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1. Introduction
The theory of input demand is based on aggregate quantities and prices whose existence
is often debated. From the work of Leontief [1947] and Gorman [1995] it is clear that the
conditions enabling to represent exactly a bunch of goods by a composite commodity are
stringent. Whether these requirements are fulfilled or not by production technologies
and consumer preferences can be investigated empirically once the corresponding theo-
retical conditions have been given an observable content. Since Berndt and Christensen
[1973], Russell [1975] and Blackorby and Russell [1976], it is well known that inputs and
prices can be aggregated within a technology — a structure called homothetic separa-
bility — if and only if the elasticities of scale and substitution satisfy some restrictions.
As the elasticities can be estimated, the road to empirical investigations is paved, and
following Berndt and Christensen [1974] a substantial number of empirical studies have
been published.
Two problems related to homothetic separability are addressed in this paper. First,

aggregates that are implicitly defined by homothetic separability are nonlinear functions
of elementary goods or prices, and do not correspond to the aggregate variables that
are provided by statistical offices. Available aggregate quantities and prices are usually
additive and/or linearly homogeneous in elementary quantities (or prices), as Laspeyres
and Paasche indices for example. They can be consistently used in empirical research
only if the production technology is additively and/or homothetically separable. The
second problem with homothetic separability goes in the reverse direction. Requiring
aggregators to be homothetic implies restrictions on the production technology that are
not necessary for an aggregate representation of the technology. Tests can therefore re-
ject homothetic aggregation although an aggregate quantity in fact exists, as highlighted
by Blackorby, Schworm and Fisher [1986].
This paper copes with these problems and provides a formal characterization of eight

different structures that allow to exactly represent a bundle of inputs (or outputs) by
a scalar. These characterizations are then used for empirically investigating the possi-
bility to aggregate three different types of labour inputs and two kinds of outputs. A
further contribution of the paper is that it considers both aggregation of inputs that are
optimally allocated and aggregation of quasi-fixed outputs. It is shown that different
types of flexible labour inputs can be aggregated if and only if these demands react
“similarly” to a change in the explanatory variables. Regarding the quasi-fixed outputs,
they can be aggregated if and only if they exert a “similar” impact on all input demand
functions. These conditions restrict the way the educational structure of labour and
the output structure are allowed to be related. If the observed shift in the educational
structure of labour is in fact related to the shift in the output structure, results obtained
from aggregate models can be suspected of aggregation biases.
The empirical part of the paper investigates the validity of different aggregate repre-

sentations for German manufacturing industries. Aggregation over three flexible labour
inputs (workers with a university degree, those with a vocational degree and those with-
out formal diploma) and over two quasi-fixed outputs (production sold in Germany and
exports) is considered. Not only is the share of exports in total production in German
manufacturing high — it represented 23% of total output in 1978 —, its importance also
grew over time to reach 31% in 1994. During this period the educational structure of
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labour inputs also drastically changed. Whereas the number of workers without any
formal degree declined by about 46%, the number of workers with a vocational degree
increased by 12% and those with a university degree almost doubled. This paper shows
that the question about the validity of aggregates for labour and output is linked to the
degree of interrelation between the structure of outputs and labour inputs.
Empirical investigations searching for separable structures, however, face a further

important problem first highlighted by Blackorby, Primont and Russell [1977]: the im-
position of separable structures leads locally flexible functional forms to lose their flexi-
bility property. In that context, it may happen that separability is rejected, not because
it is de facto invalid, but just because the restricted function is not able anymore to
approximate an arbitrary separable function. This problem has been tackled by Diewert
and Wales [1995], who present a specification that does not lose its local flexibility once
homothetic separability is imposed. This approach is adopted here to handle separable,
homothetic and additive functional structures.
Starting with a multi-output and multi-labour inputs cost function, I first give nec-

essary and sufficient conditions enabling the outputs and labour inputs to be exactly
represented by a scalar aggregate quantity (Section 2). Five different types of output
aggregation and three types of labour input aggregation are characterized. As within
the cost minimization framework outputs are fixed and labour inputs are flexible, the
conditions under which outputs and labour inputs can be aggregated are distinct. The
necessary and sufficient conditions for eight types of input and output aggregation are
all stated nonparametrically, mainly in terms of elasticities of scale and substitution.
These results can then be used for empirical investigation (Section 4). For that pur-
pose, I rely on a Box-Cox specification for the cost function (Section 3), and discuss the
outcome of the tests for functional structure in Section 5.

2. The structure of multi-output technologies
After introducing the notations and defining several structures which allow to aggregate
goods within a technological relationship, I discuss their implications for input demand
adjustments.

2.1 The technology

Let y = (yd, yx)
> be a vector of outputs, where yd and yx denote production sold on the

domestic market and exports, respectively. Similarly, the vector z =
¡
c>, v>

¢> groups all
variable inputs: labour inputs denoted by the sub-vector c = (ch, cs, cu)

> and non labour
inputs v = (vk, vm)

> , comprising capital and intermediate material respectively. The
subscript h stands for high-skilled labour, s for skilled labour, u represents unskilled
workers; vk denotes capital and vm intermediate materials. The corresponding price
vectors are w = (wh, ws, wu)

> for wages and q = (qk, qm)
> for input prices. A time trend

t is also included as explanatory variable in the technology for indicating that it may
change over time in an a priori unrestricted way.
The technological relationship between inputs and outputs is represented by the trans-
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formation function f such that:
f (z, y, t) = 0, (1)

where f is twice continuously differentiable. The technology is strictly quasi-concave in
inputs in the sense that the inverse functions in any output yj that are obtained from
(1) are (locally) strictly quasi-concave in (c, v).
Notice that both outputs yx and yd appear as arguments of the technology. In some

cases discussed by Hall [1973] and Kohli [1983], the technology (1) exhibits some addi-
tional structure which has interesting implications for the relationship between labour
demands and exports. The technology f is said to be non-joint in inputs, when there
exist functions Fd and Fx such that (1) can be equivalently represented by

yd = Fd

³
cd, vd, t

´
and yx = Fx (c

x, vx, t) , (2)

with cd + cx = c and vd + vx = v. In this case, the domestic and exported outputs
are produced independently, using their own inputs

¡
cd, vd

¢
and (cx, vx) respectively, and

their own production functions Fd and Fx. There are neither economies nor diseconomies
of joint production.
The technology is non-joint in outputs and non-labour inputs when the labour input

requirement of a given qualification is independent from any other labour qualifica-
tions, or more precisely, when there exist functions Fh, Fs and Fu, such that (1) can be
equivalently represented by

ch = Fh

³
vh, yh, t

´
, (3)

cs = Fs (v
s, ys, t) , (4)

cu = Fu (v
u, yu, t) , (5)

with vh + vs + vu = v and yh + ys + yu = y. This structure arises for example when
production is executed in different plants. In the first plant (3), only labour type h is
required, and combined with inputs vh, it produces the quantities yh of the products
with technology Fh. The second and third plants, (4) and (5), use labour types s and
u, respectively.
Structures that are more interesting in this paper are those allowing to represent out-

puts and labour inputs by a scalar aggregate. Those structures are thoroughly discussed
in Blackorby, Primont and Russell [1978] and Gorman [1995]. A technology is separable
in outputs when there exist some continuously differentiable functions Gy and gy such
that for all values of the arguments

f (c, v, yd, yx, t) = Gy (c, v, gy (yd, yx) , t) . (6)

The real valued aggregator function gy : R2+ → R+, which is increasing in both arguments,
aggregates both types of outputs into a single composite output, so that Gy has one
argument less than f. When the technology is separable in y, the marginal rate of
substitution between exports and domestic outputs is independent of any other input.
Similarly, the technology is separable in labour inputs when

f (c, v, y, t) = Gc (gc (ch, cs, cu) , v, y, t) , (7)

where the labour input aggregator gc : R3+ → R+ is increasing and continuously differen-
tiable.
Most aggregate measures provided by statistical offices are homogeneous and addi-
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tive in the elementary quantities. For that reason it is useful to specialize the above
definitions, and allow the function gy or gc to be linearly homogeneous, in which case
the technology is said to be homothetically separable in the respective partition. When
gy is additive, the technology is additively separable in outputs and

f (c, v, yd, yx, t) = Gy (c, v, gx (yx) + gd (yd) , t) . (8)

Similarly, when gc is additive in (7),

f (c, v, yd, yx, t) = Gc (gh (ch) + gs (cs) + gu (cu) , v, y, t) , (9)

and f is said to be additively separable in labour inputs. In (8), exports and domestic
outputs measured in “efficient units” gx (yx) and gd (yd) are perfectly substitutable. Both
the requirements of homogeneity and additivity can be combined to obtain a technology
which is homothetically additively separable in y (respectively c). When the functions gx
and gd are the identity, exports and domestic outputs are perfectly substitutable; from
the technological point of view, both goods are identical.

2.2 Implications for cost and labour demand functions

The minimal variable costs for producing a bundle y are given by the cost function

c (w, q, y, t) = min
c,v

n
w>c+ q>v : f (c, v, y, t) = 0

o
(10)

= w>c∗ (w, q, y, t) + q>v∗ (w, q, y, t) .

As input demand functions are easily obtained from c, the cost function is commonly
relied on in empirical analysis. From the definition (10), it is clear that any structure
imposed on f will be inherited in some way by the cost function. When production is
non-joint in inputs for example, we can write

c (w, q, yd, yx, t)

= min
cd,cx,vd,vx

n
w>

³
cd + cx

´
+ q>

³
vd + vx

´
: yd = Fd

³
cd, vd, t

´
∧ yx = Fx (c

x, vx, t)
o

= min
cd,vd

n
w>cd + q>vd : yd = Fd

³
cd, vd, t

´o
+ min

cx,vx

n
w>cx + q>vx : yx = Fx (c

x, vx, t)
o

= Cd (w, q, yd, t) + Cx (w, q, yx, t) . (11)

A simple test for the technology to be nonjoint in inputs consists in checking whether
the marginal cost of domestic production is independent of exports:

∂2c

∂yd∂yx
= 0. (12)

By Shephard’s Lemma, the optimal labour demands obtained under input nonjointness
are given by:

c∗j (w, q, yd, yx, t) = cdj (w, q, yd, t) + cxj (w, q, yx, t) , j ∈ {h, s, u} .
The demand for each input can be seen as the sum of two components: the input demand
required for producing domestic goods and the one used for producing exports.
Similarly, it can be shown that the technology is non-joint in outputs and non-labour

inputs, if and only if (iff)

c (w, q, y, t) = Ch (wh, q, y, t) + Cs (ws, q, y, t) + Cu (wu, q, y, t) , (13)
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or equivalently in terms of labour demands,

c∗j (w, q, y, t) = Lj (wj , q, y, t) , j ∈ {h, s, u} .
In that case, there is no substitution between the different labour inputs, that is, the
cross price labour elasticities ε

³
c∗j , wi

´
are identically zero:

ε
¡
c∗j , wi

¢
≡

∂c∗j
∂wi

wi

c∗j
= 0, i, j ∈ {h, s, u} , i 6= j. (14)

It is well known that when the technology is separable in outputs, the cost function
can be written as

c (w, q, yd, yx, t) = By (w, q, gy (yd, yx) , t) , (15)
where the aggegator gy is the same as in (6). This structure is equivalent to:

∂

µ
∂c/∂yd
∂c/∂yx

¶
/∂wi = ∂

µ
∂c/∂yd
∂c/∂yx

¶
/∂qj = ∂

µ
∂c/∂yd
∂c/∂yx

¶
/∂t = 0, i ∈ {h, s, u} , j ∈ {k,m}

(16)
or in terms of elasticities

ε (z∗i , yd)

ε (c, yd)
=

ε (z∗i , yx)

ε (c, yx)
, i ∈ {h, s, u, k,m} , (17)

yd∂
2c/∂t∂yd
ε (c, yd)

=
yx∂

2c/∂t∂yx
ε (c, yx)

,

Restrictions (17) mean that domestic production and exports have a similar impact
on a given input demand, since the (normalized) elasticity of input z∗i with respect
to domestic output and exports are identical. Besides, the impacts of yd and yx on
productivity, measured by ∂c/∂t, must be similar.
The technology is homothetically separable in outputs when, in addition to (17), gy

is linearly homogeneous in y. The following result, proven in Appendix A, is useful for
identifying that structure from the cost function c.

Proposition 1. The technology f is homothetically separable in outputs, iff condi-
tions (17) and

ε (∂c/∂yd, yd) + ε (∂c/∂yd, yx) = ε (∂c/∂yx, yd) + ε (∂c/∂yx, yx) (18)

are satisfied.

This result will be used for testing homothetic separability in outputs. Notice that
condition (18) does not restrict the level of overall returns to scale.
In the case where the cost function is additively separable in outputs,

c (w, q, yd, yx, t) = By (w, q, gd (yd) + gx (yx) , t) , (19)

which is satisfied iff in addition to (17), Sono’s independence criteria is also fulfilled:2

∂2
µ
ln

∂c/∂yd
∂c/∂yx

¶
∂yx∂yd

= 0. (20)

In (19), the function gy = gd + gx is not necessarily homothetic in y. As most aggrega-
tors available for empirical investigation are both homogeneous and additive, it makes

2 See Blackorby, Primont and Russell [1978, p.159].
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also sense to test for whether (17), (18) and (20) are simultaneously satisfied, which
corresponds to homothetic additive separability.
Moreover, price and quantity indices commonly published by statistical institutes are

weighted sums of elementary prices and quantities. Laspeyres and indices for instance
take the form gy (y) = δdyd + δxyx, where δd and δx are constant weights. This situation
can be coined linear separability in outputs.

Proposition 2. The technology f is linearly separable in outputs, iff conditions (17)
and

ε (∂c/∂yd, yo) = ε (∂c/∂yx, yo) , o = d, x (21)
are satisfied.

It is immediate to see that (21) implies (18). Still more restrictive, the requirement
∂c

∂yd
=

∂c

∂yx
, (22)

allows to further simplify the cost function which then becomes:3

c (w, q, yd, yx, t) = By (w, q, yd + yx, t) . (23)

In this last case, domestic and exported outputs are strictly identical goods, from a
technological point of view. Marginal variations of yd and yx have the same impact on a
given input demand. For later reference it is useful to note that although (22) consists
only of one equality restriction, it is more stringent than the eight equality restrictions
(17) and (21).
For the labour inputs which, contrary to outputs, are optimally adjusted, it is gen-

erally assumed that the aggregator gc is linearly homogeneous. Under this condition,
separability of f in labour inputs is equivalent to separability of the cost function in
wages. This point is discussed in detail by Diewert and Wales [1995] for example. In-
deed, it is then possible to write

c (w, q, y, t) = min
c,v

n
w>c+ q>v : Gc (gc (c) , v, y, t) = 0

o
= min

c

n
w>c+Ac (gc (c) , q, y, t)

o
(24)

= min
c,L

n
w>c+Ac (gc (c) , q, y, t) : gc (c) = L

o
,

where
Ac (gc (c) , q, y, t) = min

v

n
q>v : Gc (gc (c) , v, y, t) = 0

o
(25)

denotes a restricted cost function which is separable in labour inputs. When the labour
input aggregator gc is linearly homogeneous it is possible to further simplify c:

c (w, q, y, t) = min
L
{gw (w)L+Ac (L, q, y, t)} (26)

= Bc (W, q, y, t) ,

3 To see that (22) implies (23) notice that a cost function satisfying (22) also satisfies (16) and (20), and can therefore
be written in the form (19). Then

∂c

∂yd
=

∂c

∂yx
⇒ ∂gd

∂yd
(yd) =

∂gx
∂yx

(yx) = δ,

where δ is a constant. Thus gd (yd) = δyd+δd, gx (yx) = δyx+δx and gd (yd)+gx (yx) = δ ·(yd + yx)+δd+δx. Conversely,
(23) also implies (22).
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where
W = gw (w) ≡ min

c

n
w>c : gc (c) = 1

o
can be interpreted as an aggregate wage corresponding to one unit of aggregate labour
L. The unrestricted cost function Bc depends only on the aggregate wage level W.
Briefly, when the technology is homothetically separable in labour inputs then the cost
function c is homothetically separable in labour input prices (and conversely). Testing
for homothetic separability can be achieved on the basis of the following restrictions:

∂

µ
∂c/∂wi

∂c/∂wj

¶
/∂rb = 0, (27)

for i, j ∈ {h, s, u} and rb ∈ {qk, qm, yd, yx, t} . In terms of elasticities, homothetic separa-
bility is equivalent to4

ε (c∗i , rb) ≡
∂c∗i
∂rb

rb
c∗i
=

∂c∗j
∂rb

rb
c∗j
≡ ε

¡
c∗j , rb

¢
. (28)

The elasticities of any distinct labour inputs with respect to a given explanatory variable
are identical. Labour demands for different skills must react identically with respect to
changes of any of the explanatory variables qk, qm, yd, yx, t. There are 10 independent
equalities involved in (28).
In most empirical contributions, homotheticity of gc is taken for granted. In order to

avoid this additional restriction on the function gc, it is of course possible to rely on the
restricted cost function

a (c, q, y, t) = min
v

n
q>v : f (c, v, y, t) = 0

o
, (29)

which is equal to Ac of (25) iff

∂

µ
∂a/∂ci
∂a/∂cj

¶
/∂rb = 0, (30)

for i, j ∈ {h, s, u} and rb ∈ {qk, qm, yd, yx, t} . The following result, proven in Appendix A,
gives the corresponding restrictions on the unrestricted labour demand elasticities:

Proposition 3. Under the assumption of cost minimization, the following statements
are equivalent:
(i) The technology f is separable in labour inputs,
(ii) The matrix

Dc ≡
∙

∂c∗

∂q>
∂c∗

∂y>
∂c∗

∂t

¸
has at most rank one; or equivalently, the matrix

Ec ≡
£
ε
¡
c∗, q>

¢
ε
¡
c∗, y>

¢
ε (c∗, t)

¤
≡

⎡⎣ ε
¡
c∗h, qk

¢
ε
¡
c∗h, qm

¢
ε
¡
c∗h, yd

¢
ε
¡
c∗h, yx

¢
ε
¡
c∗h, t

¢
ε (c∗s, qk) ε (c∗s, qm) ε (c∗s, yd) ε (c∗s, yx) ε (c∗s, t)
ε (c∗u, qk) ε (c∗u, qm) ε (c∗u, yd) ε (c∗u, yx) ε (c∗u, t)

⎤⎦
has at most rank one.

4 The time “elasticities” are in fact growth rates, defined as

ε (c∗i , t) ≡
∂c∗i
∂t

1

c∗i
.

They give the percentage change in labour of qualification i as time goes by by 1 unit (a year).
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(iii) For any i, j ∈ {h, s, u} and rb ∈ {qk, qm, yd, yx, t} ,

ε (c∗i , rb)
5X

n=1

ε
¡
c∗j , rn

¢
= ε

¡
c∗j , rb

¢ 5X
n=1

ε (c∗i , rn) . (31)

The conditions (31) of Proposition 3 also restrict the way in which prices, output
growth and the time trend influence the demands for different qualifications of workers.
Like (28), this results imposes some similarity on how different labour demand react to
changes in the same explanatory variable. Proposition 3, however, allows to test for sep-
arability in labour inputs which are optimally allocated, without assuming homogeneity
of the aggregator. It can be seen that this result is implied by homothetic separability in
c: when the cost function is Bc (gw (w) , q, y, t), the Hessian matrix with respect to w and
(q, y, t) has, indeed, rank one. Point (iii) gives the necessary and sufficient conditions
for separability in c in terms of the elasticities of scale and substitution. As the sums
over b of the left and right hand side of (31) are always equal, there are less (indepen-
dent) restrictions involved in (31) than in (28). A careful count indicates that 7 out of
15 equalities in (31) are dependent, letting 8 independent restrictions left in condition
(iii). The requirements (31) are not only less numerous but also weaker than those (28)
prevailing under homothetic separability. Indeed, homogeneity of gc in addition implies
that

P
n ε
³
c∗j , rn

´
=
P

n ε (c
∗
i , rn) , making (31) to coincide with (28) (see Koebel [2001]

for details).
Concerning additive separability in labour inputs, the following result is useful for

testing that structure:

Proposition 4. The technology f is additively separable in labour inputs iff condi-
tions (31) and

ε (c∗s;wu) [ε (c
∗
h;ws) + ε (c∗h;wh)] = ε (c∗h;wu) [ε (c

∗
s;wh) + ε (c∗s;ws)] (32)

ε (c∗u;wh) [ε (c
∗
s;wu) + ε (c∗s;ws)] = ε (c∗s;wh) [ε (c

∗
u;ws) + ε (c∗u;wu)]

are satisfied.

The two requirements (32) of Propositions 4 restrict the admissible values of own
and cross price labour demand elasticities. Notice that when labour inputs cannot be
substituted for each other, i.e. when all elasticities are equal to zero, (32) is satisfied. A
technology which is additively separable in labour input is therefore more general than
a technology that is nonjoint in (y, v) .
As labour inputs are optimally allocated, it does not make much sense to test whether

the different qualifications of labour are identical from a technological point of view.
Indeed, such a technology would lead the production unit to use a single labour input:
the cheapest one. This is observed at no observation of our sample.
Briefly, from this discussion on functional structure it can be seen that separability

conditions imposes two different kinds of restrictions on labour demands. Whereas
separability imposes restrictions between the goods belonging to the separable group
and those outside, homothetic and additive separability restrict both the relationships
within aggregated and between aggregated and non-aggregated goods.
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3. The empirical model
A version of Berndt and Khaled’s [1979] Box-Cox cost function, extended to nest both
the normalized quadratic and the translog functional forms by Koebel, Falk and Laisney
[2003] is considered here. Let p =

¡
w>, q>

¢> be the price vector. The multiple-output
cost function is given by:

c (p, y, t;β, γ;µ, θ) =

(
q>µ (γ2C (P, Y, t;β) + 1)

1/γ2 for γ2 6= 0
q>µ exp (C (P, Y, t;β)) for γ2 = 0

, (33)

where, in a first stage,

C (P, Y, t;β) = βC +BPP +BY Y + βCtt (34)

+
1

2
P>BPPP +

1

2
Y >BY Y Y + βttt

2

+P>BPY Y + P>BPtt+ Y >BY tt.

(This definition of C will be amended later.) Some restrictions are placed on the para-
meters in order for the Hessian of the cost function to be symmetric in p and y and for
parsimony:

ι>5 BP = 1, BPP = B>PP , BY Y = B>Y Y , (35)
ι>5 BPP = 0, ι>5 BPY = ι>5 BPt = 0,

where ι5 denotes a (5× 1)-vector of ones.
The components Pi and Yj of the vectors P and Y are Box-Cox like transformations

of the corresponding variables pi and yj:5

Pi = bi (p) =

⎧⎨⎩
¡
pi/q

>θ
¢γ1

γ1
for γ1 6= 0

ln
¡
pi/q

>θ
¢

for γ1 = 0

, i = k, h, s, u,m. (36)

Yj = bj (yj) =

⎧⎨⎩
y
γ1
j

γ1
for γ1 6= 0

ln yj for γ1 = 0

, j = d, x. (37)

The parameters α =
³
β>, γ>

´>
have to be estimated. The (5× 1)-vectors µ and

θ comprise fixed weights, which are defined below, so that q>µ and q>θ are kinds of
Laspeyres index for non-labour costs. Note that q>θ is used to ensure that the functions
bi and C are homogeneous of degree zero in prices, and that the multiplicative term q>µ
appearing in (33) then guarantees the linear homogeneity in prices of c.
The two parameters γ1 and γ2 capture the way that variables yj , pj and c are changed

by the Box-Cox transformations bi. For the special case in which γ1 = 1 and γ2 = 1, the
normalized quadratic functional form is obtained, whereas for γ1 → 0 and γ2 → 0, (33)
coincides with the translog. Other usual functional forms that are nested within (33)
are discussed by Koebel, Falk and Laisney [2003].

5 With the functionnal form (34) and restrictions (35), both transformations Yj = y
γ1
j /γ1 and Yj = y

γ1
j − 1 /γ1,

yield the same cost function.
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4. On the separability-inflexibility debate
Now that a parametric specification has been chosen, it is interesting to study which
restrictions on the parameters of the cost function correspond to the above restrictions
on the elasticities of scale and substitution.
A cost function is said to be (locally) flexible when it is able to approximate the level

as well as all first and second order derivatives of a twice continuously differentiable
cost function at a given point. This concept, first defined by Diewert [1974], initiated
numerous contributions in the fields of production and consumer analysis. It is not
difficult to see that the Box-Cox specification of this paper, yielding some well known
locally flexible specifications as special cases, is itself flexible. Applying Blackorby and
Diewert [1979, Theorem 6] allows to conclude that the (unknown) technology dual to
the Box-Cox cost function is flexible too.
The main problem with the functional form (33)-(34) is highlighted by Blackorby,

Primont and Russell [1977, 1978]: once separability is imposed globally, locally flexible
functional forms often lose their flexibility property. In that context, it may happen that
separability is rejected, not because it is de facto invalid, but just because the restricted
function is not able anymore to approximate an arbitrary separable function.
Consider, for instance, the case of weak separability in outputs for illustrating this

drawback. The cost function c is weakly separable in y iff (16) holds, a condition which
can be written in the Box-Cox case as:6

βjx

³
βd + βdxYx + βddYd + P>BPd + βtdt

´
(38)

= βjd

³
βx + βxxYx + βxdYd + P>BPx + βtxt

´
,

for j = h, s, u, k,m, t. These equalities are satisfied iff

βdβjx − βxβjd = 0 (39)
βjdβix − βjxβid = 0,

for j ∈ {h, s, u, k,m, t} and i ∈ {h, s, u, k,m, t, d, x} . When for any j ∈ {h, s, u, k,m, t} , the
equalities

βjx = βjd = 0, (40)
which imply that (39) are fulfilled, then C becomeseC (P,Y, t;β) = βC +BPP + βYY + βtt (41)

+
1

2
P>BPPP + βttt

2 + P>BPtt

with
βYY = BY Y +

1

2
Y >BY Y Y. (42)

6

∂c/∂yx
∂c/∂yd

=
∂C/∂yx
∂C/∂yd

=
βx + βxxYx + βdxYd + P>APx + βtxt

βd + βdxYx + βddYd + P>APd + βtdt

∂Yx/∂yx
∂Yd/∂yd

∂
∂c/∂yx
∂c/∂yd

/∂j = 0⇔ ∂
∂C/∂yx
∂C/∂yd

/∂j = 0⇔ βjx
∂C

∂Yd
=

∂C

∂Yx
βjd

or equivalently

βjx βd + βdxYx + βddYd + P>BPd + βdtt = βjd βx + βxxYx + βxdYd + P>BPx + βxtt
⇔ βjxβd − βjdβx + βjxβdx − βjdβxx Yx + βjxβdd − βjdβdx Yd
+P> βjxBPd − βjdBPx + βjxβdt − βjdβxt t = 0

10



The boldface characters are used to denote aggregate variables and aggregate parame-
ters. The specification (41) is no longer flexible in (P,Y, t): the first derivative of eC
with respect to P for instance is independent of Y . As a consequence, the imposition
of global separability conditions on local flexible specifications destroys flexibility. See
Blackorby, Primont and Russell [1978, Section 8.3] for a thorough discussion.
In order to avoid the inflexibility drawback, Diewert and Wales [1995] propose a

functional specification that comprises more parameters than (33), and that is still
locally flexible after imposition of global separability (that is separability over the whole
set of possible values of (p, y, t)). In the context of output aggregation, Diewert and
Wales’ strategy would lead to specify C as

CY (P, Y,Y, t;β) = βC +BPP + βtt (43)

+
1

2
P>BPPP + βttt

2 + P>BPtt

+βYY +
1

2
βYYY

2 + P>BPYY + βYtYt

+P>BPY Y + Y >BY tt,

where Y is defined as in (42). The first three lines of CY correspond to a function of
(P,Y, t) that is both flexible in (P,Y, t) and separable in y, whereas the last line is added
for allowing CY to be non-separable in y. When this last line vanishes, the cost function
is clearly separable in y (but not conversely as it will be seen below).
As aggregation of output and labour inputs is of interest here, the following specifi-

cation is considered in the sequel instead of (43), with P =
¡
W>, Q>

¢>:
CWY (P, Y,W,Y, t;β) = βC +BQQ+ βtt+

1

2
Q>BQQQ+Q>BQtt+

1

2
βttt

2 (44)

+βYY +
1

2
βYYY

2 +Q>BQYY + βYtYt

+βWW+
1

2
βWWW

2+WBWQQ+βWtWt+ βWYWY

+WBWY Y +Q>BQY Y + Y >BY tt

+W>BWYY +W>BWY Y +W>BWQQ+W>BWtt

The aggregate output Y ∈ R is defined in (42) and the aggregate wage W ∈ R is given
by:

βWW = BWW +
1

2
W>BWWW. (45)

For the purpose of identification, the parameters βY and βW can be normalized:

βY = βW = 1. (46)

Some other parameter restrictions are imposed for the sake of parsimony: (35) and
ι>5 BPY = 0. In the three first lines of (44) the variables W and Y are aggregated intoW
and Y. Since this expression is quadratic in (Q,W,Y, t), it follows that CWY is locally
flexible in these variables. The two last lines of (44) introduce the additional disaggregate
variables Y and W and thereby they allow the cost function to be nonseparable in y and
w.
Specification (44) is interesting as it nests specifications (34), (41) and (43). Notice

that when BWY = 0,BQY = 0,βYt = βWY = 0, the cost function is separable in y under
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the usual conditions (39). Furthermore, the condition

BWY = 0, BQY = 0, BY t = 0, BWY = 0, (47)

implies separability in y, but is not equivalent to it.7 For this reason y-separability tests
relying on (47), like those formulated by Diewert and Wales [1995], are prone to reject
the null hypothesis too often. Similarly,

BWY = BWt = 0, BWY = BWQ = 0, (48)

implies global separability in w, but not conversely.
In theory, it is possible to give the necessary and sufficient parametric conditions for

a technology to be globally separable in output and homothetically separable in labour
inputs. These restrictions would be more stringent than the restrictions (17) and (28)
which are of local nature. However, the derivation of these parametric conditions is
messy and devoid of economic meaning. This observation gives some value added to the
characterization in terms of elasticities provided in Section 2, whose validity does not
depend upon the parametric specification of the cost function.
The interesting result relative to the specification (33), (44) in comparison to (33)-(34)

follows from Diewert and Wales [1995]:

Proposition 5: The cost function c defined by (33), (35), (42), (44) and (45) is
(i) flexible in (w, q, y, t) ,
(ii) flexible in (w, q,y, t) when c is globally separable in y,
(iii) flexible in (w, q, y, t) when c is globally separable in w,
(iv) flexible in (w, q,y, t) when c is globally separable in w and in y.

Proposition 5 means that the cost function is flexible in (w, q, y, t) and that this flex-
ibility property is still satisfied when the technology is globally separable in outputs
(points ii and iv) and/or homothetically separable in labour inputs (points iii and iv).
See Appendix A for a proof. Proposition 5 justifies the use of (44) for testing separabil-
ity in outputs and/or homothetic separability in labour inputs globally, without losing
flexibility. This result will be used in the empirical part of the paper to see whether the
loss of flexibility of (33)-(34), once separability is imposed, can explain why separability
is often rejected.

5. Data and regression
The data used for the empirical investigation are two digit industry data for West
German manufacturing, they are available for N = 24 industries and cover the period
from 1976 to 1994 (T = 19). The subscripts n = 1, . . . , N and t = 1, . . . , T denote industry
and time respectively. Over this period, total manufacturing exports in constant prices
grew at an average annual rate of 3.3 percent, whereas domestic production grew only by
1.1 percent. Turning to the labour inputs, the employment of university graduates, ch,
(measured as full-time equivalents) increased at an average annual rate of 3.8 percent.
In contrast, the number of unskilled workers cu decreased by 3.3 percent per year. The
number of skilled workers grew by 0.6 percent in average. Relative wages do not appear
to have changed much during the period. In the aggregate (over all industries and years
7 A weaker set of sufficient conditions for output separability comprises BWY = 0 and (40).
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considered in this paper), exports represented roughly 27 percent of the total level of
production. Moreover the share of exports in production increased over time: from 23
percent in 1976 to 31 percent in 1994.
To account for heterogeneous technologies we allow some parameters βC and BP to

be industry-specific. In former work on similar data, Koebel, Falk and Laisney [2003]
found that the data transformation parameters γ also vary across groups of industries,
so that I allow these parameters to vary across industries (hence the notation γ1n and
γ2n). This means that the functional form of the cost function is allowed to differ across
the industries: it may for example be translog for some industries (those with γ1n → 0
and γ2n → 0), whereas for others, a normalized quadratic specification (γ1n = γ2n = 1)
could be more adequate.
The optimal demand functions z∗ are related to the cost function by Shephard’s

Lemma, which is applied here to form the input-output coefficients considered in the
regression:

znt/y
+
nt = z∗nt/y

+
nt + υnt. (49)

For rendering the assumption of homoscedastic residuals more plausible, I consider the
input-output ratio znt/y+nt (total output being given by y

+
nt ≡ yd,nt+yx,nt), instead of the

absolute demand levels znt as regressands.
In the specification (33), the parameters θ and µ could be estimated. It can be seen

by adapting Diewert and Wales’ [1987] argumentation, that the flexibility of the above
specification does not depend upon a particular choice for θ. For that reason they have
often been fixed, in order to limit the overall number of parameters. These weights
are usually defined as a function of inputs and costs, a practice which introduces some
correlation between θ and the residual term υnt. To avoid this difficulty, I specify

θn =

µ
θk,n
θm,n

¶
≡ µn

1
N−1

P
i6=n q

>
i,91vi,91

,

with µn =
¡
µk,n, µm,n

¢> ≡ 1
N−1

P
i6=n vi,91. As all prices are normalized to 1 in 1991, it

follows that q>n,91θn = 1.
The residual vector υnt (J × 1) is assumed to be independent of the regressors. It

also satisfies E [υnt] = 0, E
£
υntυ

>
nt

¤
= Ψ and may also be subject to first order serial

correlation:
υnt = Rυn,t−1 + ζnt, lim

j→+∞
Rj = 0 (50)

with E [ζnt] = 0, E
h
υn,t−1ζ

>
nt

i
= 0, E

h
ζntζ

>
nt

i
= Ψ−RΨR> and E

h
ζntζ

>
is

i
= 0 for all n 6= i

or t 6= s.
The variance matrix of υ (JTN × 1) is V

£
υυ>

¤
= IN ⊗ Φ, where Φ (JT × JT ) is given

by

Φ =

⎛⎜⎜⎜⎝
Ψ ΨR> · · · ΨR>T−1

RΨ Ψ · · · ΨR>T−2
...

...
...

RT−1Ψ RT−2Ψ · · · Ψ

⎞⎟⎟⎟⎠ . (51)

When R = 0, one obtains the conventional SUR variance matrix INT ⊗Ψ. Preliminary
estimates of the conventional SUR residuals were used to build a consistent estimate bΦ
of Φ by equaling the elements of Φ to their sample analogue. In all cases the matrix bΦ
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was found to be positive definite. As shown by Koebel [2004], this ensures that bR is a
convergent matrix (in the sense that limj→+∞ bRj = 0).

6. Empirical results

6.1 First model

The first model considered consists of (49) which is obtained from (33)-(37). The com-
plete model comprises 151 free αn-parameters (among which 5 × 24 = 120 industry
specific parameters) and 2× 24 = 48 γn-parameters which have to be estimated on the
basis of 5 × 19 × 24 = 2280 observations. As there are more than 10 observations per
parameter, the incidental parameter problem should not be problematic here. This
specification of the demand functions does not only include the usual additive fixed
effects, but comprises also industry-specific Box-Cox parameters, so that the marginal
impacts of output on input demands are by no way restricted to be identical from one
industry to the other. This extension is compatible with heterogeneous outputs across
industries, contrary to models which are linear in output.
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Figure 1: Scatter plot of bγ1n and bγ2n
The estimates of the variable transforming parameters γn are plotted on Figure 1.

In most cases the estimates are included between zero and one: there are only two
values for bγ2n that lay outside the zero to one interval. All estimates are significantly
different from zero. It can be seen on Figure 1, that the estimates of bγ2n are smaller
(and less dispersed) than those of bγ1n. The assumption that γ1n = γ2n, leading to a
Berndt and Khaled [1979] type of specification is rejected by the data. Although there
is a cloud of points around the mean point γ = (0.71, 0.30) , a test for the hypothesis
that the functional family is the same across industries, is rejected at the one percent
threshold. Several usual functional specifications which are nested within the Box-Cox
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are all rejected, see also Koebel, Falk and Laisney [2003].
The data were found to exhibit strong serial correlation. Only one estimate of the

five eigenvalues of matrix R was real valued. In all cases, however, the modulus of
the estimated eigenvalues are below one (between 0.45 and 0.80). Thus, a necessary
condition for the matrix bΦ to be positive definite is satisfied, and it turned out in fact
that bΦ was definite positive.
The estimated values of the elasticities of substitution and scale are reported in Table

1. The own-price elasticities appear on the main diagonal of the upper panel and are all
negative. The off diagonal entries correspond to the cross price elasticities and indicate
that high-skilled and skilled labour are substitutes as well as skilled and unskilled labour.
High-skilled and unskilled labour, however, are complements. It can be seen from Table
1 that the prices qk and qm have a quite different impact on the different qualifications
of labour. It turns out that the more skilled is labour, the more it is complementary
with capital, �

¡
c∗h, qk

¢
≤ � (c∗s, qk) ≤ � (c∗u, qk) ≤ 0.

The scale elasticities are reported on the lower panel of Table 1. Although all inputs
are non-decreasing in yd and in yx, the impacts of domestic and exported production on
inputs are quite different. With regard to labour inputs, it can be seen that exports are
intensive in education, in the sense that �

¡
c∗h, yx

¢
≥ � (c∗s, yx) ≥ � (c∗u, yx) . The increase

in exports in Germany provides thereby a partial explanation for the observed shift in
the structure of labour demand in favour of more educated workers. The last line of
Table 1 gives the impact of the time trend on input demands. The impact of t on het-
erogeneous labour inputs is also quite different. Notice that these strong dissimilarities
in input demand reactions to changes in qk, qm, yd, yx and t, are inconsistent with the
conditions favorable to labour aggregation which require that the impact of the differ-
ent explanatory variables are “similar” across educational levels. Thus, these empirical
results foreshadow the difficulties of aggregating labour inputs.
There is also evidence that domestic and exported production have different impacts

on a given input: in all cases, �
³
x∗j , yd

´
≥ �

³
x∗j , yx

´
in Table 1. This observation does

not necessarily stand in contradiction with output aggregation: when c (w, q, yd, yx, t) =

By (w, q, yd + yx, t) , for instance, it follows that �
³
x∗j , yd

´
≥ �

³
x∗j , yx

´
as soon as yd ≥ yx,

although outputs are perfectly identical. In order to study the possibilities of aggregating
outputs, the more formal hypotheses, given in Section 2, have to be tested.
Results of the tests for functional structure are summarized in Table 2. The different

hypothesis tested are given in the first column. The second column recapitulates the
formal expressions of the corresponding equality restrictions which have been presented
in Section 2. Column 3 gives the number of independent restrictions that are tested
at a given observation point (n, t) . As the test statistics depend on the observations
(w, q, yd, yx, t) , they take different values over the sample. To avoid dependence upon a
arbitrarily chosen reference point, I compute the hypothesis test for each observation
point in turn and report both the mean value of the statistic and the percentage of
significant violations in columns 4 and 5 of Table 2.
The main result is that all types of restrictions are strongly rejected. Separability in

outputs is rejected for 84.9 and separability in labour input is rejected for 95.4 percent
of the observations. The rejection rate increases for the more restrictive versions of
homothetic and additive separability. For labour inputs, homothetic separability is
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Table 1: Elasticities of the disaggregate model(1)

� (j∗, i) ch cs cu vk vm
wh −0.07

(−0.8)
0.03
(3.6)

−0.10
(−5.3)

−0.03
(−4.6)

0.01
(6.2)

ws 0.41
(2.4)

−0.34
(−10.5)

0.20
(6.0)

−0.08
(−3.0)

0.05
(6.3)

wu −0.88
(−4.8)

0.13
(4.3)

−0.42
(−6.2)

−0.02
(−0.8)

0.05
(4.5)

qk −0.26
(−4.9)

−0.05
(−3.6)

−0.02
(−1.9)

−0.18
(−5.2)

0.04
(6.7)

qm 0.72
(7.6)

0.24
(6.3)

0.36
(6.3)

0.30
(9.2)

−0.16
(−5.3)

yd 0.80
(9.5)

0.54
(12.7)

0.60
(9.7)

0.58
(6.1)

0.70
(23.8)

yx 0.41
(9.0)

0.06
(4.3)

−0.01
(−0.3)

0.14
(5.4)

0.18
(13.6)

t 0.035
(8.8)

0.003
(3.5)

−0.031
(−6.6)

0.001
(0.4)

0.003
(4.5)

(1) Median value of the elasticities evaluated at the 1985 data

and estimated t-values in parentheses.

Table 2: Tests for functional structure, Model 1

Tested
restrictions

Independent
restrictions

Mean
Wald test(1)

% obs. with
H0 rejected(2)

Outputs:
non-jointness (12) 1 31.8 (20.4) 86.0
separability (17) 6 41.2 (17.1) 84.9
homothetic separability (17), (18) 7 43.1 (15.1) 90.1
additive separability (17), (20) 7 43.4 (13.6) 93.0
hom. add. separability (17), (21) 8 112.6 (69.7) 90.5
identical outputs (22) 1 14.9 (14.7) 62.5
Labour inputs:
non-jointness (14) 3 59.5 (23.3) 100
separability (31) 8 51.0 (22.6) 95.4
homothetic separability (28) 10 374.5 (180.0) 100
additive separability (31), (32) 10 54.8 (20.4) 96.9

(1) Mean value of the Wald test and calculated standart deviation in parentheses.
(2) There are 456 observations at which the Wald test for a given null hypothesis is calculated.
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rejected for all 456 observation points. This is a logical consequence from the fact that
the impacts of prices, outputs and time are very different across the three types of labour
inputs (Table 1). Comparable separability structures are more strongly rejected when
involving labour inputs as it is the case with respect to output.
Notice that the outcomes of the tests are sometimes inconsistent with the theory:

whereas the null of identical outputs is rejected for 62.5 percent of the observations,
output separability is invalidated in 84.9 percent of the cases. This finding is para-
doxical because output identity implies output separability, but not conversely. This
contradiction might be due to the fact that the weaker assumption of separability in-
volves 6 equality restrictions (17), whereas the stronger requirement of output identity
only involves one restriction (22). This paradox is related to the lack of invariance of the
Wald test to nonlinear transformations. Similarly, the assumption of additive separabil-
ity is rejected for more observation points that the more stringent homothetic additive
separability hypothesis.
The validity of the null assumptions has also been tested globally. This is not a

straightforward task, because the test statistics which depend upon observations and
estimated parameters, take different values over the sample. The details of the procedure
used to test the null globally are given in Appendix B. The different types of restrictions
are globally rejected at any reasonable threshold.
For the cases of separability in outputs and homothetic separability in labour inputs,

some parametric restrictions implying global separability are known (see (39)). The
Wald statistics corresponding to these parametric hypotheses are found to be smaller
than those corresponding to the former global test. This contradiction also suggests that
two theoretically equivalent set of hypotheses can be rejected at different thresholds, in
function of the number and the form of the restrictions used to characterize them. This
question has been addressed by several researchers (see e.g. Phillips and Park [1988]).
However, the issue on how to best formulate a Wald test for a given set of nonlinear
restrictions in empirical research is mainly unsolved.

6.2 Second Model

In the second model, the parameter vector
¡
α>n ,α

>,γ1n, γ2n
¢> is estimated from the

system of five regressions (49), which is now obtained from (33), (34), (35) and (44).
The complete model comprises the 13 additional free parameters α. For obtaining the
optimal input demand functions z∗ through Shephard’s Lemma, the dependence of the
aggregate wageW on the elementary wages w must be taken into account.
For this extended model, several local maxima were detected and convergence was

often very difficult to obtain (an important number of iterations is required, convergence
is strongly dependent upon the choice of the starting values). This might be related
to the high colinearity between the elementary and the aggregate variables, which both
appear as regressors in (44). In the sequel, the estimates corresponding to the highest
log-likelihood are retained. The log-likelihood of this extended model is significantly
higher than the one of the previous model.8

The different elasticity estimates are reported in Table 3. AlthoughModel 1 is rejected

8 This extended input demand system nests the former one, which is obtained when α =0. A log-likelihood test rejects
this assumption at the one percent level: 2 (4012.10− 3785.10) = 454.0
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against Model 2 at any reasonable significance level, a comparison of the estimates with
those reported in Table 2 shows that only few results are quantitatively different. There
are only two contradictions between both models, in the sense that an insignificant
estimate becomes significant or conversely. Both estimates �

¡
c∗h, wh

¢
and � (c∗u, yx) seem

to be economically more plausible in Model 2.
As in the previous subsection, it is possible to test whether the different aggregation

conditions of Section 2 are satisfied. The corresponding results for local separability are
reported in Table 4. Given the results of Proposition 5, one expects that the separability
tests are no longer joint tests for separability and functional form adequacy, and that
therefore the separability restrictions should be less often rejected than it was the case
with the first model. Nonetheless, the outcome of the tests for the different functional
structures are relatively similar to those obtained for the separability inflexible cost
function. The mean Wald statistics reported in Table 4 are all relatively similar to
those of Table 2. However, the percentage of observations for which the null hypothesis
is rejected is in Table 4 never smaller than in Table 2. Only for the test of identical
outputs are both percentages the same. This evidence suggests that the strong rejection
of the null hypotheses obtained with Model 1, is not due to the loss of flexibility under
the null of separability.
As in the first model, output identity is less strongly rejected than the more restrictive

functional structures. The test of this assumption yielded the smallest mean Wald
statistic (18.4) which leads to less observations than any other functional structure.
The persistence of this paradoxical result shows that it was not just a consequence of
choosing a more restricted functional form.
For the purpose of comparison, I also computed the Diewert andWales type of separa-

bility tests. The values of the Wald test for restrictions (47), (48), and for both (47) and
(48) are respectively 69.6, 1554.5 and 1663.7, leading in all cases to reject the null. As
expected, these Wald-test statistics are greater than the mean Wald statistic reported
in Tables 2 and 4, due partly to the fact that the validity of the functional restriction
is now tested globally (over all observations) and not locally (at each observation point
in turn).
The global validity of some functional structures is also tested via the procedure given

in Appendix B. Surprisingly, the (nonreported) Wald test for the global validity of the
functional structure is then much higher than the parametric test of the corresponding
restrictions ((47) and (48)). This additional paradox should also motivate further re-
search on the empirical performance of Wald tests. The above results seem to suggest
that the Wald statistic for a given assumption increases, when the assumption is for-
mulated with a greater number of equality restrictions. Unfortunately, tests based on
the likelihood or on the regression residuals seem not to be easily implementable in this
context. As the restrictions to be tested are nonparametric (even in parametric models),
there is no obvious relationship between the restrictions and model’ parameters.
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Table 3: Elasticities of Model 2(1)

� (j∗, i) ch cs cu vk vm
wh −0.26

(−4.7)
0.06
(5.7)

−0.10
(−4.9)

−0.02
(−3.7)

0.01
(5.3)

ws 0.79
(6.0)

−0.49
(−8.4)

0.16
(2.6)

−0.08
(−3.7)

0.08
(7.7)

wu −0.95
(−5.4)

0.09
(2.4)

−0.40
(−3.1)

−0.02
(−0.6)

0.05
(4.5)

qk −0.16
(−3.3)

−0.05
(−2.9)

−0.02
(−0.8)

−0.14
(−3.6)

0.02
(2.5)

qm 0.59
(6.9)

0.36
(6.5)

0.36
(5.2)

0.27
(4.4)

−0.17
(−6.4)

yd 0.75
(15.7)

0.58
(7.1)

0.70
(11.3)

0.56
(11.4)

0.70
(10.7)

yx 0.23
(6.1)

0.08
(5.5)

0.09
(7.3)

0.15
(10.0)

0.15
(10.6)

t 0.033
(11.3)

0.004
(3.1)

−0.033
(−14.9)

−0.002
(−0.9)

0.003
(3.3)

(1) Median value of the elasticities evaluated at the 1985 data

and estimated t-value in parentheses.

Table 4: Tests for functional structure, Model 2

Tested
restrictions

Independent
restrictions

Mean
Wald test(1)

% obs. with
H0 rejected(2)

Outputs:
non-jointness (12) 1 34.2 (19.7) 90.0
separability (17) 6 35.7 (10.3) 93.4
homothetic separability (17), (18) 7 45.1 (22.3) 95.4
additive separability (17), (20) 7 36.8 (9.3) 97.8
hom. add. separability (17), (21) 8 137.4 (68.0) 99.6
identical outputs (22) 1 18.4 (23.2) 62.5
Labour inputs:
non-jointness (14) 3 44.6 (13.2) 100
separability (31) 8 61.7 (27.4) 98.5
homothetic separability (28) 10 367.0 (176.4) 100
additive separability (31), (32) 10 65.1 (27.0) 98.7

(1) Mean value of the Wald test and calculated standart deviation in parentheses.
(2) There are 456 observations at which the Wald test for a given null hypothesis is calculated.
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7. Conclusion
The necessary and sufficient conditions for aggregating (fixed) outputs and (flexible)
labour inputs have been derived and used for testing the empirical validity of several
exact aggregate representations. The homothetic separability assumption has been re-
laxed to allow for aggregates that are not homogeneous. The separability assumption
has also been strengthen to allow for aggregates to be additive as are those usually
provided by statistical offices.
The empirical findings on the possibility to provide an exact aggregate representation

of the technology are mainly pessimistic. Although there is some evidence for the local
validity of some restrictions, they are globally rejected. The impacts of wages, prices,
outputs and time on the different qualifications of labour are too different for allowing
aggregation of the three types of labour into a scalar measure. Similarly, domestic and
exported outputs are found to be rather different commodities, each being produced
from different technological requirements.
A more optimistic conclusion can, however, be drawn from the frequent rejection of

restrictions on functional structures. The fact that exact aggregation is statistically
invalidated does not necessarily mean that aggregation cannot be achieved, but might
be interpreted as evidence for exact aggregation to be too demanding, and that its
requirements should be weaken. This is the way followed by the approximate approach,
developed by Lewbel [1996] and by Koebel [2002]. In a companion paper, Koebel and
Laisney [2005], we illustrate how approximate aggregation can be achieved, using the
same data as here for better illustrating the difference between both approaches.

Appendix A: Proof of the Propositions
Proof of Proposition 1. Homothetic separability ⇒ (17) and (18). As homothetic
separability in y implies separability in y, it is clear that (17) must hold. As gy is
homothetic, it can be written as gy (y) = H (h (y)) where h is linearly homogeneous.
Thus

∂gy
∂yd

yd +
∂gy
∂yx

yx = H 0∂h (y)
∂yd

yd +H 0∂h (y)
∂yx

yx = H 0h (y) .

Using that expression and the fact that c is separable in y, that is

c (w, q, y, t) = By (w, q, gy (y) , t) ,

leads to
∂c

∂yd
yd +

∂c

∂yx
yx =

∂By

∂Y
H 0h (y) , (52)

with Y =gy (y). Differentiating (52) with respect to yd gives

∂2c

∂y2d
yd +

∂c

∂yd
+

∂2c

∂yd∂yx
yx =

∂2By

∂Y2
¡
H 0¢2 h (y) ∂h

∂yd
+

∂By

∂Y
H 00 ∂h

∂yd
h (y) +

∂By

∂Y
H 0 ∂h

∂yd

⇔ ∂2c

∂y2d
yd +

∂2c

∂yd∂yx
yx =

∂2By

∂Y2
¡
H 0¢2 h (y) ∂h

∂yd
+

∂By

∂Y
H 00 ∂h

∂yd
h (y) , (53)

where the last line is obtained using ∂c/∂yd = (∂By/∂Y) (∂gy/∂yd). As this last expression
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is positive, it is possible to normalize (53) by ∂c/∂yd for obtaining
∂2c

∂y2d

yd
∂c/∂yd

+
∂2c

∂yd∂yx

yx
∂c/∂yd

=

µ
∂2By/∂Y

2

∂By/∂Y
H 0 +

H 00

H 0

¶
h (y) .

Similarly, differentiating (52) with respect to yx leads to
∂2c

∂yd∂yx

yd
∂c/∂yx

+
∂2c

∂y2x

yx
∂c/∂yx

=

µ
∂2By/∂Y

2

∂By/∂Y
H 0 +

H 00

H 0

¶
h (y) ,

hence (18).
Conversely, it is well known that (17) implies separability. It remains to show that (18)
implies homogeneity.9 As c is separable in y, the equalityX

o=d,x

yo
∂c/∂yd

∂2c

∂yd∂yo
=
X
o=d,x

yo
∂c/∂yx

∂2c

∂yx∂yo

becomes
∂2By

∂Y2

µ
∂gy
∂yd

¶2
+

∂By

∂Y

∂2gy
∂yd∂yd

(∂By/∂Y) (∂gy/∂yd)
yd +

∂2By

∂Y2
∂gy
∂yd

∂gy
∂yx

+
∂By

∂Y

∂2gy
∂yd∂yx

(∂By/∂Y) (∂gy/∂yd)
yx

=

∂2By

∂Y2
∂gy
∂yd

∂gy
∂yx

+
∂By

∂Y

∂2gy
∂yd∂yx

(∂By/∂Y) (∂gy/∂yx)
yd +

∂2By

∂Y2

µ
∂gy
∂yx

¶2
+

∂By

∂Y

∂2gy
∂yx∂yx

(∂By/∂Y) (∂gy/∂yx)
yx,

which can be simplified into
∂2gy
∂yd∂yd

∂gy
∂yx

yd +
∂2gy

∂yd∂yx

∂gy
∂yx

yx =
∂2gy

∂yd∂yx

∂gy
∂yd

yd +
∂2gy

∂yx∂yx

∂gy
∂yd

yx

⇔

⎛⎜⎜⎝
∂2gy
∂yd∂yd
∂gy/∂yd

−

∂2gy
∂yd∂yx
∂gy/∂yx

⎞⎟⎟⎠ yd =

⎛⎜⎜⎝
∂2gy

∂yx∂yx
∂gy/∂yx

−

∂2gy
∂yd∂yx
∂gy/∂yd

⎞⎟⎟⎠ yx

⇔
∂ ln

³
∂gy/∂yd
∂gy/∂yx

´
∂yd

yd =
∂ ln

³
∂gy/∂yx
∂gy/∂yd

´
∂yx

yx. (54)

As a consequence, the function (∂gy/∂yd) / (∂gy/∂yx) is homogeneous of degree zero in y,
and therefore gy is homothetic by Lau’s [1970] Lemma 1. ¥

Proof of proposition 2. The condition
c (w, q, yd, yx, t) = By (w, q, δdyd + δxyx, t) ,

is equivalent to
∂c/∂yd
∂c/∂yx

=
∂gy/∂yd
∂gy/∂yx

=
δd
δx
,

which in turn is equivalent to (17) and (21). ¥

Lemma 1. There exist two continuously differentiable real valued function gc and

9 That (18) alone does not imply separability should be clear from the following example. The cost function

c (w, q, y, t) = c1 (w, q, t)
√
yd + c2 (w, q, t)

√
yx

satisfies (18), but is not separable in y as long as c1and c2 are not proportional.
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Ac, such that

a (c, q, y, t) ≡ min
v

n
q>v : f (c, v, y, t) = 0

o
= Ac (gc (c) , q, y, t) (55)

if and only if

rank

"
∂2a

∂c∂
¡
q>, y>, t

¢# ≤ 1. (56)

Proof of Lemma 1. Let L =gc (c), then condition (55) implies that
∂2a

∂c∂
¡
q>, y>, t

¢ = ∂

µ
∂Ac

∂L

∂gc
∂c

¶
/∂
³
q>, y>, t

´
=

∂2Ac

∂L∂
¡
q>, y>, t

¢ ∂gc
∂c

,

whose rank is clearly one or zero. Conversely, (56) means that any 2 × 2 submatrix of
∂2a/∂c∂

¡
q>, y>, t

¢
has zero determinant, in which caseµ

∂a/∂ci
∂a/∂cj

¶
/∂
³
q>, y>, t

´
= 0,

implying, as shown by Leontief [1947], the existence of a function gc such that (55) holds.
¥

A similar Lemma can be derived to give the conditions on f that are equivalent to
f (c, v, y, t) = Gc (gc (c) , v, y, t) .

Proof of proposition 3. Different and much longer proofs of a related result have
been given by Blackorby, Davidson and Schworm [1991] and by Koebel [2001]. Since
under cost minimization,

f (c, v, y, t) = Gc (gc (c) , v, y, t)⇔ a (c, q, y, t) = Ac (gc (c) , q, y, t) ,

the proof of the left hand equality can rely on the right hand equality. The first order
conditions

∂a

∂c
(c∗ (w, q, y, t) , q, y, t) = w, (57)

corresponding to minimization of a with respect to c, together with

c (w, q, y, t) = w>c∗ (w, q, y, t) + a (c∗ (w, q, y, t) , q, y, t) , (58)

lead to
∂c

∂w
= c∗ (w, q, y, t)

∂2a

∂c∂c>
∂2c

∂w∂w>
= Id (59)

where Id denote the identity matrix. From this last line it can be seen that ∂2a/∂c∂c> is
the inverse of ∂2c/∂w∂w>. Differentiation of ∂a/∂c with respect to

¡
q>, y>, t

¢
then yields

∂2a

∂c∂c>
∂2c

∂w∂
¡
q>, y>, t

¢ = − ∂2a

∂c∂
¡
q>, y>, t

¢ (60)

∂2c

∂w∂
¡
q>, y>, t

¢ = −
∙

∂2a

∂c∂c>

¸−1
∂2a

∂c∂
¡
q>, y>, t

¢ . (61)

(i) ⇔ (ii) : By (61) rank∂2c/∂w∂
¡
q>, y>, t

¢
= rank∂2a/∂c∂

¡
q>, y>, t

¢
. The conclusion

follows from Lemma 1.
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(ii)⇔ (iii) directly follows from the definition of the elasticities. ¥

Proof of proposition 4. As there are 3 types of labour inputs, the Leontief condi-
tions for additive separability in c can be applied, stating that a is additive in c iff (30)
is satisfied and

∂

µ
∂a/∂ch
∂a/∂cs

¶
/∂cu = ∂

µ
∂a/∂cs
∂a/∂cu

¶
/∂ch = ∂

µ
∂a/∂cu
∂a/∂ch

¶
/∂cs = 0, (62)

or equivalently10

1

wh

∂2a

∂ch∂cu
=

1

ws

∂2a

∂cs∂cu
(63)

1

ws

∂2a

∂ch∂cs
=

1

wu

∂2a

∂ch∂cu
.

The conditions (30), (63) can equivalently be given in terms of function c. From Propo-
sition 3, (30) is equivalent to (31). From (59), and the formula of the inverse of a matrix,
restrictions (63) become

1

wh
det

⎡⎢⎢⎢⎣
∂2c

∂wh∂ws

∂2c

∂ws∂ws

∂2c
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∂2c
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⎤⎥⎥⎥⎦ = − 1
ws
det
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∂2c
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∂2c
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∂2c
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∂2c

∂ws∂wu
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− 1
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det

⎡⎢⎢⎢⎣
∂2c
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∂2c

∂ws∂wu

∂2c

∂wh∂wu

∂2c

∂wu∂wu
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1

wu
det

⎡⎢⎢⎢⎣
∂2c

∂wh∂ws

∂2c

∂ws∂ws

∂2c

∂wh∂wu

∂2c

∂ws∂wu

⎤⎥⎥⎥⎦ ,
which leads to (32). ¥

Proof of Proposition 5: Diewert and Wales [1995, Proposition 2] prove point (i)
for the normalized quadratic functional form. Adapting their proof to the somewhat
different context of the Box-Cox function shows that c is flexible in (w, q, y, t) . Point (ii):
Set

BQY = 0, BWY = 0, BY t = 0,BWY = 0, (64)
in the expression of CWY. Then, it is direct to see that c is separable in y. Moreover,
under (64), CWY is still quadratic in (W,Q,Y, t) . Thus the first and second order deriva-
tives of CWY can locally approximate those of an arbitrary function of (w, q,y, t) (hence
the local flexibility). Point (iii) and (iv) are obtained similarly. ¥

Appendix B: A global test
For testing the overall validity of the different null hypotheses, one first needs to
stack up the local test statistics bsnt ≡ snt (pnt, ynt, t, bαn) overall n and t to obtain bs ≡
(bs11, . . . , bsNT )

> . In the local tests reported in Tables 2 and 4, the hypothesis snt (αn) = 0
(with an abuse of notation for snt (pnt, ynt, t, αn) = 0) is tested for any n and t. Asymp-
totically bsnt a∼ N

¡
snt,

¡
∂s>nt/∂αn

¢
Ωn

¡
∂snt/∂α

>
n

¢¢
, with V (αn) = Ωn. However, comput-

10 One of the three equalities is redondant.
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ing the variance of bsnt using the delta method is a relatively time consuming task.11
For testing whether s (α) ≡ (s11 (α1) , . . . , sNT (αN ))

> = 0, an estimate bΥ of the vari-
ance matrix Υ of bs is required. In the present case, the dimension of the matrix Υ is
comprised between (456× 456) and (4560× 4560), depending upon the functional struc-
ture being tested. Approximating the matrix Υ by using the delta method (yielding
Υ∆ =

¡
∂s>/∂α

¢
Ω
¡
∂s/∂α>

¢
) would require months of calculation. To avoid that draw-

back, I rely instead on a resampling method for obtaining an estimate of Υ.

AsD (bαNT − α)
d→ N (0,Ω) where Ω is finite and positive definite andD is a diagonal

matrix of scaling factors (depending upon N and T ), it follows that N (Dα,Ω) is the
limiting density of

n
DbαNT ,DbΩNTD

o
, where bΩNT is the estimated variance matrix ofbαNT . Thus, the densityN

³bαNT , bΩNT

´
can be used to draw a sample of bαi, i = 1, . . . , I, for

which the value of sint
³
pnt, ynt, t, bαin´ ≡ bsint is calculated for each observation point n and

t. The vector bsi is obtained by stacking up bsint over n and t. Then, it is easy to calculate
the empirical mean sI = I−1

P
i bsi and variance matrix bΥI = I−1

P
i

¡bsi − sI
¢ ¡bsi − sI

¢> ofbsi. By the law of large numbers, this matrix bΥI converges in probability to Υ. These are
the steps I rely on to calculate the Wald statistic cW = bs>bΥ−I bs, for testing the (global)
null hypothesis s = 0. In my experimentation I chose to set I either to 10000 or to 30000,
values for which the outcomes of the Wald test were no longer changing very much with
increasing I.
A comparison of the estimates of the diagonal terms of Υ∆ (the variances obtained

using the delta method and used in the local test of functional structure) with those ofbΥI reveals a relatively small difference of about five percent in average. However, for
some few observations the gap is about 50% between the two estimates of the variance.
As for I high enough, bΥI provides a better approximation to Υ than bΥ∆, I have some
preference for the results based on bΥI . The percentage of observations for which the null
is rejected is, however, very similar independently of the method relied on.
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