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Abstract The Internet of Things (IoT) is one of the driving

forces behind Industry 4.0 and has the potential to improve

the entire value chain, especially in the context of industrial

manufacturing. However, results derived from IoT data are

only viable if a high level of data quality is maintained.

Thereby, completeness is especially critical, as incomplete

data is one of the most common and costly data quality

defects in the IoT context. Nevertheless, existing approa-

ches for assessing the completeness of IoT data are limited

in their applicability because they assume a known number

of real-world entities or that the real-world entities appear

in regular patterns. Thus, they cannot handle the uncer-

tainty regarding the number of real-world entities typically

present in the IoT context. Against this background, the

paper proposes a novel, probability-based metric that

addresses these issues and provides interpretable metric

values representing the probability that an IoT database is

complete. This probability is assessed based on the detec-

tion of outliers regarding the deviation between the esti-

mated number of real-world entities and the number of

digital entities. The evaluation with IoT data from a Ger-

man car manufacturer demonstrates that the provided

metric values are useful and informative and can discrim-

inate well between complete and incomplete IoT data. The

metric has the potential to reduce the cost, time, and effort

associated with incomplete IoT data, providing tangible

benefits in real-world applications.

Keywords Data quality � Data quality assessment �
Completeness � Internet of Things � Probability-based
metric

1 Introduction

The Internet of Things (IoT) is one of the driving forces

behind Industry 4.0 (Okano 2017; Pivoto et al. 2021;

Valderas et al. 2023) and has the potential to enable new

business models, optimized supply chains, and new rev-

enue streams (Kashyap 2022; Palmaccio et al. 2021; Stei-

ninger 2022; Vass et al. 2021). It is predicted to have

enormous economic potential (Hamdan et al. 2022; Val-

deras et al. 2023) with an estimated impact of $11.1 trillion

by 2025 (Edquist et al. 2021). Based on the vast amount of

data that IoT devices produce (El-Hasnony et al. 2021;

Gubbi et al. 2013; Valderas et al. 2023) and the high speed

at which the data is created (Cai et al. 2017; Rahimi et al.

2018), big data from IoT can for example be used to

automate production processes (Delsing et al. 2016),

improve the efficiency of existing processes (Fatima et al.

2022), and support predictive maintenance (Compare et al.

2020). However, on the hand, all such applications require

high-quality data to provide viable results (Jugulum 2016)

and a lack of data quality can lead to incorrect decision-

making and poor outcomes (Liu et al. 2020; Teh et al.

2020). On the other hand, including many sensors (Loeb-

becke and Boboschko 2020) and network connections
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(Powell et al. 2022), IoT systems are susceptible to a large

number of potential sources of data quality problems (Teh

et al. 2020). Therefore, it is essential to be able to assess the

quality of IoT data (Mützel and Tafreschi 2021; Scheider

et al. 2023) to identify and manage potential quality

problems. However, this assessment of data quality poses a

major challenge, as the large volume of data and the high

velocity of data generation (Bansal et al. 2021; Fernandes

and Wagh 2019) make a manual assessment impossible

(Abbasi et al. 2016; Costantini et al. 2021; Evron et al.

2022; Karkouch et al. 2016).

One of the most frequently observed (Liu et al. 2020)

and economically most costly (Côrte-Real et al. 2020; Liu

et al. 2020) data quality defects in the IoT context is

incomplete data. Therefore, in this paper, we focus on the

data quality dimension completeness, which is defined ‘‘as

the degree to which a given data collection includes data

describing the corresponding set of real-world objects’’

(Batini et al. 2009, p. 7). In practice, it is not readily

possible to assess the completeness of IoT data, i.e., whe-

ther all real-world entities under consideration are actually

represented by respective data in the IS. In particular, a

simple and straightforward assessment of completeness in

terms of comparing the number of real-world entities with

the number of digital entities (Pipino et al. 2002) is not

feasible for IoT data due to the uncertainty regarding the

typically unknown number of real-world entities that

should be represented in the IS (Jugulum 2016). In the case

of a German car manufacturer (cf. Sect. 5), for example,

almost one million digital entities are generated every day

for just one specific production process and the car man-

ufacturer cannot say with certainty what the definite

number of real-world entities (i.e., process runs) is daily.

Thus, a metric for completeness of IoT data must deal with

this uncertainty (Karkouch et al. 2016). However, existing

approaches for assessing completeness assume that the

number of real-world entities to be represented in the IS is

known and neglect the associated uncertainty (cf. Sect. 3).

To alleviate this drawback, we design and evaluate a novel

probability-based metric to assess the completeness of IoT

data considering the underlying uncertainty.

We argue that the principles and the knowledge base of

probability theory provide well-founded methods for

describing and analyzing such situations under uncertainty.

Therefore, our completeness metric is grounded in proba-

bility theory and is based on an estimate of the number of

real-world entities (e.g., using time series forecasting) to

deal with the associated uncertainty. Furthermore, it

assesses the probability that the IoT data is complete, by

comparing the deviation of the estimated number of real-

world entities from the number of entities actually stored in

the IS. We demonstrate the practical applicability of our

metric and evaluate its values, which represent

probabilities, using the case of a German car manufacturer

that stores IoT data from its production facilities. The

results of two instantiations of our metric show that our

metric can distinguish very well between complete and

incomplete IoT data and thus support decision-making.

The remainder of the paper is organized as follows. In

Sect. 2, we illustrate the problem context using the running

example of an IoT system monitoring a manufacturing

plant with numerous industrial robots. In Sect. 3, we pro-

vide an overview of prior works and outline the research

gap to be addressed. In Sect. 4, we develop a novel prob-

ability-based metric for completeness of IoT data. We

instantiate our metric in cooperation with a large German

car manufacturer and evaluate the metric values in Sect. 5.

Finally, we conclude with implications for theory and

practice, reflect on limitations, and provide an outlook on

further research in Sect. 6.

2 Problem Context

The IoT serves as a basis for countless applications in both

personal and business contexts (Miles et al. 2018; Yang

et al. 2022). In general, IoT refers to the interconnection of

machines and devices of all types and sizes over the

internet, enabling the creation of data that can provide

analytical insights and support new operations (Nord et al.

2019; Valderas et al. 2023). The complex architecture of

IoT systems with multiple devices and data sources (Bya-

bazaire et al. 2020; Powell et al. 2022; Valderas et al.

2023), in combination with the large volume and high

velocity at which the data is generated (Cai et al. 2017;

Rahimi et al. 2018), makes the assessment of data quality

in general, and completeness in particular, a major chal-

lenge. Indeed, assessing the completeness of IoT data

requires an automated approach that takes into account the

large number of potential sources of error as well as the

high velocity and large volume of data.

To illustrate the challenges of assessing completeness in

the IoT context, we introduce the example of a manufac-

turing plant, which will serve as a running example

throughout the paper. In this manufacturing plant, several

industrial robots repeatedly work on a particular process

(e.g., applying adhesive seams). All robots are part of an

IoT system and are equipped with multiple sensors that

monitor each robot. We refer to each of the process runs

(e.g., the application of one adhesive seam to a workpiece)

as a real-world entity that arises from the respective pro-

cess. For each real-world entity, the robots’ sensors mon-

itor and record various parameters such as timestamps,

process parameters such as pressure, and environmental

conditions such as temperature. The data for each real-

world entity is sent to an IoT database upon completion,
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where it is stored as a digital entity, i.e., the digital rep-

resentation with the collected information regarding the

corresponding real-world entity. However, due to issues

such as sensor malfunctions, network problems, or storage

errors, the digital entity may not be stored (i.e., not rep-

resented) in the IoT database. This would constitute a

defect regarding the data quality dimension completeness.

Incompleteness of IoT data, caused by the lack of repre-

sentation of individual real-world entities in the IS, is

illustrated in Fig. 1. Here, the real-world entities 2 and (n-

1) – and thus the corresponding process runs – are not

represented by digital entities in the IoT database. Such

defects are referred to as relational completeness defects

(Batini and Scannapieco 2006; Klein and Lehner 2009). In

the following, we focus on relational completeness (Batini

and Scannapieco 2006; Klein and Lehner 2009), as this

form of completeness is particularly important and chal-

lenging (especially) in the IoT context (Liu et al. 2020).

While assessing other forms of completeness such as tuple

completeness (i.e., whether all attributes have a corre-

sponding value or, for example, a specific sensor reading

misses a value in the digital entity) is equally important

(Batini and Scannapieco 2006), there already exist reliable

approaches that can be easily applied to IoT data as well

(cf. Sect. 3). Typically, these approaches inherently assume

that relational completeness is fulfilled, which further

motivates the need for a metric to assess relational

completeness.

The assessment of relational completeness is funda-

mentally rooted in the comparison of the number of real-

world entities (left side in Fig. 1) with the corresponding

number of digital entities (right side in Fig. 1). However,

the actual number of real-world entities is typically

unknown and a large number of potential sources of error

occurs. For example, in the case of the German car man-

ufacturer that we will use to demonstrate and evaluate our

approach (cf. Sect. 5) and the single production process

Bonding, there are more than 250 individual robots

equipped with multiple sensors, each of which generates

almost one million digital entities and about 250 megabytes

of data per day. At the same time, the actual number of

process runs that should be represented in the IS is not

known with certainty. Thus, an appropriate data quality

metric must account for the underlying uncertainty

regarding both the actual number of real-world entities and

possible sources of error when assessing the completeness

of IoT data in an automated way.

3 Related Work

Completeness is one of the most important data quality

dimensions to assess, especially given the high costs that

incomplete data causes (Miao et al. 2022; Zhang et al.

2019). This is particularly true in the context of the IoT.

Studies show that maintaining a high level of completeness

Fig. 1 Schematic representation of the running example
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of IoT data is positively correlated with an organization’s

competitive advantage (Côrte-Real et al. 2020; Ge et al.

2018; Liu et al. 2020; Scheider et al. 2023). In the fol-

lowing, we first take a broader view of the data quality

dimension completeness, focusing on concepts and ideas

that are potentially applicable to IoT data. We then provide

an overview of existing metrics for assessing the com-

pleteness of IoT data.

Regarding the data quality dimension completeness, the

literature provides different perspectives. Schema com-

pleteness is defined as the degree to which a database

schema represents the entities and their associated char-

acteristics in the real world (Pipino et al. 2002). For

instance, if the attribute ‘last name’ is absent in a customer

database (e.g., there exists no column comprising the

customers’ last names), it would be deemed lacking

schema completeness. Further, at the data level, the liter-

ature can be divided into two strands (Batini and Scanna-

pieco 2006): works that assume a closed world and works

that assume an open world. Under the closed-world

assumption, it is assumed that all real-world entities are

represented by digital entities (using a predefined schema

with specified attributes) in the corresponding database and

that the schema contains all necessary columns (Batini and

Scannapieco 2006). In this case, completeness defects can

only occur at the level of single entities if individual digital

entities do not contain values for all attributes for a cor-

responding real-world entity (e.g., a database containing

information about all 50 states in the U.S. is missing the

value for the attribute population for one state). In this line,

Cykana et al. (1996) propose to assess the so-called tuple

completeness for each digital entity as the percentage of

the number of attribute values actually available in the

database relative to the number of specified attributes in the

database. Based on this approach, for example, Wang et al.

(2001) and Lee et al. (2002) developed similar metrics to

measure tuple completeness. However, several authors

point out that tuple completeness addresses only one rele-

vant aspect of completeness, even when assuming a closed

world (Batini and Scannapieco 2006; Laranjeiro et al.

2015; Pipino et al. 2002). They argue for considering fur-

ther completeness metrics, such as column completeness,

defined as the fraction of digital entities that actually

contain values for specific columns, i.e., attributes (e.g., the

fraction of states in the database that contain a value for the

attribute population). However, the closed-world assump-

tion often does not hold in practice – especially in the

context of IoT systems. As pointed out in our running

example, it is common for real-world entities (e.g., process

runs of applying adhesive seams) not to be represented by

corresponding digital entities in the IoT database, e.g., due

to device malfunctions, network errors, or storage capaci-

ties (Bansal et al. 2021; Liu et al. 2020; Powell et al. 2022).

Here, the closed-world assumption is not fulfilled but has to

be replaced by the open-world assumption, where it is

possible that (individual) real-world entities are not repre-

sented by digital entities. In this context, both Batini and

Scannapieco (2006), as well as Pipino et al. (2002), pro-

pose the concept of relational completeness as the per-

centage of real-world entities that are actually represented

by digital entities in the corresponding database. Although

this metric mitigates the closed-world assumption, it still

suffers from a major caveat in that it cannot cope with

uncertainty about the actual number of real-world entities

but assumes that this number is known. While this

assumption may be realistic in simple cases such as a

database containing information on only 45 states of the

U.S., it is rather unrealistic for typical IoT applications (cf.

Sect. 2). Nevertheless, by addressing the core of the com-

pleteness problem in the case of IoT data, namely real-

world entities that are not represented by digital entities,

these works can serve as a promising starting point for

investigating the assessment of completeness of IoT data.

Indeed, most of the contributions to assessing the

completeness of IoT data focus on relational completeness.

Assuming that the number of real-world entities is known,

many of them apply the relational completeness metric of

Batini and Scannapieco (2006) as well as Pipino et al.

(2002) in specific IoT contexts such as RFID chips in the

logistics industry (van der Togt et al. 2011), contextual

information processes (Anagnostopoulos and Kolomvatsos

2016), process mining systems (Janssenswillen and

Depaire 2019), object tracking systems (Bardaki et al.

2010), or metrological weather measuring stations (Sicari

et al. 2016, 2018). Overall, however, since in the IoT

context the actual number of real-world entities is typically

unknown and thus associated with uncertainty (Bansal

et al. 2021; Karkouch et al. 2016; Liu et al. 2020), the

methodical applicability of these metrics and approaches is

rather limited and only given for selected (special) cases.

A first approach to mitigate the assumption that the

actual number of real-world entities is known with cer-

tainty was presented by Biswas et al. (2006) for the case of

smart home applications. They assume that real-world

entities (e.g., sensor readings) are generated in regular time

intervals (e.g., one reading per minute), allowing a calcu-

lation of the expected number of entities per time interval.

Thereby, completeness is defined as the ratio of the number

of available digital entities to the number of expected

entities. This idea has been applied by various authors in a

broad context of IoT devices, general wireless sensor net-

works (Cheng et al. 2018; Klein and Lehner 2009; Liu et al.

2014), and in the context of logistics chains (Ahmed et al.

2021). Although these approaches do not require the

number of real-world entities to be known a priori, they are

limited in their practical application, especially in the
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context of IoT data, because they assume that entities are

generated at regular and uniform intervals. However, this

means that they cannot be used, for example, for sensors

that respond to environmental factors such as irregular

temperature changes, or, as in the running example, for

sensors that monitor many robots performing different

processes with varying run times (Saravanamohan et al.

2021). Therefore, these approaches are limited in their

practical applicability because they cannot be used in many

areas where IoT data is used.

Overall, promising methods exist for assessing data

completeness, both with and without the closed-world

assumption. In the context of IoT data, the closed-world

assumption is not realistic. Thus, metrics for relational

completeness that address an open world are needed.

Building on foundational work for (classical) databases,

several completeness metrics have been proposed for IoT

data. However, all of these approaches are hampered in

their applicability by either relying on a known definite

number of real-world entities or by assuming that real-

world entities are generated in regular and uniform time

intervals. In fact, in the IoT context, both of these

assumptions are usually not met due to the uncertainty

involved. To address this research gap, in the following, we

propose a novel probability-based metric that explicitly

accounts for the underlying uncertainty when assessing the

completeness of IoT data.

4 Development of the Probability-Based Metric

for Completeness

In this section, we first outline the general setting and the

basic idea of our approach. Based on this, we design our

novel, probability-based completeness metric for IoT data.

To reduce the manual effort when applying the metric, we

provide an extension of the metric that can deal with a

limited amount of quality-assured IoT data by leveraging

expected value calculus.

4.1 General Setting and Basic Idea

In IoT databases, real-world entities may not be repre-

sented by digital entities for a variety of reasons, such as

device malfunctions, network errors, or storage capacities

(Liu et al. 2020). Therefore, assessing the completeness of

IoT data (i.e., whether all real-world entities arising from

the corresponding IoT processes are represented by

respective digital entities in the IoT database) is crucial, as

discussed in our problem context (cf. Sect. 2). In IoT

systems, data is constantly and continuously created, sent,

and stored over time. Thus, to account for this temporal

dimension, we assess the completeness of IoT databases

with respect to concrete time steps. Consequently, we

consider an IoT database D ¼ D1 [ D2 [ . . . [ DN as a

composition of several disjoint subsets Di, each containing

the respective digital entities of the corresponding IoT

processes for a given time step i 2 1; . . .;Nf g. These time

steps can be, for example, an hour, a day, or a specific

production shift. During each time step, several real-world

entities arise, such as process runs performed by industrial

robots (cf. running example in Sect. 2). Each of these real-

world entities eri;k with k 2 1; . . .; nri
� �

arising in time step i

should be represented by a respective digital entity edi;k in

the subset Di of the IoT database. Hence, the number of

real-world entities nri arising in time step i should be equal

to the number of respective digital entities ndi ¼ Dij j for
each time step i. However, for a variety of reasons, some

real-world entities may not be represented by respective

digital entities in the IoT database. This results in a dif-

ference between the number of real-world entities and the

number of respective digital entities eDQi ¼ nri � ndi , which

represents a data quality defect (i.e., incompleteness).

Therefore, the IoT database D is complete with respect to

time step i if and only if eDQi ¼ 0 (Klein and Lehner 2009).

On this basis, the completeness of IoT data in a database D

for time step i is defined as follows:

COMP D; ið Þ ¼ true; if eDQi ¼ nri � ndi ¼ 0

false; else

�
ð1Þ

Under the closed-world assumption, completeness as

expressed in Eq. (1) would be trivial to determine since

both nri as well as n
d
i , and hence their difference eDQi would

be known with certainty. However, as discussed in Sect. 3,

in the IoT context this assumption is usually not met since

the number of real-world entities nri and hence eDQi are

typically not known with certainty or not known at all.

Therefore, the determination of completeness must be

based on an estimate of the number of real-world entities,

denoted by n̂i. Consequently, our approach is based on

comparing this estimated number of real-world entities

with the number of respective digital entities. More pre-

cisely, we observe the deviation Di ¼ n̂i � ndi of these two

values. Comparing the number of digital entities with the

estimated number of real-world entities avoids the problem

of an unknown true number of real-world entities but at the

same time introduces uncertainty. More precisely, while a

non-zero difference eDQi (based on the true number of real-

world entities) is certainly associated with incompleteness,

a non-zero deviation Di (based on the estimated number of

real-world entities) could also be attributed to an

unavoidable estimation error, since the estimate may differ

from the true value to some extent. Such situations under

uncertainty can be described and analyzed using well-
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founded methods based on the principles and the knowl-

edge base of probability theory. Moreover, defining the

values of a data quality metric in terms of a probability has

several advantages (Heinrich and Klier 2015): They have a

concrete unit of measurement, are interval scaled, and can

be included in the calculation of expected values. Thus, in

developing our metric, we aim at a metric that is based on

probability theory and that provides an indication in terms

of a probability. More precisely, the values of our metric

represent the probability, that for a given time step i all

real-world entities eri;k are represented by respective digital

entities edi;k in the corresponding IoT database, i.e., that no

malfunctions or errors occurred that caused some entities

not to be represented. On this basis, our probability-based

metric QCOMP D; ið Þ for the completeness of IoT data in

database D for time step i is defined as follows:

QCOMP D; ið Þ ¼ P COMP D; ið Þ ¼ trueð Þ ð2Þ

This probabilistic approach accounts for the uncertainty

in the required estimate of the unknown number of real-

world entities and the associated unknown estimation

errors. To assess the probability from Eq. (2), we further

investigate the deviation Di between the estimated number

of real-world entities and the number of digital entities in

time step i. Without completeness defects, i.e., when all

real-world entities are represented by respective digital

entities in the IoT database, the deviations for all time steps

can be traced back to the estimation error alone. Thus, if

multiple deviations are observed from time steps without

completeness defects, they are identically and indepen-

dently distributed following the distribution of the esti-

mation error. If a deviation is excessively large with

respect to this distribution, a completeness defect (i.e.,

missing digital entities) should have occurred that caused

the deviation not to be determined by the estimation error

alone but to be amplified by a missing number of digital

entities. Accordingly, the affected deviation in question

cannot be explained based on the distribution of the devi-

ations without completeness defects and thus represents an

outlier with respect to this distribution. Therefore, the

probability that the deviation for a given time step does not

represent an outlier (with respect to the deviations from

time steps without quality defects) corresponds to the

probability that the IoT data is complete. This probability,

which can be determined using statistical outlier tests,

represents the value of our metric for the completeness of

IoT data. In the next section, we present our approach for

measuring the completeness of IoT data in detail.

4.2 Design of the Basic Model

Following the basic idea, our approach is divided into two

distinct phases, as shown in Fig. 2. The objective of the

first phase is to calibrate the metric, which includes two

key aspects. First, it aims to establish a robust estimation

model capable of accurately estimating the number of real-

world entities for individual time steps. Second, it seeks to

assess the distribution of the resulting estimation errors

associated with this estimation model based on time steps

without completeness defects. In the second phase, once

calibrated, the metric can be used to calculate the metric

values by determining the probability that a deviation

between the number of estimated real-world entities and

the number of respective digital entities does not constitute

an outlier with respect to the distribution of estimation

errors derived in the first phase of our approach.

In the IoT context, assessing completeness ultimately

boils down to comparing the number of digital entities to

the number of real-world entities. However, the exact

number of real-world entities is unknown. Thus, in the first

phase of our approach, the calibration of the metric, it is

first necessary to derive an estimation model for the num-

ber of real-world entities. Many well-established methods

use historical data for this purpose, including time series

forecasting techniques like ARIMA(X), TBATS, and

decomposition models (Perone 2022; Shaub 2020). Fur-

thermore, regression models can be used that incorporate

data from other databases (e.g., the number of parts pro-

duced) or the expertise of domain experts can be used. The

selected estimation method can then be instantiated (e.g.,

by determining its model parameters on historical data), to

produce reliable and accurate estimates of the number of

real-world entities. However, even reliable and accurate

estimates may have small deviations from the true value

and are therefore subject to uncertainty. Mathematically,

the estimated number of real-world entities for time step i,

denoted as n̂i ¼ nri þ en̂i , represents the sum of the true

number of real-world entities nri and an identically and

independently distributed estimation error en̂i 2 R, as

shown in Fig. 3. To account for this uncertain estimation

error, which typically follows a normal distribution (Taylor

and Letham 2018), we assess the estimation error for the

number of real-world entities during a quality-assured

period by determining a sample of estimation errors. For

this purpose, we perform estimations for a set of quality-

assured time steps Iq, i.e., time steps with no data quality

defects Here, we can directly observe the estimation errors

as the deviation from the quality-assured numbers of digital

entities. The sample of identically and independently dis-

tributed estimation errors is referred to as the reference

values R. Both the estimation model for real-world entities
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and the reference values are required to calibrate the metric

in the first phase. In the next phase, the metric can be used

to obtain reliable metric values for the completeness of IoT

data.

In the second phase of our approach, the calculation of

the metric values, the metric can be applied to determine

the metric values in terms of the probability that the IoT

data is complete for a given time step. This is equivalent to

determining the probabilities that deviations between the

estimated number of real-world entities and the number of

respective digital entities do not constitute outliers. In this

vein, we assess whether the associated deviation between

the estimated number of real-world entities and the number

of respective digital entities is in line with the distribution

of the reference values. Thereby, the more likely this

deviation constitutes an outlier compared to the reference

values, the more likely it is that some real-world entities

are not represented by respective digital entities (i.e., the

data quality error eDQi is greater than zero). For a rigorous

assessment of completeness, the term outlier must be

assessed objectively and on a mathematical basis. The

statistical field of outlier detection offers a wide range of

well-founded methods for this purpose. In the following,

we will derive the assessment of the metric values in a

mathematically sound and rigorous way.

Our approach focuses on the deviation Di ¼ n̂i � ndi
between the estimate n̂i and the number of digital entities

ndi that can be directly observed for each time step i.

Combining the definitions of the data quality error eDQi ¼
nri � ndi and the estimated number of real-world entities

n̂i ¼ nri þ en̂i , it becomes evident that the observable devi-

ation Di can also be calculated as the sum of the two

existing error terms, Di ¼ en̂i þ eDQi (cf. Figure 3). This

transformation underlines the relevance of the determined

reference values R ¼ Djjj 2 Iq
� �

as they provide the dis-

tribution of the expected deviation of our estimate for the

number of real-world entities in the absence of data quality

errors, i.e., eDQi ¼ 0. To assess whether the deviation Di is

Fig. 2 Illustration of the two phases of our approach with an exemplary time series indicating the number of digital entities and the estimated

number of real-world entities

Fig. 3 Illustration of the unknown number of real-world entities nri ,

its estimate n̂i, the number of digital entities ndi in the IoT database as

well as the error terms en̂i , e
DQ
i and the observable deviation Di for a

time step i
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in line with the distribution of estimation errors, and thus

can be explained by the general estimation error en̂i alone,

we can use the reference values from the first phase of our

approach. If Di constitutes an outlier with respect to the

distribution of the reference values, this must be due to the

presence of an additional error term eDQi [ 0. This addi-

tional error term, which is caused by a completeness defect

resulting in real-world entities not being represented by

respective digital entities, amplifies the observed deviation

and thus the distribution obtained from quality-assured data

cannot explain the larger magnitude of the deviation. Thus,

there is a congruence of outliers to the top within the

deviations and the incompleteness of IoT data resulting

from completeness defects. This congruence can be used to

assess the completeness of IoT data by identifying outliers

within the observed deviations between the expected

number of real-world entities and the number of respective

digital entities. Therefore, the values of our metric can be

assessed by estimating the probability that the deviation

observed in the time step in question represents no outlier

to the top with respect to the reference values. Thus, the

approach of measuring the completeness of IoT data while

considering the uncertainty of possible data quality defects

as well as the uncertainty regarding the actual number of

real-world entities leads to the task of identifying outliers

to the top within a time series composed of multiple

deviations. By denoting the set of outliers with respect to

the reference values asO, our metric (i.e., the probability

that the IoT data in the database D is complete in time

stepi) is defined as

P Di 62 Oð Þ ¼ 1� P Di 2 Oð Þ ¼ P COMP D; ið Þ ¼ trueð Þ:
ð3Þ

Statistics and the hypothesis testing-based branch of

outlier detection provide a wealth of sound methods to help

estimate this probability (Chandola and Kumar 2009;

Hodge and Austin 2004). The p-value, a well-known

concept in hypothesis testing, can be used to provide a

mathematically sound indication of whether outliers are

present for given time steps (Hodge and Austin 2004).

Indeed, given the null hypothesis that there is no outlier to

the top in the data under consideration, the corresponding

p-value represents the highest level of significance a at

which this null hypothesis cannot be rejected. Applied to

our context, the probability that the deviation of interest Di

is not an outlier with respect to the error-distribution that

the reference values R follow can be assessed by means of

the p-value pi of the hypothesis test based on the null

hypothesis that the deviation of interest Di is indeed no

outlier to the top with respect to all reference values.

There are many well-established methods in the field of

outlier detection, most of which are based on statistical

hypothesis testing (Chandola and Kumar 2009; Hodge and

Austin 2004). The Grubbs test (Grubbs 1969; Stefansky

1972; Thompson 1935) is one of the most widely used

methods, mainly because it is reliable, robust, computa-

tionally inexpensive (Urvoy and Autrusseau 2014), and

does not require manually adjusted parameters (Hodge and

Austin 2004). Based on these advantages, we apply the

one-sided Grubbs test with the null hypothesis that there is

no outlier at the top at time step i and use the corresponding

p-value to determine P Di 62 Oð Þ. In general, the test

statistic G of the one-sided Grubbs test is determined as the

difference between the maximum and the mean of the

observed values – in our case, the observed reference

values – divided by their standard deviation. This test

statistic is compared to a critical value Za;n based on the

number of values n and the significance level a. As indi-

cated previously, P Di 62 Oð Þ can then be identified with the

p-value pi of the Grubbs test whether the deviation Di

constitutes an outlier with respect to all reference values R.

The Grubbs test statistic Ga
i is given by the difference

between the deviation of interest Di and the mean Di;R of all

reference values R as well as Di, divided by the standard

deviation ri;R of all these deviations:

Ga
i ¼

Di � Di;R

ri;R
ð4Þ

The null hypothesis that Di is not an outlier to the top

with respect to the reference values is rejected at the sig-

nificance level ai if Ga
i is greater than the critical value

Zai;ni . This critical value Zai;ni , depending on the number of

values ni (all reference values as well as the deviation of

interest) and the significance level ai, is defined by

Zai;ni ¼
ni � 1

ffiffiffiffi
ni

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ai
ni
;ni�2

ni � 2þ t2ai
ni
;ni�2

vuuut : ð5Þ

Here, t2ai
ni
;ni�2

represents the upper critical value for a t-

distribution with ni � 2 degrees of freedom at the level

ai=ni. The p-value can also be thought of as the largest

significance level ai at which the null hypothesis cannot be

rejected (i.e., the test statistic Ga
i is less than the critical

value Zai;ni). Thus, as the significance level ai increases, the
critical value Zai;ni decreases (Grubbs and Beck 1972) and

thus maximizing ai is equivalent to minimizing the critical

value Zai;ni . Consequently, the p-value pi can be determined

as the solution to the optimization problem of minimizing

the critical value Zai;ni as a function of the significance level

ai under the condition that the null hypothesis cannot be

rejected (i.e., the Grubbs test statistic Ga
i is less than the

critical value Zai;ni ). Thus, the optimization problem for

assessing the p-value pi provides the value of our metric for
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the completeness of IoT data for the time step i repre-

senting the probability that the number of digital entities ndi
is equal to the number of real-world entitiesnri :

QCOMP D; ið Þ ¼ P Di 62 Oð Þ ¼ pi
¼ argmin

ai
Zai;ni jGa

i � Zai;ni
� �

ð6Þ

In conclusion, the developed metric for completeness of

IoT data provides the probability that all real-world entities

are represented by respective digital entities in this IoT

database in a given time step. The calculation of this

probability is based on the Grubbs outlier test. Thereby, the

deviation between a reliable and accurate estimate of the

number of real-world entities and the number of respective

digital entities in the IoT database is compared to reference

values for the deviations previously obtained using quality-

assured data. Then, the Grubbs outlier test determines the

probability for a given time step that the associated devi-

ation is not an outlier (compared to the reference values),

meaning that no digital entities are missing in the IoT

database.

4.3 Extension of the Basic Model

Defining metric values as probabilities has many advan-

tages such as the ease of interpretation and the possibility

to calculate expected values. In this section, we present an

extension of our basic model based on the calculation of

expected values in order to reduce the initial (manual)

effort in calibrating the metric. Indeed, in the first phase of

our approach, a set of quality-assured time steps is needed

to initially calibrate our metric in order to assess the

completeness of IoT data. On the one hand, as many ref-

erence values as possible should be used to ensure mean-

ingful results of the Grubbs test (Hodge and Austin 2004)

and the metric. On the other hand, the effort to provide

quality-assured reference values limits their number. To

address this issue, we propose the following extension of

our probability-based completeness metric which allows

further extending the reference values without the need to

obtain additional quality-assured data.

In the case of a completeness defect during time step i,

the observed deviation Di is unexpectedly large and would

thus deteriorate the sample of reference values if included

directly in the initial sample. This possible degradation by

the biased deviation, however, is reflected in the deter-

mined probability pi (representing the value of our metric,

cf. Equation (6)). Therefore, we use the metric value pi as a

weight to correct the deviation (possibly degrading the

sample of reference values) by basing it on the corrected

number of digital entities ncorri . Thereby, ncorri represents

the weighted average of the estimated number of real-

world entities n̂i and the number of digital entities ndi in the

IoT database.

ncorri ¼ pi � ndi þ 1� pið Þ � n̂i: ð7Þ

If a deviation is an outlier caused by a completeness

defect, the metric value pi is small, which causes the cor-

rected number of digital entities ncorri being closer to the

estimated number of real-world entities n̂i (since the

number of digital entities cannot be trusted due to the

completeness defect). On the other hand, if the deviation is

not an outlier, the determined metric value pi approaches a

value of 1, and the factor (1� pi) becomes small. Then, the

corrected number of digital entities remains very close to

the actual number of digital entities ndi present in the IoT

database. Consequently, the reference value that expands

the initial sample of reference values is calculated by the

difference Di ¼ n̂i � ncorri . This allows the sample of ref-

erence values to be expanded at each time step to contin-

uously improve the determination of the probability that

the IoT data is complete, without requiring additional

manual effort.

5 Demonstration and Evaluation

In this section, we demonstrate and evaluate our proba-

bility-based metric for the completeness of IoT data. First,

we discuss the selected case of a German car manufacturer

that uses an IoT system to monitor its production facilities.

Then, we describe the instantiation and application of our

metric for the real-world case. Finally, we conclude with a

presentation and evaluation of the results.

5.1 Case Selection and Dataset

To demonstrate and evaluate our approach, the metric is

applied to the IoT data of a German car manufacturer. The

IoT data contains information about the manufacturing

process of bonding, which involves the application of

various adhesive seams to car components. Among the

diverse application areas of IoT, the automotive sector in

particular has seen remarkable progress (Ghosh et al.

2022). In addition to enabling smart vehicles, autonomous

driving, and efficient supply chain management (Krasniqi

and Hajrizi 2016; Rahim et al. 2021), the automotive sector

has the opportunity to enhance production processes (Liu

et al. 2012; Rahim et al. 2021) by leveraging big data to

reduce costs and production downtime (Liu et al. 2012;

Siddhartha et al. 2021). In this line, the bonding process

serves as a prime example of a production process in which

industrial robots connected by IoT perform different

adhesive seams on different parts of a car (Ray and Rao
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2019). The process is characterized by a high degree of

automation and speed, with industrial robots applying up to

several thousand adhesive seams per day (Banea et al.

2018; Banea and Da Silva 2009). Such processes are irre-

placeable not only in the automotive body manufacturing

process (Valášek and Müller 2015), but also in other

manufacturing industries (He et al. 2020; Zhong et al.

2017), and generate a significant amount of IoT data

(Banea et al. 2018; Banea and Da Silva 2009). Thus, our

case of the German car manufacturer and its IoT data in the

context of the manufacturing process bonding seems par-

ticularly suitable and relevant for an automated assessment

of the completeness of IoT data.

To demonstrate and evaluate our probability-based

metric for completeness, we selected IoT data from the

German car manufacturer’s bonding process. To allow for

a rigorous evaluation, including thorough manual labeling

despite the time and effort involved, we limited our scope

to 22 industrial robots and the period from January 1st to

May 25th, 2021. Each industrial robot executes different

bonding programs over time, applying a varying number of

adhesive seams to different vehicle components, depending

on factors such as the type of adhesive being applied and

the specific vehicle model being manufactured. Success-

fully stored digital entities include technical information

about the bonding process, such as temperature and max-

imum pressure, as well as organizational information such

as the program executed, time stamp, and duration of

execution. To determine the completeness of the IoT data,

we assessed each industrial robot individually. As time

steps, we chose a so-called production day with a duration

of 24 h starting at 6 a.m. and including early, late, and

night shifts in their entirety, as commonly employed by the

car manufacturer when calculating KPIs. During the con-

sidered time period, over four million digital entities were

stored in the IoT database in 1,349 time steps of our

evaluation, each representing the number of digital entities

for one industrial robot during one production day. Of these

1,349 time steps, we used 616 to calibrate our metric (28

production days for each of the 22 robots). Thereby, the

first seven production days are used to derive an estimation

model (i.e., to train the model) and the subsequent

21 production days are used to assess the estimation error.

This left a total of 733 time steps remaining to calculate

and evaluate the values of our metric for completeness. To

rigorously evaluate the values of our metric, we worked

extensively with technical experts from the car manufac-

turer to laboriously derive the actual numbers of real-world

entities including using another database containing infor-

mation on the number of specific vehicles produced, and

manually investigating and reconciling the number of

adhesive seams for each vehicle model. Since this infor-

mation was not readily available and required significant

manual effort to obtain, this evaluation approach was only

possible for the limited sample size of 22 robots. Among

the resulting 733 time steps, a total of 697 (i.e., 95.1%)

were manually labeled as complete while the remaining 36

(i.e., 4.9%) showed missing entities. The tremendous effort

required to derive the actual number of real-world entities

for evaluation purposes emphasizes the need to develop a

metric for completeness of IoT data capable of accounting

for the underlying uncertainty about the number of real-

world entities.

5.2 Instantiation and Demonstration of the Practical

Applicability of the Metric

To determine the probability that the IoT data is complete

for given time steps, we instantiated both our basic model

with a fixed sample of reference values as well as our

extended model with a stepwise expansion of the sample of

reference values. For this purpose, we built on the German

car manufacturer’s Databricks platform, which gave us

access to a part of the Azure cloud’s data lake, where all

production data is stored. For both models, we used Meta’s

time series forecasting tool Prophet to estimate the number

of real-world entities. Prophet’s estimates are based on the

generalized additive regression model (Hastie and Tibshi-

rani 1987; Taylor and Letham 2018) and are known for

their efficacy and accuracy in accounting for trends, sea-

sonality, and holidays, while also incorporating regressor

values if available (e.g., related additional information

from another database) in the estimation model (Taylor and

Letham 2018). The Prophet model consists of a trend

component, a seasonal component, an event component

that allows for the integration of regressors, and the

residual error term. It is capable of representing long-term

linear or logistic trends as well as trend changes, capturing

periodic effects over multiple periods, and allowing the

inclusion of additional variables to be taken into account,

such as holidays or planned production breaks (Taylor and

Letham 2018). As a result, it is particularly suitable for

forecasting in complex and dynamic environments, excels

at automating tasks such as trend detection, and is capable

of providing accurate predictions even with limited his-

torical data while striking a balance between automation

and intuitive customizability (Jha and Pande 2021; Ning

et al 2022; Taylor and Letham 2018). Prophet’s technical

details and advantages align with our observations when

comparing several candidate time series models on the

German car manufacturer’s data, as it stood out as the best-

performing model as measured by Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE). Specifically,

we evaluated the performance of Prophet against classical

models such as (Seasonal) Autoregressive Integrated

Moving Average with eXogenous regressors
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((S)ARIMAX) and TBATS, as well as modern approaches

such as DeepAR, an architecture developed by Amazon

based on recurrent neural networks and Light Gradient

Boosting Machine (LightGBM), developed by Microsoft,

which uses gradient-boosting decision trees. Table 1 sum-

marizes the results of our comparison on data from the

German car manufacturer. Due to the reasons described

above and the superior performance in our comparison, we

chose the Prophet model for our instantiation.

For the first phase of our approach, the calibration of the

metric, we used a total of 28 time steps for each robot. Of

these 28 time steps, seven were used to derive the esti-

mation model, i.e., to train the Prophet time series model.

These trained models are then iteratively applied to the

remaining 21 time steps of the first phase to estimate the

corresponding number of real-world entities and thus

assess the distribution of the estimation error. With the

resulting 21 reference values for each time series, we

ensured a sufficiently large sample to apply the Grubbs test.

In the second phase of our approach, starting from the

29th day of each time series, we calculate the metric values

for the remaining time steps for each industrial robot. To

accomplish this, we estimate the number of real-world

entities for each time step and industrial robot using the

Prophet time series model derived in the first phase of our

approach. Then, the deviation between the estimated

number of real-world entities and the corresponding num-

ber of digital entities is calculated. Finally, we use the

Grubbs test based on the distribution of reference values

obtained in the previous phase to calculate the metric value

based on each deviation. In the extended model, the sample

of reference values is expanded after each time step (cf.

Sect. 4.3) by using each determined probability to correct

the deviation (possibly biased by a completeness problem)

by calculating the corrected number of digital entities using

Eq. (7).

After instantiating the metric, we automatically calcu-

lated metric values for all 733 time steps. Figure 4 shows

the distribution of the relative frequency of the metric

values in terms of probabilities in ten bins. For both

models, our approach mainly assigned either very low or

very high metric values for most time steps. This distri-

bution pattern of the estimated probabilities is beneficial

because it provides the basis for a clear and comprehen-

sible classification. Furthermore, these results show a

striking similarity between the depicted distributions and

the actual proportions of incomplete (4.9%) and complete

(95.1%) time steps present within the dataset.

5.3 Evaluation of the Metric Values

We evaluate our approach with respect to two different

aspects. First, we examine the metric values in terms of

probabilities regarding their reliability and discriminative

power. Second, we evaluate the performance of our

approach considering the classification into complete and

incomplete time steps. Thereby, we also compare our

results with those of the commonly used Six Sigma

approach.

Reliability refers to the agreement between estimated

probabilities and actually observed relative frequencies

(Murphy and Winkler 1977). In our context, reliability

means that the determined completeness probabilities

should correspond to the observed relative frequencies of

complete time steps. Reliability is often evaluated using the

reliability curve, which plots the estimated probabilities

against the observed relative frequencies. In addition,

reliability can be assessed quantitatively using the relia-

bility score, which is defined as the mean squared deviation

from the diagonal weighted by the number of pairs of data

in each bin (Murphy 1973). The left part of Fig. 5 shows

the reliability curve for both the basic and the extended

model. With the reliability curves closely following the

diagonal and reliability scores of 0.0026% (basic model)

and 0.0021% (extended model), the results show that our

approach provides reliable results for both versions. Con-

sidering the imbalance in the completeness assessment of

IoT data (i.e., many more time steps with complete IoT

data rather than time steps with incomplete IoT data), it is

crucial that the determined probabilities also have high

discriminative power. Thus, we assessed the discriminatory

power in terms of the area under the curve (AUC) under the

receiver operating characteristic (ROC) curve, which is a

commonly used choice to evaluate the discrimination of a

probability-based metric (Hanley and McNeil 1982; Hos-

mer et al. 2013). To get the ROC curve, the classification

threshold is varied and the corresponding true positive rate

is plotted against the false positive rate. The ROC curves

for both models are shown in the right part of Fig. 5. With

the ROC curves closely aligning with perfect discrimina-

tion and ROC AUCs of 92.62% (basic model) and 97.64%

(extended model), the discrimination is deemed

Table 1 Performance comparison based on MAE and RSME across

different candidate models for time series forecasting using data from

the car manufacturer (ranked by MAE)

MAE RMSE

Prophet 624.6 1123.8

LightGBM 724.7 1233.7

TBATS 796.7 1172.6

DeepAR 865.7 1387.2

ARIMAX 907.2 1620.5

SARIMAX 959.6 1786.9

Best performance in bold
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outstanding (Hosmer et al. 2013). Overall, these results

support that the probabilities provided by our approach are

reliable and have high a discriminative power.

In some applications, it is necessary to perform a binary

classification into time steps with complete and incomplete

IoT data. In the following, we evaluate the performance

with respect to such a classification using the common

performance measures accuracy, precision, recall, and F1-

measure (i.e., the harmonic mean of precision and recall).

To determine the values for these performance measures,

we use the probabilities estimated in the versions of our

approach and classify metric values by assigning them to

the most likely class, i.e., we use the probability 0.5 as a

natural classification threshold. As a benchmark to com-

pare the performance, we used a method based on the idea

of the Six Sigma management system. The method

originated as a general quality management approach and

emphasizes the statistical aspect. The name is derived from

the statistical Six Sigma principle, which states that more

than 95% of all observations of random variables (under

certain weak conditions) lie in the interval ½l� 3r; lþ
3r� (where l is the mean and r the standard deviation of

the observations) (Pukelsheim 1994). In quality manage-

ment, this describes the goal of having more than 95% of

all outputs within a specified tolerance range. This means

that the principle can also be used for outlier detection. The

idea is that outputs outside the tolerance range can be

considered outliers. Mathematically, this means that values

outside the interval l� 3r; lþ 3r½ � are defined as out-

liers. Here, we determine both the mean and the standard

deviation (‘sigma’) of the reference values of each time

series and use a fixed decision boundary of three sigma

Fig. 4 Relative frequencies of the metric values in form of probabilities

Fig. 5 Reliability curves (left) and ROC curves (right) of the basic and extended version of our metric
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above the mean to determine whether the IoT data is

complete or incomplete for each time step. In the IoT

context, Six Sigma has a major advantage in quality

management: The high availability of data means that

production processes can be constantly monitored and

controlled (Rahimi et al. 2018; Valderas et al. 2023). As a

result, faulty processes can be quickly identified and

improved (Tissir et al. 2023). For similar reasons, the Six

Sigma method is also frequently used for outlier detection

in the IoT context (Huang et al. 2019; Kale et al. 2022) and

manufacturing (Lee and Lee 2022; Pugna et al. 2016),

among others (Čampulová et al. 2017). It is expected to

provide convincing results, as it has shown good perfor-

mance in similar settings (Čampulová et al. 2017; Han and

Lee 2002; Huang et al. 2019; Kale et al. 2022; Lee and Lee

2022; Pugna et al. 2016). In addition, it is easy to imple-

ment and simple to use. Therefore, for our use case, it

seems to be a particularly suitable baseline to assess the

performance of our metric. To this end, we followed

existing implementations from the literature that have

already applied this method in the IoT context (cf. e.g.,

Huang et al. 2019). Specifically, we examined which of the

differences in observed values for each robot exceeded the

respective deviation of 3r and classified them as outliers

and thus as completeness defects.

On the given dataset, our approach provides very

promising results for both the basic as well as the extended

model, especially – as expected – for the majority class,

i.e., the complete class. However, due to the given imbal-

ance of complete and incomplete time steps, the crucial

performance metrics refer to the minority class, i.e., the

incomplete class, as this class is more difficult to predict

and generally of higher interest (Sun et al. 2007, 2015; Yin

et al. 2013). For all performance measures considered, the

two instantiations of our approach outperform the Six

Sigma method (cf., Table 2).

The basic model is able to identify 71,43% of the time

steps with incomplete data (recall), while the extended

model is even able to identify 77.14%. Moreover, our

approach is 78.13% correct with the basic model and

77.14% correct with the extended model (precision) when

identifying time steps with incomplete IoT data. This sig-

nificantly outperforms the Six Sigma method, which only

achieves a precision of 48.08%. Consequently, the F1-

measure provides good results for both of our models with

74.63% (basic model) and 77.14% (extended model),

especially in comparison to the Six Sigma method with

57.47%. Overall, the extended model shows superior per-

formance in assessing the completeness of IoT data com-

pared to the basic model, once again highlighting the

benefits of a larger sample size and the ability to calculate

weighted averages based on the metric values in terms of

probabilities. Both instantiations result in very high accu-

racies of over 97% clearly outperforming the Six Sigma

method frequently used in comparable settings (Čam-

pulová et al. 2017; Han and Lee 2002). In conclusion, these

results confirm that the values of our proposed metric – for

both the basic and the extended model – are reliable and

can discriminate very well between complete and incom-

plete IoT data.

Convinced by the ease of implementation and favorable

evaluation, the German car manufacturer adopted our

metric to assess IoT data completeness for all bonding

processes across all production sites and other techniques

such as welding. In addition, dashboards were established,

displaying real-time completeness defects for individual

robots. In the final discussions, the data scientists of the

German car manufacturer were very satisfied with respect

to the metric, pointing out that for the first time it is now

possible to systematically and comprehensively monitor

the completeness of their IoT data. This also enables

effective monitoring and optimization of production pro-

cesses for increased efficiency.

6 Discussion and Conclusion

In this section, we discuss theoretical and practical impli-

cations as well as limitations of our work. Finally, we

conclude with a brief summary.

6.1 Theoretical Contributions

In this paper, we designed and evaluated a novel proba-

bility-based metric for (relational) completeness of IoT

data. Our contribution to research is twofold. First, unlike

Table 2 Performance measures

for classification into complete

and incomplete IoT data using

both instantiations of our

approach as well as the Six

Sigma method

Best performance in bold

Accuracy (%) Recall (%) Precision (%) F1-measure (%)

Basic model Incomplete 97.68 71.43 78.13 74.63

Complete 99.00 98.57 98.79

Extended model Incomplete 97.82 77.14 77.14 77.14

Complete 98.85 98.85 98.85

Six sigma method Incomplete 94.95 71.43 48.08 57.47

Complete 96.13 98.53 97.32
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existing metrics, which assume that the exact number of

real-world entities is known exactly or that the real-world

entities appear in a regular pattern, our approach prevents

the closed-world assumption. Indeed, the closed-world

assumption is often not satisfied in practical applications

since the number of real-world entities is typically

unknown. This uncertainty about the definite number of

real-world entities arises from the high number of potential

sources of error combined with the high velocity and large

volume of IoT data (Bansal et al. 2021; Fernandes and

Wagh 2019). Thus, our metric provides a new perspective

for assessing the completeness of IoT data, which enables a

much broader range of applications, by relying only on an

estimation method and the easily obtainable number of

digital entities. Second, unlike existing approaches, our

proposed metric accounts for uncertainty by leveraging

probability theory and provides an indication rather than a

binary score. Such binary scores cannot reflect the actual

uncertainty associated with the completeness of IoT data

and do not provide a measure of the degree of confidence

with respect to the classification into complete and

incomplete data. Thus, they express a certainty that does

not exist. In contrast, our metric values are interval-scaled

and can be unambiguously interpreted as probabilities that

adequately reflect the uncertainty associated with the

occurrence of completeness defects. Furthermore, the

metric values can be integrated into expected value cal-

culations in a methodically well-founded manner. This also

allows for extensions as presented in Sect. 4.3, which can

be especially important for practical applications by sup-

porting decision-making with higher quality results even in

the case of limited data availability (Liu et al. 2020; Teh

et al. 2020).

6.2 Practical Implications

Next to the theoretical contributions, our findings also point

to practical implications. First, our evaluation supports the

proof-of-concept of our metric, as it shows that the

obtained metric values exhibit very good discrimination

between incomplete and complete IoT data, especially

when compared to the widely used Six Sigma method. This

finding is well in line with previous research that demon-

strates the potential and advantages of probability-based

approaches to assess (other dimensions of) data quality

(Heinrich and Klier 2015; Klier et al. 2021). Therefore, our

metric can improve data-driven decision-making by

allowing data quality and its uncertainty to be represented

and incorporated into decision-making, thereby enhancing

the quality of decisions made and instilling confidence in

their outcomes. Overall, this leads to better decisions and

has the potential to reduce the cost, time, and effort asso-

ciated with incomplete IoT data, providing tangible

benefits in real-world applications (Côrte-Real et al. 2020;

Liu et al. 2020). Second, to realize its potential, the

approach must be economically feasible. Specifically, this

means that the expected benefits of applying the metric

must exceed the costs. There are different types of benefits

and costs associated with data quality initiatives and met-

rics, all of which typically depend on the context of

application (cf. e.g., Batini and Scannapieco (2016) for an

overview). In the concrete setting used to demonstrate our

metric, the German car manufacturer was faced with a

situation where data-driven projects (e.g., regarding pre-

dictive maintenance) failed due to poor data quality and, in

particular, incomplete data. Based on our metric, the

completeness of data can now be actively measured and

managed to avoid the delay or even cancellation of such

projects, which leads to economic benefits. These benefits

outweigh the costs of applying our metric. More con-

cretely, little effort of only nine person-days was necessary

to instantiate and evaluate our metric after its development.

Moreover, the metric can be adapted to other IoT-sup-

ported manufacturing processes with minimal effort. In this

vein, the German car manufacturer has implemented the

metric for further manufacturing processes, such as stud

welding, and established data quality dashboards that

provide real-time information on completeness for all

robots involved in production. In summary, our metric can

help to unlock the potential of data, and the low effort

required to apply it makes it economically feasible in many

contexts.

6.3 Limitations and Future Work

Despite its merits, our work also has limitations that can be

a starting point for future research. In our demonstration

and evaluation, we focused on a single case of IoT data

regarding the bonding process of a German car manufac-

turer. Further research could investigate the generalizabil-

ity of the approach to other cases, such as other

manufacturing processes or IoT data in other contexts.

Moreover, our approach provides metric values in the form

of probabilities for the completeness of IoT data for pre-

defined time steps (e.g., a production day). However, it

does not provide additional insight into the specific real-

world entities that are missing and the underlying reasons

for the completeness defects. Future research could for

example investigate the use of our approach in combination

with predictive maintenance to detect potential complete-

ness problems in advance and thus avoid them in the first

place. Furthermore, while completeness is one of the most

important data quality dimensions for IoT data (Côrte-Real

et al. 2020; Liu et al. 2020; Miao et al. 2022), our approach

does not consider other potential data quality defects such

as inaccurate data. Future research could incorporate our
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approach into a more holistic IoT data quality framework

that combines methods for accuracy assessment (Omar

et al. 2020; Tkachenko et al. 2020) and other data quality

dimensions (Bai et al. 2018; Heinrich and Hristova 2016).

6.4 Conclusion

Assessing the completeness of IoT data in an automated

way is an important issue in both research and practice. In

this paper, we propose a probability-based approach for

this task. It aims to determine the probability that an IoT

database is complete for a given time step based on the

detection of outliers regarding the deviation between the

estimated number of real-world entities and the number of

digital entities. Existing approaches are limited in their

ability to accurately identify completeness defects in IoT

data since they either assume that the definite number of

real-world entities is known exactly or that the real-world

entities appear in regular patterns. In fact, existing

approaches cannot cope with the uncertainty arising from

the high number of potential sources of error combined

with the large volume and high velocity of IoT data. Our

proposed probability-based metric for completeness of IoT

data addresses these issues and yields interpretable metric

values representing the probability that an IoT database is

complete for a given time step. We demonstrate the prac-

tical applicability of the metric and evaluate its values

based on a real-world case of a large German car manu-

facturer. The results show that the provided metric values

are useful and informative and can well discriminate

between complete and incomplete IoT data. The positive

evaluation, along with the practical applicability of our

metric resulted in the car manufacturer introducing the

metric to assess the completeness of all bonding processes

across all production facilities.
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