

Atoyan, Vardan; Matevosyan, Diana

Working Paper

Graph-based analysis of Armenia's connectivity in the EU- Asia trade network: Strategic role and limitations

Ordnungspolitische Diskurse, No. 2025-3

Provided in Cooperation with:

OrdnungsPolitisches Portal (OPO)

Suggested Citation: Atoyan, Vardan; Matevosyan, Diana (2025) : Graph-based analysis of Armenia's connectivity in the EU-Asia trade network: Strategic role and limitations, Ordnungspolitische Diskurse, No. 2025-3, OrdnungsPolitisches Portal (OPO), Erfurt

This Version is available at:

<https://hdl.handle.net/10419/328267>

Standard-Nutzungsbedingungen:

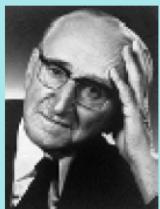
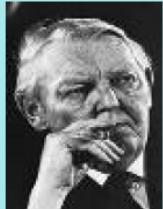
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.



You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Ordnungspolitische Diskurse

Discourses in Social Market Economy

**Vardan Atoyan &
Diana Matevosyan**

**Graph-Based Analysis of Armenia's Connectivity in the EU-Asia Trade Network:
Strategic Role and Limitations**

Diskurs 2025 - 3

Graph-Based Analysis of Armenia's Connectivity in the EU-Asia Trade Network: Strategic Role and Limitations

Vardan Atoyan & Diana Matevosyan

Abstract

The growing geopolitical tensions and regional instabilities in Eurasia raise urgent questions about the resilience of trade routes and infrastructure connectivity. This paper applies a graph-based approach to model the EU-Asia trade network and explores Armenia's potential as a transit hub within the framework of the Global Gateway strategy. The authors construct a weighted network of major regional players based on bilateral trade volumes, geographic distances, and route accessibility. In this network, nodes represent key countries, while edges capture trade relationships, with weights reflecting trade intensity and logistical characteristics. Using a set of graph-theoretical metrics, including degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, the authors assess the country's importance within the network, identifying its position as a potential chokepoint or facilitator of alternative trade routes. Stress-testing scenarios, including border closures, sanctions, or the reopening of previously closed borders, are simulated to evaluate the impact on trade flows and regional logistics. These scenarios simulate the dynamic nature of trade flows, considering disruptions that could reshape existing networks. Results indicate significant shifts in the network structure under stress, highlighting opportunities for Armenia to strengthen its strategic position as an alternative node in critical corridors.

Keywords: Graph, Logistic Network, Eurasian Corridors, Trade, Armenia.

Authors

Vardan Atoyan (Head of the Center for Social & Behavioral Research at the Armenian State University of Economics) - E-mail: atoyan.amberd@asue.am

Diana Matevosyan (Senior Researcher of the Center for Social & Behavioral Research at the Armenian State University of Economics) - E-mail: matevosyan.diana@asue.am

Graph-Based Analysis of Armenia's Connectivity in the EU-Asia Trade Network: Strategic Role and Limitations

Vardan Atoyan & Diana Matevosyan

1. Introduction

In contemporary multipolarity, the Eurasian region has become an arena for competition and cooperation among countries aiming to enhance their transport connectivity and economic resilience. This article examines the Eurasian logistics network, including all major corridors and related regional routes. The connections between the countries in the region form a dense network of interactions, which can be represented and analyzed using graph theory methods.

The study aims to structurally analyze the network using graph metrics and model potential scenarios. The main objectives are:

- 1) Constructing a network of countries based on geographic location;
- 2) Calculating basic graph metrics;
- 3) Identifying key countries within the structure;
- 4) Simulating scenarios of changes in the network structure.

The proposed approach allows for expanding the analytical tools for evaluating logistics inter-connectivity in the region, providing both quantitative assessments and qualitative and visual means of interpretation.

Fagiolo, Reyes, and Schiavo (2010) were among the first to apply complex network theory to global trade, demonstrating that both topological and weighted metrics are essential to understanding the evolution and robustness of international trade systems. Their work highlighted the importance of centrality and clustering in sustaining trade dynamics. Building on this, De Benedictis and Tajoli (2011) introduced network measures to study the European trade system, emphasizing the role of geographical proximity and regional integration. Their findings confirm that countries with limited neighbors or closed borders exhibit consistently low centrality values, which weakens their integration into broader economic structures. More recently, Borgatti et al. (2018) and Serrano & Boguñá (2003) emphasized that resilience in trade and

transport networks is not only a matter of density but also of redundancy and accessibility. These concepts are particularly relevant for landlocked or politically isolated countries, where few connections increase systemic risk.

Barabási (2016) offers a comprehensive synthesis of network science, particularly how cascading failures and hub dependencies can impact global systems such as logistics and trade. Garlaschelli & Loffredo (2004) added a probabilistic dimension to trade network modeling through fitness-based approaches, which allow for prediction of tie strength based on country-level trade capacity. Ducruet and Notteboom (2012) investigated maritime container shipping networks and revealed how global trade centrality is closely tied to port infrastructure and shipping alliances — insights that indirectly affect landlocked countries like Armenia. Carrera et al. (2016) assessed infrastructure integration between Europe and Central Asia, finding that improved coordination could significantly reduce transport costs and increase interregional trade. Rodrigue et al. (2016) introduced the concept of “transport corridors as multilayered networks,” emphasizing governance, logistics nodes, and institutional cooperation. Simoes and Hidalgo (2011) introduced the Economic Complexity framework, linking a country’s export network structure to its development potential. Grassi et al. (2022) investigated trade resilience during global shocks (e.g., COVID-19), showing that countries with diversified and redundant trade links rebounded faster. Kim and Shin (2002) focused on regional trade agreements, finding they boost local centrality but sometimes reduce global openness. Blázquez et al. (2023) examined digital trade connectivity and the role of ICT infrastructure in expanding trade networks. Freund and Rocha (2011) analyzed how road quality and border delays shape trade flows in Africa, highlighting that trade connectivity is often more influenced by logistics performance than geography. Hidalgo and Hausmann (2009) introduced the Product Space concept, showing how trade networks evolve structurally as countries diversify toward more complex products.

In addition to academic studies, institutional reports offer valuable insights into the practical dimensions of network-based connectivity analysis. The Eurasian Development Bank (EDB, 2023) has published a comprehensive report titled The Eurasian Transport Network, which evaluates infrastructure, trade flows, and the potential of individual countries within pan-Eurasian corridors. The report identifies five major transit corridors and assesses their structural, political, and logistical bottlenecks. Armenia is highlighted as a strategically located country that, despite lacking direct access to the sea, could serve as an essential node in the North-South and East-West transit chains. However, the report also emphasizes that closed borders with Türkiye and Azerbaijan severely limit Armenia’s integration, echoing findings from network centrality analysis.

2. Methods:

The object of analysis is 19 Eurasian countries (Armenia, Georgia, Azerbaijan, Iran, Türkiye, EU, Moldova, Ukraine, Belarus, Russia, Kazakhstan, Kirgizstan, Uzbekistan, Turkmenistan, Tajikistan, Afghanistan, Pakistan, Mongolia, China), selected based on the Eurasian Development Bank report on Eurasian corridors (EDB, 2023). Since the modeled object represents a network, it was decided to use one of the common approaches for its modeling: a graph. For each pair of countries, the following parameters are considered: total trade volume in 2023 (in USD), border status (open, closed, under sanctions), and risk level (low, medium, high). The year 2023 was selected as the reference period, as many countries have not yet published complete trade statistics for 2024. The main data sources for trade volumes are UN Comtrade (United Nations, n.d.), TradeMap (International Trade Centre [ITC], n.d.), as well as official national sources (national statistical agencies, press releases).

The constructed network is represented as an undirected graph, where the nodes are the 19 countries and the edges represent trade connections between them. Each edge is labeled and parameterized based on border status and risk level:

- Border status effect on edge weight:
 - Closed border — weight = 0%
 - Open border — weight = 100%
 - Under sanctions — weight = 50%

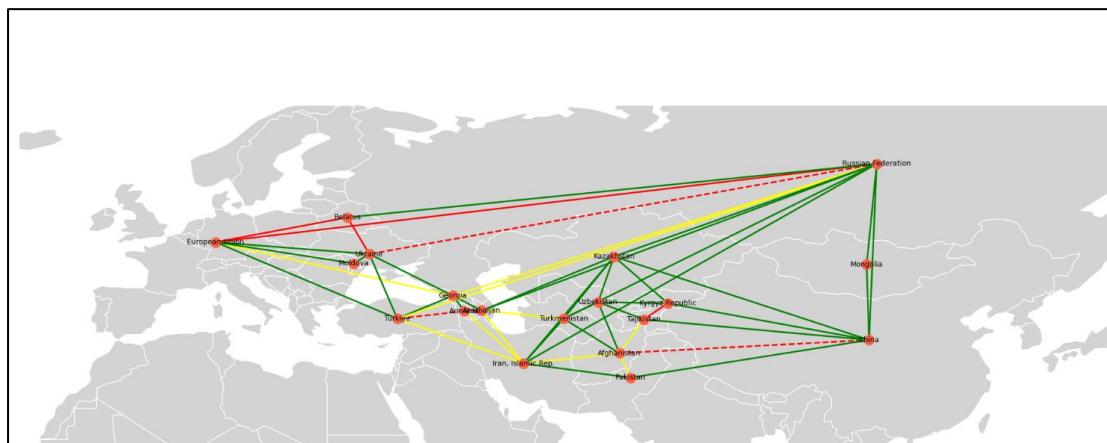
(Sanctions imply the presence of restrictions between the two countries connected by the edge.)

- Risk level effect on edge weight:
 - Low risk — weight = 90%
 - Medium risk — weight = 65%
 - High risk — weight = 25%

The influence of border status and risk level (mainly political risk) on the weights was determined based on objective regional information and expert judgment adapted to the goals of this study.

The geographic coordinates of the countries were used to construct geo-referenced network visualizations. The NetworkX (NetworkX Developers, n.d.) library was employed for working with the graph structure, while GeoPandas (GeoPandas Developers, n.d.) and Matplotlib (Hunter, 2007) were used for visualization.

To study the network structure, the following methods and metrics were applied (Newman, 2010; Barabási, 2016; Wasserman & Faust, 1994):


- Centrality metrics (Borgatti et al., 2018):
 - Degree Centrality;
 - Closeness Centrality;
 - Betweenness Centrality;
 - Eigenvector Centrality.
- Network properties (Jackson, 2008):
 - Connected components;
 - Average shortest path length;
 - Diameter of the graph.
- Algorithms for vulnerability and key node identification, including:
 - Simulation of node (country) removals from the network;
 - Scenario analysis of structural changes.

These methods allow for a comprehensive assessment of the robustness and resilience of the Eurasian logistics network under different conditions.

3. Results

The analysis begins with the construction of a baseline graph representing the Eurasian logistics network (figure 1).

Figure 1. The Eurasian logistics network

Source: Authors' calculations

Based on this graph, several key metrics were computed to assess the network's structure:

- **Connected Components:** The value equals 1, indicating that the graph is fully connected. This means the Eurasian network functions as a single integrated system, where any country (node) is reachable from any other.
- **Diameter:** The network diameter is 4, suggesting that at most four steps are required to travel between the two most distant countries in the network.
- **Average Shortest Path Length:** With a value of 2.05, this metric implies that, on average, a country needs to traverse two other countries to reach any other country within the network.
- **Geographic connectivity coefficient:** To realistically evaluate the cohesion of the Eurasian trade network, we calculate the geographic connectivity coefficient. This metric reflects the proportion of realized trade connections among all geographically feasible bilateral links—that is, between neighboring countries with the potential for trade. The coefficient equals 0.922, indicating that approximately 92% of all feasible geographic trade links are realized within the network.

Table 1. Main metrics of the Eurasian network graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.1111	0.4390	0.0049	0.0944
Moldova	0.1111	0.3529	-	0.0644
Mongolia	0.1111	0.4737	-	0.1208
Pakistan	0.1667	0.4500	0.0029	0.1447
Belarus	0.1667	0.4615	0.0107	0.1369
Azerbaijan	0.2222	0.5143	0.0169	0.2240
Kyrgyz Republic	0.2222	0.4390	0.0060	0.1706
Tajikistan	0.2222	0.4286	0.0049	0.1575
Türkiye	0.2778	0.5294	0.0582	0.2312
Ukraine	0.2778	0.4186	0.0264	0.1536
Uzbekistan	0.2778	0.4390	0.0147	0.2108
Georgia	0.3333	0.5143	0.0741	0.2328
Turkmenistan	0.3333	0.5625	0.0549	0.3028
Afghanistan	0.3333	0.5000	0.0502	0.2444
European Union	0.3333	0.5143	0.1009	0.2154
Iran, Islamic Rep.	0.3889	0.6000	0.1571	0.3081
Kazakhstan	0.3889	0.5806	0.0980	0.3330
China	0.3889	0.5625	0.1388	0.2768
Russian Federation	0.5556	0.6923	0.3570	0.4155

Source: Authors' calculations

Table 1 presents the centrality metrics, which offer insights into the strategic importance of individual countries within the logistics network.

- **Degree Centrality:** Reflects the number of direct connections a country has. This metric can be interpreted as a measure of integration within the network. According to the data, the most integrated countries are Russia, China, Kazakhstan, and Iran. Russia has a degree centrality of 0.5556, meaning it holds nearly half of all possible direct connections. In contrast, countries such as Armenia, Moldova, and Mongolia exhibit the lowest levels of integration. For Moldova and Mongolia, this can be attributed to their geographically isolated positions with a minimal number of neighbors. In Armenia's case, the limited connectivity is primarily due to closed borders.
- **Closeness Centrality:** Indicates how close a country is to all other countries in the network—that is, how quickly it can reach other nodes. Countries with the highest closeness centrality include Russia, Iran, Kazakhstan, China, and Turkmenistan. The least accessible countries in terms of network distance are Moldova, Ukraine, and Tajikistan.
- **Betweenness Centrality:** Measures the number of critical paths that pass through a given node, capturing a country's role as a mediator or bridge. The leading intermediary countries are Russia, Iran, China, and the EU. In contrast, Moldova and Mongolia have a betweenness centrality of 0, indicating they do not serve as intermediaries in any network paths.
- **Eigenvector Centrality:** Reflects a country's influence based on the influence of its neighboring countries. Higher values suggest that a country is strategically connected to other influential nodes. The top countries in terms of influential connections are Russia, Kazakhstan, Iran, and Turkmenistan. Countries with the lowest eigenvector scores include Moldova, Armenia, and Mongolia. In Armenia's case, the low score is largely due to subjective factors, namely its limited direct connections caused by closed borders.

4. Scenario Analysis

To identify network characteristics—weak and strong nodes and edges—several simulation scenarios were implemented. One group of scenarios focused on testing the connectivity level of edges, while the other targeted the role of nodes (countries). For each scenario, key graph metrics were recalculated to measure the scenario effect (Tables 2–9).

Scenario 1: Exclusion of routes with high-risk levels.

As shown in Table 2, the number of connected components remains 1, meaning the graph does not split and remains a single entity. However, the diameter increases by 1 (from 4 to 5), and the average shortest path length changes insignificantly, remaining around 2. Connectivity decreases by 7.8%. In terms of direct connections, Belarus is the most negatively affected, while Azerbaijan gains. Regarding distance from the network, the EU moves farther away, while Azerbaijan moves closer. As for the role as an intermediary or bridge, Belarus's role diminishes, while the roles of Pakistan, Turkey, and Azerbaijan increase.

Scenario 2: Removal of weak (vulnerable) connections.

Edges with a combined impact of risk level and border status less than or equal to 0.325 were removed from the network. This threshold was set assuming a sanctions effect of 0.5 and a medium risk level of 0.65, with the combined effect calculated as $0.65 \times 0.5 = 0.325$. The results of this scenario replicate those of Scenario 1.

Scenario 3: Russia exits the network.

The graph remains connected, but its diameter increases by 2 (from 4 to 6), and the rounded average shortest path becomes 3. Connectivity increases by 0.3%. In terms of direct connections, Mongolia is most affected, followed by Belarus and China. Georgia, Türkiye, Turkmenistan, Afghanistan, and the EU are almost equally negatively affected, while the remaining countries benefit equally.

Scenario 4: Simulation of border openings for Armenia and its neighbors.

Scenario 4 includes three sub-scenarios:

- 4.1: Opening of the Armenia–Türkiye border;
- 4.2: Opening of the Armenia–Azerbaijan border;
- 4.3: Opening of both borders.

As expected, border openings benefit the region and the overall network. To assess the overall network benefit, the change in connectivity can be considered: +2%, +2%, and +4%, respectively.

In sub-scenario 4.1, Armenia benefits the most in terms of direct connections (+50%), while Turkey's role as a connecting bridge increases by +32%.

In sub-scenario 4.2, both Armenia and Azerbaijan equally benefit in terms of direct connections, while Azerbaijan's role as a connecting bridge increases significantly (+144%).

In sub-scenario 4.3, Armenia gains the most in terms of direct connections, as expected, while Azerbaijan strengthens its role as a connecting bridge. It should also be noted that Georgia's role as a bridge weakens significantly (-37%) under this scenario.

Scenario 5: Identification of the most influential players in the network.

The purpose of Scenario 5 was to identify the most influential players whose removal would fragment the network. Computational tests confirmed that no single country acts as a critical hub—removing any individual node does not disconnect the network. However, further analysis of node pairs revealed structural vulnerabilities. In particular, the simultaneous removal of both Georgia and Iran leads to fragmentation, dividing the network into disconnected components. This highlights that network cohesion is dependent not on single central players, but on strategic combinations of countries that serve as transit bridges. Countries with relatively few direct connections (e.g., only two neighbors) can become isolated if both neighbors are removed, which in turn can trigger broader fragmentation.

Table 2: Comparison of metrics by scenario

Scenario N	Connected Components	Diameter	Average Shortest Path	Connectivity
Scenario 1	1	5	2.19	0.84
Scenario 2	1	5	2.19	0.84
Scenario 3	1	6	2.48	0.93
Scenario 4.1	1	4	2.05	0.94
Scenario 4.2	1	4	2.05	0.94
Scenario 4.3	1	4	2.04	0.96
Scenario 5	2	None	None	0.89

Source: Authors' calculations

Table 3: Scenario 1: Main metrics of the graph

Country	Degree	Closeness	Betweenness	Eigenvector
Armenia	0.1111	0.4390	0.0040	0.1083
Georgia	0.3333	0.5143	0.1432	0.2246
Iran, Islamic Rep.	0.4444	0.6207	0.2074	0.3778
Russian Federation	0.5000	0.6429	0.3254	0.4042
Azerbaijan	0.2778	0.5455	0.0345	0.3069
Türkiye	0.2778	0.5294	0.1554	0.2190
Turkmenistan	0.3333	0.5294	0.0480	0.3376
Afghanistan	0.2778	0.4737	0.0492	0.2147
Pakistan	0.1667	0.4615	0.0087	0.1483
European Union	0.2222	0.4000	0.0523	0.1056
Belarus	0.0556	0.4000	-	0.0727
Ukraine	0.2222	0.4000	0.0523	0.1056
Moldova	0.1111	0.2951	-	0.0380
Kazakhstan	0.3889	0.5455	0.0973	0.3624
China	0.3333	0.5143	0.1131	0.2325
Mongolia	0.1111	0.4390	-	0.1145

Kyrgyz Republic	0.1667	0.4091	0.0035	0.1451
Uzbekistan	0.2778	0.4186	0.0240	0.2119
Tajikistan	0.1667	0.4000	0.0084	0.1185

Source: Authors' calculations

Table 4: Scenario 2: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.1111	0.4390	0.0040	0.1083
Georgia	0.3333	0.5143	0.1432	0.2246
Iran, Islamic Rep.	0.4444	0.6207	0.2074	0.3778
Russian Federation	0.5000	0.6429	0.3254	0.4042
Azerbaijan	0.2778	0.5455	0.0345	0.3069
Türkiye	0.2778	0.5294	0.1554	0.2190
Turkmenistan	0.3333	0.5294	0.0480	0.3376
Afghanistan	0.2778	0.4737	0.0492	0.2147
Pakistan	0.1667	0.4615	0.0087	0.1483
European Union	0.2222	0.4000	0.0523	0.1056
Belarus	0.0556	0.4000	-	0.0727
Ukraine	0.2222	0.4000	0.0523	0.1056
Moldova	0.1111	0.2951	-	0.0380
Kazakhstan	0.3889	0.5455	0.0973	0.3624
China	0.3333	0.5143	0.1131	0.2325
Mongolia	0.1111	0.4390	-	0.1145
Kyrgyz Republic	0.1667	0.4091	0.0035	0.1451
Uzbekistan	0.2778	0.4186	0.0240	0.2119
Tajikistan	0.1667	0.4000	0.0084	0.1185

Source: Authors' calculations

Table 5: Scenario 3: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.1176	0.4250	0.0077	0.1143
Georgia	0.2941	0.4474	0.1453	0.1627
Iran, Islamic Rep.	0.4118	0.5667	0.3703	0.3782
Azerbaijan	0.2353	0.5000	0.1337	0.2694
Türkiye	0.2353	0.4722	0.2263	0.1617
Turkmenistan	0.2941	0.4722	0.0387	0.3525
Afghanistan	0.2941	0.4595	0.0892	0.3144
Pakistan	0.1765	0.4474	0.0490	0.1960
European Union	0.2941	0.3864	0.1066	0.1123
Belarus	0.1176	0.2881	-	0.0474
Ukraine	0.2941	0.3864	0.1066	0.1123

Moldova	0.1176	0.2881	-	0.0474
Kazakhstan	0.3529	0.5000	0.2131	0.3821
China	0.2941	0.4048	0.1369	0.2354
Mongolia	0.0588	0.2931	-	0.0497
Kyrgyz Republic	0.2353	0.3953	0.0095	0.2491
Uzbekistan	0.2941	0.3953	0.0202	0.3243
Tajikistan	0.2353	0.3778	0.0159	0.2373

Source: Authors' calculations

Table 6: Scenario 4.1: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.1667	0.4500	0.0040	0.1487
Georgia	0.3333	0.5143	0.0524	0.2559
Iran, Islamic Rep.	0.4444	0.6207	0.1704	0.3490
Azerbaijan	0.2778	0.5455	0.0209	0.2804
Türkiye	0.3333	0.5455	0.0768	0.2659

Source: Authors' calculations

Table 7: Scenario 4.2: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.1667	0.45	0.004	0.1551
Georgia	0.3333	0.5143	0.0631	0.2525
Iran, Islamic Rep.	0.4444	0.6207	0.1577	0.3504
Azerbaijan	0.3333	0.5625	0.0412	0.3072
Türkiye	0.2778	0.5294	0.0585	0.2362

Source: Authors' calculations

Table 8: Scenario 4.3: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	0.2222	0.4615	0.0057	0.1993
Georgia	0.3333	0.5143	0.0468	0.2619
Iran, Islamic Rep.	0.4444	0.6207	0.1518	0.3504
Azerbaijan	0.3333	0.5625	0.0393	0.3066
Türkiye	0.3333	0.5455	0.075	0.2682

Source: Authors' calculations

Table 9: Scenario 5: Main metrics of the graph

Country	De-gree	Close-ness	Between-ness	Eigenvec-tor
Armenia	-	-	-	-
Russian Federation	0.5000	0.6392	0.4589	0.4107
Azerbaijan	0.1875	0.4536	-	0.2397
Türkiye	0.1875	0.4395	0.0306	0.1513
Turkmenistan	0.3125	0.5208	0.1017	0.3284
Afghanistan	0.2500	0.4136	0.0292	0.2065
Pakistan	0.1250	0.3906	0.0069	0.1139
European Union	0.3125	0.4688	0.1333	0.1889
Belarus	0.1875	0.4395	0.0306	0.1513
Ukraine	0.2500	0.3430	0.0111	0.1173
Moldova	0.1250	0.3270	-	0.0646
Kazakhstan	0.3750	0.5409	0.0881	0.3970
China	0.3750	0.5409	0.1967	0.3334
Mongolia	0.1250	0.4395	-	0.1570
Kyrgyz Republic	0.2500	0.4261	0.0086	0.2673
Uzbekistan	0.3125	0.4261	0.0222	0.3024
Tajikistan	0.2500	0.4136	0.0156	0.2341

Source: Authors' calculations

5. Incorporation of Weighted Border Trade Data

In addition to structural network analysis, weighted trade data between geographically neighboring countries was considered to capture the economic significance of each connection. The dataset includes variables such as Border Status (open/closed), Risk Level, Trade Volume, and Weighted Trade Volume, where weights adjust the raw trade volumes based on the border's openness and associated geopolitical risk.

The total trade volume among geographically neighboring countries amounts to approximately 895 billion USD. After applying the weighting factors (border status and risk level), the weighted trade volume is reduced to approximately 708 billion USD, reflecting an average reduction of around 21% due to geopolitical and infrastructural factors. This demonstrates that, while physical connectivity remains, geopolitical risks and border closures significantly reduce the effective economic integration within the network.

6. Gyumri as a Multimodal Hub in the Eurasian Trade Network

Gyumri, the second largest city of Armenia after the capital Yerevan, is located close to the borders with Türkiye and Georgia and holds significant potential to serve as a multimodal logistics hub. Its position provides an alternative route within the TRACECA corridor and complements the ISTC corridor's north-south logic with a west-south connection: West(Europe, Türkiye)->Armenia(Gyumri-intermediate point)-> South(Iran)->One Belt One Road, offering an additional vector for diversification.

Table 10: SWOT Analysis of Gyumri as a Multimodal Hub

Strengths: <ul style="list-style-type: none"> Strategic geographic location (near Georgia and Türkiye); Railway infrastructure connecting to Yerevan and Georgia; Shirak International Airport; Access to national and international road networks. 	Weaknesses: <ul style="list-style-type: none"> Lack of large-scale logistics terminals; Limited digitalization of customs and logistics; Low level of logistics infrastructure investment.
Opportunities: <ul style="list-style-type: none"> Potential reopening of the borders, regional unblocking; Integration into Eurasian transport corridors; Development of multimodal logistics solutions through public-private partnerships (PPP); Growth of transit revenues, increased foreign investment, and strengthening Armenia's geopolitical role as a regional transport and logistics hub. 	Threats: <ul style="list-style-type: none"> Geopolitical instability and continued closed borders with key partners; Strong competition from established regional hubs; Risk of underinvestment due to limited public and private funding; Workforce migration and shortage of qualified logistics and IT specialists.

Source: Authors' elaboration.

7. Conclusion:

Russia emerges as the central leader across all centrality metrics. This suggests that Russia possesses a high number of direct links, is optimally located within the network to reach other countries quickly, plays a pivotal role as a bridge in regional connectivity, and maintains strategically influential connections. Other significant regional players include Kazakhstan, Iran, and China. On the other hand, countries such as Moldova, Mongolia, and Armenia consistently occupy peripheral positions in the network. In the cases of Moldova and Mongolia, this is primarily due to objective geographic limitations, such as a small number of neighboring countries or landlocked positions far from major corridors. Armenia, however, presents a different case.

Despite being landlocked, Armenia is strategically located at the intersection of North-South and East-West transit routes. Its peripheral role in the network is not a result of geography but rather of subjective constraints, particularly the closed borders with Türkiye and Azerbaijan. This significantly limits the number of its active connections and reduces its centrality.

Importantly, having few neighbors—whether due to geography or politics—makes a country more vulnerable, as it becomes more dependent on the stability and openness of a small set of connections. In Armenia's case, it is not the absence of maritime access that creates structural weakness, but the lack of integration into surrounding networks despite its strategic position.

In sum, Armenia's current peripheral status is not inevitable. If its closed borders were reopened, it could emerge as a key transit hub, enhancing not only its centrality but also improving the overall robustness and efficiency of the regional trade network. However, the issue of border reopening for Armenia should not be viewed solely through the lens of economics and trade. There are also broader challenges—political, security-related, and societal—that merit attention. Future research in this area could usefully focus on these dimensions as well.

Literature

Barabási, A.-L. (2016). Network science. Retrieved from <https://barabasi.com/networkscience-book>

Blázquez, L., Díaz-Mora, C., & González-Díaz, B. (2023). Digital trade integration and network resilience. *World Economy*, 46(3), 771–794.

Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). *Analyzing social networks* (2nd ed.). SAGE Publications.

Carrera, J., Mesquita Moreira, M., & Suominen, K. (2016). Connecting Central Asia with Markets beyond the Region. IADB.

De Benedictis, L., & Tajoli, L. (2011). The world trade network. *The World Economy*, 34(8), 1417–1454. <https://doi.org/10.1111/j.1467-9701.2011.01360.x>

Eurasian Development Bank (EDB). (2023). The Eurasian transport network: Prospects for transport connectivity and infrastructure development in Greater Eurasia. Retrieved from <https://eabr.org/en/analytics/special-reports/the-eurasian-transport-network/>

Fagiolo, G., Reyes, J., & Schiavo, S. (2010). The evolution of the world trade web: A weighted-network analysis. *Journal of Evolutionary Economics*, 20(4), 479–514. <https://doi.org/10.1007/s00191-009-0160-x>

Freund, C., & Rocha, N. (2011). What constrains Africa's exports? *World Bank Economic Review*, 25(3), 361–386.

Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. *Physical Review Letters*, 93(18), 188701.

GeoPandas Developers. (n.d.). GeoPandas. Retrieved from <https://geopandas.org/>

Grassi, D., Oikonomou, A., & Thurner, S. (2022). Resilience of the global trade network under COVID-19. *Scientific Reports*, 12(1), 2231.

Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. *PNAS*, 106(26), 10570–10575.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, 9(3), 90–95. <https://doi.org/10.1109/MCSE.2007.55>

International Trade Centre (ITC). (n.d.). TradeMap database. Retrieved from <https://www.trademap.org/>

Jackson, M. O. (2008). *Social and economic networks*. Princeton University Press.

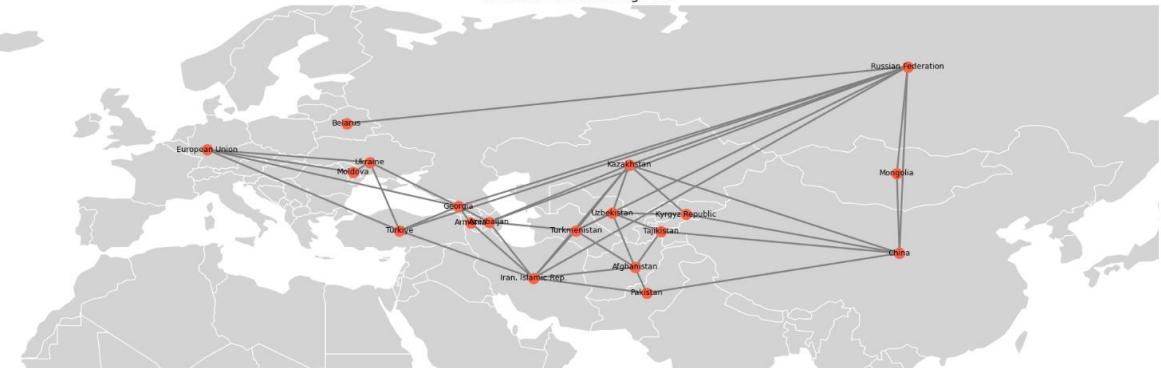
Kim, S., & Shin, E. H. (2002). A longitudinal analysis of globalization and regionalization in international trade: A social network approach. *Social Forces*, 81(2), 445–468.

NetworkX Developers. (n.d.). NetworkX. Retrieved from <https://networkx.org/>

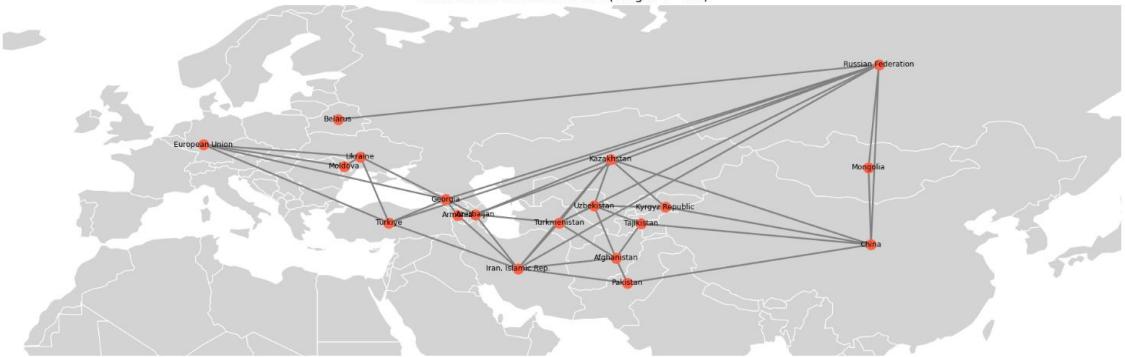
Newman, M. E. J. (2010). *Networks: An introduction*. Oxford University Press.

Rodrigue, J.-P., Comtois, C., & Slack, B. (2016). *The Geography of Transport Systems* (4th ed.). Routledge.o

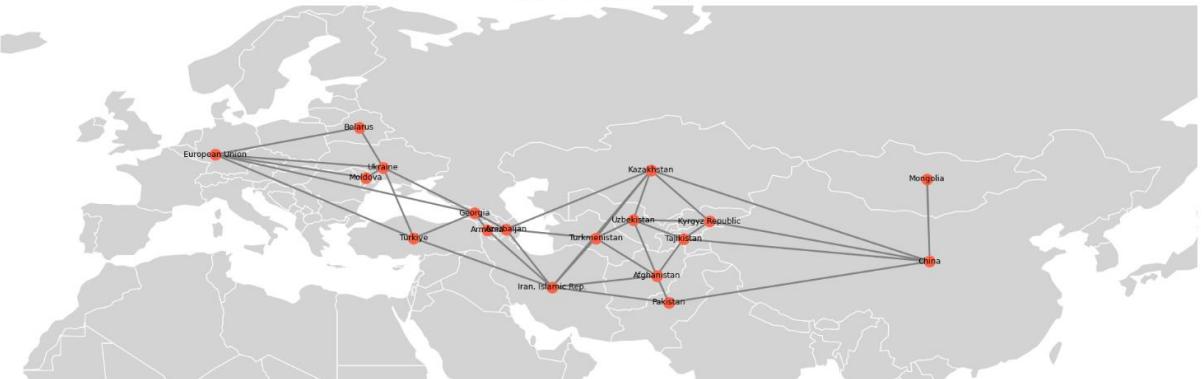
Serrano, M. Á., & Boguñá, M. (2003). Topology of the world trade web. *Physical Review E*, 68(1), 015101. <https://doi.org/10.1103/PhysRevE.68.015101>

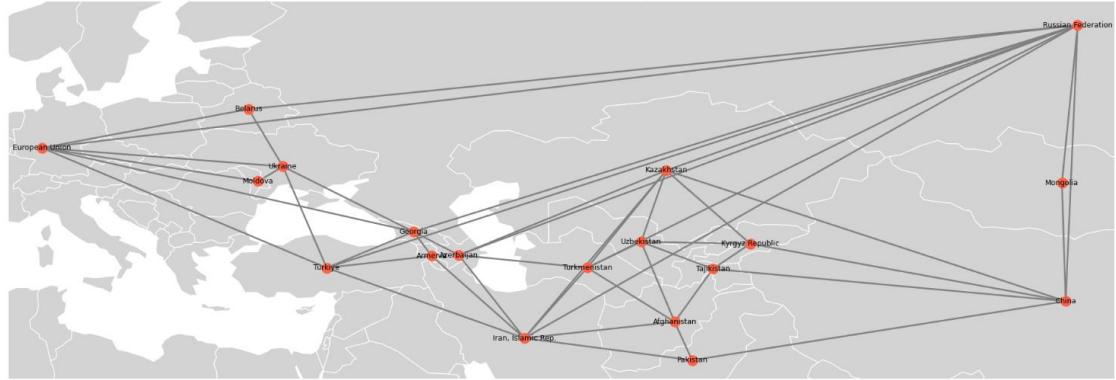

Simoes, A. J. G., & Hidalgo, C. A. (2011). The Economic Complexity Observatory. MIT Media Lab. <https://atlas.cid.harvard.edu>

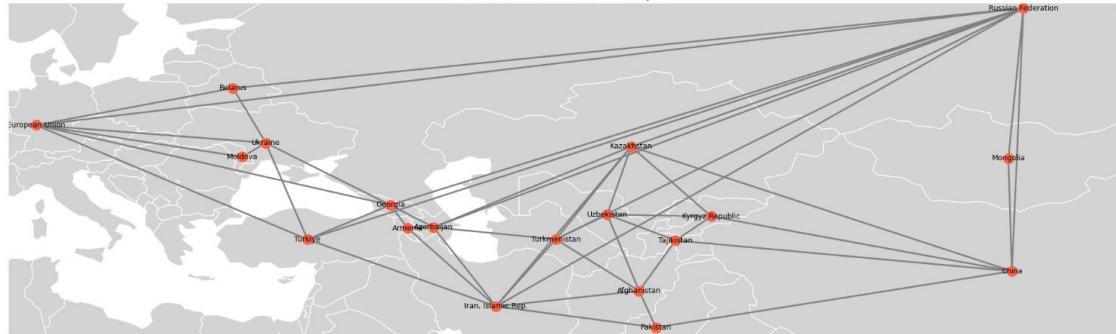
United Nations. (n.d.). UN Comtrade Database. Retrieved from <https://comtrade.un.org/>

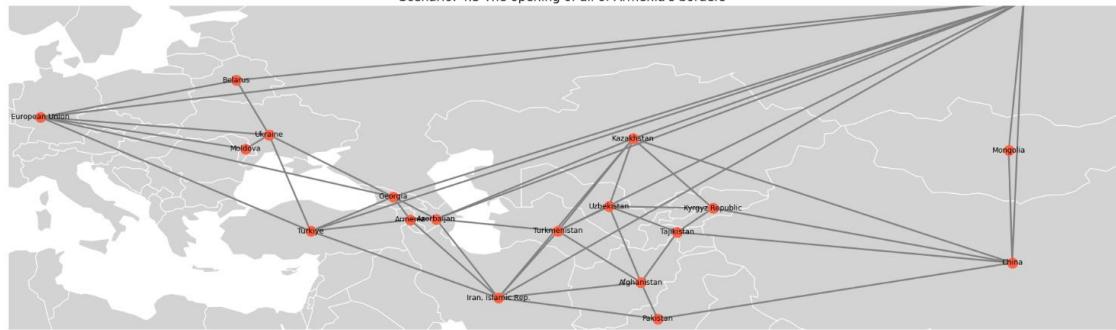

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.

Appendix: Scenario graphs


Scenario: 1. Without high risk


Scenario: 2. Without weak ties (weight <= 0.3)


Scenario: 3. Without Russia


Scenario: 4.1 Armenia-Turkey

Scenario: 4.2 Armenia-Azerbaijan

Scenario: 4.3 The opening of all of Armenia's borders

Scenario: 5. Without Georgia and Iran

Ordnungspolitische Diskurse

Discourses in Social Market Economy

Herausgegeben von ...

Prof. Dr. Lachezar Grudev, Zwickau

Prof. Dr. Stefan Kolev, Berlin & Zwickau

Prof. Dr. habil. Bernhard Seliger, Seoul & Zwickau

Prof. Dr. Dr. Ralph Wrobel, Zwickau

2007 – 1	Seliger, Bernhard; Wrobel, Ralph – Die Krise der Ordnungspolitik als Kommunikationskrise
2007 – 2	Sepp, Jüri - Estland – eine ordnungspolitische Erfolgsgeschichte?
2007 – 3	Eerma, Diana; Sepp, Jüri - Competition Policy's Role in Network Industries - Regulation and Deregulation in Estonia
2007 – 4	Clapham, Ronald - Welche Bedeutung haben nationale Wirtschaftsordnungen für die Zukunft der EU? Der Beitrag der sozialen Marktwirtschaft
2007 – 5	Strunz, Herbert – Staat, Wirtschaften und Governance
2007 – 6	Jang Tae-Seok - South Korea's Aid to North Korea's Transformation Process - Social Market Perspective
2007 – 7	Libman, Alexander - Big Business and Quality of Institutions in the Post-Soviet Space: Spatial Aspects
2007 – 8	Mulaj, Isa - Forgotten Status of Many: Kosovo's Economy under the UN and the EU Administration
2007 – 9	Dathe, Uwe - Wettbewerb ohne Wettbewerber? Über die Bedeutung von Reformen im Bildungswesen für die Akzeptanz der Wettbewerbsidee
2007 – 10	Noltze, Karl - Die ordnungspolitische Strategie des Landes Sachsen
2008 – 1	Seliger, Bernhard - Die zweite Welle – ordnungspolitische Herausforderungen der ostasiatischen Wirtschaftsentwicklung
2008 – 2	Gemper, Bodo Rheinische Wegbereiter der Sozialen Marktwirtschaft: Charakter zeigen im Aufbruch
2008 – 3	Decouard, Emmanuel - Das „Modèle rhénan“ aus französischer Sicht
2008 – 4	Backhaus, Jürgen - Gilt das Coase Theorem auch in den neuen Ländern?
2008 – 5	Ahrens, Joachim - Transition towards a Social Market Economy? Limits and Opportunities
2008 – 6	Wrobel, Ralph - Sonderwirtschaftszonen im internationalen Wettbewerb der Wirtschaftssysteme: ordnungspolitisches Konstrukt oder Motor institutionellen Wandels?

2009 – 1 Wrobel, Ralph - The Double Challenge of Transformation and Integration: German Experiences and Consequences for Korea

2009 – 2 Eerma Diana; Sepp, Jüri - Estonia in Transition under the Restrictions of European Institutional Competition

2009 – 3 Backhaus, Jürgen - Realwirtschaft und Liquidität

2009 – 4 Connolly, Richard - Economic Structure and Social Order Type in Post-Communist Europe

2009 – 5 Dathe, Uwe – Wie wird man ein Liberaler? Die Genese der Idee des Leistungswettbewerbs bei Walter Eucken und Alexander Rüstow

2009 – 6 Fichert, Frank - Verkehrspolitik in der Sozialen Marktwirtschaft

2009 – 7 Kettner, Anja; Rebien, Martina – Job Safety first? Zur Veränderung der Konzessionsbereitschaft von arbeitslosen Bewerbern und Beschäftigten aus betrieblicher Perspektive

2009 – 8 Mulaj, Isa – Self-management Socialism Compared to Social Market Economy in Transition: Are there Convergent Paths?

2009 – 9 Kochskämper, Susanna - Herausforderungen für die nationale Gesundheitspolitik im Europäischen Integrationsprozess

2009 – 10 Schäfer, Wolf – Dienstleistungsökonomie in Europa: eine ordnungspolitische Analyse

2009 – 11 Sepp, Jüri – Europäische Wirtschaftssysteme durch das Prisma der Branchenstruktur und die Position der Transformationsländer

2009 – 12 Ahrens, Joachim – The politico-institutional foundation of economic transition in Central Asia: Lessons from China

2009 – 13 Pitsoulis, Athanassios; Siebel, Jens Peter – Zur politischen Ökonomie von Defiziten und Kapitalsteuerwettbewerb

2010 – 01 Seliger, Bernhard – Theories of economic miracles

2010 – 02 Kim, Gi-eun - Technology Innovation & Green Policy in Korea

2010 – 03 Reiljan, Janno - Vergrößerung der regionalen Disparitäten der Wirtschaftsentwicklung Estlands

2010 – 04 Tsahkna, Anna-Greta, Eerma, Diana - Challenges of electricity market liberalization in the Baltic countries

2010 – 05 Jeong Ho Kim - Spatial Planning and Economic Development in Border Region: The Experiences of Gangwon Province, Korea

2010 – 06 Sepp, Jüri – Ordnungspolitische Faktoren der menschlichen Entwicklung

2010 – 07 Tamm, Dorel - System failures in public sector innovation support measures: The case of Estonian innovation system and dairy industry

2010 – 08 Clapham, Ronald - Wirtschaftswissenschaft in Zeiten der Globalisierung

2010 – 09 Wrobel, Ralph - Geldpolitik und Finanzmarktkrise: Das Konzept der „unabhängigen Zentralbank“ auf dem ordnungspolitischen Prüfstand

2010 – 10 Rutsch, Andreas; Schumann, Christian-Andreas; Wolle, Jörg W. - Postponement and the Wealth of Nations

2010 – 11 Ahrens, Joachim; Jünemann, Patrick - Transitional Institutions, Institutional Complementarities and Economic Performance in China: A 'Varieties of Capitalism' Approach

2010 – 12 Kolev, Stefan; Der bulgarische Weg seit 1989, Wachstum ohne Ordnung?

2011 – 1 Wrobel, Ralph – Energiewende ohne Markt? Ordnungspolitische Perspektiven für den deutschen Stromsektor

2011 – 2 Rõigas, Kärt – Linkage between productivity and innovation in different service sectors

2011 – 3 Sepp, Jüri – Institutionelle Innovationen im Infrastrukturbereich: Beispiel Post in Estland

2011 – 4 Effelsberg, Martin – Measuring absorptive capacity of national innovation systems

2011 – 5 Jänsch, Janina – Die Anrechnung natürlicher und anthropogener Effekte auf terrestrische Ökosysteme im Rahmen des Kyoto-Protokolls

2011 – 6 Platje, Joost – Institutional Change for Creating Capacity and Capability for Sustainable Development – a club good perspective

2011 – 7 Tamm, Dorel; Ukrainski, Kadri – Functional Approach to National Systems of Innovation: The Case of a Small Catching-up Country

2011 – 8 Nusser, Michael – Optionen zur Stärkung der Leistungsfähigkeit von Innovationssystemen

2012 – 1 Kolev, Stefan – Wider die „Après nous le déluge“-Logik. Ordnungspolitik, Innovation und Nachhaltigkeit.

2012 – 2 Varblane, Urmas - National Innovation Systems: Can they be copied?

2012 – 3 Reiljan, Janno / Paltser, Ingra - Struktur und Zusammenhänge des staatlichen Innovationssystems und der Innovationspolitik

2012 – 4 Lenz, Justus - Innovationssystem Internet: Eine institutionenökonomische Analyse der digitalen Revolution

2012 – 5 Chang Jai Chun - Erfolgsfaktoren für "Internationale Projekte"

2012 – 6 Gerl, Jörg – Global denken, lokal handeln: Gebäudesanierung als Beitrag zum Klimaschutz am konkreten Beispiel

2012 – 7 Seliger, Bernhard – Grünes Wachstum in Südkorea – Etikettenschwindel, Neo-Keynesianismus oder ein neues Paradigma der Ordnungspolitik?

2013 – 1 Wrobel, Ralph – Economic Models for New Industrializing Countries in Comparative Perspective

2013 – 2 Park, Sung-Jo – Developmental State in Korea (60-70ties) Revisited: Institution-Building for the Making of 'Coordinated Market'

2013 – 3 Reiljan, Janno & Paltser, Ingra – The Implementation of Research and Development Policy in European and Asian Countries

2013 – 4 Hoen, W. Herman – Emerging Market Economies and the Financial Crisis: Is there Institutional Convergence between Europe and Asia?

2013 – 5 Kroos, Karmo – Developmental Welfare Capitalism in East Asia with a Special Emphasis on South Korea

2014 – 1 Ahrens, Joachim & Stark, Manuel – Independent Organizations in Authoritarian Regimes: Contradiction in Terms or an Effective Instrument of Developmental States

2014 – 2 Terk, Erik – Practicing Catching-up: a Comparison of Development Models of East Asian and Central-Eastern European Countries

2014 – 3 Sepp, Jüri; Varblane, Uku – The Decomposition of Productivity Gap between Estonia and Korea

2014 – 4 Sepp, Jüri; Kaldaru, Helje and Joamets, Jürgen – The Characteristics and Position of the Economic Structures of Estonia and Korea among the OECD Countries

2015 – 1	Barłniczak, Bartosz; Ptak, Michał – Green Jobs in the Renewable Energy Sector
2015 – 2	Freudenberg, Sandro; Stephan, Sandra – Fachkräftebedarfsdeckung heute und in der Zukunft: Handlungsempfehlung für eine erfolgreiche Personalbedarfsdeckung in Unternehmen
2015 – 3	Kauf, Sabina – Die Unternehmensanforderungen an die Logistikspezialisten und akademische Ausbildung der Logistiker
2015 – 4	Komulainen, Ruey – Employer Branding for SMEs: Attracting Graduating Students in IT Industry
2016 – 1	Wrobel, Ralph – Der deutsche Arbeitsmarkt zwischen Fachkräftemangel und Immigration: Ordnungspolitische Perspektiven in der Flüchtlingskrise
2016 – 2	Walter, Angela – Unternehmen suchen Fachkräfte - Fachkräfte suchen Unternehmen: Employer Branding als Personalstrategie für Recruiting und Bindung von Fachkräften der Generation Y in kleinen und mittelständischen Unternehmen am Beispiel von Sachsen
2016 – 3	Monika Paradowska; Joost Platje – Key challenges facing the European transport labour market
2016 – 4	Behr, Michael – Arbeitsmarkt- und Wirtschaftsentwicklung in Ostdeutschland: Herausforderungen, Probleme und Strategien für Sachsen
2017 – 1	Sepp, Jüri; Kaldaru, Helje; Varblane, Uki - The Development and Typology of the Employment Structure in OECD Countries
2017 – 2	Schneider, Clemens - Die Offene Gesellschaft und ihre Zuwanderer: Kritische Gedanken zu einer planwirtschaftlichen Integrationspolitik
2017 – 3	Seo Byung-Chul, Bernhard Seliger - Der Arbeitsmarkt in Nordkorea am Beispiel des Industriekomplexes in Kaesong
2017 – 4	Stefan Kolev - Individualism and Demographic Change
2018 – 1	Ralph Wrobel - Die Unabhängigkeit der Deutschen Bundesbank: eine Erfolgsgeschichte
2019 – 1	Kadri Ukrainski; Hanna Kanep; Margit Kirs; Erkki Karo - International R&D Networks of Firms: A Country-level Analysis of the EU Framework Programmes
2019 – 2	Rossitsa Yalamova - Blockchain Angels or Demons of a Free International Order
2019 – 3	Viire Täks / Maaja Vadi - Who and how do participate in strategic planning?
2019 – 4	Mark Kretschmer - Karl Polanyi and Economics: Polanyi's Pendulum in Economic Science
2019 – 5	Tim Schneegans - Escaping the comfort zone: a three-level perspective on filtering effects and counter-measures
2019 – 6	Katsuhiko Hirasawa - Globalization and Small Businesses
2020 – 1	Ralph Wrobel - The “China Effect”: Changes in International Trade Patterns as Reasons for Rising “Anti-Globalism”
2020 – 2	Bernhard Seliger - North Korea’s political economy: Hybrid economic institutions and the contributions of German order policy (Ordnungspolitik)
2020 – 3	Alexander Heß - Happiness and the Welfare State in Times of Globalization: A Review of Empirical Findings

2020 – 4	Ralph Wrobel - Das Modell „Soziale Marktwirtschaft“: Chancen im internationalen Systemwettbewerb zwischen Freier Marktwirtschaft und chinesischem Staatskapitalismus
2021 – 1	Werner Pascha - Duisburg and its port, end point of China's new silk road – opportunities and risks
2021 – 2	Anastasia Barannikova - South Korea, China and the Road and Belt initiative: economic and political factors
2021 – 3	Artyom Lukin - Road and Belt, Iron Silk Road and Russian-Chinese geopolitical cooperation and competition
2021 – 4	Hans-Ulrich Seidt - Korea and Germany as Endpoints of the New Silk Road: Opportunities for Cooperation
2021 – 5	Ralph Wrobel - Kim Jong-un's Byungjin Policy: Support or Obstacle for Economic Convergence on the Korean Peninsula?
2021 – 6	Bernhard Seliger - The Iron Silk Road and North Korea: is there any chance to move forward?
2021 – 7	Joohyun Go - The prospects of cultural exchange to foster the economic relationship between the EU and Korea
2021 – 8	Duyeon Kim – Belt and Road in the New Geo-Political Competition: China, the United States, Europe and Korea
2021 – 9	Alexander Heß, Christoph Hindermann – Trade Effects on Happiness in Asia
2021 – 10	Joachim Ahrens, Katja Kalkschmied – China in Africa: Competitor of the EU?
2021 – 11	Tereza Novotná - The European Union and Korea between the US and China: geopolitical aspects of connectivity from the soft to hard power approaches
2021 – 12	Jagannath Panda – China's BRI Diplomacy: What It Means to India and India's Rise
2022 – 1	Ralph M. Wrobel - The Chinese Belt and Road Initiative between Economics and Geopolitics: Consequences for Armenia
2022 – 2	Hans-Christian Brauweiler / Aida Yerimpasheva - Challenges and opportunities to develop Kazakhstani logistics projects within the BRI
2022 – 3	Alexander Heß / Christoph M. Hindermann - The BRI: Trade Integration and Stock Market Synchronization – A Review of Empirical Findings
2022 – 4	Davit Gondauri - Georgian railway's Experiences with Belt and Road Initiative: Advantages and Disadvantages
2022 – 5	Kiyalbek Akmoldoev - How realistic is Belt and Road Initiative for Kyrgyzstan and Central Asian Countries?
2022 – 6	Atom S. Margaryan / Haroutyun T. Terzyan / Emil A. Grigoryan - Belt and Road Initiative as an Innovative Platform for Technology Transfer: Opportunities for Armenia
2022 – 7	Sos Khachikyan / Jiang Hongzhen - Spatial Administration and Legal Aspects of the Belt and Road Initiative: Innovative Solutions for Armenia
2022 – 8	Karen Grigoryan / Ali Arpanahi - Perspectives of Armenian - Iranian Economic Relations within Belt and Road Initiative
2022 – 9	Armen Ju. Ghazaryan / Liana Marukyan / Meline V. Abrahamyan / Meline A. Ayvazyan - The Opportunities of Economic and Legal Cooperation between EU – Armenia within the framework of the BRI
2022 – 10	Jagannath Panda - EU's Global Gateway Strategy and Building a Global Consensus vis-a-vis BRI

2022 – 11 Katja Kalkschmied - Chinese lending specifics and projects in the Caucasus region: A look into project-level data

2022 – 12 Atom Margaryan / Emil Grigoryan / Armen Minassian - BRI as Chance for Regional Cooperation: Iran - Armenia Economic Relations

2023 – 1 Hans-Christian Brauweiler; Aida Yerimpasheva; Assem Zakirova - The Impact of Logistics on Economic Cooperation in Central Asia

2023 – 2 Ralph Wrobel – The Changing Geopolitics in the South Caucasus during the War in Ukraine: Chances and Risks for the Region

2025 – 1 Ralph Wrobel - Global Gateway and Africa: Old Wine in New Bottles? - A Critical Analysis of EU Development Aid Discourses

2025 – 2 Aida Yerimpasheva & Hans-Christian Brauweiler - Global Gateway as a Tool for Sustainable Growth of Kazakhstan

2025 – 3 Vardan Atoyan & Diana Matevosyan - Graph-Based Analysis of Armenia's Connectivity in the EU-Asia Trade Network: Strategic Role and Limitations