + (1− ρ)(rt + π∗ + gπ(π̄t − π∗) + gyyt)}, (7)

with π̄t = ωπt + (1− ω)π̄t−1, (8)

where π∗ denotes the inflation target, and ω is calibrated so that the exponentially weighted average

π̄t of current and past quarterly inflation approximates the four-quarter compound inflation rate.

A permanent decline in r∗t , and consequently in rt, increases the frequency with which the ELB

binds.

2.2 Two Local Equilibria

The long-run Fisher relation is embedded in equation (1), so that if the Taylor principle is satisfied,

the model features two long-run endpoints corresponding to the steady states of New Keynesian

models with an ELB, as first described by Benhabib et al. (2001a). Because the long-run natural

interest rate r∗t is nonstationary, the model does not admit a true steady state, but only long-run

endpoints, in which some variables depend on r∗t . At the target long-run endpoint, inflation is equal

to its target and the nominal interest rate is positive: πT
t = π∗, iTt = r∗t +π∗, and yTt = (1−β)π∗/κ.

At the low-inflation endpoint, inflation is below target and the ELB binds: πL
t = −r∗t , i

L
t = 0, and

yLt = (1− β)(−r∗t )/κ.

We focus on two local rational expectations equilibria corresponding to the long-run endpoints. In

the target equilibrium, agents’ long-run expectations are anchored at the target endpoint. Inflation

fluctuates around the inflation target, and the nominal interest rate remains mostly positive. Ex-

pectations in this equilibrium are denoted ÊT
t and are computed under the assumption that the

ELB never binds, allowing the use of standard rational expectations solution methods.

In the low-inflation equilibrium equilibrium, agents’ long-run expectations are anchored at the low-

inflation endpoint. Expectations in this equilibrium are denoted ÊL
t and are computed under the

assumption that the ELB is permanently binding.2 The Blanchard-Kahn conditions do not hold.

However, by redefining the inflation expectational error as an additional fundamental variable,

2See Lansing (2021) for a discussion showing that computing expectations under the assumption that the ELB
never binds in the target equilibrium and always binds in the low-inflation equilibrium is unproblematic, as simulations
indicate these assumptions are only rarely and briefly violated.
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following Farmer et al. (2015), the solution becomes non-explosive, and standard solution methods

can be applied. In this equilibrium, inflation fluctuates around minus the long-run natural interest

rate, and in simulations the ELB binds for most periods.

2.3 Expectation formation and equilibrium transitions

In the full model, the data are generated by a time-varying mixture of the two local equilibria. Let

xt ≡ [yt, πt] denote the vector of variables for which expectations must be formed, and let ÊT
t xt+1

and ÊL
t xt+1 denote expectations under the target and low-inflation equilibria, respectively. The

expectations Êt entering the IS curve (1) and the Phillips curve (2) are then a weighted average of

the two equilibria, with the weight on the target equilibrium denoted µt ∈ [0, 1]:

Êtxt+1 = µtÊ
T
t x

T
t+1 + (1− µt)Ê

L
t x

L
t+1. (9)

Following Lansing (2021), we assume that agents update the weight µt each period based on the

past forecasting performance of the target and low-inflation expectations. Specifically, they choose

µt to minimize the root mean squared forecasting error of inflation and output gap expectations

over the previous Tw quarters:

µt = argmin
µt

Tw∑
k=1

T−1
w

∑
x∈{y,π}

[
xt−k −

(
µtÊ

T
t−k−1xt−k + (1− µt)Ê

L
t−k−1xt−k

)]2
0.5

, (10)

If agents observe that their past forecasts perform relatively poorly compared with the ex-post

realizations of xt, they assign more weight to the other equilibrium. In this sense, µt can be

interpreted as the subjective probability that agents assign to the target equilibrium, with 1 − µt

representing the probability assigned to the low-inflation equilibrium.

3 Estimation Setup

We estimate the equilibrium transition model using Bayesian methods for the United States, the

euro area, and Japan, and we also estimate single-equilibrium models separately for comparison.
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3.1 Data and Calibration

We use quarterly data on inflation, the output gap, the policy rate, and the long-run natural real

rate of interest, so that πt, yt, it, and r∗t are the observables. Sample periods differ across the

United States, the euro area, and Japan due to data availability.

For the United States, we use PCE inflation, the output gap based on the Congressional Budget

Office’s potential output estimates, the effective federal funds rate, and the natural interest rate

estimates of Laubach and Williams (2003). The sample runs from 1988Q1 to 2023Q4, the last date

for which natural rate estimates are available.

For the euro area, we use inflation based on the Harmonized Index of Consumer Prices, the output

gap based on the European Commission’s potential output estimates, the ECB’s main refinancing

operations rate, and the natural interest rate estimates of Holston et al. (2017). The sample runs

from 1999Q1 to 2023Q3.

For Japan, we use CPI inflation, the Bank of Japan’s output gap estimates, the Bank of Japan’s

basic discount rate, and the natural interest rate estimates of Nakano et al. (2024), who apply the

methodology of Laubach and Williams (2003). The availability of the natural rate series restricts

the sample to 1985Q1–2023Q1.

We calibrate some parameters prior to estimation. The discount factor β is set to 0.99 for all three

economies. The weighting parameter ω is chosen to minimize the squared distance between the

exponentially weighted moving average of quarterly inflation, π̄t, and the comparable four-quarter

inflation series for each country, as in Lansing (2021). The values of ω are 0.42 for the United

States, 0.48 for the euro area, and 0.37 for Japan. For the United States and the euro area, the

inflation target is π∗ = 2%. The Bank of Japan increased its inflation target in January 2013 from

1% to 2%. Implementing a time-varying inflation target would complicate the solution, so we use

an average target of 1.26% for the whole sample. We view this approach as reasonable because,

until the recent inflation surge, inflation remained not only below the new target level but also

below the old one.
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3.2 Priors

We establish prior distributions for the parameters to be estimated—α, κ, ρ, gπ, gy, ρu, ρv, σu, σv,

ρr, σϵ, and ση—drawing on those used in the influential study by An and Schorfheide (2007), which

employs a model similar to the target equilibrium version of the model used here. The priors are

reported in Table 1.

The prior for α, the intertemporal elasticity of substitution, is centered at 0.5 a standard value in

the literature. The prior for the Phillips curve slope, κ, is set at 0.2, reflecting micro-level evidence

on the frequency of price adjustments. Priors for the policy rule coefficients are loosely centered on

the parameters of a Taylor rule with moderate interest rate smoothing. All priors are intentionally

broad, allowing the same set to be applied across all three economies.

Table 1: Prior Distributions

Parameter Domain Distribution Para (1) Para (2)
α [0, 2.5) G 0.50 0.50
κ [0, 2.5) G 0.20 0.10
gπ [1, 2.5) G 1.50 0.25
gy [0, 2.5) G 0.50 0.25
ρ [0, 1.0) B 0.50 0.20
ρu [0, 1.0) B 0.50 0.20
ρv [0, 1.0) B 0.50 0.20
σu [0, 0.1) IG 0.10 2.00
σv [0, 0.1) IG 0.10 2.00
ρr [0, 1.0) B 0.50 0.20
σϵ [0, 0.1) IG 0.10 2.00
ση [0, 0.1) IG 0.10 2.00

Notes: The prior distribution types are abbreviated as Gamma (G), Beta (B), and Inverse Gamma (IG). Para (1)
and Para (2) list the mean and standard deviation for the Gamma and Beta distributions, respectively. For the
Inverse Gamma distribution, Para (1) denotes the shape parameter and Para (2) the scale parameter.

We impose an upper bound of 2.5 on the parameters α, κ, gπ, and gy, as values above this threshold

are uncommon in similar estimation studies. For the interest rate smoothing coefficient, ρ, the

upper bound is set to 1.0. These constraints are intended to guide the sampler toward regions of

the parameter space with higher posterior likelihood and to avoid exploration of areas considered

a priori implausible.

We constrain the autoregressive coefficients of the shock processes to lie between 0 and 1 to ensure

model stability. To reflect this constraint, we chose a beta distribution that assigns positive weight

only within this interval. We use a prior mean of 0.5 and a prior standard deviation of 0.2.
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For the standard deviations of the shocks, we use inverse gamma distributions, as they assign

positive probability only to positive values. We set the prior shape parameter to 0.1 and the scale

parameter to 2.0. These priors for the autoregressive processes and shock variances are standard

in the literature (e.g., Smets and Wouters, 2007).

3.3 Particle Filter

To estimate the model, we write it in state-space form. The measurement equation (11) relates

the observed time series, Yt, to the states, Xt, where the measurement function H depends on the

parameter vector θ. The transition equation (12) describes the evolution of the states over time,

depending on the transition function F , the parameter vector θ, the previous state Xt−1, and the

structural shocks Wt:

Yt = H(Xt; θ), (11)

Xt = F (Xt−1,Wt; θ). (12)

Note that, unlike the standard approach, variables are not measured as deviations from a steady

state, since the model has no single steady state but two long-run endpoints. Consequently, the

model variables are defined directly in levels, as in the data. The measurement equations therefore

do not include any steady-state values. They link the model variables directly to the data without

transformation, and we also refrain from modeling measurement errors:

πdata
t = πt, ydatat = yt, idatat = it, r∗,datat = r∗t . (13)

It is noteworthy that H and F in equations (11) and (12) are not necessarily linear. In our case,

the function F captures the relevant nonlinearities and the multiple equilibria.

The likelihood function cannot be evaluated analytically because the model’s nonlinearity prevents

the use of the Kalman filter. To address this, we approximate the likelihood using a particle filter.

The particle filter is a Monte Carlo–based algorithm that estimates the likelihood by simulating

a swarm of particles, each representing a possible state of the system. By iteratively updating

the particle weights, the particle filter provides an efficient approximation of the likelihood, en-
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abling estimation of the posterior distribution via Bayes’ theorem. The application of particle

filters to DSGE models was pioneered by Fernández-Villaverde and Rubio-Ramı́rez (2007), with a

comprehensive overview provided by Herbst and Schorfheide (2016).

The particle filter begins by sampling particles from the prior distribution. At each time step, it

propagates these particles forward according to the state transition equation, reweights them based

on the likelihood of the observed data, and resamples to avoid weight degeneracy. This procedure

produces an evolving empirical approximation to the filtering distribution of the latent state, with

high-weight particles contributing more to the approximation. With enough particles, the particle

filter provides an accurate approximation to the posterior distribution of the state.

We use in the following the bootstrap particle filter as proposed in Herbst and Schorfheide (2019)

with N = 10, 000 particles.

3.4 Adaptive MCMC Algorithm

The Random Walk Metropolis-Hastings (RWMH) algorithm, commonly used to simulate the pos-

terior distribution in DSGE model estimation, is not feasible here due to its slow convergence.

Running multiple chains in parallel is a potential alternative. However, independent chains may

converge to the same mode, which need not be the global maximum of the posterior likelihood.

We therefore use the differential-independence mixture ensemble (DIME) sampler developed by

Boehl (2024), which overcomes the slow convergence and inefficient parallelization of the RWMH

algorithm and avoids getting stuck in local maxima. It achieves this through an ensemble sampler

approach, running multiple adaptive chains in parallel that are interdependent. The DIME algo-

rithm combines differential evolution with a mixture model for parameter estimation, resulting in

superior performance compared with RWMH, with the differential evolution step further enhancing

its efficiency.

The DIME sampler uses an ensemble Θi = (θ1i , . . . , θ
nc
i ) of nc individual chains θji . The ensemble

is initialized with nc draws from the prior distribution. In each iteration, the algorithm divides

the ensemble into two subensembles, which are updated sequentially, with each conditioned on the

current state of the other. This structure allows the chains within each subensemble to be processed

in parallel. At each iteration, the algorithm employs a mixture of strategies, assigning each chain
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to either a local or a global transition kernel with probabilities ξ and 1− ξ, respectively.

When a chain j is assigned to the local kernel, its parameter vector θji is updated using the

Differential Evolution Monte Carlo (DEMC) step originally proposed by ter Braak and Vrugt

(2008). The DEMC step generates new candidate vectors by taking differences between existing

vectors and adding them to the current position of the chain. Specifically, at each iteration i, the

indices of two other chains, k and l (k ̸= l ̸= j), are randomly drawn, and the difference between

their parameter vectors is weighted by γ and added to the current vector θji−1, along with a small

noise term ϵji :

θji = θji−1 + γ(θki−1 − θli−1) + ϵji . (14)

This produces a new parameter vector that depends on the previous position of chain j and in-

formation from the current positions of chains k and l. As the ensemble approaches the posterior

distribution, the proposal distribution adapts accordingly and converges, too. The DEMC step has

been shown to be effective for sampling from high-dimensional and multimodal distributions.

In the case of the global transition kernel, the new draw for θji depends not on the current positions

of two other chains, but on the history and current positions of the entire ensemble. This ensures

that the algorithm does not get stuck in a local maximum, but can explore the sampling space more

broadly. The new draw is sampled from a proposal distribution that is independent yet adaptive,

adjusting over time to approximate the current estimate of the posterior distribution. Specifically,

θji is drawn from a multivariate t-distribution, which can be parametrized in terms of its mean and

covariance when the degrees of freedom ν are larger than two:

θji ∼ tν (µi,Σi) . (15)

The multivariate mean µi and covariance matrix Σi of the distribution do not depend on a single

chain, but on the entire ensemble and are updated according to:

µi =

(
Wi−1

Wi

)
µi−1 +

(
wi

Wi

)
µ̄i, (16)

Σi =

(
Wi−1

Wi

)
Σi−1 +

(
wi

Wi

)
Σ̄i, (17)
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where µ̄i and Σ̄i denote the sample mean and covariance matrix of the current ensemble Θi,

respectively. Within this updating scheme, Wi evolves as:

Wi = ρWi−1 + wi, (18)

where ρ is a decay parameter close to unity to ensure the boundedness of Wi and the weight in

iteration i is defined as:

wi = ai

nc∑
j=1

π(θji ), (19)

with ai being the average acceptance ratio in i and π representing the likelihood function.

After generating a new parameter vector θji using either the local or global transition kernel, each

chain j undergoes a standard Metropolis step. The algorithm then proceeds by assigning a new local

or global kernel. Upon convergence, the joint distribution of all chains, i.e., the entire ensemble,

represents the posterior distribution.

Test runs of the DIME algorithm revealed an insufficient parameter space exploration with median

posterior estimates often on the prior bounds. These issues relate to the DIME algorithm applying

a logistic mapping between the constrained parameter space and the unconstrained proposal space.

Particularly when the supported parameter space is narrow, the transformation becomes very steep,

leading to a concentration of draws in that part of the prior distribution. We replace this bijective

mapping with an iterative prior sampling. This modification allows for a more thorough and stable

exploration of the parameter space.

To implement DIME, we set ν = 5 and γ = 2.38
√

2 size(θ), following ter Braak and Vrugt (2008),

which yields a value of 0.486. Following Boehl (2024), we set ρ = 0.999 and ξ = 0.05, as this choice

achieved faster convergence in test runs compared with the default ξ = 0.10. The disturbance term

ϵji is sampled from a mean-zero normal distribution with variance 1 × 10−5, consistent with the

DIME default. We run 60 chains for 5,000 iterations, retaining 500 as draws from the posterior

distribution.
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4 Results of the Two-equilibria Model

The log-likelihoods of the ensembles converged after about 1000 iterations as shown in the appendix,

so that retaining just 500 draws from the posterior distribution ensures a plausible approximation

of the posterior distribution.

4.1 Posterior Parameter Estimates

Table 2 shows the mean, median and the 5th and 95th percentiles of the posterior distribution of

the parameter estimates for the United States, the euro area, and Japan together with the prior

distributions.

There are two estimated behavioral parameters in the model: the intertemporal elasticity of sub-

stitution, α, and the slope of the Phillips curve, κ. The posterior mean estimates of α are 0.06

for the United States, 0.11 for the euro area, and 0.03 for Japan. For all three economies, the

data are highly informative, as the posterior means are substantially lower than the prior means,

which lie far above the 95th percentile of the posterior distribution. These estimates imply a rel-

atively weak direct response of the output gap to the interest rate gap, consistent with the low

consumption response to the real interest rate documented by Hall (1988). By comparison, the

meta-study by Havranek et al. (2015) reports an average estimate of 0.59 for the United States. For

the euro area, no aggregate meta-estimate is available. However, averaging country-level estimates

for Germany, France, Italy, and Spain yields an intertemporal elasticity of approximately 0.21. For

Japan, Havranek et al. (2015) report an average of 0.9. They emphasize, though, that negative

and statistically insignificant estimates are often omitted from reported results. Accounting for

publication bias, even a mean macroeconomic estimate near zero is plausible. Overall, there is

substantial heterogeneity in empirical estimates, and several studies argue that low values may

may be more consistent with the observed properties of consumption and the Euler equation (e.g.,

Kilponen et al., 2022).

The posterior mean estimates of the slope of the Phillips curve, κ, are 0.07 for the United States,

0.16 for the euro area, and 0.31 for Japan. The data are informative for all three economies: for the

United States and the euro area, both the posterior means and the 95th percentiles lie below the

prior means, while for Japan the posterior mean and the 5th percentile lie above. These estimates
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Table 2: Posterior Estimates: Two-equilibria model

Prior distribution Posterior distribution

Distr. Para (1) Para (2) Mean Median 5% 95%
United States

Intertemporal elasticity of substitution α G 0.50 0.50 0.06 0.06 0.02 0.11
Slope of Phillips curve κ G 0.20 0.10 0.07 0.07 0.04 0.11
Monetary policy reaction to inflation gπ G 1.50 0.25 1.82 1.78 1.37 2.34
Monetary policy reaction to output gap gy G 0.50 0.25 0.62 0.56 0.12 1.46
Interest rate smoothing ρ B 0.50 0.20 0.90 0.90 0.86 0.94

Shock processes
AR(1) coeff. of supply shock ρu B 0.50 0.20 0.21 0.20 0.14 0.26
AR(1) coeff. of demand shock ρv B 0.50 0.20 0.38 0.38 0.17 0.67
Std. dev. of supply shock σu IG 0.10 2.00 0.0956 0.0979 0.0917 0.0998
Std. dev. of demand shock σv IG 0.10 2.00 0.0332 0.0093 0.0026 0.0979

Natural rate processes
AR(1) coeff. of short-run natural rate ρr B 0.50 0.20 0.32 0.31 0.13 0.50
Std. dev. of short-run nat. rate shock σϵ IG 0.10 2.00 0.0009 0.0009 0.0005 0.0012
Std. dev. of long-run nat. rate shock ση IG 0.10 2.00 0.0729 0.0718 0.0569 0.0959

Euro area

Intertemporal elasticity of substitution α G 0.50 0.50 0.11 0.10 0.05 0.18
Slope of Phillips curve κ G 0.20 0.10 0.16 0.14 0.10 0.26
Monetary policy reaction to inflation gπ G 1.50 0.25 1.72 1.73 1.26 2.26
Monetary policy reaction to output gap gy G 0.50 0.25 0.42 0.40 0.16 0.81
Interest rate smoothing ρ B 0.50 0.20 0.94 0.94 0.93 0.95

Shock processes
AR(1) coeff. of supply shock ρu B 0.50 0.20 0.36 0.37 0.13 0.64
AR(1) coeff. of demand shock ρv B 0.50 0.20 0.35 0.33 0.15 0.58
Std. dev. of supply shock σu IG 0.10 2.00 0.0219 0.0060 0.0017 0.0959
Std. dev. of demand shock σv IG 0.10 2.00 0.0529 0.0495 0.0083 0.0983

Natural rate processes
AR(1) coeff. of short-run natural rate ρr B 0.50 0.20 0.35 0.36 0.15 0.55
Std. dev. of short-run nat. rate shock σϵ IG 0.10 2.00 0.0012 0.0012 0.0007 0.0020
Std. dev. of long-run nat. rate shock ση IG 0.10 2.00 0.0708 0.0685 0.0507 0.0914

Japan

Intertemporal elasticity of substitution α G 0.50 0.50 0.03 0.03 0.02 0.05
Slope of Phillips curve κ G 0.20 0.10 0.31 0.30 0.22 0.42
Monetary policy reaction to inflation gπ G 1.50 0.25 1.32 1.31 1.04 1.70
Monetary policy reaction to output gap gy G 0.50 0.25 0.38 0.33 0.15 0.67
Interest rate smoothing ρ B 0.50 0.20 0.95 0.95 0.94 0.95

Shock processes
AR(1) coeff. of supply shock ρu B 0.50 0.20 0.69 0.77 0.28 0.89
AR(1) coeff. of demand shock ρv B 0.50 0.20 0.16 0.15 0.11 0.24
Std. dev. of supply shock σu IG 0.10 2.00 0.0075 0.0049 0.0018 0.0228
Std. dev. of demand shock σv IG 0.10 2.00 0.0947 0.0959 0.0874 0.0994

Natural rate processes
AR(1) coeff. of short-run natural rate ρr B 0.50 0.20 0.38 0.37 0.19 0.67
Std. dev. of short-run nat. rate shock σϵ IG 0.10 2.00 0.0007 0.0007 0.0005 0.0009
Std. dev. of long-run nat. rate shock ση IG 0.10 2.00 0.0389 0.0381 0.0298 0.0523

Notes: The prior distribution types are abbreviated as Gamma (G), Beta (B), and Inverse Gamma (IG). Para (1)
and Para (2) list the mean and standard deviation for the Gamma and Beta distributions, respectively. For the
Inverse Gamma distribution, Para (1) denotes the shape parameter and Para (2) the scale parameter.
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are consistent with model-based results in the literature. For example, Schorfheide (2008) report

estimates for the United States ranging from zero to 0.77 (excluding the outlier of 4.15 in Canova

2009), placing the estimates of all three economies well within this range. Limited-information

estimates are often only slightly positive and the literature also emphasizes the high degree of

uncertainty surrounding the slope of the Phillips curve (see, e.g., Nakamura and Steinsson, 2013;

Mavroeidis et al., 2014; Eser et al., 2020; Furlanetto and Lepetit, 2024). The estimates for the

United States and the euro area are thus squarely within the range reported in previous studies,

and even the higher estimate for Japan is plausible and consistent with the broader evidence.

Importantly, the slope of the Phillips curve measures only the immediate impact of the output gap

on inflation. Additional effects can arise through changes in inflation expectations, which may be

stronger here than in conventional models with anchored expectations.

The estimates for the monetary policy rule parameters fall within the range typically reported

in comparable studies for all three economies. The posterior mean of the inflation response is

somewhat higher in the United States and the euro area with values of 1.82 and 1.72 than the

prior of 1.50, with the posterior distribution shifted upward, while in Japan the posterior remains

close to the prior. For the output gap response, the posterior means are close to the prior across

all three economies, indicating that the data are not informative. By contrast, the data are highly

informative for the interest rate smoothing coefficient: the posterior means lie between 0.90 and

0.95 with tight posterior distributions, reflecting the high degree of interest rate smoothing usually

found in empirical estimates of monetary policy rules.

The data are highly informative about the shock processes. For all three economies and virtually

all shocks, posterior means of the AR(1) coefficients and shock standard deviations lie below prior

means, and posterior distributions are noticeably tighter. The only exceptions are the AR(1) coef-

ficient of the United States demand shock and that of the Japanese supply shock, whose posterior

means remain close to the prior. The prior mean of the autocorrelation coefficient is 0.5 for all

shocks, while posterior means fall in the range 0.16–0.69. The prior mean of the innovation stan-

dard deviation is 0.1, while posterior estimates range from 0.01 to 0.1, except for the short-run

natural rate shock, whose posterior is markedly smaller. Because the long-run natural rate is ob-

served whereas the short-run component is latent, and given the high persistence of the former, the

estimates imply that transitory natural rate shocks have negligible quantitative relevance.

17



Overall, the parameter estimates appear plausible. Differences in comparison to previous studies

could be caused by the possibility of inflation deanchoring, which leads to substantially different

model dynamics (see, e.g., Aruoba et al., 2018; Lansing, 2021).

4.2 Equilibrium Transition Probabilities

We analyze the endogenous forecast weights µt using the estimated model, following the reverse

engineering approach of Lansing and Markiewicz (2018), Gelain et al. (2018), and Lansing (2021).3

For each period t, we draw from the posterior distribution and compute µt via equation (10),

which requires one-step-ahead expectations from the target and low-inflation equilibria for t − 9

to t − 2. These expectations are obtained by substituting the shock realizations and observables

into the model solutions for both equilibria. Conditional on µt, the transition-model expectations

are computed using equation (9) and combined with observables to infer the shock realizations for

period t via the model equations in Section 2.1. For t = 1 to 8, we set µt = 1, providing the initial

shock realizations needed to compute µt in subsequent periods. We perform the reverse engineering

exercise by randomly drawing 100 parameters from the posterior parameter distribution to account

for the uncertainty in the parameter estimates. The results are shown in Figure 1.

The plots on the left show the evolution of µt over time, where µt = 1 indicates that agents assign

full probability to the target equilibrium, and µt = 0 indicates full probability on the low-inflation

equilibrium. Intermediate values correspond to a mixture of the two local equilibria. We report the

median posterior estimates of µt along with 90% probability bands. The probability assigned to

each equilibrium at each point in time depends on the relative one-step-ahead forecasting accuracy

of the target and low-inflation forecast rules for inflation and the output gap over the preceding eight

quarters. To illustrate the sources of time variation in µt, the right-hand plots show the inflation

series together with the corresponding endpoints of the two inflation forecasts. We focus on inflation

because the endpoints differ markedly between equilibria: in the target equilibrium, the inflation

endpoint equals π∗, whereas in the low-inflation equilibrium it equals −r∗t . By contrast, differences

in the output gap endpoints are small. For the target equilibrium, the endpoint is (1 − β)π∗/κ,

and for the low-inflation equilibrium it is (1−β)(−r∗t )/κ, which are both approximately zero given

β = 0.99.

3A particle smoother could be employed instead; however, the resulting µt estimates were highly uncertain and
volatile, making them difficult to interpret.
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Figure 1: Target Probabilities and Inflation Endpoints
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Notes: Left panels: The black solid line depicts the median target probability. The shaded area describes the
interval between the 5th and 95th percentile. Right panels: The black solid line describes annualized quarterly
inflation. The upper red dashed line represents the inflation target endpoint, which is equal to π∗. The lower red
dashed-dotted line represents the low-inflation endpoint, which is equal to −r∗t .
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United States. The U.S. economy remained predominantly in the target equilibrium, with µt

never falling below 60%. This reflects inflation fluctuating around the target over the sample,

with only occasional more persistent declines below it. Declines in µt in the late 1990s, around

the 2008–09 global financial crisis, and around 2016 correspond to such periods. Early- and late-

sample deviations occurred when inflation was above target but trending downward. Low-inflation

equilibrium forecasts project a faster decline in inflation, inducing moderate reductions in µt even

when inflation remains above target. Thus, the forecast-switching mechanism appears somewhat

sensitive to short-term inflation declines, though associated reductions in the target probability

remain limited. Overall, the results corroborate Aruoba et al. (2018), confirming that the United

States remained in the target regime, and align with Lansing (2021), who reports target-equilibrium

probabilities exceeding 60% throughout the sample.

Euro area. For the euro area, variation in µt is much larger than in the United States, underscoring

the relevance of equilibrium transitions. The sharpest decline to near zero occurred in 2014/15,

when inflation fell to zero and r∗t also dropped toward zero, so that the low-inflation endpoint nearly

coincided with actual inflation. This episode lasted until 2020, interrupted only by a temporary rise

of inflation toward target that briefly lifted µt, though it remained below 50%. Even accounting

for estimation uncertainty, the model clearly indicated a de-anchoring of inflation expectations in

line with Nautz et al. (2017), Natoli and Sigalotti (2018), Corsello et al. (2021) and Christoffel

and Farkas (2025). From 2021 onward, the euro area economy returned to the target equilibrium.

µt remained slightly below 100%, however, as expectations continued to assign weight to the low-

inflation equilibrium, which implied faster disinflation after 2022.

Beyond the 2015–2020 episode, the joint drop in inflation and the natural rate during the global

financial crisis also raised the low-inflation endpoint and reduced µt toward 50%, suggesting the

economy was best characterized as a mixture of equilibria. Around 2001, µt also dipped temporarily

as inflation slightly exceeded target before converging back. In this case, the forecasts of the two

equilibria diverged only marginally, so weight was placed on both. This highlights that µt should

not be interpreted mechanically: a decline in µt is informative only if accompanied by persistently

below-target inflation.

Japan. For Japan, transitions to a low-inflation equilibrium are even more relevant than for

the euro area. Japan transitioned around 1996, when inflation fell below zero and the natural
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interest rate declined from 4% to 1%, narrowing the distance between the target and the low-

inflation endpoint.4 It then remained in the low-inflation equilibrium until the end of the sample,

interrupted only by temporary increases in µt during short-lived inflation spikes. The sensitivity

of µt to such spikes follows mechanically from the small gap between the equilibrium endpoints,

as the pre-2013 inflation target of only 1% combined with a natural interest rate that fell to zero

in the late 1990s. Apart from these spikes, µt converged to zero with narrow uncertainty bands,

reflecting that from the late 1990s until the launch of Abenomics around 2012, inflation remained

near the low-inflation endpoint, consistent with Aruoba et al. (2018).

5 Comparison to Single-equilibrium Models

The analysis so far has shown that, under the assumed RMSFE minimization procedure, agents

choose a time-varying µt in all three economies. In this section, we assess formally whether the

equilibrium-transition model with this expectation formation mechanism provides a better fit than

single-equilibrium models, in which µt = 1 or µt = 0 for all t, replacing the time-varying µt chosen

via equation (10). The target-equilibrium model corresponds to µt = 1, with expectations anchored

at the target long-run endpoint. The ELB may bind occasionally, but once shocks fade, inflation

returns to target and interest rates turn positive. This specification is most relevant for the United

States, where µt remained close to one throughout the sample. The low-inflation-equilibrium model

corresponds to µt = 0, with expectations anchored at the low-inflation long-run endpoint. The ELB

may temporarily cease to bind, but once shocks dissipate, inflation converges to the low-inflation

endpoint πL
t = −r∗t and the ELB binds in the long run. This specification is most relevant for

Japan, where µt frequently took values near zero. For estimation, we apply the same priors,

sample periods, and methodology as in the transition model.

5.1 Model Selection Metrics

Table 3 reports the log marginal data densities, computed using the Modified Harmonic Mean

Estimator of Geweke (1999), for the transition model, the target-equilibrium model, and the low-

inflation model. Model comparison is based on the Bayes factor, defined as the ratio of marginal

4The previous decrease of µt around 1992 arises due to the persistent decline of inflation starting from above the
inflation target, rather from trantitioning to a low-inflation equilibrium.
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likelihoods. Under equal prior probabilities, the Bayes factor coincides with the posterior odds

ratio. We also report the Kass–Raftery statistic, defined as twice the log of the Bayes factor.

Table 3: Model Selection Metrics

Log Marginal Data Density

Transition Model Target Model Low-Inflation Model

United States 1977.44 1130.62 1104.14
Euro Area 1338.06 1007.78 952.72
Japan 2272.47 1779.54 1799.48

Bayes Factor / Kass-Raftery Statistic

Transition vs. Target Transition vs. Low-Inflation Target vs. Low-Inflation

United States
Bayes Factor > 10100 > 10100 3.16× 1011

Kass-Raftery 1681.65 1746.61 64.97

Euro Area
Bayes Factor > 10100 > 10100 8.17× 1023

Kass-Raftery 660.55 770.70 110.12

Japan
Bayes Factor > 10100 > 10100 2.18−9

Kass-Raftery 985.86 945.98 -39.89

Comparing the transition equilibrium model with the two single-equilibrium alternatives yields

extremely large Bayes factors and Kass–Raftery statistics across all three economies. Using the

terminology of Kass and Raftery (1995), this provides ‘strong evidence’ in favor of the transition

equilibrium specification. The result is particularly noteworthy for the United States, where the

estimated values of µt reported above remain close to unity.

The dominance of the transition equilibrium model can be understood by noting that the log

marginal data density is the sum of one-step-ahead predictive scores. Forecasts from single-

equilibrium DSGE models typically imply a quick return to steady state after shocks (see, e.g.,

Wickens, 2014). This reversion is even faster in the small-scale models used here than in larger

Smets and Wouters (2007)-type models. When downward deviations from steady state are persis-

tent, the transition model delivers more accurate forecasts. The RMSFE minimization in equation

(10) lowers µt, which reduces inflation and output gap forecasts and, in turn, interest rate fore-

casts. If these variables are persistent, this adjustment improves one-step-ahead predictive accuracy.

The transition equilibrium model therefore captures persistence in the data more effectively than

single-equilibrium models. It can thus fit economies with prolonged periods of low inflation and

low interest rates, as in the euro area and Japan, as well as cases with only temporary downward

deviations, as in the United States.
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When comparing the target and low-inflation equilibria, the differences are less pronounced. For

the United States and the euro area, however, the Bayes factors and Kass–Raftery statistics remain

sufficiently large to constitute ‘strong evidence’ in favor of the target equilibrium model. In contrast,

for Japan the Bayes factor falls below one, indicating that the low-inflation equilibrium is preferred.

The magnitude of the difference is large enough to be classified as ‘strong evidence’ according to

Kass and Raftery (1995). This result quantitatively confirms that the Japanese economy has

been in a different equilibrium—commonly referred to as “Japanification”—since the late 1990s or

early 2000s. Hence, when restricting attention to single-equilibrium frameworks, the standard New

Keynesian model is not appropriate for Japan.

The superior fit of the transition model is evident in the joint distribution of inflation and the

interest rate—the two variables for which the long-run endpoints differ most. Figure 2 illustrates

this for the euro area. Analogous figures for the United States and Japan are provided in the

appendix. The lower-right panel shows the distribution in the data, which reflects periods when the

ELB binds and inflation is volatile, as well as periods when the ELB does not bind and inflation is

more tightly centered around the target. Simulations with µt = 0 (top right) reproduce the former,

while those with µt = 1 (top left) replicate the latter. The transition model with time-varying µt

(lower left) provides the closest overall match, as it adapts to episodes in which either the target

equilibrium or the low-inflation equilibrium is more relevant, and even captures cases best described

as a mixture of the two. The overlap of the contour plots for the target and low-inflation equilibria

indicates that such cases are empirically important.

5.2 Posterior Estimates of Single-equilibrium Models

Table 4 reports posterior estimates for the single-equilibrium models. For all three economies,

several parameter estimates differ markedly from those of the transition model. We regard dif-

ferences as significant when the posterior mean of one model lies outside the 5th–95th percentile

range of the other. Consistent with the model selection metrics discussed above, the subsequent

analysis compares the target and transition models for the United States and the euro area, and

the low-inflation and transition models for Japan.

For the intertemporal elasticity of substitution, target-equilibrium values for the United States and

euro area far exceed transition-equilibrium estimates. Because the transition model is strongly
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Table 4: Posterior Estimates: Single Equilibrium Models

Target Equilibrium Model Low-Inflation Equilibrium Model

Mean Median 5% 95% Mean Median 5% 95%
United States

Intertemp. elast. of substitution α 0.21 0.17 0.10 0.42 0.00 0.00 0.00 0.01
Slope of Phillips curve κ 0.17 0.16 0.08 0.32 0.15 0.15 0.06 0.24
Mon. pol. reaction to inflation gπ 1.60 1.59 1.09 2.24 1.75 1.78 1.21 2.30
Mon. pol. reaction to output gap gy 2.09 2.16 1.57 2.49 1.55 1.58 0.66 2.33
Interest rate smoothing ρ 0.74 0.76 0.58 0.85 0.92 0.92 0.88 0.95
Shock processes
AR(1) coeff. of supply shock ρu 0.11 0.10 0.10 0.11 0.62 0.65 0.35 0.85
AR(1) coeff. of demand shock ρv 0.29 0.29 0.12 0.54 0.72 0.71 0.65 0.81
Std. dev. of supply shock σu 0.0968 0.0970 0.0931 0.0997 0.0699 0.0743 0.0377 0.0888
Std. dev. of demand shock σv 0.0120 0.0071 0.0018 0.0338 0.0713 0.0752 0.0364 0.0966
Natural rate processes
AR(1) coeff. short-run natural rate ρr 0.77 0.77 0.61 0.90 0.46 0.44 0.22 0.71
Std. dev. short-run nat. rate shock σϵ 0.0793 0.0814 0.0470 0.0962 0.0636 0.0615 0.0414 0.0945
Std. dev. long-run nat. rate shock ση 0.0014 0.0014 0.0010 0.0019 0.0014 0.0013 0.0009 0.0020

Euro Area

Intertemp. elast. of substitution α 0.78 0.79 0.60 0.92 0.03 0.02 0.00 0.08
Slope of Phillips curve κ 0.10 0.09 0.06 0.14 0.10 0.10 0.04 0.16
Mon. pol. reaction to inflation gπ 1.41 1.33 1.03 1.88 1.81 1.84 1.34 2.32
Mon. pol. reaction to output gap gy 1.24 1.18 0.86 1.92 0.60 0.56 0.22 1.14
Interest rate smoothing ρ 0.57 0.56 0.46 0.72 0.93 0.93 0.89 0.95
Shock processes
AR(1) coeff. of supply shock ρu 0.11 0.11 0.10 0.12 0.59 0.61 0.29 0.78
AR(1) coeff. of demand shock ρv 0.32 0.32 0.20 0.46 0.79 0.78 0.73 0.86
Std. dev. of supply shock σu 0.0972 0.0973 0.0942 0.0999 0.0700 0.0732 0.0386 0.0914
Std. dev. of demand shock σv 0.0643 0.0661 0.0245 0.0943 0.0656 0.0674 0.0281 0.0960
Natural rate processes
AR(1) coeff. short-run natural rate ρr 0.85 0.86 0.74 0.90 0.46 0.46 0.13 0.81
Std. dev. short-run nat. rate shock σϵ 0.0456 0.0435 0.0343 0.0618 0.0583 0.0562 0.0383 0.0871
Std. dev. long-run nat. rate shock ση 0.0017 0.0017 0.0011 0.0026 0.0017 0.0016 0.0012 0.0023

Japan

Intertemp. elast. of substitution α 0.02 0.02 0.01 0.03 0.02 0.02 0.01 0.04
Slope of Phillips curve κ 0.34 0.34 0.27 0.42 1.09 1.09 0.72 1.60
Mon. pol. reaction to inflation gπ 1.83 1.83 1.61 2.08 1.58 1.55 1.20 2.05
Mon. pol. reaction to output gap gy 0.19 0.17 0.11 0.30 0.57 0.53 0.17 1.10
Interest rate smoothing ρ 0.92 0.92 0.90 0.93 0.94 0.94 0.93 0.95
Shock processes
AR(1) coeff. of supply shock ρu 0.26 0.25 0.13 0.44 0.87 0.87 0.84 0.90
AR(1) coeff. of demand shock ρv 0.10 0.10 0.10 0.11 0.58 0.58 0.36 0.81
Std. dev. of supply shock σu 0.0124 0.0101 0.0021 0.0308 0.0914 0.0923 0.0818 0.0991
Std. dev. of demand shock σv 0.0988 0.0989 0.0979 0.0998 0.0709 0.0798 0.0221 0.0969
Natural rate processes
AR(1) coeff. short-run natural rate ρr 0.89 0.89 0.88 0.90 0.49 0.49 0.18 0.78
Std. dev. short-run nat. rate shock σϵ 0.0908 0.0919 0.0753 0.0986 0.0440 0.0454 0.0261 0.0619
Std. dev. long-run nat. rate shock ση 0.0014 0.0013 0.0010 0.0017 0.0012 0.0012 0.0009 0.0015
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Figure 2: Contour Plots for the Euro Area

Notes: Joint distributions of inflation and nominal interest rates in the target (top left), low-inflation (top right),
and transition equilibria (bottom left) compared with the data (bottom right), respectively. Black dots show real-
izations, contour lines denote kernel density estimates; each contour encloses the indicated share of the probability
mass (50− 90%).

favored by the data, the target-equilibrium estimates would substantially overstate the output

effects of monetary policy. Phillips curve slopes also vary significantly, so that the sensitivity of

inflation to the output gap differs substantially across models. The target model yields higher

values in the United States but lower ones in the euro area, and for Japan the low-inflation model

implies a very steep slope relative to the transition model.

Policy rule parameters show a stronger output-gap response and less interest rate smoothing under

the target model, though inflation responses are similar. Only for Japan are estimates consistent

across models. Shock process estimates diverge as well for all three economies.
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Overall, the posterior estimates highlight substantial differences between the single-equilibrium

models and the transition model in key structural parameters, policy parameters, and shock pro-

cesses. Hence, even in periods when µt equals zero or one, the dynamics implied by the transition

model may differ from those of the target and low-inflation models.

6 Robustness Checks

We conduct two robustness checks, first using an alternative well-established sampler, and second

examining whether core rather than headline inflation improves the identification of sustained

equilibrium transitions.

6.1 DEMC Sampler

To validate the estimates, we re-estimate the transition equilibrium model for all three economies

using a different sampling algorithm. Specifically, we employ the well-established DEMC sampler

of ter Braak and Vrugt (2008). The DEMC sampler is nested within the DIME sampler and is

obtained by setting ξ, the probability that a chain is assigned to the global transition kernel, to

zero, so that all chains are sampled from the local transition kernel via DEMC. Apart from using

the DEMC sampler, the estimation setup is identical to the original specification.

The posterior estimates are reported in the appendix. Posterior means based on the DEMC sam-

pler are generally similar to those obtained with the DIME sampler. While the DIME sampler is

designed to avoid convergence to local maxima, the similarity of results indicates that the DEMC

sampler also converges to the global maximum. The posterior distributions under DEMC are, how-

ever, wider, reflecting the absence of the DIME sampler’s global transition kernel, which accounts

for the full distribution of chains.

6.2 Core Inflation

Temporary declines in inflation toward the low-inflation equilibrium, or short-lived rebounds to

target driven by energy price volatility, may mask more persistent shifts between equilibria. To

mitigate this concern, we re-estimated the model using core rather than headline inflation. The

resulting parameter estimates (reported in the appendix) are broadly similar, though the Phillips
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curve slope is lower for the euro area and Japan, and the shock processes display some differences

in Japan.

Figure 3 shows the estimates of µt. They are somewhat smoother, with broadly unchanged tran-

sition timing, but exhibit wider uncertainty bands for the euro area and Japan. The amplitude of

movements is larger. For instance, in the euro area the dips of µt in 2001 and 2008 reach values

around 0.2 rather than 0.5. In Japan, the temporary reversal towards the target equilibrium in

2015 is more pronounced: whereas µt briefly peaked at 0.8 with headline inflation, it now rises to

nearly 1.0 and remains there for over a year. The greater persistence of core inflation amplifies

forecast differences across equilibria, inducing stronger responses of µt.

1990 2000 2010 2020

0.0

0.2

0.4

0.6

0.8

1.0

µ
t

United States

2000 2005 2010 2015 2020

Euro Area

1990 2000 2010 2020

Japan

Figure 3: Target Probability under Core Inflation

Overall, the use of core inflation does not provide clear advantages under the current expectation

formation mechanism. Avoiding temporary reversals in µt would require excluding additional

volatile components from inflation. A more promising avenue, however, is to consider alternative

expectation formation mechanisms, as discussed in the conclusion.

7 Conclusion

This paper provides new evidence on the importance of modeling transitions between a standard

equilibrium with anchored inflation expectations and a low-inflation equilibrium with de-anchored

expectations in New Keynesian models with the ELB. We show that such nonlinear models can be

successfully estimated using a particle filter. Model selection criteria strongly favor the equilibrium-

transition specification over conventional models with anchored expectations and only occasionally

binding ELB constraint. These results underscore the importance of policy frameworks that can

influence long-run inflation expectations and mitigate de-anchoring risks.
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We employ an off-the-shelf model—the only one in the literature with endogenous transitions

between a target and a low-inflation equilibrium. Future work could explore alternative expectation

formation mechanisms that allow equilibrium transitions. Extending the model to account for both

downward and upward deviations of inflation expectations from target could enhance its usefulness

in episodes like the recent inflation surge. Such models could continue to be estimated using particle

filtering and flexible MCMC sampling, as demonstrated in this paper.
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Schmitt-Grohé, S. and M. Uribe (2017). Liquidity traps and jobless recoveries. American Economic

Journal: Macroeconomics 9 (1), 165–204.

Schorfheide, F. (2008). DSGE model-based estimation of the New Keynesian Phillips Curve. FRB

Richmond Economic Quarterly 94 (4), 397–433.

Smets, F. and R. Wouters (2007). Shocks and frictions in US business cycles: A Bayesian DSGE

approach. American Economic Review 97 (3), 586–606.

32



Strohsal, T., R. Melnick, and D. Nautz (2016). The time-varying degree of inflation expectations

anchoring. Journal of Macroeconomics 49, 62–71.

ter Braak, C. J. F. and J. A. Vrugt (2008). Differential evolution Markov chain with snooker

updater and fewer chains. Statistics and Computing 18, 435–446.

Wickens, M. (2014). How useful are DSGE macroeconomic models for forecasting? Open Economies

Review 25 (1), 171–19.

33



 
IMFS WORKING PAPER SERIES 

 
Recent Issues 

 
 

   
221/2025 Prof. Athanasios 

Orphanides, Ph.D. 
Challenges for monetary policy and its 
communication 

220/2025 Prof. Athanasios 
Orphanides, Ph.D. 

Improving the ECB's policy strategy 

219/2025 Ekaterina Shabalina, 
Mary Tzaawa-Krenzler 

Heterogeneous Attention to Inflation and 
Monetary Policy 

218/2025 Prof. Dr. Franz Seitz, 
Prof. Dr. Malte Krueger 

Costs of Means of Payment for 
Consumers: Literature review and some 
sensitivity analyses 

217/2025 Alexander Meyer-Gohde, 
Johannes Huber 

Iterative Refinement of the QZ 
Decomposition for Solving Linear DSGE 
Models 

216/2025 Michael Haliassos, Thomas 
Jansson, Yigitcan Karabulut 

Wealth Inequality: Opportunity for Me or 
for Others? 

215/2024 Michael D. Bauer, 
Eric Offner, 
Glenn D. Rudebusch 
 

Green Stocks and Monetary Policy 
Shocks: Evidence from Europe 

214 / 2024 Michael D. Bauer, Daniel 
Huber, Eric Offner, Marlene 
Renkel, Ole Wilms 
 

Corporate Green Pledges 
 
 

213 / 2024 Athanasios Orphanides The Federal Reserve’s Evolving 
Interpretation and Implementation of Its 
Mandate 
 

212 / 2024 Matthias Rumpf 
Michael Haliassos 
Tetyana Kosyakova 
Thomas Otter 
 

Do Financial Advisors Have Different 
Beliefs than Lay People? 

211 / 2024 Michael Haliassos Wealth Accumulation: The Role of Others 
 

210 / 2024 Kamila Duraj 
Daniela Grunow 
Michael Haliassos 
Christine Laudenbach 
Stephan Siegel 
 

Rethinking the Stock Market Participation 
Puzzle: A Qualitative Approach 

209 / 2024 Balint Tatar 
Volker Wieland 
 

Policy Rules and the Inflation Surge: The 
Case of the ECB 

208 / 2024 Reimund Mink 
 

Helmut Schlesinger: Wegbereiter und 
Garant der deutschen Geld- und 
Stabilitätspolitik wird 100 
 

207 / 2024 Alexander Meyer-Gohde Solving and analyzing DSGE models in 
the frequency domain 
 



206 / 2024 Jochen Güntner 
Magnus Reif 
Maik Wolters 
 

Sudden Stop: Supply and Demand 
Shocks in the German Natural Gas 
Market 

205 / 2024 Alina Tänzer Multivariate Macroeconomic Forecasting: 
From DSGE and BVAR to Artificial Neural 
Networks 
 

204 / 2024 Alina Tänzer The Effectiveness of Central Bank 
Purchases of long-term Treasury 
Securities:A Neural Network Approach 
 

203 / 2024 Gerhard Rösl A present value concept for measuring 
welfare 
 

202 / 2024 Reimund Mink 
Karl-Heinz Tödter 
 

Staatsverschuldung und Schuldenbremse 

201 / 2024 Balint Tatar 
Volker Wieland 
 

Taylor Rules and the Inflation Surge: The 
Case of the Fed 

200 / 2024 Athanasios Orphanides Enhancing resilience with natural growth 
targeting 

199 / 2024 Thomas Jost 
Reimund Mink 
 

Central Bank Losses and Commercial 
Bank Profits – Unexpected and Unfair? 

198 / 2024 Lion Fischer 
Marc Steffen Rapp 
Johannes Zahner 
 

Central banks sowing the seeds for a 
green financial sector? NGFS 
membership and market reactions 

197 / 2023 Tiziana Assenza 
Alberto Cardaci 
Michael Haliassos 
 

Consumption and Account Balances in 
Crises: Have We Neglected Cognitive 
Load? 

196 / 2023 Tobias Berg 
Rainer Haselmann 
Thomas Kick 
Sebastian Schreiber 
 

Unintended Consequences of QE: Real 
Estate Prices and Financial Stability 

195 / 2023 Johannes Huber 
Alexander Meyer-Gohde 
Johanna Saecker 
 

Solving Linear DSGE Models With 
Structure Preserving Doubling Methods 

194 / 2023 Martin Baumgärtner 
Johannes Zahner 
 

Whatever it takes to understand a central 
banker – Embedding their words using 
neural networks 
 

193 / 2023 Alexander Meyer-Gohde Numerical Stability Analysis of Linear 
DSGE Models – Backward Errors, 
Forward Errors and Condition Numbers 
 

192 / 2023 Otmar Issing 
 

On the importance of Central Bank 
Watchers 
 

191 / 2023 Anh H. Le Climate Change and Carbon Policy: A 
Story of Optimal Green Macroprudential 
and Capital Flow Management 
 



190 / 2023 Athanasios Orphanides The Forward Guidance Trap 
 

189 / 2023 Alexander Meyer-Gohde 
Mary Tzaawa-Krenzler 
 

Sticky information and the Taylor principle 

188 / 2023 Daniel Stempel 
Johannes Zahner 
 

Whose Inflation Rates Matter Most? A 
DSGE Model and Machine Learning 
Approach to Monetary Policy in the Euro 
Area 
 

187 / 2023 Alexander Dück 
Anh H. Le 
 

Transition Risk Uncertainty and Robust 
Optimal Monetary Policy 

186 / 2023 Gerhard Rösl 
Franz Seitz 
 

Uncertainty, Politics, and Crises: The 
Case for Cash 
 

185 / 2023 Andrea Gubitz 
Karl-Heinz Tödter 
Gerhard Ziebarth 
 

Zum Problem inflationsbedingter 
Liquiditätsrestriktionen bei der 
Immobilienfinanzierung 

 


