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Abstract The Internet of Things (IoT) is one of the driving
forces behind Industry 4.0 and has the potential to improve
the entire value chain, especially in the context of industrial
manufacturing. However, results derived from IoT data are
only viable if a high level of data quality is maintained.
Thereby, completeness is especially critical, as incomplete
data is one of the most common and costly data quality
defects in the IoT context. Nevertheless, existing approa-
ches for assessing the completeness of IoT data are limited
in their applicability because they assume a known number
of real-world entities or that the real-world entities appear
in regular patterns. Thus, they cannot handle the uncer-
tainty regarding the number of real-world entities typically
present in the IoT context. Against this background, the
paper proposes a novel, probability-based metric that
addresses these issues and provides interpretable metric
values representing the probability that an IoT database is
complete. This probability is assessed based on the detec-
tion of outliers regarding the deviation between the esti-
mated number of real-world entities and the number of
digital entities. The evaluation with IoT data from a Ger-
man car manufacturer demonstrates that the provided
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metric values are useful and informative and can discrim-
inate well between complete and incomplete IoT data. The
metric has the potential to reduce the cost, time, and effort
associated with incomplete IoT data, providing tangible
benefits in real-world applications.
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Completeness - Internet of Things - Probability-based
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1 Introduction

The Internet of Things (IoT) is one of the driving forces
behind Industry 4.0 (Okano 2017; Pivoto et al. 2021;
Valderas et al. 2023) and has the potential to enable new
business models, optimized supply chains, and new rev-
enue streams (Kashyap 2022; Palmaccio et al. 2021; Stei-
ninger 2022; Vass et al. 2021). It is predicted to have
enormous economic potential (Hamdan et al. 2022; Val-
deras et al. 2023) with an estimated impact of $11.1 trillion
by 2025 (Edquist et al. 2021). Based on the vast amount of
data that IoT devices produce (El-Hasnony et al. 2021;
Gubbi et al. 2013; Valderas et al. 2023) and the high speed
at which the data is created (Cai et al. 2017; Rahimi et al.
2018), big data from IoT can for example be used to
automate production processes (Delsing et al. 2016),
improve the efficiency of existing processes (Fatima et al.
2022), and support predictive maintenance (Compare et al.
2020). However, on the hand, all such applications require
high-quality data to provide viable results (Jugulum 2016)
and a lack of data quality can lead to incorrect decision-
making and poor outcomes (Liu et al. 2020; Teh et al.
2020). On the other hand, including many sensors (Loeb-
becke and Boboschko 2020) and network connections
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(Powell et al. 2022), IoT systems are susceptible to a large
number of potential sources of data quality problems (Teh
et al. 2020). Therefore, it is essential to be able to assess the
quality of IoT data (Miitzel and Tafreschi 2021; Scheider
et al. 2023) to identify and manage potential quality
problems. However, this assessment of data quality poses a
major challenge, as the large volume of data and the high
velocity of data generation (Bansal et al. 2021; Fernandes
and Wagh 2019) make a manual assessment impossible
(Abbasi et al. 2016; Costantini et al. 2021; Evron et al.
2022; Karkouch et al. 2016).

One of the most frequently observed (Liu et al. 2020)
and economically most costly (Corte-Real et al. 2020; Liu
et al. 2020) data quality defects in the IoT context is
incomplete data. Therefore, in this paper, we focus on the
data quality dimension completeness, which is defined “as
the degree to which a given data collection includes data
describing the corresponding set of real-world objects”
(Batini et al. 2009, p. 7). In practice, it is not readily
possible to assess the completeness of IoT data, i.e., whe-
ther all real-world entities under consideration are actually
represented by respective data in the IS. In particular, a
simple and straightforward assessment of completeness in
terms of comparing the number of real-world entities with
the number of digital entities (Pipino et al. 2002) is not
feasible for IoT data due to the uncertainty regarding the
typically unknown number of real-world entities that
should be represented in the IS (Jugulum 2016). In the case
of a German car manufacturer (cf. Sect. 5), for example,
almost one million digital entities are generated every day
for just one specific production process and the car man-
ufacturer cannot say with certainty what the definite
number of real-world entities (i.e., process runs) is daily.
Thus, a metric for completeness of IoT data must deal with
this uncertainty (Karkouch et al. 2016). However, existing
approaches for assessing completeness assume that the
number of real-world entities to be represented in the IS is
known and neglect the associated uncertainty (cf. Sect. 3).
To alleviate this drawback, we design and evaluate a novel
probability-based metric to assess the completeness of IoT
data considering the underlying uncertainty.

We argue that the principles and the knowledge base of
probability theory provide well-founded methods for
describing and analyzing such situations under uncertainty.
Therefore, our completeness metric is grounded in proba-
bility theory and is based on an estimate of the number of
real-world entities (e.g., using time series forecasting) to
deal with the associated uncertainty. Furthermore, it
assesses the probability that the IoT data is complete, by
comparing the deviation of the estimated number of real-
world entities from the number of entities actually stored in
the IS. We demonstrate the practical applicability of our
metric and evaluate its values, which represent

@ Springer

probabilities, using the case of a German car manufacturer
that stores IoT data from its production facilities. The
results of two instantiations of our metric show that our
metric can distinguish very well between complete and
incomplete IoT data and thus support decision-making.

The remainder of the paper is organized as follows. In
Sect. 2, we illustrate the problem context using the running
example of an IoT system monitoring a manufacturing
plant with numerous industrial robots. In Sect. 3, we pro-
vide an overview of prior works and outline the research
gap to be addressed. In Sect. 4, we develop a novel prob-
ability-based metric for completeness of IoT data. We
instantiate our metric in cooperation with a large German
car manufacturer and evaluate the metric values in Sect. 5.
Finally, we conclude with implications for theory and
practice, reflect on limitations, and provide an outlook on
further research in Sect. 6.

2 Problem Context

The IoT serves as a basis for countless applications in both
personal and business contexts (Miles et al. 2018; Yang
et al. 2022). In general, IoT refers to the interconnection of
machines and devices of all types and sizes over the
internet, enabling the creation of data that can provide
analytical insights and support new operations (Nord et al.
2019; Valderas et al. 2023). The complex architecture of
IoT systems with multiple devices and data sources (Bya-
bazaire et al. 2020; Powell et al. 2022; Valderas et al.
2023), in combination with the large volume and high
velocity at which the data is generated (Cai et al. 2017,
Rahimi et al. 2018), makes the assessment of data quality
in general, and completeness in particular, a major chal-
lenge. Indeed, assessing the completeness of IoT data
requires an automated approach that takes into account the
large number of potential sources of error as well as the
high velocity and large volume of data.

To illustrate the challenges of assessing completeness in
the IoT context, we introduce the example of a manufac-
turing plant, which will serve as a running example
throughout the paper. In this manufacturing plant, several
industrial robots repeatedly work on a particular process
(e.g., applying adhesive seams). All robots are part of an
IoT system and are equipped with multiple sensors that
monitor each robot. We refer to each of the process runs
(e.g., the application of one adhesive seam to a workpiece)
as a real-world entity that arises from the respective pro-
cess. For each real-world entity, the robots’ sensors mon-
itor and record various parameters such as timestamps,
process parameters such as pressure, and environmental
conditions such as temperature. The data for each real-
world entity is sent to an IoT database upon completion,
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where it is stored as a digital entity, i.e., the digital rep-
resentation with the collected information regarding the
corresponding real-world entity. However, due to issues
such as sensor malfunctions, network problems, or storage
errors, the digital entity may not be stored (i.e., not rep-
resented) in the IoT database. This would constitute a
defect regarding the data quality dimension completeness.
Incompleteness of IoT data, caused by the lack of repre-
sentation of individual real-world entities in the IS, is
illustrated in Fig. 1. Here, the real-world entities 2 and (n-
1) — and thus the corresponding process runs — are not
represented by digital entities in the IoT database. Such
defects are referred to as relational completeness defects
(Batini and Scannapieco 2006; Klein and Lehner 2009). In
the following, we focus on relational completeness (Batini
and Scannapieco 2006; Klein and Lehner 2009), as this
form of completeness is particularly important and chal-
lenging (especially) in the IoT context (Liu et al. 2020).
While assessing other forms of completeness such as tuple
completeness (i.e., whether all attributes have a corre-
sponding value or, for example, a specific sensor reading
misses a value in the digital entity) is equally important
(Batini and Scannapieco 2006), there already exist reliable
approaches that can be easily applied to IoT data as well
(cf. Sect. 3). Typically, these approaches inherently assume
that relational completeness is fulfilled, which further
motivates the need for a metric to assess relational
completeness.

The assessment of relational completeness is funda-
mentally rooted in the comparison of the number of real-
world entities (left side in Fig. 1) with the corresponding
number of digital entities (right side in Fig. 1). However,
the actual number of real-world entities is typically
unknown and a large number of potential sources of error
occurs. For example, in the case of the German car man-
ufacturer that we will use to demonstrate and evaluate our
approach (cf. Sect. 5) and the single production process
Bonding, there are more than 250 individual robots
equipped with multiple sensors, each of which generates
almost one million digital entities and about 250 megabytes
of data per day. At the same time, the actual number of
process runs that should be represented in the IS is not
known with certainty. Thus, an appropriate data quality
metric must account for the underlying uncertainty
regarding both the actual number of real-world entities and
possible sources of error when assessing the completeness
of IoT data in an automated way.

3 Related Work

Completeness is one of the most important data quality
dimensions to assess, especially given the high costs that
incomplete data causes (Miao et al. 2022; Zhang et al.
2019). This is particularly true in the context of the IoT.
Studies show that maintaining a high level of completeness
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Fig. 1 Schematic representation of the running example
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of IoT data is positively correlated with an organization’s
competitive advantage (Corte-Real et al. 2020; Ge et al.
2018; Liu et al. 2020; Scheider et al. 2023). In the fol-
lowing, we first take a broader view of the data quality
dimension completeness, focusing on concepts and ideas
that are potentially applicable to IoT data. We then provide
an overview of existing metrics for assessing the com-
pleteness of IoT data.

Regarding the data quality dimension completeness, the
literature provides different perspectives. Schema com-
pleteness is defined as the degree to which a database
schema represents the entities and their associated char-
acteristics in the real world (Pipino et al. 2002). For
instance, if the attribute ‘last name’ is absent in a customer
database (e.g., there exists no column comprising the
customers’ last names), it would be deemed lacking
schema completeness. Further, at the data level, the liter-
ature can be divided into two strands (Batini and Scanna-
pieco 2006): works that assume a closed world and works
that assume an open world. Under the closed-world
assumption, it is assumed that all real-world entities are
represented by digital entities (using a predefined schema
with specified attributes) in the corresponding database and
that the schema contains all necessary columns (Batini and
Scannapieco 2006). In this case, completeness defects can
only occur at the level of single entities if individual digital
entities do not contain values for all attributes for a cor-
responding real-world entity (e.g., a database containing
information about all 50 states in the U.S. is missing the
value for the attribute population for one state). In this line,
Cykana et al. (1996) propose to assess the so-called tuple
completeness for each digital entity as the percentage of
the number of attribute values actually available in the
database relative to the number of specified attributes in the
database. Based on this approach, for example, Wang et al.
(2001) and Lee et al. (2002) developed similar metrics to
measure tuple completeness. However, several authors
point out that tuple completeness addresses only one rele-
vant aspect of completeness, even when assuming a closed
world (Batini and Scannapieco 2006; Laranjeiro et al.
2015; Pipino et al. 2002). They argue for considering fur-
ther completeness metrics, such as column completeness,
defined as the fraction of digital entities that actually
contain values for specific columns, i.e., attributes (e.g., the
fraction of states in the database that contain a value for the
attribute population). However, the closed-world assump-
tion often does not hold in practice — especially in the
context of IoT systems. As pointed out in our running
example, it is common for real-world entities (e.g., process
runs of applying adhesive seams) not to be represented by
corresponding digital entities in the IoT database, e.g., due
to device malfunctions, network errors, or storage capaci-
ties (Bansal et al. 2021; Liu et al. 2020; Powell et al. 2022).
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Here, the closed-world assumption is not fulfilled but has to
be replaced by the open-world assumption, where it is
possible that (individual) real-world entities are not repre-
sented by digital entities. In this context, both Batini and
Scannapieco (2006), as well as Pipino et al. (2002), pro-
pose the concept of relational completeness as the per-
centage of real-world entities that are actually represented
by digital entities in the corresponding database. Although
this metric mitigates the closed-world assumption, it still
suffers from a major caveat in that it cannot cope with
uncertainty about the actual number of real-world entities
but assumes that this number is known. While this
assumption may be realistic in simple cases such as a
database containing information on only 45 states of the
U.S., it is rather unrealistic for typical IoT applications (cf.
Sect. 2). Nevertheless, by addressing the core of the com-
pleteness problem in the case of IoT data, namely real-
world entities that are not represented by digital entities,
these works can serve as a promising starting point for
investigating the assessment of completeness of IoT data.

Indeed, most of the contributions to assessing the
completeness of IoT data focus on relational completeness.
Assuming that the number of real-world entities is known,
many of them apply the relational completeness metric of
Batini and Scannapieco (2006) as well as Pipino et al.
(2002) in specific IoT contexts such as RFID chips in the
logistics industry (van der Togt et al. 2011), contextual
information processes (Anagnostopoulos and Kolomvatsos
2016), process mining systems (Janssenswillen and
Depaire 2019), object tracking systems (Bardaki et al.
2010), or metrological weather measuring stations (Sicari
et al. 2016, 2018). Overall, however, since in the IoT
context the actual number of real-world entities is typically
unknown and thus associated with uncertainty (Bansal
et al. 2021; Karkouch et al. 2016; Liu et al. 2020), the
methodical applicability of these metrics and approaches is
rather limited and only given for selected (special) cases.

A first approach to mitigate the assumption that the
actual number of real-world entities is known with cer-
tainty was presented by Biswas et al. (2006) for the case of
smart home applications. They assume that real-world
entities (e.g., sensor readings) are generated in regular time
intervals (e.g., one reading per minute), allowing a calcu-
lation of the expected number of entities per time interval.
Thereby, completeness is defined as the ratio of the number
of available digital entities to the number of expected
entities. This idea has been applied by various authors in a
broad context of IoT devices, general wireless sensor net-
works (Cheng et al. 2018; Klein and Lehner 2009; Liu et al.
2014), and in the context of logistics chains (Ahmed et al.
2021). Although these approaches do not require the
number of real-world entities to be known a priori, they are
limited in their practical application, especially in the
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context of IoT data, because they assume that entities are
generated at regular and uniform intervals. However, this
means that they cannot be used, for example, for sensors
that respond to environmental factors such as irregular
temperature changes, or, as in the running example, for
sensors that monitor many robots performing different
processes with varying run times (Saravanamohan et al.
2021). Therefore, these approaches are limited in their
practical applicability because they cannot be used in many
areas where IoT data is used.

Overall, promising methods exist for assessing data
completeness, both with and without the closed-world
assumption. In the context of IoT data, the closed-world
assumption is not realistic. Thus, metrics for relational
completeness that address an open world are needed.
Building on foundational work for (classical) databases,
several completeness metrics have been proposed for IoT
data. However, all of these approaches are hampered in
their applicability by either relying on a known definite
number of real-world entities or by assuming that real-
world entities are generated in regular and uniform time
intervals. In fact, in the IoT context, both of these
assumptions are usually not met due to the uncertainty
involved. To address this research gap, in the following, we
propose a novel probability-based metric that explicitly
accounts for the underlying uncertainty when assessing the
completeness of IoT data.

4 Development of the Probability-Based Metric
for Completeness

In this section, we first outline the general setting and the
basic idea of our approach. Based on this, we design our
novel, probability-based completeness metric for IoT data.
To reduce the manual effort when applying the metric, we
provide an extension of the metric that can deal with a
limited amount of quality-assured IoT data by leveraging
expected value calculus.

4.1 General Setting and Basic Idea

In IoT databases, real-world entities may not be repre-
sented by digital entities for a variety of reasons, such as
device malfunctions, network errors, or storage capacities
(Liu et al. 2020). Therefore, assessing the completeness of
IoT data (i.e., whether all real-world entities arising from
the corresponding IoT processes are represented by
respective digital entities in the IoT database) is crucial, as
discussed in our problem context (cf. Sect. 2). In IoT
systems, data is constantly and continuously created, sent,
and stored over time. Thus, to account for this temporal
dimension, we assess the completeness of IoT databases

with respect to concrete time steps. Consequently, we
consider an IoT database D=D;UD,U...UDy as a
composition of several disjoint subsets D;, each containing
the respective digital entities of the corresponding IoT
processes for a given time step i € {1,...,N}. These time
steps can be, for example, an hour, a day, or a specific
production shift. During each time step, several real-world
entities arise, such as process runs performed by industrial
robots (cf. running example in Sect. 2). Each of these real-
world entities e}, with k € {1, ey nl’} arising in time step i
should be represented by a respective digital entity efl_k in
the subset D; of the IoT database. Hence, the number of
real-world entities n] arising in time step i should be equal
to the number of respective digital entities n¢ = |D;| for
each time step i. However, for a variety of reasons, some
real-world entities may not be represented by respective
digital entities in the IoT database. This results in a dif-

ference between the number of real-world entities and the

number of respective digital entities &’ = n} — n¢, which

represents a data quality defect (i.e., incompleteness).
Therefore, the IoT database D is complete with respect to
time step i if and only if apo = 0 (Klein and Lehner 2009).
On this basis, the completeness of IoT data in a database D
for time step i is defined as follows:

COMP(D,i) = | ' ifePe = —n? =0
’ false, else

(1)

Under the closed-world assumption, completeness as

expressed in Eq. (1) would be trivial to determine since

¢ would

both 1! as well as n¢, and hence their difference &’
be known with certainty. However, as discussed in Sect. 3,
in the IoT context this assumption is usually not met since
the number of real-world entities n and hence &/ are
typically not known with certainty or not known at all.
Therefore, the determination of completeness must be
based on an estimate of the number of real-world entities,
denoted by 7;. Consequently, our approach is based on
comparing this estimated number of real-world entities
with the number of respective digital entities. More pre-
cisely, we observe the deviation A; = n; — nf’ of these two
values. Comparing the number of digital entities with the
estimated number of real-world entities avoids the problem
of an unknown true number of real-world entities but at the

same time introduces uncertainty. More precisely, while a

non-zero difference &’ (based on the true number of real-
world entities) is certainly associated with incompleteness,
a non-zero deviation A; (based on the estimated number of
real-world entities) could also be attributed to an
unavoidable estimation error, since the estimate may differ
from the true value to some extent. Such situations under
uncertainty can be described and analyzed using well-
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founded methods based on the principles and the knowl-
edge base of probability theory. Moreover, defining the
values of a data quality metric in terms of a probability has
several advantages (Heinrich and Klier 2015): They have a
concrete unit of measurement, are interval scaled, and can
be included in the calculation of expected values. Thus, in
developing our metric, we aim at a metric that is based on
probability theory and that provides an indication in terms
of a probability. More precisely, the values of our metric
represent the probability, that for a given time step i all
real-world entities e}, are represented by respective digital
entities elffk in the corresponding IoT database, i.e., that no
malfunctions or errors occurred that caused some entities
not to be represented. On this basis, our probability-based
metric Qcomp(D,i) for the completeness of IoT data in
database D for time step i is defined as follows:

QCOMP(Dy l) = P(COMP(D7 l) = true) (2)

This probabilistic approach accounts for the uncertainty
in the required estimate of the unknown number of real-
world entities and the associated unknown estimation
errors. To assess the probability from Eq. (2), we further
investigate the deviation A; between the estimated number
of real-world entities and the number of digital entities in
time step i. Without completeness defects, i.e., when all
real-world entities are represented by respective digital
entities in the IoT database, the deviations for all time steps
can be traced back to the estimation error alone. Thus, if
multiple deviations are observed from time steps without
completeness defects, they are identically and indepen-
dently distributed following the distribution of the esti-
mation error. If a deviation is excessively large with
respect to this distribution, a completeness defect (i.e.,
missing digital entities) should have occurred that caused
the deviation not to be determined by the estimation error
alone but to be amplified by a missing number of digital
entities. Accordingly, the affected deviation in question
cannot be explained based on the distribution of the devi-
ations without completeness defects and thus represents an
outlier with respect to this distribution. Therefore, the
probability that the deviation for a given time step does not
represent an outlier (with respect to the deviations from
time steps without quality defects) corresponds to the
probability that the IoT data is complete. This probability,
which can be determined using statistical outlier tests,
represents the value of our metric for the completeness of
IoT data. In the next section, we present our approach for
measuring the completeness of 10T data in detail.

@ Springer

4.2 Design of the Basic Model

Following the basic idea, our approach is divided into two
distinct phases, as shown in Fig. 2. The objective of the
first phase is to calibrate the metric, which includes two
key aspects. First, it aims to establish a robust estimation
model capable of accurately estimating the number of real-
world entities for individual time steps. Second, it seeks to
assess the distribution of the resulting estimation errors
associated with this estimation model based on time steps
without completeness defects. In the second phase, once
calibrated, the metric can be used to calculate the metric
values by determining the probability that a deviation
between the number of estimated real-world entities and
the number of respective digital entities does not constitute
an outlier with respect to the distribution of estimation
errors derived in the first phase of our approach.

In the IoT context, assessing completeness ultimately
boils down to comparing the number of digital entities to
the number of real-world entities. However, the exact
number of real-world entities is unknown. Thus, in the first
phase of our approach, the calibration of the metric, it is
first necessary to derive an estimation model for the num-
ber of real-world entities. Many well-established methods
use historical data for this purpose, including time series
forecasting techniques like ARIMA(X), TBATS, and
decomposition models (Perone 2022; Shaub 2020). Fur-
thermore, regression models can be used that incorporate
data from other databases (e.g., the number of parts pro-
duced) or the expertise of domain experts can be used. The
selected estimation method can then be instantiated (e.g.,
by determining its model parameters on historical data), to
produce reliable and accurate estimates of the number of
real-world entities. However, even reliable and accurate
estimates may have small deviations from the true value
and are therefore subject to uncertainty. Mathematically,
the estimated number of real-world entities for time step i,
denoted as 7; = n] +8fi, represents the sum of the true
number of real-world entities n/ and an identically and
independently distributed estimation error &' € R, as
shown in Fig. 3. To account for this uncertain estimation
error, which typically follows a normal distribution (Taylor
and Letham 2018), we assess the estimation error for the
number of real-world entities during a quality-assured
period by determining a sample of estimation errors. For
this purpose, we perform estimations for a set of quality-
assured time steps /9, i.e., time steps with no data quality
defects Here, we can directly observe the estimation errors
as the deviation from the quality-assured numbers of digital
entities. The sample of identically and independently dis-
tributed estimation errors is referred to as the reference
values R. Both the estimation model for real-world entities
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Fig. 2 Illustration of the two phases of our approach with an exemplary time series indicating the number of digital entities and the estimated
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its estimate 7;, the number of digital entities n¢ in the IoT database as
DQ

.~ and the observable deviation A; for a

well as the error terms ef, &
time step i

and the reference values are required to calibrate the metric
in the first phase. In the next phase, the metric can be used
to obtain reliable metric values for the completeness of IoT
data.

In the second phase of our approach, the calculation of
the metric values, the metric can be applied to determine
the metric values in terms of the probability that the IoT
data is complete for a given time step. This is equivalent to
determining the probabilities that deviations between the
estimated number of real-world entities and the number of

respective digital entities do not constitute outliers. In this
vein, we assess whether the associated deviation between
the estimated number of real-world entities and the number
of respective digital entities is in line with the distribution
of the reference values. Thereby, the more likely this
deviation constitutes an outlier compared to the reference
values, the more likely it is that some real-world entities
are not represented by respective digital entities (i.e., the

data quality error 8? 2 s greater than zero). For a rigorous
assessment of completeness, the term outlier must be
assessed objectively and on a mathematical basis. The
statistical field of outlier detection offers a wide range of
well-founded methods for this purpose. In the following,
we will derive the assessment of the metric values in a
mathematically sound and rigorous way.

Our approach focuses on the deviation A; = #; —n?
between the estimate 7; and the number of digital entities

n? that can be directly observed for each time step i.

1

Combining the definitions of the data quality error sf) Q—
n; — ”f'l and the estimated number of real-world entities
n; = n + &}, it becomes evident that the observable devi-
ation A; can also be calculated as the sum of the two
existing error terms, A; =g’ +£IDQ (cf. Figure 3). This
transformation underlines the relevance of the determined
reference values R = {Aj[j € 1‘1} as they provide the dis-
tribution of the expected deviation of our estimate for the
number of real-world entities in the absence of data quality

DO _

errors, i.e., ¢ 0. To assess whether the deviation A; is

@ Springer



804 M. Klier et al.: Assessing Completeness of IoT Data: A Novel Probabilistic..., Bus Inf Syst Eng 67(6):797-814 (2025)

in line with the distribution of estimation errors, and thus
can be explained by the general estimation error af alone,
we can use the reference values from the first phase of our
approach. If A; constitutes an outlier with respect to the
distribution of the reference values, this must be due to the
presence of an additional error term & ¢ > 0. This addi-
tional error term, which is caused by a completeness defect
resulting in real-world entities not being represented by
respective digital entities, amplifies the observed deviation
and thus the distribution obtained from quality-assured data
cannot explain the larger magnitude of the deviation. Thus,
there is a congruence of outliers to the top within the
deviations and the incompleteness of IoT data resulting
from completeness defects. This congruence can be used to
assess the completeness of IoT data by identifying outliers
within the observed deviations between the expected
number of real-world entities and the number of respective
digital entities. Therefore, the values of our metric can be
assessed by estimating the probability that the deviation
observed in the time step in question represents no outlier
to the top with respect to the reference values. Thus, the
approach of measuring the completeness of IoT data while
considering the uncertainty of possible data quality defects
as well as the uncertainty regarding the actual number of
real-world entities leads to the task of identifying outliers
to the top within a time series composed of multiple
deviations. By denoting the set of outliers with respect to
the reference values asO, our metric (i.e., the probability
that the IoT data in the database D is complete in time
stepi) is defined as

P(A; € 0) = 1 — P(A; € 0) = P(COMP(D, i) = true).
(3)

Statistics and the hypothesis testing-based branch of
outlier detection provide a wealth of sound methods to help
estimate this probability (Chandola and Kumar 2009;
Hodge and Austin 2004). The p-value, a well-known
concept in hypothesis testing, can be used to provide a
mathematically sound indication of whether outliers are
present for given time steps (Hodge and Austin 2004).
Indeed, given the null hypothesis that there is no outlier to
the top in the data under consideration, the corresponding
p-value represents the highest level of significance o at
which this null hypothesis cannot be rejected. Applied to
our context, the probability that the deviation of interest A;
is not an outlier with respect to the error-distribution that
the reference values R follow can be assessed by means of
the p-value p; of the hypothesis test based on the null
hypothesis that the deviation of interest A; is indeed no
outlier to the top with respect to all reference values.

There are many well-established methods in the field of
outlier detection, most of which are based on statistical
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hypothesis testing (Chandola and Kumar 2009; Hodge and
Austin 2004). The Grubbs test (Grubbs 1969; Stefansky
1972; Thompson 1935) is one of the most widely used
methods, mainly because it is reliable, robust, computa-
tionally inexpensive (Urvoy and Autrusseau 2014), and
does not require manually adjusted parameters (Hodge and
Austin 2004). Based on these advantages, we apply the
one-sided Grubbs test with the null hypothesis that there is
no outlier at the top at time step i and use the corresponding
p-value to determine P(A; € O). In general, the test
statistic G of the one-sided Grubbs test is determined as the
difference between the maximum and the mean of the
observed values — in our case, the observed reference
values — divided by their standard deviation. This test
statistic is compared to a critical value Z,, based on the
number of values n and the significance level a. As indi-
cated previously, P(A; ¢ O) can then be identified with the
p-value p; of the Grubbs test whether the deviation A;
constitutes an outlier with respect to all reference values R.
The Grubbs test statistic G¢ is given by the difference

between the deviation of interest A; and the mean K,;R of all
reference values R as well as A;, divided by the standard
deviation o; of all these deviations:
Gt = 2B @
OiR

The null hypothesis that A; is not an outlier to the top
with respect to the reference values is rejected at the sig-
nificance level o; if G¢ is greater than the critical value
Zy, n;- This critical value Z,, ,,, depending on the number of
values n; (all reference values as well as the deviation of
interest) and the significance level o;, is defined by

_, represents the upper critical value for a -

Here, 12
i
distribution with n; — 2 degrees of freedom at the level
o;/n;. The p-value can also be thought of as the largest
significance level o; at which the null hypothesis cannot be
rejected (i.e., the test statistic GY is less than the critical
value Z,, ,,.). Thus, as the significance level o; increases, the
critical value Z, ,, decreases (Grubbs and Beck 1972) and
thus maximizing o; is equivalent to minimizing the critical
value Z,, ,.. Consequently, the p-value p; can be determined
as the solution to the optimization problem of minimizing
the critical value Z,, ,, as a function of the significance level
o; under the condition that the null hypothesis cannot be
rejected (i.e., the Grubbs test statistic G¢ is less than the
critical value Z, ,). Thus, the optimization problem for
assessing the p-value p; provides the value of our metric for
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the completeness of IoT data for the time step i repre-
senting the probability that the number of digital entities n¢
is equal to the number of real-world entitiesn;:
Qcomp(D;i) = P(A; ¢ O) = p;

= argmin(Z,,,|G{ < Z,, ) (6)

%

In conclusion, the developed metric for completeness of
IoT data provides the probability that all real-world entities
are represented by respective digital entities in this IoT
database in a given time step. The calculation of this
probability is based on the Grubbs outlier test. Thereby, the
deviation between a reliable and accurate estimate of the
number of real-world entities and the number of respective
digital entities in the IoT database is compared to reference
values for the deviations previously obtained using quality-
assured data. Then, the Grubbs outlier test determines the
probability for a given time step that the associated devi-
ation is not an outlier (compared to the reference values),
meaning that no digital entities are missing in the IoT
database.

4.3 Extension of the Basic Model

Defining metric values as probabilities has many advan-
tages such as the ease of interpretation and the possibility
to calculate expected values. In this section, we present an
extension of our basic model based on the calculation of
expected values in order to reduce the initial (manual)
effort in calibrating the metric. Indeed, in the first phase of
our approach, a set of quality-assured time steps is needed
to initially calibrate our metric in order to assess the
completeness of IoT data. On the one hand, as many ref-
erence values as possible should be used to ensure mean-
ingful results of the Grubbs test (Hodge and Austin 2004)
and the metric. On the other hand, the effort to provide
quality-assured reference values limits their number. To
address this issue, we propose the following extension of
our probability-based completeness metric which allows
further extending the reference values without the need to
obtain additional quality-assured data.

In the case of a completeness defect during time step i,
the observed deviation A; is unexpectedly large and would
thus deteriorate the sample of reference values if included
directly in the initial sample. This possible degradation by
the biased deviation, however, is reflected in the deter-
mined probability p; (representing the value of our metric,
cf. Equation (6)). Therefore, we use the metric value p; as a
weight to correct the deviation (possibly degrading the
sample of reference values) by basing it on the corrected
number of digital entities n{”’". Thereby, n{’’" represents

1
the weighted average of the estimated number of real-

world entities 7i; and the number of digital entities n{ in the
IoT database.

n" = pi-n + (1= p;) - A (7)

If a deviation is an outlier caused by a completeness
defect, the metric value p; is small, which causes the cor-
rected number of digital entities n{’" being closer to the
estimated number of real-world entities 7; (since the
number of digital entities cannot be trusted due to the
completeness defect). On the other hand, if the deviation is
not an outlier, the determined metric value p; approaches a
value of 1, and the factor (1 — p;) becomes small. Then, the
corrected number of digital entities remains very close to
the actual number of digital entities n¢ present in the IoT
database. Consequently, the reference value that expands
the initial sample of reference values is calculated by the
difference A; = n; — n{”"". This allows the sample of ref-
erence values to be expanded at each time step to contin-
uously improve the determination of the probability that
the ToT data is complete, without requiring additional
manual effort.

5 Demonstration and Evaluation

In this section, we demonstrate and evaluate our proba-
bility-based metric for the completeness of IoT data. First,
we discuss the selected case of a German car manufacturer
that uses an IoT system to monitor its production facilities.
Then, we describe the instantiation and application of our
metric for the real-world case. Finally, we conclude with a
presentation and evaluation of the results.

5.1 Case Selection and Dataset

To demonstrate and evaluate our approach, the metric is
applied to the IoT data of a German car manufacturer. The
IoT data contains information about the manufacturing
process of bonding, which involves the application of
various adhesive seams to car components. Among the
diverse application areas of IoT, the automotive sector in
particular has seen remarkable progress (Ghosh et al.
2022). In addition to enabling smart vehicles, autonomous
driving, and efficient supply chain management (Krasniqi
and Hajrizi 2016; Rahim et al. 2021), the automotive sector
has the opportunity to enhance production processes (Liu
et al. 2012; Rahim et al. 2021) by leveraging big data to
reduce costs and production downtime (Liu et al. 2012;
Siddhartha et al. 2021). In this line, the bonding process
serves as a prime example of a production process in which
industrial robots connected by IoT perform different
adhesive seams on different parts of a car (Ray and Rao
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2019). The process is characterized by a high degree of
automation and speed, with industrial robots applying up to
several thousand adhesive seams per day (Banea et al.
2018; Banea and Da Silva 2009). Such processes are irre-
placeable not only in the automotive body manufacturing
process (Valasek and Miiller 2015), but also in other
manufacturing industries (He et al. 2020; Zhong et al.
2017), and generate a significant amount of IoT data
(Banea et al. 2018; Banea and Da Silva 2009). Thus, our
case of the German car manufacturer and its IoT data in the
context of the manufacturing process bonding seems par-
ticularly suitable and relevant for an automated assessment
of the completeness of IoT data.

To demonstrate and evaluate our probability-based
metric for completeness, we selected IoT data from the
German car manufacturer’s bonding process. To allow for
a rigorous evaluation, including thorough manual labeling
despite the time and effort involved, we limited our scope
to 22 industrial robots and the period from January 1st to
May 25th, 2021. Each industrial robot executes different
bonding programs over time, applying a varying number of
adhesive seams to different vehicle components, depending
on factors such as the type of adhesive being applied and
the specific vehicle model being manufactured. Success-
fully stored digital entities include technical information
about the bonding process, such as temperature and max-
imum pressure, as well as organizational information such
as the program executed, time stamp, and duration of
execution. To determine the completeness of the IoT data,
we assessed each industrial robot individually. As time
steps, we chose a so-called production day with a duration
of 24 h starting at 6 a.m. and including early, late, and
night shifts in their entirety, as commonly employed by the
car manufacturer when calculating KPIs. During the con-
sidered time period, over four million digital entities were
stored in the IoT database in 1,349 time steps of our
evaluation, each representing the number of digital entities
for one industrial robot during one production day. Of these
1,349 time steps, we used 616 to calibrate our metric (28
production days for each of the 22 robots). Thereby, the
first seven production days are used to derive an estimation
model (i.e., to train the model) and the subsequent
21 production days are used to assess the estimation error.
This left a total of 733 time steps remaining to calculate
and evaluate the values of our metric for completeness. To
rigorously evaluate the values of our metric, we worked
extensively with technical experts from the car manufac-
turer to laboriously derive the actual numbers of real-world
entities including using another database containing infor-
mation on the number of specific vehicles produced, and
manually investigating and reconciling the number of
adhesive seams for each vehicle model. Since this infor-
mation was not readily available and required significant
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manual effort to obtain, this evaluation approach was only
possible for the limited sample size of 22 robots. Among
the resulting 733 time steps, a total of 697 (i.e., 95.1%)
were manually labeled as complete while the remaining 36
(i.e., 4.9%) showed missing entities. The tremendous effort
required to derive the actual number of real-world entities
for evaluation purposes emphasizes the need to develop a
metric for completeness of IoT data capable of accounting
for the underlying uncertainty about the number of real-
world entities.

5.2 Instantiation and Demonstration of the Practical
Applicability of the Metric

To determine the probability that the IoT data is complete
for given time steps, we instantiated both our basic model
with a fixed sample of reference values as well as our
extended model with a stepwise expansion of the sample of
reference values. For this purpose, we built on the German
car manufacturer’s Databricks platform, which gave us
access to a part of the Azure cloud’s data lake, where all
production data is stored. For both models, we used Meta’s
time series forecasting tool Prophet to estimate the number
of real-world entities. Prophet’s estimates are based on the
generalized additive regression model (Hastie and Tibshi-
rani 1987; Taylor and Letham 2018) and are known for
their efficacy and accuracy in accounting for trends, sea-
sonality, and holidays, while also incorporating regressor
values if available (e.g., related additional information
from another database) in the estimation model (Taylor and
Letham 2018). The Prophet model consists of a trend
component, a seasonal component, an event component
that allows for the integration of regressors, and the
residual error term. It is capable of representing long-term
linear or logistic trends as well as trend changes, capturing
periodic effects over multiple periods, and allowing the
inclusion of additional variables to be taken into account,
such as holidays or planned production breaks (Taylor and
Letham 2018). As a result, it is particularly suitable for
forecasting in complex and dynamic environments, excels
at automating tasks such as trend detection, and is capable
of providing accurate predictions even with limited his-
torical data while striking a balance between automation
and intuitive customizability (Jha and Pande 2021; Ning
et al 2022; Taylor and Letham 2018). Prophet’s technical
details and advantages align with our observations when
comparing several candidate time series models on the
German car manufacturer’s data, as it stood out as the best-
performing model as measured by Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). Specifically,
we evaluated the performance of Prophet against classical
models such as (Seasonal) Autoregressive Integrated
Moving  Average  with  eXogenous  regressors
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((S)ARIMAX) and TBATS, as well as modern approaches
such as DeepAR, an architecture developed by Amazon
based on recurrent neural networks and Light Gradient
Boosting Machine (LightGBM), developed by Microsoft,
which uses gradient-boosting decision trees. Table 1 sum-
marizes the results of our comparison on data from the
German car manufacturer. Due to the reasons described
above and the superior performance in our comparison, we
chose the Prophet model for our instantiation.

For the first phase of our approach, the calibration of the
metric, we used a total of 28 time steps for each robot. Of
these 28 time steps, seven were used to derive the esti-
mation model, i.e., to train the Prophet time series model.
These trained models are then iteratively applied to the
remaining 21 time steps of the first phase to estimate the
corresponding number of real-world entities and thus
assess the distribution of the estimation error. With the
resulting 21 reference values for each time series, we
ensured a sufficiently large sample to apply the Grubbs test.

In the second phase of our approach, starting from the
29th day of each time series, we calculate the metric values
for the remaining time steps for each industrial robot. To
accomplish this, we estimate the number of real-world
entities for each time step and industrial robot using the
Prophet time series model derived in the first phase of our
approach. Then, the deviation between the estimated
number of real-world entities and the corresponding num-
ber of digital entities is calculated. Finally, we use the
Grubbs test based on the distribution of reference values
obtained in the previous phase to calculate the metric value
based on each deviation. In the extended model, the sample
of reference values is expanded after each time step (cf.
Sect. 4.3) by using each determined probability to correct
the deviation (possibly biased by a completeness problem)
by calculating the corrected number of digital entities using
Eq. (7).

After instantiating the metric, we automatically calcu-
lated metric values for all 733 time steps. Figure 4 shows
the distribution of the relative frequency of the metric

Table 1 Performance comparison based on MAE and RSME across
different candidate models for time series forecasting using data from
the car manufacturer (ranked by MAE)

MAE RMSE
Prophet 624.6 1123.8
LightGBM 724.7 1233.7
TBATS 796.7 1172.6
DeepAR 865.7 1387.2
ARIMAX 907.2 1620.5
SARIMAX 959.6 1786.9

Best performance in bold

values in terms of probabilities in ten bins. For both
models, our approach mainly assigned either very low or
very high metric values for most time steps. This distri-
bution pattern of the estimated probabilities is beneficial
because it provides the basis for a clear and comprehen-
sible classification. Furthermore, these results show a
striking similarity between the depicted distributions and
the actual proportions of incomplete (4.9%) and complete
(95.1%) time steps present within the dataset.

5.3 Evaluation of the Metric Values

We evaluate our approach with respect to two different
aspects. First, we examine the metric values in terms of
probabilities regarding their reliability and discriminative
power. Second, we evaluate the performance of our
approach considering the classification into complete and
incomplete time steps. Thereby, we also compare our
results with those of the commonly used Six Sigma
approach.

Reliability refers to the agreement between estimated
probabilities and actually observed relative frequencies
(Murphy and Winkler 1977). In our context, reliability
means that the determined completeness probabilities
should correspond to the observed relative frequencies of
complete time steps. Reliability is often evaluated using the
reliability curve, which plots the estimated probabilities
against the observed relative frequencies. In addition,
reliability can be assessed quantitatively using the relia-
bility score, which is defined as the mean squared deviation
from the diagonal weighted by the number of pairs of data
in each bin (Murphy 1973). The left part of Fig. 5 shows
the reliability curve for both the basic and the extended
model. With the reliability curves closely following the
diagonal and reliability scores of 0.0026% (basic model)
and 0.0021% (extended model), the results show that our
approach provides reliable results for both versions. Con-
sidering the imbalance in the completeness assessment of
IoT data (i.e., many more time steps with complete IoT
data rather than time steps with incomplete IoT data), it is
crucial that the determined probabilities also have high
discriminative power. Thus, we assessed the discriminatory
power in terms of the area under the curve (AUC) under the
receiver operating characteristic (ROC) curve, which is a
commonly used choice to evaluate the discrimination of a
probability-based metric (Hanley and McNeil 1982; Hos-
mer et al. 2013). To get the ROC curve, the classification
threshold is varied and the corresponding true positive rate
is plotted against the false positive rate. The ROC curves
for both models are shown in the right part of Fig. 5. With
the ROC curves closely aligning with perfect discrimina-
tion and ROC AUCSs of 92.62% (basic model) and 97.64%
(extended model), the discrimination is deemed
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Fig. 5 Reliability curves (left) and ROC curves (right) of the basic and extended version of our metric

outstanding (Hosmer et al. 2013). Overall, these results
support that the probabilities provided by our approach are
reliable and have high a discriminative power.

In some applications, it is necessary to perform a binary
classification into time steps with complete and incomplete
IoT data. In the following, we evaluate the performance
with respect to such a classification using the common
performance measures accuracy, precision, recall, and F1-
measure (i.e., the harmonic mean of precision and recall).
To determine the values for these performance measures,
we use the probabilities estimated in the versions of our
approach and classify metric values by assigning them to
the most likely class, i.e., we use the probability 0.5 as a
natural classification threshold. As a benchmark to com-
pare the performance, we used a method based on the idea
of the Six Sigma management system. The method
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originated as a general quality management approach and
emphasizes the statistical aspect. The name is derived from
the statistical Six Sigma principle, which states that more
than 95% of all observations of random variables (under
certain weak conditions) lie in the interval [u — 3o, p+
3o] (where p is the mean and o the standard deviation of
the observations) (Pukelsheim 1994). In quality manage-
ment, this describes the goal of having more than 95% of
all outputs within a specified tolerance range. This means
that the principle can also be used for outlier detection. The
idea is that outputs outside the tolerance range can be
considered outliers. Mathematically, this means that values
outside the interval [p — 30, u+ 30] are defined as out-
liers. Here, we determine both the mean and the standard
deviation (‘sigma’) of the reference values of each time
series and use a fixed decision boundary of three sigma
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above the mean to determine whether the IoT data is
complete or incomplete for each time step. In the IoT
context, Six Sigma has a major advantage in quality
management: The high availability of data means that
production processes can be constantly monitored and
controlled (Rahimi et al. 2018; Valderas et al. 2023). As a
result, faulty processes can be quickly identified and
improved (Tissir et al. 2023). For similar reasons, the Six
Sigma method is also frequently used for outlier detection
in the IoT context (Huang et al. 2019; Kale et al. 2022) and
manufacturing (Lee and Lee 2022; Pugna et al. 2016),
among others (éampulové et al. 2017). It is expected to
provide convincing results, as it has shown good perfor-
mance in similar settings (éampulové et al. 2017; Han and
Lee 2002; Huang et al. 2019; Kale et al. 2022; Lee and Lee
2022; Pugna et al. 2016). In addition, it is easy to imple-
ment and simple to use. Therefore, for our use case, it
seems to be a particularly suitable baseline to assess the
performance of our metric. To this end, we followed
existing implementations from the literature that have
already applied this method in the IoT context (cf. e.g.,
Huang et al. 2019). Specifically, we examined which of the
differences in observed values for each robot exceeded the
respective deviation of 3¢ and classified them as outliers
and thus as completeness defects.

On the given dataset, our approach provides very
promising results for both the basic as well as the extended
model, especially — as expected — for the majority class,
i.e., the complete class. However, due to the given imbal-
ance of complete and incomplete time steps, the crucial
performance metrics refer to the minority class, i.e., the
incomplete class, as this class is more difficult to predict
and generally of higher interest (Sun et al. 2007, 2015; Yin
et al. 2013). For all performance measures considered, the
two instantiations of our approach outperform the Six
Sigma method (cf., Table 2).

The basic model is able to identify 71,43% of the time
steps with incomplete data (recall), while the extended
model is even able to identify 77.14%. Moreover, our
approach is 78.13% correct with the basic model and
77.14% correct with the extended model (precision) when
identifying time steps with incomplete IoT data. This sig-
nificantly outperforms the Six Sigma method, which only

achieves a precision of 48.08%. Consequently, the F1-
measure provides good results for both of our models with
74.63% (basic model) and 77.14% (extended model),
especially in comparison to the Six Sigma method with
57.47%. Overall, the extended model shows superior per-
formance in assessing the completeness of IoT data com-
pared to the basic model, once again highlighting the
benefits of a larger sample size and the ability to calculate
weighted averages based on the metric values in terms of
probabilities. Both instantiations result in very high accu-
racies of over 97% clearly outperforming the Six Sigma
method frequently used in comparable settings (Cam-
pulovd et al. 2017; Han and Lee 2002). In conclusion, these
results confirm that the values of our proposed metric — for
both the basic and the extended model — are reliable and
can discriminate very well between complete and incom-
plete IoT data.

Convinced by the ease of implementation and favorable
evaluation, the German car manufacturer adopted our
metric to assess 10T data completeness for all bonding
processes across all production sites and other techniques
such as welding. In addition, dashboards were established,
displaying real-time completeness defects for individual
robots. In the final discussions, the data scientists of the
German car manufacturer were very satisfied with respect
to the metric, pointing out that for the first time it is now
possible to systematically and comprehensively monitor
the completeness of their IoT data. This also enables
effective monitoring and optimization of production pro-
cesses for increased efficiency.

6 Discussion and Conclusion

In this section, we discuss theoretical and practical impli-
cations as well as limitations of our work. Finally, we
conclude with a brief summary.

6.1 Theoretical Contributions

In this paper, we designed and evaluated a novel proba-

bility-based metric for (relational) completeness of IoT
data. Our contribution to research is twofold. First, unlike

Table 2 Performance measures

Accuracy (%) Recall (%) Precision (%) Fl-measure (%)

for classification into complete

and incomplete IoT data using Basic model Incomplete
both instantiations of our
. Complete
approach as well as the Six
Sigma method Extended model Incomplete
Complete
Six sigma method  Incomplete
Complete

Best performance in bold

97.68 71.43 78.13 74.63
99.00 98.57 98.79
97.82 77.14 77.14 77.14
98.85 98.85 98.85
94.95 71.43 48.08 57.47
96.13 98.53 97.32
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existing metrics, which assume that the exact number of
real-world entities is known exactly or that the real-world
entities appear in a regular pattern, our approach prevents
the closed-world assumption. Indeed, the closed-world
assumption is often not satisfied in practical applications
since the number of real-world entities is typically
unknown. This uncertainty about the definite number of
real-world entities arises from the high number of potential
sources of error combined with the high velocity and large
volume of IoT data (Bansal et al. 2021; Fernandes and
Wagh 2019). Thus, our metric provides a new perspective
for assessing the completeness of IoT data, which enables a
much broader range of applications, by relying only on an
estimation method and the easily obtainable number of
digital entities. Second, unlike existing approaches, our
proposed metric accounts for uncertainty by leveraging
probability theory and provides an indication rather than a
binary score. Such binary scores cannot reflect the actual
uncertainty associated with the completeness of IoT data
and do not provide a measure of the degree of confidence
with respect to the classification into complete and
incomplete data. Thus, they express a certainty that does
not exist. In contrast, our metric values are interval-scaled
and can be unambiguously interpreted as probabilities that
adequately reflect the uncertainty associated with the
occurrence of completeness defects. Furthermore, the
metric values can be integrated into expected value cal-
culations in a methodically well-founded manner. This also
allows for extensions as presented in Sect. 4.3, which can
be especially important for practical applications by sup-
porting decision-making with higher quality results even in
the case of limited data availability (Liu et al. 2020; Teh
et al. 2020).

6.2 Practical Implications

Next to the theoretical contributions, our findings also point
to practical implications. First, our evaluation supports the
proof-of-concept of our metric, as it shows that the
obtained metric values exhibit very good discrimination
between incomplete and complete IoT data, especially
when compared to the widely used Six Sigma method. This
finding is well in line with previous research that demon-
strates the potential and advantages of probability-based
approaches to assess (other dimensions of) data quality
(Heinrich and Klier 2015; Klier et al. 2021). Therefore, our
metric can improve data-driven decision-making by
allowing data quality and its uncertainty to be represented
and incorporated into decision-making, thereby enhancing
the quality of decisions made and instilling confidence in
their outcomes. Overall, this leads to better decisions and
has the potential to reduce the cost, time, and effort asso-
ciated with incomplete IoT data, providing tangible

@ Springer

benefits in real-world applications (Corte-Real et al. 2020;
Liu et al. 2020). Second, to realize its potential, the
approach must be economically feasible. Specifically, this
means that the expected benefits of applying the metric
must exceed the costs. There are different types of benefits
and costs associated with data quality initiatives and met-
rics, all of which typically depend on the context of
application (cf. e.g., Batini and Scannapieco (2016) for an
overview). In the concrete setting used to demonstrate our
metric, the German car manufacturer was faced with a
situation where data-driven projects (e.g., regarding pre-
dictive maintenance) failed due to poor data quality and, in
particular, incomplete data. Based on our metric, the
completeness of data can now be actively measured and
managed to avoid the delay or even cancellation of such
projects, which leads to economic benefits. These benefits
outweigh the costs of applying our metric. More con-
cretely, little effort of only nine person-days was necessary
to instantiate and evaluate our metric after its development.
Moreover, the metric can be adapted to other IoT-sup-
ported manufacturing processes with minimal effort. In this
vein, the German car manufacturer has implemented the
metric for further manufacturing processes, such as stud
welding, and established data quality dashboards that
provide real-time information on completeness for all
robots involved in production. In summary, our metric can
help to unlock the potential of data, and the low effort
required to apply it makes it economically feasible in many
contexts.

6.3 Limitations and Future Work

Despite its merits, our work also has limitations that can be
a starting point for future research. In our demonstration
and evaluation, we focused on a single case of IoT data
regarding the bonding process of a German car manufac-
turer. Further research could investigate the generalizabil-
ity of the approach to other cases, such as other
manufacturing processes or IoT data in other contexts.
Moreover, our approach provides metric values in the form
of probabilities for the completeness of IoT data for pre-
defined time steps (e.g., a production day). However, it
does not provide additional insight into the specific real-
world entities that are missing and the underlying reasons
for the completeness defects. Future research could for
example investigate the use of our approach in combination
with predictive maintenance to detect potential complete-
ness problems in advance and thus avoid them in the first
place. Furthermore, while completeness is one of the most
important data quality dimensions for IoT data (Corte-Real
et al. 2020; Liu et al. 2020; Miao et al. 2022), our approach
does not consider other potential data quality defects such
as inaccurate data. Future research could incorporate our
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approach into a more holistic IoT data quality framework
that combines methods for accuracy assessment (Omar
et al. 2020; Tkachenko et al. 2020) and other data quality
dimensions (Bai et al. 2018; Heinrich and Hristova 2016).

6.4 Conclusion

Assessing the completeness of IoT data in an automated
way is an important issue in both research and practice. In
this paper, we propose a probability-based approach for
this task. It aims to determine the probability that an IoT
database is complete for a given time step based on the
detection of outliers regarding the deviation between the
estimated number of real-world entities and the number of
digital entities. Existing approaches are limited in their
ability to accurately identify completeness defects in IoT
data since they either assume that the definite number of
real-world entities is known exactly or that the real-world
entities appear in regular patterns. In fact, existing
approaches cannot cope with the uncertainty arising from
the high number of potential sources of error combined
with the large volume and high velocity of IoT data. Our
proposed probability-based metric for completeness of IoT
data addresses these issues and yields interpretable metric
values representing the probability that an IoT database is
complete for a given time step. We demonstrate the prac-
tical applicability of the metric and evaluate its values
based on a real-world case of a large German car manu-
facturer. The results show that the provided metric values
are useful and informative and can well discriminate
between complete and incomplete IoT data. The positive
evaluation, along with the practical applicability of our
metric resulted in the car manufacturer introducing the
metric to assess the completeness of all bonding processes
across all production facilities.
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