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Abstract User-generated content (UGC) is generally understood as an expression
of opinion in many forms (e.g., complaints, online customer reviews, posts, testi-
monials) and data types (e.g., text, image, audio, video, or a combination thereof)
that has been created and made available by users of websites, platforms, and apps
on the Internet. In the digital age, huge amounts of UGC are available. Since UGC
often reflects evaluations of brands, products, services, and technologies, many con-
sumers rely on UGC to support and secure their purchasing and/or usage decisions.
But UGC also has significant value for marketing managers. UGC allows them to
easily gain insights into consumer attitudes, preferences, and behaviors. In this arti-
cle, we review the literature on UGC-based decision support from this managerial
perspective and look closely at relevant methods. In particular, we discuss how to
collect and analyze various types of UGC from websites, platforms, and apps. Tra-
ditional data analysis and machine learning based on feature extraction methods
as well as discriminative and generative deep learning methods are discussed. Se-
lected use cases across various marketing management decision areas (such as cus-
tomer/market selection, brand management, product/service quality management,
new product/service development) are summarized. We provide researchers and
practitioners with a comprehensive understanding of the current state of UGC data
collection and analysis and help them to leverage this powerful resource effectively.
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Moreover, we shed light on potential applications in managerial decision support
and identify research questions for further exploration.

Keywords User-generated content (UGC) - Online customer reviews (OCRs) -
Posted images and videos - Web scraping - Machine learning - Discriminative deep
learning - Generative deep learning

1 Introduction

Data-based decision support has a long tradition in marketing (for a comprehensive
review see Wedel and Kannan 2016). As early as the 1920s and 1930s, consumer
product providers, such as Procter & Gamble, and market research companies, such
as A. C. Nielsen, Burke, and GfK, collected consumer attitudes, preferences, and
sales data to support marketing decisions. Since then, the collection and analysis
of external and internal consumer data has become widespread, allowing product/
service providers to gain consumer insights and to support decisions, often supported
by advanced methods from academic research (Wedel and Kannan 2016). Roberts
et al. (2014) investigated the impact of this data-driven approach on marketing
practice and concluded from surveys among managers and citation analyses that the
following decision areas have benefited most from this approach (with decreasing
importance): pricing management, customer/market selection, marketing strategy
(product line, multi-product, portfolio decisions), new product/service management,
relationship management (customer value assessment and maximization, customer
acquisition and retention decisions), sales force management, product/service quality
management, and brand management.

Today, in the digital age, it is even easier to support marketing decisions based
on consumer data since consumers are used to publish their attitudes, preferences,
and purchase/usage intentions on the Internet (see, e.g., Dorner et al. 2020). Blogs,
company websites, online shops, platforms, review sites, and social networks offer
a multitude of possibilities to comment on brands, products/services, and technolo-
gies. Consumers make extensive use of these possibilities. So, for instance, in their
yearly global survey of more than 550,000 Internet users aged 16—64, the market
research company GWI discovered that 47% of the users post at least one online
customer review (OCR) per month (Bayindir and Paisley 2019). The online retailer
Amazon recently reported that approximately 125 million of its customers con-
tribute nearly 1.5 billion OCRs per year (Schermerhorn 2023). It was reported that
more than a third of all Internet users worldwide consider OCRs reliable and assign
them an influence on their purchasing and/or usage decisions (Bayindir and Paisley
2019). According to a recent survey by the market research company BrightLocal,
Google’s OCRs of companies help 83% of Internet users when selecting adequate
nearby offers (Paget 2024).

For companies, these huge amounts of so-called user-generated content (UGC)
are an attractive data source for insight generation compared to survey data and
sales data. UGC often better reflects attitudes, preferences, and satisfaction than
sales data. In contrast to surveys, UGC is freely and easily available, virtually in
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real-time, and does not require questionnaire development and distribution (Timo-
shenko and Hauser 2019). The review website Trustpilot reflects the attractiveness
UGC has for companies by reporting that more than one million companies have
registered for its premium service with extensive opportunities to access OCRs, to
stimulate customers to post OCRs, and to generate advanced insights (Brooke 2024).
This attractiveness is also reflected in many academic research articles that discuss
methods to analyze UGC and how it is utilized by companies. So, for example, Li
et al. (2022) provide a literature review in which they found that currently more than
3390 academic research articles have been published on methods for UGC analysis
in e-commerce, with numbers steadily increasing since 2013. The thematic analy-
sis, among others, revealed that sentiment analysis and user preference mining have
received the most attention from researchers, with consumer profiling and product
design being the dominant applications.

In this article, we review the widespread utilization of UGC for marketing deci-
sion support in more detail. Section 2 defines UGC, Sect. 3 focuses on UGC data
collection, and Sect. 4 deals with methods for UGC analysis. Section 5 gives an
overview of published use cases. Section 6 develops a UGC utilization guideline for
researchers and managers, based on these literature reviews. Finally, Sect. 7 presents
conclusions and an outlook on future research topics.

2 UGC

UGC, alternatively known as user-created content, is a term that often refers to
the well-known OECD (Organization of Economic Co-operation and Development)
definition by Vickery and Wunsch-Vincent (2007) in a report on the participative
web (Naab and Sehl 2017). Their definition reflects the trend that the Internet is more
and more characterized by the participation of and the interaction between users.
In addition to their own, self-created content (e.g., product/service descriptions,
navigation helps, and news created by employees), websites, platforms, and apps
provide users with the means to produce, customize, and (co-)develop content in
many forms (e.g., OCRs, improvement proposals, testimonials) and with many data
types (e.g., text, image, audio, video, or a combination thereof). According to this
OECD definition, content has to meet the following three criteria simultaneously to
be classified as UGC:

o The content has been published: It is made available (“posted”) by the user on
a publicly accessible website, platform, or app or at least a website, platform, or
app that can be accessed by a larger group of users (e.g., registered members of
a social network). This criterion excludes bilateral information exchange between
users or between a user and a company (e.g., via mail or instant message).

o The content reflects a degree of creative effort by the user. The posted information
consists of text, image, audio, and/or video in a context that expresses her or his
opinions on oneself, other people, objects, or organizations. Text, image, audio,
and video that are simply uploaded for storing purposes or as simple expressions
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without particular reason or specific context are excluded by this criterion (Naab
and Sehl 2017).

o The content is created outside professional routines and practices. This criterion
excludes content produced by the employees of a company (e.g., product/service
details in an online shop).

Typical websites, platforms, and apps that support content generation by users
are the following (Naab and Sehl 2017):

o (Internet) Forums and blogs are websites created by individuals or organizations
where users can post comments, usually about pre-defined topics. Forum or blog
hosting platforms, such as WordPress (www.uniteddomains.com) or Medium
(www.medium.com), support the development and hosting of these websites.

e Product/service provider websites and apps (e.g., online shops, such as www.
adidas.com, www.ikea.com, www.lidl.com, www.mediamarkt.de), or platforms
(such as www.amazon.com and www.otto.de) allow users to purchase products/
services from a single company or multiple companies but also to post OCRs.

o Review platforms, such as www.trustpilot.com, www.provenexpert.de, www.
reviews.io, and www.yelp.com, are independent of the product/service supply
chain and also allow users to post OCRs.

o Wikis, such as Wikipedia (www.wikipedia.com) and Fandom (www.fandom.
com), are encyclopedias whose content is co-developed by their users.

e Social networks, such as Facebook, Instagram, Snapchat, and X, are platforms that
allow users to upload content, to construct a narrative of their life, or to interact
with others (e.g., by commenting or liking).

o Media hosting platforms and apps, such as Flickr, TikTok, Vimeo, and YouTube,
allow images and videos to be posted but also permit users to comment on posts.

Due to its characteristics and across these websites, platforms, and apps, UGC
is a valuable source of information for marketing managers. For example, Yang
et al. (2019) found that UGC often contains customer complaints and suggestions
that could be a starting point for product/service quality improvement. The authors
investigated customer posts on Facebook business pages of Fortune 500 companies
and applied grounded theory to derive typical UGC content characteristics. Two
research assistants coded a small sample of customer posts and identified altogether

9

seven UGC content categories: “positive testimonial and appreciation”, “complaint
about product/service quality”, “complaint about money issues”, “complaint about
social and environmental issues”, “customer questions”, “customer suggestions”,
and “others”. Then, a large number of MTurk workers characterized all available
customer posts. The respondents received a list of the seven UGC content categories
and were asked to characterize the presented customer posts accordingly. Across the
seven identified categories and the small sample from the first step, the categoriza-
tions by research assistants and the categorizations by MTurk workers demonstrated
high reliability. The seven categories seemed to adequately reflect UGC content
characteristics—at least in social media business pages—with a large proportion
being important from a management perspective (Yang et al. 2019).
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3 Collecting UGC

In recent articles, Boegershausen et al. (2022) as well as Guyt et al. (2024) discuss
the opportunities and challenges associated with collecting web data for marketing
purposes. In particular, they emphasize the richness of this data source from a content
perspective, the diversity of the available data types, and the integration problems
with traditional data. Especially, they highlight that web crawlers, web scrapers,
and APIs (application programming interfaces) are the most important techniques,
but that these approaches require both technical expertise and substantial resources.
Additionally, they stress that overcoming technical barriers related to data extraction,
storage, and processing demands further creativity, especially given the typically
large volume of data involved. In the following subsections, we discuss these three
main techniques for collecting UGC as described in the preceding section.

3.1 Web Crawlers and Web Scrapers

Simply put, web crawling is the automated process of systematically navigating
and browsing the web to discover and index web pages by following the links be-
tween and to them. In contrast, web scraping involves extracting specific pieces of
data—UGC, in the present context—from web pages or social media by parsing
their content and retrieving the desired information (Khder 2021). Web crawlers are
designed to handle the dynamic nature of web content, accessing both visible and
hidden data, and they often incorporate techniques for managing vast amounts of
information. Web scrapers, on the other hand, are essential for data-driven decision-
making because they may provide accurate and efficient solutions for data extraction
across various web environments. In marketing, both techniques can be used—for
example, to track brand mentions across the web, gather competitive intelligence,
monitor market trends, or analyze consumer sentiments to make informed decisions
and optimize marketing strategies (Levene and Poulovassilis 2001). Table 1 pro-
vides a concise overview of web crawlers discussed in the relevant literature (see,
e.g., Amuhda 2017; Deshmukh and Vishwakarma 2021; Gupta and Anand 2015;
Menczer et al. 2004; Thenmalar and Geetha 2011; Dhenakaran and Sambanthan
2011; Bergman and Popov 2023). A common feature of all these web crawlers is
their objective to capture the largest possible amount of data—in this case, UGC—in
the shortest possible time.

Similarly, Table 2 provides a concise overview of web scrapers discussed in the
relevant literature (see, e.g., Darmawan et al. 2022; Dellarocas et al. 2013; Egger
et al. 2022; Sharkey et al. 2023) and on relevant websites (e.g., www.brightdata.com,
www.techopedia.com). Multiple implementations exist for most of these scrapers,
some developed by the scientific community and others offered by commercial
organizations.

Guyt et al. (2024) additionally distinguish between code based web scrapers, non-
code based scrapers and LLM (large language model) based scrapers according to
the tools applied:
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o Code based web scrapers are programmed using popular and free of cost pro-

gramming languages/environments like R (www.r-project.org) or Python (www.
python.org). These integrated development environments offer, besides their ba-
sic functionality for programming, statistical computing, and visualization, many
extension packages. So, for web scraping, R offers the packages rvest for HTML
parsing and Selenium for headless browser scraping. Python offers the packages
BeautifulSoup and Scrapy for HTML parsing and selenium for headless browser
scraping.

Non-code web scrapers like Octoparse (www.octoparse.com), Import.io (www.
import.io), ParseHub (www.parsehub.com), and WebHarvy (www.webharvy.com)
are commercial tools which provide an easier data collection access to UGC than
code based web scrapers. A visual interface is provided that simulates the usual
access to websites including clicking and typing of text. By marketing example
website elements during this supervised access, the user identifies the desired in-
formation, starts the extraction, and receives the scraped web data in short time,
formatted, e.g., as Excel files. Using non-code web scrapers typically comes at

costs, depending on the data volume collected.

Table 1 Overview of web crawlers for UGC data collection

Name

Description

Generic web
crawlers

Focused web
crawlers

Incremental
web crawlers

Distributed
web crawlers

Parallel web
crawlers

Ontology-
based web
crawlers
Path-ascend-
ing crawlers

Shark-search
crawler

Dark/hidden
web crawlers

Generic web crawlers aim to search the web and index accessible web pages without
any specific focus. They are primarily used by search engines but are unable to crawl
the vast amounts of data presented in the hidden web.

These crawlers are specialized in retrieving web pages related to specific topics,
thereby reducing the effort spent on viewing websites that are unlikely to provide
relevant information. However, they often fail to target the content of the hidden web.

Incremental crawlers are designed to keep their data updated by revisiting pages and
refreshing them only when changes have occurred since the last crawl. They focus on
updating already indexed content rather than recrawling the entire web.

This type of crawler operates across multiple machines or nodes, coordinating to
maximize efficiency and balance the load. The parallelization of the crawling process
makes these crawlers particularly effective for large-scale web crawling operations.

These crawlers run multiple processes simultaneously to cover more ground in less
time. This approach is essential when dealing with massive datasets, that is to say
large numbers of web pages, and when time is a critical factor.

These crawlers use domain-specific ontologies to guide the crawling process. They
help to retrieve more precise data by estimating the semantic content of a URL link in
a set of documents based on the domain-dependent ontology.

These crawlers ascend the directory structure of a URL, moving from specific files to
broader directories. They are particularly effective in discovering isolated resources or
those without inbound links.

Shark-search crawlers are an enhanced version of the fish-search algorithm, designed
to discover relevant information more efficiently. They use a specific scoring system

to evaluate and rank links/documents based on their relevance.

Crawling the dark/hidden web to extract data from hidden services is a complex pro-

cess that requires specialized methodologies and techniques. This type of web crawler
can be used, for example, to investigate and anticipate potential cyber threats.
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o LLM based scrapers make use of recent advances in Transformer-based deep

learning (see Sect. 4 for details): Chatbots like ChatGPT-3.5 or ChatGPT-40
(OpenAl 2024) can be instructed in natural language to collect UGC data for
a specified app, product, or service, or to extract UGC from a specified web
page. So, e.g., if we know the web page where the retailer Otto offers the
fridge-freezer combination CNsdc 5203_994876651 (www.otto.de/p/liebherr-
kuehl-gefrierkombination-cnsdc-5203_994876651-185-5-cm-hoch-59-7-cm-
breit-1679410244/#ech=28954569&variationld=1716996242) and we know
which web page contains corresponding OCRs (www.otto.de/kundenbewertungen/
1679410244/#variationld=1716996242, accessed by clicking on the element “re-
views”), we can ask ChatGPT to download all reviews from this web page into
an Excel file with the following prompt: “Please collect all reviews from the web
page www.otto.de/kundenbewertungen/1679410244/#variationld=1716996242
and store them in the Excel file ocr.xIsx.” It should be mentioned that, currently,
this chatbot access is sometimes error-some (e.g., collects only subsamples of
OCRs on addressed web pages) and is—by far—not as flexible as the access by
code or non-code based tools discussed above (looping across websites and web
pages is incomplete). Here, one could ask, alternatively, ChatGPT or other LLM
based chatbots to develop an R or Python code for this purpose and execute this
programming code. In a similar way, LLM based chatbots can be used as content
aggregators to summarize OCRs on apps, products, or services (see Subsect. 4.3
on this issue). However, despite their potential benefits, most Al-powered review
summarization tools have been evaluated primarily in experimental settings using
datasets such as Amazon or Yelp reviews, whereas their use for data collection in
real-world settings is still in its infancy.

Table 2 Overview of web scrapers for UGC data collection

Name Description

HTML parsers HTML parsers process HTML code by analyzing it and converting it into a struc-
tured data format, known as the Document Object Model (DOM). This format allows
specific elements to be extracted, such as tags, headings, and paragraphs.

Headless Headless browser scrapers simulate a full browser environment without a graphical

browser scrap-
ers

Text-based
scrapers

Al-powered
scrapers

Content aggre-
gators

user interface running in the background. They can interact with web pages as a user
would, including executing JavaScript and handling dynamic content.

Text-based scrapers focus on extracting raw text content from web pages, often using
regular expressions (regex) to find and extract specific information. These scrapers are
useful for straightforward, text-heavy, web pages.

These scrapers employ machine learning techniques to identify and extract relevant
information based on learned patterns. They can adapt dynamically to web page struc-
tures, making them effective for scraping complex and changing data.

Content aggregators compile data from multiple web sources into a unified dataset,

commonly used for tasks such as collecting product prices across e-commerce sites
and aggregating OCRs from various platforms.
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3.2 API-Based Methods

An often somewhat neglected alternative for extracting UGC, or marketing data in
general, from the Internet is the use of APIs (Boegershausen et al. 2022). Simply put,
an API allows different software systems to communicate by sending requests and
receiving responses (www.ibm.com/topics/api). It acts as a bridge between a client
(which sends the request) and a server (which provides the data, such as UGC). APIs
enable seamless integration, allowing developers to utilize external functionalities
without needing to build them from scratch, while keeping internal systems secure
and hidden.

APIs offer several advantages in the present research context, but they also come
with disadvantages (see, e.g., Boegershausen et al. 2022; Maleshkova et al. 2010;
Lomborg and Bechmann 2014; Ruelens 2022; Puschmann and Ausserhofer 2017).
Advantages are:

o They provide an authorized, standardized, and structured way to access data (in
real-time), particularly when a data provider explicitly offers specific APIs for
programmatic access to its database(s). Examples include the Yelp API (www.
docs.developer.yelp.com) and the Holiday API (www.holidayapi.com).

e They often offer a legally and ethically acceptable method for collecting UGC
data, helping researchers avoid issues related to data scraping or unauthorized
access to UGG, as their use is typically covered by the terms of use of the platforms
providing the data.

o APIs typically support various input parameters and output formats (such as XML
and JSON), making them adaptable to different data needs and systems.

o The widespread availability of APIs across various domains, including social me-
dia, allows for extensive data access, particularly from popular platforms, such as
Facebook, Yelp, and X.

e APIs facilitate the automation of UGC data collection processes and the reuse of
code, enabling more efficient and scalable data gathering.

Disadvantages are:

o The absence of well-established standards in API documentation and usage may
result in inconsistent practices, occasionally requiring significant customization.

o UGC data collected via APIs also (as the discussed web crawlers and web scrap-
ers) may suffer from non-representative sampling, potentially affecting the validity
of research findings.

e Companies may restrict API access for strategic reasons, limiting the availabil-
ity of certain UGC data types, thereby impacting the comprehensiveness of data
collection.

o Even when using APIs, researchers may encounter ethical challenges, particularly
concerning privacy, because the providers of UGC often do not explicitly consent
to their data being used in research, even if the data are publicly accessible.

o The use of APIs may come along fees for usage, especially for high volumes of
data to be collected.
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For the sake of completeness, it should be mentioned that collecting UGC data
without explicit user consent may raise significant privacy issues, especially when
personal data is involved, bringing data protection regulations such as GDPR (Gen-
eral Data Protection Regulation) and CCPA (California Consumer Privacy Act) into
play, or when other complex ownership rights apply (Xiao 2020).

As a summary to the opportunities and challenges of collecting UGC data,
Boegershausen et al. (2022) emphasize that it is crucial to consider technical, le-
gal, and ethical issues to ensure the validity and utility of collected UGC data for
advancing marketing insights. The authors provide a methodological framework for
collecting web data, which essentially comprises three steps: (1) source selection,
(2) collection design, and (3) data extraction. Boegershausen et al. (2022, p. 5) con-
tend that “these decisions often involve trade-offs about research validity, technical
feasibility, and legal/ethical risks that are not always apparent”.

4 Analyzing UGC
4.1 Data Analysis and Machine Learning Based On UGC Feature Extraction
4.1.1 UGC Feature Extraction

In contrast to many other data sources that can be analyzed to support marketing de-
cisions, UGC (e.g., web-scraped from blogs, online shops, or social media networks)
is often characterized as unstructured for two reasons (Balducci and Marinova 2018;
Wedel and Kannan 2016):

o UGC single data units are often non-numeric (e.g., OCRs that consist of a com-
ment and/or audio, media platform posts on media hosting sites collecting photos
and/or videos) and must be pre-processed (transformed to meaningful numerical
values and/or binary indicators) to be analyzable.

o UGC single data units contain multiple facets/aspects simultaneously (photos
and/or videos can be compared through, for example, their color/edge distribu-
tions and/or the number of contained faces; audio through, for example, its pitch,
speed rate, and/or speech intensity), which means that an analyst must decide on
which facet/aspect to focus during an analysis.

The non-numeric and multi-faceted characteristics of UGC prevent traditional
data analysis and machine learning (e.g., regression analysis, decision trees, and
neural networks) from being directly applied, as is common with structured data
(e.g., data matrices with meaningful numeric values and/or binary indicators). How-
ever, for a long time, feature extraction has been a successful solution for these
pre-processing requirements. Thus, Fayyad et al. (1996) discuss the finding of use-
ful features that describe single data units as an important part of the knowledge
discovery in databases (KDD) process before methods can be applied.

For natural language texts or transcribed audio as single data units (Feldman
and Dagan 1995; Tabassum and Patil 2020), textual pre-processing has proven to
be useful (e.g., change to lower cases, stop words removal, removal of punctua-
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tions, removal of numbers, stemming), followed by one or more widespread feature
extraction techniques.

e Term/named entity recognition: The single data unit is scanned for terms pre-
specified by words or n-grams (combinations of words). Binary or count features
for these terms indicate their occurrence in the text.

o Bag-of-words coding: The occurrence of frequent words or n-grams in a single
data unit is coded by binary or count features for each word or n-gram.

e Term frequency-inverse document frequencies (TF-IDF) of words or n-grams cod-
ing: TD-IDF coding is similar to bag-of-words coding, but the relative frequency
of a word or n-gram in the single data unit is multiplied by the logarithm of the
inverse relative frequency of all single data units containing this word or n-gram.
The second factor reflects how much information the word or n-gram provides,
i.e., how common or rare it is across all single data units.

For images—coded as matrices of intensities per pixel (e.g., one value for the grey
intensity per pixel or three values in the red-green-blue color model per pixel)—other
extractable features have long been used (for an overview see, e.g., Baier et al. 2012).

e Color distributions: One- or three-dimensional histograms reflect the frequency of
intensity ranges.

e Edge, texture, or shape distributions: Features indicate the frequency of specific
edges, textures, or shapes in specified parts of the image.

o Named entity recognition: The image is scanned for pre-specified named entities
(e.g., objects or persons). Binary or count features indicate their occurrences.

The main advantage of the UGC feature extraction approach (both for texts and
images) is the possibility that the resulting data matrices (with individuals or UGC
single data units as rows and features as columns, containing numeric or binary
values) now enable the application of traditional data analysis and machine learning
methods.

4.1.2 Traditional Data Analysis and Machine Learning Based On UGC Features

After the feature extraction process, the resulting numeric data matrix can be an-
alyzed in a traditional manner. For this purpose, the following data analysis and
machine learning methods for unsupervised and supervised learning are widespread
(Wedel and Kannan 2016; Ma and Sun 2020; Ngai and Wu 2022; Herhausen et al.
2024; Duarte et al. 2022).

o Unsupervised learning: e.g., term frequency analysis/word clouds, k-means, neu-
ral networks like self-organizing maps (SOM), topic modeling using latent Dirich-
let allocation (LDA).

e Supervised learning: e.g., lexicon-based approaches, (negative binomial, logistic,
probit, or tobit) regression analysis, k-nearest neighbor, naive Bayes analysis, de-
cision trees/random forests/XGBoost, support vector machines, neural networks
like multi-layer perceptrons.
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Term frequency analysis based on term recognition features is an often applied
unsupervised learning method when the intention is to identify frequently discussed
aspects, strengths, or weaknesses. For example, Kim et al. (2022) used this method
to derive three lists of frequently occurring terms in OCRs: one list across all OCRs,
a second list across OCRs with 5-star ratings, and a third list across OCRs with
1- or 2-star ratings. The comparison of these lists helped to identify intensively
discussed aspects as well as app, product, or service attributes that lead to high or
low satisfaction. Word clouds (visualizations of term frequencies) supported these
findings.

Topic modeling can also be applied to OCRs for this purpose: Topics are defined
as a probability distribution across words (or n-grams) of a vocabulary. For example,

9 ELINNT3

if some customers use in their OCR comments words like “clean”, “quiet”, “spa-
cious”, “soft” instead of words like “meal”, “breakfast”, “sightseeing”, one could
assume that these customers reflect the topic “hotel room quality” and not topics
like “food quality” or “location”. For estimating topics and corresponding customer
segments from a sample of OCR comments (or other texts), LDA, a statistical model
introduced by Blei et al. (2003), assumes that the probability that a word (or n-gram)
occurs in an OCR depends on three types of probabilities: The probabilities that the
customer belongs to specific customer segments, the probabilities that these cus-
tomer segments discuss specific topics, and the probabilities that the word is used
in an OCR comment when these topics are discussed. The underlying probabilities
(model parameters) can be estimated by applying maximum likelihood or other sta-
tistical approaches to the OCR comments and allow to allocate—in a probabilistic
manner—customers to (up to now unknown) customer segments, words to (up to
now unknown) topics, and topics to customer segments.

When the data matrices contain extracted features from images, allocating in-
dividuals to customer segments is also possible: So, e.g., Baier et al. (2012) and
Daniel (2014) used k-means to cluster individuals based on similarities of their
uploaded photos during a survey. Each individual and her or his uploaded images
were represented by category-specific extracted color diagrams (reflecting her or his
holiday/spare time, apartment/furniture, and clothing/fashion interests). The authors
found that an additionally conducted traditional lifestyle survey among the same
individuals, with multi-item scales for activities, interests, and opinions, resulted in
similar lifestyle segments.

Supervised learning methods, in contrast to the up to now discussed unsupervised
ones, often train a model that predicts an interesting outcome based on features of
the data matrix. The outcome could be the overall positive or negative sentiment of
an OCR or the indication whether a photo contains a brand logo or not. For a small
sample of single data units, the corresponding outcomes are known. Then, a model is
trained and tested to predict the outcome based on corresponding extracted features.
Finally, the trained model is applied to all data units. Some of the earliest approaches
to predict sentiment scores from texts was lexicon-based sentiment analysis, So, e.g.,
Pennebaker et al. (2001) introduced the text analysis software LIWC in the early
2000s for studying the various emotional, cognitive, structural, and process com-
ponents present in text samples. LIWC relied on a lexicon with 4500 words which
were assigned to 76 categories, including 406 words that indicate positive emotion
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(e.g., love, nice, good, great) and 499 words that indicate negative emotion (e.g., sad,
bad, worse). The difference between the relative frequencies of these indicators in
an OCR comment is then used to predict an overall sentiment score. More advanced
lexicon-based sentiment score predictors like VADER (Hutto and Gilbert 2014) al-
locate polarity values to the words in their lexicon. The score prediction then relies
on calculated sums of the polarity values of occurring words in a comment. Such
lexicons, if properly built, allow to be used as sentiment predictors across a wide
range of textual UGC. They have remained popular even after the introduction of
machine learning based alternatives (Humphreys and Wang 2018). However, it has
to be mentioned that lexicon construction is often time intensive, domain specific,
and prone to a wide variety of difficulties (Islam and Zibran 2018).

Besides these lexicon-based approaches, as already mentioned, a large number of
traditional machine learning methods is available for predicting sentiment scores or
other outcomes (see the overviews in Wedel and Kannan 2016; Ma and Sun 2020;
Ngai and Wu 2022; Herhausen et al. 2024; Duarte et al. 2022): Decision trees are
built by iteratively splitting the training sample of single data units according to
feature values so that homogeneous subsamples are formed with similar outcome
values. (Artificial) Neural networks—e.g., multilayer perceptrons—were inspired
by the structure and function of the human brain with its neurons (as nodes) and
connecting synapses (as weights): Feature values at nodes of a so-called input layer
are weighted to give values at nodes in hidden layers. Then, these values are weighted
to give outcome values at nodes in the output layer. The training sample with
known corresponding feature and outcome values is used to estimate the weights
that connect the nodes of neighbored layers so that the predicted and the observed
outcomes match as best as possible.

Other methods, e.g., random forest or XGBoost, combine simpler models (e.g.,
decision trees) to stabilize their prediction. For a long time and even today, these
traditional machine learning methods based on extracted features have repeatedly
demonstrated their predictive accuracy. For example, Salminen et al. (2022) col-
lected in their comparison of machine learning methods for UGC data analysis n=
4,209,101 tweets on 20 brands. They extracted TF-IDF features for each tweet in
order to predict brand-specific pain points (important customer concerns) from these
tweets. Two researchers were asked to independently label a train and test sample of
2000 tweets with binary outcome values that indicated whether the tweet contained
a pain point or not. Then, various supervised learning methods were applied to train
and test a pain point prediction model. Here, the naive Bayes method performed best,
followed by XGBoost and the k-nearest neighbor method. The accuracy of the naive
Bayes method was only slightly outperformed by an additionally applied modern
discriminative deep learning method using the Transformer architecture (discussed
in the next subsection). Finally, the prediction model was applied to all tweets.
Tweets with highest pain point predictions then were used to develop improvement
hints for the analyzed brands.

Besides machine learning methods to train and test a prediction model from UGC
as discussed, wide-spread are also applications of regression analysis for the same
purpose. For example, Decker and Trusov (2010) analyzed mobile phone OCRs
by extracting 46 attribute-level binary indicators as terms (i.e., whether 23 selected
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attributes like size/weight, appearance, functionality, and battery were positively or
negatively discussed in a comment) and related them to stated preference (here: the
overall star rating in the OCR) by applying a negative binomial regression model.
The impact of the attribute-level indicators on preference could then be used to
understand the importance of attributes in customers’ mobile phone evaluations.
Other authors applied other regression variants to similar data. For example, Kiibler
et al. (2024) analyzed the helpfulness of OCRs (rated by other users) using the so-
called tobit regression. Here, due to the conditional nature of the helpfulness rating
(users can only give positive helpfulness indications and rate only few OCRs),
a censored form of regression—the so-called tobit regression—had to be applied.

However, despite its widespread use and accuracy, the feature extraction approach
discussed so far has been widely criticized because it often focuses on wrong facets/
aspects in the UGC single data units (specific text or image features) and leads to
misestimations of single data unit (dis)similarity. For example, Baier et al. (2012)
discuss the problem that images have similar color/texture distributions but different
content (e.g., a photo with the upper body of a young woman with curly hair and
a photo with a cocker spaniel had a similar color/texture distribution). Similarly,
the bag-of-words approach can lead to misjudgments—for example, when the same
words are used in an ironic context, when negations are ignored (‘“not easy,” “no
cloud storage”), or when the sequence of words makes a difference. An alternative
here is to use advanced machine learning methods that omit the feature extraction
step, as described in the following subsections.

4.2 Discriminative Deep Learning

4.2.1 Image-Based Discriminative Deep Learning Using Convolutional Neural
Networks

Since the 2010s, neural networks with large numbers of layers, nodes, and—conse-
quently—parameters (weights, scaling parameters), so-called “deep” neural net-
works, dominate in machine learning challenges, when unstructured data (e.g., text,
image, audio, and video) has to be classified (see, e.g., Chollet 2021, p. 16ff.).
In 2012, the ImageNet challenge to recognize 1000 predefined object categories
(e.g., balloon, strawberry) in 1.4 M images was won by Alex Krizhevsky and Geof-
frey Hinton. Their convolutional neural network (CNN) AlexNet had eight layers,
650,000 nodes, and 60 M parameters, and enabled a breakthrough accuracy of 83.6%
in this challenge (Krizhevsky et al. 2017). Since then, most similar challenges with
a discriminative task (natural language text or image classification) have been won
by deep neural networks. CNNs, the typical winners in image classification tasks
in the 2010s, consist of an input layer, subsequently followed by multiple hidden
layers, and finally an output layer, all with large numbers of nodes. It has to be
noted that at the input layer for each pixel one input node (if grey intensities are the
input) or three (if red-green-blue or other color model intensities are the input) are
needed. The CNN self-extracts feature values from these input nodes by applying
standardized filter operations to small parts of the input data in the input layer (e.g.,
all 3x3 neighbored pixel areas of an image or other neighbored tokens) and by

@ Springer



432 Schmalenbach Journal of Business Research (2025) 77:419-455

using the outputs of a layer’s nodes as inputs in a similar fashion to the nodes of
the next layer. Finally, in the output layer, for each category to be predicted, a node
calculates a value based on the values at the nodes of the previous layer.

Since such deep neural networks consist of huge numbers of unknown parame-
ters (weights, scaling parameters), enormous amounts of train/test data, computation
time, and storage space are needed. However, from the beginning, it was seen to
be meaningful to fine-tune already trained deep neural nets to new categorization
tasks since this transfer of an already estimated model reduces data, time, and stor-
age requirements significantly. CNNs trained to predict the 1000 categories of the
ImageNet challenge could be used as a basis to predict other (similar) categories by
replacing the trained output layer with a new output layer—to be trained indepen-
dently and fine-tuned—that predicts the categories of the new task. A well-known,
ImageNet pre-trained CNN model that is available in R and Python is VGG16 (Si-
monyan and Zisserman 2015). This pre-trained model has been fine-tuned for many
other contexts—for instance, to predict brand confusion in imagery markets from
print ads and from TV video ads (Nakayama and Baier 2020) or to detect brand
logos in posted UGC (Wang et al. 2022). The fine-tuning of pre-trained models for
many contexts is called the application of transfer models or transfer learning (Weiss
et al. 2016).

4.2.2 Text-Based Discriminative Deep Learning Using Recurrent Neural Networks

Whereas CNNs dominated the image-based machine learning challenges in the
2010s (see, e.g., Chollet 2021, p. 16ff.), deep learning based on so-called recurrent
neural networks (RNNs) did the same for text-based tasks like speech recognition,
machine translation, and text categorization (see Sutskever et al. 2015). Unlike mul-
tilayer perceptrons and CNNs that follow a feedforward mechanism and process
data in a single pass, RNNs process data across multiple sequence or time steps,
making them well-adapted for modeling and processing sequential or time-series
data like text, audio, and/or video (Tealab 2018; Sarker 2021). This modeling en-
deavor is achieved by employing nodes with a hidden state, essentially a form of

Fig. 1 Encoder-decoder prin-
ciple in machine learning, non-
recurrent version. (Adapted from
Rumelhart et al. 1987)

Encoder Decoder
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Input

Z\{o

Output Probabilities
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memory, which is updated at each sequence or time step based on the current input
and the previous hidden state (Hochreiter and Schmidhuber 1997). This recurrency
allows the network to learn from past inputs but increases substantially the time
the model needs to be trained. The well-known so-called long short-term memory
(LSTM) RNN variant (Hochreiter and Schmidhuber 1997) became the default archi-
tecture for natural language processing with—compared to other RNNs—acceptable
training time and high accuracy in text classification tasks.

Newer so-called deep RNNs with multiple LSTM layers (see, e.g., Sutskever
et al. 2015; Sachin et al. 2020; Yadav et al. 2023) demonstrate even better accuracy
for text classification than RNNs with few LSTM layers. They are based on the
well-known encoder—decoder principle (Ackley et al. 1985; Rumelhart et al. 1987),
visualized in Fig. 1: the network consists of successive layers of nodes that are
interconnected. The encoder part of the network transforms high-dimensional data
from input nodes to low-dimensional representations in bottleneck layer nodes. The
decoder part generates high-dimensional data in the output nodes from these low-
dimensional representations. For network training, the transformation parameters are
iteratively improved from a random starting solution using large samples of given
input and output data pairs so that the calculated outputs from the given input data
are as close as possible to the corresponding given output data.

In its simplest (non-recurrent) form as in Fig. 1, the encoder-decoder principle
is trained with given pairs of identical input and output data to estimate the re-
lations between high-dimensional representations and (unknown) low-dimensional
ones without a major loss of information (Kramer 1991). Based on a standardized
data matrix with n observations (rows) and m columns (variables), the number of
input and output nodes of the network is set to m, and the number of bottleneck
nodes is set to a small number that reflects the desired low-dimensionality. Then, the
network parameters are iteratively trained, based on the n observations (the rows)
as input and identical output data. Kramer (1991) showed that, in many cases, the
achieved results are comparable to nonlinear principal components analysis. The es-
timated relations (network parameters) between the high- and the low-dimensional
representations can be used to predict meaningful low-dimensional representations
(the values in the bottleneck layer nodes), even for (new) inputs.

Over the years, this encoder-decoder principle has established itself as the supe-
rior architecture for RNNs, especially when text (as a sequence of words or word
pieces) has to be translated from one language to another (see, e.g., Bahdanau et al.
2014; Sutskever et al. 2015; Cho et al. 2014). Based on this principle, so-called large
language models (LLMs) were trained, which then can be fine-tuned—again called
transfer models as with CNNs—for many natural language processing tasks, such as
machine translation, natural language inference, next sentence prediction, paraphras-
ing, question answering, reading comprehension, sentence completion, sentence ac-
ceptability judgment, sentiment analysis, text categorization, and text generation
(Raffel et al. 2019).
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Fig. 2 Tllustration of the main components of the Transformer architecture (on the left side, adapted from
Vaswani et al. 2017) and its application as a transfer model to text categorization (on the right side)

4.2.3 Text-Based Discriminative Deep Learning Using the Transformer Architecture

Since then, however, the Transformer architecture—first presented in 2017 (Vaswani
et al. 2017)—has further developed the accuracies and the affordable tasks of ma-
chine learning being nowadays—instead of CNNs or RNNs—the gold standard for
developing transfer models (Chang et al. 2024). LLMs trained in this architecture
differ from CNNs and RNNs insofar as they completely abstain from convolution
and recurrency. Instead, they solely rely on the so-called attention mechanism as
a feedforward concept that generates LLMs “to be superior in quality while being
more parallelizable and requiring significantly less time to train” (Vaswani et al.
2017, p. 1). The attention mechanism allows to focus on the most relevant parts
of the input by assigning varying importance to different elements. It calculates
attention scores and applies a softmax function to create probabilities that weight
the value matrix. This enables the model to capture relationships across the entire
sequence efficiently, even over long distances.

The left side in Fig. 2 (adapted from Vaswani et al. 2017) illustrates the main
components of this Transformer architecture applied to natural language tasks:

e Input and output data are texts (a sequence of words) that are converted by so-
called tokenizers according to a vocabulary (list of frequent and meaningful words
or word pieces in languages) into indicators of tokens (words or word pieces).

o The tokens and their positioning (sequence information) are then converted to
vector representations in the input and output embedding layers of the network.
Here, so-called embedding tables from other models can be used for this coding
process.
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e Nx successive Transformer layers (e.g., Nx=6) carry out repeated transformations
on these vector representations to extract more and more abstract linguistic infor-
mation. Each Transformer layer consists of an attention layer and a feedforward
layer. These attention layers are specific to the Transformer architecture. They are
specific matrix operations that enable the learning of token or node amplifications
depending on the context as proposed by Bahdanau et al. (2014). However, in
contrast to former attention propositions with RNNs, the Transformer architecture
achieves this in a feedforward manner and, therefore, requires less training time.

e An optional, un-embedding layer converts the final vector representations back to
a probability distribution of the tokens.

To pre-train Transformer-based LLMs, large text corpora were used as a basis for
input and output data pairs. The 2014 Workshop of Machine Translation (WML)
dataset with about 4.5 million English-German sentence pairs should be mentioned
(Vaswani et al. 2017) as should the Toronto BookCorpus with 800 million and
the English Wikipedia corpus with 2500 million words (Devlin et al. 2018; Raffel
et al. 2019). From these text corpora, samples of input and output text pairs were
constructed to train a general-purpose LLM. Typical pairs for training reflect tasks
such as the restoring of corrupted text (text with masked words as input, text without
these masked words as output), and a (machine) translation task (with the same text
in two different languages as input or output text pairs) (Raffel et al. 2019).

It should be noted that pre-training an LLM places enormous demands on memory
volume and computing time, due to the large number of model parameters and the
volume of input and output text pairs needed for training. Vaswani et al.’s (2017)
basic LLM (“base”) makes use of a word-piece vocabulary with 25,000 tokens,
allowing up to 512 tokens as input and output text (text with up to 512 word pieces).
Nx =6 Transformer layers in the encoder and in the decoder parts produce 65 million
network parameters to be estimated. The largest LLM (“big”) with 1024 tokens as
input and output is determined as having 213 million network parameters to be
trained (Vaswani et al. 2017). Training on a machine with eight Nvidia P100 GPUs
took 12h for the base LLM and 3.5 days for the big LLM. Further developments of
LLMs with much more network parameters have even higher demands on memory
volume and computing time.

A major advantage of LLLMs is that they can be used for other natural language
tasks (e.g., text categorization) than those for which they were trained originally
(e.g., machine translation, language inference, and question answering). Thus, the
nowadays ubiquitous BERT (Bidirectional Encoder Representations from Trans-
formers; see Devlin et al. 2018) is a widespread family of LLMs that mainly consist
of the encoder part of the Transformer architecture. BERT was originally trained
for language inference with large datasets, but—after fine-tuning to fulfill a new
natural language task with much smaller datasets—is now used, for the most part,
as a transfer model for text categorization (e.g., for sentiment analysis). The right
side in Fig. 2 demonstrates the pre-training and fine-tuning process in the modified
Transformer architecture. Input texts are transformed using tokenizers, embedding
layers, attention layers, and feedforward layers but are then directly led by simple
transformations to output probabilities for text categories (e.g., input is “acceptable”
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or “not acceptable”). Like many other LLMs, a BERT model was trained by using
the Toronto BookCorpus with 800 million words and the English Wikipedia corpus
with 2500 million words. However, instead of usually training BERT with pairs of
input and output data according to the encoder-decoder principle, BERT receives for
training corresponding (and, alternatively, not corresponding) input/output text pairs
as single input data. The transformation parameters are learned by comparing the
output probabilities for the categories “acceptable” and “not acceptable” with the in-
formation on whether the input consisted of a corresponding and not corresponding
input/output text pair. This modification of the basic Transformer architecture has
proven to be advantageous due to its simultaneous/bidirectional analysis principle,
especially when text categorization is the major task for which the LLM is to be
applied (for details see Devlin et al. 2018). Recently, BERT has been extended to
allow sentiment analysis with multilingual texts (especially applicable for texts in
Dutch, English, French, German, Italian, and Spanish). It has demonstrated its su-
periority over many other LL.Ms for tasks such as question-answering and language
inference, without substantial task-specific architecture modifications (Devlin et al.
2018), and for multilingual sentiment analysis (Hartmann et al. 2023; Manias et al.
2023).

General-purpose and specific (for sentiment analysis) BERT LLMs with pre-
trained parameters are available for programmers within Google’s Keras and Hug-
ging Face’s Transformers packages for Python (Chollet 2021), and they can be
further fine-tuned to become transfer models by providing additional task-specific
pairs of input data and corresponding categories.

4.2.4 Image-Based Discriminative Deep Learning Using the Transformer
Architecture

In the beginning, Transformer-based LLMs were solely applied as transfer models
to solve natural language tasks. However, recently, they have demonstrated their
superiority over other deep learning approaches in the field of image and video
classification (Dosovitskiy et al. 2021) as well as in image and video generation
(Parmar et al. 2018). Dosovitskiy et al. (2021) proposed the Transformer-based
VisionTransformer (ViT) that, compared to well-known pre-trained and fine-tuned
CNNs in the context of well-known image classification tasks, needs less training
time and provides superior performance (accuracy rates in image classification).
For example, Kim and Moon (2024) compared ViT with a state-of-the-art CNN
(a VGG16 network, pre-trained based on the ImageNet database) with respect to their
accuracy when classifying images with bulky waste. They found that ViT clearly
outperforms the CNN (83.89% accuracy versus 64.60% accuracy). Truong and Lauw
(2023) compared ViT and two well-known CNNs (ResNet-152 and EfficientNet-B7)
for sentiment score prediction based on OCR images and found a similar superiority
of ViT.

Google’s recently introduced Transformer-based Gemini family of highly capable
multimodal models (Gemini Team 2024) goes even one step further by allowing to
understand and analyze combinations of text, image, audio, and video. Pre-trained
with data from web documents and articles including image, audio and video, the
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models can be fine-tuned to analyze multimodal data for specific tasks like classi-
fication of multimodal data units, question-answering, reasoning, or image and text
generation. The comparisons showed that these Transformer-based models outper-
form all other discriminative deep learning models (Gemini Team 2024).

4.3 Generative Deep Learning

Besides discriminative tasks like text, image, audio, or video classification, Trans-
former-based LLMs and derived chatbots have demonstrated additional possible
uses (Chang et al. 2024): Due to their trained ability to iteratively predict adequate
next words based on current context, they are able to interact with humans in a con-
vincing manner, giving human-like answers to questions or fulfilling other tasks
like text summarization or drawing conclusions from presented data: The human
provides a prompt in natural language that contains a question or instruction com-
bined with data and a desired output format. The LLM or chatbot responds in short
time and with impressive results. So, in their comprehensive overview of the perfor-
mance of current Transformer-based LLMs and chatbots, Chang et al. (2024) found
that LLMs like GPT-3.5 or GPT-4 (GPT stands for Generative Pre-Trained Trans-
former, OpenAl 2023), as well as derived chatbots like ChatGPT-3.5 or ChatGPT-
40 (OpenAl 2024), are convincing—even in comparison to human experts—when
it comes to answering questions or instructions fluently and correctly in terms of
content and language, summarizing and classifying presented collections of texts
and images, and drawing desired conclusions. However, Chang et al. (2024) also
found, that up-to-now LLLMs and derived chatbots are still inferior to humans when
it comes to capturing inconsistencies and semantic subtleties in texts and images.
They are susceptible to misinterpretation and, if calibrated further back, are often
not at the current level of information and knowledge required to correctly answer
a question or instruction. Recent applications in a real-world business context (e.g.,
Bouschery et al. 2023, Jeong and Jihwan 2024) confirmed these findings: Bousch-
ery et al. (2023) found that GPT-3.5 was able to summarize OCRs adequately and
to develop ideas and concepts for product/improvement based on them, Jeong and
Jihwan (2024) demonstrated that ChatGPT-3.5 was able to answer adequately to
customers’ complaints in TripAdvisor OCRs in a hotel service context.

Given the ever-increasing volume of information available on the Internet regard-
ing consumer behavior, opinions, sentiments, recommendations, and so on, genera-
tive deep learning is becoming an increasingly important method for aggregating and
analyzing UGC. One particular type of aggregation that is currently receiving sig-
nificant attention is OCR summarization: Large numbers of OCRs are condensed to
concise summaries that capture key sentiments and opinions. This helps consumers
make quick decisions and provides businesses with actionable insights (Jovanovic
and Campbell 2022; Dwivedi et al. 2023). Frequently used techniques in this con-
text include (Widyassari et al. 2022; Zhao et al. 2022; George and Srividhya 2022;
Uppalapati et al. 2023; Zhang et al. 2021b; Xu et al. 2023; Wang et al. 2020), e.g.

e extractive summarization: Selecting and combining key sentences or phrases from
OCRs,
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e abstractive summarization: Generating new sentences that capture the essence and
key points of OCRs, as well as

e hybrid approaches: Combining extractive and abstractive methods to leverage the
strengths of both approaches.

These OCR- or UGC-based summaries offer several benefits for decision sup-
port in corporate marketing. They enable marketers to quickly understand customer
sentiments and key concerns, helping marketing teams make informed decisions
by highlighting common feedback themes. This, in turn, can lead to better prod-
uct improvements and more effective marketing strategies. Additionally, automated
summarization saves time by efficiently processing vast amounts of review data, and
these techniques are scalable across languages and regions, making them invaluable
for global marketing. In conclusion, review summarization is likely to play a vi-
tal role in future marketing decision support by providing actionable insights and
improving decision making.

In the next section, we provide a short application overview of the traditional and
the advanced methods discussed to support decisions in marketing management.
We discuss successful use cases for UGC data collection and analysis for different
marketing management decision areas based on the approaches discussed (Sect. 5),
and we summarize the findings in a guideline for UGC data collection and analysis
(Sect. 6).

5 Use Cases of UGC-Based Decision Support in Marketing
Management

5.1 Text-Based Use Cases

The analysis of text-based UGC has a long tradition in marketing management
(Balasubramanian and Mahajan 2001; Decker and Trusov 2010; Timoshenko and
Hauser 2019). Table 3 gives an overview of decision areas, pursued goals, data
sources, and applied methods. Among the huge number of articles that deal with
UGC data analysis (Li et al. (2022) refer in their literature review to more than 3390
published academic research articles for UGC data analysis in e-commerce), we
focus on articles where—in contrast to discussing the methods applied—the focus
is on marketing decisions. Additionally, we discuss here shortly (as already done in
Sect. 4 for some other use cases from Table 3 refering to the methods applied, e.g.,
Decker and Trusov 2010; Jeong and Jihwan 2024; Kim et al. 2022; Kiibler et al.
2024; Salminen et al. 2022) some selected use cases.

A closer look at the use cases in Table 3 shows that text-based UGC use cases
are often in decision areas like customer/market selection, product/service quality
management, new product/service development, customer relationship management,
and brand management. By applying traditional data analysis and machine learning
as well as discriminative and generative deep learning to collected UGC data, it
is possible to identify important product attributes and topics from a customer’s
perspective.

@ Springer
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For example, extending the already discussed regression analysis by Decker and
Trusov (2010), Qi et al. (2016) as well as Xiao et al. (2016) applied a combination
of conjoint analysis and the Kano model to OCRs to estimate the importance of
product attributes from a customer’s point of view. Rese et al. (2014) developed
a lexicon-based approach to predict technology acceptance model (TAM) construct
scores from OCR comments. This approach allows to monitor technology accep-
tance over time since OCRs have a time-stamp (the time at which they were written),
an important asset when a new product, service, or app is introduced into a market
and receives updates and relaunches over time. Kiibler et al. (2020) also devel-
oped a time-dependent prediction model for brand awareness, impression, purchase
intention, and satisfaction that can be used for (continuous) brand management.
Timoshenko and Hauser (2019) trained a CNN to predict the informativeness of an
OCR which helps to identify important OCRs on which to concentrate. Biischken
and Allenby (2016) found in their LDA analysis of hotel OCRs topics like check-in
problems, near-by attractions, or room cleanliness problems as well as corresponding
customer segments that discussed one or more of these topics.

Recently, based on the Transformed-based deep learning methods discussed in the
previous section, enormous methodological progress has been made. As discussed,
today, OCRs can be easily analyzed using LLMs, such as BERT or ChatGPT. For
example, Koc et al. (2023) applied ChatGPT to customer complaint management
based on TripAdvisor posts. ChatGPT received instructions how to answer to these
complaints. Then, a sample of 30 complaints and responses by ChatGPT and by
trained hotel managers was shown to 40 industry experts who were asked to eval-
uate these answers. Concerning dimensions like credibility, apology, attentiveness,
timeliness, redress, facilitation, and overall satisfactory, the evaluations of the chat-
bot’s responses were significantly better rated.

Praveen et al. (2024) also analyzed TripAdvisor hotel OCRs, but applied LLM
based topic models (using GPT and Falcon as LLMs) as well as ChatGPT and
compared their results with analyses using traditional data analysis and machine
learning. They found that discriminative and generative deep learning based on the
Transformer architecture clearly outperformed the traditional methods and that the
derived results for improving the hotel services were very helpful from a manage-
ment perspective. Baier et al. (2025) extended the analysis by Rese et al. (2014) in-
sofar that they replaced the lexicon-based approach to predict TAM construct scores
used there by discriminative deep learning (multilingual BERT). They trained these
models with product, service, and app OCRs rated by human experts and Chat-
GPT. The trained model predicts perceived informativeness, perceived enjoyment,
perceived usefulness, perceived ease of use, attitude towards using, and behavioral
intention to use over time in an adequate manner as could be demonstrated by com-
parisons with traditional TAM surveys. However, concerning the important decision
areas price management and sales force management, we could not find—up to
now—convincing UGC data collection and analysis use cases.

@ Springer



Schmalenbach Journal of Business Research (2025) 77:419-455 443

5.2 Image- and Video-Based Use Cases

The widespread adoption of social media platforms, such as Facebook, Instagram,
and TikTok, as well as video-sharing platforms, such as YouTube, has significantly
expanded the opportunities for users to curate and share content online, moving be-
yond written text to include images and videos (Klostermann et al. 2018). Moreover,
established platforms for OCRs have long facilitated sharing pictures and videos,
providing consumers with a platform to express their product and brand experiences
in a more visually engaging way (Giglio et al. 2020; Kiibler et al. 2024). This, in
turn, generates valuable data for marketing researchers. Advances in data collection
techniques and data processing methods for these multimedia formats have opened
new possibilities for researchers. This has been particularly evident in the last few
years, enabling them to explore consumer behavior analysis based on user-generated
image, audio, and video content. Table 4 provides an overview of various use cases
in marketing research articles that have analyzed user-generated images (photos,
drawings) and videos to answer questions related to brand management, product/
service quality management, and customer/market selection, among others.

In an early example, Baier et al. (2012) demonstrated that uploaded holiday,
fashion, and apartment photos (during a survey or on social networks) can be used
to group individuals into lifestyle segments based on the color distributions of the
photos and other features. Similarly, Deng and Liu (2021) focused on segmentation,
using over 14,000 Beijing-visit-related photos from Instagram. They employed facial
and background recognition to extract features from uploaded images, derived, and
discussed tourist segments with different preferences.

Instagram has become a particularly intriguing data source for both academic
researchers and marketing managers, especially in the field of brand management.
Studies by Liu et al. (2020) and Nanne et al. (2020) utilized photos uploaded to
social media platforms that include references to brands in their analysis. Nanne
et al. (2020) employed Google Cloud Vision API and other network approaches to
categorize content, while Liu et al. (2020) used a pre-trained CNN to predict four
attribute scores (glamorous, rugged, healthy, and fun) for each brand. Marketing
managers can benefit from images posted in OCRs to better understand consumer
experiences. This insight was highlighted by Zhang and Luo (2023) as well as
Kiibler et al. (2024), who utilized OCR images from Yelp and Amazon. Zhang and
Luo (2023) focused on restaurant OCRs to assess the predictive power of uploaded
photos in relation to a restaurant’s success, while Kiibler et al. (2024) emphasized
the significance of images in OCRs in enhancing their helpfulness.

User-generated image content has much greater currency as a topic in marketing
research than user-generated audio and video content. However, studies by Park
et al. (2023) and Agrawal and Mittal (2024) emphasize the potential of video data
in understanding consumer preferences. Agrawal and Mittal (2024) used product
review videos from influencers on YouTube to extract features, and they conducted
binomial regression analysis on likes and comments. Similarly, Park et al. (2023)
analyzed product review videos on YouTube, extracting audio and video features for
analysis. Their findings highlighted the influence of facial expressions, emotions,
and voice pitch on the perceived helpfulness of the reviews.
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A closer look at Table 4 shows that image and video analysis is mainly used in
the decision area of brand management. Companies try to understand the context in
which their brands are posted and whether the derived context features can be used
for brand positioning. However, it should be noted that the applied methodologies
might still be in a testing stage: Most of the use cases in Table 4 are probably
further away from practice than the use cases in Table 3. Maybe, as discussed in
Subsubsect. 4.2.4, the upcoming of improved LLMs and chatbots (e.g., Google’s
Transformer-based Gemini family, see Gemini Team 2024), that are able to summa-
rize and analyze multimodal data sources in a convenient and valid manner, is here
a huge step forward.

6 A Guideline for UGC Data Collection and Analysis for Researchers
and Practitioners

The collection and analysis of UGC and other unstructured data is resource-con-
suming and has presented challenges for marketing researchers and practitioners (de
Haan et al. 2024; Wedel and Kannan 2016). With the increasing availability of texts,
images, videos, and other non-numeric forms of data, marketers can access a wealth
of information previously unavailable. However, extracting actionable insights from
these data types remains complex due to the lack of structured guidelines. Therefore,
selecting adequate data sources and methods to solve a specific problem is essential.

To balance the potential benefits and the associated challenges of decision sup-
port based on unstructured data (problem resolution, costs of data collection and
analysis, reliability and validity problems), de Haan et al. (2024) proposed a three-
step approach as a guideline: (1) problem identification, (2) solution development,
and (3) problem resolution. This process is grounded in organizational learning the-
ory and aims to help managers choose the appropriate data sources and analysis
methods based on their specific business needs. Therefore, as described below, we
found that this three-step approach can be easily adapted to our context of UGC-
based decision support in marketing management.

The first step, problem identification, requires the marketing managers to describe
and characterize the problem for which decision support is needed. Here, the dis-
cussed decision areas and pursued UGC analysis goals from Subsects. 5.1 and 5.2
(see Tables 3 and 4) are helpful starting points. For many decision areas and goals,
successful use cases of UGC data collection and analysis are discussed for cus-
tomer/market selection, product/service quality management, or brand management.
De Haan et al. (2024) argue in their guideline that in this first step, management
should distinguish whether the primary analysis goal is an explorative one (e.g.,
brand management with a medium- to long-term business impact) or an exploitative
one (e.g., new product/service management with a short- to medium-term business
impact) since this characterization later affects the selection of an adequate data
source.

The second step, solutions development, calls for marketing management to check
which potential sources of UGC data are available for the identified problem: internal
or external ones from the company’s point of view, or even both.
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e Internal data sources, such as OCRs and complaints stored on the company’s web-
site or in the company’s customer database, can be accessed more easily. Espe-
cially for exploitative goals, like product/service quality management, such inter-
nal UGC data sources seem sufficient since they contain detailed descriptions of
complaints and lead to improvement hints.

o External data sources, such as review sites or social networks (see Sect. 2), offer
advantages for explorative goals since they contain in their OCR comments and
posts attitudes and preferences concerning whole markets, not only the company’s
own brands, products, and services. This allows, e.g., insights on important prod-
uct/service features from a general customer’s point of view. However, collecting
UGC data from these external sources is much more demanding since specific
web scrapers or APIs for scraping text, images, and videos must be applied (see
Sect. 3). Of course, in both cases, for internal and external data sources, specific
data forms (text, image, audio, video, or a combination thereof) make data pre-
processing necessary (see Subsects. 4.1 and 4.2).

The third step, problem resolution, is the final step in which marketing manage-
ment decides which data to use and which methods to apply. They evaluate the
potential solutions, weigh the costs and benefits, and implement the chosen strat-
egy. De Haan et al. (2024) refer to the following questions that help selecting the
best combination of data sources and methods (adapted to our UGC-based decision
support):

o Which UGC data sources are available (internal data sources) and/or can be
scraped (external sources)?

o How many UGC single data units are necessary to obtain robust insights?

o Which forms (text, image, audio, video, or a combination thereof) are available
and which will be most appropriate?

o What are the privacy and legal boundaries for collecting external data and what
are possible technical access requirements?

o What are the limits of data completeness and censorship?

e How timely should the collected UGC data units be?

o Which feature extraction method(s) is/are necessary, and can transfer models be
applied?

e s data aggregation necessary/useful, and if so, at what level?

Given the dynamic nature of unstructured data such as UGC data, marketing
management must conduct ongoing assessments. New methods or data may emerge
during the resolution phase, thus requiring continuous adaptation.

The three-step approach by de Haan et al. (2024) provides a structured way
for marketing managers to utilize the potential of UGC and other unstructured
data. When applied in combination with the insights from the presented paper, this
strategy has the potential to become a powerful instrument for businesses, at least
in consumer goods markets. It not only offers a structured roadmap for their actions
but also furnishes them with a comprehensive array of data-gathering techniques,
machine learning, and deep learning methodologies, as well as practical use cases
exemplifying real-world applications of various data combinations and analyses.
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Ultimately, this strategy will allow businesses to stay competitive by extracting
meaningful insights from UGC.

7 Conclusions and Outlook

This paper presents a comprehensive review of the literature dealing with or con-
tributing to UGC-based decision support. It covers data collection methods, their
advantages and disadvantages, analysis approaches, including machine learning and
deep learning methods, and various use cases that illustrate the wide range of ques-
tions, goals, and results in the marketing and management literature streams. The
findings reveal that the structured integration of UGC into decision-making pro-
cesses in marketing management can potentially offer significant benefits across
various areas, such as customer and market selection, product and service quality
management, as well as brand perception monitoring.

Rapid advancements in NLP technologies, particularly the use of LLMs such as
BERT and ChatGPT, have democratized access to UGC analysis. These tools allow
even non-experts to collect, analyze, and derive valuable insights from textual data,
offering significant advantages in terms of efficiency and accessibility. However,
while LLMs are well-suited for text-based UGC, image and video content continue
to require specialized skills and expertise. Despite the valuable insights and practical
models offered by academic research for marketing professionals, the dynamic na-
ture of technology, especially UGC, requires forward-thinking solutions to address
existing and future challenges. Furthermore, LLMs face technical challenges, such
as the need for vast computational resources and the potential misinterpretation of
complex data (e.g., images or ironic texts). Future review articles could focus on
these limitations, evaluating the effectiveness and scalability of different models and
proposing solutions to reduce computational costs and improve the interpretability
of UGC data.

Looking to the future, we anticipate several developments in the field of UGC
analysis. First, as natural language processing models continue to improve, we ex-
pect even more sophisticated sentiment analysis and topic modeling capabilities to
emerge, which will enhance decision-making based on OCR data for marketing
managers. Second, advancements in computer vision and machine learning methods
for image and video data will likely reduce the reliance on human expertise, thus
enabling more automated and scalable analysis. This can be crucial for marketing
teams seeking to leverage UGC in real-time environments, such as social media
platforms.

Another promising avenue for further research is the integration of UGC analysis
with other data sources, such as structured sales data and customer feedback. By
combining these data streams, marketing teams can gain a more holistic understand-
ing of customer behavior and preferences, leading to more informed and effective
decision-making. The ability to synthesize insights across multiple data types will
be a critical capability for marketing teams in the coming years.

It is essential to underline that ethical considerations and privacy concerns will
become increasingly important as the practice of collecting UGC data grows. Prac-
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titioners and researchers must navigate data protection regulations such as GDPR,
which impose strict requirements on the use of personal data, even when such con-
tent is publicly available. Future research could explore how to balance the need for
insightful data analysis with the objective of protecting user privacy and ensuring
ethical data collection practices. Future review articles could focus on the ongoing
evolution of these regulations and their impact on UGC analysis, exploring, for ex-
ample, how different regions handle consent and privacy and the best practices for
researchers and marketers to stay compliant with such laws.

Finally, a key restriction mentioned is the challenge of ensuring the represen-
tativeness of UGC data collected through APIs and web scraping. Future studies
could review the extent to which biases are introduced through non-representative
sampling, such as selective access to certain types of UGC (e.g., data from specific
platforms or demographic groups). Research could investigate methods to mitigate
these biases and improve the validity of marketing insights drawn from UGC.

To conclude, while significant progress has been made in the field of UGC data
collection and analysis, ongoing advancements in machine learning, natural lan-
guage processing, and multimedia analysis hold the potential to further enhance the
effectiveness of UGC-based decision-making in marketing. Continued innovation in
these areas will ensure that UGC remains a valuable and versatile asset for mar-
keters, enabling them to respond more effectively to changing customer needs and
market conditions.
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