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A B S T R A C T

This study evaluates the predictive performance of four models—Decision Tree, Random Forest, Prophet, and 
LSTM—in forecasting container freight rates, a key metric for strategic decision-making in the shipping industry. 
To address data heterogeneity, Min-Max normalization was applied, and the Johansen co-integration test 
confirmed long-term relationships among the variables, justifying the use of raw data in our analysis. Perfor
mance was assessed using MSE, RMSE, NMSE, MAE, MAPE and SMAPE. While both Decision Tree and Random 
Forest models yielded lower absolute errors compared to LSTM and Prophet, the Decision Tree model demon
strated superior relative accuracy, outperforming Random Forest by approximately 91.8 % on the USWC route, 
52.1 % on USEC, 43.5 % on MED, and 22.7 % on NEUR. These findings highlight the robustness of the Decision 
Tree model for container freight rate forecasting under volatile market conditions.

1. Introduction

The shipping industry is a cornerstone of global trade, responsible for 
transporting over 80 % of the world’s cargo. This vital function un
derpins global economic growth and supply chain stability (Wang et al., 
2024). In this context, the accurate prediction of ocean freight rates is 
critical. Freight rates not only reflect current market conditions but also 
serve as a mechanism for balancing supply and demand through stra
tegic rate adjustments (Jeon et al., 2020; Scarsi, 2007; Schramm & 
Munim, 2021; Wang et al., 2024).

The importance of forecasting ocean freight rates is multifaceted. 
First, key stakeholders—including ship owners, cargo carriers, logistics 
companies, and end consumers—rely on these predictions for informed 
decision-making across various functions such as product pricing, cost 
accounting, financial management, and asset allocation (Hirata & 
Matsuda, 2022; Jeon et al., 2021). The volatility of freight rates is a 
fundamental component of maritime transport costs; therefore, precise 
forecasting of this volatility is crucial for market participants (Naima 
et al., 2023). Second, the inherent periodicity of ocean freight rates 
arises from the lengthy interval between ship orders and deliveries, 
which typically exceeds two years. This temporal lag reinforces cyclical 
patterns in freight rate dynamics (Scarsi, 2007). Third, ship owners 
make routine decisions regarding ship sales and charters based on 

prevailing freight rate levels, further emphasizing the need for robust 
forecasting (Jeon et al., 2020). Fourth, for shippers, accurate rate pre
dictions are essential as logistics costs are directly correlated with freight 
rates—costs tend to escalate during periods of high rates and decline 
when rates are low. Additionally, seasonal variations, exemplified by the 
implementation of Peak Season Surcharges (PSS) in months such as 
March or October, further complicate the forecasting landscape (Yin & 
Shi, 2018). Finally, external shocks, including geopolitical risks and 
events such as the Suez Canal blockage during the COVID-19 pandemic 
and the recent Red Sea crisis, have demonstrated significant adverse 
impacts on container freight rates. Incorporating these disruptions into 
forecasting models has been shown to enhance predictive accuracy 
(Naima et al., 2023).

Moreover, the shipping industry is notably capital-intensive, with 
substantial financial commitments required for ship ordering and 
operation (Jeon & Yeo, 2017). Overcapacity, often resulting from 
aggressive shipbuilding, can precipitate a decline in freight rates, 
thereby intensifying the need for accurate market assessments and risk 
evaluations. For instance, using system dynamics, Jeon et al. (2020)
identified a cyclical pattern of approximately 32 months in the China 
Container Freight Index (CCFI), highlighting the interplay between 
supply-demand imbalances. Additionally, stringent environmental reg
ulations imposed by the International Maritime Organization (IMO), 
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such as the Energy Efficiency Design Index (EEDI), Energy Efficiency 
Ship Index (EEXI), and Carbon Intensity Indicator (CII), are compelling 
shipping companies to invest in eco-friendly vessels. These regulatory 
requirements further amplify the necessity for reliable freight rate 
forecasts to mitigate the risks associated with new ship orders 
(Bayraktar & Yuksel, 2023; Lee, 2024).

In light of these considerations, this study aims to compare the pre
dictive performance of four distinct models—Prophet, Decision Tree, 
Random Forest, and LSTM—in forecasting container freight rates. The 
objective is to identify the model that most effectively captures the 
complex dynamics of ocean freight rates, thereby supporting more 
informed decision-making by industry stakeholders.

The remainder of this paper is organized as follows. Chapter 2 re
views relevant literature on container freight rate prediction and dis
cusses prior applications of the Prophet, Decision Tree, Random Forest, 
and LSTM models. Chapter 3 details the data and methodological 
framework employed. Chapter 4 presents empirical findings and pro
vides a comparative evaluation of the models. Chapter 5 discusses the 
implications of the findings, and Chapter 6 concludes the study.

2. Literature review

2.1. Forecasting studies on container freight rates

Container freight rates are critical indicators for a multitude of 
stakeholders within the shipping industry, influencing decisions ranging 
from pricing and financial management to asset allocation. Tradition
ally, econometric models—such as ARIMA, VAR, VEC, and 
ARMA—have been extensively employed to forecast these rates 
(Koyuncu & Tavacıoğlu, 2021; Munim & Schramm, 2017). For example, 
Schramm and Munim (2021) conducted comparative analyses between 
ARIMA and VAR, while Munim and Schramm (2021) extended this 
comparison to ARIMA and VEC. In another study, Chen et al. (2021)
proposed an innovative hybrid approach by integrating empirical mode 
decomposition (EMD) with ARMA. Luo et al. (2009) further advanced 
the field by employing supply and demand dynamics for forecasting 
container freight rates.

Notwithstanding these contributions, the inherently non-linear and 
complex nature of container freight rate data presents substantial 
challenges for traditional econometric models (Hirata & Matsuda, 
2022). This limitation has catalyzed a shift towards the adoption of 
machine learning and deep learning techniques, which are more adept 
at capturing non-linear patterns. Recent studies have demonstrated that 
deep learning models, such as LSTM, can outperform conventional ap
proaches in certain contexts; for instance, Hirata and Matsuda (2022)
reported superior predictive performance of LSTM over ARIMA for 
deep-sea routes, although results were comparable for short-sea routes. 
Moreover, Chen et al. (2024) showed that a CNN-LSTM hybrid model 
could achieve an R² exceeding 90 %, outperforming an ARIMA-SVR 
framework. Similarly, machine learning models such as Random For
est have been shown to deliver prediction accuracy above 80 % (Feng, 
2022; Khan & Hussain, 2022). Complementary work by Jeon et al. 
(2021) compared ARIMA, VEC, and System Dynamics models, finding 
that the latter reduced prediction error by approximately 30 % on 
average, thereby offering distinct advantages in capturing market 
dynamics.

2.2. Studies on specific forecasting models

In addition to broad econometric approaches, various forecasting 
models have been applied across different domains. Their relevance to 
container freight rate prediction is elucidated below.

2.2.1. Decision tree models
Decision tree methodologies have proven effective in numerous 

forecasting applications. Liu et al. (2017a) applied decision trees for 

copper price prediction, achieving robust performance as measured by 
MAPE and RMSE. Bala (2010) extended this application to demand 
forecasting for Indian retailers, demonstrating that decision tree-based 
models outperformed other methods—such as ARIMA and SARIMA—
over both short and long-term horizons. Hybrid models that combine 
decision trees with artificial neural networks (ANN) have further 
enhanced prediction accuracy (Chang, 2011; Tsai & Wang, 2009), 
reinforcing the versatility of decision tree frameworks.

2.2.2. Random forest models
Random Forest, an ensemble extension of decision trees, mitigates 

the risk of overfitting and enhances predictive stability. Liu and Li 
(2017b) utilized Random Forest to forecast gold price fluctuations, 
identifying critical predictors such as the DJIA and S&P 500 indices. 
Kumar and Thenmozhi (2006), demonstrated that Random Forest pro
vided competitive accuracy relative to SVM, LDA, and logistic regression 
for predicting stock volatility. Subsequent studies by Abraham et al. 
(2022) and Vairagade et al. (2019) have consistently reported that 
Random Forest outperforms alternative methods in various forecasting 
contexts. Huertas Tato and Centeno Brito (2018), further validated these 
findings through applications in solar energy production forecasting, 
while Xue et al. (2021) compared multi-objective Random Forest vari
ants, confirming its robustness in handling complex prediction tasks.

2.2.3. LSTM models
Long Short-Term Memory (LSTM) networks, a subset of recurrent 

neural networks (RNN), are particularly well-suited for time-series 
forecasting due to their ability to capture long-term dependencies. 
Bhandari et al. (2022) found that single-layer LSTM models provided 
superior predictive accuracy for S&P 500 closing prices when evaluated 
against RMSE, MAPE, and R² metrics. Conversely, Abbasimehr et al. 
(2020) reported that multi-layer LSTM models achieved even greater 
performance, outperforming conventional models such as ARIMA, ANN, 
and SVM. Sagheer and Kotb (2019) extended the LSTM architecture 
(DLSTM) for petroleum production forecasting, demonstrating notable 
improvements in RMSE and MAPE, while Siami-Namini et al. (2018)
documented significant error reductions of 84–87 % in comparison to 
ARIMA models.

2.2.4. Prophet models
Prophet, developed by Taylor and Letham (2018), is designed for 

robust time-series forecasting by accommodating trends, seasonality, 
and external events. Empirical comparisons by Jha and Pande (2021)
revealed that Prophet achieved lower RMSE and MAPE values compared 
to ARIMA in the context of supermarket sales forecasting. Similarly, 
Yenidoğan et al. (2018) applied both models to Bitcoin price prediction, 
reporting an R² of 0.94 for Prophet versus 0.68 for ARIMA. Kaninde et al. 
(2022) further demonstrated the utility of Prophet in volatile stock 
market forecasting, particularly due to its ability to integrate holiday 
effects and other exogenous factors. Recent external shocks, including 
the Suez Canal blockage during COVID-19 and the Red Sea crisis, un
derscore the importance of incorporating exogenous variables into 
forecasting models to enhance predictive accuracy (Naima et al., 2023; 
Wang et al., 2024).

2.2.5. Contributions
Despite the extensive body of work utilizing econometric models for 

container freight rate prediction, there remains a significant gap in the 
application of advanced machine learning and deep learning techniques 
to this domain. In particular, the relative underutilization of models 
such as Prophet, Random Forest, and LSTM—compared to traditional 
approaches—suggests a promising avenue for further research. Addi
tionally, decision tree-based models have received limited attention in 
the context of container freight rate forecasting, despite demonstrated 
success in other fields. Therefore, the present study seeks to address 
these gaps by systematically comparing the performance of Prophet, 
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Decision Tree, Random Forest, and LSTM models. This comparative 
analysis aims to elucidate the strengths and limitations of each approach 
and to identify the most effective methodology for capturing the com
plex, non-linear dynamics inherent in container freight rate data.

3. Methodology

3.1. Data

Ocean freight rates are influenced by various factors, including 
supply and demand dynamics, cargo weight and volume, and the dis
tance to destination (Khan & Hussain, 2022). Recent geopolitical 
developments—such as the Red Sea crisis, which prompted container 
ships to bypass the Suez Canal in favor of the South African Cape of Good 
Hope—have further impacted these rates. Historical events, including 
the global financial crisis, the COVID-19 pandemic, and episodes of 
overcapacity, have also demonstrated significant effects on ocean freight 
rates (Naima et al., 2023; Wang et al., 2024).

To capture these dynamics, this study utilizes variables representing 
container shipping volume, container capacity, and key economic in
dicators. Specifically, Asia-Europe capacity and Asia-North America 
capacity are employed to quantify shipping capacity, while Asia-Europe 
shipping volume and Asia-North America shipping volume measure 
shipping volume. Ocean freight rates are examined along the North 
American, European, and Mediterranean Sea routes, as derived from the 
Shanghai Containerized Freight Index (SCFI). The economic indicators 
incorporated into the analysis include Global Economic Policy Uncer
tainty (EPU), the G20 Composite Leading Indicator (CLI), and Global 
Geopolitical Risk (GPR). EPU is calculated based on the frequency of 
terms such as "economy" and "policy" in media articles (Baker et al., 
2016), CLI reflects expectations of future economic activity (OECD), and 
GPR quantifies geopolitical tensions based on news frequency (Caldara 
& Iacoviello, 2022).

This study utilizes monthly data spanning from January 2014 to June 
2024. Due to the heterogeneous units of measurement (e.g., TEU versus 
USD/TEU), all features are normalized using a Min-Max scaling tech
nique, which scales values to the [0,1] range. Subsequently, the 
Johansen co-integration test is performed to ascertain the existence of 
long-term relationships among the variables. The presence of co- 
integration justifies the use of the raw data in the forecasting models. 
Table 1 provides a summary of the descriptive statistics for the data used 
in this study.

3.2. Forecasting models

3.2.1. Prophet model
The Prophet model, introduced by Taylor and Letham (2018), is 

specifically designed for robust time-series forecasting. Its principal 
strength lies in its capacity to model seasonal patterns, long-term trends, 
and holiday effects independently, allowing for easy customization to 
specific business contexts. This flexibility enables Prophet to effectively 
capture the non-linear characteristics and periodic fluctuations inherent 
in ocean freight rate data.

3.2.2. Decision tree and random forest models
The Decision Tree model is a well-established method in predictive 

analytics, originally conceptualized by Belson (1959) and further 
developed through the CART methodology by Breiman et al. (1986). 
Although decision trees are intuitive and easy to interpret, they are 
susceptible to overfitting. To address this limitation, Random Forest—an 
ensemble learning technique proposed by Breiman (2001)—aggregates 
the predictions of multiple decision trees through a voting mechanism. 
This ensemble approach mitigates overfitting and enhances the model’s 
performance, particularly when dealing with high-dimensional data.

3.2.3. LSTM model
Long Short-Term Memory (LSTM) networks, introduced by 

Hochreiter (1997), are a specialized type of recurrent neural network 
designed to overcome the limitations of traditional RNNs in capturing 
long-term dependencies. LSTM networks incorporate gating mecha
nisms—namely, the input, forget, and output gates—along with a 
memory cell that preserves and updates information as needed. These 
features address the vanishing gradient problem, thereby enabling the 
efficient learning of temporal dependencies and making LSTM particu
larly well-suited for time-series forecasting tasks such as predicting 
ocean freight rates.

3.2.4. Model settings
Random Search was employed to identify the optimal hyper

parameter configurations for the Decision Tree, Random Forest, and 
Prophet models. In contrast, the LSTM model was trained using a 
consistent hyperparameter configuration across all sections, a design 
choice made to balance performance and computational demands. 
Table 2 presents the section-specific settings used for hyperparameter 
optimization.

3.2.5. Model validation
To assess the forecasting performance of the models, this study em

ploys a comprehensive set of evaluation metrics: Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), Normalized Mean Squared 
Error (NMSE) and Symmetric Mean Absolute Percentage Error (SMAPE). 
MAE provides a direct measure of the average absolute error between 
the predicted and actual values. MAPE expresses this error as a 

Table 1 
Data descriptive statistics.

Count Mean Std Min Max 50 %

EPU* 126 208.86 72.57 86.63 431.73 208.31
GPR* * 126 105.78 33.75 58.42 318.95 102.19
CLI* ** 126 99.73 1.45 89.48 101.41 99.99
Capacity_EUR* ** * 126 1858,579 153,128.7 1559,476 2142,365 1860,088
Capacity_NA* ** * 126 2015,801 424,777.4 1462,072 2912,504 1876,666
Volume_EUR* ** * 126 1330,787 153,564.1 67,620 1616,700 1364,350
Volume_NA* ** * 126 1615,153 284,394.8 81,270 2119,400 1582,550
Med* ** ** 126 2019.58 2064.47 220.50 7522.75 984.71
NEUR* ** ** 126 1847.21 2055.13 223.50 7784.25 912.63
USWC* ** ** 126 2587.77 1895.83 796.50 8079.00 1800.13
USEC* ** ** 126 4091.98 2631.86 1589.50 2962.75 11,778.50

* Baker, S. R., Bloom, N., & Davis, S. J. (2016). "Measuring Economic Policy Uncertainty." Available at: Policy Uncertainty. / Unitless Index
* * Caldara, D and Iacoviello, M. (2022). "Global Policy Uncertainty." Available at: Matteo Iacoviello’s Website. / Unitless Index
* **OECD. "Composite Leading Indicator (CLI) - G20." Available at: OECD. / Unit: Long-term average = 100
* ** *Bloomberg L.P. "Shipping Capacity and Shipping Volume Data." Bloomberg Terminal. / Unit: TEU
* ** **Shanghai Shipping Exchange. "Shanghai Containerized Freight Index." Available at: Shanghai Shipping Exchange. / Unit: USD/TEU, Unit: USD/FEU
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percentage, facilitating comparisons across models with different scales. 
MSE and RMSE, by emphasizing larger errors through squaring, offer 
insights into the models’ sensitivity to significant deviations. NMSE 
normalizes the error relative to the variance of the data, allowing for a 
relative assessment of predictive performance. MAPE has a problem that 
the error rises infinitely when the actual value is close to 0, and SMAPE 
is used to compensate for this. SMAPE reflects the symmetry between 
the predicted and actual values and works stably near zero. Lower values 
across these metrics indicate better model performance, guiding the 
selection of the most effective forecasting approach for container freight 
rates.

4. Results

4.1. Johansen test

The Johansen co-integration test was conducted to ascertain the 
existence of a long-term equilibrium relationship among the variables. 
In this test, the null hypothesis posits that the number of co-integrating 
vectors is less than a specified rank (n < r), whereas the alternative 
hypothesis asserts that r is less than or equal to n. If the test statistic 
exceeds the critical value, the null hypothesis is not rejected; conversely, 
it is rejected when the test statistic falls below the critical value.

As summarized in Table 3, the test results confirm the presence of co- 
integration across all routes examined. Consequently, despite any non- 
stationarity in the individual series, the existence of a long-term rela
tionship justifies the application of the raw data in subsequent modeling. 
Specifically, the number of co-integrations was determined to lie within 
range 2 < r ≤ 3 for both the USEC and USWC routes, and within 1 < r ≤ 2 
for the MED and NEUR routes.

4.2. Model setting

All models utilizing normalized data were trained using 80 % of the 
dataset, with the remaining 20 % reserved for testing. The performance 
evaluations presented in Table 5 are based on models trained using the 
hyperparameter configurations detailed in Table 4. Specifically, Table 4

Table 2 
Section settings for hyperparameter optimization.

Decision Tree Random Forest Prophet LSTM

Max Depth: 1–20 N Estimators: 1–100 
Max Depth: 1–20 
Min Samples Split: 10–100 
Min Samples Leaf: 1–20 
Max Features: 1–15 
Max Leaf Nodes: 1–100 
Min Weight Fraction Leaf: 0–1

Growth: Linear, Logistic 
Daily Seasonality: True, False 
Weekly Seasonality: True, False 
Yearly Seasonality: True, False 
Changepoint Prior Scale: 0.001–100(Log Scale) 
Seasonality Prior Scale: 0.001–100(Log Scale)

Sequence Length: 3 
Dropout: 0.5 
Units: 128 
Epochs: 100 
Batch Size: 64 
Optimizer: Adam 
Learning Rate: 0.001 
Loss: MSE

Min Samples Split: 10–100
Min Samples Leaf: 1–20
Max Features: 1–15
Max Leaf Nodes: 1–100
Min Weight Fraction Leaf: 0–1
Criterion: squared_error, friedman_mse, absolute_error, poisson

Table 3 
Johansen test.

Route r_0 r_1 Test Statistic Critical Value (%)

USEC 0 6 125.2 95.75
1 6 84.97 69.82
2 6 51.54 47.85
3 6 28.44 29.80

USWC 0 6 134.0 95.75
1 6 87.06 69.82
2 6 53.06 47.85
3 6 27.28 29.80

MED 0 6 125.5 95.75
1 6 75.16 69.82
2 6 44.02 47.85

NEUR 0 6 129.0 95.75
1 6 76.92 69.85
2 6 45.93 47.85

Table 4 
Settings of hyperparameter.

Route Model Hyperparameter

USWC Decision 
Tree

random_state= 42, criterion= ’squared_error’, 
max_depth= 19, max_features= 2, max_leaf_nodes= 68, 
min_samples_leaf= 15, min_samples_split= 2, 
min_weight_fraction_leaf= 0

Random 
Forest

random_state= 42, max_depth= 6, max_features= 7, 
max_leaf_nodes= 81, min_samples_leaf= 1, 
min_samples_split= 16, min_weight_fraction_leaf= 0, 
n_estimators= 21, bootstrap=True, oob_score=False, 
n_jobs=None

LSTM Sequence Length= 3, Dropout= 0.5, Units= 128, 
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning 
Rate= 0.001, Loss=MSE

Prophet growth= ’logistic’, changepoint_prior_scale= 0.0081, 
seasonality_prior_scale= 572.237, 
yearly_seasonality=True, daily_seasonality=False, 
weekly_seasonality=False

USEC Decision 
Tree

random_state= 42, criterion= ’squared_error’, 
max_depth= 15, max_features= 13, max_leaf_nodes= 27, 
min_samples_leaf= 13, min_samples_split= 52, 
min_weight_fraction_leaf= 0

Random 
Forest

random_state= 42, max_depth= 6, max_features= 3, 
max_leaf_nodes= 96, min_samples_leaf= 11, 
min_samples_split= 21, min_weight_fraction_leaf= 0, 
n_estimators= 26, bootstrap=True, oob_score=False, 
n_jobs=None

LSTM Sequence Length= 3, Dropout= 0.5, Units= 128, 
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning 
Rate= 0.001, Loss=MSE

Prophet growth= ’logistic’, changepoint_prior_scale= 0.0035, 
seasonality_prior_scale= 0.0013, yearly_seasonality=True, 
daily_seasonality=False, weekly_seasonality=False

MED Decision 
Tree

random_state= 42, criterion= ’squared_error’, 
max_depth= 19, max_features= 9, max_leaf_nodes= 74, 
min_samples_leaf= 6, min_samples_split= 16, 
min_weight_fraction_leaf= 0

Random 
Forest

random_state= 42, max_depth= 7, max_features= 14, 
max_leaf_nodes= 38, min_samples_leaf= 10, 
min_samples_split= 18, min_weight_fraction_leaf= 0, 
n_estimators= 39, bootstrap=True, oob_score=False, 
n_jobs=None

LSTM Sequence Length= 3, Dropout= 0.5, Units= 128, 
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning 
Rate= 0.001, Loss=MSE

Prophet growth= ’logistic’, changepoint_prior_scale= 0.0081, 
seasonality_prior_scale= 0.6136, yearly_seasonality=True, 
daily_seasonality=False, weekly_seasonality=False

NEUR Decision 
Tree

random_state= 42, criterion= ’squared_error’, 
max_depth= 19, max_features= 3, max_leaf_nodes= 70, 
min_samples_leaf= 3, min_samples_split= 27, 
min_weight_fraction_leaf= 0

Random 
Forest

random_state= 42, max_depth= 13, max_features= 12, 
max_leaf_nodes= 76, min_samples_leaf= 2, 
min_samples_split= 40, min_weight_fraction_leaf= 0, 
n_estimators= 57, bootstrap=True, oob_score=False, 
n_jobs=None

LSTM Sequence Length= 3, Dropout= 0.5, Units= 128, 
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning 
Rate= 0.001, Loss=MSE

Prophet growth= ’logistic’, changepoint_prior_scale= 0.0023, 
seasonality_prior_scale= 0.0327, yearly_seasonality=True, 
daily_seasonality=False, weekly_seasonality=False
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outlines the optimized hyperparameter settings for each of the four 
models, while Table 5 compares the predictive performance of these 
models following training with the specified configurations.

4.3. Model comparison

The predictive performance of the four forecasting models—Decision 
Tree, Random Forest, LSTM, and Prophet—was rigorously evaluated 
using six metrics: Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Normalized Mean Squared Error (NMSE), Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE) and Symmetric Mean 
Absolute Percentage Error (SMAPE). Table 5 presents a detailed sum
mary of these evaluation indicators for each shipping route.

Overall, the Decision Tree and Random Forest models demonstrated 
superior performance compared to the LSTM and Prophet models when 
assessed using absolute error metrics (MSE, RMSE, NMSE, and MAE). 
This observation suggests that tree-based methods are more effective in 
capturing the underlying non-linear dynamics of container freight rate 
data. The lower error values achieved by these models indicate their 
enhanced capability to model the complex relationships present in the 
dataset.

For the USWC route, the Random Forest model achieved the lowest 
absolute error values, recording an MSE of 0.0322, an RMSE of 0.1796, 
an NMSE of 0.5853, and an MAE of 0.1007. Specifically, the MSE ob
tained by the Random Forest model was approximately 58.6 % lower 
than that of the Decision Tree, 85.2 % lower than that of the Prophet 
model, and 99.15 % lower than that of the LSTM model. These im
provements in error metrics underscore the robust performance of the 
Random Forest approach in capturing the dynamics of the USWC route.

In contrast, for the USEC route, the Decision Tree model exhibited 
the most favorable performance. The Decision Tree recorded an MSE of 
0.0310, an NMSE of 0.4559, an RMSE of 0.1579, and an MAE of 0.1007, 
outperforming the Random Forest model by a modest margin. Specif
ically, its MSE was about 2.9 % lower than that of the Random Forest, 
approximately 87.2 % lower than that of the Prophet model, and nearly 
99.2 % lower than that of the LSTM model. This result indicates that, for 
the USEC route, the Decision Tree model more effectively captures the 
underlying data structure.

For the MED route, while the Random Forest model generally ach
ieved lower error metrics—with an MSE of 0.0347, an RMSE of 0.1863, 

and an NMSE of 0.4359—the Decision Tree model yielded the lowest 
MAE at 0.1181. The performance differences between these models, 
although small, suggest that each model may have strengths in capturing 
different aspects of the data variability for the MED route.

On the NEUR route, the Random Forest model again recorded the 
lowest absolute error values, with an MSE of 0.0447, an RMSE of 0.2115, 
an NMSE of 0.5434, and an MAE of 0.1297. The Random Forest’s per
formance on this route was approximately 29.3 % better in terms of 
MSE, 15.9 % better in RMSE, and 30.5 % better in NMSE compared to 
the Decision Tree model. Nonetheless, the differences in performance 
metrics between the two models on the NEUR route were relatively 
marginal.

A comparison between MAPE and SMAPE reveals that SMAPE 
consistently demonstrates better performance across all routes. This 
suggests that many of the actual values used in the MAPE denominator 
are close to zero, thereby inflating the MAPE error. To address this issue, 
both MAPE and SMAPE were jointly examined, and models exhibiting 
relatively stable values across both metrics were selected. Based on this 
comprehensive evaluation, the Decision Tree and Random Forest models 
generally outperformed the LSTM and Prophet models across most 
routes.

Despite the favorable outcomes for both the Decision Tree and 
Random Forest models with respect to absolute error metrics, the rela
tive error measure—MAPE and SMAPE—revealed considerably higher 
prediction error ratios across all models. This elevated MAPE and 
SMAPE is largely attributable to the increased volatility in container 
freight rates following disruptions such as the COVID-19 pandemic and 
the Red Sea crisis. Elevated MAPE and SMAPE values across all models 
are largely attributable to the increased volatility in container freight 
rates following disruptions such as the onset of the COVID-19 pandemic 
and the Red Sea crisis, which amplified global supply chain disturbances 
and resulted in larger percentage errors, as illustrated in Fig. 1. 
Comparing SMAPE, it was analyzed that USEC and MED have good 
decision tree performance, and USWC and NEUR have good Random 
Forest performance. Notably, a comparison of the MAPE values across 
the routes indicates that the Decision Tree model consistently exhibits 
lower relative error ratios than the Random Forest model. Specifically, 
the Decision Tree model achieved MAPE improvements of approxi
mately 91.8 % for the USWC route, 52.1 % for the USEC route, 43.5 % 
for the MED route, and 22.7 % for the NEUR route when compared to the 
Random Forest model. Therefore, both MAPE and SMAPE adopted a 
relatively stable Decision Tree.

Finally, using the Decision Tree model, the influence of various 
features on container freight rates was visualized across all routes. SHAP 
(SHapley Additive Explanations) was employed to quantitatively assess 
the impact of these features on the machine learning prediction out
comes. The graphical representations of feature influence for the 
Random Forest, Prophet, and LSTM model predictions are provided in 
the Appendix. Specifically, both the Decision Tree and Random Forest 
models utilized SHAP for feature impact visualization, the Prophet 
model evaluated feature influence through regression coefficients, and 
the LSTM model illustrated influence based on the average weights of its 
feature set.

5. Discussion

The empirical analysis presented in Figs. 2–5 elucidates the multi
faceted determinants of container freight rates, emphasizing the critical 
roles of both supply-side and demand-side factors. In particular, capacity 
and volume exert substantial influences on freight rate fluctuations 
across all examined routes. These findings reinforce the theoretical 
framework advanced in earlier studies (Jeon et al., 2020; Scarsi, 2007), 
which posit that shipping capacity and shipping volume are primary 
drivers of freight rate dynamics.

Beyond these fundamental supply-demand variables, our analysis 
highlights the pivotal role of the G20 CLI on routes other than USEC. As a 

Table 5 
Evaluation indicators of models.

Route indicator Decision 
Tree

Random 
Forest

LSTM Prophet

USWC MSE 0.0778 0.0322 3788.1917 0.2171
RMSE 0.2790 0.1796 61.5482 0.4659
NMSE 0.8638 0.5853 75024.7661 1.7127
MAE 0.1615 0.1007 54.7361 0.4194
MAPE 36.9699 448.6831 39944.7295 330.4461
SMAPE 50.0792 47.3774 83.4179 73.5523

USEC MSE 0.0249 0.0310 3873.1899 0.2420
RMSE 0.1579 0.1761 62.2349 0.4920
NMSE 0.3618 0.4559 56941.6229 2.3690
MAE 0.1007 0.1146 55.1988 0.4235
MAPE 53.8369 112.3587 87888.3997 365.6392
SMAPE 42.1499 55.9611 76.8371 88.9091

MED MSE 0.0427 0.0347 4025.4914 0.1472
RMSE 0.2068 0.1863 63.4467 0.3837
NMSE 0.5136 0.4359 136494.9406 1.6701
MAE 0.1181 0.1265 56.1486 0.3487
MAPE 45.8080 81.1313 23215.9150 152.6911
SMAPE 43.2302 55.3836 41.5510 71.0931

NEUR MSE 0.0632 0.0447 3363.9074 0.1842
RMSE 0.2514 0.2115 57.9992 0.4292
NMSE 0.9562 0.5434 40844.9406 1.9608
MAE 0.1559 0.1297 52.3133 0.3877
MAPE 81.4221 105.2359 38170.2764 342.0722
SMAPE 66.1932 60.7961 68.7988 93.0079
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comprehensive measure that encapsulates key facets of economic acti
vity—such as manufacturing performance, consumer confidence, and 
new order levels—the CLI serves as a robust proxy for assessing the 
overall economic environment. High CLI values typically signal an 
expanding economy, prompting shipping companies to increase capac
ity in anticipation of rising demand. Conversely, low CLI readings sug
gest economic stagnation or contraction, thereby incentivizing 

strategies such as capacity reduction or blank sailing. The strong cor
relation observed between CLI fluctuations and freight rate movements 
underscores its utility as a leading indicator for maritime transport 
planning.

The analysis also reveals that EPU significantly impacts container 
freight rates on most routes, with the notable exception of the NEUR 
route. In recent years, ongoing tariff disputes and anti-dumping inves
tigations—particularly between Europe and the United States 

Fig. 1. SCFI.

Fig. 2. The influence of feature (USWC).

Fig. 3. The influence of feature (USEC).

Fig. 4. The influence of feature (MED).

Fig. 5. The influence of feature (NEUR).
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concerning imports from China—have elevated EPU levels. These con
ditions have led shippers to increase import volumes preemptively, 
which, in turn, have driven shipping companies to expedite the imple
mentation of Peak Season Surcharges (PSS). A case in point is Maersk’s 
decision to enforce PSS earlier than usual for shipments from the Asia 
Pacific region to North America and Canada, a response attributed to 
surging import volumes observed in early July 2024. The muted influ
ence of EPU on the NEUR route is likely due to the stabilizing effect of 
the European Union’s integrated economic framework, which buffers 
against policy-induced volatility.

Furthermore, the GPR indicator has demonstrated a pronounced 
impact on the MED and NEUR routes. The recent Red Sea crisis, char
acterized by the occupation of the Red Sea by Yemeni Houthi rebels 
starting in late 2023, led to significant disruptions in Suez Canal oper
ations. This geopolitical instability forced shipping companies to reroute 
vessels via the longer Cape of Good Hope, thereby increasing transit 
distances and operational costs. Quantitative analysis, as depicted in 
Fig. 6, indicates that during the first half of 2024, container freight rates 
on the MED route increased by approximately 130 % relative to the 
same period in 2023, while the NEUR route experienced an increase of 
about 226 %. These findings highlight the critical impact of exogenous 
geopolitical shocks on freight rate volatility.

The discussion underscores that container freight rate determination 
is a complex interplay of inherent supply-demand dynamics and exog
enous factors, including macroeconomic indicators and geopolitical 
risks. The integration of these diverse variables into our forecasting 
models not only enhances predictive performance but also offers sig
nificant insights for strategic decision-making in the maritime transport 
sector. Future research should further explore these interdependencies, 
particularly under conditions of heightened market volatility and 
geopolitical uncertainty, to develop more resilient and adaptive fore
casting frameworks.

6. Conclusion

Container freight rates play a pivotal role in logistics cost manage
ment and strategic decision-making within the shipping industry. The 
cyclical nature of ship ordering—where high freight rates prompt new 

orders that are delivered two to three years later, potentially leading to 
overcapacity and subsequent rate declines—exacerbates the inherent 
market volatility. Moreover, the increasing regulatory pressures to 
reduce carbon emissions have driven shipping companies to invest in 
eco-friendly vessels. Consequently, accurate forecasting of ocean freight 
rates becomes essential for effective risk management in an industry 
characterized by long-term planning and significant capital investments.

This study undertook a comparative analysis of several forecasting 
models, including Decision Tree, Random Forest, LSTM, and Prophet, to 
determine their relative performance in predicting container freight 
rates. Our empirical results indicate that, in terms of absolute error 
metrics, both the Decision Tree and Random Forest models exhibit 
strong predictive capabilities. In this study, the model demonstrating the 
best overall performance was selected based on two evaluation ap
proaches: (1) comparison of MSE, RMSE, NMSE, and MAE, and (2) 
comparison of MAPE and SMAPE. In the first evaluation, both the 
Random Forest and Decision Tree models exhibited strong performance, 
with Random Forest outperforming in some metrics. However, in the 
second evaluation using MAPE and SMAPE, the Decision Tree model was 
ultimately selected due to its relatively stable and superior performance 
across both indicators. These results highlight that the optimal model 
may vary depending on the chosen evaluation metric. Notably, the De
cision Tree model emerged as the most effective when assessed using the 
relative error metric, MAPE and SMAPE, despite overall MAPE and 
SMAPE performance remaining suboptimal across all models. The 
elevated MAPE and SMAPE values can be attributed to the amplified 
impact of external shocks, particularly EPU and GPR, which have 
increasingly influenced market dynamics. This confirmation of the 
impact of EPU and GPR is expected to help the shipping industry 
stakeholders make decisions.

The findings of this study underscore the critical influence of both 
traditional supply-demand factors and external economic and geopo
litical shocks on freight rate forecasting. However, the persistence of 
relatively high prediction error ratios highlights a significant limitation 
of the current modeling approaches. This suggests the need for the 
development of more sophisticated hybrid models—potentially inte
grating approaches such as ANN and RNN—that are better equipped to 
capture the complex, non-linear interactions between exogenous factors 

Fig. 6. MED SCFI and NEUR SCFI (2023.01 – 2023.06 / 2024.01 – 2024.06).
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and freight rate dynamics.
Future research should focus on enhancing predictive accuracy by 

incorporating additional external variables and exploring ensemble 
methods that synergistically combine the strengths of various machine 
learning and deep learning models. Such advancements will be crucial 
for developing robust forecasting tools capable of supporting strategic 
decision-making in an increasingly volatile global shipping 
environment.
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Appendix

Fig. 7. The Influence of Feature (USWC), Random Forest

Fig. 8. The Influence of Feature (USEC), Random Forest

Fig. 9. The Influence of Feature (MED), Random Forest
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Fig. 10. The Influence of Feature (NEUR), Random Forest

Fig. 11. The Influence of Feature (USWC), Prophet

Fig. 12. The Influence of Feature (USEC), Prophet

Fig. 13. The Influence of Feature (MED), Prophet
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Fig. 14. The Influence of Feature (NEUR), Prophet

Fig. 15. The Influence of Feature (USWC), LSTM

Fig. 16. The Influence of Feature (USEC), LSTM

Fig. 17. The Influence of Feature (MED), LSTM
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Fig. 18. The Influence of Feature (NEUR), LSTM
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