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This study evaluates the predictive performance of four models—Decision Tree, Random Forest, Prophet, and
LSTM—in forecasting container freight rates, a key metric for strategic decision-making in the shipping industry.
To address data heterogeneity, Min-Max normalization was applied, and the Johansen co-integration test
confirmed long-term relationships among the variables, justifying the use of raw data in our analysis. Perfor-
mance was assessed using MSE, RMSE, NMSE, MAE, MAPE and SMAPE. While both Decision Tree and Random
Forest models yielded lower absolute errors compared to LSTM and Prophet, the Decision Tree model demon-

strated superior relative accuracy, outperforming Random Forest by approximately 91.8 % on the USWC route,
52.1 % on USEC, 43.5 % on MED, and 22.7 % on NEUR. These findings highlight the robustness of the Decision
Tree model for container freight rate forecasting under volatile market conditions.

1. Introduction

The shipping industry is a cornerstone of global trade, responsible for
transporting over 80 % of the world’s cargo. This vital function un-
derpins global economic growth and supply chain stability (Wang et al.,
2024). In this context, the accurate prediction of ocean freight rates is
critical. Freight rates not only reflect current market conditions but also
serve as a mechanism for balancing supply and demand through stra-
tegic rate adjustments (Jeon et al., 2020; Scarsi, 2007; Schramm &
Munim, 2021; Wang et al., 2024).

The importance of forecasting ocean freight rates is multifaceted.
First, key stakeholders—including ship owners, cargo carriers, logistics
companies, and end consumers—rely on these predictions for informed
decision-making across various functions such as product pricing, cost
accounting, financial management, and asset allocation (Hirata &
Matsuda, 2022; Jeon et al., 2021). The volatility of freight rates is a
fundamental component of maritime transport costs; therefore, precise
forecasting of this volatility is crucial for market participants (Naima
et al., 2023). Second, the inherent periodicity of ocean freight rates
arises from the lengthy interval between ship orders and deliveries,
which typically exceeds two years. This temporal lag reinforces cyclical
patterns in freight rate dynamics (Scarsi, 2007). Third, ship owners
make routine decisions regarding ship sales and charters based on
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prevailing freight rate levels, further emphasizing the need for robust
forecasting (Jeon et al., 2020). Fourth, for shippers, accurate rate pre-
dictions are essential as logistics costs are directly correlated with freight
rates—costs tend to escalate during periods of high rates and decline
when rates are low. Additionally, seasonal variations, exemplified by the
implementation of Peak Season Surcharges (PSS) in months such as
March or October, further complicate the forecasting landscape (Yin &
Shi, 2018). Finally, external shocks, including geopolitical risks and
events such as the Suez Canal blockage during the COVID-19 pandemic
and the recent Red Sea crisis, have demonstrated significant adverse
impacts on container freight rates. Incorporating these disruptions into
forecasting models has been shown to enhance predictive accuracy
(Naima et al., 2023).

Moreover, the shipping industry is notably capital-intensive, with
substantial financial commitments required for ship ordering and
operation (Jeon & Yeo, 2017). Overcapacity, often resulting from
aggressive shipbuilding, can precipitate a decline in freight rates,
thereby intensifying the need for accurate market assessments and risk
evaluations. For instance, using system dynamics, Jeon et al. (2020)
identified a cyclical pattern of approximately 32 months in the China
Container Freight Index (CCFI), highlighting the interplay between
supply-demand imbalances. Additionally, stringent environmental reg-
ulations imposed by the International Maritime Organization (IMO),

2092-5212/© 2025 The Author(s). Published by Elsevier B.V. on behalf of The Korean Association of Shipping and Logistics, Inc. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0003-2876-5112
https://orcid.org/0000-0003-2876-5112
mailto:jwjeon@sungkyul.ac.kr
www.sciencedirect.com/science/journal/20925212
https://www.elsevier.com/locate/ajsl
https://doi.org/10.1016/j.ajsl.2025.05.001
https://doi.org/10.1016/j.ajsl.2025.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajsl.2025.05.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/

N. Kim et al.

such as the Energy Efficiency Design Index (EEDI), Energy Efficiency
Ship Index (EEXI), and Carbon Intensity Indicator (CII), are compelling
shipping companies to invest in eco-friendly vessels. These regulatory
requirements further amplify the necessity for reliable freight rate
forecasts to mitigate the risks associated with new ship orders
(Bayraktar & Yuksel, 2023; Lee, 2024).

In light of these considerations, this study aims to compare the pre-
dictive performance of four distinct models—Prophet, Decision Tree,
Random Forest, and LSTM—in forecasting container freight rates. The
objective is to identify the model that most effectively captures the
complex dynamics of ocean freight rates, thereby supporting more
informed decision-making by industry stakeholders.

The remainder of this paper is organized as follows. Chapter 2 re-
views relevant literature on container freight rate prediction and dis-
cusses prior applications of the Prophet, Decision Tree, Random Forest,
and LSTM models. Chapter 3 details the data and methodological
framework employed. Chapter 4 presents empirical findings and pro-
vides a comparative evaluation of the models. Chapter 5 discusses the
implications of the findings, and Chapter 6 concludes the study.

2. Literature review
2.1. Forecasting studies on container freight rates

Container freight rates are critical indicators for a multitude of
stakeholders within the shipping industry, influencing decisions ranging
from pricing and financial management to asset allocation. Tradition-
ally, econometric models—such as ARIMA, VAR, VEC, and
ARMA—have been extensively employed to forecast these rates
(Koyuncu & Tavacioglu, 2021; Munim & Schramm, 2017). For example,
Schramm and Munim (2021) conducted comparative analyses between
ARIMA and VAR, while Munim and Schramm (2021) extended this
comparison to ARIMA and VEC. In another study, Chen et al. (2021)
proposed an innovative hybrid approach by integrating empirical mode
decomposition (EMD) with ARMA. Luo et al. (2009) further advanced
the field by employing supply and demand dynamics for forecasting
container freight rates.

Notwithstanding these contributions, the inherently non-linear and
complex nature of container freight rate data presents substantial
challenges for traditional econometric models (Hirata & Matsuda,
2022). This limitation has catalyzed a shift towards the adoption of
machine learning and deep learning techniques, which are more adept
at capturing non-linear patterns. Recent studies have demonstrated that
deep learning models, such as LSTM, can outperform conventional ap-
proaches in certain contexts; for instance, Hirata and Matsuda (2022)
reported superior predictive performance of LSTM over ARIMA for
deep-sea routes, although results were comparable for short-sea routes.
Moreover, Chen et al. (2024) showed that a CNN-LSTM hybrid model
could achieve an R? exceeding 90 %, outperforming an ARIMA-SVR
framework. Similarly, machine learning models such as Random For-
est have been shown to deliver prediction accuracy above 80 % (Feng,
2022; Khan & Hussain, 2022). Complementary work by Jeon et al.
(2021) compared ARIMA, VEC, and System Dynamics models, finding
that the latter reduced prediction error by approximately 30% on
average, thereby offering distinct advantages in capturing market
dynamics.

2.2. Studies on specific forecasting models

In addition to broad econometric approaches, various forecasting
models have been applied across different domains. Their relevance to
container freight rate prediction is elucidated below.

2.2.1. Decision tree models
Decision tree methodologies have proven effective in numerous
forecasting applications. Liu et al. (2017a) applied decision trees for
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copper price prediction, achieving robust performance as measured by
MAPE and RMSE. Bala (2010) extended this application to demand
forecasting for Indian retailers, demonstrating that decision tree-based
models outperformed other methods—such as ARIMA and SARIMA—-
over both short and long-term horizons. Hybrid models that combine
decision trees with artificial neural networks (ANN) have further
enhanced prediction accuracy (Chang, 2011; Tsai & Wang, 2009),
reinforcing the versatility of decision tree frameworks.

2.2.2. Random forest models

Random Forest, an ensemble extension of decision trees, mitigates
the risk of overfitting and enhances predictive stability. Liu and Li
(2017b) utilized Random Forest to forecast gold price fluctuations,
identifying critical predictors such as the DJIA and S&P 500 indices.
Kumar and Thenmozhi (2006), demonstrated that Random Forest pro-
vided competitive accuracy relative to SVM, LDA, and logistic regression
for predicting stock volatility. Subsequent studies by Abraham et al.
(2022) and Vairagade et al. (2019) have consistently reported that
Random Forest outperforms alternative methods in various forecasting
contexts. Huertas Tato and Centeno Brito (2018), further validated these
findings through applications in solar energy production forecasting,
while Xue et al. (2021) compared multi-objective Random Forest vari-
ants, confirming its robustness in handling complex prediction tasks.

2.2.3. LSTM models

Long Short-Term Memory (LSTM) networks, a subset of recurrent
neural networks (RNN), are particularly well-suited for time-series
forecasting due to their ability to capture long-term dependencies.
Bhandari et al. (2022) found that single-layer LSTM models provided
superior predictive accuracy for S&P 500 closing prices when evaluated
against RMSE, MAPE, and R? metrics. Conversely, Abbasimehr et al.
(2020) reported that multi-layer LSTM models achieved even greater
performance, outperforming conventional models such as ARIMA, ANN,
and SVM. Sagheer and Kotb (2019) extended the LSTM architecture
(DLSTM) for petroleum production forecasting, demonstrating notable
improvements in RMSE and MAPE, while Siami-Namini et al. (2018)
documented significant error reductions of 84-87 % in comparison to
ARIMA models.

2.2.4. Prophet models

Prophet, developed by Taylor and Letham (2018), is designed for
robust time-series forecasting by accommodating trends, seasonality,
and external events. Empirical comparisons by Jha and Pande (2021)
revealed that Prophet achieved lower RMSE and MAPE values compared
to ARIMA in the context of supermarket sales forecasting. Similarly,
Yenidogan et al. (2018) applied both models to Bitcoin price prediction,
reporting an R? of 0.94 for Prophet versus 0.68 for ARIMA. Kaninde et al.
(2022) further demonstrated the utility of Prophet in volatile stock
market forecasting, particularly due to its ability to integrate holiday
effects and other exogenous factors. Recent external shocks, including
the Suez Canal blockage during COVID-19 and the Red Sea crisis, un-
derscore the importance of incorporating exogenous variables into
forecasting models to enhance predictive accuracy (Naima et al., 2023;
Wang et al., 2024).

2.2.5. Contributions

Despite the extensive body of work utilizing econometric models for
container freight rate prediction, there remains a significant gap in the
application of advanced machine learning and deep learning techniques
to this domain. In particular, the relative underutilization of models
such as Prophet, Random Forest, and LSTM—compared to traditional
approaches—suggests a promising avenue for further research. Addi-
tionally, decision tree-based models have received limited attention in
the context of container freight rate forecasting, despite demonstrated
success in other fields. Therefore, the present study seeks to address
these gaps by systematically comparing the performance of Prophet,
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Decision Tree, Random Forest, and LSTM models. This comparative
analysis aims to elucidate the strengths and limitations of each approach
and to identify the most effective methodology for capturing the com-
plex, non-linear dynamics inherent in container freight rate data.

3. Methodology
3.1. Data

Ocean freight rates are influenced by various factors, including
supply and demand dynamics, cargo weight and volume, and the dis-
tance to destination (Khan & Hussain, 2022). Recent geopolitical
developments—such as the Red Sea crisis, which prompted container
ships to bypass the Suez Canal in favor of the South African Cape of Good
Hope—have further impacted these rates. Historical events, including
the global financial crisis, the COVID-19 pandemic, and episodes of
overcapacity, have also demonstrated significant effects on ocean freight
rates (Naima et al., 2023; Wang et al., 2024).

To capture these dynamics, this study utilizes variables representing
container shipping volume, container capacity, and key economic in-
dicators. Specifically, Asia-Europe capacity and Asia-North America
capacity are employed to quantify shipping capacity, while Asia-Europe
shipping volume and Asia-North America shipping volume measure
shipping volume. Ocean freight rates are examined along the North
American, European, and Mediterranean Sea routes, as derived from the
Shanghai Containerized Freight Index (SCFI). The economic indicators
incorporated into the analysis include Global Economic Policy Uncer-
tainty (EPU), the G20 Composite Leading Indicator (CLI), and Global
Geopolitical Risk (GPR). EPU is calculated based on the frequency of
terms such as "economy" and "policy" in media articles (Baker et al.,
2016), CLI reflects expectations of future economic activity (OECD), and
GPR quantifies geopolitical tensions based on news frequency (Caldara
& Tacoviello, 2022).

This study utilizes monthly data spanning from January 2014 to June
2024. Due to the heterogeneous units of measurement (e.g., TEU versus
USD/TEU), all features are normalized using a Min-Max scaling tech-
nique, which scales values to the [0,1] range. Subsequently, the
Johansen co-integration test is performed to ascertain the existence of
long-term relationships among the variables. The presence of co-
integration justifies the use of the raw data in the forecasting models.
Table 1 provides a summary of the descriptive statistics for the data used
in this study.

3.2. Forecasting models

3.2.1. Prophet model
The Prophet model, introduced by Taylor and Letham (2018), is
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specifically designed for robust time-series forecasting. Its principal
strength lies in its capacity to model seasonal patterns, long-term trends,
and holiday effects independently, allowing for easy customization to
specific business contexts. This flexibility enables Prophet to effectively
capture the non-linear characteristics and periodic fluctuations inherent
in ocean freight rate data.

3.2.2. Decision tree and random forest models

The Decision Tree model is a well-established method in predictive
analytics, originally conceptualized by Belson (1959) and further
developed through the CART methodology by Breiman et al. (1986).
Although decision trees are intuitive and easy to interpret, they are
susceptible to overfitting. To address this limitation, Random Forest—an
ensemble learning technique proposed by Breiman (2001)—aggregates
the predictions of multiple decision trees through a voting mechanism.
This ensemble approach mitigates overfitting and enhances the model’s
performance, particularly when dealing with high-dimensional data.

3.2.3. LSTM model

Long Short-Term Memory (LSTM) networks, introduced by
Hochreiter (1997), are a specialized type of recurrent neural network
designed to overcome the limitations of traditional RNNs in capturing
long-term dependencies. LSTM networks incorporate gating mecha-
nisms—namely, the input, forget, and output gates—along with a
memory cell that preserves and updates information as needed. These
features address the vanishing gradient problem, thereby enabling the
efficient learning of temporal dependencies and making LSTM particu-
larly well-suited for time-series forecasting tasks such as predicting
ocean freight rates.

3.2.4. Model settings

Random Search was employed to identify the optimal hyper-
parameter configurations for the Decision Tree, Random Forest, and
Prophet models. In contrast, the LSTM model was trained using a
consistent hyperparameter configuration across all sections, a design
choice made to balance performance and computational demands.
Table 2 presents the section-specific settings used for hyperparameter
optimization.

3.2.5. Model validation

To assess the forecasting performance of the models, this study em-
ploys a comprehensive set of evaluation metrics: Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Normalized Mean Squared
Error (NMSE) and Symmetric Mean Absolute Percentage Error (SMAPE).
MAE provides a direct measure of the average absolute error between
the predicted and actual values. MAPE expresses this error as a

Table 1
Data descriptive statistics.
Count Mean Std Min Max 50 %

EPU* 126 208.86 72.57 86.63 431.73 208.31
GPR* * 126 105.78 33.75 58.42 318.95 102.19
CLI* ** 126 99.73 1.45 89.48 101.41 99.99
Capacity EUR* 126 1858,579 153,128.7 1559,476 2142,365 1860,088
Capacity_NA 126 2015,801 424,777.4 1462,072 2912,504 1876,666
Volume EUR* ** * 126 1330,787 153,564.1 67,620 1616,700 1364,350
Volume_NA* ** * 126 1615,153 284,394.8 81,270 2119,400 1582,550
Med* 126 2019.58 2064.47 220.50 7522.75 984.71
NEUR g 126 1847.21 2055.13 223.50 7784.25 912.63
USWC* *¥* ** 126 2587.77 1895.83 796.50 8079.00 1800.13
USECH ** ** 126 4091.98 2631.86 1589.50 2962.75 11,778.50

* Baker, S. R., Bloom, N., & Davis, S. J. (2016). "Measuring Economic Policy Uncertainty." Available at: Policy Uncertainty. / Unitless Index
** Caldara, D and Iacoviello, M. (2022). "Global Policy Uncertainty." Available at: Matteo Iacoviello’s Website. / Unitless Index

OECD. "Composite Leading Indicator (CLI) - G20." Available at: OECD. / Unit: Long-term average = 100
*Bloomberg L.P. "Shipping Capacity and Shipping Volume Data." Bloomberg Terminal. / Unit: TEU

* %% **Shanghai Shipping Exchange. "Shanghai Containerized Freight Index." Available at: Shanghai Shipping Exchange. / Unit: USD/TEU, Unit: USD/FEU
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Table 2
Section settings for hyperparameter optimization.

The Asian Journal of Shipping and Logistics 41 (2025) 99-109

Decision Tree Random Forest

Prophet LSTM

Max Depth: 1-20

Min Samples Split: 10-100

Min Samples Leaf: 1-20

Max Features: 1-15

Max Leaf Nodes: 1-100

Min Weight Fraction Leaf: 0-1

Criterion: squared_error, friedman_mse, absolute_error, poisson

Max Depth: 1-20

N Estimators: 1-100

Min Samples Split: 10-100
Min Samples Leaf: 1-20
Max Features: 1-15

Max Leaf Nodes: 1-100
Min Weight Fraction Leaf: 0-1

Growth: Linear, Logistic Sequence Length: 3

Daily Seasonality: True, False Dropout: 0.5
Weekly Seasonality: True, False Units: 128
Yearly Seasonality: True, False Epochs: 100

Batch Size: 64
Optimizer: Adam
Learning Rate: 0.001
Loss: MSE

Changepoint Prior Scale: 0.001-100(Log Scale)
Seasonality Prior Scale: 0.001-100(Log Scale)

percentage, facilitating comparisons across models with different scales.
MSE and RMSE, by emphasizing larger errors through squaring, offer
insights into the models’ sensitivity to significant deviations. NMSE
normalizes the error relative to the variance of the data, allowing for a
relative assessment of predictive performance. MAPE has a problem that
the error rises infinitely when the actual value is close to 0, and SMAPE
is used to compensate for this. SMAPE reflects the symmetry between
the predicted and actual values and works stably near zero. Lower values
across these metrics indicate better model performance, guiding the
selection of the most effective forecasting approach for container freight
rates.

4. Results
4.1. Johansen test

The Johansen co-integration test was conducted to ascertain the
existence of a long-term equilibrium relationship among the variables.
In this test, the null hypothesis posits that the number of co-integrating
vectors is less than a specified rank (n <r), whereas the alternative
hypothesis asserts that r is less than or equal to n. If the test statistic
exceeds the critical value, the null hypothesis is not rejected; conversely,
it is rejected when the test statistic falls below the critical value.

As summarized in Table 3, the test results confirm the presence of co-
integration across all routes examined. Consequently, despite any non-
stationarity in the individual series, the existence of a long-term rela-
tionship justifies the application of the raw data in subsequent modeling.
Specifically, the number of co-integrations was determined to lie within
range 2 < r < 3 for both the USEC and USWC routes, and within 1 <r < 2
for the MED and NEUR routes.

4.2. Model setting

All models utilizing normalized data were trained using 80 % of the
dataset, with the remaining 20 % reserved for testing. The performance
evaluations presented in Table 5 are based on models trained using the
hyperparameter configurations detailed in Table 4. Specifically, Table 4

Table 3
Johansen test.

Route r0 rl Test Statistic Critical Value (%)
USEC 0 6 125.2 95.75
1 6 84.97 69.82
2 6 51.54 47.85
3 6 28.44 29.80
USwWC 0 6 134.0 95.75
1 6 87.06 69.82
2 6 53.06 47.85
3 6 27.28 29.80
MED 0 6 125.5 95.75
1 6 75.16 69.82
2 6 44.02 47.85
NEUR 0 6 129.0 95.75
1 6 76.92 69.85
2 6 45.93 47.85

Table 4
Settings of hyperparameter.

Route Model Hyperparameter

USWC  Decision random_state= 42, criterion="squared_error’,
max_depth= 19, max_features= 2, max_leaf nodes= 68,
min_samples_leaf= 15, min_samples_split= 2,
min_weight_fraction_leaf=0

random_state= 42, max_depth= 6, max_features="7,
max_leaf nodes= 81, min_samples_leaf=1,
min_samples_split= 16, min_weight fraction_leaf=0,
n_estimators= 21, bootstrap=True, oob_score=False,
n_jobs=None

Sequence Length= 3, Dropout= 0.5, Units= 128,

Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning
Rate=0.001, Loss=MSE

growth=logistic’, changepoint_prior_scale= 0.0081,
seasonality_prior_scale=572.237,
yearly_seasonality=True, daily_seasonality=False,
weekly_seasonality=False

random _state= 42, criterion="squared_error’,
max_depth= 15, max features= 13, max_leaf nodes= 27,
min_samples_leaf= 13, min_samples_split= 52,

min_weight fraction_leaf=0

random_state= 42, max_depth= 6, max_features= 3,
max_leaf nodes= 96, min_samples_leaf=11,
min_samples_split= 21, min_weight fraction_leaf=0,
n_estimators= 26, bootstrap=True, oob_score=False,
n_jobs=None

Sequence Length= 3, Dropout= 0.5, Units= 128,

Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning
Rate=0.001, Loss=MSE

growth="logistic’, changepoint_prior_scale= 0.0035,
seasonality_prior_scale=0.0013, yearly_seasonality=True,
daily_seasonality=False, weekly_seasonality=False
random_state= 42, criterion="squared_error’,
max_depth= 19, max_features= 9, max leaf nodes=74,
min_samples_leaf= 6, min_samples_split= 16,
min_weight_fraction_leaf=0

random _state= 42, max_depth= 7, max_features= 14,
max_leaf nodes= 38, min_samples_leaf=10,
min_samples_split= 18, min_weight fraction_leaf= 0,
n_estimators= 39, bootstrap=True, oob_score=False,
n_jobs=None

Sequence Length= 3, Dropout= 0.5, Units= 128,
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning
Rate=0.001, Loss=MSE

growth=logistic’, changepoint_prior_scale=0.0081,
seasonality_prior_scale=0.6136, yearly_seasonality=True,
daily_seasonality=False, weekly_seasonality=False
random state= 42, criterion="squared_error’,
max_depth= 19, max features= 3, max_leaf nodes= 70,
min_samples_leaf= 3, min_samples_split= 27,

min_weight fraction_leaf=0

random _state= 42, max_depth= 13, max_features= 12,
max_leaf nodes= 76, min_samples_leaf=2,
min_samples_split= 40, min_weight fraction_leaf=0,
n_estimators= 57, bootstrap=True, oob_score=False,
n_jobs=None

Sequence Length= 3, Dropout= 0.5, Units= 128,
Epochs= 100, Batch Size= 64, Optimizer=Adam, Learning
Rate=0.001, Loss=MSE

growth="logistic’, changepoint_prior_scale= 0.0023,
seasonality_prior_scale= 0.0327, yearly_seasonality=True,
daily_seasonality=False, weekly_seasonality=False

Tree

Random
Forest

LSTM

Prophet

USEC Decision

Tree

Random
Forest

LSTM

Prophet

MED Decision

Tree

Random
Forest

LSTM

Prophet

NEUR Decision

Tree

Random
Forest

LSTM

Prophet

102
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Table 5
Evaluation indicators of models.
Route indicator  Decision Random LSTM Prophet
Tree Forest

UsSwcC MSE 0.0778 0.0322 3788.1917 0.2171
RMSE 0.2790 0.1796 61.5482 0.4659
NMSE 0.8638 0.5853 75024.7661 1.7127
MAE 0.1615 0.1007 54.7361 0.4194
MAPE 36.9699 448.6831 39944.7295 330.4461
SMAPE 50.0792 47.3774 83.4179 73.5523

USEC MSE 0.0249 0.0310 3873.1899 0.2420
RMSE 0.1579 0.1761 62.2349 0.4920
NMSE 0.3618 0.4559 56941.6229 2.3690
MAE 0.1007 0.1146 55.1988 0.4235
MAPE 53.8369 112.3587 87888.3997 365.6392
SMAPE 42.1499 55.9611 76.8371 88.9091

MED MSE 0.0427 0.0347 4025.4914 0.1472
RMSE 0.2068 0.1863 63.4467 0.3837
NMSE 0.5136 0.4359 136494.9406 1.6701
MAE 0.1181 0.1265 56.1486 0.3487
MAPE 45.8080 81.1313 23215.9150 152.6911
SMAPE 43.2302 55.3836 41.5510 71.0931

NEUR MSE 0.0632 0.0447 3363.9074 0.1842
RMSE 0.2514 0.2115 57.9992 0.4292
NMSE 0.9562 0.5434 40844.9406 1.9608
MAE 0.1559 0.1297 52.3133 0.3877
MAPE 81.4221 105.2359 38170.2764 342.0722
SMAPE 66.1932 60.7961 68.7988 93.0079

outlines the optimized hyperparameter settings for each of the four
models, while Table 5 compares the predictive performance of these
models following training with the specified configurations.

4.3. Model comparison

The predictive performance of the four forecasting models—Decision
Tree, Random Forest, LSTM, and Prophet—was rigorously evaluated
using six metrics: Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Normalized Mean Squared Error (NMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE) and Symmetric Mean
Absolute Percentage Error (SMAPE). Table 5 presents a detailed sum-
mary of these evaluation indicators for each shipping route.

Overall, the Decision Tree and Random Forest models demonstrated
superior performance compared to the LSTM and Prophet models when
assessed using absolute error metrics (MSE, RMSE, NMSE, and MAE).
This observation suggests that tree-based methods are more effective in
capturing the underlying non-linear dynamics of container freight rate
data. The lower error values achieved by these models indicate their
enhanced capability to model the complex relationships present in the
dataset.

For the USWC route, the Random Forest model achieved the lowest
absolute error values, recording an MSE of 0.0322, an RMSE of 0.1796,
an NMSE of 0.5853, and an MAE of 0.1007. Specifically, the MSE ob-
tained by the Random Forest model was approximately 58.6 % lower
than that of the Decision Tree, 85.2 % lower than that of the Prophet
model, and 99.15% lower than that of the LSTM model. These im-
provements in error metrics underscore the robust performance of the
Random Forest approach in capturing the dynamics of the USWC route.

In contrast, for the USEC route, the Decision Tree model exhibited
the most favorable performance. The Decision Tree recorded an MSE of
0.0310, an NMSE of 0.4559, an RMSE of 0.1579, and an MAE of 0.1007,
outperforming the Random Forest model by a modest margin. Specif-
ically, its MSE was about 2.9 % lower than that of the Random Forest,
approximately 87.2 % lower than that of the Prophet model, and nearly
99.2 % lower than that of the LSTM model. This result indicates that, for
the USEC route, the Decision Tree model more effectively captures the
underlying data structure.

For the MED route, while the Random Forest model generally ach-
ieved lower error metrics—with an MSE of 0.0347, an RMSE of 0.1863,
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and an NMSE of 0.4359—the Decision Tree model yielded the lowest
MAE at 0.1181. The performance differences between these models,
although small, suggest that each model may have strengths in capturing
different aspects of the data variability for the MED route.

On the NEUR route, the Random Forest model again recorded the
lowest absolute error values, with an MSE of 0.0447, an RMSE of 0.2115,
an NMSE of 0.5434, and an MAE of 0.1297. The Random Forest’s per-
formance on this route was approximately 29.3 % better in terms of
MSE, 15.9 % better in RMSE, and 30.5 % better in NMSE compared to
the Decision Tree model. Nonetheless, the differences in performance
metrics between the two models on the NEUR route were relatively
marginal.

A comparison between MAPE and SMAPE reveals that SMAPE
consistently demonstrates better performance across all routes. This
suggests that many of the actual values used in the MAPE denominator
are close to zero, thereby inflating the MAPE error. To address this issue,
both MAPE and SMAPE were jointly examined, and models exhibiting
relatively stable values across both metrics were selected. Based on this
comprehensive evaluation, the Decision Tree and Random Forest models
generally outperformed the LSTM and Prophet models across most
routes.

Despite the favorable outcomes for both the Decision Tree and
Random Forest models with respect to absolute error metrics, the rela-
tive error measure—MAPE and SMAPE—revealed considerably higher
prediction error ratios across all models. This elevated MAPE and
SMAPE is largely attributable to the increased volatility in container
freight rates following disruptions such as the COVID-19 pandemic and
the Red Sea crisis. Elevated MAPE and SMAPE values across all models
are largely attributable to the increased volatility in container freight
rates following disruptions such as the onset of the COVID-19 pandemic
and the Red Sea crisis, which amplified global supply chain disturbances
and resulted in larger percentage errors, as illustrated in Fig. 1.
Comparing SMAPE, it was analyzed that USEC and MED have good
decision tree performance, and USWC and NEUR have good Random
Forest performance. Notably, a comparison of the MAPE values across
the routes indicates that the Decision Tree model consistently exhibits
lower relative error ratios than the Random Forest model. Specifically,
the Decision Tree model achieved MAPE improvements of approxi-
mately 91.8 % for the USWC route, 52.1 % for the USEC route, 43.5 %
for the MED route, and 22.7 % for the NEUR route when compared to the
Random Forest model. Therefore, both MAPE and SMAPE adopted a
relatively stable Decision Tree.

Finally, using the Decision Tree model, the influence of various
features on container freight rates was visualized across all routes. SHAP
(SHapley Additive Explanations) was employed to quantitatively assess
the impact of these features on the machine learning prediction out-
comes. The graphical representations of feature influence for the
Random Forest, Prophet, and LSTM model predictions are provided in
the Appendix. Specifically, both the Decision Tree and Random Forest
models utilized SHAP for feature impact visualization, the Prophet
model evaluated feature influence through regression coefficients, and
the LSTM model illustrated influence based on the average weights of its
feature set.

5. Discussion

The empirical analysis presented in Figs. 2-5 elucidates the multi-
faceted determinants of container freight rates, emphasizing the critical
roles of both supply-side and demand-side factors. In particular, capacity
and volume exert substantial influences on freight rate fluctuations
across all examined routes. These findings reinforce the theoretical
framework advanced in earlier studies (Jeon et al., 2020; Scarsi, 2007),
which posit that shipping capacity and shipping volume are primary
drivers of freight rate dynamics.

Beyond these fundamental supply-demand variables, our analysis
highlights the pivotal role of the G20 CLI on routes other than USEC. Asa
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comprehensive measure that encapsulates key facets of economic acti-
vity—such as manufacturing performance, consumer confidence, and
new order levels—the CLI serves as a robust proxy for assessing the
overall economic environment. High CLI values typically signal an
expanding economy, prompting shipping companies to increase capac-
ity in anticipation of rising demand. Conversely, low CLI readings sug-
gest economic stagnation or contraction, thereby incentivizing

104

o [
e ]
volume [J]

000

0 06 006 008 00 0l

Fig. 4. The influence of feature (MED).

T

000 00 004 006 008 010

Fig. 5. The influence of feature (NEUR).

strategies such as capacity reduction or blank sailing. The strong cor-
relation observed between CLI fluctuations and freight rate movements
underscores its utility as a leading indicator for maritime transport
planning.

The analysis also reveals that EPU significantly impacts container
freight rates on most routes, with the notable exception of the NEUR
route. In recent years, ongoing tariff disputes and anti-dumping inves-
tigations—particularly between Europe and the United States
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concerning imports from China—have elevated EPU levels. These con-
ditions have led shippers to increase import volumes preemptively,
which, in turn, have driven shipping companies to expedite the imple-
mentation of Peak Season Surcharges (PSS). A case in point is Maersk’s
decision to enforce PSS earlier than usual for shipments from the Asia
Pacific region to North America and Canada, a response attributed to
surging import volumes observed in early July 2024. The muted influ-
ence of EPU on the NEUR route is likely due to the stabilizing effect of
the European Union’s integrated economic framework, which buffers
against policy-induced volatility.

Furthermore, the GPR indicator has demonstrated a pronounced
impact on the MED and NEUR routes. The recent Red Sea crisis, char-
acterized by the occupation of the Red Sea by Yemeni Houthi rebels
starting in late 2023, led to significant disruptions in Suez Canal oper-
ations. This geopolitical instability forced shipping companies to reroute
vessels via the longer Cape of Good Hope, thereby increasing transit
distances and operational costs. Quantitative analysis, as depicted in
Fig. 6, indicates that during the first half of 2024, container freight rates
on the MED route increased by approximately 130 % relative to the
same period in 2023, while the NEUR route experienced an increase of
about 226 %. These findings highlight the critical impact of exogenous
geopolitical shocks on freight rate volatility.

The discussion underscores that container freight rate determination
is a complex interplay of inherent supply-demand dynamics and exog-
enous factors, including macroeconomic indicators and geopolitical
risks. The integration of these diverse variables into our forecasting
models not only enhances predictive performance but also offers sig-
nificant insights for strategic decision-making in the maritime transport
sector. Future research should further explore these interdependencies,
particularly under conditions of heightened market volatility and
geopolitical uncertainty, to develop more resilient and adaptive fore-
casting frameworks.

6. Conclusion
Container freight rates play a pivotal role in logistics cost manage-

ment and strategic decision-making within the shipping industry. The
cyclical nature of ship ordering—where high freight rates prompt new
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orders that are delivered two to three years later, potentially leading to
overcapacity and subsequent rate declines—exacerbates the inherent
market volatility. Moreover, the increasing regulatory pressures to
reduce carbon emissions have driven shipping companies to invest in
eco-friendly vessels. Consequently, accurate forecasting of ocean freight
rates becomes essential for effective risk management in an industry
characterized by long-term planning and significant capital investments.

This study undertook a comparative analysis of several forecasting
models, including Decision Tree, Random Forest, LSTM, and Prophet, to
determine their relative performance in predicting container freight
rates. Our empirical results indicate that, in terms of absolute error
metrics, both the Decision Tree and Random Forest models exhibit
strong predictive capabilities. In this study, the model demonstrating the
best overall performance was selected based on two evaluation ap-
proaches: (1) comparison of MSE, RMSE, NMSE, and MAE, and (2)
comparison of MAPE and SMAPE. In the first evaluation, both the
Random Forest and Decision Tree models exhibited strong performance,
with Random Forest outperforming in some metrics. However, in the
second evaluation using MAPE and SMAPE, the Decision Tree model was
ultimately selected due to its relatively stable and superior performance
across both indicators. These results highlight that the optimal model
may vary depending on the chosen evaluation metric. Notably, the De-
cision Tree model emerged as the most effective when assessed using the
relative error metric, MAPE and SMAPE, despite overall MAPE and
SMAPE performance remaining suboptimal across all models. The
elevated MAPE and SMAPE values can be attributed to the amplified
impact of external shocks, particularly EPU and GPR, which have
increasingly influenced market dynamics. This confirmation of the
impact of EPU and GPR is expected to help the shipping industry
stakeholders make decisions.

The findings of this study underscore the critical influence of both
traditional supply-demand factors and external economic and geopo-
litical shocks on freight rate forecasting. However, the persistence of
relatively high prediction error ratios highlights a significant limitation
of the current modeling approaches. This suggests the need for the
development of more sophisticated hybrid models—potentially inte-
grating approaches such as ANN and RNN—that are better equipped to
capture the complex, non-linear interactions between exogenous factors
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and freight rate dynamics.

Future research should focus on enhancing predictive accuracy by
incorporating additional external variables and exploring ensemble
methods that synergistically combine the strengths of various machine
learning and deep learning models. Such advancements will be crucial
for developing robust forecasting tools capable of supporting strategic
decision-making in an increasingly volatile global shipping
environment.
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