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SECTOR-SPECIFIC FINANCIAL FORECASTING
WITH MACHINE LEARNING ALGORITHM
AND SHAP INTERACTION VALUES

CANSU ERGENC!, RAFET AKTAS?

Abstract This study examines the application of machine learning models to predict financial performance
in various sectors, using data from 21 companies listed in the BIST100 index (2013-2023). The
primary objective is to assess the potential of these models in improving financial forecast accu-
racy and to emphasize the need for transparent, explainable approaches in finance. A range of
machine learning models, including Linear Regression, Ridge, Lasso, Decision Tree, Bagging, Ran-
dom Forest, AdaBoost, Gradient Boosting (GBM), LightGBM, and XGBoost, were evaluated. Gra-
dient Boosting emerged as the best-performing model, with ensemble methods generally
demonstrating superior accuracy and stability compared to linear models. To enhance interpret-
ability, SHAP (SHapley Additive exPlanations) values were utilized, identifying the most influen-
tial variables affecting predictions and providing insights into model behavior. Sector-based anal-
yses further revealed differences in model performance and feature impacts, offering a granular
understanding of financial dynamics across industries. The findings highlight the effectiveness of
machine learning, particularly ensemble methods, in forecasting financial performance. The
study underscores the importance of using explainable models in finance to build trust and sup-
port decision-making. By integrating advanced techniques with interpretability tools, this re-
search contributes to financial technology, advancing the adoption of machine learning in data-
driven investment strategies.

JEL classification: C51, C52, C53
Keywords: Machine Learning Models, SHAP, Financial Forecasting

Received: 31.07.2024 Accepted: 15.11.2024

Cite this:

Ergeng, C. & Aktas, R. (2025). Sector-specific financial forecasting with machine learning algorithm and SHAP interaction values. Financial Internet
Quarterly 21(1), pp. 42-66.

© 2025 Cansu Ergenc¢ and Rafet Aktas, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 3.0 License.

! Ankara Yildirim Beyazit University, Ankara, Turkey, e-mail: cansuergenc@aybu.edu.tr, ORCID: https://orcid.org/0000-0002-4722-0911.
2 Ankara Yildirim Beyazit University, Ankara, Turkey, e-mail: raktas@aybu.edu.tr, ORCID: https://orcid.org/0009-0008-8033-4604.

www.finquarterly.com

University of Information Technology and Management in Rzeszéw |41



Cansu Ergenc, Rafet Aktag
Sector-specific financial forecasting with machine learning algorithm and SHAP

interaction values

INTRODUCTION

Financial performance has always been crucial for
companies, impacting nations globally. It is crucial for
all countries and companies (Perrini et al., 2011;
Barauskaite & Streimikiene, 2020). In recent years, the
combination of finance and artificial intelligence has
not just led to progress, but a transformation in finan-
cial forecasting (Lin, 2019; Nguyen et al., 2022; Avelar
& Jorddo, 2024). Machine learning algorithms also play
a major role in this transformation. Because machine
learning algorithms have provided advanced tech-
niques that can process large amounts of data, identify
patterns, and make predictions with unprecedented
accuracy (Zhou et al., 2017; Mahalakshmi et al., 2022;
Bouchefry & De Souza, 2020). Learning from historical
data and adapting to new information, which is a fea-
ture of machine learning models, and the performance
of models that improve over time are very important
developments for finance (Pandey & Sergeeva, 2022;
lonescu & Diaconita, 2023; George, 2024).

The place of accurate financial forecasting for fi-
nancial markets is undeniable (Penman, 2002; Samo-
nas, 2015; Kumar, 2017; Barnhizer & Barnhizer, 2019;
Sastry, 2020; Massei, 2023). Investors reduce their fi-
nancial risks and make informed investments by mak-
ing the right investment decisions for accurate financial
forecasts. Financial analysts, on the other hand, make
recommendations to market participants in line with
the results obtained from financial forecasts (Ramnath
et al., 2008; Samonas, 2015; Magnan et al., 2015).

Policy makers use financial forecasts to prevent
possible financial crises and guide the current econo-
my. Managers can benefit from these financial fore-
casts in their strategic decisions regarding budgeting
(Ramnath et al., 2008; Oliva & Watson, 2009; Magnan
et al.,, 2015; Ballings et al., 2015; Geng et al., 2015).
With such results, machine learning models are rapidly
gaining acceptance in the field of finance.

When machine learning models used in financial
forecasting are examined, it is seen that methods such
as neural networks, decision trees and ensemble meth-
ods are used. Each method has its own advantages and
disadvantages (Katal et al., 2013; Provost & Fawcett,
2013; Chen & Zhang, 2014; Najafabadi et al., 2015). The
performances of these methods vary depending on the
structure and size of the data used. The fact that these
models give good results despite the complex structure
of financial data has caused them to be preferred in
areas such as credit risks, stock income, and estimating
the total income of companies. In addition, the use of
big data technologies has enabled the processing and
analysis of large data sets, which has increased the pre-
cision and reliability of financial forecasts (Oliva & Wat-
son, 2009; Provost & Fawcett, 2013; Chen & Zhang,
2014; Zhou et al., 2017).
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BIST100 index is an important indicator of the Turk-
ish stock market, which includes a wide range of sec-
tors. Therefore, it provides a very comprehensive da-
taset in terms of financial data estimation, where the
performance of machine learning models is evaluated.
This research evaluates the performance of machine
learning models in financial data. This evaluation is car-
ried out both on the general performance of compa-
nies listed in BIST100 between 2013-2023 and on
a sectoral basis. As a result, both the performance of
machine learning models in financial markets and their
performance on a sectoral basis are examined.

Our study uses SHAP (SHapley Additive Explana-
tions) values in addition to traditional performance
measures to interpret machine learning models. SHAP
values increase the transparency and explainability of
complex ML algorithms by providing insights into fea-
ture importance and interaction effects (Bhattacharya,
2022; Li, 2022; Baptista et al., 2022; Baptista, 2022). By
examining SHAP values, this research not only evalu-
ates the predictive accuracy of the models, but also
clarifies the key factors affecting financial results. Thus,
the importance of the variables in the models used for
the model is also examined. The results of this study
will be valuable for both academic research and real-
world use and will provide important insights for inves-
tors, financial analysts, and policy makers. The rest of
this paper is structured as follows. Section 2 provides
a literature review of the machine learning forecasting
models and factors that influence financial perfor-
mance. Section 3 presents the methodology and sum-
marizes nine machine learning models used to forecast
financial performance. The results obtained are dis-
cussed in Section 4. Finally, the conclusion is presented
in Section 5.

LITERATURE REVIEW

In recent years, there has been considerable pro-
gress in financial forecasting using machine learning
algorithms. Machine learning models are increasingly
used in the financial sector to predict stock prices and
classification (Sonkavde, 2023). Traditional models such
as linear regression are still used (Gzar et al., 2022).
Especially in predicting results based on input features,
linear regression is a highly preferred model due to its
simplicity and interpretability (Rosenbusch et al., 2019;
Ryll ve Seidens, 2019; Seno, 2023). Machine learning
models have been used in a wide range of financial
domains for purposes such as credit default prediction
and tourism demand forecasting, providing valuable
insights for economic analysis and crisis detection, and
have demonstrated the versatility and effectiveness of
these algorithms in different sectors (Fan, 2023; Clav-
eria et al., 2015; Afreen, 2020).
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Linear regression is often complemented by other
algorithms such as ridge regression, lasso regression
and support vector regression to increase prediction
accuracy (Xiao et al., 2020; Yoo et al., 2022). In addi-
tion, studies compare performance with models such
as Random Forest, XGBoost and LSTM (Sonkavde,
2023). With the use of machine learning models in the
financial sector, which model will fit the data better has
become an important issue (Long et al., 2022; Akinrino-
la, 2024). Decision trees, which are a frequently used
model among machine learning models, are preferred
due to their effectiveness, interpretability and ease of
visualization (Kourtellis et al., 2016; Moshkov, 1997;
Azad et al., 2022; Poojitha & Kanagasabai, 2022). The
structure of financial data is complex and variable, and
Gradient Boosting, which has shown significant success
in various practical applications due to its ability to han-
dle complex relationships and produce accurate predic-
tions in the use of such data, can be preferred (Natekin
& Knoll, 2013; Chen, 2016; Kadiyala & Kumar, 2018;
Davis et al., 2020). Along with this method, radiant
Boosting algorithms such as XGBoost, LightGBM and
others have become popular choices in the machine
learning community due to their effectiveness in im-
proving model performance and prediction accuracy
(Mienye & Sun, 2022; Siringoringo et al., 2021; Zhang et
al., 2011).

LightGBM has been compared with other machine
learning models such as Random Forest, XGBoost, and
traditional gradient boosting in the literature, and has
outperformed these models in terms of performance,
speed, accuracy, and efficiency (Fraz, 2024; Grissa et
al., 2020; Unal et al., 2021; Jiang, 2024). LightGBM has
been successfully used in various fields, including
health, environmental science, finance, and geology
(Rufo et al.,, 2021; Su et al.,, 2021; Park et al., 2021;
Dong et al., 2022; Ko et al., 2022; Jiang, 2024; Xiang,
2024; Wang, 2024). Furthermore, the versatility of
LightGBM is evident in its applications in various fields
such as fault detection in wind turbines (Tang et al.,
2020), intrusion detection in loT systems (Zhao et al.,
2023), fraud detection in banking data (Hashemi et al.,
2023), and malware detection (Onoja et al., 2022). An-
other alternative to LightGBM is the XGBoost model.
The XGBoost algorithm has been shown to exhibit very
high accuracy and performance on various datasets
(Chen, 2016; Kareem et al., 2023). It has been success-
fully used in various fields including election prediction
(Suacana, 2024), aircraft icing severity assessment (Li et
al., 2020), surface milling accuracy (Abbas, 2023), anal-
ysis of imbalanced data (Zhang et al., 2022), and predic-
tion and optimization tasks (Zhang, 2024). It has been
used in various applications such as jaundice detection
in newborns (Abdulrazzak, 2024), fault detection in
photovoltaic panels (Sairam, 2020), outcome prediction
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in healthcare (Deng et al., 2022) and cervical cancer
screening (Edafetanure-lbeh, 2024), line loss prediction
(Wang et al., 2017), Arctic navigation risk assessment
(Yao et al., 2023), PM2.5 concentration estimation
(Pan, 2018) and permeate flux prediction in osmosis
processes (Shi et al., 2022).

SHAP interaction values are very important for in-
creasing the accuracy of machine learning models. They
improve model interpretability by capturing local inter-
action effects between features, especially in models
built on financial data (Orsini et al., 2022; Zern et al.,
2023). In addition, SHAP interaction values ensure con-
sistent individualized feature attribution for tree com-
munities, providing consistent explanations for interac-
tion effects in individual predictions (Lundberg et al.,
2018; Mitchell et al., 2022). Using SHAP interaction
values makes models more understandable and allows
for a quantitative study of interaction effects (Long et
al., 2022; Martini et al., 2022). As a result, it provides
a unified approach to interpret complex model predic-
tions and contributes to a more comprehensive under-
standing of model behavior (Li et al., 2020; Lundberg et
al., 2020).

METHODOLOGY

In this section, we present the approach used to
forecast the financial performance of companies listed
on the BIST100 index from 2013 to 2023. The dataset
consists of financial metrics such as Net Income, Total
Assets, Total Liabilities, and Shareholders' Equity, which
serve as the independent variables, while Total Reve-
nue is the target variable. The data is split into a train-
ing set (80%) and a test set (20%) to ensure proper
evaluation of model performance. We employ ten ma-
chine learning models: Linear Regression, Ridge Regres-
sion, Lasso Regression, Decision Tree, Bagging, Random
Forest, AdaBoost, Gradient Boosting (GBM), LightGBM,
and XGBoost. These models are chosen due to their
varying complexity and ability to handle different types
of financial data. We apply several evaluation metrics,
including Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE), to assess the
accuracy and robustness of the models. Each model's
predictive performance is compared against the test
set to evaluate its ability to generalize.

To enhance model interpretability, we use SHAP
(SHapley Additive exPlanations) values, which allow us
to assess the contribution of each input variable to the
model’s predictions. This helps in understanding the
importance of financial metrics like Net Profit, Long-
Term Liabilities, and Total Assets in driving financial
performance outcomes. Additionally, we ensure that all
models are configured to account for the temporal na-
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ture of the data, although no explicit time-series mod-
els were used. Neighboring vectors of data are consid-
ered within the framework of machine learning models
to ensure that the time context is respected during
training and predictions.

MACHINE LEARNING MODELS
LINEAR REGRESSION

Linear regression analysis assumes a linear rela-
tionship among multiple variables (Schroeder et al.,
2016). The general Linear Regression model can be
stated by the equation below:

Vi =B+ BXy+ B Xy +o+ B X+ & (1)

where, y; dependent variable, x; explanatory variables,
Bo constant term, By slope coefficients for each explan-
atory variable, § the model's error term.

RIDGE REGRESSION

Ridge regression is an extension of linear regres-
sion, known for its bias-variance trade-off control that
provides a balance between model complexity and
generalization performance, is a valuable technique
used to address multicollinearity in datasets where
independent  variables are highly correlated
(Malthouse, 1999; Kibria & Saleh, 2004; Khalaf, 2012;
Kumar et al., 2021). By adding a penalty term to the
OLS method, ridge regression helps to stabilize the pre-
dictions and prevent overfitting, making it a more relia-
ble and consistent method for modeling relationships
between variables (Xin & Khalid, 2018; Wei & Digerleri,
2020; Li, 2024). Ridge regression minimizes the follow-
ing cost function:

. n P p

B= argmln{Z(yi _ﬂo _Zﬂjxij)z +lZﬂf} (2)
i-1 j=1 j=1

where A is the regularization parameter.

LASSO REGRESSION

Lasso regression is a widely used technique in re-
gression analysis known for its ability to perform varia-
ble selection and regularization (Rajaratnam et al.,,
2015; Signorino & Kirchner, 2018; Friedman et al.,
2010). Lasso regression minimizes the following cost
function:

N ) n P P

B= argmln{Z(yi -5 _Zﬂjxij)z +/12|ﬁj |} (3)
i-1 j=1 j=1

where A is the regularization parameter.

DECISION TREE

A decision tree is a decision support tool that uses
a tree-like graph to represent decisions and their po-
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tential outcomes, aiding in understanding complex sce-
narios and making predictions based on input data (Lo
et al., 2014). The prediction for a decision tree is given
by:

f(X)ZiWnJ(XERm) (4)

where M is the number of terminal nodes, w,, is the
predicted value in region R,, and I(:) is an indicator
function.

BAGGING

Bagging, short for bootstrap aggregating, is a tech-
nique that involves generating multiple versions of
a predictor by resampling the training data and then
aggregating these predictors to create a more robust
and accurate model (Breiman, 1996; Gianola et al.,
2014; Soloff et al., 2023). Bagging prediction is:

T(x)= %i f.(X) (5)

where B is the number of bootstrap samples and f,(x) is
the prediction from the b - th bootstrap sample.

RANDOM FOREST

Random Forest is an ensemble supervised learning
algorithm known for its high accuracy in classification
tasks (llma et al.,, 2023; Sandhya & Padyana, 2021;
Genuer, 2012). It generates multiple decision trees by
resampling the data and aggregating the predictions,
resulting in a robust and accurate model. (Genuer,
2012, Strobl et al., 2008; Mishina et al., 2015; Kulkarni
& Sinha, 2012). Random Forest prediction is:

0= Tiz £(x) 6)

where T is the number of trees, and fy(x) is the predic-
tion of the $tS - th tree.

ApaBoosT

AdaBoost, short for Adaptive Boosting, is an en-
semble learning method that combines multiple weak
learners to create a strong classifier (Paul et al., 2009;
Meir & Ratsch, 2003). It iteratively adjusts the weights
of incorrectly classified instances to focus on difficult
cases, improving the overall model performance (Wang
et al., 2022; Yin et al., 2017; Si et al., 2022). AdaBoost
prediction is:

f09=2af(x ()

where T is the number of trees, a; is the weight as-
signed to the $t$ - th tree based on its accuracy, and
f.(x) is the prediction of the t - th tree.
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GRADIENT BOOSTING

Gradient Boosting is a powerful ensemble machine
learning technique that iteratively builds a series of
weak learners, typically decision trees, to create
a strong predictive model. By focusing on the errors of
the previous models during training, Gradient Boosting
aims to improve prediction accuracy by minimizing the
overall loss function (Zhang et al.,, 2011; Mayr
& Schmid, 2014; Johnson & Zhang, 2014). Gradient
Boosting prediction is:

f(x)= PRLAEY (8)

where T is the number of trees, v is the learning rate,
and fy(x) is the t - th tree trained to predict the residuals
of the previous trees.

LicaTrGBM

LightGBM, short for Light Gradient Boosting Ma-
chine, is an extremely efficient algorithm designed for
gradient-boosting  decision trees (Jiang, 2024).
LightGBM prediction is:

0= £, o)

where T is the number of trees, and f(x) is the predic-
tion of the t - th tree using the Light GBM framework,
which employs gradient-based one-side sampling and
exclusive feature bundling.

XGBoosT

XGBoost, short for Extreme Gradient Boosting, is
a powerful machine learning algorithm renowned for
its scalability, speed, and accuracy (Chen, 2016).
XGBoost prediction is:

f(x)= PIRACY (10)

where T is the number of trees, and f(x) is the predic-
tion of the t - th tree using the XGBoost algorithm.
which optimizes for a reqularized obiective to prevent
overfitting.

PERFORMANCE METRICS OF MODELS

The evaluation of these models was conducted
using several key performance metrics: Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and relative Root Mean Squared Error
(rRMSE). The evaluation of the machine learning mod-
els in this study is based on several key performance
metrics that quantify the accuracy and robustness of
the predictions. The metrics used are as follows:

Financial Internet Quarterly 2025, vol. 21 / no. 1

MSE=%ZO&—?)2 (11)
RMSE = /%Z(Yi -Y)? (12)
MAE:%Z‘Y -v| (13)
maApE = 100/% Sy - (14)
n 5w
FRMSE = “iz?_l_(yi W (15)
y

SHAP (SHAPLEY ADDITIVE EXPLANATION)
APPROACH

SHapley Additive exPlanations (SHAP) values are
a method rooted in cooperative game theory that aims
to provide a fair allocation of importance values to fea-
tures in machine learning models (Uddin et al., 2022).
This approach has been utilized in various studies to
enhance the interpretability and transparency of ma-
chine learning models across different domains. For
instance, SHAP values have been employed to interpret
the outputs of support vector machines, random for-
ests, convolutional neural networks, and long short-
term memory models in forecasting climatic water bal-
ance (Uddin et al., 2022). Additionally, SHAP has been
used to interpret models in predicting sepsis in-hospital
mortality (Zhang, 2024), automating data center opera-
tions (Gebreyesus, 2024), and developing prognostic
models for critically ill patients (Fan et al., 2023). The
application of SHAP values extends to diverse areas
such as predicting tropical cyclogenesis (Loi, 2024),
evaluating hospital mobility (Santamato, 2024), pre-
dicting gout associated with dietary factors (Cao, 2024),
and optimizing photodegradation rate predictions
(Schossler, 2023). By leveraging SHAP values, research-
ers have gained deeper insights into model predictions,
feature importance, and the specific contributions of
variables to the outcomes of machine learning models
(Cao, 2024). Furthermore, SHAP values have been in-
strumental in enhancing the interpretability, explaina-
bility, and fairness of machine learning models (Hickey
et al.,, 2020).

For a model and input features , the SHAP value
for a feature is given by:

. SI(N|=|S|-D!
i 5 SUNL-L-D

TR RS I
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Where, N is the set of all features, S is any subset of N RESULTS

that does not include feature I, fi(xs U {i}) is the predic- In this article, we investigate the impact of varia-
tion of the model when feature i is included in subset S, bles affecting financial performance on total revenue.
fi(xs) is the prediction of the model when feature i is The data consists of 21 companies listed in BIST100 for
not included. a 10-year period (2013-2023). Figure 1 shows the sec-

toral distribution of companies.

Figure 1: Sectoral Distribution of Companies
Steel
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Investments

Telecommunications

Food and Automotive and

Beverages Automotive Sub-
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Construction

Materials
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Smart Materials Energy and Electronics

Source: Author’s own work.

This study is separated into training (80%) and our study, Net Income, Total Assets, Total Liabilities,
testing (20%) datasets to compare the performance of and Shareholders’ Equity, Short-term Liabilities, Long-
various machine learning models. The dataset is ran- term Liabilities were treated as independent features,
domly split, with 80% used as the training dataset and while Total Revenue served as the output or target
the remaining 20% as the testing set. This approach is feature. Figure 2 shows the ROA for each company

commonly used in prior studies (Abelldan & Mantas, from 2013 to 2023.
2014; Antunes et al., 2017; Ben Jabeur et al., 2020). In

Figure 2: ROA for each company from 2013 to 2023
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COMPARISON OF MODEL PERFORMANCE

The performance of various machine learning mod-
els was evaluated using five key metrics: Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error

Financial Internet Quarterly 2025, vol. 21 / no. 1

(MAPE), and relative Root Mean Squared Error
(rRMSE). Table 1 summarizes the performance metrics
for each model. Appendix 1 shows the performance of
machine learning models over the test sample.

Table 1: MSE, RMSE, MAE, MAPE and rRMSE values

Model MSE RMSE MAE MAPE rRMSE
Linear regression 0.0040 0.0635 0.0430 41.22% 0.736
Ridge regression 0.0040 0.0635 0.0430 41.22% 0.736
Lasso Regression 0.0040 0.0635 0.0430 41.22% 0.736
Decision Trees 0.0046 0.0676 0.0456 118.58% 0.783
Bagging 0.0016 0.0399 0.0239 4.19% 0.462
Random Forests 0.0016 0.0403 0.0246 4.55% 0.466
Adaboost 0.0018 0.0428 0.0269 2.83% 0.496
GBM 0.0014 0.0378 0.0235 13.92% 0.438
LightGBM 0.0044 0.0695 0.0719 69.84% 0.777
XGBoost 0.0046 0.0679 0.0616 73.54% 0.786

Source: Author’s own work.

The linear models, including Linear Regression,
Ridge Regression, and Lasso Regression, exhibit identi-
cal performance metrics. These models are character-
ized by their simplicity and baseline nature, which is
reflected in the relatively high values of MSE, RMSE,
MAE, and rRMSE. The MAPE for these models is nota-
bly large at 41.22%, indicating that they may struggle to
capture the complex relationships within the financial
data effectively. This limitation suggests that while
these models are straightforward to interpret, they are
not well-suited for accurately predicting financial per-
formance in this context. The Decision Tree model
shows a higher MSE and RMSE compared to the linear
models, with an exceptionally high MAPE of 118.58%.
This high MAPE suggests that the Decision Tree model
tends to overfit the data, making it less reliable for pre-
diction despite its interpretability. The overfitting is
likely due to the model's tendency to capture noise and
fluctuations in the training data, leading to poor gener-
alization to new data. On the other hand, ensemble
methods such as Bagging and Random Forests demon-
strate significantly better performance than the individ-
ual Decision Tree model. These models exhibit lower
MSE, RMSE, and MAE values, with Bagging showing
a slightly better performance than Random Forests.
The MAPE values for Bagging and Random Forests are
impressively low at 4.19% and 4.55%, respectively, indi-
cating strong predictive accuracy and stability. These
results highlight the effectiveness of ensemble meth-
ods in reducing variance and improving the robustness
of predictions. AdaBoost performs well, with an MSE of
0.0018 and an RMSE of 0.0428. The model shows
a remarkably low MAPE of 2.83%, underscoring its abil-
ity to handle complex data and improve overall predic-

tion accuracy by focusing on misclassified instances.
AdaBoost's iterative approach to adjusting the weights
of misclassified instances contributes to its enhanced
performance and reliability. Gradient Boosting (GBM)
outperforms most models with the lowest MSE of
0.0014 and RMSE of 0.0378. The model's MAE and
MAPE values indicate high accuracy and precision in
predictions, making it a robust choice for financial fore-
casting. GBM's ability to iteratively improve upon er-
rors made by previous models results in superior pre-
dictive capabilities and robustness. Also, LightGBM,
known for its efficiency, shows higher error metrics
compared to other boosting methods. This could be
due to the model's sensitivity to the dataset character-
istics or the hyperparameter settings used in this study.
Its MAPE of 69.84% indicates considerable prediction
errors in certain instances, suggesting that further tun-
ing and adjustment may be needed to optimize its per-
formance for this specific dataset. Similarly, XGBoost,
another popular boosting algorithm, performs akin to
Decision Trees, with an MSE of 0.0046 and an RMSE of
0.0679. However, it shows a relatively high MAPE of
73.54%, indicating that it may not be the best fit for
this specific dataset without further tuning. The higher
error metrics suggest that XGBoost's default settings
might not be fully optimized for the financial fore-
casting task at hand. The variation in MAPE across
these models can be attributed to their respective abili-
ties to capture complex relationships in the financial
data. Simpler models like Linear Regression, Ridge, and
Lasso struggle with these intricacies, leading to higher
error rates. On the contrary, ensemble methods like
Bagging, Random Forests, and Gradient Boosting tend
to mitigate overfitting and handle complex data rela-
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tionships more effectively, resulting in lower MAPE and
better predictive performance.

COMPARISON OF MODEL SECTOR
PERFORMANCE

The performance of the machine learning models
was further analyzed across different sectors to under-

Table 2: MSE values for sector

Linear

Sectors regression

stand how each model performed within specific indus-
tries. Table 2 presents the Mean Squared Error (MSE)
values for each sector and model combination. Figure
4 shows Comparison of MSE Values Across Different
Sectors and Models.

Ridge

Bagging

Food and Beverage 0.00266 0.00266 0.00266 0.00148 0.00022
Cement and Construction Materials 0.00203 0.00203 0.00203 0.00197 0.00121
Chemistry and Smart Materials 0.00307 0.00307 0.00307 0.00061 0.00024
Energy 0.00423 0.00423 0.00423 0.00127 0.00035
Home Appliances and Electronics 0.00102 0.00102 0.00102 0.00000 0.00004
Automotive and Automotive Sub-Industry|  0.00805 0.00805 0.00805 0.00073 0.00070
Holding and Investment 0.00137 0.00137 0.00137 0.00062 0.00055
Iron-Steel 0.00172 0.00172 0.00172 0.00034 0.00046
Retail 0.00861 0.00861 0.00861 0.00045 0.00012
Telecommunications 0.00231 0.00231 0.00231 0.00063 0.00044

RF Adaboost GBM LightGBM XGBoost

Sectors
MSE

Food and Beverage 0.00021 0.00004 0.00017 0.00455 0.00266
Cement and Construction Materials 0.00125 0.00154 0.00133 0.00355 0.00203
Chemistry and Smart Materials 0.00027 0.00019 0.00008 0.00357 0.00307
Energy 0.00033 0.00031 0.00015 0.00658 0.00423
Home Appliances and Electronics 0.00004 0.00002 0.00006 0.00500 0.00102
Automotive and Automotive Sub-Industry|  0.00070 0.00030 0.00040 0.00438 0.00805
Holding and Investment 0.00058 0.00054 0.00026 0.00576 0.00137
Iron-Steel 0.00046 0.00002 0.00015 0.00451 0.00172
Retail 0.00012 0.00009 0.00012 0.00710 0.00861
Telecommunications 0.00050 0.00069 0.00046 0.00320 0.00231

Source: Author’s own work.

The Bagging model performs exceptionally well in
this sector, achieving the lowest MSE of 0.00022. Ran-
dom Forest follows closely with an MSE of 0.00021,
indicating strong predictive performance. AdaBoost
also performs well with an MSE of 0.00004, suggesting
high accuracy in this sector. Bagging and Random For-
ests show better performance in this sector compared
to other models, with MSE values of 0.00121 and
0.00125, respectively. GBM also performs well with an
MSE of 0.00133, indicating good predictive capabilities
in this industry. GBM and Bagging models exhibit the

best performance in this sector with MSE values of
0.00008 and 0.00024, respectively. These results high-
light the effectiveness of these ensemble methods in
capturing the complexity of data in the chemistry and
smart materials sector. In the energy sector, GBM
stands out with an MSE of 0.00015, followed by Bag-
ging with an MSE of 0.00035. These models demon-
strate superior predictive accuracy, suggesting they are
well-suited for forecasting financial performance in the
energy industry.
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Figure 4: Comparison of MSE values across different sectors and models
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The Decision Tree model performs remarkably well
in this sector with an MSE of 0.00000. Bagging and Ran-
dom Forests also show good performance with MSE
values of 0.00004 each, indicating their robustness in
handling data from this sector. Bagging and Random
Forests again show strong performance with MSE val-
ues of 0.00070 each. GBM also performs well with an
MSE of 0.00040, highlighting the capability of these
ensemble methods to accurately predict financial out-
comes in the automotive industry. GBM and Bagging
are the top performers in this sector with MSE values
of 0.00026 and 0.00055, respectively. These models
effectively capture the financial dynamics within hold-
ing and investment companies. Bagging and Random
Forests achieve the lowest MSE values of 0.00046 each
in the iron-steel sector. GBM follows closely with an
MSE of 0.00015, demonstrating its robustness in this
industry. Bagging and Random Forests exhibit superior
performance in the retail sector with MSE values of
0.00012 each. GBM also performs well with an MSE of
0.00012, suggesting strong predictive capabilities for
retail companies. In the telecommunications sector,
GBM achieves the lowest MSE of 0.00046, followed by
Bagging with an MSE of 0.00044. These results highlight
the effectiveness of ensemble methods in predicting
financial performance in the telecommunications in-
dustry.

FEATURE ANALYSIS

Appendix 2 shows the SHAP summary plot for the
Linear Regression (a), Ridge Regression (b), Lasso Re-

gression (c), Decision Tree (d), Bagging (e), Random
Forest (f), AdaBoost (g), Gradient Boosting (h),
LightGBM (i), and XGBoost (j), illustrating the impact of
different features on the model's output. SHAP
(SHapley Additive exPlanations) values help in under-
standing the contribution of each feature to the predic-
tions made by the model.

Appendix 3 shows SHAP dependence plots for the
relationship between feature pressure (x-axis) and
SHAP values (y-axis). Red represents high values, while
blue indicates low values. The SHAP summary plot pro-
vides insights into the importance and impact of vari-
ous features on the model's predictions. The feature
"Net Profit" has a significant impact on the model out-
put. High values of net profit, indicated by red dots,
tend to push the prediction towards positive values,
while low values, indicated by blue dots, push it to-
wards negative values. The dispersion of dots across
the SHAP value axis indicates its substantial influence,
making it a key predictor in the model. "Long-Term
Liabilities" also play an important role in the model's
predictions. High values of long-term liabilities are as-
sociated with a negative impact on the prediction, sug-
gesting that greater long-term liabilities might decrease
the predicted financial performance. This negative as-
sociation highlights the potential risks associated with
high long-term debts. The feature of "Total Assets"
shows a varied impact on the model's output. High val-
ues of total assets generally contribute positively to the
prediction, while low values contribute negatively, re-
flecting their significance in financial forecasting. The
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plot suggests that higher asset values enhance the
company's financial outlook. "Total Income" has
a mixed impact on the model's predictions. High values
influence the prediction positively, whereas low values
have a lesser but still notable impact. This indicates
that total income is an important predictor of financial
performance, with its fluctuations directly affecting the
model's output. "Equity" shows a moderate impact on
the model's predictions. The plot suggests that higher
equity values slightly contribute to positive predictions,
whereas lower values contribute to negative predic-
tions. This moderate influence underscores the role of
equity in providing financial stability and its contribu-
tion to the overall financial health of the company. Fi-
nally, "Short-Term Liabilities" appear to have the least
impact among the listed features. While there is some
dispersion, indicating variability, the overall influence
on the model's output is less significant compared to
other features. This suggests that short-term liabilities,
while relevant, may not be as critical in determining
long-term financial performance as other factors like
net profit and total assets.

DiscussioN

The study uses different machine learning models
to predict the financial performance of companies in
different sectors in the BIS100 index. Among these
models, Gradient Boosting (GBM) shows better results
than other models in various performance metrics such
as MSE, RMSE, MAE, MAPE and rRMSE. The conclusion
that ensemble methods such as Gradient Boosting
(GBM) and Bagging and Random Forests perform effec-
tively in financial forecasting is supported by numerous
research findings (Barboza et al.,, 2017; Zhan et al.,
2021). Barboza et al. (2017) showed that Gradient
Boosting and Bagging methods in machine learning
models perform better than traditional statistical meth-
ods in bankruptcy prediction. Zhan et al. (2021) showed
that the random forest bagging approach is a well per-
forming model in pandemic prediction. In this study, it
is seen that ensemble models show good results in sec-
tors such as energy, chemicals and smart materials.
Rohatgi et al. (2021) showed that the Gradient
Boosting model performs well in predicting stock mar-
ket movements in complex and volatile sectors.

SHAP values are very important for better perfor-
mance of models and clearer interpretability. Prasad
and Bakhshi (2022) showed the contribution of correct
interpretation of these values to the model in their
study. The potential of machine learning models to
improve financial forecast accuracy and their im-
portance in strategic decision making has been shown
in many studies (Astrakhantseva & Gerasimov, 2023).
The results of this study have far-reaching implications
for many sectors. Machine learning models have great
potential for more accurate financial forecasts.

Financial Internet Quarterly 2025, vol. 21 / no. 1

The results of this study have far-reaching implica-
tions for the financial technology field. They highlight
the potential of machine learning models to improve
the accuracy of financial forecasts, which is invaluable
for reducing risks and optimizing investment strategies.
The findings also highlight the importance of model
interpretability, especially in financial applications,
where understanding the logic behind the forecasts can
be as important as the forecasts themselves. This is
particularly important given the increasing scrutiny of
algorithmic transparency and accountability in finance.

While the study demonstrates the effectiveness of
machine learning models in financial forecasting, it also
reveals certain limitations. For example, models such as
LightGBM and XGBoost did not perform as well as ex-
pected in certain sectors, suggesting the need for fur-
ther tuning or adaptation to specific features of the
financial data. Future research could explore the inte-
gration of additional features or alternative modeling
approaches to improve predictive performance. Addi-
tionally, expanding the dataset to include more compa-
nies or a longer time period could provide a more com-
prehensive assessment of model effectiveness across
different market conditions.

CONCLUSION

The study investigates the utilization of diverse
machine learning models to forecast financial perfor-
mance across various sectors using data from 21 com-
panies listed on the BIST100 index spanning from 2013
to 2023. The models under evaluation encompass Line-
ar Regression, Ridge Regression, Lasso Regression, De-
cision Trees, Bagging, Random Forests, AdaBoost, Gra-
dient Boosting (GBM), LightGBM, and XGBoost. Model
performance was evaluated using metrics such as MSE,
RMSE, MAE, MAPE, and rRMSE.

The results reveal notable variations in model per-
formance, both globally and within specific sectors.
Gradient Boosting (GBM) emerged as the top perform-
er, exhibiting the lowest MSE and RMSE values, along
with high accuracy and precision in predictions. Bagging
and Random Forests also displayed robust perfor-
mance, highlighting the efficacy of ensemble methods
in enhancing prediction accuracy and stability. Con-
versely, linear models struggled to capture the intricate
relationships within the financial data, resulting in ele-
vated error metrics.

The sector-specific analysis unveiled consistent
strong performance of ensemble methods, particularly
Bagging and Random Forests, across diverse industries.
Furthermore, GBM demonstrated strong performance
in sectors such as energy, chemistry and smart materi-
als, and telecommunications. These findings under-
score the criticality of selecting appropriate models
based on sector-specific attributes to achieve precise
financial forecasts.
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The incorporation of SHAP (SHapley Additive exPla-
nations) values provided deeper insights into feature
importance and interaction effects, thereby aug-
menting the interpretability of the machine learning
models. The SHAP summary plot for the Random Forest
model indicated that net profit and long-term liabilities
were among the most influential features, significantly
impacting the model's outcomes. This heightened level
of interpretability is essential for stakeholders reliant
on the predictions for informed decision-making, offer-
ing a clearer comprehension of the factors steering

Financial Internet Quarterly 2025, vol. 21 / no. 1

This study contributes to the burgeoning field of
financial technology by showecasing the potential of
machine learning models in enhancing the accuracy of
financial forecasting. It also underscores the signifi-
cance of model interpretability, particularly in pivotal
domains such as finance, where understanding the
underlying factors influencing predictions is imperative.
The research's findings furnish valuable insights for
investors, financial analysts, and policymakers, aiding
them in making more informed decisions based on ro-
bust and transparent financial forecasts.

financial performance.
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APPENDIX
Appendix 1: Performances of machine learning models over test sample
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interaction values
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