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Abstract Process mining is a data-driven technique that
leverages event logs to analyze, visualize, and improve
business processes. However, data quality is often low in
real-world settings due to various event log imperfections,
which, in turn, degrade the accuracy and reliability of
process mining insights. One notable example is the elusive
case imperfection pattern, describing the absence of case
identifiers responsible for linking events to a specific pro-
cess instance. Elusive cases are particularly problematic, as
process mining techniques rely heavily on the accurate
mapping of events to instances to provide meaningful and
actionable insights into business processes. To address this
issue, the study follows the Design Science Research
paradigm to iteratively develop a method for repairing the
elusive case imperfection pattern in event logs. The pro-
posed Hybrid Elusive Case Repair Method (HERE) com-
bines a traditional, rule-based approach with generative
artificial intelligence, specifically the Transformer archi-
tecture. By integrating domain knowledge, HERE consti-
tutes a comprehensive human-in-the-loop approach,
enhancing its ability to accurately repair elusive cases in
event logs. The method is evaluated by instantiating it as a
software prototype, applying it to repair three publicly
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accessible event logs, and seeking expert feedback in a
total of 21 interviews conducted at different points during
the design and development phase. The results demonstrate
that HERE makes significant progress in addressing the
elusive case imperfection pattern, particularly when pro-
vided with sufficient data volume, laying the groundwork
for resolving further data quality issues in process mining.

Keywords Process mining - Event log quality - Event log
repair - Generative artificial intelligence - Transformer -
Business process management

1 Introduction

Process mining analyzes event log data from information
systems to extract meaningful insights into business pro-
cesses (Rinderle-Ma et al. 2023). By examining historical
data on process executions, process mining uncovers
inefficiencies, identifies bottlenecks, detects deviations
from standard workflows, and ensures regulatory compli-
ance (van der Aalst 2022). These applications are in turn
associated with numerous economic benefits, including
cost reduction, higher process efficiency, and data-driven
strategic decision-making (Badakhshan et al. 2022; Galic
and Wolf 2021; Grisold et al. 2021).

As a data-driven technology, the success of process
mining initiatives is highly dependent on the quality of the
input data. Poor-quality data can lead to inaccurate out-
comes, a phenomenon known as garbage-in, garbage-out
(Beerepoot et al. 2023). For instance, many process mining
techniques, such as those focused on process discovery or
conformance checking, rely heavily on mapping events to
specific process instances using high-quality case identi-
fiers (IDs) (van der Aalst 2022). This mapping, also known
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as the primary correlation problem, is essential for recon-
structing the sequence of activities within each process
instance, allowing for accurate discovery and analysis (van
der Aalst 2016b). However, real-life event logs are often
subject to erroneous case IDs, leading to challenges in
process mining analyses (Fischer et al. 2022). One
notable example is the elusive case imperfection pattern,
describing a common problem (van der Aalst et al. 2012)
in which events are not linked to their corresponding case
IDs (Suriadi et al. 2017). This issue can significantly hinder
the efficacy of process mining endeavors, potentially
making them impractical or resulting in erroneous insights,
as case IDs are essential for capturing the relationships
between individual events (Tajima et al. 2023). Conse-
quently, organizations affected by this imperfection pattern
may fail to realize the full potential of process mining
(Suriadi et al. 2017).

Several repair methods have been developed to address
the elusive case imperfection pattern, which involve
reconstructing missing case IDs or establishing accurate
associations between events and process instances. For
instance, Martin et al. (2022) propose a query language to
detect events affected by elusive cases. Bayomie et al.
(2023) introduce a probabilistic optimization method for
grouping events into cases, while Pegoraro et al. (2022)
apply machine learning for the purpose of log segmenta-
tion. Additionally, De Fazio et al. (2024) suggest heuristics
for detecting case IDs. Despite these advancements, current
methods encounter challenges, as they either rely on sup-
plementary well-defined data alongside the event log or do
not fully leverage the potential of the existing data.
Moreover, these approaches are often restricted to
regrouping all events, making it impossible to assign
individual events to existing groups of events with error-
free case IDs. This limitation becomes particularly prob-
lematic when only a small percentage of events are
affected, while the majority remain correct. Manual repair
of elusive cases, although theoretically feasible, is
impractical due to the massive volume of data, resulting in
substantial resource and cost constraints.

Generative artificial intelligence (Al) offers a promising
alternative to tackle these challenges. Its ability to under-
stand complex data patterns and reconstruct missing or
erroneous data makes it well-suited for this task (Hofmann
et al. 2021). Moreover, generative Al excels at capturing
intricate, long-term data patterns within event logs, an area
where traditional machine learning algorithms often fall
short (Banh and Strobel 2023). Accordingly, the capabili-
ties of generative Al have been showcased in various sub-
disciplines of process mining research. For instance, within
predictive business process monitoring, Transformer
architectures are utilized to forecast subsequent activities in
an ongoing process instance (Bukhsh et al. 2021). For
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process discovery, generative Al enables the extraction of
processes from textual data (Busch et al. 2023). Using
generative adversarial networks (GANs), van Dun et al.
(2023) demonstrate that generative Al can facilitate the
generation of ideas for business process improvements. In
the domain of event log quality enhancement, GANs are
utilized to tackle timestamp-related data quality issues in
event logs (Schmid et al. 2023), while a Transformer
model has been applied to address activity-related quality
issues (Wu et al. 2024). Additionally, Nguyen et al. (2019)
employed an autoencoder to reconstruct missing activity
and timestamp values. Beyond these successful applica-
tions, vendors and market-research organizations assume
that generative Al has the potential to significantly
streamline data preparation tasks (Kerremans and Kerre-
mans 2023; Reinkemeyer et al. 2023), which currently
account for approximately 61% to 80% of the efforts
involved in applying process mining (Wynn et al. 2022).
Hence, we conclude that generative Al has the potential to
repair event logs that are subject to the elusive case
imperfection pattern. Consequently, this research addresses
the following research question: How can generative Al be
used to repair the elusive case imperfection pattern?

To answer this question, we follow the Design Science
Research (DSR) paradigm proposed by Peffers et al.
(2007) and introduce HERE, the Hybrid Elusive Case
REpair Method, which aims to reestablish the link between
events and their corresponding case IDs. Given the
potential for inaccuracies in outputs generated by genera-
tive Al models (Feuerriegel et al. 2024), we establish rule-
based methods by integrating human interactions into the
model’s architecture through domain knowledge, thus
enabling a human-in-the-loop approach (Mosqueira-Rey
et al. 2023). We instantiate HERE as an open-source
software prototype and evaluate it following the framework
for evaluation in DSR (FEDS) as proposed by Venable
et al. (2016). By doing so, we first refine our design
specification with the help of 11 interviews with practi-
tioners and researchers. Afterwards, we provide a proof of
concept of HERE by instantiating it as a real-world pro-
totype and using it to repair a total of three different event
logs with nine degrees of elusiveness each, hence demon-
strating feasibility and effectiveness. Lastly, a proof of
value with real users and tasks is given by letting ten
researchers and practitioners use the research prototype to
repair an event log in a simulated environment.

Our primary contribution is the development of a novel
method to address elusive cases in process mining. We
provide design knowledge on adapting existing architec-
tures for effective event log repair. This work builds on
prior research at the intersection of generative Al and event
log quality improvement, advancing the field of process
data quality management. Additionally, we provide an
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open-source software tool that enables both researchers and
practitioners to repair elusive cases.

This paper is structured as follows: In Sect. 2, we dis-
cuss previous work in the field. Sect. 3 provides a detailed
account of our activities within the DSR paradigm. Sect. 4
presents our artifact HERE, while Sect. 5 discusses its
evaluation within FEDS. In Sect. 6, the results are dis-
cussed. Lastly, Sect. 7 provides a summary of our findings.

2 Theoretical Background
2.1 Process Mining and Event Log Quality

Process mining focuses on optimizing business processes
by systematically examining event data (van der Aalst
2022). The objectives of process mining may be backward-
(e.g., finding causes of past bottlenecks) or forward-look-
ing (e.g., making predictions for ongoing process execu-
tions) (van der Aalst 2022). The process mining discipline
encompasses various activities. Process discovery focuses
on deriving process models from event data, whereas
conformance checking seeks to detect discrepancies
between the event data and the process model (van der
Aalst 2016c). Additionally, enhancement involves refining
an existing process model using event data (van der Aalst
2016¢).

Typically stored as an extensible event stream (XES)
file, process data is often represented in event logs (van der
Aalst 2016b). Within an event log, various process
instances known as cases are recorded where distinct
events are associated with it (van der Aalst 2016b). The
definition and boundaries of a case vary depending on the
context (van der Aalst 2016a). An event log must typically
contain three essential attributes: case ID, activity name,
and timestamp (De Weerdt and Wynn 2022). In addition to
these essential attributes, event logs may also include
supplementary attributes such as the executing resource or
the associated costs (van der Aalst 2022). Thus, event logs
may contain both discrete and continuous attributes.

Employing data quality metrics allows to assess the
quality of an event log. Such metrics may address different
aspects of data quality and are categorized into dimensions
such as accuracy, completeness, redundancy, readability,
accessibility, consistency, usefulness, and trust (Batini and
Scannapieco 2016). Among these metrics, accuracy, com-
pleteness, and consistency are particularly important for
event log repair. Accuracy is generally defined as the
closeness between a representation and the actual data
value. Completeness refers to the extent to which data is
not missing and is sufficiently comprehensive for the task
at hand. Consistency can be assessed by verifying

adherence to integrity constraints, which are properties that
all instances must satisfy (Batini and Scannapieco 2016).

Event log quality issues can stem from various root
causes, such as manual data entry errors, system design
flaws, or problems encountered during the extraction of
event logs (Andrews et al. 2022). To shed light on specific
quality problems in event logs, Suriadi et al. (2017) clas-
sified them into 11 event log imperfection patterns.
Thereby, the elusive case describes scenarios where events
are not explicitly linked to their corresponding case ID.
This absence of a case ID poses a significant challenge,
rendering process mining analyses infeasible (Suriadi et al.
2017).

Several methods have been proposed to address imper-
fection patterns in event data, each with distinct objectives,
including detection and repair. Detection approaches aim
to identify existing errors in event data. For example,
Andrews et al. (2018) introduced a log query language
capable of identifying five imperfection patterns. Expand-
ing on this work, Martin et al. (2022) proposed an approach
based on activity logs, which extends detection to a total of
ten imperfection patterns and tackles additional event log
quality issues not covered previously. Furthermore,
Sadeghianasl et al. (2019) presented a detection method
that takes into account the context of activities. Lastly,
approaches focused on quantifying quality metrics have
been proposed (Fischer et al. 2022).

Repair approaches aim to improve the quality of event
logs by rectifying errors. For instance, gamified crowd-
sourcing techniques have been utilized to enhance activity
labels (Sadeghianasl et al. 2020, 2024). Such approaches,
involving human-in-the-loop interactions and integrating
domain knowledge, hold the potential to improve overall
data quality (Chen etal. 2020). Moreover, hybrid
methodologies offer diverse advantages (Raisch and
Fomina 2024). For instance, the integration of domain
knowledge can be leveraged to establish declarative
integrity constraints, which, in turn, facilitate the devel-
opment of declarative process models for process specifi-
cation (Di Ciccio and Montali 2022; Pesic et al. 2007).
Additionally, there exist repair approaches based on gen-
erative Al such as GANs or variational autoencoders
(Nguyen et al. 2019; Schmid et al. 2023).

Various methods are employed to determine case IDs
(Ferreira and Gillblad 2009; Pourmirza et al. 2017).
Decision tree methods, for instance, are applied with
behavioral profiles and statistical heuristics to identify case
IDs. However, they encounter difficulties in complex or
overlapping cases due to ambiguities and missing infor-
mation (Bayomie et al. 2016a, b). Optimization-based
approaches align event logs with detailed process models
but depend heavily on specific domain knowledge, which
limits their adaptability in dynamic or incomplete process
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environments (Bayomie etal. 2019, 2022). Domain
knowledge-driven techniques, such as the one by De Fazio
et al. (2024), leverage expert-defined heuristics for event
similarity. This method demands significant input from
experts, making it resource-intensive and challenging to
scale, particularly with large or rapidly changing datasets.
Similarly, Bayomie et al. (2023) apply domain-specific
rules within an optimization framework, but the reliance on
predefined rules restricts the method’s applicability across
diverse processes. Expert-driven approaches like the one
proposed by Burattin and Vigo (2011) involve manual case
review, which enhances accuracy but introduces subjec-
tivity and potential inconsistency. Machine learning tech-
niques, such as the neural network approach by Pegoraro
et al. (2022), automate case ID assignment. These methods
require extensive labeled data and may lack interpretabil-
ity. Overall, these limitations underscore the need for a
more flexible and scalable approach to case ID determi-
nation. An effective solution would minimize dependence
on domain knowledge, handle complex cases without
expert intervention, and ensure explainability of machine-
learning-driven processes.

2.2 Generative Artificial Intelligence in Process
Mining

Machine learning algorithms have proven to be effective in
handling incomplete event data (Weinzierl et al. 2024). As
a subset of Al, machine learning encompasses algorithms
that learn to perform tasks by processing data, rather than
relying solely on explicit programming instructions (Banh
and Strobel 2023). A commonly used approach within
machine learning is supervised learning, where a model is
trained using a dataset that includes both input data and the
corresponding correct outputs (Janiesch et al. 2021).
Within the broader field of machine learning, more spe-
cialized techniques exist. Deep learning involves the use of
multi-layer neural networks to model complex data pat-
terns. These networks learn hierarchical representations of
data, allowing the model to identify increasingly abstract
patterns as it processes more layers of information. Gen-
erative Al as a subclass of deep learning, models complex
data distributions to generate new samples that closely
mirror the structure, patterns, and characteristics of the
training data. Discriminative Al, on the other hand, focuses
on modeling the boundary between different classes in the
data, rather than the data distribution itself (Banh and
Strobel 2023). Prominent architectures of generative Al
include GANSs, Transformers, and variational autoencoders
(Feuerriegel et al. 2024).

In recent years, generative Al and Transformers, in
particular, have gained significant popularity, driven by the
success of large language models like ChatGPT
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(Feuerriegel et al. 2024). Transformers, as introduced by
Vaswani et al. (2017), use a mechanism called self-atten-
tion to process input data all at once rather than sequen-
tially. This mechanism allows the model to focus on
different parts of the input when making predictions, cap-
turing complex dependencies that might exist between
various elements, such as activities in an event log or
relationships between words in a sentence. This makes
Transformers particularly effective for tasks involving
sequential data with long-range dependencies, a common
characteristic of event logs. Unlike traditional methods that
struggle with such dependencies, Transformers excel at
capturing these relationships, which makes them particu-
larly useful in tasks involving complex, sequential data
(Vaswani et al. 2017). The Transformer architecture is
comprised of two main components: the encoder and the
decoder (Vaswani et al. 2017). The encoder processes the
input data, extracting key features, while the decoder uses
this information to generate the output. Both the encoder
and decoder are built from layers of self-attention mecha-
nisms, allowing the model to refine its understanding of the
data at each step. While the encoder and decoder work
together during training, the decoder operates indepen-
dently during inference, when the model is used to make
predictions.

Machine learning, including generative Al, has been
successfully applied in various process-related contexts
(Weinzierl et al. 2024). For instance, in the domain of
predictive business process monitoring, Bukhsh et al.
(2021) employed a Transformer to predict the next activity
in a trace, defined as a sequence of events within a given
process. Similarly, Rivera Lazo and Nanculef (2022)
employed a Transformer for the same task, with their
architecture allowing for multiple input attributes. Addi-
tionally, some approaches leverage GANSs for this purpose
(Hoffmann et al. 2022; Taymouri et al. 2020). Generative
Al architectures have also been implemented for business
process improvement. For instance, van Dun et al. (2023)
used a GAN to generate improvement ideas, while
Beheshti et al. (2023) proposed a Transformer to derive
improvement recommendations. Furthermore, generative
Al has been employed to enhance the quality of event logs.
Nguyen et al. (2019) utilized an autoencoder architecture
to reconstruct missing attribute values for activity and
timestamp, whereas Schmid et al. (2023) addressed iden-
tical timestamp errors using a GAN. These applications
demonstrate how generative Al models can be effectively
adapted for solving challenges in business process
management.
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3 Research Method

The objective of this study is to develop an approach uti-
lizing generative Al to repair the elusive case imperfection
pattern, specifically focusing on determining case IDs for
events that were previously lacking them. Elusive cases,
among other event log quality issues, cause the results of
process mining analyses to be misleading (Suriadi et al.
2017). Hence, this study addresses a significant business
problem and thus falls under Type I machine learning
research as per the categorization proposed by Padman-
abhan et al. (2022). This category, which aims to resolve
significant problems within economic and social contexts
by developing machine learning methods (Padmanabhan
et al. 2022), aligns closely with DSR, which in turn aims to
design purposeful artifacts that solve real-world problem
classes (Tuunanen et al. 2024). Moreover, DSR artifacts
can specifically manifest as methods encompassing sys-
tematic procedures and techniques to solve a real-world
business problem (Gregor and Hevner 2013; March and
Smith 1995). Consequently, DSR is generally a suit-
able framework for our research endeavor. A fundamental
principle of DSR is the iterative process of searching for an
artifact that provides a satisfactory solution (Hevner et al.
2004; Tuunanen et al. 2024). Established DSR processes
can facilitate this search process. In this study, we adopt the
approach outlined by Peffers et al. (2007), which com-
prises six steps. Figure 1 illustrates these six steps and
summarizes our activities in each step. In Sect. 1, we
already (1) identified and motivated the problem, ensuring
that the objective of our DSR project addresses a signifi-
cant business problem. This paper aims to (6) communicate
our findings.

3.1 Design Objectives

Based on our analysis of the research problem and existing
literature in Sect. 2, we (2) define design objectives (DOs)
aimed at integrating essential solution components (Peffers
et al. 2007). A central challenge identified is the elusive

case imperfection pattern, where events lack corresponding
case IDs. Our primary emphasis lies in restoring these
associations. Given the diverse nature of data attributes in
event logs, a solution to the problem should encompass
both discrete and continuous data types. Moreover, the
incorporation of external sources of implicit knowledge is
crucial for improving contextual understanding. Therefore,
we summarize the first DO as follows:

DO 1. An approach to repairing the elusive case imper-
fection pattern should accommodate diverse input
attribute types and integrate external knowledge

beyond the event log.

Sometimes, historical process data may not fully reflect the
current process reality, such as when control flows have
changed over time or new dominant process variants are
underrepresented in the data. In these cases, it is important
to capture this new knowledge as an additional input. Since
such information often cannot be inferred directly from the
data, human expertise becomes essential. A human-in-the-
loop approach facilitates this interaction, allowing humans
to provide contextual insights that algorithms lack.
Through a mutual exchange of information, humans and
algorithms work together to refine the repair process,
delivering the best possible outcomes. Therefore, the sec-
ond DO is summarized as follows:

DO 2. An approach to repairing the elusive case imper-
fection pattern should incorporate external knowl-
edge by means of a human-in-the-loop approach.

The quality of event logs is multidimensional, hence a
solution should address several key quality metrics. First,
accuracy ensures that the reconstructed process represents
reality, maintaining close alignment between predicted and
actual case IDs. Second, completeness ensures a sufficient
number of events are mapped to case IDs. Third, consis-
tency ensures adherence to known process patterns and
rules during event reconstruction. Consequently, the third
DO is summarized as follows:

a a
Problem Definition of Design and
Identification P Objectives of a > Development | Demonstration > Evaluation P Communication
and Motivation Solution
Disruption of Iterative L T
event-case ID Three design development of Ins’(a':t;ﬁtlon as FEDS’ Publ!cail‘(;n in
linkage by objectives method proto¥yp(;nand Technical Risk josucrlr?gl Ialr?d
elusive case based on combining repair of three & Efficacy online provision
pattern, existing generative Al P strategy used f {J tvpical
complicating literature and rule-based erroneous for evaluation ot prototypica
analysis approach event logs instantiation

Fig. 1 Research activities within DSR
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Table 1 Design iterations for developing HERE

Iteration Design Activities Evaluation Results Key Insights
1 Reviewing literature on various Identified limitations in handling long-term Self-attention mechanisms in Transformers
generative Al architectures dependencies and sequential data in some effectively manage long-range
architectures dependencies
Transformer found superior in performance and Transformer architecture is recommended
scalability
2 Establishing a preprocessing Reasonable output is produced Transformer can repair elusive cases
pipeline Preprocessing pipeline accommodates multiple
Designing baseline Transformer input attributes
architecture for case ID
determination
3 Integrating domain knowledge into  Rule-checking enables higher consistency and  Rule-based systems enhance Transformer’s
the Transformer model accuracy output with specific domain expertise
Developing complementary rule- Overall model performance increased with
based approaches for sequence domain knowledge
validation
4 Conducting extensive Achieved optimized model performance and Proper hyperparameter selection is critical
hyperparameter tuning efficiency for maximizing model effectiveness
Significant reduction in prediction errors
DO 3. An approach to repairing the elusive case imper-  incorporating a human-in-the-loop and supplementing it

fection pattern should satisfy multiple data quality
dimensions, such as accuracy, completeness, and
consistency.

These objectives guide the design and development phase
towards achieving a robust solution that comprehensively
repairs the elusive case.

3.2 Design and Development

The (3) design and development of our artifact follows an
iterative process, as shown in Table 1, guided by the DOs
and continuously refined by evaluation insights. During the
initial iteration, our primary goal was to identify the most
suitable generative Al architecture. After a comprehensive
literature review, we selected the Transformer architecture
due to its proven effectiveness in handling sequential data.
This capability was crucial for our needs, as repairing the
elusive case involves reconstructing case IDs for erroneous
events based on other attributes in the event log. This
process transforms the input from a sequence lacking case
IDs to an output sequence where each event is accurately
linked to the corresponding case ID. Therefore, this con-
stitutes a sequence-to-sequence translation in machine
learning, where input sequences are mapped to output
sequences (Sutskever et al. 2014). In the subsequent iter-
ation, our objective transitioned to achieving DO 1. We
implemented architectural modifications, which enabled
the determination of case IDs. In the third iteration, we
addressed DO 2 to enhance the model’s input by
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with a rule-based approach grounded in domain knowl-
edge. Finally, in the fourth iteration, we focused on DO 3,
employing hyperparameter tuning to improve output
quality.

3.3 Demonstration and Evaluation

To (4) demonstrate the feasibility of the design, it is
instantiated as a Python software prototype'. Prototyping is
a well-established method for evaluation in DSR (March
and Storey 2008). We use our prototype to repair three
publicly accessible event logs: two synthetic logs repre-
senting a journal paper review process (van der Aalst 2010)
and the low-discrimination variant of a rental process (Pohl
and Berti 2023), and one real-life log detailing a medical
service billing process (Mannhardt 2017). Through these
demonstrations, the prototype showcases the artifact’s
utility and suitability (Peffers et al. 2012).

The prototype itself also contributes to the (5) evalua-
tion of our artifact. Our evaluation framework follows
FEDS, a structure guiding evaluations in DSR projects
(Venable et al. 2016). This framework categorizes evalu-
ation strategies along two dimensions. The first dimension
concerns the functional purpose of the evaluation episode,
distinguishing between formative and summative evalua-
tions. Formative evaluations aim to improve an artifact
during its development phase through continuous feedback

! Link to HERE instantiation source code: https://github.com/FIZtz/
Hybrid_Elusive_Case_Repair_Method.
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Table 2 Participants in the semi-structured interview rounds

ID Sector Role Process Mining Experience (Years) Country Round 1 Round 2
1 Research Professor 21 Germany I I
2 Industry Manager 4 Germany I I
3 Research Research Assistant 4 Liechtenstein I I
4 Research Research Assistant 3 Germany I 4
5 Industry Consultant 6 Austria I I
6 Industry Process Expert 4 Germany 4 I
7 Research Professor 9 Switzerland I I
8 Industry Head of Center of Excellence 7 Germany I I
9 Industry Head of Process Mining 4 Germany I I
10 Industry Senior Consultant 6 Germany I I
11 Research Postdoctoral Researcher 11 Belgium I

and iteration, whereas summative evaluations assess the
overall effectiveness and impact of the artifact after its
development is completed. The second dimension relates to
the evaluation paradigm, distinguishing between artificial
and naturalistic approaches. Artificial evaluations are
conducted in controlled, experimental settings where
variables can be systematically manipulated and measured,
while naturalistic evaluations occur in real-world environ-
ments, observing phenomena as they naturally unfold. One
strategy within FEDS is the Technical Risk & Efficacy
strategy, which assesses technical artifacts to mitigate
uncertainty and risk while ensuring rigor. This strategy
begins with an artificial formative evaluation, proceeds to
an artificial summative evaluation, and concludes with a
naturalistic summative evaluation.

For the artificial formative evaluation, we conducted 11
semi-structured expert interviews to validate our design
specification in an artificial setting. Interviews are widely
accepted evaluation methods in information systems
research (Myers and Newman 2007). The panel comprised
11 experts selected through purposive sampling (Robinson
2014), representing both research and industry sectors (cf.
Table 2). These interviewees were chosen for their exper-
tise in process mining and business process management.
Each interview averaged approximately 40 minutes.

(Faulty) XES
Event Log

Fig. 2 Overview of HERE

Transformer
Training

= Human-in-the-loop =

In the artificial summative evaluation, we assess the
effectiveness of the artifact. To do so, the software proto-
type is used to repair three publicly accessible event logs,
comprising both synthetic and real-life data. For each log,
we introduced errors at varying rates, ranging from 10% to
90% in 10% increments to simulate elusive cases. Fur-
thermore, we conducted the repair routine with different
configurations. Each event log and repair configuration is
then evaluated using ten different metrics each addressing
different aspects of repair quality such as accuracy, com-
pleteness, and consistency, as specified in DO 3.

Finally, we conducted a naturalistic summative evalua-
tion through a second round of semi-structured interviews
with ten experts from the initial panel. This approach had
the advantage that the interviewees were already familiar
with the design specification, enabling them to provide
informed and detailed feedback on the prototype’s func-
tionality and its alignment with the objectives. Each
interview lasted around 35 minutes on average. Intervie-
wees were briefed on the results of our artificial summative
evaluation and engaged in a simulated prototype interac-
tion. Detailed information on the evaluation setup as well
as the results are presented in Sect. 5.

Event
Log Repair

_________ ,| Repaired XES
Event Log
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4 Hybrid Elusive Case Repair Method

Our proposed artifact, denoted as HERE, encompasses
three main activities: data preprocessing, Transformer
training, and event log repair. As illustrated in Fig. 2, each
activity involves a human-in-the-loop, which will be
elaborated on in the subsequent subsections. HERE
requires event logs in XES format as input, whereby it is
assumed that the training event data is error-free and
complete, consistent with typical supervised learning sce-
narios. Likewise, the event log designated for repair, which
includes the elusive case requiring correction, should only
exhibit this particular data quality issue, without any
additional complexities, as illustrated in Table 3. The
method is applicable to any XES event log that includes at
least one attribute beyond the case ID, with activity name
and timestamp being mandatory attributes and typically
found in most event logs (De Weerdt and Wynn 2022).
While the inclusion of additional attributes may enhance
performance, they are not strictly necessary. The outcome
of the method is an event log in XES format, representing
the repaired version of the original erroneous log.

4.1 Data Preprocessing

The original dataset needs several transformations to con-
form with the requirements of our approach, depending on
its initial structure. Thus, we have outlined the essential
data preprocessing steps of HERE in Fig. 3. The first step
involves adjusting the event log data to a uniform time
zone. This adjustment ensures that the temporal relation-
ships between individual events are accurately represented.
Next, the event log is sorted by timestamp. If multiple
events share the same timestamp, their original order is
preserved. To enable the Transformer to process the
timestamp, they are transformed into time progression in
seconds from the first event of the sorted event log. Next to
the timestamp, discrete input attributes (DAs) represent
attributes with a limited number of distinct values, such as
activity labels. Conversely, continuous input attributes
(CAs) theoretically assume an infinite range of values
within a specified interval, although practical representa-
tion is constrained by measurement precision and compu-
tational limitations, as seen with timestamps. For the repair
of elusive cases, the output attribute, specifically the case
ID, is crucial and is treated separately, as the Transformer

Table 3 Event log excerpt for

) Case ID Activity Timestamp Resource
order-to-cash process showing
elusive case pattern 1 Order Received 2024-07-01T08:45:00+01:00 Staff A
Order Processed 2024-07-01T09:00:00+01:00 Staff B
1 Payment Confirmed 2024-07-01T10:30:00+02:00 Staff C
Order Delivered 2024-07-03T16:30:004-01:00 Staff D

Preprocessed Discrete Input
(Event and Knowledge) Data

Preprocessed Preprocessed
Continuous Input Data Output Data
Tokenization

t

Sequencing

|

Sequencing

Tokenization
Sequencing
l—' Concatenation +————
Domain Event Log
Knowledge Data
Provided UAs Provided BAs
Concatenation Concatenation
UA, UA, BA, BA, DA,

Selected DAs Selected CAs

Concatenation

Output Attribute

(Case ID)

|- Concatenation ¢|

Normalization

t t

DA, CA, CA, D D,

L)
[ | 1

[ Researcher J [ Process ExpertJ [ Data Engineer J

Fig. 3 Data preprocessing
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Table 4 Preprocessed order-to-

cash event log with relative time
progression and concatenated 1
activity and resource

Case ID  Activity Relative Time Progression  Resource  Discrete Attributes
Order Received 0 Staff A Order Received Staff A
Order Processed 0.0045 Staff B Order Processed Staff B

1 Payment Confirmed  0.0135 Staff C Payment Confirmed Staff C
Order Delivered 1 Staff D Order Delivered Staff D

model distinguishes between input and output attributes.
Each CA is normalized individually using min-max scal-
ing. In this process, the maximum value is mapped to 1, the
minimum value to 0, and all other values are proportionally
scaled between these two bounds. The results are detailed
in Table 4. This ensures that all attributes have an equal
impact on the analysis. Subsequently, both DAs and CAs
are concatenated separately, aligning with the early fusion
approach for multiple attributes proposed by Rivera Lazo
and Nanculef (2022). This means that all attributes within a
category are merged into a single composite attribute for
each event. For instance, the DAs DA to DA, (where d
denotes the total number of DAs) are combined into a
single entity: DA, ..., DA . In our example, as illustrated
in Table 4, this means that the value in the Activity column
is combined with the value in the Resource column. The
rationale behind this combination is that the Transformer
model processes only one attribute at a time. However,
according to the late fusion approach (Rivera Lazo and
Nanculef 2022), DAs and CAs are not merged at this stage.

In addition to event log data, our approach allows to
integrate domain knowledge as per DO 1. This integration
aims to enhance the output quality by explicitly stating
domain knowledge that may not be fully captured in the
data. Thereby, we define the target group to be researchers,
process experts, and data engineers, while acknowledging
that other stakeholders might be relevant as well. To
facilitate interaction with the artifact, we employ a system
that supports modular expansion with additional types of
domain knowledge. For example, stakeholders may define
domain knowledge such as start activity, end activity, and
directly following relationships, based on predefined
declarative rules (Di Ciccio and Montali 2022). While we
have implemented expert knowledge concerning the con-
trol flow, the modular architecture also permits the inte-
gration of environmental, object, resource, and temporal
aspects as distinct expert attributes (EAs). This flexible
design does not require every EA to be specified, as
stakeholders can include any number of EAs based on
relevance. While performance may improve with the
addition of more attributes, the system is designed to
operate effectively even with minimal input. Each attribute
requires specific values that satisfy defined criteria, along
with specifying the frequency of fulfillment (always or

sometimes) for each attribute value. For instance, an input
could specify that events describing the Order Received
activity must always be regarded as the start activity of a
case. Stakeholders are supported through suggestions
generated by querying the event log for these properties,
potentially enabling non-experts to participate effectively.
These suggestions streamline the input process for the
implemented EAs, while other EAs may require additional
coding, resulting in a more complex and time-consuming
input process. To address this, stakeholders can save their
inputs for automatic retrieval and pre-filling in future
instances. We distinguish between unary and binary attri-
butes: unary expert attributes (UAs) represent individual
values (e.g., start activity), while binary expert attributes
(BAs) denote relationships between two values (e.g.,
directly following). These attributes are incorporated as
additional columns containing discrete values. For
instance, the start activity attribute includes a value for
each event indicating whether it always, sometimes, or
never represents a start activity within the process. In our
example, the start activity column would have the value
always start activity for all events corresponding to the
Order Received activity, while according to the expert
input all other events would have the value non start
activity, as demonstrated in Table 5. On the other hand, the
directly following BA may necessitate the creation of
multiple columns to account for distinct relationships.
Initially, all predecessor activities are identified, with
duplicates being removed. Each unique predecessor is then
allocated a separate column (e.g., Directly Following
Order Received), and the values in these columns indicate
whether an activity directly follows its predecessor. These
values are categorized as non directly following, sometimes
directly following, or always directly following, depending
on the input data. In our example, an expert may specify a
directly following relationship between the activities Order
Received and Order Processed, where the latter always
follows the former, resulting in the outcome presented in
Table 5. This procedure is repeated for each predecessor
activity. Finally, the values from each column within the
EA categories are concatenated for each event, following
the procedure used for input attributes derived directly
from the event log. Specifically, the values in the start
activity column are combined with those in the end activity
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Table 5 Order-to-cash event

Case ID Activity

Start Activity Directly Following Order Received

log with start activity and
directly following order 1
received indicator

Order Received
Order Processed

1 Payment Confirmed

Order Delivered

always start activity non directly following

non start activity always directly following
non start activity non directly following

non start activity non directly following

column, while the values in the directly following columns
are concatenated together.

To provide these EAs for the Transformer’s training,
they are concatenated with the discrete attributes extracted
from the event log data. This fusion consolidates all dis-
crete input data into a unified representation for each event.
Given d DAs, u UAs, and b BAs (where d, u and b rep-
resent the total counts of values in each category), the
combined representation is structured as: DAj,..., DAy,
UAy,...,UA,,BA,...,BA,. In our example, this includes
values from columns such as activity, resource, start
activity, directly following order received and potentially
other attributes.

The discrete input data, continuous input data, and
output data are systematically organized in chronological
order to map the sequence of events within the ordered
event log, accommodating potential case overlaps. Each of
these sequences is uniform in length during training, cor-
responding to the number of events they include. By
organizing the data into longer sequences instead of indi-
vidual events, the Transformer model is better equipped to
capture complex, long-term patterns within the sequence of
events. This approach applies uniformly to all data,
ensuring consistency in representation. After this step, as
an example, the sequence of case IDs in the event log
appears as  follows: IDy g ityer -+ o IDpimtyies - - 5
ID,—4,41,.-.,1D,, where i denotes the sequence number,
starting from 1 and increasing by 1 for each new sequence.
The term k refers to the step value, which represents the
fixed interval between two consecutive sequences. The
variable [ indicates the length of each sequence, i.e., the
number of elements within each sequence. /, specifically
refers to the length of the final sequence in the set, while n
represents the ID value of the last sequence, indicating its
position in the overall order of the sequences. For instance,
with a sequence length [ = 3, the first sequence of input
attributes would be: Order Received Staff A always start
activity non directly following, ..., Payment Confirmed
Staff C non start activity non directly following. During
training, k is set to 1, ensuring consistent sequence lengths.
However, in repair scenarios, k is adjusted to /, potentially
resulting in the last sequence being shorter than others. The
reason for the difference in k values between training and
repair is that, during training, the goal is to learn the
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connections between events, whereas, during repair, the
aim is to assign a single resulting case ID to each individual
event. For instance, assuming a sequence length of 3, the
first sequence consists of the case IDs for the first three
events. The second training sequence would include the
case IDs for the second through fourth events, ensuring
overlap. This overlap helps the model capture relationships
between consecutive events. In contrast, the second repair
sequence would include the case IDs for the fourth through
sixth events. This process continues until the case ID for
the final event is mapped in a sequence.

In the final step, both the discrete input and output data
are converted into tokens. Tokenization is a critical pro-
cess, as it transforms the data into a format that is suit-
able for efficient processing by the Transformer model.
During tokenization, each discrete value in the data is
assigned a unique numeric ID based on a predefined dic-
tionary. While the specific values of these IDs do not carry
intrinsic meaning, ensuring that each token is uniquely
identifiable is crucial for maintaining the integrity and
accuracy of the data representation. In this study, we
employ word-level tokens, where multi-word expressions
are treated as single tokens by linking words with under-
scores. For instance, the activity Order Received is repre-
sented as Order_Received, which is then assigned a unique
numeric ID, such as 5, within the dataset. In addition to the
data-derived tokens, special tokens are employed for
specific functions. These tokens, which do not represent
actual data values, are essential for guiding the model’s
processing. The start-of-sequence (SOS) token indicates
the beginning of a sequence, while the end-of-sequence
(EOS) token marks its conclusion. These tokens help the
model identify where sequences start and end, ensuring
proper processing. Padding tokens are used to handle
sequences of varying lengths by adding extra tokens to
shorter sequences, making all sequences in a batch the
same length. Unknown tokens are used to represent any
values in the data that are not part of the predefined dic-
tionary, ensuring the model can still process such cases. In
practice, each input sequence is prefixed with an SOS token
and suffixed with an EOS token, resulting in the format:
SOS, input sequence, EOS. For example, the known
sequence of input attributes would be represented as:
S0S8,5279,...,8469,EO0S. For the output sequence, only
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the SOS token is added at the beginning to signal the
commencement of the decoding process, with subsequent
tokens generated sequentially. The EOS token is placed at
the end of the training labels, which represent the ground
truth sequences, to indicate the termination of the output.
The EOS token plays a critical role during training, as it
explicitly signals when the model should stop generating
tokens. Without the EOS token, the model may produce
superfluous or incorrect outputs. Therefore, learning to
generate the EOS token at the appropriate time is essential
for ensuring proper sequence termination and maintaining
output accuracy. After tokenization, the data is represented
as a sequence of numeric IDs. This standardized repre-
sentation is essential for the Transformer’s functionality,
enabling consistent operations such as embedding (con-
verting tokens into vectors), attention mechanisms that
prioritize relevant input elements, and decoding to generate
the output.

4.2 Training

After preprocessing, the data is partitioned into two sub-
sets: a training set (90%) used to train the Transformer
model, and a test set (10%) used to evaluate the model’s
performance on unseen data. The architecture of the
Transformer is illustrated in Fig. 4. Initially, all three types
of data, discrete input, continuous input, and output are
embedded. Embedding is a technique that transforms the
data into compact vector representations, which are multi-
dimensional numerical arrays that capture the inherent
properties of the event data. This transformation is crucial
because the Transformer model requires these vector rep-
resentations to effectively process and understand the input
data. In this embedded space, semantically unrelated events
are represented by vectors that are distantly spaced, while
related or similar events are positioned closer together.
Following embedding, positional encoding is applied to the
inputs of both the encoder and decoder. This technique
adds a unique vector to each token’s embedding to indicate
its position within the sequence, as Transformers process
all tokens simultaneously and lack an inherent sense of
order. Positional encodings, created by applying sine and
cosine functions to token positions within the sequence,
enable the model to identify relationships and contextual
information among tokens based on their positions, thus
improving its ability to manage sequential data.

The encoder in the Transformer operates on discrete
input data through multiple layers sharing identical struc-
tures. Central to the encoder’s design, the multi-head
attention mechanism computes weighted dependencies
between input elements, allowing the model to capture the
relationships between them. By generating multiple paral-
lel representations of each input, it enables the

simultaneous extraction of diverse patterns, enhancing the
model’s ability to encode complex relational structures
within the event data. Following the attention mechanism,
the outputs undergo normalization to ensure stable training.
This process adjusts the activations, or output values,
produced by each layer and addresses challenges such as
exploding or vanishing gradients. Exploding gradients
cause instability in training by producing excessively large
updates, while vanishing gradients hinder learning by
making updates too small. Gradients, which are the partial
derivatives of the loss function with respect to model
parameters, guide the updating of the model’s parameters
during training. By stabilizing the gradient flow, normal-
ization ensures that extreme values do not disrupt training,
thus facilitating effective parameter updates and acceler-
ating convergence. The data is then passed through a feed
forward network, which consists of multiple fully con-
nected layers. Each layer refines the input representation by
applying a series of transformations, progressively
enhancing its ability to capture and express relevant fea-
tures. Finally, additional normalization is applied to
maintain consistency and stability in the output. Collec-
tively, these operations allow the model to generate more
accurate and robust representations of the input data. To
integrate continuous input data into the processing pipeline,
the model employs a late fusion approach, where contin-
uous data is first encoded using a feed forward network.
This step is essential as it converts the data into a fixed-size
format compatible with the Transformer’s architecture,
enabling effective processing by the attention mechanism.
The encoded continuous data is then concatenated with the
output of the encoder. This approach, as outlined by Riv-
era Lazo and Nanculef (2022), enables the model to
seamlessly handle both discrete and continuous data types
within a unified modeling framework, enhancing its
capacity to process heterogeneous data sources within the
event log.

The Transformer’s decoder is similarly structured with
multiple layers. Initially, it employs masked multi-head
self-attention, enabling the model to focus on relevant
segments of the input while preventing consideration of
future tokens, which correspond to case IDs of following
events. This ensures that each prediction in the output
sequence relies solely on previous predictions, which is
crucial for maintaining the autoregressive nature of
sequence generation, where each output is generated step
by step based on preceding outputs. Following this, layer
normalization is applied to stabilize learning. Importantly,
the decoder integrates information from the enhanced
encoder’s output through a second multi-head attention
mechanism known as encoder-decoder attention. This dual
mechanism establishes connections between input and
output sequences. After incorporating the encoder’s output,
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Fig. 4 Transformer architecture

the decoder undergoes another normalization layer to refine
its internal representations. It subsequently processes data
through a feed forward network, followed by another
normalization step. This iterative cycle of attention, nor-
malization, and feed forward operations continuously
refines the decoder’s outputs by focusing on relevant input
parts, stabilizing representations, and capturing complex
patterns, all while leveraging the relationships between
input and output to generate contextually accurate and
coherent output sequences.

The decoder’s outputs are then transformed from multi-
dimensional embeddings into a sequence of probabilities
via a final linear layer followed by a softmax operation.
The linear layer maps embeddings to token logits, which
are raw, unnormalized scores representing the likelihood of
each token. The softmax function then converts these logits
into a probability distribution over output tokens, normal-
izing them so that they sum to 1. This distribution repre-
sents the likelihood that a given event corresponds to a
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specific case ID. The token with the highest probability is
then selected and detokenized, returning it to its original
form as a case ID within the output sequence. During
training, the model utilizes the probability distribution to
compute loss. This loss measures the discrepancy between
the predicted probability distribution and the true label for
each token in the sequence, crucial for training and
improving sequence generation accuracy. The total loss,
summed across all tokens in the sequence, guides the
computation of gradients with respect to the model
weights. These gradients inform the optimization algorithm
in updating the model weights, aiming to minimize loss
and enhance the model’s ability to generate accurate
sequences. The model undergoes multiple training cycles,
each comprising a forward pass (sequence generation) and
a backward pass (optimization), during which it processes
the entire dataset once and updates its weights. These
cycles, referred to as epochs, enable the model to itera-
tively improve its performance over time.
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4.3 Repair

Once the Transformer model is trained, it can be used to
repair elusive cases. Our hybrid solution, as illustrated in
Fig. 5, merges Transformer-based repairs with declarative
rules within the repair process. This approach is selected as
Transformer-generated outputs often lack interpretability
due to the model’s black-box nature. By incorporating
declarative rules, we aim to enhance transparency and
comprehensibility of the outputs, leveraging explicit
domain knowledge. The preprocessing of event logs con-
taining the elusive case imperfection pattern mirrors the
steps outlined in Sect. 4.1 before the repair process
commences.

Each repair iteration starts with an ex-ante rule check,
which assigns case IDs based on the specified EAs. This
step is followed by a Transformer-based repair and may
conclude with an ex-post rule check that resets incorrectly
assigned case IDs using the same set of EAs. If certain EAs
were not utilized during the training phase, they can be
integrated into the repair process. This integration is
facilitated through a questionnaire-style query, prompting
stakeholders to specify values and frequencies for the
selected EAs, analogous to the training phase. This newly
acquired knowledge enhances the existing domain knowl-
edge and is incorporated into the rule checks by integrating
it into the relevant variables. However, retraining the
Transformer proves advantageous for incorporating sig-
nificant new insights into the model, such as changes in
activity sequences. Stakeholders determine the necessity of
rule checks based on the available domain knowledge. At
the end of each repair iteration, the repaired event logs are
saved in both XES and comma-separated values formats.

proportion of events lacking case IDs is presented for both
the original log and its repaired counterpart. Following
each subsequent repair iteration, stakeholders are updated
on the percentage of these events within the repaired event
log at that stage. Should this percentage be greater than
zero, stakeholders have the option to either accept the
current outcomes and conclude the repair process,
acknowledging that some events are still missing case IDs,
or to continue with additional repair iterations. In each
subsequent iteration, the repaired event log from the pre-
ceding iteration serves as input. Once the percentage of
events without assigned case IDs reaches zero, the repair
automatically concludes.

4.3.1 Ex-ante Rule Check

If an ex-ante rule check is performed, the objective is to
determine case IDs according to predefined rules. These
rules, grounded in domain knowledge, are represented as
EAs. These attributes include the corresponding values and
occurrences derived from questionnaire-like queries. Each
attribute requires a unique implementation tailored to its
specific assumptions. For instance, consider the start
activity attribute. The event log is grouped into cases, with
non-compliant cases identified as those beginning with an
activity other than the prescribed start activities. Events
that lack a case ID and correspond to a prescribed start
activity are then detected. A search is conducted to identify
the nearest non-compliant case, based on temporal prox-
imity. This strategy ensures that the event is linked to the
most temporally appropriate case, minimizing assignment
errors. If the time difference between the event and the start
activity of the case falls within a predefined window, the

Furthermore, during the initial repair iteration, the  case ID of the closest match is assigned to the event. This
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Fig. 5 Repair approach
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time window serves to prevent erroneous assignments,
such as linking an event to a case occurring much later. By
adopting this approach, compliance with prescribed rules is
ensured, as events are assigned to cases in a manner con-
sistent with the correct temporal context. UAs like start
activity, end activity, mandatory occurrence, or single
occurrence apply to individual events. BAs, however,
necessitate consideration of pairs of events. For instance, in
the case of a directly following relationship between two
activities, each relationship is analyzed individually. We
define a directly following relationship such that each
predecessor activity is followed by a single successor,
ensuring a clear and unambiguous sequence. When an
activity is involved in multiple relationships, the order in
which these relationships are processed determines the
evaluation sequence. For each case in the event data, we
examine whether discrepancies exist between the counts of
predecessors and successors, as such imbalances may
indicate missing events. Predecessors without a case ID are
assigned to the temporally closest case where the number
of successors exceeds that of predecessors up to that point,
provided that the time difference between the predecessor
and its successor is within an acceptable range for that
case. A similar procedure applies to successors without a
case ID. Other BAs may include mutual exclusion and non-
contiguity, which were not examined or implemented in
this study.

4.3.2 Transformer-Based Repair

The Transformer-based repair process follows a structure
similar to training, as illustrated in Fig. 4. First, the discrete
input data is encoded as described above, and its output is
integrated with the processed continuous input data.
However, the decoder employs a different approach.
Starting with only an SOS token, the decoder utilizes
multi-head attention, normalization, and feed forward
processing similar to the training phase. It then generates
the case ID tokens iteratively, where each token is pre-
dicted based on the sequence of previously generated
tokens. Specifically, the SOS token generates the first case
ID token, which is subsequently used in combination with
the SOS token to predict the second case ID token, and so
on. At each step, the model selects the most probable next
token from the softmax probability distribution, progres-
sively constructing the full sequence. To avoid selecting
tokens that represent unknown or uncertain predictions, the
weights of such tokens are automatically adjusted before
applying the softmax layer, reducing their probability and
minimizing their chance of selection. Furthermore, a con-
figurable confidence threshold enables stakeholders using
HERE to exclude tokens that are uncertain, balancing
output completeness with accuracy. Specifically, when
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identifying a case ID token, its softmax probability is
compared against the threshold. Tokens exceeding this
threshold are included; otherwise, a special token indicates
an absence of value.

In typical language translation tasks, the input and out-
put sequences can differ in length. However, in our
approach, we require that the number of case IDs matches
the number of input events exactly, with each input event
being assigned a specific case ID. If a premature EOS
prediction occurs, meaning the model predicts the end of
the output sequence too early, we ignore that prediction
and instead select the second most probable token. This
strategy ensures that each event is generally assigned a
corresponding case ID, thereby preserving the integrity of
the output, as long as the Transformer is able to make a
prediction. The repair process concludes upon achieving
the desired sequence length, thereby preventing excessive
case ID generation. Tokens are then converted back to their
original values using the tokenizer employed during
training. The resulting sequence of case IDs is then split
into individual case IDs, which are reassigned to the event
log. Enhancements include providing stakeholders with
token probabilities and the likelihood of subsequent tokens,
thereby increasing their awareness of data quality (Evron
et al. 2022). In scenarios where not every event requires
repair and a new case ID does not need to be determined
for each event (i.e., when elusiveness is less than 100%),
the case IDs for events that do not require repair remain
unchanged and are reused. This is based on our assumption
that all provided data is correct, aiming to avoid replacing
existing correct case IDs with predictions by the Trans-
former. Additionally, previously determined case IDs, such
as those from ex-ante rule checks, are thereby retained.

4.3.3 Ex-post Rule Check

At the end of each repair iteration, an ex-post rule check
can be conducted. This procedure is similar to the ex-ante
rule check, whereby various EAs and their implementa-
tions are used. Unlike its ex-ante counterpart, the primary
objective in the ex-post rule check is to rectify inaccurately
assigned case IDs by the Transformer. For example, when
considering start activities, each case in the event log is
assessed to determine if the designated start activity is
present and correctly located. If found included but not as
the first event, the case ID from preceding events is reset.
This reset is applied only to those events that did not have a
case ID recorded in the event log prior to the first repair
cycle. Again, appropriate procedures for each EA are
crucial to ensure the correct application of the rules. Upon
completion of the ex-post rule check, the repaired event log
is finalized, as exemplified in Table 6, and shared with
stakeholders.
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Table 6 Repaired order-to-cash Case ID Probability Activity Timestamp Resource
event log
1 - Order Received 2024-07-01T08:45:004+-01:00 Staff A
1 65.07% Order Processed 2024-07-01T09:00:00+01:00 Staff B
1 - Payment Confirmed 2024-07-01T10:30:004-02:00 Staff C
2 89.58% Order Delivered 2024-07-03T16:30:004-01:00 Staff D

5 Evaluation
5.1 Artificial Formative Evaluation

In the initial stage of the evaluation, we conducted an
artificial formative assessment to deeply understand the
research problem, explore potential solutions, and gather
feedback on the design to refine and improve it during
development. This phase began with a literature review to
identify existing approaches for addressing event log
imperfections in general and the elusive case pattern in
particular. We built on related work in the field and for-
mulated DOs and a design specification (cf. Table 7).
These were then assessed through 11 semi-structured
interviews with experts from both research and industry. A
condensed version of the interview structure is available in
the online appendix (Appendix A; available online via
http://link.springer.com). Each interview started with a
detailed motivation and introduction to the research prob-
lem, focusing significantly on elusive cases and how they
manifest. Afterwards, we presented our preliminary DOs
and explained how the design specification was derived.
The design specification was then introduced and demon-
strated with examples.

Table 7 Design specification with references

Finally, interviewees were asked to provide general
feedback on the design specification and to rate it using an
end-labeled unipolar seven-point Likert scale (Hohne et al.
2021) across four criteria suitable for an ex-ante evaluation
(Sonnenberg and vom Brocke 2012). Thereby, we chose
novelty for justifying the problem statement, research gap
and DOs as it ensures the contribution is unique and
advances current knowledge; understandability was selec-
ted as the design must be clear and accessible to our target
group encompassing both practitioners and researchers
with diverse backgrounds and levels of expertise; com-
pleteness was important for validating that the design
specification covers all necessary aspects of the research
problem; and applicability was included to ensure the
design can be effectively implemented in real-world set-
tings (Sonnenberg and vom Brocke 2012). Each criterion
was introduced to the interviewees using a definition and
one or more guiding questions, as can be seen in Table 8.
For each criterion, the interviewees provided qualitative
feedback to justify their decision. In the end, additional
time was given to discuss any additional feedback points
not addressed by the criteria. The results of the quantitative
evaluation are shown in Fig. 6.

Interviewees, denoted as “I” followed by the ID as per
Table 2 for identification purposes, generally found the

Design Specification

References

Generative Al has demonstrated potential in data reconstruction, motivating us to apply this technology for

reconstructing case IDs

As we want to convert multiple input parameters (event log attributes) into a single output (case IDs), we define our

machine learning problem as a translation task

Proven state-of-the-art performance in sequence-to-sequence translation tasks motivates us to build on the

Transformer architecture

Event logs encompass various types of attributes, requiring us to integrate these attributes by concatenating DAs

for the encoder’s input and appending CAs to the encoder’s output

Establishing declarative rules based on domain knowledge, through an interactive human-in-the-loop approach,

allow us to improve robustness

By integrating generative Al with human intelligence via traditional rule checks, problem-solving capabilities are

enhanced

By presenting associated probabilities used to determine case IDs, stakeholder awareness regarding output quality

Hofmann et al. (2021)
Sutskever et al. (2014)
Vaswani et al. (2017)
Rivera Lazo and Nanculef
(2022)

Chen et al. (2020)

Raisch and Fomina (2024)

Evron et al. (2022)

is improved. Thereby, correctness and completeness of the output can effectively be balanced by stakeholders
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Table 8 Artificial formative criteria definitions and guiding questions

Criterion Definition Guiding Questions

Understandability The comprehensibility of the elements incorporated in How accessible is the design specification? Is the objective
the design specification. apparent to you?

Novelty The uniqueness and originality of the approach Are you aware of any comparable methods or strategies to address
employed. this issue?

Completeness The extent to which our design specification reflects ~ Are there any elements within the design specification that are

the objective of our research.
Applicability
the problem at hand.

The suitability of the design specification in solving

missing or incomplete?
What potential challenges do you foresee in applying the design
specification in real-world scenarios?

Understandability
Novelty
Completeness

Applicability

6.5

59
5.3

Fig. 6 Average Likert scale ratings for artificial formative evaluation criteria

design specification easy to follow, facilitating a clear
understanding of each component. However, they noted
that this level of understandability is primarily for the
desired target group. For instance, I8 mentioned, “If you
know how process mining works, then it’s easy to under-
stand”, while 12 highlighted the limitation that “For people
who are not tech-savvy, it is more difficult to understand.”
In addition to these limitations, specific components were
criticized regarding understandability. I11 pointed out that
it was unclear whether the method requires sequences of
events or individual events one by one, suggesting that “for
non-technicians you should be more precise about the
decoder and encoder working iteratively and you should
also describe specifically how that works with an event
log.” Additionally, I11 identified issues with understanding
how rules defined by domain experts are incorporated, and
16 questioned the autonomy of the method without domain
knowledge. Similarly, I5 also required clarification on the
goals of involving a human-in-the-loop. While the feed-
back given for the criterion understandability did not
directly affect the design specification of the artifact itself,
it prompted us to address all these points more clearly
when formulating Sect. 4.

Regarding novelty, the interviewees appreciated the use
of a modern machine learning architecture and, more
importantly, the integration of a human-in-the-loop
approach. Thereby, all interviewees agreed that the
approach is novel. However, some pointed out that using
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machine learning to estimate case IDs is not new. I6
directed attention to trace clustering, acknowledging its
relevance but noting such algorithms are not case-specific,
meaning they override the existing case ID logic and
labels. This results in a complete regrouping of events
while disregarding potentially correct events. Similarly, I1
remarked that while the individual technologies and com-
ponents are new and their combination is novel, the
problem of event correlation itself is not new. Il
nonetheless commended the approach, stating it has the
potential to scale better and achieve higher accuracy than
existing methods.

Interviewees agreed that the design is complete in
addressing elusive cases but offered suggestions for
enhancing the method. For example, I3 stated that
“Probabilities are assessed subjectively, which is why it is
good to have comparative values.” Therefore, we have
chosen to not only output the probability associated with
the determined case ID, but also indicate the probability of
the second most likely value. This change allows our target
group to better assess the probability values, thus enhanc-
ing quality awareness for each prediction. 16 emphasized
the importance of enriching an event log with domain
knowledge and integrating additional data to improve
predictions, recommending the integration of a realistic
process model to assist the algorithm in understanding the
underlying order of events. IS5 suggested leveraging the
natural language processing capabilities of Transformers to
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convert standardized process documents into a format
suitable for an additional input layer, enhancing the mod-
el’s ability to interpret and utilize process information
effectively. 16 also pointed out that the approach might
suffer from other event log quality issues such as erroneous
timestamps, suggesting a combination with other event log
repair methods. Additionally, interviewees raised concerns
about formulating the problem as a supervised machine
learning task, with Il recommending an “architectural
design to correlate event pairs” instead of predicting a
specific case ID for each event. We consider all these
feedback points to be highly relevant and believe that each
individual direction would make a contribution to the field.
Due to the scope of this study, we decided to continue with
the initial architectural design and provide a proof of
concept for this architecture first. While we made a few
adjustments, the foundational elements of the architecture
were not altered. Nonetheless, we acknowledge these
suggestions as promising opportunities for future research.
Interviewees agreed on the general applicability of the
method but highlighted the importance of considering the
cost and resources associated with its implementation. 12
furthermore stressed that for the method to be relevant in
practice, it must be integrated into software natively and
meet the necessary performance requirements of the use
case: “In research, there is a lot of fuzz about improving
algorithms. In practice, no one uses such research proto-
types. So next to cost, resources, etc. it is important that it
is integrated in some software natively. Also, it must fulfill
the requirements regarding the necessary accuracy of the
use case.” 12 also questioned whether generative Al is the
best solution compared to changing underlying systems to
prevent errors: “You should ask yourselves the question: do
I have to use generative Al to solve that problem?
Shouldn’t I instead change the underlying system so the
error does not even occur? In which scenarios are the
resources needed for such a software smaller than to fight
IT so they implement changes in the underlying systems?”
As these are all valid points of feedback, we position our
research as a solution for addressing scenarios where the
elusive case has already occurred and how it can be
remedied. However, it is important to note that process
mining analyses rely significantly on historical data.
Hence, the overarching objective should focus on avoiding
such errors proactively in the future. Concerns were also
raised about the input data quality, with I11 doubting the
output quality due to the assumption of perfect data and 110
noting the method’s inapplicability to other event log for-
mats required for object-centric process mining. Both
points offer interesting directions for future research.

5.2 Artificial Summative Evaluation

Building on the insights gained from the formative stage,
we continued with the artificial summative evaluation. In
this phase, we refined our design specification and instan-
tiated the method as a software prototype, serving as an
initial proof of concept. To simulate a realistic context, we
introduced elusive cases into event logs that were initially
free from this pattern by randomly deleting case IDs from
existing events. Our method was then applied to repair
these logs, allowing us to compare the results against the
known ground truth. This comparison enabled us to cal-
culate various metrics, demonstrating the technical feasi-
bility and effectiveness of our solution. To enable a fair
comparison with other approaches, we repeated this whole
evaluation procedure with various benchmarks. Hence, this
stage serves as a proof of concept, providing preliminary
evidence of the artifact’s effectiveness and potential utility.

5.2.1 Evaluation Data

For our baseline evaluation data, we selected three publicly
available event logs, chosen for their diverse characteris-
tics, including both synthetic and real-world data. These
logs differ in size and complexity, enabling us to assess the
robustness and effectiveness of our approach. Table 9
provides a summary of the key characteristics of the event
logs used in this evaluation phase.

For each log, elusive cases were introduced in incre-
ments of 10%, ranging from 10% to 90%. This means that
each log was modified with nine different degrees of elu-
siveness: at the least severe stage, only 10% of events
lacked a case ID, while at the most severe stage, 90% of
events were missing a case ID. For each of the three
baseline logs, we determined three EAs by analyzing the
data, defining them as follows:

e Review: The start activity is always invite reviewers,
while accept and reject can sometimes serve as end
activities. In the baseline log, the consistency of these
rules is 100%. Directly following relationships are
sometimes observed between invite additional reviewer
and itself, as well as between invite additional reviewer
and get review X, and invite additional reviewer and
time-out X.

e Renting: The start activity is always Apply for Viewing
Appointment, while Reject Prospective Tenant, Tenant
Cancels Apartment, and Evict Tenant can sometimes
function as end activities. The baseline log exhibits
100% consistency for these rules. Directly following
relationships are sometimes present between Pay Rent
and itself, Apply for Viewing Appointment and Set
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Table 9 Event log statistics

Log Name Events Variants Average Trace Length Standard Deviation of Trace Length Cases

Review (synthetic) 236,360 4,118 23 10,000
Renting (synthetic) 96,440 508 9 10,000
Hospital Billing (real-life) 451,359 1,020 100,000

Appointment, and Set Appointment and View The
Property.

e Hospital Billing: The start activity is always NEW,
while BILLED, NEW, and DELETE can sometimes
serve as end activities. The original log shows 100%
consistency for the start activity and 94.12% for the end
activity. Directly following relationships are sometimes
observed between FIN and RELEASE, RELEASE and
CODE OK, and CODE OK and BILLED.

Finally, all these EAs were added to each event log and
elusiveness. Hence, this approach provides 27 event logs in
total for repair, covering various characteristics and
degrees of elusiveness.

5.2.2 Evaluation Metrics

Each repaired event log was evaluated based on ten metrics
aligned with DO 3, which emphasizes multiple dimensions
of data quality such as accuracy, consistency, and com-
pleteness. Among these, the first two metrics, which
address completeness and consistency, were defined by the
authors while the remaining eight metrics, which evaluate
different aspects of accuracy, are adopted from the work by
Bayomie et al. (2023).

Metric 1 (Completeness) quantifies the extent to which
missing case IDs in the log are resolved after repair. Let
L represent the erroneous event log and L' the repaired
event log. The set of events in L, with missing case IDs is
denoted as E.,, C E, where E is the set of all events in L.
After repair, let Erp, C E, represent the subset of events
with resolved case IDs in L'. Completeness is then defined
as:

1, if |Eex| =0
‘Erep‘
|Eere|

CPL =

otherwise,

where | - | denotes the cardinality of the set. In cases where
there are no events with missing case IDs (|Ee;;| = 0), CPL
is defined as 1, indicating that the log is already complete.

Metric 2 (Consistency) measures the extent to which
repaired logs conform to predefined domain-specific rules.
Let R = {ry,ra, ..., rc} denote the set of rules applicable to
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cases in the log, where each rule r; specifies a consistency
condition based on domain knowledge. For a given rule r,
let C, C I represent the set of cases in L' that satisfy r,
where I is the set of all cases in L'. The consistency for rule
r, CON,, is defined as:

C,
CON, = G
u

To compute the overall consistency CON across all rules,
we aggregate the individual consistency values. This can be
done either as an arithmetic mean or a weighted mean,
depending on the relative importance of each rule r:

5 ep s - CON,
ZreR Wr 7

where w, is the weight assigned to rule r. If all rules are
equally important, w, = 1 for all r, whereby CON becomes
the arithmetic mean, which we apply in Sect. 5.2.4.

For accuracy, we propose a more nuanced approach due
to its inherently strict nature: while a repaired case ID may
not exactly match the ground truth case ID, it can still be
highly plausible while having no adverse effects on
downstream analysis tasks. For instance, if two events
are very similar — sharing the same activity, resource, and
occurring close in time — switching their case IDs during
repair will not impact the overall utility of analyses such as
process discovery. To reflect this complexity, we adopt six
case similarity and two time proximity metrics reflecting
different aspects of elusive case repair as proposed by
Bayomie et al. (2023).

CON =

Metric 3 (Trace-to-Trace Similarity) assesses how clo-
sely two event logs capture the same control-flow by using
a string-edit distance Ains_de1 based on insertions and
deletions of activities to compare unique traces between the
ground truth and repaired logs. Thereby, let T =
{ti,t2,.. .t} and T' = {t’l,t’27...,tl’T,‘} represent the set
of distinct traces in the ground truth log L and the repaired
log L', respectively. For each trace ¢t € T, the trace-closest
trace t* € T’ is defined as the trace in L' which minimizes
Ains_ael(t,1*). Hence, the trace-to-trace similarity Syyce is
defined as:
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_ ZZET Ains_del(ta t*)
Ser(tl+1e])

with |¢] and |f*| being the lengths of the respective traces.

N trace — 1

Metric 4 (Trace-to-Trace Frequency Similarity) evalu-
ates how closely two event logs align by considering both
the structure of their traces and their frequencies. The
metric finds the optimal one-to-one mapping between cases
in the ground truth log L and the repaired log L’ that
minimizes the total string-edit distance Ay, across all
traces in L. The trace-to-trace frequency similarity Sgeq is
then defined as:

_ Atotal
2 x |E|’

N freq = 1

where |E| is the total number of events in the logs.

Metric 5 (Partial Case Similarity) evaluates how similar
two event logs are by counting the overlap of events in
cases that share the same starting event. For each pair of
cases g € S(L) in the ground truth log and ¢’ € S(L') in the
repaired log, the function intersect(a, ¢’) counts the num-
ber of common events (excluding the first event) which is
then averaged across all cases to compute the partial case
similarity Spartial:

D _ses(L), syl 1) intersect(a, o’)
|E| — 1] ’

N partial —

where |E| is the total number of events in the logs, Il is the
total number of cases, and o[1] represents the first event in
case g.

Metric 6 (Bigram Similarity) evaluates how similar two
event logs are based on the overlap of bigrams (sequences
of two consecutive events) between the logs. For each case
o € S(L), the function occurs({e,e'),L’) checks if a
bigram (e, ¢') from the ground truth log L also appears in

the repaired log L. It is defined as:
1, if the bigram (e, e’) exists in L’
occurs; ((e,€'),L') = { gram (e, ¢')

0, otherwise.

The bigram similarity Spigram is then computed as the
average proportion of bigrams in the ground truth log L that
also occur in L', normalized by the number of events in
each case:

1 1 . . /
Sbigram = m Z Mi—l Z OCCUI‘S](<G(Z),O’(Z + 1)>5L)a

with I/l as the total number of cases in the logs, and |o]| as
the number of events in a case o.

Metric 7 (Trigram Similarity) evaluates how similar two
event logs are based on the overlap of trigrams (sequences
of three consecutive events) between the logs. For each
case g € S(L), the function occurs,({e, ¢, "), L") checks if
a trigram (e, €', ¢") from the ground truth log L also appears
in the repaired log L'. Tt is defined as:

1, if the trigram (e, e, e”) exists in L/
occurs;({e, e/, e"), L)) =4 . gram (e, ', ¢")
0, otherwise.

The trigram similarity Syigram is then computed as the
average proportion of trigrams in the ground truth log L
that also occur in L', normalized by the number of trigrams
in each case:

|o]=2

Susgam — ‘71| P > oceursy({o(i), ofi + 1), 0(i +2)). L),

oes(L) lo| =2

with Il as the total number of cases in the logs, and |o| as
the number of events in a case ¢.

Metric 8 (Case Similarity) measures the extent to which
two event logs match in terms of their cases. It compares
the sets of cases from the ground truth log L and the
repaired log L’ and determines the proportion of identical
cases. Formally, it is defined as:

S(L) N S(L)]
Scase = Ta

where S(L) N S(L') represents the set of cases that are
identical in both logs, and |/] is the total number of cases.

Metric 9 (Event-Time Deviation) evaluates the difference
in elapsed times of events between the ground truth log L
and the repaired log L. It uses the symmetric mean abso-
lute percentage error (SMAPE) to quantify deviations,
hence constituting a measure based on relative errors.
Formally, it is defined as:
> [ET(L,e)-ET(L )]

e€E |ET(L,e)|+|ET(L ¢)|

E—f

N time —

where ET(L, e) is the elapsed time of event e in the ground
truth log L, ET(L', e) is the elapsed time of event e in the
repaired log L, |E| is the total number of events, and |/| is
the number of cases.

Metric 10 (Case Cycle Time Deviation) assesses the rel-
ative deviation in cycle times between the ground truth log
L and the repaired log L'. This metric compares pairs of
cases starting with the same event and uses the SMAPE for
its calculation:
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[CT(0) — CT(o')|
ICT(a)| + |CT(o")|’

1
Scycle = m Z
O'

geS(L)
o(1) = 0

with CT(o) as the cycle time of case o, computed as the
elapsed time between its first and last events, ¢ € S(L) and
o' € S(L') as the cases in the ground truth and repaired
logs, and |/] as the total number of cases.

e S(L)
(1)

5.2.3 Evaluation Benchmarks

To conduct a comprehensive evaluation of our method, we
benchmarked it against three alternative approaches: Long
Short-Term Memory Network (LSTM), Random Frequen-
cies, and Random. Unfortunately, we were unable to
benchmark against competing state-of-the-art methods
from the literature either due to the unavailability of their
prototypes or differing assumptions regarding additional
data that we lack. For the LSTM benchmark, we employed
an LSTM network as they are well-suited for sequential
data (Hochreiter and Schmidhuber 1997) and are applied in
various process mining activities (van Dun et al. 2023;
Schmid et al. 2023). For this benchmark, we implemented
a simple three-layer LSTM architecture, combined with
dropout layers to prevent overfitting. The model predicts
the most likely case ID for each event based on the
sequence of preceding events. For more details on the
LSTM benchmark implementation, we refer to our code
repository. The Random Frequencies benchmark utilizes
the frequency with which each case ID appears in the
correct events of a log. Case IDs are assigned to events
randomly, but their probabilities are weighted based on the
observed frequency distribution in the correct data. The
Random benchmark assigns case IDs completely at ran-
dom, with each case ID being equally likely. Unlike the
Random Frequencies benchmark, this approach does not
consider the actual distribution of case IDs in the original
data, providing a purely stochastic baseline.

5.2.4 Evaluation Results

Our evaluation revealed critical insights into the strengths
and application areas of our method, along with its limi-
tations. Most notably, our approach demonstrates strong
performance in scenarios where sufficient training data is
available, particularly at low levels of elusiveness (below
30%). For the Hospital Billing dataset, which is the largest
and only real-life log in our evaluation, our method out-
performs all other benchmarks by a significant margin,
showcasing its potential for practical, real-world applica-
tions. However, the results also indicate a dependency on
data volume, particularly at higher levels of elusiveness
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(above 80%). For instance, in the Renting event log, the
smallest log in our data collection, a 90% elusiveness level
leaves us with only approximately nine thousand events for
training — a volume insufficient to learn meaningful pat-
terns. This dependency aligns with the general under-
standing that machine learning methods, including our
Transformer-based approach, require substantial amounts
of data to train effectively. In Fig. 7 we illustrate this
observation by means of a sensitivity analysis, showing a
clear advantage in performance under favorable conditions.
Consequently, the results highlight that when enough data
is available, our method is highly effective and scalable to
complex real-world settings.

Furthermore, the inclusion of rule checking as a fallback
mechanism (Configuration 2) further enhances the robust-
ness of our approach. Configuration 1 employs the stan-
dalone Transformer, with a maximum of 5 repair iterations,
input variables such as DAs activity and resource, CA
timestamp, three EAs (specifically UAs start activity, end
activity, and BA directly following), and a 0% threshold. In
contrast, Configuration 2 integrates the Transformer with
the same input variables, but augments it with both ex-ante
and ex-post rule checking. For the Hospital Billing dataset,
the inclusion of rule checking as a fallback mechanism at
higher levels of elusiveness significantly enhances perfor-
mance. Conversely, at lower levels of elusiveness, rule
checking tends to degrade performance slightly. The gap in
performance is particularly pronounced at the beginning
but narrows as elusiveness increases. In contrast, for the
Renting and Review logs, where data volume remains
consistently low, the difference between configurations is
already negligible at lower levels of elusiveness. However,
as elusiveness increases, Configuration 2 starts to outper-
form the standalone Transformer configuration, with this
transition occurring at a much earlier stage than observed
in the Hospital Billing log. This finding highlights that rule
checking acts as a fallback mechanism, that helps espe-
cially under challenging conditions of high elusiveness in
low-data scenarios.

In cases where enough training data is available,
meaning low elusiveness or higher volume baseline logs,
we demonstrated that our method is regularly more effec-
tive than the benchmarks. In smaller synthetic logs like
Renting and Review, however, HERE'’s performance aligns
more closely with the LSTM benchmark at lower elu-
siveness levels. In these two logs, we mostly observe either
no substantial variation between both approaches or the
LSTM performing better under certain conditions. This
parity suggests that while our method holds promise, a
consistent outperformance of established techniques like
LSTM is not yet definitive. This further underscores the
importance of data volume for the Transformer approach to
deliver optimal results.
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Fig. 7 Sensitivity analysis for the Hospital Billing log

Apart from data volume, no other significant factors
appeared to influence the effectiveness of our method.
Metrics across the Renting and Review logs were generally
consistent and lower than those observed for the Hospital
Billing log. However, we acknowledge that log-specific
characteristics may unfold an impact on the method’s
performance as soon as the bottleneck of data volume is
resolved. We believe that data volume currently serves as
the biggest constraint, and addressing this limitation could
reveal nuanced effects of log-specific characteristics on the
overall effectiveness of our approach. The detailed results
for all benchmarks, logs and levels of elusiveness can be
found in the online Appendix B. Online Appendices C and
D provide the sensitivity analysis for the Renting and
Review log.

Finally, while we were unable to benchmark our method
directly against approaches from the literature, such as
Bayomie et al. (2023), their reported performance provides
a useful reference point. For instance, their method —
designed specifically for scenarios with 100% elusiveness —

consistently achieves similarity scores above 80% and time
deviation scores below 40%. Based on this, we would
generally recommend their approach for such logs, where
no case IDs are present. However, their approach may be
less suitable for cases involving partial elusiveness, where
preserving existing case ID logic is critical. Such scenarios
can, for instance, arise from temporary system outages. In
these situations, preserving existing case ID logic and
specific labels is crucial, making our method more appro-
priate. This is especially true when high volumes of
training data are available, which allows our Transformer-
based approach to realize its full potential. This under-
standing further emphasizes the need to match repair
techniques with the specific characteristics and constraints
of the data at hand.

5.3 Naturalistic Summative Evaluation
The final evaluation phase comprised a naturalistic sum-

mative evaluation to establish a proof of value. To achieve
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Table 10 Naturalistic summative criteria definitions and guiding questions

Criterion Definition

Guiding Questions

Usefulness The extent to which you perceive that the artifact is useful
in addressing the problem.

Ease of Use  The extent to which you perceive that using the artifact
will be free of effort.

Applicability The extent to which you perceive the artifact instance as
suitable for solving the intended problem.

Generality The extent to which you perceive the artifact instance as
applicable across different contexts or domains.

How well do you think the artifact will improve working with
elusive cases, and what benefits do you expect it to provide?

How user-friendly is the artifact? What features contribute to its ease
of use? Are there any entry barriers?

How suitable is the artifact for solving the problem, and what
challenges might arise in its application?

How versatile is the artifact across various contexts, and what limits
its applicability in different settings?

that, we conducted another round of semi-structured
interviews with ten of the experts from the initial inter-
views, while preserving their IDs as specified in Table 2,
and let them interact with the fully developed prototype to
repair a rental process event log (Pohl and Berti 2023). A
condensed description of the interview structure is pro-
vided in the online appendix (Appendix E). While the ideal
evaluation would have involved observing the approach
repairing an event log with the elusive case pattern in real-
time, the training time associated with our Transformer
architecture made a fully naturalistic application of the
method infeasible within the limited time frame of ten
interviews. Instead, we decided to repair the event log with
10% elusiveness multiple times in advance, considering all
possible choices of our method that could affect the final
outcome. Since our method takes an iterative approach in
which the stakeholder can gradually add domain knowl-
edge, this would result in an exponentially growing space
of possible outcomes. We therefore decided to sensibly
limit the selection options to encourage stakeholders to
interact freely while seeing immediate results. However,
this decision may influence interviewees’ evaluations, as
the restricted options might result in biased responses that
do not fully reflect the range of stakeholders’ experiences
and perceptions. Nonetheless, this approach encompasses
44 distinct repair outcomes. This setup creates a semi-re-
alistic environment for assessing the method, where real

Usefulness
Ease of Use
Applicability

Generality

users engage in real tasks within a simulated system that
approximates practical constraints. The prototype used for
the interaction can be found in the code repository.

After interacting with the prototype and repairing the
event log, we asked the interviewees to rate the artifact
using an end-labeled unipolar seven-point Likert scale
(Hohne et al. 2021) across four criteria suitable for an ex-
post evaluation (Sonnenberg and vom Brocke 2012). We
chose usefulness and ease of use to predict the user
acceptance of the artifact (Davis 1989), as these criteria are
critical for ensuring that the artifact meets user needs and
can be adopted with minimal resistance. Generality was
included to assess whether the artifact’s scope is broad
enough or if there are specific scenarios where it may not
be suitable, ensuring the artifact’s adaptability across var-
ious contexts. Applicability was chosen to confirm the
artifact’s practicality in real-world settings, highlighting its
relevance and potential impact (Sonnenberg and vom
Brocke 2012). Each criterion was presented to the inter-
viewees using a definition and a set of guiding questions, as
detailed in Table 10. For each criterion, we asked the
interviewees to justify their assessment. Afterwards, we
gave the interviewees the opportunity to add more feed-
back in case the criteria did not meet all aspects of a
comprehensive assessment. The results of this evaluation
stage are depicted in Fig. 8.

5.7
6.1
53
5.6

Fig. 8 Average Likert scale ratings for naturalistic summative evaluation criteria
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The results indicate overall positive feedback regarding
the usefulness of the artifact. Almost all interviewees
acknowledged that the artifact effectively addresses the
problem of elusive cases, making it beneficial for stake-
holders working with affected event log data. However,
there were concerns about the quality of the results. For
instance, 14 stated, “It definitely helps because otherwise [
could not work with the event logs and cleaning the data by
hand is not feasible [...] However, what makes me a bit
puzzled is the accuracy of the model.” Similarly, I5
emphasized the need for accuracy, stating, “Accuracy
should be at least above 60 percent.” Furthermore, 11
pointed out that the main issue is not accuracy itself but the
validation of accuracy in real-life settings, as there is no
ground truth data available to verify the repaired event log.
I1 hence suggests to “understand it as a problem from
visual analytics. So, generate data and see what the results
look like.” Implementing visual data validation techniques
from classic data science and allowing domain experts to
interact with the tool and evaluate the repaired process
model could enhance the artifact’s effectiveness.

Regarding ease of use, the feedback was mostly posi-
tive. Interviewees highlighted the advantages of a graphical
user interface and a simplified code display that abstracts
complexity. Many appreciated the extensive opportunities
for stakeholder interaction and the incorporation of domain
knowledge. However, concerns were raised about the
artifact’s ease of use depending on the specific target
group. For instance, a data engineer might prefer more
control over technical details, whereas a process owner
might need an even simpler frontend. I8 commented,
“There are two target groups. One is the data engineering
team, for whom it will be easy to use. But the specialist
department should not be fiddling around with data mod-
els. The frontend with the buttons is the maximum for this,
but nothing in the backend.” Similarly, 19 noted, “This task
is more likely to be undertaken by the person responsible
for creating event logs. The data engineer therefore needs
to interact with the prototype and the prototype might be
too easy for him as he likes to touch the data.” Addition-
ally, some interviewees mentioned that the method’s
complexity might require more user guidance. For non-
technical stakeholders, I7 suggested explaining each deci-
sion point in simple terms and adding tooltips to make the
method more self-explanatory.

Applicability received the lowest scores, though still
highly positive overall. Interviewees raised concerns about
computing times and resource utilization. While some
emphasized the need for near-real-time interaction, others,
like 16, found it acceptable if training could be completed
overnight or within a working day: “[...] uploading my
data alone takes more than 1.5 hours. So you can simply
let the model run overnight, provided you have a certain

amount of confidence in the output.” 110 mentioned con-
cerns about the trade-off between accuracy and complete-
ness and suggested using heuristics to address low
completeness: “It’s not important to somehow find a pro-
cess model or something that really solves everything
perfectly, but instead in finding a solution, simply making
some kind of suggestion or using a heuristic for the
remaining missing cases.” Additionally, there were doubts
about the artifact’s performance in scenarios with other
types of errors, such as incorrect activity labels or times-
tamps. Applicability was also found to depend on the
specific process and use case. 12 highlighted the potential
value in high-stakes environments like hospitals: “This can
be worth a lot for hospitals. If you enable having a billing
event log for a single hospital, you can enrich the whole
chain of hospitals.” 12 also noted that using the artifact in
such an environment could be more practical than manu-
ally fixing underlying legacy systems. Nonetheless, 12
emphasized that our method is a workaround and that
ideally, the way of logging the events should be enhanced.

Regarding generality, all interviewees agreed that the
method could be applied as long as an XES style event log
is available. I8 commented that a “reasonably relational
data basis” is typically sufficient and commonly available.
However, some concerns were raised about varying per-
formance across different event logs. I3 noted that “Gen-
erality is questionable not because of industry or domain,
but rather because of the characteristics of the process
such as the number of variants.” Similarly, I1 acknowl-
edged that more complex processes are harder to repair but
suggested that “room for specific data preprocessing
paths” could mitigate these issues. Allowing stakeholders
to aggregate activity labels and incorporating data science
techniques like undersampling or synthetic oversampling
for rarer traces could improve the model’s performance and
better handle complex processes.

6 Discussion

Our objective was to design and develop a method to repair
the elusive case imperfection pattern. To this end, we uti-
lized generative Al, specifically the Transformer architec-
ture, and incorporated a rule-based approach within a
human-in-the-loop framework. This method was instanti-
ated as a software prototype and evaluated by 21 expert
interviews as well as by repairing three distinct event logs
with elusiveness levels ranging from 10% to 90%. Our
findings indicate that the method is able to reconstruct case
IDs across different process contexts and complexities with
the inclusion of domain knowledge (DO 1), acting as a
fallback mechanism, typically enhancing its performance
when low volumes of data are available. Thereby, human
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expertise can help in explicitly integrating contextual
information, while rule checks facilitate the assignment of
events to cases. This process allows for automated vali-
dation, lessening the effort for stakeholders to verify the
output. Nonetheless, stakeholders are advised to conduct a
final verification of the output before initiating process
mining analyses. Utilizing output confidence values can
assist in this validation process, allowing filtering for val-
ues falling below a specified threshold, thereby reducing
subsequent manual efforts.

Our method entails some practical considerations. First,
stakeholders face a trade-off between the two data quality
dimensions accuracy and completeness. Higher threshold
confidence levels in the Transformer typically improve
accuracy but reduce the number of identified case IDs.
Conversely, prioritizing completeness allows for basic
process discovery, even if some data points are less precise.
This characteristic of our approach allows to prioritize
certain data quality dimensions over others and, hence,
enables an individual adjustment for the contextual factors
of organizational application. Second, the output’s quality
relies on several factors. Our approach was designed under
the assumption that the data is of high quality, with the
exception of elusive cases. We acknowledge that this
assumption does not always hold true in practice and
necessitates specific data preprocessing to address various
data quality issues beforehand. Nevertheless, our approach
is intended to be one link in a chain of methods aimed at
data quality improvement. The combined effect of these
methods is expected to enable effective data quality man-
agement. Additionally, directly measuring the accuracy of
the output is impractical in real-life applications where
ground truth is unavailable. Thus, the results should be
considered in combination with the results of process dis-
covery, enabling a practical evaluation of their validity.
Third, our findings indicate that our artifact produces best
results when applied to large data volumes with low levels
of elusiveness. As such, real-life application should take
into account the limitations of the Transformer model when
working with smaller datasets. For cases with limited data,
alternative methods may offer superior performance, as the
Transformer’s efficacy increases with larger datasets.

From a theoretical standpoint, our method addresses a
limitation of traditional repair approaches: the underuti-
lization of event log data and complete regrouping of
events. Thereby, our method can operate effectively on
correct samples of data while keeping the existing case ID
logic. The flexibility of our method ensures its applicability
to a wide range of event log attributes and expert knowl-
edge, enhancing its overall utility. This adaptability is
particularly important in the increasingly prevalent object-
centric paradigm, where processes involve multiple inter-
acting entities rather than a single-case assumption. While
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transitioning to an object-centric paradigm necessitates
method modifications, it is common for object IDs to be
missing or incomplete. Furthermore, our approach
demonstrates that generative Al can be extended beyond
natural language processing to address event log data
quality issues. Lastly, our results indicate that integrating a
human-in-the-loop with generative Al leads to more
promising outcomes. To the best of our knowledge, this is
the first study to employ the Transformer architecture for
linking events to process instances, highlighting the effi-
cacy of generative Al in this domain.

Our work also entails some limitations. First, the uti-
lization of a supervised learning framework leads to a sit-
uation where our model can only predict outcomes for case
IDs included in the training dataset. Consequently, if the
erroneous log includes IDs absent from the training data,
new events cannot be associated with these cases. Simi-
larly, the events occurring during repair cannot be attrib-
uted to more cases than those included in the training set.
Nonetheless, as long as the sequence of events is accurately
anticipated, our artifact remains effective. Second, a case is
defined both by the training dataset and by expert knowl-
edge specifications. In practice, however, case boundaries
may be more fluid. For instance, actions within a buffer
zone may still be considered part of the corresponding case
after the actual end activity, whereas actions beyond this
buffer may initiate a new case. Nevertheless, as such sce-
narios could also be accommodated using corresponding
rules, we treated the boundaries of a case as fixed in our
approach. Lastly, we have not considered the computing
costs involved. In practical applications, these costs are
significant factors influencing the feasibility of imple-
menting the approach. Therefore, while our approach may
show promise in theoretical contexts, its real-world appli-
cability also relies on its computational efficiency. Never-
theless, we assert that the potential advantages of enabling
process mining analyses outweigh the associated expenses.

Based on our findings, several promising avenues for
future research can enhance and extend our approach.
Specifically, focusing on unsupervised learning and inte-
grating diverse data sources presents significant opportu-
nities. First, unsupervised learning can uncover patterns
without labeled data, which is advantageous when no
correct data is available. Reformulating our machine
learning problem as a clustering task and exploring modi-
fied Transformer architectures could therefore enhance
applicability. This holds especially true in real-life appli-
cations where no correct data is available for training.
Second, expanding the Transformer’s input to include
various data sources, such as process documentation or
models can provide a more comprehensive view of events.
This approach can uncover contextual information not
present in event logs and domain knowledge alone.
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Evaluating the impact of each data type and identifying
beneficial as well as adversarial effects will be crucial.

7 Conclusion

Process mining relies on high-quality event logs to provide
accurate and reliable insights into business processes. A
significant issue affecting event log quality is the elusive
case imperfection pattern, where events lack case IDs,
making it difficult to link them to specific process instan-
ces. Since many process mining techniques rely on this
linking, elusive cases undermine the effectiveness of pro-
cess mining techniques, leading to inaccurate or incom-
plete analyses. To tackle this issue, we explored how
generative Al can repair the elusive case imperfection
pattern. We developed HERE, a method that combines a
traditional rule-based approach with the Transformer
architecture, enriched by domain expertise within a human-
in-the-loop framework. Employing the DSR paradigm, we
iteratively designed HERE, evaluated it through 21 expert
interviews, and demonstrated its effectiveness by repairing
a total of three event logs with elusiveness levels ranging
from 10% to 90%. Our results demonstrate that HERE can
effectively determine case IDs and outperform benchmark
approaches, especially at lower levels of elusiveness, pro-
vided that a large data volume is available. To the best of
our knowledge, we are the first to leverage generative Al
for this specific data quality issue, a claim supported by
expert assessments during our evaluation. Our contribution
lies in providing an alternative solution to current methods
for addressing the elusive case imperfection pattern by
leveraging the extensive data available in the event log
while keeping the existing case ID logic. Depending on
context and requirements, our hybrid approach offers a
balance between accuracy and completeness of event data,
thus enabling process mining analyses. Additionally, we
provide the instantiated method as a software prototype
that can be utilized and further developed to address similar
data quality challenges.

While our method successfully addresses the elusive
case, it has certain limitations. These include its design as a
supervised learning approach, the associated costs, and the
definition of cases with fixed boundaries. Hence, there are
several avenues for future research. For instance, exploring
the suitability and effectiveness of alternative structures,
such as unsupervised learning, for solving this type of data
quality issue could be beneficial. Beyond event logs in XES
format, it would be worthwhile to investigate how our
approach can handle other data sources.
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