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Abstract:
This meta-analysis synthesizes 4,521 elasticity estimates drawn from 413 studies to
examine the presence of publication and endogeneity bias in the literature. We
coded over 100 study-level variables to assess how electricity consumers respond to
price changes. Our results show that electricity demand is price inelastic, with an
average short-run elasticity of -0.231 and average long-run elasticity of -0.532.
However, after correcting for publication bias, the short-run elasticity declines in
magnitude to -0.116, while the long-run elasticity adjusts to -0.303. Using Bayesian
model averaging, we explore substantial heterogeneity in elasticity estimates. Factors
such as declining tariff structures, demographic characteristics, fuel usage controls,
daylight hours, and citation frequency significantly affect reported elasticities. In
contrast, variables related to average and marginal electricity prices and time-of-use
tariffs contribute minimally to the observed variation.
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1 Introduction

Electricity is a critical energy source for economic viability, which supports sectors such as

manufacturing, healthcare, construction, and communication. (Onakoya et al.| (2013)) describe

electricity as ”the pillar of wealth creation” in many developing economies, while (2011)
highlight its increasing share among energy fuels as countries grow wealthier. Ensuring suffi-
cient electricity generation is a fundamental prerequisite for economic growth (Outlook|[2013]).

Understanding consumer responsiveness is vital for governments and utilities to forecast energy

needs and devise effective pricing and taxation policies (Espey and Espey|2004).

On an individual level, aligning electricity supply with demand poses challenges. Demand

fluctuates throughout the day, requiring costly energy storage during low-demand periods to

meet peak needs (Ajanovic et al.|[2020)). Efficient energy storage is critical for a resilient and

sustainable energy system, as emphasized in the EU Energy priorities (Commission 2017)).

Quantifying consumer demand elasticity, particularly through price elasticity metrics, aids in
addressing this challenge.
Electricity demand has been extensively studied, with a consensus on a negative relationship

between demand and price. However, estimates of price elasticity vary significantly. While

some studies report elasticity below -0.6 (Bernard et al.|1996; Narayan et al.|2007; Kohler|

2014)), others estimate values above 1 (Hartman and Werth|/1981} Pesaran et al.|1999; |Bildirici

2012)). Several meta-analyses have sought to generalize the relationship between electricity

price and demand. Early efforts include |Taylor| (1975)), |Aigner| (1985), and |Dahl (1993} 2011).

Subsequent works include Espey and Espey| (2004), Horacek (2014)), Labandeira et al.| (2017)),

|Zhu et al| (2018)), |Zabaloy and Viego| (2022), and Fatima, (2023)). This meta-analysis advances

previous research by analyzing 4521 estimates from 413 studies and applying novel techniques
to assess publication and endogeneity biases. Utilizing over 100 variables, it explores estimate
heterogeneity using Bayesian and Frequentist model averaging.

We hypothesize that publication bias affects price elasticity estimates, as researchers may

selectively publish certain findings due to time constraints or counterintuitive results (Song

et al.2013; Havranek and Irsova,2012). Some authors even argue that about 50% of completed

studies remain unpublished (Scherer et al.2018). Correcting for publication bias, we find the

short-run elasticity to be -0.116, compared to a biased average of -0.231. Long-run elasticity



is revised from -0.532 to -0.303. Evidence of p-hacking is observed, with 4.4% of estimates
clustered just below the 5% significance threshold.

This is also the first meta-analysis to explicitly address endogeneity bias. While prior studies
suggest no significant effect of methods like IV on elasticity estimates, we find experimental data
yields lower elasticities (-0.07) compared to non-experimental (-0.33) and quasi-experimental
data (-0.11). Heterogeneity is influenced by variables such as data type, tariffs, daylight hours,
and citation counts, whereas average prices, marginal prices, and time-of-use tariffs have limited

explanatory power.

2 Data

The dataset includes 4521 elasticity estimates from 413 studies, covering 109 variables. The
studies span from 1951 to 2023, with only two studies published before 1971 (Houthakker
1951; |[Fisher and Kaysen||1962)). Between 1971 and 2023, publication dates appear uniformly
distributed, with a median year of 1995. illustrates the wide variability in price
elasticity estimates, showing no systematic trends in their variance.

To qualify for inclusion, studies had to meet the following criteria. Provide estimates of own
price elasticity of electricity (excluding cross-price or income elasticities). Report an uncertainty
metric, such as standard errors or confidence intervals. Studies with only p-values were included
if standard errors could be approximated, as these are critical for meta-analysis and quantifying
publication bias. The dataset includes estimates from peer-reviewed and non-peer-reviewed
sources, with 210 estimates from books (Chern|1978; Donnelly|[1984) or government studies
(Verleger 1973; Matsui [1979; [Wijemanne |1987). However, the dataset lacks many unpublished
studies, limiting conclusions about publication bias based solely on summary statistics.

For studies lacking standard errors for long-run elasticity estimates (Blazquez et al.| 2013}
Saha and Bhattacharyal2018; |[Frondel et al.|2019), we applied the delta method to derive them
from short-run coefficients and lagged consumption terms. The delta method, as discussed by
Oehlert| (1992), approximates transformations and their distributions using Taylor expansions.
On average, each study contributes 10 to 11 elasticity estimates. Lastly, a 1% winsorization
was applied to mitigate skewness without significant data loss, as recommended by [Irsova et al.

(2023b)), who argue that outlier removal should be a last resort.



While comprehensive, the dataset is not exhaustive, as the search concluded on December
15, 2023. Citation counts for included studies, based on Google Scholar, were updated on March
3, 2024. The dataset is available upon request.

summarizes the variables. The mean price elasticity is -0.395, indicating that
a l-unit price increase reduces demand by approximately 39.5%. Absolute elasticity values
are higher for studies focusing on periods before 1984 and shorter time frames. Consistent
with theoretical expectations, short-run elasticities are smaller than intermediate- and long-run
elasticities. Granularity influences elasticity, with household-level data showing higher elasticity
(-0.523) compared to country-level data (-0.289). Consumers responding to marginal prices
exhibit greater elasticity than those reacting to average prices. Tariff structures also affect
responsiveness: decreasing tariff structures elicit the highest elasticity, reflecting sensitivity to
cost savings. Time-of-use tariffs lead to more modest adjustments, with higher usage during off-
peak hours and limited flexibility during peak periods. These observations, derived from simple
averages, should be interpreted with caution. Table contains the list of studies included in
the meta-analysis.

shows the distribution of all elasticity estimates, which are negatively skewed. Most
estimates range between -1 and 0, though extreme values are present, with approximately 50

estimates above 1 and 50 below -3.



Figure 1: Distribution of the effect
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Notes: The figure depicts the distribution of elasticity effect for all estimates. Outliers are bunched to improve
graphical interpretability but are included in all subsequent tests. The dashed vertical line denotes median and the
solid vertical line is mean. The dark dashed lines represent 95% confidence interval. For ease of exposition, extreme

outliers are excluded from the figure but included in all statistical tests.



3 Publication bias

Publication bias (also known as selection bias) is a tendency of authors, but also editors and
reviewers, to favour studies presenting a conclusion that aligns with a particular theory. The
term was first used by Smith| (1980a) in education research. According to |Gerber et al.| (2008),
publication bias occurs when a particular study has a higher probability of being published based
on the estimates produced, holding the methodology and data quality of the study constant.
displays the funnel plot for short-run elasticity. The plot exhibits a slightly skewed
funnel shape. The most precise estimates cluster within a narrow range, spanning from a
very slight negative effect (approximately -0.1) to a near-zero effect. Notably, precise positive
estimates are scarce, and the negative estimates exhibit higher precision and greater density,
creating asymmetry in the funnel plot.

Given that the most precise estimates are expected to cluster around the true effect, this
pattern suggests that the true short-run price elasticity (-0.231) is significantly lower than the

sample average.



Figure 2: Funnel plot for short-run elasticity
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Notes: The figure displays a funnel plot for the short-run subsample. The plot should be symmetrical in the absence
of publication bias. Estimates with higher precision form funnel-like pattern. A vertical blue line marks the average
value of these estimates, with a total count of 1771 data points (due to the exclusion of extreme values). For ease of

exposition, extreme outliers are excluded from the figure but included in all statistical tests.

reveals distinct characteristics for intermediate-run elasticity estimates. Notably,
the most precise estimates cluster between -0.5 and -0.05. Unlike the short-run funnel plot,
the intermediate-run funnel plot lacks a clear funnel shape. A noticeable discrepancy exists
between the number of precise positive estimates and their negative counterparts, with fewer
precise positive estimates present. This lack of symmetry, coupled with a greater density of
observations on the left side of the most precise estimates, suggests that positive elasticity
estimates tend to exhibit lower precision. However, interpreting this funnel plot requires caution,

given the lack of a universally accepted definition for intermediate-run elasticity.
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Figure 3: Funnel plot for intermediate-run elasticity
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Notes: The figure displays a funnel plot for the intermediate-run subsample. The plot should be symmetrical in the
absence of publication bias. Estimates with higher precision form funnel-like pattern. A vertical blue line marks the
average value of these estimates, with a total count of 1671 data points (due to the exclusion of extreme values). For

ease of exposition, extreme outliers are excluded from the figure but included in all statistical tests.

The asymmetry observed in the intermediate-run funnel plot becomes even more pronounced
in the long-run analysis. Assuming that the most precise estimates are centered around -0.05,
the right side of the funnel plot is almost entirely absent. This observation may indicate a
reluctance among researchers to report significant positive elasticity estimates.

While the short-run and long-run funnel plots exhibit considerable asymmetry, it remains
premature to conclude the presence of publication bias solely based on these visualizations. A

key point of concern is that the most precise estimates deviate from the overall sample mean

elasticity.



Figure 4: Funnel plot for long-run elasticity
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Notes: The figure displays a funnel plot for the short-run subsample. The plot should be symmetrical in the absence
of publication bias. Estimates with higher precision form funnel-like pattern. A vertical blue line marks the average
value of these estimates, with a total count of 786 data points (due to the exclusion of extreme values). For ease of

exposition, extreme outliers are excluded from the figure but included in all statistical tests.

It is important to note that the dataset comprises various types of elasticity estimates, which
may not be directly comparable. In cases where Marshallian and Hicksian elasticities are not
estimated separately, Hicksian elasticities were converted into Marshallian elasticities using the
income elasticity reported alongside Hicksian estimates in individual studies. The delta method

was applied to approximate the standard errors of these transformed effects.

3.1 Linear tests for detecting publication bias

A key approach for modeling publication selection bias is the Funnel Asymmetry Test (FAT),

which examines the relationship between the estimate of price elasticity of electricity and its

standard error (Card and Krueger| 1995} [Stanley|[2005):




PE;j = a+ x SE(PE) + €5 .

where PE;; is the i —th estimate of price elasticity collected from j —th study, while SE(PE;;)
denotes the estimate’s standard error and € is the (heteroskedastic) error term. As pointed out
by [Havranek and Irsova; (2017), a (effect beyond bias) represents the true effect independent of
the standard error. On the contrary, 8 (publication bias) quantifies publication selection bias
in terms of significance, direction and magnitude.

At this stage, the models were assumed to be exogenous. The analysis first employed
ordinary least squares (OLS) estimation, followed by the inclusion of study-level fixed effects
(FE) to control for unobserved heterogeneity. Subsequently, a between-study variation (BE)
model was applied, along with a random-effects (RE) specification to assign weights for both
within-study and between-study variation, as outlined in Bom and Rachinger| (2019)). Two
weighting schemes were introduced to enhance robustness.

Study-Level Weighting (SW) to account for discrepancies in the number of reported esti-
mates per study, estimates were weighted by the inverse of the number of estimates from each
study. This ensures that each study contributes equally to the estimation process. A high con-
stant (in absolute value) in this scheme could indicate that publication bias is concentrated in
a small subset of studies. Precision Weighting (PW) following [Stanley| (2005)), the precision of
each estimate was used as a weight. By dividing Equation [1| by the standard error, the equation

becomes:
PEl i «
SE(PE;;) SE(PE;)

+ B+ €4 (2)

Note that the left-hand side of is a t-statistic of the i — th estimate from j — th
study. Moreover, § now represents the price elasticity corrected for publication bias, whereas «
denotes the magnitude and direction of publication bias. The equation is also called the precision
asymmetry test (PET). This procedure helps to deal with heteroskedasticity of standard error
by assigning more weight to more precise estimates. The results are summarized in
Significant evidence of publication bias was detected across all specifications and elasticity
periods. The random-effects specification generated the highest corrected elasticity estimates.
Nonetheless, careful interpretation is required, as studies reporting only a single price elasticity

estimate may disproportionately influence the observed within-study variation.
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Table 1: Elasticity results segmented by period

OLS FE BE RE SW PW
Short-Run Elasticity
PB —0.766*** —0.751*%**  —1.209*** —0.794*** —0.979*** —2.854***
PB SE (0.096) (0.035) (0.096) (0.033) (0.142) (0.212)
Boot. CI [-0.959; -0.580] [-0.979; -0.610]  [-1.178; -0.572]  [-3.255; -2.377]
EBB —0.147*** —0.149***  —0.123*** —0.161*** —0.077*** —0.046***
EBB SE (0.010) (0.007) (0.019) (0.015) (0.014) (0.009)
Boot. CI [-0.167; -0.128] [-0.182; -0.136]  [-0.115; -0.053]  [-0.068; -0.030]
Total observations = 1846
Intermediate-Run Elasticity
PB —0.734*** —0.630***  —0.947*** —0.658*** —0, 998*** —3.148***
PB SE (0.087) (0.046) (0.141) (0.044) (0.117) (0.842)
Boot. CI [-0.921; -0.595] [-0.838; -0.494]  [-1.250; -0.781]  [-4.332; -1.207]
EBB —0.359*** —0.381***  —0.345*** —0.390*** —0.386*** —0.153***
EBB SE (0.017) (0.014) (0.038) (0.027) (0.030) (0.053)
Boot. CI [-0.386; -0.314] [-0.423; -0.347]  [-0.446; -0.326]  [-0.264; -0.083]
Total observations = 1723
Long-Run Elasticity
PB —0.715%** —0.616***  —0.617*** —0.621*** —0.117 —3.468***
PB SE (0.100) (0.056) (0.184) (0.054) (0.267) (0.340)
Boot. CI [-0.931; -0.540] [-0.840; -0.345] [-1; 0.233] [-4.021; -2.254]
EBB —0.400*** —0.429***  —0.529*** —0.522*** —0.255%** —0.062*
EBB SE (0.026) (0.023) (0.085) (0.054) (0.033) (0.032)
Boot. CI [-0.448; -0.357] [-0.601; -0.437]  [-0.310; -0.157]  [-0.180; -0.009]

Total observations = 813

Notes: This table presents the results of publication bias and effect beyond bias across different time horizons: short-

run, intermediate-run, and long-run. Standard errors are presented in parentheses.

SW = Study weighted, PW = Precision weighted, PB = Publication Bias, EBB = Effect Beyond Bias, SE = Standard

error, Boot.

CI = Bootstrapped confidence interval (n=1000).
**p < 0.05, *p < 0.10.

Asterisks denote significance level:

wEp < 0.01,

Overall, the short-run elasticity corrected for publication bias ranges from —0.046 to —0.161.

As observed in prior research (Stanley et al.|2008), the magnitude of publication bias often ex-

ceeds the true effect, which aligns with the findings here. While most models produced relatively

consistent estimates, study-level and precision-weighting techniques yielded lower elasticity val-

ues and higher publication bias magnitudes. According to the fixed-effects model, a 1% increase

in electricity prices reduces demand by approximately 0.15% in the short run, 0.38% in the in-

termediate run, and 0.43% in the long run.

3.2 Nonlinear tests for detecting publication bias

While linear methods are widely used in meta-analyses, they rely on a critical assumption: the

relationship between price elasticity and its standard error is linear. However, this assumption

may not always hold true. Bom and Rachinger| (2019) argue that fails to adequately
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account for the reduced likelihood of selection bias in highly precise estimates. Although linear
methods provide valuable initial insights into publication bias, they may lead to imprecise
results, introducing upward or downward bias in the estimated effect.

To address the potential non-linearity between price elasticity and standard error, alterna-
tive methods are applied. These approaches assume that the most precise estimates are less
susceptible to publication bias but employ different strategies to accommodate non-linearities.
Such methods have been utilized in published meta-analyses, including those by [Cazachevici
et al.| (2020) and Havranek et al.| (2022).

Following methods have been used Top10 method, introduced by [Stanley and Doucouliagos
(2010), the stem-based method, developed by Furukawal (2019),the WAAP method, proposed
by loannidis et al.| (2017)), the Selection Model by |Andrews and Kasy| (2019), the Endogenous
Kink method, described by Bom and Rachinger| (2019)), and finally the Hierarchical Bayes model
(Allenby and Rossi|2006).

The results of non-linear tests, presented in confirm the presence and significant
magnitude of publication bias. The corrected elasticity estimates, based on median values,
are approximately -0.11, -0.34, and -0.33 for the short, intermediate, and long-term periods,
respectively.

For the short run, the corrected elasticity (-0.11) is less than half the sample mean (-0.231),
highlighting the extent of publication bias. Notably, the intermediate-run and long-run cor-
rected elasticities are of similar magnitude, which challenges the expectation that long-run
elasticities should exhibit the largest absolute values. The stem-based method produces in-
significant corrected elasticities for both the short-run and long-run, but it identifies a significant
intermediate-run effect of -0.446, the largest among the methods applied.

The similarity in intermediate and long-run corrected elasticities suggests potential incon-
sistencies in how authors define elasticity periods. These findings underscore the importance
of considering publication bias in meta-analyses and highlight the utility of non-linear methods

for refining elasticity estimates.

12



Table 2: Non-linear tests for publication bias

Effect beyond bias (Short-run)

WAAP -0.127*%*%  (0.123*** Selection

(0.006) (0.006) model
Ton10 -0.104*%**  -0.107***  Hierarchical
p (0.009) (0.021) Bayes
Stem-based -0.08 -0.046***  Endogenous
method (0.011) (0.003) kink

Publication bias

Hierarchical -1.262*** _-2.854*** Endogenous
Bayes (0.142) (0.227) kink

Number of observations = 1846

Effect beyond bias (Intermediate-run)

WAAP -0.335***  _(0.337*** Selection

(0.013) (0.014) model
Top10 -0.245%*%*  _0.341***  Hierarchical
p (0.022) (0.035) Bayes
Stem-based  -0.446***  -0.153***  Endogenous
method (0.011) (0.009) kink

Publication bias

Hierarchical -0.940*** -3.148*** Endogenous
Bayes (0.146) (0.484) kink

Number of observations = 1723

Effect beyond bias (Long-run)

-0.320***%  _(0.345%*** Selection

WAAP (0.020) (0.030) model
Top10 -0.241%*%*  _0.388***  Hierarchical
p (0.038) (0.104) Bayes
Stem-based 0.002 -0.062***  Endogenous
method (0.057) (0.008) kink

Publication bias

Hierarchical -0.999***  -3.468*** Endogenous
Bayes (0.155) (0.295) kink

Number of observations = 813

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include the pub-
lication bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average of the Adequately
Powered (n=712 for S-R, 783 for I-R, 346 for L-R). Top1l0 = Topl0 Method (n=187 for S-R, 173 for I-R, 82 for L-R).
Standard errors are included in the parentheses. Asterisks denote significance level: ***p < 0.01, **p < 0.05, *p < 0.10.

3.3 P-Hacking

We now turn to tests investigating the presence of p-hacking within the dataset. Although
the boundary between publication bias and p-hacking is often blurred, p-hacking typically
refers to deliberate or inadvertent manipulation of data or methodologies to achieve statistically

significant results, such as more favorable p-values (Irsova et al.[[2023b). Examples of such
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practices include selectively adding data points, altering estimation procedures, or excluding

specific subsamples to enhance significance (Brodeur et al., 2023)).

An inspection of the t-statistic distribution in shows a sharp concentration just
below the critical value of —1.96, with nearly 200 estimates in [—1.99,—1.96]. Even with a
narrower bin of 0.01, more than 130 estimates fall immediately below the threshold. A smaller

discontinuity is also visible around 1.96.

Figure 5: Distribution of the t-statistic for a restricted sample
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Notes: The figure depicts the distribution of elasticity t-statistics for all estimates. Outliers are hidden to improve
readability but are included in all tests. The dashed purple line denotes the mean value of the restricted subsample
(|t| < 10). The blue solid lines represent critical values -1.96 and 1.96. Notice notable discontinuity right around the

-1.96 critical value. The other peak occurs at a value of -2.24.

To assess publication bias, we apply the caliper tests of (Gerber et al.| (2008). Unlike tra-

ditional methods focusing on the relationship between effect sizes and standard errors, caliper
tests analyze the distribution of t-statistics near critical thresholds, such as 1.645 and 1.96,
which correspond to 10% and 5% significance levels, respectively. The test assesses asymmetry

in these distributions, with a spike in t-statistics above critical values serving as clear evidence

of bias (Gerber et al.|2008)).
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The results, summarized in show that 61% of observations fall below the negative
critical value of —1.96, indicating significance. This proportion increases with wider caliper
intervals, underscoring the asymmetry. Similar results are observed for the 10% significance
threshold, where over 80% of estimates exceed the critical value of —1.645. For positive t-
statistics, significant asymmetry is also detected around 1.96, although the lower sample size
for positive estimates warrants caution. Importantly, the caliper test is robust to distributions
centered away from the critical value, as demonstrated in our dataset where the mean t-statistic
is —2.76 (Gerber et al. [2008).

To further explore p-hacking, we employ p-curve analysis following Elliott et al.| (2022).
This methodology examines the distribution of p-values under the null hypothesis of no true
effect. A right-skewed p-curve suggests genuine effects, while a left-skew indicates p-hacking.
The theoretical constraints on the monotonicity and exponential bounds of the p-curve depend
on the critical value and the nature of the t-statistic. As shown in Panel A of the
null hypothesis of no p-hacking is rejected across all reasonable significance levels. This trend
persists across subsets of the data, emphasizing the pervasive nature of p-hacking.

Additionally, we employ the Meta-Analysis Instrumental Variable Estimator (MAIVE) de-
veloped by [Irsova et al.| (2023a)), which builds on the Egger regression. MAIVE addresses
endogeneity in standard errors caused by p-hacking by instrumenting standard error with the
inverse of sample size. This instrument is expected to correlate with the standard error while
remaining unaffected by measurement error or estimation procedures (Opatrny et al. |2023).
However, the F-test for instrument strength reveals that the instrument is relatively weak.
Despite this limitation, the MAIVE coefficient is estimated at 0.605, as reported in

The analysis reveals a significant prevalence of publication bias and p-hacking within the
dataset. Corrected elasticity estimates exhibit some variability. Short-run elasticity consistently
approximates —0.1 across different methodologies, while intermediate and long-run elasticities
range between —0.33 and —0.38. These corrected values are generally higher than those reported
by [Horacek (2014), though they remain smaller in magnitude compared to the findings of |Zhu
et al.| (2018).
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Table 3: Caliper test for publication bias

Threshold -1.96 -1.645 1.96
Caliper width 0.05

Estimate —0.114***  —0.338*** 0.172**
Standard Error (0.015) (0.034) (0.084)
Observations 77 78 5

Caliper width 0.1

Estimate —0.155***  —0.335*** 0.162**
Standard Error (0.014) (0.026) (0.067)
Observations 142 133 9

Caliper width 0.2

Estimate —0.206***  —0.314***  0.196***
Standard Error (0.012) (0.018) (0.049)
Observations 265 245 21

Caliper width 0.3

Estimate —0.281***  —0.335***  (0.147***
Standard Error (0.009) (0.015) (0.035)
Observations 514 346 36

Caliper width 0.4

Estimate —0.280*** —0.392%** 0.162***
Standard Error (0.008) (0.009) (0.031)
Observations 659 610 49

Caliper width 0.5

Estimate —0.285***  —0.390***  0.169***
Standard Error (0.007) (0.008) (0.028)
Observations 795 746 60

*

Notes: Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05. Caliper widths are chosen to represent varying precision
levels around the thresholds.

Table 4: P-hacking tests

A. P-hacking test by Elliott et al. (2022)

Test for non-increasing Test for monotonicity

of the p-curve and bounds
P-value 0.000 0.000
Observations (p < 0.1) 3373
Total observations 4521

B. MAIVE estimator by Irsova et al. (2023)

MAIVE coefficient F-test
Coefficient 0.605* 0.687
Standard Error (0.353)

Notes: Panel A details the outcomes of the examination into p-hacking, implemented by |[Elliott et al.| (2022), which
includes assessments for the constancy of distribution tails and for monotonic and bounded p-curves. In Panel B,
the results derived from the implementation of the robust spurious precision approach, utilizing the MAIVE estimator
developed by |Irsova et al.| (2023a)), are displayed. The F-test is indicative of the strength of the instruments used in
the initial stage of the IV estimation. For the MAIVE estimations, cluster-robust standard errors have been utilized,
which are denoted in parentheses. Asterisks denote significance level: ***p < 0.01, **p < 0.05, *p < 0.10.
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3.4 Endogeneity bias

Endogeneity is a critical challenge in estimating electricity demand, arising from the simulta-
neous determination of consumption and price (Paul et al. [2009), variable tariffs, or omitted
variable bias (e.g., seasonal effects). Consumer behavior, such as bunching under increasing
block tariffs, further complicates isolating the causal impact of price changes, leading to biased
elasticity estimates if not addressed (Borenstein2009; Rapson|2014]).

To explore the effects of endogeneity, we classified studies into four groups. Natural exper-
iments, leveraging exogenous events or policies (e.g., Byrne et al. 2021). Quasi-experiments,
using methods like regression discontinuity designs (RDD) or matching (e.g., Zhou et al.|2019).
Non-experimental studies, controlling for endogeneity by employing techniques like IV, 2SLS,
or GMM(e.g., |Alberini et al.2019). Studies not controlling for endogeneity, often relying on
OLS or random effects (Apte|/1983; Hesse and Tarkka/|1986; Fan and Hyndman 2011)).

While natural and quasi-experiments enable stronger causal inference, techniques addressing
endogeneity directly (e.g., IV or GMM) are also essential for mitigating bias. Comparing re-
sults across these subsamples highlights how methodological choices impact elasticity estimates,

enhancing the reliability of conclusions.
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Table 5: Linear tests results for endogeneity subsamples

OLS FE BE RE SW PwW
Natural Experiments
PB —1.112%** —0.964***  —2.314*** —1.000*** —2.060*** —2.313***
PB SE (0.443) (0.098) (0.564) (0.097) (0.138) (0.418)
Boot. CI [-2.071; -0.443] [-1.931; -0.331]  [-2.218; -1.513]  [-3.126; -1.518]
EBB —0.060*** —0.067*** —0.027 —0.087*** —0.006 —0.039***
EBB SE (0.017) (0.007) (0.035) (0.027) (0.006) (0.008)
Boot. CI [-0.087; -0.026] [-0.132; -0.037] [-0.028; 0.001] [-0.056; -0.025]

Total observations = 299

Quasi-Experiments

PB —0.412 —0.499"**  —0.428 —0.466*** —0.333 —1.585%**
PB SE (0.259) (0.133) (0.952) (0.124) (0.218) (0.378)
Boot. CI [-0.889; 0.250] [-0.988; 0.297]  [-0.756; 0.213]  [-2.260; -0.747]
EBB —0.110%** —0.089* —0.247 —0.108 —0.125%** —0.053***
EBB SE (0.047) (0.051) (0.369) (0.081) (0.029) (0.016)
Boot. CI [-0.207; -0.025) [-0.309; 0.011]  [-0.186; -0.69]  [-0.100; -0.030]

Total observations = 63

Studies Controlling for Endogeneity

PB —0.848*** —0.898***  —0.969*** —0.897** —1.151%** —2.022
PB SE (0.100) (0.051) (0.222) (0.049) (0.091) (1.946)
Boot. CI [-1.054; -0.065] [-1.084; -0.731]  [-1.346; -0.985]  [-4.534; -2.346]
EBB —0.327%** —0.317"%  —0.263*** —0.276%** —0.342%** —0.167
EBB SE (0.019) (0.016) (0.059) (0.038) (0.020) (0.103)
Boot. CI [-0.365; -0.295) [-0.310; -0.235]  [-0.381; -0.303]  [-0.412; -0.036]

Total observations = 944

Studies Not Controlling for Endogeneity

PB —0.781%** —0.723%%%  _1.015%** —0.746*** —0.425* —3.265%**
PB SE (0.069) (0.032) (0.099) (0.031) (0.265) (0.207)
Boot. CI [-0.938; -0.644] [-0.917; -0.591]  [-1.016; -0.060]  [-3.614; -2.783)
EBB —0.270*** —0.281%%*  —(0.284*** —0.320%** —0.209*** —0.08
EBB SE (0.012) (0.010) (0.028) (0.020) (0.032) (0.013)
Boot. CI [-0.292; -0.246) [-0.358; -0.303]  [-0.262; -0.140]  [-0.109; -0.059)]

Total observations = 3096

Notes: This table presents the results of publication bias (PB) and effect beyond bias (EBB) for studies segmented by
natural experiments, quasi-experiments, studies controlling for endogeneity, and lack of endogeneity control. Standard
errors are presented in parentheses. SW = Study weighted, PW = Precision weighted, PB = Publication Bias, EBB =
Effect Beyond Bias, SE = Standard Error, Boot. CI = Bootstrapped Confidence Interval. Asterisks denote significance
level: ***p < 0.01, **p < 0.05, *p < 0.10.

The results of the linear tests (Table 5|) indicate substantial differences between experimental
and non-experimental data, with minimal variation between endogeneity subsamples (control vs.
no control). The average price elasticity corrected for publication bias in natural experiments
is approximately -0.06, about one-fifth of the corresponding value for non-experimental data.
Despite these corrections, publication bias remains evident, with the median corrected elasticity

for non-experimental subsamples ranging from -0.3 to -0.28. Due to the limited observations

and the short-run focus of most experiments, we did not segment elasticities into short-run,
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intermediate-run, and long-run categories.

Non-linear methods for detecting publication bias yield similar conclusions. Corrected price
elasticity is lower for studies controlling for endogeneity (median around -0.243) and for those
without endogeneity controls (median around -0.2), compared to the sample average of around
-0.4. Notably, the stem-based method produces an insignificant estimate at the 10% level
for experimental studies. These findings confirm significant evidence of publication bias across
subsamples, with corrected elasticities from natural experiments markedly lower than those from

non-experimental data. However, even experimental studies appear affected by publication bias.
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Table 6: Non-linear tests for publication bias for endogeneity subsamples

Effect beyond bias (Natural Ezperiments)

WAAP —0.078%**  —(0.071*** Selection

(0.007) (0.005) model
Tonl0 —0.035%*%*  —0.055***  Hierarchical
p (0.007) (0.161) Bayes
Stem-based —0.014 —0.039%**  Endogenous
method (0.027) (0.004) kink
Publication bias
Hierarchical —2.458 —2.313%**  Endogenous
Bayes (1.768) (0.501) kink

Number of observations = 299

Effect beyond bias (Quasi Ezperiments)

—0.140***  —(.145%** Selection

WAAP (0.017) (0.017) model
Top10 —0.051*%**  —0.148**  Hierarchical
p (0.011) (0.065) Bayes
Stem-based —0.032 —0.047***  Endogenous
method (0.047) (0.011) kink
Publication bias
Hierarchical —1.109* —2.037***  Endogenous
Bayes (0.868) (0.473) kink

Number of observations = 63

Effect beyond bias (Endogeneity Control)

—0.292%**%  _(.296%** Selection

WAAP (0.013) (0.016) model
Top10 —0.161***  —0.201***  Hierarchical
p (0.026) (0.045) Bayes
Stem-based  —0.426*** —0.167*** Endogenous
method (0.016) (0.014) kink

Publication bias

Hierarchical —1.367*** —2,022*** Endogenous
Bayes (0.194) (0.779) kink

Number of observations = 944

Effect beyond bias (No Endogeneity Control)

WAAP —0.232%**% (. 212%%* Selection

(0.008) (0.008) model
Top10 —0.198%*%*  —(0.249***  Hierarchical
P (0.015) (0.023) Bayes
Stem-based  —0.081*%**  —0.08***  Endogenous
method (0.026) (0.004) kink

Publication bias

Hierarchical —1.196*** —3.265%** Endogenous
Bayes (0.110) (0.208) kink

Number of observations = 3096

Notes: Results of the three specifications of price elasticities using six non-linear methods. We also include publication
bias for Hierarchical Bayes and Endogenous kink methods. WAAP = Weighted Average of the Adequately Powered (n
= 128 for N.E., 22 for Q.E.,500 for E.C.,1602 for N.E.C.). Top10 = Topl0 Method (n = 30 for N.E., 6 for Q.E., 98 for
E.C., 323 for N.E.C.). Standard errors are included in the parentheses. Asterisks denote significance level: ***p < 0.01,
**p < 0.05, *p < 0.10.
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4 Heterogeneity

The magnitude of estimated effects exhibits considerable variation depending on specific factors
and control variables. Out of 109 collected variables, 74 were selected for analysis after omitting
variables with insufficient data or relevance. These variables are categorized into nine groups:
study-level data characteristics, data aggregation, types of price elasticity, types of electricity
demand, types of electricity price, electricity tariff structures, demand controls, model and

function specifications, and publication characteristics. The full variable description summary

is presented in

Table 7: Definition and summary statistics of selected variables

Variable Description Mean SD
Data characteristics
Observations (n) How many observations were used 82194 558570
Experiment = 1 if the study is an experiment 0.066 0.249
P value = 1 if p value instead of standard error is used 0.086 0.280
effect Price elasticity of electricity estimate -0.400 0.486
Standard error Standard error of the price elasticity estimate 0.169 0.257
Start year* Starting year of the study 1979 17.53
End year* Ending year of the study 1993 17.48
Mid year* Middle year of the study 1986 16.65
Number of years* How many years the study covers 14.28 10.53
USA = 1 if the examined country is the USA 0.477 0.500
Europe** = 1 if the examined country is in Europe 0.187 0.390
Other location* = 1 if outside of USA and Europe 0.350 0.477
Daylight hours Daily average time between sunrise and sunset 15.076 1.800
for a given year
Annual temperature® Average annual temperature 10.96 7.585
Electricity exporter* = 1 if the country exports electricity 0.831 0.375
C. intensity of production®*  Log of carbon intensity of electricity production 6.114 0.866
Population (log) Log of population in the given country 18.315 1.541
Daylight hours Daily average time between sunrise and sunset 15.076 1.800
for a given year
Income level (log)* Log of GDP per capita 8.932 1.375
Data aggregation
Aggregation: Country = 1 if data aggregation is at the country level 0.275 0.446
Aggregation: Region* = 1 if data aggregation is at the regional level 0.243 0.429
Aggregation: City* = 1 if data aggregation is at the city level 0.141 0.349
Aggregation: Disaggr. = 1 if data are for smaller units than city 0.237 0.425
(household level or granular firm data)
Data type
Data: Panel** = 1 if panel data are used 0.499 0.500
Data: Time-series = 1 if time series data are used 0.386 0.487
Data: Cross-section = 1 if cross section data are used 0.115 0.319
Type of elasticity
Estimate: Short-run = 1 if short-run effect is estimated 0.401 0.490
Estimate: Intermediate-run = 1 if intermediate-run effect is estimated 0.417 0.493
Estimate: Long-run = 1 if long-run effect is estimated 0.183 0.386
Type: Marshall = 1 if the type of elasticity is Marshallian 0.736 0.498
Type: Hicks** = 1 if the type of elasticity is Hicksian 0.260 0.480
Type: other* = 1 if other type of elasticity is used (or type unknown) 0.004 0.090
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...continued from previous page

Variable Description Mean SD
Type of electricity demand
Type: Residential = 1 if data is relevant for residential demand 0.379 0.485
Type: Commercial = 1 if data is relevant for commercial sector 0.198 0.399
Type: Industrial = 1 if data is relevant for industry 0.640 0.480
Data period
Granularity: Yearly = 1 if data are of a yearly granularity 0.742 0.437
Granularity: Quarterly* = 1 if data are of a quarterly granularity 0.028 0.166
Granularity: Monthly** = 1 if monthly data are used 0.201 0.401
Type of electricity price
Price: Average = 1 if average price is used 0.537 0.499
Price: Marginal = 1 if marginal price is used 0.200 0.400
Price: Other* = 1 if other price than marginal or average is used 0.102 0.302
Type of electricity tariff
Tariff: Increasing = 1 if increasing tariff is installed 0.121 0.326
Tariff: Decreasing = 1 if decreasing tariff is installed 0.104 0.305
Tariff: Flat* = 1 if flat tariff is installed 0.030 0.171
Tariff: TOU = 1 if a time-of-use tariff is installed 0.113 0.317
TOU demand period
Demand: Peak = 1 if peak demand is observed 0.054 0.225
Demand: Mid-peak = 1 if mid-peak demand is observed 0.024 0.154
Demand: Off-peak** = 1 if off-peak demand is observed 0.019 0.135
Demand Controls
Control: Demographics = 1 if the study controls for demographics 0.337 0.473
Control: Temperature = 1 if the study controls for temperature 0.488 0.500
Control: Stocks = 1 if the study accounts for appliance stock 0.188 0.391
Control: Fuels = 1 if the study includes other fuels as controls 0.414 0.493
Control: Income* = 1 if the study includes income measures 0.571 0.495
Model Form
Form: Reduced = 1 if a reduced form model is used 0.415 0.493
Form: Structural** = 1 if a structural form model is used 0.526 0.499
Model: Dynamic** = 1 if a dynamic model is used 0.687 0.464
Model: Static = 1 if a static model is used 0.310 0.463
Model Specification
Model: RE = 1 if a random-effects model is used 0.011 0.103
Model: FE** = 1 if a fixed-effects model is used 0.091 0.288
Model: VAR* = 1 if vector autoregressive model is used 0.007 0.082
Model: ARDL = 1 if an ARDL model is used 0.078 0.268
Model: ECM* = 1 if an error-correction model is used 0.049 0.215
Model: VECM* = 1 if a vector error-correction model is used 0.019 0.138
Model: DS* = 1 if a demand system model is used 0.104 0.305
Model: DC* = 1 if a discrete-continuous model is used 0.007 0.081
Model: LE = 1 if a lagged-endogenous model is used 0.230 0.421
Model: Other* = 1 if another model type is specified 0.020 0.141
Estimation Technique
Estimation: ML* = 1 if maximum-likelihood estimation is used 0.053 0.224
Estimation: GMM = 1 if generalized method of moments is used 0.040 0.195
Estimation: Error comp.* = 1 if an error component model is used 0.025 0.156
Estimation: OLS = 1 if ordinary least squares or its variations 0.364 0.481
are used
Estimation: GLS* = 1 if generalized least squares is used 0.050 0.218
Estimation: SUR* = 1 if seemingly unrelated regression is used 0.111 0.314
Estimation: 2SLS = 1 if two-stage least squares is used 0.099 0.298
Estimation: 3SLS = 1 if three-stage least squares is used 0.025 0.157
Estimation: IV = 1 if an instrumental variable is used 0.079 0.269
Estimation: other* = 1 if other estimation technique is specified 0.022 0.160
Function Specification
Function: Linear = 1 if a linear function is used 0.287 0.390
Function: Semi-log** = 1 if a semi-log function is used 0.062 0.195
Function: Double-log = 1 if a double-log function is used 0.562 0.497
Function: Box-Cox* = 1 if a Box-Cox transformation is used 0.004 0.060

...continued on next page
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Variable Description Mean SD
Endogeneity Control
Control* = 1 if endogeneity is controlled for 0.248 0.432
No control* = 1 if endogeneity is not controlled for 0.752 0.432
Publication Characteristics
Publication Year Year of publication 1997.85 16.50
Impact Factor Journal impact factor 0.182 0.426
Citations (t) Log-transformed number of citations 1.254 1.001
Citations Number of citations until 3rd March 96.31 150.85

Notes: The table provides description and summary statistics on selected variables. Note that the non-
available data column was omitted from the individual groups, hence some of the dummy variable groups
do not add up to 1, as they should. For price variables, we included flat and shin price due to low number
of observations. Citations (t) take into account the publication year, therefore, studies published earlier
are penalized relatively to those published later. Asterisks (*) denote variables subsequently excluded from
the model averaging estimation. Double asterisks (**) include dummy variable used as a reference for the
respective group in BMA.

Study-Level Data Characteristics

Variables such as elasticity estimates, t-statistics, number of observations, temporal scope, and
demographic factors are included. Differences by region (e.g., USA vs. Europe) and temporal
factors, such as daylight and temperature, are also analyzed (Auray et al.[2019; |Dahl| 1993;
Schwartz et al.[2013]).

Data Aggregation

Electricity demand studies draw on data ranging from national aggregates to household-level
meter readings, each influencing elasticity estimates differently (Krishnamurthy and Kristrom,
2015)). While aggregated data are easier to obtain, mixing them with disaggregated sources
without caution may lead to aggregation bias and hinder policy relevance (Dahl, 1993). Re-
cent findings, however, suggest no consistent pattern in how data aggregation affects elasticity

estimates (Miller and Alberini, [2016).

Type of Price Elasticity

Electricity demand studies employ Marshallian, Hicksian, and Morishima elasticities to capture
distinct consumer responses to price changes. While these measures are grounded in different
theoretical assumptions, few studies clearly state whether they follow utility maximization or
cost minimization frameworks (Jones, [1995; Pitt, [1985; |Cao et al., 2023), complicating compa-

rability. To account for temporal dynamics, short-run elasticities capture immediate behavioral
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responses, long-run estimates reflect structural adjustments such as appliance stock changes
(Houthakker, 1980 |[Filippini, [2011), and intermediate-run estimates provide a transitional view

using pooled or annual data.

Electricity Demand Types

Electricity demand is typically categorized into residential, commercial, and industrial segments,
each with distinct characteristics and policy implications. Residential demand reflects household
usage and is shaped by income and efficiency factors (Sa’ad, 2009), while commercial demand
supports business operations and exhibits the highest short-run variability in the U.S. (Woo
et al., 2018]). Industrial demand, often linked to economic output, involves high energy intensity

and has been shown to correlate with economic growth (Bildirici et al., 2012).

Electricity Price Types

The choice between average and marginal electricity prices is crucial in demand estimation, as
consumers may respond differently depending on which price they perceive. Although marginal
price better reflects the cost of additional consumption, its complexity, especially under increas-
ing block tariffs, often leads consumers to rely on average price instead (Shin, 1985; Borenstein,
2009)). Shaffer| (2020) finds that 85% of consumers respond to average price, while only 7% react
to marginal price, highlighting a significant gap between theoretical assumptions and actual be-
havior. These misperceptions can reduce policy effectiveness; as Schneider and Sunstein! (2017))
note, cost-reflective tariffs may not lead to efficient outcomes. However, |[Jessoe and Rapson
(2014) show that providing high-frequency price information improves consumer responsiveness

substantially.

Electricity Tariff Structures

Electricity pricing structures are generally categorized into four types: increasing, decreasing,
flat, and time-of-use (TOU) tariffs. TOU tariffs, which vary prices by time of day, have gained
particular attention for their ability to incentivize consumption shifting away from peak pe-
riods, thus reducing strain on the grid and improving efficiency (Filippini, |2011; |Holland and

Mansur, 2008)). Experimental evidence shows that consumers do respond to dynamic hourly
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pricing (Wolak, 2011)), and TOU policies may also promote cleaner energy use, though the net

environmental impact depends on the composition of peak and base-load energy sources.

Demand Controls

To capture potential sources of heterogeneity in electricity price elasticity, five dummy control
variables are included in the dataset. These are: demographics_control, reflecting household
characteristics (e.g., size, construction date); temperature_control, which accounts for climate
effects through cooling and heating degree days (CDD/HDD), crucial in capturing electricity
demand variations due to weather (Dong and Kim, [2018; Auray et al., 2019); stock_control,
indicating inclusion of appliance stock in demand equations; fuels_control, denoting whether
substitute fuels are considered; and income_control, which captures the influence of income
levels. These controls help reduce omitted variable bias, a concern emphasized by [Lanot and
Vesterberg (2021)) and Miller and Alberini (2016)), especially in studies using detailed household-

level data.

Model and Estimation Specifications

Different model specifications and estimation techniques yield systematically varying elasticity
estimates due to differing assumptions and treatment of unobserved heterogeneity. To capture
this variation, we code nine model and estimation types, including indicators for reduced-form
vs. structural-form models and static vs. dynamic specifications. Dynamic models, which
incorporate lagged consumption, are particularly important for distinguishing short-run from
long-run responses but may suffer from multicollinearity between current and lagged consump-
tion variables. We also track the use of linear, semi-logarithmic, double-logarithmic functional
forms, and usage of Box-Cox transformations, along with a dummy variable (endo_control) to

flag whether studies correct for endogeneity bias (Dahl, [1993; |Kamerschen and Porter, 2004).

Publication Characteristics

We include indicators for whether a study was published in a high-impact journal (impact_journal)
and the publication_year to reflect the temporal context of the research. Additionally, we gath-
ered the total number of citations for each study and applied a transformation (citations(t)) to

normalize citation counts across studies published in different years.
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This comprehensive categorization reveals the significant heterogeneity in price elasticity

estimates and their dependency on methodological and contextual factors.

4.1 Model Averaging

To explore the heterogeneity of electricity price elasticity estimates, we constructed a dataset
including 74 explanatory variables. A direct regression using all variables would risk inflated
standard errors and multicollinearity (Irsova et al., [2023b]). Moreover, given the ex-ante un-
certainty regarding the appropriate model specification, such as the choice between average or
marginal price, or the inclusion of demand-side controls, we face considerable model uncertainty
(Steel, |2020). Relying on a single specification could misrepresent the underlying economic re-
ality. To address this, we employ Bayesian Model Averaging (BMA), a standard practice in
meta-analyses (Havranek et al.l 2018; Bajzik, 2021]).

BMA integrates over a space of models, weighting each by its posterior model probability,
thereby accounting for model uncertainty in a probabilistically coherent manner. The impor-
tance of each variable is captured by its Posterior Inclusion Probability (PIP), which aggregates
the probabilities of all models including that variable (Kass and Raftery, [1995). We use the
Unit Information Prior (UIP) for coefficient priors and adopt a dilution prior for model proba-
bilities to mitigate multicollinearity among correlated variables (George, [2010). This approach
has been applied successfully in prior meta-analyses (Cala et al., [2022; Elminejad et al., [2023)).

To ensure robustness, we also apply Frequentist Model Averaging (FMA), which requires
no prior specification and weights models based on data-driven criteria. Prior to estimation,
we assessed multicollinearity via the correlation matrix and Variance Inflation Factors (VIF).
Highly correlated or redundant variables (e.g., mid_year, monthly_granularity) were excluded,
and we avoided the dummy variable trap by omitting redundant dummy group members.

Following these adjustments, our final model includes 43 variables and is estimated as:

43

PLE;; :a"’/B*SE(PEij)+Z'Yp*Xijp+€ij (3)
p=1

This equation presents the general regression of price elasticity estimation. The individual terms

are defined as follows (in line with setting from [Equation 1)): « denotes the price elasticity

corrected for publication bias, and £ describes the magnitude and direction of publication bias.
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Type of elasticity: Marshall

Aggregation: Disaggregated

Figure 6: Model inclusion in Bayesian model averaging
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Notes: The figure displays outcomes from Bayesian model averaging (BMA) utilizing both a uniform g-prior, as
detailed by |Eicher et al.| (2011), and a dilution prior outlined by (2010). Each vertical row represents a
distinct variable, arranged according to their Posterior Inclusion Probability (PIP). The horizontal axis corresponds
to the different models considered in the averaging process. Shades of blue (appearing lighter in greyscale) indicate
a variable’s positive influence on the effect size, whereas shades of purple (appearing darker in greyscale) indicate a
negative influence. Cells left uncoloured (white) signify that the corresponding variable is not included in a particular
model. Numerical results can be referred to in

The sum Zﬁil Vp* Xijp represents the products of the variables included in the model averaging

and their coefficients. ¢;; is the error term.

4.2 Bayesian Model Averaging Results

Figure 6| presents a graphical summary of the Bayesian Model Averaging (BMA) results, il-

lustrating the posterior inclusion probability (PIP) of variables.
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inclusion frequency, with Standard error, experiment, and long-run elasticity being the most
frequently included. On the horizontal axis, variable effects are color-coded: blue for positive
effects, purple for negative effects, and white for variables excluded from the models.

The results indicate that approximately 40% of characteristics significantly contribute to ex-
plaining price elasticity heterogeneity. The inclusion frequency declines rapidly for subsequent
variables, with about one-third appearing in the fewest models. The BMA approach provides
posterior means, standard deviations, and PIP values, analogous to coefficient estimates, stan-
dard errors, and p-values in frequentist methods. According to |Jeffreys (1998), PIP values are
classified as follows: weak effect (PIP between 0.5 and 0.75), substantial effect (PIP between
0.75 and 0.95), and strong or decisive effect for PIP intervals of [0.95, 0.99) and [0.99, 0.1],
respectively.

[Table § summarizes the numerical BMA results. Of nineteen variables with PIP above
0.5, two exert a weak effect (FEstimate: Short-run, Model: Static), one a substantial effect
(Model: ARDL), three a strong effect (Panel data, Function: Linear, Citations (t)), and 13
a decisive effect (Constant, Standard error, Experiment, Daylight hours, Estimate: Long-run,
Cross-sectional (data), Granularity: Yearly, Type: Residential, Tariff: Decreasing, Control:
Demographics, Control: Fuels, Model: LE, Estimation: 3SLS). While the constant term ap-
pears statistically significant, its interpretation is limited due to a lack of posterior inclusion
probability (PIP). Consistent with earlier evidence, both Bayesian and Frequentist Model Aver-
aging (BMA and FMA) confirm the presence of publication bias, with magnitudes comparable
to those identified via linear and non-linear bias tests.

Focusing on key determinants, only a few variables show robust explanatory power. Experi-
mental settings significantly reduce elasticity estimates, likely due to their stronger identification
of causal effects. Daylight hours, correlated with ambient temperature, are also associated with
less elastic demand. Although US-based studies tend to report lower elasticity magnitudes, this
effect is statistically insignificant. Notably, both panel and cross-sectional data structures, as
well as annual data granularity, significantly affect the estimates, aligning with findings by |Zhu
et al. (2018)). However, unlike Zhu et al. (2018), we find the 3SLS estimator to exert a strong
influence, while GMM appears insignificanta€” similar to results reported by [Zabaloy and Viego

(2022)) for the Caribbean region.
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Interestingly, neither average nor marginal price levels significantly explain heterogeneity,
contrary to claims in the literature suggesting stronger consumer sensitivity to average prices
(Itol, [2014; [Shafter, [2020). Among tariff types, only decreasing tariffs show a significant effect,
whereas time-of-use tariffs do not, despite extensive literature supporting their impact (Holland
and Mansur, 2008; Torriti, 2020)). Of the demand-side controls, only demographic and fuel
substitution variables are significant; appliance stock and temperature controls (CDD/HDD)
are not, diverging from earlier work by Holtedahl and Joutz (2004).

Among publication-related variables, only the adjusted citation count (Citations (t)) shows
a significant and positive relationship with elasticity estimates. BMA and FMA results are
highly consistent in the direction and significance of effects; all variables deemed significant
in BMA also show significance in FMA (p < 0.05). FMA does, however, identify additional
variables, such as U.S. data, random-effects models, IV estimation, and publication year, as

significant, particularly within the Marshallian subsample.
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Table 8: Model averaging results (Part 1)

Bayesian model averaging Frequentist model averaging
Response variable: Post. mean Post. SD PIP Coef. SE p-value
(Intercept) -1.603 0.000 1.000 -5.737 2.069 0.006
Standard error -0.703 0.024 1.000 -0.697 0.025 0.000
Data Characteristics
Observations (n) 0.000 0.000 0.003  0.000 0.000 0.000
Experiment 0.193 0.034 1.000 0.172 0.036 0.000
P value -0.002 0.010 0.033 -0.047 0.033 0.161
USA 0.018 0.030 0.311  0.067 0.028 0.019
Europe 0.000 0.002 0.006  0.009 0.021 0.672
Daylight hours 0.017 0.004 0.999 0.020 0.005 0.000
Population (log) 0.001 0.004 0.097  0.003 0.006 0.670
Income level (log) 0.000 0.000 0.004 -0.009 0.009 0.302
Type of elasticity
Estimate: Short-run 0.046 0.035 0.695 0.057 0.022 0.010
Estimate: Long-run -0.173 0.031 1.000 -0.174 0.025 0.000
Type: Marshall 0.000 0.002 0.009  0.025 0.019 0.191
Data Aggregation
Country level 0.000 0.003 0.012  0.016 0.019 0.387
Disaggregated 0.000 0.003 0.009 -0.021 0.023 0.296
Panel -0.062 0.023 0.953 -0.076 0.019 0.000
Cross-section -0.231 0.028 1.000 -0.239 0.028 0.000
Granularity: Yearly -0.074 0.016 1.000 -0.055 0.021 0.010
Type of electricity demand
Type: Residential 0.112 0.017 1.000 0.124 0.019 0.000
Type: Industrial 0.000 0.001 0.003  0.000 0.007 0.788
Type of electricity price
Price: Average 0.000 0.001 0.005 -0.016 0.020 0.428
Price: Marginal 0.000 0.003 0.009 0.029 0.026 0.272
Type of Electricity Tariff
Tariff: Increasing 0.000 0.002 0.005 0.001  0.020 0.969
Tariff: Decreasing -0.140 0.028 1.000 -0.139 0.030 0.000
Tariff: TOU 0.000 0.002 0.005  0.007 0.022 0.752

....to be continued on the next page

Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging. Post. mean =
Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient,
SE = Standard Error. The variables with PIP > 0.5 are highlighted in bold.
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Table 9: Model averaging results (Part 2)

Bayesian model averaging Frequentist model averaging

Response variable: Post. mean Post. SD PIP Coef. SE p-value
Demand Controls

Demographics -0.099 0.016 1.000 -0.086 0.018 0.000

Temperature 0.001 0.005 0.028 0.016 0.017 0.359

Stocks 0.000 0.002 0.007  0.004 0.018 0.807

Fuels -0.080 0.016 1.000 -0.081 0.016 0.000
Model Specification

Form: Reduced -0.003 0.011 0.072 -0.021 0.020 0.293

Model: Static -0.038 0.034 0.626 -0.052 0.023 0.021

Model: RE -0.070 0.089 0.423 -0.146 0.060 0.016

Model: ARDL 0.101 0.048 0.887 0.107 0.035 0.002

Model: LE 0.173 0.025 1.000 0.151 0.028 0.000
Estimation Technique

Estimation: GMM 0.000 0.005 0.007  0.017 0.037 0.652

Estimation: OLS 0.000 0.003 0.011  -0.014 0.017 0.410

Estimation: 2SLS 0.015 0.030 0.233  0.045 0.028 0.103

Estimation: 3SLS -0.201 0.048 1.000 -0.228 0.048 0.000

Estimation: TV -0.009 0.024 0.139  -0.067 0.030 0.024
Function Specification

Function: Linear 0.083 0.022 0.989 0.078 0.025 0.002

Function: Double-log 0.000 0.002 0.005  0.005 0.018 0.765
Publication Characteristics

Year of publication 0.001 0.001 0.199 0.003  0.001 0.007

Impact Factor 0.018 0.028 0.351  0.056 0.020 0.006

Citations (t) 0.040 0.011 0.977 0.029 0.009 0.001

Notes: This table presents the results of the Bayesian model averaging and Frequentist model averaging (n=4402).
Post. mean = Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion Probability, Coef.
= Coefficient, SE = Standard Error. TN citations = transformed number of citations, LE = Lagged endogenous. The
variables with PIP > 0.5 are highlighted in bold.

4.3 Best practice estimate

Constructing best practice estimates involves using coefficients derived from model averaging
and selecting variables that reflect the ideal conditions for elasticity estimation. This process
is inherently subjective, as the inclusion of variables depends on BMA performance, which is
influenced by prior beliefs or preliminary tests. Consequently, this approach should be viewed
as an additional robustness check rather than an independent finding.

Initially, we set variable values to their sample means, with a few exceptions. To address

publication bias, we set the standard error to 0. Additionally, we assigned the maximum values
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to journal impact factor and citation characteristics, as these are assumed to represent reliable
methodologies. Panel data was chosen for its superior informational value. For short-run results,
we set the short-run variable to 1 and the long-run value to 0, and vice versa for long-run results.

The short-run best practice estimate of -0.116 is borderline insignificant, compared to the
sample average of -0.231. This estimate is consistent with the elasticity from IV regression in
The long-run estimate is -0.303, slightly lower than Labandeira et al. (2017)) and
about half of |Zhu et al.| (2018)’s estimates. Horacek| (2014) reports a lower short-run elasticity
of -0.06 but a higher long-run estimate of -0.430.

Cross-country elasticity estimates are also provided. The robustness of these estimates is
constrained by the limited number of reports for some countries. Estimates largely align with
our best practice estimate, except for Norway, Pakistan, and Japan. The results for Norway and
Pakistan are less reliable due to fewer than 20 observations. In contrast, Japan’s 185 elasticity
reports suggest a significant estimate of -0.200, implying that a 1% price increase leads to a

0.2% decrease in electricity demand.
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Table 10: Best practice estimates

Short-run Long-run
PE CI PE CI
Author -0.116  (-0.243; 0.011)  -0.303  (-0.438; -0.168)
Europe -0.125  (-0.260; 0.010)  -0.312  (-0.453; -0.171)

Experimental design  0.041 (-0.084; 0.166)

Cross-country implied elasticities

Bangladesh -0.078  (-0.260; 0.104)  -0.276  (-0.458; -0.094)
Brazil -0.117  (-0.321; 0.087)  -0.322  (-0.528; -0.116)
Canada -0.084  (-0.209; -0.041)  -0.282  (-0.417; -0.147)
China -0.104  (-0.286; 0.078)  -0.309  (-0.497; -0.121)
France -0.080  (-0.319; 0.159)  -0.278  (-0.521; -0.035)
Germany -0.086  (-0.243; 0.071)  -0.287  (-0.450; -0.124)
India -0.074  (-0.237;0.089)  -0.301  (-0.468; -0.134)
Ttaly -0.085  (-0.310; 0.140)  -0.286  (-0.511; -0.061)
Japan -0.200  (-0.341; -0.059)  -0.395  (-0.542; -0.248)
Mexico -0.083  (-0.267; 0.101)  -0.288  (-0.476; -0.100)
Norway -0.246  (-0.432; -0.060)  -0.473  (-0.665; -0.281)
Pakistan -0.240  (-0.418; -0.062)  -0.448  (-0.626; -0.270)
South Korea 20120 (-0.294; 0.054)  -0.290  (-0.468; -0.112)
Switzerland -0.127  (-0.309; 0.055)  -0.325  (-0.513; -0.137)
UK -0.082  (-0.286; -0.122)  -0.280  (-0.490; -0.070)
USA -0.106  (-0.235; -0.023)  -0.293  (-0.430; -0.156)

Notes: The table presents calculated cross-country implied elasticities. We employed our base BMA model with
additional country dummies. We also construct a 95% confidence interval by employing OLS and incorporating clustered
standard errors at the study level. The cross-country effect was obtained by including a specific country dummy variable
in the original model averaging estimation. Then, we set specific country dummy variables to 1 or 0 and obtain a best
practice estimate. Other characteristics (income level, population, EU dummy) were also modified if applicable.

5 Conclusion

This paper presents a comprehensive meta-analysis of electricity price elasticity, synthesizing
4,521 estimates from 413 empirical studies. While prior literature has emphasized the substan-
tial heterogeneity in elasticity estimates (Dahl, [1993), our findings suggest that much of this
variation can be systematically linked to methodological choices, data characteristics, and pub-
lication dynamics. Short-run elasticities cluster between —0.12 and —0.07, while intermediate-
and long-run estimates range from —0.38 to —0.34, all indicating inelastic demand. Importantly,
we find robust evidence of publication bias and p-hacking, and report that elasticities from nat-
ural experiments (—0.07 to —0.05) are significantly lower than those from non-experimental
settings. Endogeneity correction modestly increases elasticity values, though not substantially.

By coding over 100 variables and incorporating 43 into Bayesian and Frequentist model

averaging, we reveal that key drivers of elasticity estimates include experimental design, demand
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type, time horizon, and estimation technique. Residential demand, short-run specifications,
and linear functional forms are associated with higher elasticities, while panel data, long-run
horizons, and inclusion of demographic or fuel controls yield more inelastic responses. Although
average electricity price is widely considered more salient for consumer behavior (Borenstein,
2009; Itol [2014)), it does not consistently emerge as a dominant predictor. Our best-practice
estimates suggest electricity demand remains inelastic, with corrected values of —0.116 (short-
run) and —0.303 (long-run). Sensitivity analysis confirms that uncorrected biases may overstate
price responsiveness, even producing artificially elastic estimates in some cases.

Our findings offer several implications for policymakers and researchers. First, accounting
for publication and methodological biases is essential when interpreting elasticity estimates for
regulatory or pricing policy. Second, further disaggregation, by demand type, income group, in-
dustrial subsector, and energy mix, could help refine policy instruments. For instance, elasticity
may differ across household income levels (Gundimeda and Kohlin|, 2008), industrial activities
(Chaudhryl 2010)), or appliance types (Volland and Tilov} 2018)), each warranting tailored policy
responses. Lastly, future work should explore how the energy transition toward renewables and

nuclear sources may reshape price responsiveness across sectors and regions.
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Appendices

Figure Al: Variability of the estimated effect for a subset of studies
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Notes: The figure shows a box plot of the price elasticity of electricity estimates for a given study. The vertical line

denotes the mean value (-0.395).

76



Table Al: Full statistics summary

Variable Name Sample Mean  Weighted Mean n
All Data -0.395 -0.417 4521
Observations (n) > 608 -0.383 -0.430 2263
Observations (n) < 608 -0.408 -0.409 2258
If appropriate transformation is used -0.385 -0.409 4501
t-statistic > -2.68 -0.230 -0.235 2263
t-statistic < -2.68 -0.561 -0.560 2258
Standard error > 0.086 -0.544 -0.588 2261
Standard error < 0.086 -0.247 -0.252 2260
Experiment -0.129 -0.180 362
P value -0.347 -0.369 381
Estimate: Short-run -0.231 -0.247 1866
Estimate: Intermediate-run -0.502 -0.495 1842
Estimate: Long-run -0.532 -0.624 813
Type: Marshall -0.398 -0.414 3326
Type: Hicks -0.385 -0.420 1176
Type: other -0.548 -0.465 20
Start year > 1977 -0.390 -0.440 2315
Start year < 1977 -0.401 -0.398 2206
End year > 1991 -0.348 -0.390 2448
End year < 1991 -0.452 -0.445 2073
Mid year > 2000 -0.389 -0.410 1166
Mid year < 2000 -0.398 -0.418 3355
Number of years> 14.5 -0.322 -0.354 2262
Number of years < 14.5 -0.470 -0.473 2259
Daylight hours > 14.767 -0.386 -0.404 3100
Daylight hours < 14.767 -0.415 -0.433 1421
Annual temperature > 9.146 -0.355 -0.381 2290
Annual temperature < 9.146 -0.437 -0.462 2231
Electricity exporter dummy -0.398 -0.430 3738
Carbon intensity production > 6.124 -0.394 -0.397 3307
Carbon intensity production < 6.124 -0.399 -0.464 1214
Population (log) > 19.096 -0.358 -0.396 2263
Population (log) < 19.096 -0.433 -0.432 2258
Income level (log) > 9.012 -0.350 -0.384 2261
Income level (log) < 9.012 -0.441 -0.439 2260
Hottest months -0.213 -0.247 68
Coolest months -0.427 -0.367 78
USA -0.395 -0.389 2151
Europe -0.410 -0.432 833
Other location -0.391 -0.427 1598
Aggregation: Country -0.289 -0.307 1224
Aggregation: Region -0.397 -0.443 1082
Aggregation: City -0.387 -0.393 654
Aggregation: Disaggregated -0.523 -0.552 1099
Type: Residential -0.355 -0.379 1710
Type: Commercial -0.248 -0.309 884
Type: Industrial -0.413 -0.417 2893
Demand: Peak -0.256 -0.360 269
Demand: Mid-peak -0.190 -0.186 108
Demand: Off-peak -0.432 -0.713 83
Data: Panel -0.389 -0.418 2290
Data: Time-series -0.328 -0.343 1718
Data: Cross-section -0.652 -0.649 513
Granularity: Yearly -0.436 -0.455 3291
Granularity: Quarterly -0.316 -0.393 126
Granularity: Monthly -0.302 -0.289 948
Price: Average -0.409 -0.420 2385
Price: Marginal -0.430 -0.446 957
Price: Lump sum -0.302 -0.302 1
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Table A1l — continued from previous page

Variable Name Sample Mean  Weighted Mean n
Price: Shin -0.151 -0.137 11
Price: Other -0.340 -0.392 453

Tariff: Increasing -0.350 -0.359 565
Tariff: Decreasing -0.625 -0.474 462
Tariff: Flat -0.495 -0.530 119
Tariff: TOU -0.283 -0.375 559
Tariff: Undefined -0.420 -0.428 1058
Control: Demographics -0.484 -0.516 1515
Control: Temperature -0.366 -0.381 2203

Control: Stocks -0.479 -0.465 821

Control: Fuels -0.427 -0.458 1844

Control: Income -0.414 -0.429 2543

Form: Reduced -0.407 -0.410 1873

Form: Structural -0.370 -0.422 2386

Model: Dynamic -0.327 -0.377 3100
Model: Static -0.546 -0.501 1407

Lag: Dependent -0.299 -0.347 1831
Lag: Other -0.279 -0.345 442
Model: RE -0.579 -0.487 63
Model: FE -0.406 -0.379 436
Model: VAR -0.519 -0.498 30

Model: ARDL -0.284 -0.350 348
Model: ECM -0.369 -0.389 217

Model: VECM -0.263 -0.362 85
Model: DS -0.445 -0.527 497
Model: LE -0.254 -0.287 1025

Model: Other model -0.282 -0.350 112
Estimation: ML -0.302 -0.419 265
Estimation: GMM -0.367 -0.300 176
Estimation: Error component -0.398 -0.252 111
Estimation: OLS -0.412 -0.447 1641
Estimation: GLS -0.412 -0.418 220
Estimation: SUR -0.359 -0.459 494
Estimation: 2SLS -0.488 -0.400 440
Estimation: 3SLS -0.431 -0.562 112
Estimation: IV -0.367 -0.375 377
Estimation: other -0.253 -0.391 100
Endogeneity: Control -0.382 -0.371 1306
Endogeneity: No control -0.401 -0.431 3215
Function: Linear -0.329 -0.433 832
Function: Semi-log -0.513 -0.344 231
Function: Double-log -0.406 -0.412 2474
Function: Box-Cox -0.453 -0.464 16
Function: non available -0.397 -0.435 968
Publication Year > 2000 -0.362 -0.406 2161
Publication Year j 2000 -0.427 -0.425 2375
Journal Impact Factor > 0.061 -0.391 -0.409 2347
Journal Impact Factor < 0.061 -0.401 -0.426 2189
Citations (t) > 1.128 -0.385 -0.383 2286
Citations (t) < 1.128 -0.407 -0.444 2250
Number of citations > 50 -0.368 -0.422 1094
Number of citations < 50 -0.404 -0.415 3442

Notes: We present the full summary statistics table. Note that some of the variables are grouped but do not add up to 4521
as the effect of NA column was omitted. Endogeneity control included both experiments and studies employing estimation
method accounting for endogeneity. TOU is time-of-use tariff.
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Table A2: Tests accounting for potential endogeneity

IV Regression p-uniform*

Publication Bias —1.640™"" L=46.03
Standard Error (0.293) (pi0.001)
Effect Beyond Bias —0.116™* —0.174™**
Standard Error (0.054) (0.029)

Notes: IV = Instrumental Variable, the instrument is the inverse of the square root of number of observations. F-test
statistic for the instrument is 40.22. The standard errors presented in the parenthesis are clustered at the study level.
P-uniform* method developed by [van Aert and van Assen| (2021)) uses maximum likelihood estimation. Asterisks

denote significance level: ***p < 0.01, **p < 0.05, *p < 0.10.
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Table A.3: List of studies included in the Meta-analysis
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