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Abstract: The literature on strategic ambiguity in classical games provides generalized notions of
equilibrium in which each player best responds to ambiguous or imprecise beliefs about his opponents’
strategic choices. In a recent paper, strategic ambiguity has been extended to psychological games, by
taking into account ambiguous hierarchies of beliefs and max—min preferences. Given that this kind of
preference seems too restrictive as a general method to evaluate decisions, in this paper we extend
the analysis by taking into account a-max—min preferences in which decisions are evaluated by a
convex combination of the worst-case (with weight &) and the best-case (with weight 1 — &) scenarios.
We define the #-max-min psychological Nash equilibrium; an illustrative example shows that the set
of equilibria is affected by the parameter & and the larger the ambiguity, the greater the effect. We also
provide a result of stability of the equilibria with respect to perturbations that involve the attitudes
toward ambiguity, the structure of ambiguity, and the payoff functions: converging sequences of
equilibria of perturbed games converge to equilibria of the unperturbed game as the perturbation
vanishes. Surprisingly, a final example shows that the existence of equilibria is not guaranteed for
every value of a.

Keywords: psychological games; ambiguous beliefs; x-MEU; equilibrium existence

1. Introduction

It is well-known that the Nash equilibrium concept for strategic games prescribes the
following: (i) each player chooses his best strategy in response to the beliefs he has about his
opponents’ strategic choices; (ii) each player’s beliefs are correct; that is, each player believes
with probability 1 that opponents will follow their equilibrium strategies. The evidence
arising from decision theory tells us that beliefs cannot always be assumed to be correct.
The literature that focuses on the issue of strategic ambiguity in classical strategic form games
provides generalized notions of equilibrium in which each player best responds to ambiguous
or imprecise beliefs about his opponents’ strategic choices, i.e., beliefs may take the form of a
capacity or a set of probability distributions (see [1-6] and references therein). There might
be many sources of strategic ambiguity in a game: for example, Lehrer [3] focuses on the case
in which players do not have precise knowledge of the mixed strategy chosen by each of the
other players but rather know only the probability of some subsets of pure strategies, not
being aware of the precise subdivision of probabilities within those subsets. In [7], the study
of strategic ambiguity has been extended to psychological games by looking at ambiguous
or imprecise hierarchies of beliefs. Psychological games provide a generalization of classical
games, aiming to explicitly take into account the emotions, opinions, and intentions of the
decision-makers in the strategic interaction'. This class of games is characterized by the
assumption that each player’s payoff depends on his hierarchy of beliefs, i.e., it depends
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not only on what every player does but also on what he thinks every player believes, on
what he thinks every player believes the others believe, and so on. The main solution for
psychological games is presented in Geanakoplos et al. [14] and is based on the idea that
the entire hierarchy of beliefs of each player must be correct in equilibrium.

Since beliefs about opponents’ strategic choices can be regarded as first-order beliefs,
the literature on strategic ambiguity substantially looks at games in which first-order beliefs
are ambiguous. Ref. [7], instead, looks at ambiguity regarding the entire hierarchy of beliefs
as, for instance, partial knowledge may appear directly in the second-order (or higher-
order) beliefs or strategic ambiguity produces ambiguous higher-order beliefs as a natural
consequence. Therefore, the function that maps strategic profiles to the correct hierarchies
of beliefs, which is used in the classical definition of psychological Nash equilibria, is
therein replaced by a set-valued map (called ambiguous belief correspondence), which maps
strategic profiles to the subsets of those hierarchies of beliefs that players perceive to be
consistent with the corresponding strategy profile. In the corresponding equilibrium notion
presented in [7], players are assumed to be completely pessimistic as they are endowed
with max—min preferences (also called MEU preferences; see [15]); each player maximizes
(with respect to his own strategy) the minimum expected utility computed along the
graph of the ambiguous belief correspondence whose values, in turn, depend on the entire
strategy profile.

The max-min approach turns out to be analytically convenient; furthermore, it has
a clear axiomatic foundation. Nevertheless, it seems to be too restrictive as a general
approach because only the “worst-case scenario” is relevant for the evaluation of a decision
so the analysis is limited to an extreme form of pessimism. The restrictiveness of the MEU
model can be naturally overcome by considering the so-called a-max—min preferences (also
called a-MEU or Hurwicz preferences), first introduced in [16]. In this model, decisions are
evaluated by a convex combination of the worst-case (with weight «) and the best-case
(with weight 1 — &) scenarios. This type of preference was widely analyzed and applied
in several different settings in order to include a larger spectrum of ambiguous attitudes
(see [17-20] to quote a few).

The literature shows that the generality of the model is affected once preferences are re-
stricted only to the max—min approach; in fact, the behavior of agents with an intermediate
attitude toward ambiguity cannot be fully explained by max-min preferences’. Hurwicz
preferences, instead, are much more general and exploitable when dealing with model
uncertainty, as they allow for analysis of the decisions of agents with a larger variety of
personal characteristics. This perspective is key when looking at several economic and
financial problems, such as establishing the design of optimal insurance contracts or inves-
tigating duopolistic competitions (see, for example, [22,23]). In fact, these papers show that
the characterization of equilibria explicitly depends on the degree of pessimism/optimism
«. Finally, other theoretical papers take into account the Hurwicz preferences, for in-
stance [24,25], where the problems of information processing and awareness, respectively,
have been addressed.

In this paper, we extend the analysis of psychological games under ambiguity to a-max—
min preferences and provide the notion of a-MEU psychological Nash equilibrium (a-PNE)
for situations in which players have Hurwicz preferences. The weights « that characterize
the attitudes of the players toward ambiguity turn out to be key to understanding how
equilibria change according to the players’ degree of pessimism/optimism. We present an
illustrative example, showing not only that the set of equilibria depends on the parameter a
but also that differences are emphasized by the amount of ambiguity in the game: the larger
the ambiguity, the greater the differences. The example highlights another relevant feature:
equilibria corresponding to a given value of « cannot always be approached by sequences of
equilibria of games in which the parameter « is slightly perturbed, meaning that equilibria
are unstable with respect to perturbations on the degree of pessimism/optimism. From the
mathematical point of view, this implies a lack of lower semi-continuity of psychological Nash
equilibria under the Hurwicz preferences. The failure of this property is not surprising since
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the lack of lower semi-continuity of the equilibrium correspondence is a common feature
in most of the game models. We show, instead, that the a-PNE correspondence satisfies
upper semi-continuity-like stability: converging sequences of equilibria of perturbed games
converge to equilibria of the unperturbed game as the perturbation vanishes. The issue
of the upper semi-continuity properties of equilibria has been largely investigated in the
literature for classical games (see for instance [26-28] and references therein) and is a key
property to build refinements of equilibria based on stability with respect to trembles. In
this paper, we obtain the stability of equilibria under general perturbations that involve,
simultaneously, the attitudes toward ambiguity (that is, the parameters &), the structure of
ambiguity, and the payoff functions. In particular, this result allows for selection criteria
(for PNE under ambiguity) based on stability properties with respect to perturbations on
the weights .

The most surprising feature of a-PNE is, however, a negative result. Although for psy-
chological Nash equilibria and psychological Nash equilibria under max—min preferences
an existence result was obtained under standard assumptions, in this paper we provide
a counterexample in which a game has no a-PNE. This negative result comes from the
fact that the best reply correspondence of the summary utility function (used to obtain
equilibrium existence) does not have convex images and therefore fixed points, in general.

The paper is organized as follows: Section 2 defines the game and the equilibrium
concept. Section 3 presents the illustrative example while Section 4 is dedicated to the
upper-semi-continuity property of equilibria. In Section 5, the issue of the lack of existence
of equilibria is studied. All the proofs are relegated to Appendix A. Appendix B, instead,
is devoted to complementary results concerning the problem of the (non)-existence of
equilibria in games with Hurwicz preferences and non-psychological payoffs.

2. Model and Equilibria

We consider a finite set of players I = {1,...n}, and, for each player i, we denote
with A; = {a},.. .,ai.((l)} the (finite) pure strategy set of player i. As usual, the set of
strategic profiles A is the Cartesian product of the strategy sets of each player, which is
A=A X+ XAy :HieIAirandAfi = Ay X - XAifl XAi+1 X o X Ay IH]#ZA]
Let X; be the set of mixed strategies of player i, where each mixed strategy o; € ¥; is a
nonnegative vector 0; = (03(a;))a,ca; € Rl_i(l) such that -, c 4, 0i(a;) = 1. Denote also with
L = JlierZi and with £_; = [];,; £;. We use (05,0 ;) witho; € Ljand o ; € X_; to
represent o € X.

2.1. Hierarchies of Beliefs

The belief structure is constructed following [14]. Recall that, for any topological space
S, A(S) denotes the set of Borel probability measures on S. For every player i and for every
k € N, k > 1, the k-th order beliefs set is defined recursively as follows:
B 1= A (Z—i )r

1

B?=A(X_; x B!},

Bf:= A(X_; x BY, x B%,

k—1
IX"'XB—i ),

where B¥ ; := [T B;‘. The set of all hierarchies of beliefs of playeriis B; = [T 4 Bf.‘. Note that

for every k, B;‘ is compact and can be metrized as a separable metric space. Consequently,

since B; is a countable product of separable and compact metric spaces, it is also a separable

and compact metric space3.
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We will restrict the attention to the subset of collectively coherent beliefs B; C B, i.e.,
the compact set of beliefs of player i in which he is sure that it is common knowledge that
beliefs are coherent. Precisely, a belief b; = (bl-l, bl-z, ...) € B; is said to be coherent if, for
every k € N, the marginal probability of ¥ ™! on = _; x B!, x B2, x - - - x B*-! coincides
with b;‘, which is

marg(bf“,Z_i x BL. x B2,

k-1 k
;XX B = b

i
You can find the construction of the set of collectively coherent beliefs in [14] and the proof
of its compactness in [7]. Throughout the remainder of the paper, with an abuse of notation,
we will denote with B; the set of collectively coherent beliefs or any of its compact subsets.

As in [7], we allow for ambiguity in the beliefs; therefore, beliefs are compact subsets
K; C B;. We denote with .%; the set of all compact subsets of B;. This choice allows
consideration of the ambiguity players encounter during the game due to uncertainty about
other players’ actions and beliefs: the agent does not have a precise belief b; but knows that
the belief can be any b; € K;. If K; is a singleton, then the belief is not ambiguous, leading
the theory back to the standard case.

2.2. Game and Equilibria

Following the model in [14], each agent i is endowed with a utility function of the form
MiZEZ‘XZ%R, (1)

depending not only on the mixed strategy profile but also on the agent’s beliefs: u;(b;, o)
represents the payoff to player i if he believed b; and the strategy profile ¢ is actually played.
Indeed, fixing b;, u;(b;, -) can be (but not necessarily) the classical expected utility function
as it is assumed in [14]. As agents face set-valued beliefs K; € .%;, they have a set-valued
payoff {u;(b;, 0) }; e, for every given ambiguous belief K; € .%#; and strategy profile o € %.
There are several ways in which the agents” ambiguity might be solved depending on
the agents’ attitudes toward ambiguity. In [7], the case was considered where players are
ambiguity-averse, modeling the utility functions as max—min preferences. To encompass
a broad spectrum of ambiguity attitudes, this paper focuses on the so-called a-max—min
preferences, which allow us to range from an ambiguity-seeking attitude (as « = 0) to
an ambiguity aversion attitude (as « = 1). In this framework, each agent i has a utility
function of the following form: U} : % x ¥ — R defined, for «; € [0, 1], by

sup u;(b;,0)| VY(K;0) € XL, (2)

ui(Ki, o) = a; { inf ”i(bi/(f)] +(1—a)
b;€K;

b,‘GK,‘

where a denotes the vector &« = (aq,...,a,) € [0,1]". Now, it is possible to define the game.

Definition 1. An a-MEU normal form psychological game is defined by
Ga = {All"' /Ai’l/u{‘/' s /u;l/):}
where the utility functions U are defined as in Formula (2) for every i € N.

In the models of strategic ambiguity where players have partial knowledge of the
strategies played by their opponents, players’ beliefs depend on the actual strategy and
take the form of set-valued maps (correspondences) from the set of strategic profiles to
the set of probability distributions over opponents’ strategies (see [3,5,29]). In [7], this
approach was generalized to hierarchies of beliefs: agent i is endowed with a set-valued
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map 7y; : & ~~ B; (called ambiguous belief correspondence of player i), where each image 7;(c)
is a non-empty and compact set, i.e.,

@ #vi(o) € H Yoex.

Each subset 7;(0) C B; provides the set of hierarchies of beliefs that player i perceives to
be consistent given the strategy profile o. The set-valued maps 7; are exogenous and have
different structures depending on the specific problem; therefore, they can be considered as
parameters of the game.

Remark 1. It is well-known that uncertainty and partial ignorance can be modeled with several
different tools beyond sets of probability measures, such as the Choquet capacities and belief functions
(see [2,17,30-35]). Due to its generality and the exogeneity of the set-valued maps vy;, our model
can embrace several specific cases. For example, one can consider <y; to be defined as the core of a
belief function associated with player i, which is a non-empty and compact set. In the special case of
precise probability, the core, and, consequently, the image set of y;, reduces to a single probability
measure, giving back the non-ambiguous case. In [7], a link with partially specified probabilities [3]
was also constructed.

In this paper, we follow the approach in [7]:

Definition 2. An a-MEU psychological Nash equilibrium (henceforth, a-PNE) of the game G*
with belief correspondences v = (y1,...,vn) is a pair (K*,0*), where K* = (K7, ..., K},) with
K* C B;and o* € ¥ such that, for every player i:
(i) Kf=7i(0”);
(i) UMK}, o*) = UMK, (0,0%;)) for every 0; € Z;.

In this case, we can also say that (7y(c*), c*) is an a-MEU psychological Nash equilibrium.

Remark 2. The definition of a-PNE captures, in a natural way, the main features of the classical
equilibrium notions since condition (ii) requires that the equilibrium strategy of each player is
optimal given his beliefs and condition (i) requires that beliefs must satisfy a consistency condition
with the equilibrium strategy profile that is characterized by the belief correspondences «y;. However,
the nature of this latter consistency condition differentiates it from the concept of psychological Nash
equilibrium, which, in turn, inherits from the classical Nash equilibrium the requirement that beliefs
must be correct in equilibrium. The a-PNE concept is based on a different perspective that is similar
to the one in the definition of self-confirming equilibrium (SCE) in* [5].

As clearly explained by the authors’: “...in a SCE, agents best respond to confirmed proba-
bilistic beliefs. Confirmed means that their beliefs are consistent with the evidence they can collect,
given the strategies they adopt. ... The key difference between SCE and Nash equilibrium is that,
in an SCE, agents may have incorrect beliefs because many possible underlying distributions are
consistent with the empirical frequencies they observe.” From the mathematical point of view, in a
SCE, beliefs are parametrized by feedback functions that give rise to information about opponents’
strategic profiles, and by a prior belief in these strategic profiles. Such feedback functions and
prior beliefs together provide the beliefs that the players perceive to be consistent with the strategy
profile, for every profile. In practice, beliefs are represented by a set-valued map (that depends on the
strategy profile) that is called identification correspondence. This correspondence can be regarded
as a particular case of the belief correspondence used in the definition of x-PNE when we look only
at first-order beliefs. Moreover, a version of SCE under uncertainty, namely the MSCE concept
(in mixed strategies), can be regarded as a a-PNE (for « = 1) in the case in which the opponents’
strategies are replaced by first-order (ambiguous) beliefs in the expected utility of each player.

Naturally, there are differences between a-PNE and SCE. First, in the former, higher-order
beliefs enter explicitly the utility function in an arbitrary way, while, in the latter, just the first-
order beliefs enter the classical expected utility function in place of opponents’ strategies. Most
importantly, the SCE involves a richer structure of beliefs with respect to a-PNE as, in an SCE,



Games 2024, 15, 27

6 of 26

it fully captures two different scenarios: the first one is a repeated game in which there are no
intertemporal strategic links between the plays, while the second is the (so-called) large population
scenario in which there is a large society of individuals who recurrently play a given game. In the
«-PNE, beliefs correspondences represent a generic mathematical tool that can generalize different
models like the Identification Correspondence quoted above or like some imprecise perturbations of
correct beliefs, as illustrated in the example in Section 3 below, in order to run a robustness analysis
on the unperturbed equilibria. Finally, the nature of the definition of equilibrium differs between
a-PNE and SCE as the latter always has the classical Nash equilibrium concept as a refinement
while the relation between a-PNE and the classical psychological Nash equilibrium depends on the
specific model taken into account.

2.3. Summary Utility Functions

Similar to [14], a-PNE has a characterization as Nash equilibria. Let w} : & x & — R
be the summary utility function defined by the following;:

wi (o, 7) = Uj(7i(0),T) = zxi[ inf ui(bi,’c)} +(1—ay) [ sup u;(b;, T)] V(o,T) € Z x X 3)

bi€7i(0—) bievyi(o)

Then, the following immediately follows from the definition:

Lemma 1. The profile (y(c*),0*) is an a-MEU psychological Nash equilibrium if and only if, for
every player i,

W (0%, (07,0%)) > Wi (o™, (i, 0%,)) Wy € 5 @
Remark 3. In [14], the equilibrium beliefs of each agent i are described by the correct beliefs function
Bi : & — B; which, for every o € %, specifies the unique hierarchy of beliefs of player i that is
correct, given . Now, if we replace «y; with B;, in Definition 2, we retrieve the definition of classical
psychological Nash equilibria. On the other hand, if we replace «y; with B; in (3), we obtain the
original summary utility function defined in [14].

3. An Illustrative Example

In this section, we present an example of a psychological game under ambiguity in
which players have Hurwicz preferences. The goal is twofold: on the one hand, we aim
to put definitions to work and show how to find psychological Nash equilibria under
ambiguity in simple models. On the other hand, the example highlights in which way the
equilibria may be sensitive to variations in the amount of the structure of ambiguity in the
game and the attitudes of the players toward ambiguity. More precisely, we consider a spe-
cific form of ambiguity: players’ beliefs are provided by a perturbation of the correct belief
function that takes the form of a ball of radius & around the correct belief. This approach
resembles the contamination model approach and allows us to analyze the sensitivity of
«-PNE with respect to the unique parameter e. Moreover, as the attitude toward ambiguity
of each player i is parametrized by the corresponding value of «;, we study the sensitivity
of equilibria with respect to «;.

The game considered in the example is the bravery game that was first analyzed in the
framework of standard psychological games by [14]. In [7], it was shown that allowing for
ambiguous hierarchies of beliefs may significantly affect the set of equilibria when players
are endowed with max—min preferences. In this work, we study the game with respect to
the double parametrization € and «;.

Example 1. The game is described as follows: Player 1 (John) has to publicly make a decision, and
he is concerned about what Player 2 (Anne) will think about him. He can either be bold, exposing
himself to the possibility of danger, or he can opt for a timid decision; therefore, John’s pure strategy
set is Ay = {Bold, Timid}. Anne is inactive during the whole interaction but her beliefs about
John have an impact on John's behavior; indeed, his payoff depends not only on what he does but also
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on what he believes Anne thinks he will do. Suppose that John chooses Bold with probability p and
Timid with probability 1 — p. We consider the case in which John cares only about the expectation
g of his belief about the expectation q of Anne’s first-order belief. Moreover, John would rather be
timid, unless he thinks Anne is expecting him to be bold, in which case he prefers not to disappoint
her. Anne prefers to think of her friend as bold, and it is better for her if he opts for the bold decision.
The game and payoffs are described below:

g
v

John

3(1-4),1-¢

Equilibria without Ambiguity
Since Anne is a non-active player, the mixed strategy profile is given only by John's mixed
strategy p. With the abuse of notation, the correct belief functions are defined as follows: B,(p) = p
tells that the expectation of Anne’s first-order correct beliefs about John’s strategy (p) must be equal
to p; B1(p) = p shows that the expectation of John's correct second-order beliefs about Anne’s
expectation of the correct first-order belief about John's strategy (p) must be equal to p as well.
The expected utility of John takes the following form:

u(qp) =p2 -9 +3(1-p)1-9) =p2§-1) +3(1 - 7).
In the case of non-ambiguous beliefs, the game has three psychological equilibria, as shown in [14]:

v = 1= 4 = q: John chooses to be Bold;
v =0 = § = g: John chooses to be Timid;
v =1/2 = § = q: John randomizes with probability p = 1/2.

The Game in Case of Ambiguity

Now, we assume that John has ambiguous beliefs; in particular, John's belief is represented
by the map v{(p) = [p — &, p+¢/ N[0,1] with 0 < & < 1. We look at the equilibria of the game
in case players (John, in this case) have a-MEU preferences. In particular, we show in which
way the different attitudes toward ambiguity affect the equilibrium behavior. In order to compute
John's summary utility function, we first compute, for every pair of John's mixed strategies (p,y),
the following:

argmin uy(4,y) = {17/ €[0,1]u1(7,y) = min “1(‘7/3/)}/
7evi(p) 7evi(p)

argmaxuy (4,y) = {17’ € [0,1]]ur(q’y) = max ul(ﬁ,}/)}-

gevi (p) t7€'yi'(p)
We have the following:
argminuy(§,y) = argmin [§(2y —3)+3 —y] =min{p+¢1}, Vye[0,1]

gevi(p) ge[p—ep+eln[01]
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Similarly,
argmaxui(§,y) = argmax [j(2y—3)+3—y] =max{p—¢0}, Vye][01].
€71 (p) qelp—ep+eln(o]

Ifpt :=min{p +¢ 1} and p~ := max{p — ¢, 0}, for every pair of John’s mixed strategies
(p,y) and for every a € [0, 1], we have the following:

wi(p,y) =a| min §(2y—3)+3—y
geri(p)

(1—&)[max Gy —3)+3—y
q<vi(p)
alpt(2y—3)+3—yl+(1—-a)[p~(2y—3)+3 -yl =
ya(pT —p7)+2p” —1] =Ba(pT —p7) +3(1—p").

«-PNE
Recall that p gives a-PNE if and only if

wi(p,p) = wi(p,y) Vy€[0,1], a €[0,1].

It is clear that equilibria depend on w and e. Below, we provide a full characterization of all the
(x-PNE) equilibria.
First, denote with
1 12«

1
D — — 1—2 [ — =
p=otel-20), p=g —& p=5—p

It follows that

Lemma 2. [et 0 < & < %

(i) Ife <1/4, then, for every w € [0,1], thea-PNE are: p =0, p =1, p = p;
(ii) Ife>1/4, then:

- forae{Ol [theaPNEare p=0,p=1p=p

- fora € {1—4—8,4—8},thew-PNEare:sz,pzl,p:p;

- foraehg, } the x-PNE are: p =0, p =1, p = p*%;
wheref):ﬁzftle——andp—p 1foc—4‘€

Proof. See Appendix A. [

Lemma 3. Letf < e < 1. Then,
- forae 01 [theumquezx -PNEis: p = 0;
- fora e 1— £,2[1‘heszNEare p=0,p=1p=p
- foroc—%,theaPNEare p=0,p=1landeveryp € [1 —¢,¢|;
- fora e %2—} thex-PNEarep =0, p=1, p = p*;
1

- forae

557 ] the unique a-PNE is: p = 1;
wherep—lzfoc—l——andp =0ifa = 4 5
Proof. See Appendix A. O

We can summarize the results in the following table, which is filled with the values of the
parameter w, ensuring the existence of the corresponding equilibrium, as follows (Table 1):
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Table 1. Values of « for the corresponding equilibrium.
p= p=1 p=3+e(l—20) p=4—e p=igr+e pE[l-ge
e< g [0,1] [0,1] [0,1] %) %) @
l<e<} [0,1] [0,1] [1 -y ﬂ {ﬁ,l] [0,1 - 417} )
p<e<1 0. %] 1-3%1] @ [3.%] 144 {3}

Note that, for € = 0, we obtain the three equilibria (p =1, p = Oand p = % ) of the original
game in [14], while for « = 1, we obtain the same equilibria as the model with max—min preferences
computed in [7]. Moreover, as ambiguity increases with €, the set of equilibria in the two extreme
cases & = 0 and o = 1 shrinks to a unique equilibrium for e > %, but the two equilibria are different
(ie., p = 0and p = 1 respectively). More generally, the table above shows that the difference among
the different attitudes toward ambiguity becomes sharper as € increases. In particular, the set of
values of w that sustain a given equilibrium generally shrinks as € converges to 1. There is one
exception: for e > %, the value & = % is a kind of singularity as it sustains the interval of equilibria
[1 —¢,¢|. As a consequence, when o = %,for e=1,all p € [0,1] are a-PNE.

4. A Sensitivity Analysis

The example in the previous section shows some interesting features concerning the
sensitivity of equilibria with respect to perturbations on the attitudes toward ambiguity. In
particular, we notice that equilibria do not satisfy the lower semi-continuity-like stability®,
i.e., an equilibrium, cannot always be approached by a sequence of equilibria of perturbed
games if we consider a perturbation on the parameter «.

Example 2. Consider ¢ = % and o = %, we have that every p € [1 —¢, €] = [}I' %} is an a-PNE.

In particular, pick p = % € [%, %} Now, fixing € = %, consider a sequence {w, }, oy such that

&y — 1 asv — oo with a, #  for every v. Since e = 3, the only a,-PNE, for a, sufficiently

closetowarep =0,p=1,p = ﬁ - % and p = % + %. It follows immediately that any
converging sequence of a,-PNE might convergeonlytop =0, p =1, p = ﬁ — % = le and
21
p= ; ;% + % = %. Therefore, p = % cannot be approached by any sequence of w,-PNE.
2

Lack of lower semi-continuity-like stability is a common feature of equilibria in games.
Example 3.4 in [7] shows that, in regard to max-min preferences (i.e., « = 1), a psychological
Nash equilibrium under ambiguity cannot always be approached by a sequence of equilibria
of perturbed games if we consider perturbations on the parameter ¢’.

The previous example, in turn, shows that the set of equilibria satisfies upper semi-
continuity-like stability either if we consider a perturbation on the parameter a or a pertur-
bation on the parameter ¢: converging sequences of equilibria of perturbed games converge
to equilibria of unperturbed games as the perturbation vanishes. The issue of the upper
semi-continuity properties of equilibria is a relevant topic in game theory and it has been
largely investigated in the literature under many different assumptions and for different
solution concepts (for instance, see [26-28] and references therein). Moreover, these proper-
ties are key to building refinements of equilibria based on stability, with respect to trembles
on the strategies or payoffs. In [7], the upper semi-continuity property was investigated
for equilibria in psychological games under ambiguity in case of max-min preferences; in
particular, the main result therein shows in which way ambiguous belief should converge
to correct beliefs so that sequences of psychological equilibria under perturbation converge
to psychological equilibria of the unperturbed game. In this paper, we extend that result by
looking at the stability with respect to the attitudes toward ambiguity parametrized by the
weights a;.
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In order to state the stability problem in a clear way, let us first construct a sequence of
perturbed games:

Definition 3. For every player i and for every v € N, let

(@) {ujy}yen be a sequence of functions with u;, : B x £ — R;

(b)  {iy}ven be a sequence of set-valued maps y;, : & ~> Bj;

(c) {ay}yen beasequence with oy = (ay,,...,01,) € [0,1]";

(d) {U]'"},en be the sequence of functions U : J¢; x ¥ — R defined by the following:

SV

Uty (K5 0) = o inf i 83, + (1= )

lel

sup uj, (b, 0)| V(K;0) € G x 2.
b;eK;

Then the sequence {Gy," },en, with G;' = {Al,- AU Uﬁfv}for everyv € N, isa

v’

sequence of xa-MEU psychological games.
Therefore, we have the following:

Problem 1. Find conditions under which the sequence {Gy" },cn converges to the game G* so
that any converging sequence {0y },en of ay-PNE of Gy¥ has a limit o* that is an a-PNE of G*.

In order to state and prove this limit result, we first recall the definitions of variational
sequence convergences for functions and set-valued maps.

4.1. Preliminary Definitions

We refer mainly to reference [39] for the following definitions and results.

Definition 4. Let X be a topological space. Consider a sequence of functions®. {g,},en with
gv: X C RF = R for every v € Nand a function g : X C RF = R.
Then, the sequence {gy }, e sequentially converges (or continuously converges) to the function
g if for every x € X and for every sequence {xy,},en C X converging to x in X we have
the following:
g(x) = }glgogv(xv) = limsup g, (xy) = livnlgfgu(xv). ()

V—00

The next definition is devoted to set-valued maps.

Definition 5. Let X and Y be metric spaces. Let {T'y }, <N be a sequence of set-valued maps with
I'y: X~ Y foreveryv € NandletT : X ~ Y be a set-valued map. Let S(y, €) be the ball in Y
with the center in y and radius € and

L%/rgoionfl’v(xv) ={yeY|Ve>0, st forallv>7v, S(y,e) NTy(xy) # D},

LimsupT'y(xy) ={y € Y|Ve >0, VvV, v > Vs.t. S(y,e) NTy(xy) # D}

V—00

Then, the sequence {T', },cN is sequentially convergent to T if, for every x € X and for every
sequence {xy }yeny C X converging to x in X, we have the following:

LimsupT'y(xy) C I'(x) C LiminfI'y(xy).

V—500 V—00

4.2. The Stability Result

Now, we can state the limit theorem. The proof is contained in Appendix A.
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Theorem 1. Let G* = {Aq,- -, Ay, UY,- -+ , U} bean a-MEU psychological game and { Gy },en

be a sequence of a-MEU psychological games, as constructed in Definition 3. Assume that, for every

player i,

(i)  The sequence {u;, },en sequentially converges to the function u;;’

(i) each function u;, and function u; are continuous in B; x ¥;

(iii) the sequence {ay },en converges to o = (ay, ..., &y);

(iv) the sequence {y; , },en sequentially converges to the set-valued map «y;. Suppose additionally
that each vy; ,, and «y; have compact and non-empty values for every o € X.

If the sequence {0} },en C X converges to o € X and (v, (0y), oy ) is a a-MEU psycho-
logical Nash equilibrium of G;" for every v € N, then it follows that (y(c*),c*) is an a-MEU
psychological Nash equilibrium of G*.

4.3. A Remark on Equilibrium Selection

The connection between the upper-semi-continuity property and the lack of lower-semi-
continuity property of the equilibrium correspondence is key to building equilibrium
selection devices based on stability properties with respect to perturbations (see [40] for an
extensive survey on this topic in the classical framework). The idea behind the (so-called)
equilibrium refinements is that, in the case of games with multiple equilibria, some may
not be robust with respect to perturbations on the strategies or the payoffs of the players;
so, it is possible to restrict properly the set of equilibria by picking only the ones that
are limits of specific sequences of equilibria of perturbed games, when the perturbation
converges to zero (this is actually the idea behind the seminal concept of the trembling
hand perfect equilibrium introduced in Selten [41]). With respect to this issue, the upper
semi-continuity property guarantees that limits of sequences of equilibria of perturbed
games are equilibria of the unperturbed one, while, the lack of the lower-semi-continuity
property makes it possible that some equilibria are not limit points. In the framework of
the present paper, the example in Section 3 immediately shows that not every a-PNE is
stable with respect to perturbations on preferences, particularly when there are frembles on
the degree of optimism/pessimism. In fact, as noticed in Example 2, within the subset of
equilibria p € [1/4,3/4], only the equilibria p = 1/4 and p = 3/4 are stable with respect
to perturbations on the parameter «. Therefore, the property of stability with respect to
trembles on the degree of pessimism/optimism provides an effective selection device
for a-PNE.

5. Existence of Equilibria: A Counterexample

Different from [7,14], in which an existence theorem was proved, respectively, for
psychological Nash equilibria and psychological Nash equilibria under ambiguity (in the
case of max-min preferences), in our framework, equilibrium existence fails in very simple
examples as the one shown below. This example also highlights the fact that equilibrium
existence might depend on the parameter a: equilibria exist if and only if « belongs to a
proper subset of [0, 1]. Finally, for the sake of simplicity, the example focuses on an extreme
form of ambiguity, given by full ignorance.

Example 3. We consider a two-player game: the pure strategy set of Player 1 (Anne) is A1 =
{Accept, Reject} and the pure strateqy set of Player 2 (John) is Ay = {Accept, Reject}. We
denote with p the mixed strategy of Player 1, where, with an abuse of notation, p is the probability
of Accept and 1 — p is the probability of Reject. Similarly, r is the mixed strategy of Player 2;
again, with an abuse of notation, r is the probability of Accept and 1 — r is the probability of Reject.
It is assumed that John’s utility does not depend on beliefs while Anne’s utility depends on her
second-order beliefs. Moreover, as conducted in the previous example, it is considered the case
in which only the expectations of beliefs play a role in Anne’s utility function. We denote with
g € [0,1] the expectation of John's first-order beliefs about Anne’s mixed strateQy (p) and § € [0,1]
the expectation of Anne’s second-order beliefs about the expectation q of John’s first-order beliefs.
The game is represented as follows (Iable 2):
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Table 2. Game form for Example 3.

John Accept Reject
Anne
Accept —24-1,1 2,0
Reject 2,0 24-3,1

A mixed strategy profile is identified by the pair (p, r). The correct belief functions simply map
the strategic profiles (p,r) to the correct expectation of beliefs; more precisely, B1(p,r) = p tells
that the expectation of John’s correct first-order beliefs about Anne’s strategy (p) must be equal to
p,and Bo(p,r) = p shows that the expectation of Anne’s correct second-order beliefs about John's
first-order beliefs about Anne’s strategy (p) must be equal to p as well.

The best reply of Player 2 can be easily computed, as there are no psychological effects:

0 ifpel0,1/2],
BRy(p) = 1 [0,1] ifp=1/2,
1 if p €]1/2,1].

The expected utility for Anne (Player 1) having a second-order belief § and given that the
mixed strategy profile (p,r) is as follows:
ur (g, (p,r)) = —8pr+ (5—24)p+ (56 —2§)r +2§—3 =24(1 —p —r) — 8pr +5p +5r — 3.

We consider the case in which there is full ambiguity in Anne’s second-order beliefs. More precisely,
Anne’s second-order belief is given by v1(p,r) = [0, 1] for every strategy profile (p, ). Let & = aq
denote Anne’s ambiguity attitude parameter. Then,

Lemma 4. Anne’s best reply correspondence is given by the following:
- fora€[0,1/2],

1 ifre0,1/2],
BRY(r) = { {0,1} ifr=1/2,
0 ifr €]1/2,1);

- fora=1/2,
1 ifre[0,1/2],
BR{(r) =< [0,1] ifr=1/2,
0 ifr €]1/2,1];

- fora€]1/2,1],

1 ifr € (0,25,

[3+821x,1} l'fi’ — 57820(/
BR{(r) =< 1—r ifre [2, 32,

[0/ 5—8211} ifi" — 3—'%204,

0 ifr e 3424 1].

Therefore,

- fora € [0,1/2] there are no «—PNE;
- forwa € [1/2,1] there is only one a—PNE which is given by (p,r) = (1/2,1/2).

Proof. See Appendix A O
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Remark 4. It is natural to imagine that the lack of a general existence theorem depends on a general
lack of convexity of the images of the best reply correspondences. This is actually true, but it is useful
to understand what kind of best reply we refer to. To this purpose, let w;(c, T) be the summary
utility function of player i (it can be the one in [14], the one in [7], or the general w§ considered in
this work). Then the two possible best replies can be defined for player i:

(1) BR;:X_; ~ %,;, where

BR;(0%;) = {oi € i | wi((0,0%y), (01,07;)) = wil(03,0%;), (T, 07;)) VT € Ej},
(2) BR;:X ~ X, where

BR;(0") = {0y € I | wi((0],0%;), (03,02})) = wi((0f,0%;), (T, 0%;)) VT € Ej}.

It follows from the definition that o* is a psychological Nash equilibrium if and only if it is a fixed
point for the set-valued map (1) BRy x - - - X BR,, or for the set-valued map (2) BRy x - - - X BRy,
without any distinction. However, the interpretation is different because in BR; the hierarchy
of beliefs depends on the entire equilibrium profile, while in BR;, the hierarchy depends only on
opponents’ equilibrium strategies. Now, in the examples in [14] or [7], the set-valued maps BR;
do not have convex images even if, for these games, an equilibrium existence theorem holds. In
fact, the existence theorem follows from the convexity of the images of the set-valued maps BR;,
which is guaranteed in the models by [14] or by [7]. On the contrary, in the example above, also the
set-valued map BR; does not have convex images, leading to the nonexistence of equilibria.

6. Conclusions

Max—min preferences are a common and analytically convenient approach to solving
decision problems under ambiguity. Nevertheless, the Hurwicz preferences seem to be more
flexible and general tools to handle ambiguity as the degree of pessimism is parametrized
by a real-valued weight «. In this work, we look at the effects of this kind of preference
in static psychological games where the source of ambiguity is the entire hierarchy of
beliefs. Our aim is to provide methodological tools to run a sensitivity analysis of the
equilibria based on the pessimism’s coefficient a. An illustrative example shows that the
analysis might be easily done and is effective in simple applications. On the other hand,
the theoretical results on the semi-continuity properties of the equilibrium correspondence
make it possible to refine equilibria based on the stability with respect to perturbations on «.
Finally, the existence of equilibria might be lost when we deviate from max-min preferences:
an existence result is obtained only for « = 1, and counterexamples with no equilibria
are provided for « < 1/2. However, Example 3 shows that for « > 1/2, an equilibrium
does exist, suggesting that conditions on « could be found to obtain equilibrium existence.
Further research will be conducted in this direction. Moreover, the game model presented
in this work has some limitations, as it covers only the static case. Future research might
also focus on dynamic psychological games as presented in [8].
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Appendix A
Appendix A.1. Proof of Lemma 2

Suppose 0 < & < % In this case, the summary utility function takes the following form:

ya(p+e)—1] —3a(p+e)+3 ifo<p<e
we (p,y) = S yldae+2(p—¢) — 1] —6ae+3(1 —p+e) ife<p<l—e
yRa(l—p+e)+2(p—e) -1+ B—-3a)(1—p+e) ifl—e<p<1l

Let') p =5 +e(1—2a), p* = 5z —eand p = ;55 +e.

(a) Denote with hy(y) := y[2a(p+¢) — 1] —3a(p +¢) + 3. If &« = 0, the function & (y)
decreases throughout the entire interval [0,1]. If & > 0, h1(y) decreases throughout
the entire interval [0, 1] for p < p*, is constant on [0, 1] for p = p*, and increases on
[0,1] for p > p*. Moreover, p* > 0 for every a €]0,1], while p* < ¢ if and only if
S [%, 1}.

(b) Denote with hy(y) := y[dae +2(p —€) — 1] — 6ae + 3(1 — p + €). The function h;(y)
decreases throughout the entire interval [0, 1] for p < p, is constant on [0, 1] for p = p,
and increases on [0,1] for p > p. Moreover, p > ¢ if and only if « € {O, i , while
p<l—c¢ifandonlyifa € }1 — %,1]

(c) Denote with h3(y) := y[2a(1—p+e)+2(p—¢) —1]+ (B3 -3a)(1—p+e). Ifa =1
the function h3(y) increases throughout the entire interval [0, 1]. If & < 1, the function

h3(y) decreases on [0,1] for p < p, is constant on [0,1] for p = p and increases
throughout the entire interval [0, 1] if p > p. Moreover, p < 1 for every a € [0,1],

while p > 1 —eifand only if « € {O,l—i}.

Note that, if e < 1/4, then [0,1] C [1- 4, 4], ife = 1/4 then [1- £, 1] = [0,1],
while if € > 1/4, then {1 — ﬁ, %} C [0,1]. Therefore,
- Ife < 1/4, the function y — w?(p,y) decreases on [0,1] for p < p, is constant for
p = P, and increases for p > f.

- Ife > 1/4, the function y — w¥(p,y) decreases on [0,1] for p < P, is constant for
p = P, and increases for p > P, where we have the following:

poifac[01-4],
P={p ifac|i-4,4],
p* ifac %, 1} .
So, equilibria are computed as follows:
Subcase 1.1: If ¢ < %, for every a € [0,1], we have the following:

we (p,0) >we(py) Vy€|01], ifp<p
wy (p,1) > we(p,y) Vy€[0,1], ifp>p
we(py)=3/2 Vye[01], ifp=4p.

Therefore, for every a € [0,1], we have the following equilibria: p =0, p =1, and p = p.
Subcase 1.2: If e > %,
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() Forae[01-4],

w (p,0) > we(p,y) Vy€0,1], ifp<p;
we (p,1) >we(p,y) Yy €l01], ifp>p;
wy(p,y) =3/2 Vye[0,1], ifp=p.

Therefore, we obtain the following equilibria: p =0, p =1, and p = p.
(i) Forae|l—4 4],

we (p,0) > we(p,y) Vy€l0,1], ifp<p;
we (p,1) > we(p,y) Yy €01, ifp>p
wi(p,y) =3/2 Vye[0,1], ifp=p.

Therefore, we obtain the following equilibria: p =0, p =1, and p = f.
(iii) Fora € {4%/1}/

we (p,0) > we (p,y) Yy €]0,1], ifp <p”;
wy (p,1) > we(p,y) Vyel01], ifp>p%;
we (p,y) =3/2 Yye[0,1], ifp=p".

Therefore, we obtain the following equilibria: p =0, p =1, and p = p*.

Appendix A.2. Proof of Lemma 3

Suppose 5 < & < 1. In this case, the summary utility function takes the following form:

y[2a(p+¢e) —1] = 3a(p +¢) +3) ifo<p<l—e
we (p,y) = qy[2e —1] — 30 +3 ifl-e<p<e
yl(p—e)(2—2a)+2a—1]+(B3—-3a)(1—p+e) ife<p<l1,

Note that0 < 1 — % 2 < 1; consider again p* = i —¢eand p = % %Z + €.

(a) Denote with hl(y) = y[2a(p+e¢) —1] —3a(p +¢) +3). If « = 0, the function hy(y)
decreases throughout the entire interval [0,1]. If « > 0, h;(y) decreases on [0, 1] if
p < p*, is constant on [0,1] if p = p*, and increases on [0,1] if p > p*. Moreover,

p* =2 0ifand only if & € }0,%},Whﬂe p*<1—c¢ifand onlyifa € {%,1]

(b) Denote with hy(y) := y[2a — 1] — 3a + 3; the function h;(y) decreases throughout the
entire interval [0, 1] if &« < %, is constant on the interval [0,1] if &« = %, and increases
throughout the entire interval [0, 1] if &« > %

(c) Denote with h3(y) :=y[(p —€)(2—2a)+2a — 1]+ (3—3a)(1 —p+e). Iffa =1, the
function h3(y) increases throughout the entire interval [0,1]. If « < 1, the function
h3(y) decreases on [0,1] for p < p, is constant on [0,1] for p = p, and increases
throughout the entire interval [0,1] if p > p. Moreover, p < 1if and only if & €
1= £,1], while p > e if and only if a € [0,

It follows that

- Ifwe [O 1-— { the function y — w%(p, y) decreases on [0, 1] for every p € [0,1].
- Ifa=1-4, then the function y — w¥(p,y) decreases on [0,1] for p < p =1, and is

constantin [0,1] forp = p = 1.

- Ifae }1 -1,1 [, the function y — w¥(p,y) decreases on [0, 1] for p < p, is constant

on [0,1] for p = p, and increases on [0, 1] for p > p.
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(i)

(i)

(iii)

(iv)

v)

If & = , the function y — w*(p,y) decreases on [0,1] for p < 1 — ¢, is constant in [0, 1]
for1 —e < p < ¢ and increases on [0, 1] for p > «.

Ifa € ] 11 {, the function y — w¥(p,y) decreases on [0, 1] for p < p*, is constant on
[0,1] for p = p*, increases on [0, 1] for p > p*.

If & = 5, the function y — w?(p, y) increases on [0, 1] for p > p* = 0, and is constant
forp =p* =0.

Ifa € } %= 1} , the function y — w¥(p,y) increases on [0, 1] for every p € [0, 1].

The equilibria are computed as follows:

Fora € [0,1 — %[,
we (p,0) > wi(p,y) Yy e€]0,1], forall p € 0,1].

Therefore, we only have the following equilibrium: p = 0.
Fora € {17%,%[,
we (p,0) > we(py) vy €)0,1], ifp < p;
we(p,1) > welpy) Vye[01] ifp>p;
we(py) =3/2 Vye[01], ifp=p.

Therefore, we have the following equilibria: p = 0, p = 1, and p = p. Note that for
& = 1— 2 we obtain the following: p = 1.

Forzxz%,
we (p,0) > wi(p,y) Vye€|o,1], ifp<l—g
we(p,1) >we(py) Vye[01] ifp>¢
we(p,y) =3/2 Yyel0,1], ifl—e<p<e

In this case, we have an infinite number of equilibria: p = 0, p = 1, and every
pel—ge

Forae]%,% ,
we (p,0) > we(p,y) Vy€l0,1], ifp <p;
we (p,1) > we (p,y) Yy €0,1], ifp>p*;
wi(p,y) =3/2 Vyel0,1], ifp=p*.

Therefore, we have three equilibria: p = 0, p = 1, and p = p*. Note that for x = 2%,

p*=0.
Forae]%,l},
wi(p,1) > wh(p,y) Yyel0,1], forall pe0,1].

Therefore, we have a unique equilibrium: p = 1.

Appendix A.3. Proof of Theorem 1

. a - .
For every player i and every v € N, let w; be the summary utility function of the
Xy

game G;", ie.,

o
wi,v

v (0,T) =gy [ inf u;, (b, T)

+(1—a;y) [ sup U, (bj, T)] V(o,T) €eZXZ,

bi€viy(o bi€7iy(0)
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and w{ be the summary utility function of the game G*, i.e.,

wi(o,T) = vci[ inf u;(b;, T):| +(1—a;)| sup u;(b;,7)| V(o T)EXL XL
bi€yi(7) bicyi(o)

The continuous convergence of the sequence of functions {wf{;}veN to the function wf, for
every i € I, guarantees the result. In fact, if {0} } ey C Zis a sequence convergingtoc* € &
such that, for every v € N, (v, (03 ), 0;) is an a-MEU psychological Nash equilibrium of
Gy, then it follows that, for every player i,

wiy (05, 07) = Wiy (07, (i, 0%1,))  Vyi € B
Applying the continuous convergence of {w;"}, ey to w}, we obtain the following:

b (0°,0%) = Jim iy (07,07) > Jim Wy (07, (1 0%3,) = 0 (0, (0%,)) Vo € .
This latter inequality implies that (y(c*), ") is an a-MEU psychological Nash equilibrium
of G*. Therefore, the proof reduces when verifying the continuous convergence of {w;" },en
to w?. That is, we need to check that for every (0,7) € X x X and for every sequence
{(0v, ) }ven converging to (o, T) we obtain the following inequalities:

lill}Ls;:p wff{,((rv, ) < w¥(o,7) < hﬂg}f w;’fz((fu, ). (A1)
Denote with
wTv(U' T) = inf ui,v(bir T), w%(a, T) = sup ui,v(bir T)'
bie')'i,v (o hie’Yi,v(U)
and
o= it wtD),  ate = sup o)
bi€i(0) bi€yi(o)

Consider (¢, 7) € ¥ x X and take a sequence {(0y, Ty) },en converging to (o, T). Now
we prove the following:

lim_)sup w;ﬁ,((f,,, T,) <w'(0,T) < liggiogf wZZU((TV, ),
vV—r00

and

. M M s M
lim sup wirv((f,,, ) <w'(o,T) < hgggfwilv(av,rv).

1
V—00

First, we show that

w' (o, 7) < liminfw! (0v, T) <resp. wf-w((r, T) = limsup w!, (oy, T,/)).
v—roo ’ V—00 !
Suppose by contradiction that we have the following:
w}' (o, T) > liminfw} (0y, 7)) (resp. wM (o, 7) < limsup w (0y, Ty)) . (A2)
voee v—00 ’
This means that along a subsequence {(0y,, Ty, ) } ke, we have the following:

kh_}rglo wily, (0, T,) < wi' (0, 7) (resp. kh—{?o w%k(a,/k,nk) > wM(o, T)) (A3)
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Additionally, the continuity of u; and u; ,, for every v and the compactness of the images
of 7v; and v;,, for every v, guarantee the following: exist b/* € v;(c) and b", € 7;,(0v),
(resp. blM € 7(0) and b% € iy (0v)), for every v, such that we have the following:

wi'(o,T) = u;i(b", 7) = bveigf(a) ui(bi, T), (feSP- wM (o, ) = u; (b}, 1) = . SuI(J )Mi(bi, T))
i i i€7i(0

and

w?jv (‘TV/ TV) = ui,v(b?jw TV) = inf ui,v(bi,vr Tv)/

bi,V e')’i,l/ (‘71/)

<resp. w%(av,rv) = ui,,,(b%, )= sup uj,(bi,, Ty)>.
bi,l/ €%y (UV)

Consider the sequence of beliefs {b?},k}keN/ (resp. {b%k}keN), obtained along the
subsequence {(0y,, Ty, ) }ken, as in (A3). The sequence {bka}keN, (resp. {b%k}keN), has
a subsequence {bfvh}heN, (resp. {b%h}heN ), which converges to a point 15;-" € B;, (resp.
E,M € B; ), since B; is compact. The point E;”, (resp. f)fw), actually belongs to ;(¢). In

fact, by definition, the upper limit Lim sup v;, (0,,) contains the limits of every converging
V—00

subsequence of {b}}, }en, (resp. {b%k} keN); that is,

E;-”, BlM € Liir;sup Yiv (o).

Moreover, {; , },en is sequentially upper-convergent to y;, meaning that Lim sup ; , (0,,) C
vV—r00

7i(0); therefore, b, bM € (). By construction u; (b, T) < u; (0", 7) (resp. u;(bM, 1) >
ui(leM, T)). The sequence {u;, },cn sequentially converges to u;; since (b;’fvh, 7,) — (b, 1),
(resp. (WM ,7,) — (BlM, 7)), we obtain the following:

i,Vh

”i(gzmrT) = hh—I>I010 Uiy, (bfvh’TVh)/ (resp. ui(BzM' T) = hh_?;‘o Uiy, (b%h’rvh))'
Hence,

wi' (0, 7) = ui(b", 1) <ui(bj",7) = hh—I>Io10 Ui, (bth’ Ty,) = hll_I>Iolo wth (v, Ty,
(resp. wM(o, 1) = u;(bM, 1) > u;(bM, 1) = lim ui/Vh(b%h’TVh) = lim w%h (th,ryh)).
h—c0 ’ h—oo
Then, inequality (A3) implies that
m

w;n (‘7' T) < hh—r>1<’>10 Wiy, (UVh' TVh) < w;n (0’, T)/

(resp. wM(o, 1) = hlgn w%h(avh,rvh) > wM(o, T)),
(e 9)

which results in a contradiction. So,

wi (o, 7) < liminfw}, (0, T), (resp. wM(o, 1) = limsup wM (o, Ty)) .
v—reo ’ V—+00 !
Now we show the following:

w;' (o, T) > limsup w;’, (0, ), (resp. wM(o,7) < ligr_l)glf w%(av, Ty)).
V—00
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Let b € ;(0) (resp. bM € v;(0)) be such that

w;(b",7) = inf u;(b;, ) = wl(o,T) |resp. u;(bM,7) = sup u;(b;,7) =wM(0o,7) .
bi€yi(7) bi€vi(o)

The points b and b exist because of the continuity of 1; and the compactness of 7;(c) for
every o € X. Since the sequence {7;, },¢n is sequentially convergent to v;, i.e.,

Yi ((7) c L}/Iggonf Yiv (Jv)/

then, by definition, there exists a sequence {b; b ! }Jven converging to b, (resp. {E%}VGN

converging to bM) such that, for every v, b]} € 'yl v(0v) (resp. bl L €7, ,,((TV))
The sequence {u;, },en sequentially converges to u;; it follows that

M) 2wk, 7).

lim sup u;,, (b},
v—00 ’

T,) < u; (b, 1), <resp. liﬂicgfuirv(l;

By construction, for every v € N, we have the following;:

~

w:‘ﬁ/ (0v, ) < Uiy (b?jw ), (resp- w% (ov, ™) = Uiy (B%/ Tv)) .
This finally implies the following:

lim sup wfv(av, Ty) < limsup u,-,V(ISTV, ) < u(bf, T) = wi'(o, 1),

e d V—00
resp. liminfwM (0, 7,) > limsup u; , (b, 1) > u;(bM, 1) = wM(o, 1) ).
v—oo ! V—00 !

So, we obtain the following:

lim_}sup wl’-ﬁ/(av, ) <w!'(0,T) < livnliogf w?fv (0, ™)
vV—r00

and
lim sup w%((fv, 7)) < wM(

m su 0,7T) < hﬂi{gfw%(av,rv).

Hence, from the properties of the upper and lower limits, we obtain the following:

lim sup w?";(m/, T,) = lim sup [vci,vwi’?v(ay, )+ (1 —g; U)ZUM(O’V, Ty)} <
V—00 vV—00

lim sup &; , wj', (0, T) + limsup(1 — &; 1,)wM (0v, ™) <
V—00 V—00

(lim sup uci/v) (lim sup w?fv(av, TU)) + (lim sup(1— tXi’V)) (lim sup w%(av, TV)> <

V—r00 V—co V—co V—r00
aiwf' (0, 7) + (1 - a)wi (o, 7),

and
aiwf (o, 7) + (1 — a)w} (0, 7)

<
(livfgg}f“i,v) (li]gglfwl'{’v((fv, TV)) (hvrgg}f(l — iy ) (hﬂg}fw (o, Tv)> <
M

(

liminfa; ,w}, (6v, ) + liminf(1 — a; , )w;,

V—00 vV—o0
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li]giogf [wilvwfv(av, )+ (1— wi,u)w%(%, TU)} = hﬁgi{gf wff;((fv, ).

Condition (A1) is satisfied and {w?‘;}veN continuously converges to wy.

Appendix A.4. Proof of Lemma 4

For every pair of strategic profiles (p,r) and (x,y), we have the following:

Ui (m(xy), (pr)) =a| min u(g, (w))} +(1—a) l max_ u1(q, (p, r))]-
qem (xy) gem(xy)

Recalling the form of 1, we obtain the following;:

argmin uy (4, (p, r)) = arg minus (g, (p, 7)) =

gem(xvy) g€[0]
0 ifp<l—rv,
argmin[2§(1—p —r) —8pr+5p+5r—3] =< [0,1] ifp=1—r,
gelo] 1 ifp>1-r,

and

argmaxuq (g, (p,r)) = argmaxuy (g, (p, 1)) =
gem (xy) qe(01]

1 ifp<l-—rv,
argmax[2§(1 —p—r) —8pr+5p+5r—3]=¢[0,1] ifp=1-r,
7€01] 0  ifp>1-—r

Therefore, given the two strategic profiles (x,y) and (p, 1),

—8pr+5p+5r—3 ifp<l—r,

qem(xy) —8pr+3p+3r—1 ifp>1-rv,

min (7, (p, 7)) = {

and

max u1(q, (p,7)) =

—8pr+5p+5r—-3 ifp=21—r,
qem(xy)

—8pr+3p+3r—1 ifp<l—r.
Hence, the summary utility function has the following form:
wi((xy), (p,r)) = Ui (n(xy). (pr) =

p(5—8r—2a)+5r—3—2ar+2a ifp>1-r,

p(8—8r+2a)+3r—1+2ar—2a ifp<l-—r,

p(5—8r)+5r—3 ifp=1-—r.
Recall that

BRi(r) = {p € Za |wi((p,7), (p,7)) = wi((p,7), (x,7)), Vx € Za}.

In order to construct BR{ (r), note the following:

e Ifp>1-—r,the function w{((x,y), (p,r)) increases on p for r < 2%, is constant for
r= 5’82”‘, decreasing for r > 5%2"‘;

e If p <1—r,thefunction wf((x,y), (p,r)) increases on p for r < %, is constant for
r= 3*'82"‘, decreasing for r > %;

e If p =1—r, the function w{((x,v), (p,7)) is constant on p since w§((x,y), (p,7)) =
8r2 — 8r +2.
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We need to distinguish three cases:

Suppose & < 1/2; in this case, we have that

342« < 52«
8 8

Therefore, for every (x,y), we have the following:
- Ifr < 32 then w¥((x,y), (-, r)) increases on [0, 1] and attains the maximum for

p=1L1

- Ifr =32 then w?((x,y), (-,r)) is constant on [0,1 — r], increases on [1 — 7, 1],
and attains the maximum for p = 1.

- I < < L thenw{((x,y), (-, 1)) decreases on [0, 1 — 7], increases on [1 —r, 1],
and attains the maximum for p = 1.

- Ifr =1, thenw}((x,y), (-,r)) decreases on [0,1 — r], increases on [1 — r,1], and
attains the maximum for p = 1 and p = 0.

- If1/2 < r < 22, then w§((x,y), (-, r)) decreases on [0,1 — ], increases on
[1 —r,1], and attains the maximum for p = 0.

- Ifr= 22 then w!((x,y), (-, r)) decreases on [0,1 — r], is constant on [1 — r, 1],

8 7
and attains the maximum for p = 0.
- Ifr > 2% then w}((x,y), (p,r)) decreases on [0,1] and attains the maximum
for p = 0.
It follows that
1 if r € 0,1/2],
BRS(r) = { {0,1} ifr=1/2,
0 ifr €]1/2,1].

Suppose & = 1/2; in this case, we have that

3+ 2« 5—2un 1
8 8 2

Therefore, for every (x,y), we have the following:
- Ifr < %, then w{ ((x,y), (-, 7)), increases on [0, 1], and attains the maximum for
p=1
- Ifr=1, thenw¥((x,y), (-, r)) is constant on [0, 1]; therefore, every p € [0,1] isa
maximum point.
- Ifr > 1, then w{((x,y), (-,r)) decreases on [0,1] and attains the maximum for
p=0.
In this case,
1 ifrelo,1/2],
BRY(r) =4 [0,1] ifr=1/2,
0 ifrej1/2,1].

Suppose & > 1/2; in this case, we have that

342« S 52«
8 8

Therefore, for every (x,y), we have the following:

- Ifr < 232, then w%((x,y), (-, 7)) increases on [0, 1] and attains the maximum for

8
p=1L1
- Ifr =22 thenw}((x,y), (-,r)) increases on [0, 1 —r] and is constant on [1 — r, 1];

therefore, every p € [1 —r,1] is a maximum point.
- IR <y < H2 then w?((x,y), (-, 7)) increases on [0,1 — 7], decreases in
[1—r,1], and attains the maximum for p =1 —r.
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- Ifr= 322"‘, then wf ((x,y), (-,r)) is constanton [0, 1 — r] and decreases on [1 —, 1J;
therefore, every p € [0,1 — r| is a maximum point.

- Ifr > 32 then w?((x,y), (-, r)) decreases on [0,1] and attains the maximum for
p=0.

In this case,

1 ifre [0,22],

[3+820(, 1} ifr = 57821X/
BRY(r) =< 1—7 ifre 22, 342,

[O, 5—8206} ifr = 3—‘%206,

0 if r e 3422 1].

The equilibria computation follows immediately from the fixed points of the best reply
correspondences.

Appendix B

The counterexample in Section 5 highlights that the lack of existence of equilibria
depends on the lack of convexity of the best reply correspondence, which, in turn, depends
on the lack of quasi-concavity of the player’s utility with respect to their own strategy. Now,
it is clear that the lack of quasi-concavity is due to the presence (in the utility function) of
the max operator, with respect to beliefs. In the quoted example, only second-order beliefs
play a role in a player’s utility. Now, since second-order beliefs directly depend on the
player’s strategy, the natural question is whether the presence of the max operator with
respect only to first-order beliefs still affects the quasi-concavity of the utility functions in
the classical models under strategic ambiguity (i.e., without psychological utilities). Below,
we analyze this issue.

In order to focus on the mathematical problem, we consider the following simple form
of strategic ambiguity: for every mixed strategy profile (¢;,0_;), agent i does not observe
precisely o_; but considers as consistent any belief (9) in a given subset y;(0;,0_;) C X;.
For each belief g € ;(0;,0_;), his expected utility would be'’

ui(oi,q) = ) oia)ui(a;q) = ) oi(ai)| ), qla_i)ii(a,a;)
a;€A; a;€A; a_j€A_;

so that an optimistic player. player i (i.e. a; = 0), has the following utility function
U; : ¥ — R defined by the following:

ui(o'ilg'_i) = max ui((fl-,q) v ((Ti,(T_,‘) €z,
q€7i(oi,o—;)

where 7; : X ~» X_; is the belief correspondence.
Now, it follows immediately that the function U; is concave with respect to o; if the
set-valued map M : X ~ ¥._;, defined by

M;(0i,0-;) = argmax u;(0;,q) V(0j,0;) €X
q€vi(0i,0-;)

depends only ono_;, i.e.,
Mi(Ul{,U_i) = Ml'(O'iII,(T_i) VU'I'/,U;/ € ;. (A4)

In fact, in this case, we immediately have that—for any arbitrary o_;—there exists §, such
that, for every t € [0,1],
G € M;(to] + (1 —t)o!',0_;);
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SO

Ui(oj, o) = ui(07,q), Ui(o',0_;) = ui(e],§), Ui(to] + (1 — t)oi’,0_;) = ui(to] + (1 —t)o}’, §)

1

and
Ui(to; + (1 =)o}, 0;) = tU;(0f, o) + (1 = t)Ui (0], 0—4),

implying that U; is concave with respect to ;.

When condition (A4) does not hold, utilities are not always quasi-concave. So, the best
reply correspondences do not have convex values and equilibria may not exist, as shown
in the example below.

Example A1l. We consider a two-player game: the pure strategy set of Player 1 (Anne) is A1 =
{Accept, Reject} and the pure strategy set of Player 2 (John) is Ay = { Accept, Reject}. The
game is represented as follows (Table A1):

Table Al. Game form for Example Al.

John Accept Reject
Anne
Accept 1,0 0,2
Reject 0,1 2,0

As usual, p is the mixed strategy of Player 1, where, with an abuse of notation, p is the probability
of Accept and 1 — p is the probability of Reject. Similarly, r is the mixed strategy of Player 2, where,
with an abuse of notation, r is the probability of Accept and 1 — r is the probability of Reject. John’s
utility is assumed to be the classical expected utility without ambiguity. Anne, on the other hand, faces
ambiguity: she does not observe r but, if the chosen strategy profile is (p,r), she perceives as consistent
all the beliefs q (where q is the probability of John's Accept and 1 — r is the probability of John’s Reject)
that belong to 1 (p, ), where 7y, is Anne’s belief correspondence defined by the following'’:

r ifpel0,1/2],

mn(pr) = {[0,1] ifpell/2,1].

For every strategy (p) and belief (), the expected utility of Anne is as follows:

ur(p,q) =3pq —2p —2q +2.

Now, let a1 = 0 be Anne’s ambiguity attitude parameter. We have the following:

7 ifpel0,1/2],

0 ifpe(1/2,2/3],
argmaxtu(q, (p,r)) = argmax[3pq —2p — 29+ 2] = ’
7em (pr) 7em (pr) [0,1] ifp=2/3,

1 ifpe2/31)
Therefore,

3pr—2p—2r+2 ifpe0,1/2],
Ui(p,r) = max u(p,q) = { —2p+2 ifpe(1/2,2/3],
=i p if p €2/3,1]
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Now, we compute Anne’s best reply:
BRi(r) ={p € [0,1]|Us(p,r) = U1(x,7), Vx € [0,1]}.

Note that we have the following:

- CASE p € [1/2,1], the function U, attains the maximum value 1 in the two maximum points
p=1/2, p=1, foreveryr € [0,1], i.e.,

max Ui(p,r) =Uy(1/2,r) =Us(1,r) =1, Vrel0,1].
pell/2]]

- CASE p € [0,1/2] the function

(a) strictly decreases on p for v € [0,2/3] and attains the maximum for p = 0, so

max Uj(p,r) =2-—2r.
peloara] 1(p7)

Note that
2-2r>1 <= re(0,1/2]

(b) s constant on p forr =2/3:
Ui(p,2/3)=2/3 VYpel01]
(c) strictly increases on p for r €]2/3,1] and attains no maximum points because the domain is
not closed, but, in this case, we have the following:

Ul(p,r):3pr—2p—2r+2<gr—1—2r+2:1—%r<1.

We have the following:
{0} ifre /2]
BRi(r) = ¢ {0,1/2,1} ifr=1/2,
{1/2,1}  ifr€j1/2,1].

The best reply of Player 2 can be easily computed, as there are no psychological effects:

1 ifpel0,1/3],
BRy(p) ={10,1] ifp=1/3,
0 if p €]1/3,1].

It immediately follows that there are no equilibria.

Notes

1

The literature on psychological games has increased considerably in the past decades; we recall [8] for further theoretical findings,
refs. [9-11] for some applications, and [12,13] for surveys on psychological games and references.

Optimistic and intermediate attitudes actually have strong empirical support (see for example [21]).

See [7] for additional details on the topological and metric structure of the beliefs space.

The self-confirming (or conjectural) equilibrium was first studied in [36,37]. In [5], the definition was extended by taking into
account different attitudes toward ambiguity or model uncertainty.

See the Introduction section in [5].

Note that, lower and upper semi-continuous set-valued maps (or correspondences) are also often denoted in the literature,
respectively, as lower and upper hemi-continuous set-valued maps. However, we follow the notation in the book [38].

The game considered in Example 3.4 in [7] is different from the one presented in the present paper; however, ambiguous
hierarchies of beliefs have the same structure.

For technical reasons, we consider the case where functions take values in R = R U {—o00, +00}.
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The function u; is the one appearing in the construction of U; (see Equation (2)).

10 Note that, in this section, the value of «, such that p* and p are not defined, is studied separately.

1 In this section, with the abuse of notation, we denote with 7i; : A — R the classical utility function defined over the set of pure
strategic profiles, and with u; : ¥ — R the classical expected utility.

12 In this particular example, the belief correspondence depends only on p.This is the simplest model to show the mathematical
property we look at.
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