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Article
A Performance Analysis of Stochastic Processes and Machine
Learning Algorithms in Stock Market Prediction

Mohammed Bouasabah

National School of Business and Management, Ibn Tofail University, B.P. 242, Kenitra 14000, Morocco;
mohammed.bouasabah@uit.ac.ma

Abstract: In this study, we compare the performance of stochastic processes, namely, the Vasicek, Cox-
Ingersoll-Ross (CIR), and geometric Brownian motion (GBM) models, with that of machine learning
algorithms, such as Random Forest, Support Vector Machine (SVM), and k-Nearest Neighbors (KNN),
for predicting the trends of stock indices XLF (financial sector), XLK (technology sector), and XLV
(healthcare sector). The results showed that stochastic processes achieved remarkable prediction
performance, especially the CIR model. Additionally, this study demonstrated that the metrics of
machine learning algorithms are relatively lower. However, it is important to note that stochastic
processes use the actual current index value to predict tomorrow’s value, which may overestimate
their performance. In contrast, machine learning algorithms offer a more flexible approach and are
not as dependent on the current index value. Therefore, optimizing the hyperparameters of machine
learning algorithms is crucial for further improving their performance.

Keywords: machine learning algorithms; stochastic processes; financial prediction; trading; support

vector machine

1. Introduction

check for Modeling and predicting asset prices are essential elements for participants in financial
updates e e . . .. e .- . .
markets, from individual investors to financial institutions. These predictions play a crucial
role in making informed investment decisions, aiming to maximize returns while mini-
mizing risks. Over the decades, various approaches have been developed to capture the
complex dynamics of prices in financial markets. Traditionally, stochastic models have been
widely used to model asset price fluctuations. Among these models, geometric Brownian
motion Mensah et al. (2023), the Vasicek model Nadarajan and Nur-Firyal (2024), and
the Cox-Ingersoll-Ross (CIR) model Bernaschi et al. (2007) have been pillars in modeling
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aims to provide valuable insights for professionals in the financial industry, enabling them
to choose the most suitable methods for their asset price prediction needs.

This introduction establishes the context of our study by highlighting key players and
recalling the history of models used in stock market prediction. It also clearly outlines the
objectives of our research by focusing on understanding the advantages and limitations of
stochastic approaches and machine learning algorithms.

2. Literature Review

Predicting asset prices has been a major subject of study for decades, employing
various approaches ranging from traditional stochastic models to more recent machine
learning techniques. Stochastic processes were among the earliest approaches applied in
stock price prediction Li (2012). These models, based on assumptions of random price
behavior, have been widely used to model fluctuations in financial asset prices. Among
classical works, Louis Bachelier introduced the concept of geometric Brownian motion
in the early 20th century, laying the groundwork for the use of stochastic processes in
modern finance Be (1913). Subsequently, researchers such as Robert C. Merton and Fischer
Black developed more sophisticated stochastic models, such as the Black-Scholes model
for option pricing Shinde and Takale (2012). However, with the rise of information tech-
nology and the increasing availability of data, machine learning techniques have become
increasingly popular in stock price prediction. These methods enable the identification
of complex and nonlinear patterns in financial data, offering new perspectives for asset
price prediction Gan et al. (2020). Recent studies have shown that machine learning algo-
rithms, such as Random Forest, KNN, and SVM, can be particularly effective in predicting
short-term price movements and identifying subtle trends in financial data Weigand (2019).
Other studies compare the performance of machine learning with traditional indicators.
According to Bouasabah (2024), the performance of machine learning algorithms compared
to traditional technical indicators in real estate, technology, and healthcare sectors reveals
the limitations of classical indicators. The study explores the predictive capabilities of ML
algorithms, highlighting AdaBoost and SVM. The results demonstrate the superiority of
ML algorithms in precision, recall, and F1 score, particularly in the healthcare sector.

An emerging trend in the financial literature is the comparison between approaches
based on stochastic processes and machine learning methods. These studies aim to evaluate
the advantages and limitations of each approach and determine under what conditions
each method is most appropriate. For example, a recent study compared the performance
of traditional stochastic models with that of machine learning algorithms in predicting
stock prices, highlighting the strengths and weaknesses of each approach in different
market contexts Chandrika et al. (2023). This trend of comparing stochastic approaches
with machine learning methods has proven to be a promising avenue for enriching our
understanding of stock price prediction mechanisms. These studies provide valuable
insights for practitioners and researchers in finance, rigorously assessing the performance
of each approach in a variety of market contexts. They also stimulate innovation by
identifying potential gaps in existing approaches and opening up new avenues of research
to improve the accuracy and robustness of stock price prediction models. By combining the
advantages of stochastic approaches and machine learning, it is possible to develop more
sophisticated hybrid models that fully exploit the richness of data available in financial
markets. Thus, this trend toward the comparison and combination of approaches offers
considerable potential to advance our ability to anticipate movements in asset prices.

The comparison between stochastic processes and machine learning algorithms in
prediction is found in several fields. For example, one study Papacharalampous et al.
(2019) compares 11 stochastic methods and 9 machine learning algorithms for forecasting
in hydrology. Using 2000 simulated time series and 405 real-time series, the performance of
the methods was measured with 18 metrics. The results show that both types of methods
can provide similarly effective forecasts. Another study Papacharalampous et al. (2017)
compared four stochastic forecasting methods and two machine learning (ML) algorithms
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using monthly weather data from Greece. The stochastic methods included autoregressive
models, exponential smoothing, and the Theta algorithm, while the ML methods comprised
neural networks and support vector machines. Sensitivity analysis was conducted for the
ML methods, and a comparison between sophisticated and simple ML methods was
made in terms of hyperparameter optimization. Another study Chen (2023) examines
how stochastic models and machine learning work together to improve the prediction
of complex dynamic systems. It highlights the contribution of machine learning in data
assimilation to refine ensemble forecasts and its role in developing stochastic closures
and parameterizations. It explores how machine learning can predict the trajectories of
complex dynamic systems, taking into account additional uncertainty to construct a mixture
distribution for the forecast probability density function.

3. Stochastic Processes Used in Financial Prediction

Stochastic processes, such as geometric Brownian motion (GBM), the Vasicek model,
and the Cox-Ingersoll-Ross (CIR) model, are essential for modeling financial asset prices
and interest rates. These models, based on Brownian motion, are selected for their ability
to capture exponential growth, market volatility, and the tendency of interest rates to revert
to a historical mean while remaining positive. By integrating these models, our study aims
to provide robust and reliable financial forecasts, thus justifying the choice of stochastic
processes used.

3.1. Geometric Brownian Motion (GBM)

The GBM model is a stochastic process widely used to model fluctuations in financial
asset prices. It is defined by the following stochastic differential equation:

din(x;) = p-dt + o - dw; (1)

where x; represents the asset price at time ¢, u is the drift rate (average return) of the asset,
is the volatility of the asset, and dwy is the differential of the standard Brownian motion. The
GBM model offers simplicity in implementation and provides a theoretical foundation for
understanding price movements. However, it assumes prices follow a normal distribution
and do not account for changing volatility, which may lead to inaccuracies in volatile
market conditions Bouasabah and Khalaf (2023).

The Vasicek Model

The Vasicek model is a stochastic process primarily used to model interest rates. The
associated stochastic differential equation for the Vasicek model is:

dxy = o (p — x¢)dt + 0 - dw; (2)

where x; represents the interest rate at time ¢, « is the reversion speed, u is the mean
level of the interest rate, ¢ is the volatility of the interest rate, and dw; is the differential
of the standard Brownian motion. The Vasicek model captures interest rate convergence
and provides a rigorous mathematical foundation for derivative valuation. However, it
assumes constant volatility of interest rates and may underestimate risks associated with
high volatility periods Svoboda (2004). In this study, the Vasicek model will be utilized to
capture the variation of trackers XLF, XLK, and XLV.

3.2. Cox—Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross (CIR) model is a stochastic model commonly used to model
short-term interest rate variations. It was developed by John Cox, Jonathan Ingersoll, and
Stephen Ross in the 1980s. Unlike other models, the CIR takes into account the constraint
that interest rates cannot be negative. It is particularly valued for its ability to capture
the mean-reverting behavior of interest rates, making it valuable in estimating the prices
of financial products and managing risks associated with interest rate fluctuations. The
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CIR model extends the Vasicek model and is used to model interest rate dynamics. The
associated stochastic differential equation for the CIR model is:

dxy = o (p — x)dt + 0 - /xidw; (3)

where x; is the interest rate and «, y, and o are the model parameters. The model exhibits
the mean-reversion property, which means that the interest rate x; moves toward its mean
u at speed 0. The CIR model captures stochastic interest rate volatility and reproduces
observed interest rates with greater accuracy. However, it may be more complex to calibrate
and sensitive to data quality, potentially leading to inaccurate results if not carefully
managed Orlando et al. (2019). This model will be used in this study to predict future
values of our trackers.

4. Machine Learning Algorithms

In addition to stochastic processes, machine learning algorithms are increasingly
utilized in financial prediction tasks. The selection of these algorithms, including Random
Forest, k-Nearest Neighbors (KNNs), and Support Vector Machines (SVMs), is based on
their demonstrated effectiveness in classifying financial data and identifying relevant
patterns. These algorithms offer robust performance and are well suited for handling
complex financial datasets, making them suitable choices for the study Bonaccorso (2017).

4.1. Random Forest

Random Forest is an ensemble learning method where multiple decision trees are
generated during training. It results in either the mode of the classes (for classification) or
the average prediction (for regression) obtained from the individual trees. This technique
constructs several decision trees during training and then determines the class mode or the
mean prediction based on the collective output of the trees.

Advantages and Disadvantages: Random Forests are robust against overfitting and
perform well with large datasets. However, they may not be interpretable and could suffer
from high computational costs, especially with large numbers of trees.

4.2. k-Nearest Neighbors (KNNs)

K-Nearest Neighbors (KNNs) is a non-parametric approach utilized for classification
and regression assignments. It categorizes data points by determining the majority class
among their k-nearest neighbors or predicts the average value of the k-Nearest Neighbors
for regression.

Advantages and Disadvantages: KNN is straightforward to apply and does not
presume the underlying data distribution. Nevertheless, its efficacy might diminish with
high-dimensional data and extensive datasets because of its computational complexity.

4.3. Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are supervised learning models employed for classi-
fication and regression analysis. SVM constructs hyperplanes in high-dimensional spaces
to delineate data points into distinct classes. It excels in handling both linearly separa-
ble and non-linearly separable data by employing kernel tricks to convert the data into
higher-dimensional spaces.

Advantages and Disadvantages: SVM proves effective in high-dimensional spaces
and is memory-efficient since it utilizes a subset of training points in the decision function.
Nonetheless, SVM's performance can be influenced by the selection of kernel parameters
and may not fare well with extensive datasets due to its high computational complexity
during training.

These machine learning algorithms offer powerful tools for financial prediction tasks,
each with its own strengths and weaknesses. Understanding their characteristics is crucial
for selecting the most suitable algorithm for specific financial forecasting applications.
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5. Materials and Methods

In this section, we delve into the methodology, dataset, and models utilized to ex-
plore the dynamics of financial markets, including both machine learning algorithms and
stochastic processes.

5.1. Data and Data Source

In line with the introductory context, this research focuses on three distinct sectors,
each represented by the XLF, XLK, and XLV trackers. To initiate this analysis, daily his-
torical data for these trackers is collected from Yahoo Finance, spanning a comprehensive
ten-year period from 21 March 2014 to 21 March 2024. We will utilize a Jupyter Notebook
to implement machine learning algorithms and computing metrics for stochastic processes.
Jupyter Notebook provides a convenient environment for coding, visualization, and anal-
ysis, enabling seamless execution of Python code for both tasks. Its interactive nature
enhances efficiency and facilitates collaborative work among team members. In this dataset,
we examine six key variables that are essential for evaluating the performance of machine
learning algorithms. These variables provide valuable insights into the behavior of stock
indices and are crucial for predicting their future trends. By analyzing these variables
thoroughly, we can better understand the dynamics of the financial market and assess the
effectiveness of our models. The initial variables are as follows:

*  Open: the opening price on a specific date.

*  High: the highest day price at which the tracker was traded.

¢ Low: the lowest day price at which the tracker was traded.

*  Close: the closing price on a given day.

*  Volume: the number of shares traded on a given date.

*  Adj. Close: the adjusted closing price, accounting for dividend distributions.

5.2. Variables

Using the dataset, three crucial variables are derived to encapsulate significant aspects
of market dynamics for each index. Initially, the difference between opening and closing
prices for each trading day is computed (OpenClose), providing insights into daily price
movements. The second variable signifies the range between the highest and lowest prices
within a given trading day (HighLow), serving as a measure of intra-day volatility. Lastly,
the third variable quantifies the disparity between the traded volume on the next day and
the current day’s volume (DiffVolume). It is noteworthy that this last variable cannot be
computed for the final date in the sample, leading to the exclusion of this particular data
point from the analysis to maintain accuracy and consistency in calculations. These derived
variables are calculated for each index and utilized in conjunction with each algorithm to
predict the target variable. The target variable, referred to as Y in this study, corresponds to
the label attached to the data and what the model aims to predict based on the independent
variables. This variable defines whether the next day’s stock price will close higher or
lower, taking either the value 1 or —1. A value of 1 indicates a buy signal for the period
concerned, while a value of —1 indicates a sell signal. To achieve this, returns are calculated
as a percentage based on the adjusted closing price. Then, a variable is created equal to
1 if the return is positive and —1 if the return is negative. The last line of the database is
deleted as it is not possible to calculate the yield at that date, nor the volume difference.

5.3. Exploratory Data Analysis

The analysis of the feature and target variables of the XLF index is illustrated in
Figure 1, as an example by dividing the data into two sets (buy and sell) based on the de-
pendent variable. Notably, the HighLow, and DiffVolume variables demonstrate consistent
behavior across both sets, while the OpenClose variable exhibits differing patterns in each
set. Furthermore, the two sets are nearly evenly distributed (52% for sell decisions and 48%
for buy decisions). It is important to highlight that the rationale applied to the XLF tracker
is similarly applied to the other trackers XLK and XLV.
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Figure 1. Features and target variable for XLF tracker.

5.4. Simulated Equations for Stochastic Processes

In the context of this study, predicting indices using stochastic processes relies on
utilizing simulated equations that establish a connection between the real value of the index
at a given time, denoted as x¢,, and the value predicted by the model for the subsequent
time, denoted as xt, . By leveraging these relationships, we can calculate the daily return
of the index using two successive values predicted by the model. If this return is positive,
it indicates a buy signal, with a value of 1 assigned to this event. Conversely, if the return
is negative, it signifies a sell signal, with a value of —1 attributed to this occurrence. This
approach allows us to transform model predictions into buy or sell signals, thereby facilitat-
ing the interpretation of results and their use in the decision-making process in the financial
domain. Below, we provide the simulated equations for the three stochastic models.

5.4.1. Geometric Brownian Motion

For the geometric Brownian motion (GBM), discrete-time equations play a pivotal
role in capturing the evolution of asset prices over discrete intervals. These equations offer
valuable insights into the dynamics of price changes, allowing for the prediction of future
prices based on historical data. Unlike continuous-time equations, which model continuous
changes, discrete-time equations in GBM highlight changes between successive obser-
vations, providing a foundation for understanding market behavior and facilitating risk
management strategies. The equation linking two successive observations is given below.

Xipy = Xt - e VAHTOZiVAD Z; ~ N(0,1) 4)
where: . , .
52 = L f=—.024 2
0 =4 and =570 + AL

where x; represents the value of the index at time ¢, /i is the estimated value of the drift
rate (average return) of the asset, & is the estimated volatility of the asset, and dwy is the
differential of the standard Brownian motion Le Gall (2016). The values of fi and ¢ are
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calculated using historical data of the tracker index using the following formulas Ralchenko
and Yakovliev (2024):

2

g = ) W) ang = 2 Yy, - a)

1 i ln(xtn) B ln(xtl))
n i=1 i

S|
.M=

1

5.4.2. The Vasicek Model

For the Vasicek model, we will apply the discrete time equation below to simulate the
behavior of the index Backus et al. (1998).

1 _ o 28At

%A Z; Z;~N(0,1)

xpe a1 —e M) 4

xti+1 = i

The estimated model parameters are:

Sysxx stxy i In lsxy — ﬁ(Sx + Sy) + Tlﬁ2

0 prm— & p = N
o (Sux — Say) — (S2— 5,5, At Sex — 205y + nfi2

where:

n n

E . — } : 2.
Sx - xti—l’ Sxx - xti71/

i=1 i=1

I
1=
=
N

n n
s Sy = thi—lxti; Sy = le‘i
=

I
—
—
I
—_

The third estimate parameter 02 is:

= [syy —2e7MG, 4 e MG 20(1 — e TS, 4 201 B S, 4+ mp? (1 - e*&Af)Z}

5.4.3. The CIR Model
The simulated equation of the CIR model is Overbeck and Rydén (1997)

Xt — Xy, = a(p — xp,) At + 0\ /X dey, (5)

i+1

where de; ~ N(0,At) and also as:
Xty = apAt 4 (1 — alt)xy, + 0/ x1,At - &, (6)
where &, ~ N(0,1):

n’ _2n+1+zn 1 xt1+1zl 1 xt Z:l Zz 1 xt (Tl—l)zn ! tl“
(n? =21 +1— T35 T 5 )At

&

(Tl — 1) zn 1 xt1+l Z” 1 xt1+1/xt Z” 1 M
2n+1+2n 1 Xtipq Z:1 1 xt Z:l Xt Zz 1 xt (n_l)zn ! tH—l

The standard deviation, &, of the errors is the estimated diffusion parameter:

a:\lnlz;gl((xt’fﬁxt fﬂéﬁ) )

We will calibrate these models by calculating their parameters using historical data.
Then, we will utilize these equations that link two successive observations to predict the
value of the next day for each tracker.

=
||
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5.5. Machine Learning Implementation

Using the linspace function from NumPy, the entire training dataset, which comprises
80% of our dataset, is divided into 10 random batches, each containing 10% of the training
data. Each model is then trained on these 10 batches and tested on the test dataset, which
contains 20% of the overall dataset. This training—testing methodology ensures that the
models undergo rigorous training on a significant portion of the data to effectively capture
underlying patterns and relationships. By then evaluating the models on unseen data
from the test set, we can assess their performance and generalization capabilities. This
approach enables us to develop and validate machine learning models in predicting asset
prices within the financial domain. For the implementation of Random Forest, we utilize
scikit-learn’s Random Forest Classifier class. This class allows us to adjust parameters such
as the number of trees in the forest to fine-tune the model. Once the algorithm is configured,
it undergoes a training phase on the training data using the fitting method. Following the
training session, the model is primed to make predictions on new data using the prediction
method. This systematic approach ensures that the algorithm is well-equipped to interpret
and analyze new information effectively.

In the case of Support Vector Machine (SVM), scikit-learn’s SVM classifier class is
employed for implementation. This class provides flexibility in selecting different kernel
functions and tuning hyperparameters to optimize model performance. After configuring
the SVM algorithm, it undergoes training on the training data using the fitting method.
Subsequently, the trained model is capable of making predictions on unseen data. This
stepwise procedure ensures that the SVM algorithm is adequately trained and prepared
for predictive tasks. For the implementation of k-Nearest Neighbors (KNN), scikit-learn’s
KNeighborsClassifier class is utilized. This class allows us to specify the number of
neighbors (k) and other parameters crucial for the algorithm’s performance. Following
configuration, the KNN algorithm is trained on the training data using the fitting method.
Once trained, the model is ready to classify new instances based on their proximity to
existing data points.

Performance Evaluation Metrics

The evaluation of all models developed in this study relies on three primary metrics:
precision, recall, and F1 score. These metrics are computed for each model and subsequently
compared to comprehensively assess their predictive capabilities Carvalho et al. (2019).

Precision: Precision gauges the correctness of positive predictions generated by the
models. It quantifies the ratio of accurately predicted positive instances (true positives)
among all instances predicted as positive (true positives + false positives).

Recall: Recall assesses the model’s capability to correctly identify all relevant positive
instances. It computes the proportion of accurately predicted positive instances (true posi-
tives) out of the total number of actual positive instances (true positives + false negatives).

F1 Score: The F1 score provides a balanced measure that considers both precision and
recall. It is the harmonic mean of precision and recall, offering a comprehensive assessment
of the models’ effectiveness in predicting stock price movements.

6. Results and Discussion
6.1. Results
6.1.1. Stochastic Models Metric Values

The values found for the various metrics of stochastic processes used in the study are
given in the tables below (Tables 1-3).

Table 1. Metric values for GBM stochastic model applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 46% 48% 47% 49% 1171
1 53% 51% 52% 49% 1345
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Table 2. Metric values for Vasicek stochastic model applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 85% 87% 86% 87% 1171

1 88% 87% 87% 87% 1345
Table 3. Metric values for CIR stochastic model applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 98% 100% 99% 99% 1171

1 100% 98% 99% 99% 1345

6.1.2. Machine Learning Algorithm Metric Values

The values found for the various metrics of ML algorithms used in the study are given

in the tables below (Tables 4-9).

Table 4. Metric values for Random Forest algorithm applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 71% 73% 72% 69% 270

1 68% 66% 76% 69% 234
Table 5. Metric values for SVM algorithm applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 77% 74% 76% 74% 270

1 71% 74% 73% 74% 234
Table 6. Metric values for KNN algorithm applied to XLF tracker.

Target Precision Recall F1 Score Accuracy Support

-1 67% 73% 70% 84% 270

1 65% 59% 62% 84% 234

Table 7. Metric values for machine learning algorithms and stochastic models for XLF tracker.

Strategy Precision Recall F1 Score Accuracy
Random Forest 69% 69% 69% 69%
SVM 74% 74% 74% 74%
KNN 66% 66% 66% 66%
GBM model 50% 49% 49% 49%
Vasicek model 87% 87% 87% 87%
CIR model 99% 99% 99% 99%

Table 8. Metric values for machine learning algorithms and stochastic models for XLK tracker.

Strategy Precision Recall F1 Score Accuracy
Random Forest 70% 70% 70% 70%
SVM 72% 72% 72% 72%
KNN 71% 71% 71% 71%
GBM model 50% 50% 50% 50%
Vasicek model 99% 99% 99% 99%
CIR model 99% 99% 99% 99%
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Table 9. Metric values for machine learning algorithms and stochastic models for XLV tracker.

Strategy Precision Recall F1 Score Accuracy
Random Forest 70% 70% 70% 70%
SVM 72% 72% 72% 72%
KNN 71% 71% 71% 71%
GBM model 50% 50% 50% 50%
Vasicek model 96% 96% 96% 96%
CIR model 99% 99% 99% 99%

6.2. Discussion

This study aimed to evaluate how well stochastic processes and machine learning
algorithms predict stock index movements across different sectors. The results revealed
significant findings regarding the effectiveness of various modeling techniques in financial
forecasting. This discussion section explores the implications of these results, emphasizing
important insights and considerations for practitioners and researchers in financial analysis.
The results shed light on important observations. Firstly, the metrics of the stochastic
processes used in prediction exhibit very high values, approaching 100% for the three
sectors studied, except for the GBM model, which fails to surpass the 50% threshold
(Tables 1-3 and 7-9). The lower performance of the GBM model compared to the Vasicek
and CIR models can be attributed to the fact that these latter models are improvements
upon the GBM. Both the Vasicek and CIR models incorporate the mean-reversion property,
allowing them to better capture long-term trends in financial data. Unlike the GBM, which
does not explicitly incorporate this feature, the Vasicek and CIR models are specifically
designed to model interest rates and other financial phenomena that exhibit a tendency to
revert to a historical mean. This integration of the mean-reversion property can, therefore,
lead to higher performance for the Vasicek and CIR models compared to the GBM in
certain financial contexts. Particularly, the metrics of the CIR model stand out with a value
of 99% for all three sectors, exceeding the Vasicek model, which is natural considering
that the CIR model is an improvement over the Vasicek model. On the other hand, the
metrics of the machine learning algorithms hover around 70%, with a slight advantage for
the SVM model, as highlighted by Bouasabah (2024) (Tables 4-9). It is noteworthy that
this study focuses on predicting the next day’s trend of stock indices (rise with +1, fall
with —1). For the machine learning algorithms, predicting the target variable is based on
three variables (features): OpenClose, HighLow, and DiffVolume. The model is trained
on a test dataset, enabling it to predict the next day’s value for different combinations of
feature variables. In contrast, prediction based on stochastic processes uses today’s real
value to predict tomorrow’s value, which explains the high metrics observed for stochastic
processes, as the true value of today’s index is already known. Therefore, the Vasicek
and CIR models are excellent if today’s index value is known and one seeks to predict
tomorrow’s value. Consequently, these high metric values must be interpreted with caution.
It is also important to note that all three stochastic processes provide the predicted value
of the index, not just the trend, which sets them apart from machine learning algorithms
that only provide the trend. Furthermore, it is worth noting that the parameters of machine
learning algorithms are not static and can be dynamically adjusted, unlike the parameters
of stochastic models, which are static and calculated for each sample. Another observation
we made in this study is that the metrics of stochastic processes reach high values, largely
due to the use of the real and current value of the index to predict the future value of the
next day. It would be interesting, in a future study, to explore the impact on these metrics if
we were to use not the real and current value (today’s real value) of the index, but rather a
value predicted by the model (based on the real value of the previous day) to estimate the
value of the next day. Similarly, instead of using a real value to estimate the value of the
previous day, we could use another predicted value, and so on. By adopting a recursive
approach, we could go back in time to determine when it is optimal to stop using the
real value of the index without compromising the performance of the stochastic process
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metrics too much. This is, therefore, a compromise to be established between “the memory
of the stochastic model” and thresholds to set for the metrics, an approach that could
enrich our understanding of underlying processes and prediction strategies. In summary,
confirming the superiority of stochastic processes over machine learning algorithms in
absolute terms is difficult to ascertain, but what the study confirms is their performance
and superiority only when the value of today is known and one seeks to predict that of
tomorrow. Furthermore, considering hyperparameter optimization for machine learning
algorithms emerges as a crucial perspective to achieve even higher performance levels Yang
and Shami (2020). This strategic approach leverages the inherent flexibility of machine
learning, providing a pathway to fine-tune models to suit specific market dynamics. In
the end, to take advantage of each approach, one can combine stochastic processes and
machine learning algorithms as follows:

(1) Utilize stochastic processes if the number of predicted values does not exceed “the
model’s memory”: It is worth noting that, in this study, “the memory of the stochastic
process” is defined as the number 7, of future index values that the model can predict
between day j and day j + n, without using real values from the previous day in the
prediction, but only the successive predicted values from a given real value at day j without
lowering the metric values beyond a certain preset threshold.

(2) Utilize machine mearning algorithms if the number of values to predict exceeds the
memory of the stochastic processes used in the prediction. Finally, the practical application
of the study’s findings is to guide traders in selecting the appropriate model for predicting
the future value of a tracker. Based on our study, the choice of the prediction model is clear
and well justified. By following this method, we can leverage both approaches for better
prediction quality. As a perspective, a general and absolute comparison of a test dataset
could confirm the superiority of one approach over the other. Additionally, extending the
analysis to other sectors could show if there is a sector effect on model performance.

7. Conclusions

In conclusion, our study sheds light on the performance of machine learning algo-
rithms and stochastic processes in predicting the future trends of stock market indices. We
found that stochastic processes, particularly the CIR model, exhibited remarkably high
metrics, which is thanks to their utilization of the real and current index values for pre-
dicting the following day’s value. This highlights the importance of leveraging current
market data for accurate predictions. Additionally, while machine learning algorithms
demonstrated relatively lower performance, stochastic processes outperformed them when
considering the current value of the index. However, it is crucial to interpret these high
stochastic process metrics with caution, considering their dependence on the current index
value. Furthermore, an intriguing aspect observed in this study is the potential impact on
stochastic process metrics if the model’s predictions were recursively used. Exploring how
far back in time one can rely on predicted values before the metrics significantly decline
warrants further investigation. This recursive approach offers insight into striking a balance
between the model’s memory and predefined metric thresholds, contributing to a deeper
understanding of stochastic process performance. Moving forward, future studies may
benefit from exploring the applicability of different modeling approaches across various
sectors and expanding the analysis to include additional context-specific factors. Moreover,
examining the trade-offs between model complexity, memory, and prediction accuracy
could enhance the development of more robust forecasting frameworks. By delving into
these areas, researchers can advance the field’s understanding and application of predictive
modeling techniques in financial markets.
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