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Abstract

Electrified heating and mobility, the uptake of air conditioning and distributed energy
resources are reshaping residential electricity demand and will require substantial
investment. Yet the dependencies that drive present and future residential demand
across sociodemographic characteristics, occupant activities, energy service demands,
local technologies, and interactions with the overarching energy system remain poorly
understood. Activity-based, bottom-up models make these dependencies explicit,
better informing flexible operation and investment in low-carbon technologies.

We review 45 activity-based residential models and assess coverage of appliances,
domestic hot water, space heating and cooling, and mobility (electric vehicle charging),
which are rarely considered jointly in one integrated model. We identify methodological
gaps for consistently modeling behavior: To our knowledge, this is the first review to
include activity-based mobility modeling, thereby identifying methodological gaps in
consistent behavior modeling across residential energy services: First, most studies
simulate single occupants in isolation rather than entire households, thereby
overlooking interdependencies among occupants. Second, predominant use of Markov
models or independent univariate sampling limits temporal consistency. Based on
these findings, future studies should combine complementary behavioral datasets with
sophisticated models (e.g., deep neural networks) capable of capturing complex
dependencies to generate high-quality synthetic behavioral data as a basis for future
bottom-up residential energy demand modeling. Further progress requires open
datasets and reproducible validation frameworks to benchmark and compare activity-
based models and to ensure consistent progress in the field. Currently, there is no
model available in the literature that derives energy demand for thermal comfort, hot
water, mobility, and other services consistently from one fundamental representation of
household behavior.



Highlights
A Review of Challenges and Opportunities in Occupant Modeling for Future Residential Energy
Demand
Jonathan Vogl, Max Kleinebrahm, Moritz Raab, Russell McKenna, Wolf Fichtner

• Reviews activity-based, bottom-up models for residential energy-demand profiles.
• Covers all energy service demands: appliances, hot water, thermal comfort, mobility.
• Examines activity schedule generation: intrapersonal and intrahousehold dependencies.
• Reviews validation methods for activity schedule and demand profile generation.
• Identifies limits in occupant modeling and weak linkages to energy service demands.
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A B S T R A C T
Electrified heating and mobility, the uptake of air conditioning and distributed energy resources are
reshaping residential electricity demand and will require substantial investment. Yet the dependencies
that drive present and future residential demand across sociodemographic characteristics, occupant
activities, energy service demands, local technologies, and interactions with the overarching energy
system remain poorly understood. Activity-based, bottom-up models make these dependencies
explicit, better informing flexible operation and investment in low-carbon technologies.

We review 45 activity-based residential models and assess coverage of appliances, domestic hot
water, space heating and cooling, and mobility (electric vehicle charging), which are rarely considered
jointly in one integrated model. To our knowledge, this is the first review to include activity-based
mobility modeling, thereby identifying methodological gaps in consistent behavior modeling across
residential energy services: First, most studies simulate single occupants in isolation rather than
entire households, thereby overlooking interdependencies among occupants. Second, predominant
use of Markov models or independent univariate sampling limits temporal consistency. Based on
these findings, future studies should combine complementary behavioral datasets with sophisticated
models (e.g., deep neural networks) capable of capturing complex dependencies to generate high-
quality synthetic behavioral data as a basis for future bottom-up residential energy demand modeling.
Further progress requires open datasets and reproducible validation frameworks to benchmark and
compare activity-based models and to ensure consistent progress in the field. Currently, there is no
model available in the literature that derives energy demand for thermal comfort, hot water, mobility,
and other services consistently from one fundamental representation of household behavior.

1. Introduction
The residential sector is pivotal to decarbonizing the

energy system. In 2023, the residential sector accounted for
26% of the EU’s final energy consumption, of which 63%
was used for space heating and 15% for water heating [1].
Despite electricity comprising 26% of the residential sector’s
energy mix, only 7% of that electricity serves space heating
and 18% serves water heating [1]. With the introduction
of heat pumps alongside the decarbonisation of electricity
supply, future energy demand for space heating and water
heating will be supplied by electricity, marking a substantial
shift given these services’ high share of residential consump-
tion and today’s low level of electrification.

Electrified mobility will also further increase household
electricity demand. Currently, electric vehicle charging is
not explicitly counted within residential sector statistics [1].
In 2022, for example, transport comprised 31% of the EU’s
final energy use, with road vehicles responsible for 74%
of that total and 91% of their fuel supplied by gasoline
and diesel [2]. Cars and vans alone consumed 74% of road
transport energy (own calculations based on [2]). As electric
vehicle uptake grows, around 75% of all charging sessions
are expected to occur at home [3], adding a substantial new
load to residential grids [4].

Together, the electrification of heating and mobility will
transform both the magnitude and the temporal profile of
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residential electricity demand (see Figure 1). Ahead of the
2035 zero-emission-only car registration mandate in the
EU [5], electric vehicles have already grown from a 2%
market share in 2018 to 23% in 2023 [6]. Simultaneously, the
share of ambient heat from heat pumps in space and water
heating rose from 1.7% in 2017 to about 5% in 2022 in EU
households [7].

In Europe, the increased uptake of heat pumps and
electric vehicles will not only contribute to an expected
doubling of overall electricity demand by mid-century (≈
2050) [8–10], but will also amplify daily and seasonal peaks
and steepen ramp rates, stressing networks and driving costly
upgrades [11–14]. Flexibility is needed to prevent grid con-
gestion and costly expansions [14], particularly as simulta-
neous peaks in heating and home charging coincide with
cold weather, as well as the already present "evening peak".

Since balancing electricity demand and supply will be
more difficult in the future [16], changes on the supply
side will also impact the residential sector. Simultaneously,
households are becoming prosumers, installing more photo-
voltaics and batteries as costs fall [10, 12, 17, 18]. In parallel,
the renewable share of the energy system will rise [18–
20]. Consequently, the system will become more weather-
dependent [13, 21]. This calls for a paradigm shift: instead
of supply following inflexible demand, demand must adapt
to variable supply [20, 22]. High-potential residential flexi-
bility includes smart or managed electric vehicle charging,
behind-the-meter batteries, and thermal storage with heat
pumps, enabling households to adapt demand to variable
supply [23–25].
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Occupant modeling for future residential energy demand

Figure 1: Average daily electricity demand of a median
household in 2045, divided by energy service. Values are means
across winter days. See [15] for data and methodology.

Despite the residential sector’s importance, the drivers
of household energy demand are currently largely unknown
[26]. A fundamental understanding of the underlying factors
that shape residential demand dynamics is lacking, as re-
flected in the numerous models and publications attempting
to explain the temporal composition of residential demand
(see Table 2). Smart meter data are not always available or
accessible due to privacy restrictions, often lack household
meta information, and only provide aggregate demand in-
stead of device-specific load profiles. More detailed sub-
metering data come with additional costs and are not yet
widely available [27].

In order to address future challenges, it is crucial to gain
a more detailed understanding of demand and its potential
flexibility. To estimate future flexibility potential in the res-
idential sector, it is necessary to have a deep understanding
of the temporal and spatial uptake of flexible demand-side
technologies and their socio-techno-economic constraints
in providing system services while meeting household de-
mand [24]. With that more detailed information in hand,
for example, distribution system operators can implement
targeted grid expansions proactively, avoiding the grid con-
gestion and voltage-band violations that occur when critical
peaks go unaddressed like with uncontrolled charging [28].
Furthermore, energy utilities can provide targeted dynamic
tariffs to enhance that flexibility without leading to unfair
distributional effects [29–31].

Such granular understanding of residential energy de-
mand can be achieved through bottom-up models that re-
construct household load profiles from appliance-level us-
age [27, 32]. Based on household behavior, including each
occupant’s activity schedule, bottom-up models provide a
common basis for emerging energy demands [43, 60]. Res-
idential energy demand models enable the study, under-
standing and forecasting of dependencies between socio-
demographic household determinants, technical and envi-
ronmental parameters, occupant behavior and associated
energy demands [27, 48, 61, 62]. Compared to data-driven
approaches [26], which implicitly represent underlying de-
pendencies by learning patterns between and within demand

Table 1
Overview on reviews considering occupancy- and activity-based
residential energy demand models.

Reviewed energy
service demands

Review paper Year
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Swan and Ugursal [27] 2009 ✓ ✓

Grandjean et al. [32] 2012 ✓ ✓ ✓

Torriti [33] 2014
Yan et al. [34] 2015 ✓

Gaetani et al.[35] 2016 ✓ ✓ ✓

Stazi et al. [36] 2017 ✓

Delzendeh et al. [37] 2017 ✓ ✓

Fuentes et al. [38] 2018 ✓

Yamaguchi et al. [39] 2018 ✓

Hong et al. [40] 2018 ✓

Zhang et al. [41] 2018 ✓

Balvedi et al. [42] 2018 ✓

Happle et al. [43] 2018 ✓ ✓ ✓

Dong et al. [44] 2018 ✓ ✓

Li et al. [45] 2019 ✓ ✓ ✓

Carlucci et al. [46] 2020 ✓

Torriti [47] 2020 ✓

Proedrou et al. [48] 2021 ✓

Rezvany et al. [49] 2021 ✓ ✓

Chen et al. [50] 2021 ✓ ✓

Osman and Ouf [51] 2021 ✓ ✓ ✓

Li et al. [52] 2022
Dabirian et al. [53] 2022 ✓ ✓ ✓

Kang et al. [54] 2023 ✓ ✓

Kewo et al. [55] 2023 ✓

Vosoughkhosravi et al. [56] 2023 ✓ ✓ ✓

Ahmed et al. [57] 2023 ✓ ✓

Mylonas et al. [58] 2024 ✓ ✓ ✓

Banfi et al. [59] 2024 ✓ ✓ ✓

Present work 2025 ✓ ✓ ✓ ✓

profiles, bottom-up approaches provide explicit dependen-
cies, high interpretability and easy-to-tweak relationships,
e.g. in response to behavioral changes [61] or technological
innovations as well as to support system design [54].

As can be seen in Table 1, no existing review study has
consistently addressed all four household energy service de-
mand categories, with mobility-related demand for electric
vehicles particularly underrepresented. Existing reviews that
cover multiple demand categories typically treat them in
isolation rather than examining interconnections. Therefore,
this study is the first to integrate modeling approaches of
all energy service demand categories within a single review,
providing a comprehensive perspective on household energy
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Figure 2: Example of an activity schedule constructed from a
synthetic time-use survey sample (image based on [63]). The
activity schedule specifies the start time, duration, and type of
activities for an occupant at each point in time during the day.

demand modeling and, on this basis, guiding the following
research questions:

(RQ1) Are current residential activity-based energy demand
models capable of consistently modeling energy de-
mand for energy service demands involving hot water,
thermal comfort, mobility, and other household appli-
ances?

(RQ2) Which requirements must activity-based energy de-
mand models fulfill to support future sector-coupled
energy systems?

(RQ3) How should evaluation criteria for activity schedules
and energy demand profiles be defined to ensure con-
sistent progress in energy demand modeling?

The paper is structured as follows: Section 2 describes
the general structure of an activity-based, bottom-up load
profile model, outlines the data sources, and explains the
necessity for synthetic activity schedules. Section 3 reviews
activity-based, bottom-up models for residential energy de-
mand, while Section 4 discusses commonly used validation
metrics. Section 5 presents and discusses the central find-
ings, before Section 6 concludes the paper.

2. Bottom-up residential energy demand
modeling
Prior work shows a dependence of demand for energy

services on occupant behavior [64–67]. Specifically, varia-
tions in daily activity schedules can produce highly different
energy demands [68–73], whereas homes with similar oc-
cupancy patterns tend to experience coincident peak loads
[74]. Sociodemographic factors not only shape occupants’

routines and energy consumption but also influence appli-
ance ownership and building characteristics [75–84]. For
water heating, Bertrand et al. [85] found that over 80% of
hot water consumption in urban areas results from shower-
ing. For space heating, individual thermal preferences and
perceived comfort can differ substantially even within the
same sociodemographic group [81, 86]. With improvements
in appliance efficiency and the electrification of heating and
transportation, the role of occupant behavior becomes even
more significant. As a result, conventional standard load
profiles are unable to capture the diversity of household
configurations and behavioral impacts [26].

These shortcomings can be addressed with bottom-up,
activity-based models. An example of an activity schedule
is illustrated in Figure 2. Based on the behavior of household
occupants as foundational component, activity-based de-
mand models simulate energy service demand, technology
operation, and final energy carrier demand of a dwelling
unit (see Figure 3). A dwelling unit is thereby defined as
a self-contained residential space that houses one or more
occupants and includes the physical structure, appliances,
and energy-relevant systems necessary for providing heat-
ing, cooling, mobility, and other household services.

2.1. Input data
Temporally resolved behavioral data are essential for

developing models capable of generating activity-based load
profiles. The most prominent data sources used in the re-
viewed studies in Section 3 are time-use surveys (TUS) (see
Table 2 and Table 8 in the appendix), Time-use surveys
contain occupant diaries, recording their household activ-
ities usually at ten-minute or fifteen-minute intervals over
one or a few days [51, 87]. Only a few surveys offer longer
observation periods [87–89]. Time-use surveys contain so-
ciodemographic information about the occupants as well
as data on household affiliation. Multiple versions exist for
different years or countries, many of which are included
in the Multinational Time Use Study (MTUS) [90] or the
Harmonised European Time Use Survey (HETUS) [91].
Although most TUS datasets are subject to data protection,
a few are openly accessible [92, 93].

Beyond time-use surveys, national mobility surveys pro-
vide representative travel-behavior data. These surveys are
conducted repeatedly over multiple years, see Table 8 in the
appendix. One-day travel diaries are collected by Germany’s
Mobilität in Deutschland (MiD) in repeated cross-sections
[94], London’s Travel Demand Survey (LTDS) [95], and
the U.S. National Household Travel Survey (NHTS) [96].
The Deutsches Mobilitätspanel (MOP) provides seven-day
panel data [97]. Overall, several partly harmonized, country-
representative datasets provide a solid basis for activity-
based energy-demand models; purely smart-meter-driven
approaches are ill-suited to this methodology [26, 98–104].

Multiple alternative data sources may provide additional
value but are mostly not representative, limiting their gener-
alizability. Charging-only data (e.g., wallbox measurements)
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Figure 3: Components and information flow in bottom-up activity-based load profile modeling.

lack behavioral context unless paired with activity informa-
tion. The METER dataset, which combines time-use survey
data with high-resolution smart meter data collected simul-
taneously in the same households, enables inference from
reported activities to appliance use [105–107]. Data on load
profiles for individual appliances (e.g., [108, 109]) can help
link modeled appliances to their corresponding electrical
loads. Sensor-based measurements, e.g., CO2 concentration,
window-opening states, thermostat datasets [110], or Wi-
Fi usage [111], typically rely on small, purpose-specific
samples. Comprehensive reviews on occupancy detection
are available (see [112–115]). Case studies that rely solely
on these types of data are not considered further in this work.
2.2. On the need for activity modeling

There is a need for modeling activity data. Having pre-
sented the empirical datasets in the previous subsection,
we now focus on the gap between available data and the
requirements for consistent activity-based energy-demand
modeling. An optimal behavioral dataset would include:

(1) Openness: fully accessible and shareable data.
(2) Temporal structure: an annual time horizon with

regular, homogeneous time steps.
(3) Resolution: high-resolution temporal records of house-

hold and mobility activities with consistent locations.
(4) Metadata: rich sociodemographic attributes, regional

granularity, multi-country scope, and possible future
pathways for scenario analysis.

(5) Dependencies: should capture the following struc-
tures:

(a) Intrapersonal: temporal consistency in an in-
dividual’s activities, excluding implausible se-
quences (e.g., drying before washing), limiting
excessive activity changes, and reflecting longer-
term regularities (e.g., stable wake-up times and
recurring work hours).

(b) Intrahousehold: joint activities (e.g., shared
meals), resource/blocking constraints (e.g., ac-
cess to laundry), and more complex interactions
whereby household members influence one an-
other’s schedules.

(c) Calendar-year factors: weather, seasons, holi-
days, and major events (e.g., sports).

Such a dataset would provide a common foundation for
consistent modeling of all energy-service demands.

However, such an idealized dataset does not exist and is
unlikely to be available soon due to privacy constraints and
survey costs. This absence leads to several challenges. First,
because activity schedules are protected by strict privacy
rules, the underlying microdata cannot be shared openly,
which restricts its direct use. Consequently, models that
use data directly [68, 116–119] or derive activity schedules
[73, 120–125] can publish only aggregated results, hindering
open-source application toolchains. Second, most empirical
surveys span only a few days per household, whereas system
planning and investment studies require continuous annual
or even longer profiles [12, 126]. Based on our review, we
identified that these two aspects are the primary motivations
for simulation in current activity models: to address privacy
constraints and to extend profile length.

Synthesizing activity data by modeling can tackle these
shortcomings by deriving statistical properties such as the
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Figure 4: Categories of linkage between an activity schedule
and the different energy demand services.

time-dependent distributions of activities and dependencies
among them. Activity schedules sampled from these dis-
tributions preserve the essential statistical structure of the
original time-use survey data while obscuring links to in-
dividual diaries, enabling fully shareable bottom-up models
and supporting long simulation horizons with effectively
unlimited synthetic samples.

Additionally, we believe the use of models instead of
direct data can be motivated by further reasons. No dataset
includes both activity and mobility data (3) [127] and none
covers all regions, sociodemographic segments, and future
scenarios (4). It is therefore necessary to combine datasets
with different survey objectives, leveraging complementary
strengths to generate a holistic dataset. Unlike the former
case of synthesizing activity data, this integration requires
additional steps: appropriately combining sources, imputing
missing or irregular values, addressing underrepresented
subgroups, and extrapolating into the future.

When simulating, the dependencies (5) must also be
captured. Modeling from a single dataset should reproduce
intrapersonal and intrahousehold dependencies present in
the time-use data. Achieving longer-term consistency may
require additional assumptions or the combination of addi-
tional datasets. This also applies to additional dependencies,
such as calendar-year factors, but we do not consider them
further in this review.
2.3. Residential energy demand

Activity-based bottom-up models link activity schedules
to household energy demand. The degree of linkage can vary
across demand modules, but stronger coupling yields closer
alignment with the activity schedule, and tighter coupling
also enhances consistency across energy-service demands
(see Figure 4).

Modeling appliances involves assigning each energy-
related activity to one or more appliances. For example,
“cooking” may involve several appliances or one sampled
at random. Non-energy activities do not invoke appliances
directly but still support internal consistency in the ac-
tivity schedule (e.g., “sleeping”, “reading”). A more co-
herent, fine-grained activity model strengthens schedule
linkage and enables more direct, robust appliance map-
ping. Models that capture only occupant-presence states

or inconsistent activity states cannot map appliances di-
rectly and therefore rely on stochastic methods or follow-
up corrections (see Table 5 in the appendix). Lighting use
follows occupant-presence rather than specific activities,
though room-differentiated occupancy schedules can refine
lighting-demand estimates. [76, 125, 128–136]. Occupant-
independent constant or cyclic demands (e.g., modems,
refrigerators) should also be represented in the model.

Appliance-specific modeled demand must be met by
an installed household appliance (see Figure 3). Appli-
ance presence (equipment) and variants (model type) de-
termine electricity demand and may involve different oper-
ating programs (e.g., washing-machine cycles, dishwasher
programs). Resulting loads can be represented as a constant
over the activity duration or as an appliance-specific load
profile (see Table 5 in the appendix). In multi-occupant
households, appliances may be used simultaneously across
multiple activity schedules, leading to appliance sharing
through direct interaction or coincidental overlap (e.g., cook-
ing or watching TV together). The model should incorporate
assumptions about sharing because simply adding appliance
demand across occupants is inappropriate.

Domestic hot water demand modeling is conceptu-
ally similar to appliance modeling, with related activities
generating specific hot-water demand. The same activity
(e.g., bathing, hygiene) may require different amounts of hot
water. Hot-water demand from appliances can vary across
countries because some devices include built-in water heat-
ing.

Thermal comfort-related heat demand is often setpoint-
driven and occupancy-independent. Accounting for occu-
pant influence can progress from presence-based HVAC
control to deeper coupling that includes activity-driven
metabolic heat and appliance heat gains.

Domestic hot water and space heating (possibly also
cooling) can be supplied by different systems (e.g., heat
pumps, district heating, gas boilers, electric water heaters).
As the demand layer is system- and supply-independent,
the framework supports analyses of system replacements
and shifts between energy carriers (e.g., electricity vs. gas).
Operating these systems depends on additional inputs for
weather (solar irradiation, outdoor temperature) and build-
ing characteristics (insulation, orientation, thermal mass).

Mobility demand for electric vehicles translates into
household electricity demand for home charging. 75% of
charging occurs at home [3], and for households with access
to home charging this share may be even higher. Charging
demand can be modeled from vehicle energy use during mo-
bility activities. During trips, the state-of-charge reduction
of the electric vehicle battery can be estimated from trip
distance or duration, or from detailed energy-consumption
profiles reflecting driving conditions (urban, rural, highway)
(see Table 7 in the appendix). Assuming a fixed commute
distance can improve model consistency. Within the activity
schedule, mobility behavior must align with consistent loca-
tions to avoid conflicts, since absence due to travel precludes
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simultaneous household activities or home charging. A de-
tailed mobility-demand model enables comparative analysis
of charging power and strategy. The model can represent
charging strategies (direct, delayed, smart charging) and
vehicle-to-grid (V2G) interactions.

3. Review of activity-based energy demand
models
This section provides a review of activity-based energy

demand models. Different modeling approaches and their
defining characteristics are discussed. Further, models are
categorized by modeled energy demand services, accounting
for appliances, hot water, heating, and mobility, are captured
by the models and to what extent they are linked to activity
schedules. The structure of this section is guided by the
characteristics of the reviewed models, as summarized in the
comparative overview in Table 2.
3.1. Review procedure

We searched Web of Science and Scopus and expanded
the set via backward- and forward-citation chaining, seeding
the search with prior reviews (Table 1). Inclusion required
residential, activity-based demand models explicitly linked
to at least one energy service. If multiple papers by the same
authors described the same model, we selected the most
comprehensive paper. We excluded studies limited to oc-
cupancy status without detailed activities or energy-service
demands, studies focusing solely on lighting [137–139] or
on window-opening within building performance simula-
tion [140–143], pure country transfers without substantive
methodological changes [144], and non-residential contexts
such as offices or schools [145–151]. We screened cross-
references from included works and ran forward searches
for each table (Table 1 and Table 2), anchoring them on
publications from 2020 onward to capture recent models and
also used Research Rabbit to verify inclusion of prominent,
field-relevant publications.

Table 2 summarizes the literature review. The "Activ-
ity model" section lists data sources, the method used to
generate activity schedules, and differentiates between an
individual occupant or a household as the simulation object.
"Number of activity states" reports the number of distinct,
interdependent states. Data sources are not discussed here
but are listed in Appendix Table 8. "Energy service de-
mands" cover appliances, hot water, thermal comfort, and
mobility, indicating whether each demand and its load are
explicitly modeled. A three-color scale denotes the strength
of coupling to the activity schedule, as explained in Sec-
tion 2.2 and visualized in Figure 4. Empty circles denote
services not captured by the model. In the case of mobility,
an empty circle is also used for models that simulate mobility
activities but do not convert them into corresponding energy
demand. The "Dependency" section distinguishes activity-
related and demand-related dependencies. Activity depen-
dencies include intrapersonal and intrahousehold dependen-
cies, as detailed in Section 2.2). Intrapersonal continuity is

visualized as horizontal bars, with fill level indicating the
temporal connection. Intrahousehold dependencies capture
joint behavior during schedule generation. "Appliance shar-
ing" indicates concurrent use of shared appliances is handled
to avoid double counting.
3.2. Activity modeling approaches

The choice of activity modeling approach represents a
central component in the overall model design. Three model
types are present in the literature for generating activity
schedules, namely Markov chains, probability density func-
tions (PDFs) and neural networks. These three, along with
additional variants, are discussed in the following sections.

First-order Markov chains. Markov chains are among
the most widely used techniques for modeling activity sched-
ules. In a Markov chain approach, discrete states are defined,
each representing a specific activity. At each time step,
exactly one activity is selected by sampling a state transition
based on predefined transition probabilities. The first-order
variant operates under the Markov property, meaning that
the next activity state depends solely on the current activity
and not on earlier states or external factors (Figure 5(a)).
Transition probabilities are computed from the relative fre-
quencies of observed state transitions, differentiated by time
of day, in a time-inhomogeneous Markov chain. Each tran-
sition determines the probability density function used at
the next time step. Apart from this, state-specific probability
density functions are assumed to be independent across time
steps and activity states. An initial state is typically sampled
from empirical data.

A prominent line of work starts with Richardson et al.
[152], who introduce a two-state occupancy model (present
vs. absent) for multiple occupants. McKenna et al. [155, 156]
extend the model to four states, additionally distinguishing
whether occupants are active ("not sleeping"). Appliance
differentiation uses a probability density function condi-
tioned on occupancy [153, 156]. Together, these studies
comprise the CREST model or "richardsonpy" [152, 153,
155, 156]. The CREST approach is adopted by multiple
works [68, 139, 154, 191, 192].

A second stream centers on the structure introduced by
Widén and Wackelgård [158], which directly models nine
activities using a Markov chain [128, 158–160].

Zhang et al. [187] model occupancy states and infer
room-level presence by preprocessing time-use data with
appliance-based distinctions. Fischer et al. [169] focus on
location-based mobility modeling. Other models in Table 2
follow standard first-order Markov modeling [4, 28, 163,
164, 166, 170, 178, 183, 184, 187, 190].

Semi-Markov chains. To better capture realistic activity
sequences, semi-Markov models keep first-order transitions
but sample state durations from activity-specific PDFs (Fig-
ure 5(b)). This matches empirical duration distributions.
After each sampled duration ends, the next state is drawn
by the standard Markov rule. Several models use this struc-
ture implicitly without naming it [165, 174, 182]. Standard
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Table 2
Reviewed activity models for simulated residential energy demand of energy services, grouped by research lines.

Activity model Energy service
demand

Dependencies
Activities | Demand
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Richardson [152] 2008 TUS UK 1𝑠𝑡  © 2 ✓ ✓

Richardson [153] 2010 TUS UK 1𝑠𝑡  © 2 ◦ ✓ ✓

Good [154] 2015 TUS UK 1𝑠𝑡  © 2 ◦ ◦ + ✓ ✓

McKenna [155] 2015 TUS UK 1𝑠𝑡  © 4 ✓

McKenna [156] 2016 TUS UK 1𝑠𝑡  © 4 ◦ ◦ + ✓ ✓

Buttitta [157] 2020 TUS UK 1𝑠𝑡   3 ◦

Widén [158] 2010 TUS SE 1𝑠𝑡   9 + ✓

Widén [128] 2012 TUS SE 1𝑠𝑡   9 + + + ✓

Grahn [159] 2013 TUS SE 1𝑠𝑡   9 + + ✓

Sandels [160] 2014 TUS SE 1𝑠𝑡   9 + – ◦ ✓

Wilke [161] 2013 TUS FR semi   20
Muratori [28] 2013 TUS US 1𝑠𝑡   9 + –

Muratori [162] 2013 TUS US 1𝑠𝑡   3 +

Muratori [4] 2018 TUS US 1𝑠𝑡   9 + – +

Johnson [163, 164] 2014 TUS US 1𝑠𝑡   10 + + +

Aerts [165] 2014 TUS BE semi   3
Collin [166] 2014 TUS UK 1𝑠𝑡   13 + ✓

Fischer [167] 2015 TUS DE   0 – ✓ ✓

Fischer [168] 2016 TUS DE   0 – – + ✓ ✓

Fischer [169] 2019 MID 1𝑠𝑡   4 –

"synPro" [167–169] TUS DE MID   0 – – + – ✓ ✓

Farzan [170] 2015 TUS US 1𝑠𝑡   12 + + – + ✓

Nijhuis [171] 2016 TUS NL high   2 ◦ ◦ ✓

Bizzozero [172] 2016 TUS IT 1𝑠𝑡   11 + + – ✓

Gruosso [173] 2016 TUS IT 1𝑠𝑡   11 + + – + ✓

Baetens [174] 2016 TUS BE semi   3 ◦ ◦ +

Flett [175] 2016 TUS UK high  © 3 ✓

Flett [176] 2017 TUS UK high  © 3 ◦ ✓ ✓

Flett [177] 2021 TUS UK high  © 3 ◦ ◦ ✓ ✓

Diao [178] 2017 TUS US 1𝑠𝑡   9 + + +

Yamaguchi [179] 2017 TUS JP  © 85 ✓

Taniguchi [132] 2016 TUS JP  © 85 + + + ✓ ✓

Bottaccioli [134] 2019 TUS IT semi   13 ◦ + ✓

Ramírez-M. [180] 2019 TUS UK high   8
Foteinaki [181] 2019 TUS DK   10 –

Müller [182] 2020 TUS DE MID semi   19 + + – ◦

Rueda [82] 2021 TUS CA semi   2
Kleinebrahm [63] 2021 TUS DE MOP   14
Jeong [183] 2021 TUS AU 1𝑠𝑡   14
Koupaei [184] 2022 TUS US 1𝑠𝑡   3
Chen [185] 2022 TUS US semi   7 + + ✓

Osman [186] 2023 TUS CA semi   13 + + ✓

Zhang [187] 2024 TUS UK 1𝑠𝑡   2 +

Barsanti [188] 2024 TUS DE semi   13 + ✓

Yu [189] 2024 TUS DE MOP semi   17 + + ◦ –

Wang [190] 2025 METER LTDS 1𝑠𝑡   9 + + ✓

– ◦ + : Degree of activity linkage of the energy service demand, details in Figure 4. : Energy service demand not modeled.
  or  ©: Occupants modeled individually or activities of a household modeled as one. "PDF": Probability density function.
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Figure 5: Different memory lengths of Markov chain approaches and neural network approaches. Colors represent different activity
states. A: First-order Markov chain. B: Semi-Markov chain. C: High-order Markov chain used in Flett and Kelly [175–177]. D:
High-order Markov chain used in Nijhuis et al. [171]. E: Variable-order Markov chain used in Ramírez-Mendiola et al. [180]. F:
Transformer-based neural network used in Kleinebrahm et al. [63].

semi-Markov chains without further specific deviations are
applied in [134, 165, 174, 185, 186, 189].

Other works extend scope while retaining the semi-
Markov logic. Wilke et al. [161] assume Weibull-distributed
durations and use a two-state profile directly from time-use
data as a proxy for occupancy. Müller et al. [182] assign
a physical location to each activity. Commuting is handled
outside the chain with fixed durations inserted before and
after work-related activity. Some activities allow multiple
locations (e.g., eating), others are restricted to home (e.g.,
ironing). Rule-based constraints enforce consistency of lo-
cation. Barsanti et al. [188] consider a variant that merges
laundry and dishwashing into "other activities" resulting in
an eleven-state model. These appliances are simulated with
PDFs. Rueda et al. [82] estimate durations with a Cox regres-
sion that can also depend on time and external covariates via
the hazard rate, capturing temporal and contextual effects.

Semi-Markov chains implement activity specific dura-
tion distributions and thereby control change frequency. Ab-
sent explicit duration modeling in a standard Markov chain,
an instructive comparison is to assume a homogeneous chain
(as in models that use constant transition probabilities within
an hour). In that case, state durations follow a geometric
distribution, which is often unrealistic for many common
activities (a similar consideration was made by [134]).

High-order Markov chains. The standard first-order
variant of a Markov chain depends on a single preceding
state. Higher-order Markov chains extend this to multiple
previous states, allowing deeper temporal dependence, but
the number of transition parameters grows exponentially
(𝑛𝑘+1 for order 𝑘 and 𝑛 states, including 𝑛𝑘(𝑛 − 1) free
parameters).

Nijhuis et al. [171] add the occupancy status from exactly
24 hours earlier to capture diurnal effects (Figure 5(d)).

Flett and Kelly [175, 176] let transition probabilities de-
pend on elapsed duration, unlike semi-Markov models in
which duration controls persistence rather than the next
state (Figure 5(c)). Flett and Kelly [177] personalize daily
rhythms from the population distribution by sampling each
occupant’s average wake time and shifting time-dependent
transition probabilities within a wake window relative to
the population mean. Ramírez-Mendiola et al. [180] use a
variable-order Markov chain, selecting the memory length
via iterative log-likelihood ratio tests, evaluating gains with
Kullback–Leibler divergence, and stopping when gains are
insignificant or at five past states (Figure 5(e)).

Probability density function (PDF) approaches. PDF-
based approaches rely on stochastic sampling from empirical
or fitted probability distributions to generate activity sched-
ules. As such, they can be considered a class of Monte Carlo
methods. PDF-based models present in Table 2 sample start
times and durations independently for each activity, possibly
allowing overlaps, do not condition on state history, and thus
schedules are generated without Markovian dependency.
Some studies calibrate using cumulative distribution func-
tions to match daily counts per activity [132, 167, 168, 179].
Fischer et al. [167, 168] only implicitly model the under-
lying behavior by learning PDFs based on TUS to sample
appliance starts rather than modeling activities. Foteinaki
et al. [181] restrict schedules to a single activity at each
time step, but treat each time step independently and there-
fore model activities without temporal dependencies. Yam-
aguchi and Shimoda [179] and Taniguchi et al. [132] first
schedule routine behaviors such as sleeping, school/work,
commuting, meals, and bathing for all household members
using cumulative distribution functions anchored on wake-
up times, with assumptions linking start times and durations.
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Remaining gaps are then filled probabilistically with non-
routine activities, again one per person at a time. As previ-
ously described, Flett and Kelly [177] add a PDF component
to capture individualized, consistent sleep, while the primary
scheduler remains a Markov chain.

Neural network approaches. Neural networks provide
an alternative modeling approach. In neural networks, many
(often millions of) free parameters (“weights”) are learned
on a training set, checked for overfitting and tuned on a
validation set, and evaluated on a held-out test set. In an
autoregressive neural network, past states are used to pre-
dict the next activity with the highest probability using the
learned weights. During training, prediction errors are used
to adjust the weights.

Kleinebrahm et al. [63] linked the field of activity mod-
eling with recent developments in language modeling using
a transformer model (an attention-based sequence model,
Figure 5(f)). Accordingly, the activity schedule modeling
problem is treated as a domain-agnostic categorical time
series that combines information from mobility patterns
and in-home activities. Categorical time series (different
activity states with time-of-day and weekday) are embedded
in a continuous space, analogous to word embeddings in
large language models. Similarly, sociodemographics can
be handled via embeddings. When all input data are in a
single space and embedded with a single model (param-
eters shared across all subgroups), the overall number of
parameters remains manageable. Mobility-related activities
are first modeled using an autoregressive neural network. In
the second step, household activities are generated jointly
based on past in-home activities and on the past and future
mobility activities simulated in the previous step. In both
steps, the model has access to the entire past simulation
horizon.
3.3. Simulation object and states

The majority of studies presented in Table 2 use indi-
vidual occupants as their simulation subject. Markov-based
models split the input dataset into groups based on the
occupants’ sociodemographic variables, such as age and
employment status, or on data-driven occupancy patterns
(see Table 4 in the appendix; an overview can be found
in [188]). Separate group-differentiated Markov chains are
parameterized and used to generate activity schedules, rep-
resentative for each sociodemographic group. The trade-
off between the number of sociodemographic groups and
data required for constructing the models is discussed in
[155, 175].

Another branch of studies [152–157] first aggregates in-
formation from individual occupants from the input dataset,
to obtain one sequence per household. Richardson et al.
[152] define household states based on the number of oc-
cupants being "active and at home". Later versions intro-
duce four occupancy states (active vs. passive; at home vs.
absent), aggregating activity and presence so permutations
with the same totals are identical [155, 156]. For example,
a household with 𝑛 = 3 occupants yields 4 Markov chain

states with two occupancy states, or 20 states with four
occupancy states (for 𝑛 = 6: 7 and 84 states, respectively).
Accounting for time-inhomogeneity, 144 transition matrices
are needed for each household size, with matrix sizes from
4 × 4 (one occupant) to 84 × 84 (six occupants).

These studies train separate models for households of
different sizes. The underlying idea is that, compared with
occupant-specific Markov chain approaches, this better rep-
resents intrahousehold dependencies. However, the aggrega-
tion step from occupants to households reduces information
and sample size, especially for large households, which can
lead to under-parameterized models.

Flett and Kelly [175] argue for incorporating sociodemo-
graphic variables while simulating households. Two adults
are merged into one unit, and children are modeled with
a subsidiary Markov process conditioned on the parents’
state, and other members are included but not modeled
as interdependent [176]. In [132, 179], routine activities
are modeled collectively at the household level. By using
neural networks, Kleinebrahm et al. [63] achieve implicit
sociodemographic differentiation without separate models,
without reducing the number of states or training data.

Just as the number of states increases when households
are the simulation object, finer granularity of activity states
further increases the complexity of the model. Higher-order
Markov models are typically limited to occupancy pres-
ence/active states because the number of parameters grows
rapidly with more activity types. Ramírez-Mendiola et al.
[180] model at most eight activity states.
3.4. Energy demand modeling

Appliances. Most models that go beyond basic activity
scheduling and include energy service demands account
for appliance usage. Multiple models derive appliance use
by sampling probability density functions conditioned only
on occupancy status [153, 154, 156, 174, 176, 177, 187].
Nijhuis et al. [171] use a second Markov chain, which models
appliance usage, linked to the occupancy states generated
by the first Markov chain. Because there is no one-to-one
activity link in these models, appliance differentiation is han-
dled probabilistically. However, using the same occupancy
schedule for all energy service demands if modeled provides
a consistent behavioral basis.

In contrast, activity-linked demand models establish ex-
plicit connections between activities and appliances. Each
activity state can be mapped to a specific appliance or to a
set of possible appliances. The latter is often the case for
cooking-related activities, where the appliance used may
vary significantly. Table 5 in the appendix summarizes the
number of appliance-related states and whether activity-
to-appliance assignment is deterministic or probabilistic.
Some models also include an execution probability thresh-
old, meaning an appliance is not guaranteed to be activated
even if selected [134, 153, 154, 156, 166–168, 171, 174, 176,
177, 188–190]. To control the frequency of appliance starts,
a calibration scalar or a cumulative distribution function
may be applied, rather than treating each start as a single
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independent execution. A detailed review on that topic is
provided by Yamaguchi et al. [39].

When an appliance is activated, its load profile can be
represented in different ways. Table 5 in the appendix distin-
guishes these ways at a high level, although implementations
may vary by appliance. First, a time-varying load profile may
be assigned immediately or with a delay (e.g., a washing ma-
chine starting after a laundry activity, as in [134]). Second,
an operating duration is sampled from an appliance-specific
distribution and a constant load is applied over that period.
This approach is suitable for a wide range of appliances and
is particularly appropriate for those not directly tied to a
modeled activity, such as background or cyclic loads (e.g.,
refrigerators, routers). Third, in cases where appliance use is
directly linked to an activity in the schedule, the appliance
runtime equals the activity’s duration. A constant load is
again assumed. As noted in Section 2.3, these approaches are
not mutually exclusive and can be combined within a single
model. For example, appliances like washing machines or
dishwashers may follow detailed time-varying load patterns
that exceed the duration of the triggering activity, reflecting
full-cycle profiles with phases of different energy intensities
(e.g., water heating, spinning). In contrast, simpler appli-
ances may be modeled using constant loads over a fixed or
sampled duration.

Hot water. Domestic hot water modeling involves two
tasks, namely linking activity schedules to hot water draws
and converting those draws to energy demand. The link-
age mirrors appliance coupling. Models based solely on
occupancy offer weak coupling, whereas most approaches
link via the activity schedule and assign volumes using
tapping profiles. Table 6 in the appendix lists the included
models with details on related activities and appliances.
Models that fix or duration-scale volumes include Widén et
al. [128], who link hot-water-related activities to appliances
with fixed volumes for bathing and duration-scaled volumes
for showering based on earlier specifications [119]. Osman
et al. [186] apply a similar approach, choosing bathing
appliances by duration and using fixed volumes otherwise.
The proposed method by Widén et al. [119] is used in
[160, 163, 164]. Sandels et al. [160] simulate hot water
appliances with a separate Markov chain. Farzan et al. [170]
map three activities to three appliances and scale demand
with duration. Electric water heater’s energy is modeled as
a function of the activity duration in [132, 178]. User-type
categorization also appears in [177, 186]. Some studies omit
appliance-mapping details [132, 172].

Other models sample hot water volumes with probability
distributions: conditional on activity [185]; conditional on
occupancy [156, 174, 177]; or independent of the activity
schedule [168]. Fischer et al. [168] operate in the same
manner as for appliances by sampling start times, durations,
and daily frequencies from distributions, then assigning the
hot water activity and volume deterministically from the
sampled duration. Frequency constraints are also applied in
[182, 186].

Energy demand is then derived from volume. Many
studies use simple conversions. Widén et al. [119] apply
a linear relation; similar treatments appear in [132, 170,
172, 177, 178, 182, 186], although calculation details are
often unspecified or not publicly documented. Baetens and
Saelens [174] bypass appliance differentiation and sample
demand directly from a distribution conditional on occu-
pancy.

Fewer studies embed thermal system models. Sandels
et al. [160] implement a boiler with heat losses. Fischer et
al. [168] use DHWCalc by Jordan et al. [193] to generate
tapping profiles and convert them via energy balance. Bot-
taccioli et al. [134] simulate an electric water heater using
the model by R. Diao et al. [194]. Chen et al. [146] derive
demand via ResStock [195]. McKenna et al. [156] compute
demand with a thermal gas boiler model that also supplies
space heating.

Heating. Heating-demand models vary in building de-
tail, input drivers, and co-modeled effects; some include
ventilation and cooling [28, 156, 168]. Many incorporate
solar irradiance [156, 160, 168] and temperature-driven
transmission losses. Recent work commonly uses occupancy
profiles, enabling occupant-dependent modeling; internal
gains from appliances should be included, and profiles kept
consistent across modules.

By activity linkage, two types dominate: high-linkage
models couple heating with metabolic heat and appliance
gains, whereas low-linkage models treat heating as an in-
dependent load. An intermediate case is Nijhuis et al. [171],
which applies occupancy-depending setpoint temperatures
but omits internal gains.

Mobility. Modeling mobility energy demand combines
behavioral, technical, and spatial elements. Table 7 in the
appendix summarizes the models referenced below.

Activity-based electric vehicle demand uses some ac-
tivity states in which the vehicle is used, so battery en-
ergy is consumed and the car is away from home, which
precludes home charging. Location granularity spans one
"away" state [159, 189], two states ("work/commuting" and
"leisure/shopping") [4, 162, 170, 173], three out-of-home
locations [169], and up to four locations [182]. Travel pur-
poses, activity status, and locations are treated differently
depending on the model. Wang et al. [190] define five trip
purposes but do not describe how to translate them into full
schedules.

Some models include mobility behavior without deriv-
ing electricity demand. Kleinebrahm et al. [63] define four
mobility-related states including a general "outside" location
and three explicit mobility activities (driving, co-driving,
and other transport modes), avoiding consistency conflicts
by hierarchical sampling of non-mobility activities in a sub-
sequent step. Models without explicit household activities
include Hilgert et al. [196], who simulate six trip purposes by
using a hierarchical approach, and Roorda et al. [197], who
sample frequency, start time, and duration for ten mobility
activities, assign locations probabilistically, resolve conflicts
with rules, and synchronize household members. Gruosso et
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al. [173] model driver interactions such as limited vehicle
availability and fixed work shifts. Others assume a main
driver [169, 170, 182] or otherwise unrestricted access.

The next step is to model vehicle energy consump-
tion. Trip distances are often assumed to be proportional
to activity duration [159, 170, 173], sometimes stratified by
socio-demographics [170]. Several studies sample certain
distances (e.g., commutes) a priori, assuming independence
from activity duration [4, 162, 169, 182]. Fischer et al.
jointly sample distance and time to fit observed activity du-
rations [169]. Yu et al. [189] sample driving distances prob-
abilistically. Consumption is computed from average speed
[159, 170, 182, 189, 190], differentiated by purpose [190],
or by using acceleration profiles [173]. A two-dimensional
Markov chain for velocity/acceleration parameterized by
highway share and driving style is used in Muratori et al.
[4, 162].

Charging depends on behavior for charging, charging
power available or possible, and location. More public charg-
ing or charging at home reduces household demand [162,
169, 173, 190]. Most studies assume uncontrolled "charge-
on-arrival"; alternatives include probabilistic timing [169,
170] and cost-optimized timing [170, 189]. Charging power
is typically assumed to be Level 1/2 (Level 3 in [169]).
Vehicle-specific charging limits appear in [173, 182].

Additional aspects vary across models. Not all studies
specify whether "electric vehicles" are battery electric only.
Plug-in hybrids appear in [4, 159], and Muratori et al.
[162] also include hybrid electric and conventional internal
combustion vehicles differentiated by exergetic efficiency.
Modifiers include seasonality [159], thermal loads, and re-
generative braking [173]. Many elements can be tailored to
study aims.

4. Evaluation of bottom-up residential energy
demand models
Table 2 shows that multiple models for residential en-

ergy demand have been developed over nearly two decades
(2008–2025). However, there is still no standard evalua-
tion framework available to compare the performance of
the different models, to enable improvements and track
progress. Explicit treatment of benchmark datasets and val-
idation frameworks remains limited (e.g., [198]). Because
few datasets link time-use data with smart metering [47],
broader and better-linked data would strengthen the activ-
ity–load transition (i.e., the mapping from household activi-
ties to electricity demand).

Simulated activity schedules or energy demand profiles
can be regarded synthetic data. Synthetic data generation is
an active research area for data protection and for creating
otherwise unavailable datasets [199], already applied to gen-
erate smart meter data directly [200, 201]. Real and synthetic
data can be viewed as samples drawn from two distinct distri-
butions, where a sample is a complete activity schedule. The
goal is a synthetic distribution nearly indistinguishable from
the real one. These distributions occupy support regions in

a high-dimensional space. Alaa et al. [202] introduce three
dimensions to evaluate synthetic data: Fidelity, Diversity,
Generalization. Figure 6 illustrates a model’s performance
across the dimensions, using the example of activity sched-
ule generation.

• Fidelity measures the realism of an individual syn-
thetic sample. High fidelity means the generated sam-
ple is difficult to distinguish from comparable real
samples. In Figure 6, ellipses mark support regions
in a reduced-dimensional space spanned by nearby
points. Two areas labeled A contain several synthetic
red points, indicating high fidelity. In contrast, point
D lies outside any support region of the real (blue)
distribution.

• Diversity is the extent to which generated samples
cover the variety present in the real data. In the ex-
ample, area B is a support region, yet no synthetic
points fall there, indicating low diversity. In contrast,
the areas labeled A show reasonable diversity.

• Generalization measures how closely individual syn-
thetic samples resemble real inputs. It is critical be-
cause excessive similarity may violate privacy, un-
dermining a key advantage of synthetic data. This
dimension must be evaluated, though it is hard to
quantify or benchmark. Figure 6 illustrates this at
point C, where two nearly identical points appear.
The synthetic schedule is not authentic, signaling a
potential privacy breach.

4.1. Validation of generated activity schedules
Despite many models, validation relies on a few metrics.

Table 3 summarizes the employed methods and provides a
coarse classification of validation dimensions based on the
presented concept. Similar metrics are grouped even when
names or scales differ. Definitions of individual metrics
are given in [51, 54, 201], with [201] also proposing an
initial classification of validation dimensions. Within the
recent literature on activity schedule modeling, only state
and duration probabilities are used by multiple authors.

Empirical verification predominates across models. The
most common metric compares daily time-dependent ac-
tivity or occupancy probabilities. In Markov models, state
probabilities converge by definition and by the law of large
numbers, so this check mainly verifies implementation cor-
rectness. Several studies also investigate convergence speed,
which can hint at diversity but depends on additional factors
[177]. In non-Markovian models, such as neural networks,
state probability convergence is not guaranteed, so diversity
and unbiased coverage require explicit checks. Average oc-
cupancy variance, introduced by Flett and Kelly [175, 177],
departs from standard occupancy metrics and signals di-
versity. The choice of error measure, for example relative
mean absolute error, relative mean squared error, or relative
percentage error (similar to coefficient of variation, as in
[157]), varies but does not change the validation type itself.
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Table 3
Commonly applied metrics at the activity level and their respective dimensions of validation.

Dimensions
of validation

Validation Category Metric name C
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Studies employing the metric
with respective error measure

Empirical model
verification Occupancy probability ✓

Visual/plot: [186],[136],[134],[152],[138],
[114],[184]
MAE: [157],[136],[114],[175],[134]
MSE: [157],[136],[134]
Percentage error: [157]

Activity probability ✓

Visual/plot: [180],[186],[189],[182],
[185], [172],[181],[163],[161],[63],
[179],[191],[203],[52],[134]
MAE: [186],[161],[179],[39],[203],
[134]
MSE: [180],[186],[63],[203],[52],
[179],[134]
Percentage error: [180],[185],[134]

Average occupancy variance ✓ [175],[177],[52]
Convergence (speed) tests ✓ [177],[155],[180],[157],[163],[184]

Duration evaluations Occupancy duration ✓

Visual/plot: [114], [175],[155]
MAE: [175]
Percentage error: [185],[155]
Earth movers distance (first-
Wasserstein distance): [175],[114]

Activity duration ✓

Visual/plot: [185],[63],[180],[179]
MAE: [180]
MSE: [63],[180],[179]
Percentage error: [180]
Correlation coefficient: [184]

Occupancy transition
frequency ✓

Visual/plot: [191],[184],[185],[152],[155]

Activity transition frequency ✓

Visual/plot: [182],[180],[39]
Mean: [179]
MAE: [180]
Spectral norm: [180]

Number of activities
per day/week ✓

Visual / plot:[39],[185]
Visual / boxplot: [63]

(Peak) occupancy variance ✓ [47],[191]
Similarity between
profiles

Levenshtein/
edit distance ✓ [165]

Levenshtein distribution
similarity ✓ [175]

Accuracy ✓ ✓ [52]
F1-Score ✓ [52]
Shannon’s H entropy
(synchronity index) ✓ [47],[39],[179]

Occupants becoming
active together ✓ [191],[175],[152]

Sequence analysis methods
(optimal matching) ✓ [47]

Similarity between days Hamming distance ✓ [63]
Autocorrelation ✓ [63]
Mean/STD wake-up times ✓ [177]

Methodical aspects Ten-fold cross validation ✓ ✓ [161],[136]
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Figure 6: Visualization of the three validation dimensions in the context of activity schedules: Six activity states are taken from
the Spanish Time Use Survey. Blue points represent a subset of the original data; red points are synthetic data generated by a
model trained on a subset of the blue points (real data). All points are embedded into two dimensions using t-SNE. Closeness in
this space reflects similarity based on the Levenshtein metric. The Figure is intended to illustrate the validation dimensions, not
to evaluate the model used.
A: Well-captured regions where diversity is ensured and high-fidelity synthetic data are generated.
B: Region not captured by the model. This area includes schedules with high household work and no studying or working activities,
which are not reproduced by the model, indicating limited diversity. Two nearby points illustrate this.
C: A synthetic point nearly identical to a real one. While it shows high fidelity, it reflects low generalization and may pose a
privacy risk.
D: A synthetic point with low fidelity, lying outside any support region of real data (no nearby blue points). The corresponding
schedule includes more than twelve consecutive hours of work.

Many studies still rely on visual comparisons instead of
computed metrics, which hampers comparability (compare
Table 3).

State durations, that is, activity lengths modeled appro-
priately, are also investigated across models. Evaluations
include the distribution of state lengths, often assessed with
plots. State duration evaluation is most relevant for first and
higher order Markov chains and neural networks. Because
semi-Markov models explicitly model state durations, the
implied duration distribution is fixed by construction. An
important measure is occupancy transition frequency (also
called cumulative occupancy variation [33]). Related counts
include occupants becoming active, unoccupied episodes,
and switch on events. These metrics can reveal excessive
oscillations, for example overuse of fixed length appliances
(e.g., washing machines).The distribution of activities per
day or week is another indicator of variability, and can
be visualized with boxplots [63]. Finally, peak occupancy
variance captures the proportion of transitions between con-
secutive states in generated profiles. Profile similarity may
be computed for individual profiles or for sets (e.g., real
and synthetic) using a minimum inter set distance, which

serves as both a fidelity measure and an overfitting indicator.
Applying the same measures to subsets supports diversity
assessment. Levenshtein distance is robust to small temporal
shifts. Other metrics are largely similar and are rarely used
in practice. Repetitiveness across multiple days requires
metrics that capture cross day dependence. Kleinebrahm et
al. [63] evaluate repetitive behavior with Hamming distance
and autocorrelation. Flett and Kelly [177] analyze diversity
in continuous occupant profiles, which initially collapsed
toward the mean, and show that assigning specific wake
times captures dependencies across consecutive days in the
generated data.

Additional validations in individual studies are typically
tailored to model-specific design, limiting transferability
[161, 179, 180]. Comparative studies remain scarce due to
limited model and data availability and the lack of standard-
ized metrics. Rueda et al. [82] compare state duration perfor-
mance across methods. Flett and Kelly [175] benchmark oc-
cupancy probability against alternative models. Yamaguchi
et al. [39] report insufficient entropy in several published
models. However, none of these studies work with open
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datasets and therefore do not provide a benchmark for future
model developments.
4.2. Validation of generated demand profiles

Meaningful validation requires metered observations.
Accordingly, we include only models validated against me-
tered data. For grouping we do not distinguish mean from to-
tal or standard deviation from variance within the respective
metric. Combined activity and consumption datasets provide
the strongest basis.

One problem is the reliance on in-sample validation. A
similar issue occurs at the activity level when features of
activity schedules are compared to the databases from which
they were derived. Furthermore, metered data are often used
to calibrate end-use parameters and to fit an additive residual
term for unmodeled loads omitted by the initial model. This
practice reduces the value of subsequent validation, because
calibration can mask model errors. Muratori [4] illustrates
this: one dataset is used for calibration and for estimating
lighting demand via regression on residuals, while a second
dataset is held out for out of sample validation.

Combined datasets such as METER or multiple smart
meter sources are often unavailable, so validation defaults
to highly aggregated profiles such as monthly or annual
averages ([132, 134, 137, 154, 166, 167, 169, 171, 172, 174,
176, 177, 181, 182, 185, 190]).

Appliance-level checks can be performed by aggregating
each appliance’s modeled demand across load profiles [166,
177, 182]. Hour-of-day load distributions can likewise be
evaluated [167]. Typical metrics include means and standard
deviations [28, 170, 171, 174], bias [134], percentiles or
boxplots [51]. Some studies use hypothesis tests for distri-
butional similarity [170] or regression analyses with scatter
plots [28]. Several also report the index of agreement [134].

Typical load metrics provide additional comparison in-
dicators. Common quantities include the load level and load
factor ([158, 169]), which describe the ratio of average power
to peak power; the power factor [166], which expresses the
ratio of active to reactive demand; and the load duration
curve ([51, 167]), which summarizes the load distribution
as a sorted curve or a probability density [171]. The simul-
taneity (coincidence) factor [154, 156, 158] and simultane-
ous peak power [182] compare peaks across households.
Correlation metrics include pairwise correlation and auto-
correlation [134, 174]. Variability measures include the nor-
malization factor [63, 119] and the coefficient of variation
[176], both describing deviations from the mean. Of partic-
ular interest, the Piecewise Aggregate Approximation (PAA)
edit distance [176, 177] compares segmented time series,
capturing neighborhood structure by aggregating values and
reducing sensitivity to individual points. Because demand
values are continuous, Euclidean based edit distances are
feasible, unlike at the activity level.

Only a few models validate domestic hot water, heating,
and mobility demand. Domestic hot water is validated
against metered data [156, 168], against the DHWCalc
model [168], and is evaluated with load duration curves

[168]. Heating validation uses electricity or gas data [156,
186], and load duration curves [168], and comparisons with
CREST [157]. Some work covers multiple building types
[189]. For mobility, evaluations use presence data [169],
location profiles [182], or combined electricity loads from
multiple services; which are assessed with load duration
curves [169] or aggregated demand comparisons [189].

5. Discussion and future research needs
This discussion highlights three priorities: the need for

better activity models, requirements for datasets and valida-
tion, and consistent linkage of activities to energy service
demands.
5.1. Need for better activity models

Better activity models are needed to capture intraper-
sonal (temporal) and intrahousehold dependencies. A high-
quality household representation should meet the require-
ments for mobility, thermal comfort, hot water, and other
energy demands.

Intrapersonal dependencies are modeled only to a limited
extent in most approaches. PDF-based models do not capture
intrapersonal dependencies because they ignore the temporal
order between activity states. In Markov chain-based mod-
els, intrapersonal dependencies are present but limited. Tem-
poral dependencies are determined mainly by the Markov
order. The numerous developments of higher-order variants
reflect the need to extend temporal dependence beyond the
one-step Markov property, but the gains remain limited. For
future work, the ceiling of higher-order approaches is con-
strained by the exponential increase in parameters and data
requirements arising from the discrete treatment of the state
space. By subgrouping, datasets are completely decoupled.
However, human behavior is not expected to be completely
distinct across sociodemographic subgroups, which implies
a loss of information. Neural-network approaches that oper-
ate in a continuous space and are not limited by the Markov
property are therefore promising for achieving significantly
higher intrapersonal stability. Furthermore, integrating more
metadata, such as sociodemographics, preferably in a data-
driven manner, can improve the model, rather than reducing
data availability through submodel partitioning.

Currently, most models ignore intrahousehold depen-
dencies. Models often simulate individuals and then ag-
gregate behavior, thereby neglecting interactions between
household members. Comparing the CREST model, which
is a state transition model based on counts of active or sleep-
ing occupants, with a version that aggregates individually
sampled occupants, McKenna et al. [155] find lower state
probability accuracy for the latter, suggesting that even weak
dependencies matter. Likewise, Flett and Kelly’s combined
approach better matches time-use data, but it targets fami-
lies with dependent children and implicitly assumes strong
parent-child dependency [175–177]. Only synPro [167–169]
and Yamaguchi et al. [179] model activities beyond oc-
cupants’ presence and incorporate intrahousehold depen-
dencies. In synPro, profiles are generated individually and
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incompatible combinations are rejected, yet the selection
rule is insufficiently described and the effective coupling
strength remains unclear. Yamaguchi et al. [179] assume
routine household behaviors and interactions, for example,
enforced shared meals, and select routines accordingly. This
approach is less data-driven, although time-use surveys typi-
cally provide direct co-use information or allow inference via
household affiliation. Overall, intrahousehold dependencies
are rarely modeled, despite their increasing importance, for
instance, for joint mobility behavior.

In a data-driven approach, multiple occupant activity
schedules should be modeled jointly as a multivariate time
series, avoiding rule-based assumptions about how occu-
pants influence each other, in particular, who the activity-
determining occupants are or which activities are routine,
because such assumptions risk introducing algorithmic bias.

Dependencies beyond a single day are rarely modeled,
as such information is not directly available in time-use
surveys. Nijhuis et al. [171] condition on the occupancy state
exactly 24 hours earlier, which is likely insufficient. Flett
and Kelly [177] link days via sleep patterns, which is more
plausible, though wake-time variation is rule-based and con-
strained by a three-state occupancy model. Kleinebrahm et
al. [63] tackle cross-day stability via mobility behavior.

Rule-based assumptions should be avoided, as men-
tioned in intrahousehold dependencies but also regarding
intrapersonal dependencies. Whenever possible, one should
prefer more data-driven learning in order to prevent assump-
tion bias and confirmation bias. In cases where data are not
available, such as beyond single-day dependency, one should
limit assumptions to the minimum necessary for combining
datasets.

Parallel activities by the same occupant are common but
often omitted. Models often treat model-generated overlaps
as parallel activities rather than secondary activities con-
tained directly in the survey. Linking main and secondary
activities with smart-meter data has been explored [204].

Interhousehold dependencies deserve future study, espe-
cially for seasonal peak days [117]. Long-term smart meter
series can capture cross-day effects. Shared environmental
drivers, notably weather [117, 203, 205], couple dwellings
[156], affecting heating and lighting [154] and electric ve-
hicle demand [206], and thus behavior. But this also under-
scores the need for a better data foundation.

The majority of present works rely on Markov chains
and PDF-based models that are not designed to capture
highly time-dependent activity schedules, a limitation that
is hard to overcome. Consequently, intrapersonal depen-
dencies are rarely captured. Intrahousehold dependencies
are either largely neglected, since models typically simulate
occupants independently, or addressed through assumptions
that limit generalizability. Activity schedules therefore lack
the consistency needed as inputs to related energy service
demands. Neural networks demonstrate the potential to over-
come these issues, such as by incorporating higher intraper-
sonal dependencies in a data-driven manner without relying
on assumptions.

5.2. Requirements for datasets and validation
Datasets with longer observation periods are needed.

To analyze dependencies over days, Nijhuis et al. [171]
and Flett and Kelly [177] rely on an older version of a
Dutch dataset, which captures seven consecutive days of
household behavior. Beyond integrating mobility behavior,
Kleinebrahm et al. [63] use the mobility dataset to achieve
longer temporal consistency that German time-use survey
data cannot provide. The Swiss time-use survey is promising
because it features a longer observation period of 28 days
[89].

However, combining multiple datasets will remain nec-
essary in the future, as outlined in Chapter 2.2. Furthermore,
this should be used even more, in particular to transfer
datasets from countries other than the target country, as most
works currently do (compare Table 2). Many surveys are
already harmonized by design, and country can be integrated
as a factor similar to sociodemographics, so a multinational
framework should be considered in the future. Based on
real time-use data, investigations regarding spatial analyses,
from intra-national urban–rural differences to cross-country
comparisons [73, 144, 203, 207], country-specific appliance
use [208–210] and how to deal with long-term behavioral
trends and the impacts of disruptive events such as COVID-
19 [61, 130, 211–214] are already present.

Comparable metrics are required, ideally applied at the
individual schedule level to preserve high fidelity to in-
trapersonal dependencies. As outlined in Section 4, most
models rely on in-sample checks, and only a few label
them explicitly. In contrast, out-of-sample validation us-
ing a different dataset is often infeasible due to contextual
differences. Moreover, in-sample checks mostly preserve
state probabilities and serve as implementation checks rather
than conceptual validation. Because aggregation loses in-
formation, it should be postponed to later stages (e.g., the
load-profile level when only aggregate demand is needed).
Fidelity, diversity, and generalization should be measured
with feasible metrics, leveraging concepts from synthetic
data research.

To make models easier to adjust and further develop,
to track progress, and to enable use in tools without long
data-acquisition processes, more open work is needed: min-
imal benchmark datasets, transferable validation frame-
works [198], and modular implementations to swap tech-
nology modules and reflect country specifics. Because few
datasets link time-use data with smart metering [47], broader
data would strengthen the activity–load transition. Commu-
nity efforts highlight the need for accessible, interoperable
datasets; synthetic data offer privacy-preserving avenues for
energy research [215].
5.3. Consistent linkage of activities to energy

service demands
Energy service demands are only partially represented

in the reviewed models, as summarized in Table 2. Only
a small number of studies address all four demand-service
categories, but none provides a consistent representation of
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occupant behavior. Mobility, in particular, is consistently
underrepresented despite its growing contribution to house-
hold electricity demand. The importance of including mo-
bility is highlighted by Ramírez-Mendiola et al. [216], who
investigate different commuting types and show that po-
tential electric-vehicle charging can markedly raise evening
household peak demand. This gap may bias system planning
and flexibility assessments if mobility-driven peaks and load
shifting options are omitted.

The link between activity schedules and energy demand
is weak in many models, even though it is critical for cap-
turing inter-service correlations and maintaining the tem-
poral stability of individual energy-service demands. Most
models use simple occupants’ presence rather than activities,
widening the mapping, increasing reliance on probability
distributions, and reducing closeness to the actual activ-
ity. Furthermore, a more granular set of activity states is
generally beneficial, as it provides more information for
the transformation process than an aggregated state that
includes multiple, potentially diverse, energy-related activ-
ities. Activity-based models still show weak linkages. Few
capture multiple, tightly linked services, and none capture
high-resolution space heating and mobility together, despite
their large loads and flexibility potential in the future.

Assigning appropriate appliance demand to specific ac-
tivities remains challenging for future models. Appliance
sharing mainly arises from joint, activity-dependent use.
When such joint activities are modeled, shared demand
can be allocated explicitly. Yet most models capture only
random coincidence, treating this as the entirety of appliance
sharing.

Per-activity energy intensities are frequently simplified.
Ramírez-Mendiola et al. [204] analyze the combined ME-
TER dataset for selected activities and identify daytime
discrepancies between reported and metered use, including
delays in cooking appliance operation relative to reported
time and underreported TV usage. This underscores the need
for higher fidelity activity-to-load mappings and highlights
the value of combined datasets like METER.

Current models rarely integrate all energy service de-
mands consistently. Components should be driven by ac-
tivity schedules that are tightly linked across services. Al-
though methods could support this, no reviewed model
attains strong linkage across all demands.

Overall, recent reviews and models underweight activity
schedule quality, cross-service coverage, and the evaluation
of synthetic generation, while overlooking recent advances.
Addressing these points is crucial for improving activity-
based load modeling and preparing models for future chal-
lenges.

6. Conclusion
Residential energetic load modeling is needed to under-

stand demand and flexibility, especially in light of future
changes as the electrification of the mobility and heating sec-
tors shifts demand to households. By simulating household

behavior, activity-based bottom-up models are suitable for
understanding how energy demand arises. These models can
generate high-temporal-resolution activity data and provide
a consistent basis for all energy service demands, adequately
capturing coincident peaks. Modeling behavioral activity
data is needed due to a lack of open data and the need to
combine heterogeneous datasets.

Our review shows that a large number of models exist.
Currently, Markov chains and PDF-based models predomi-
nate. However, they struggle to account for long-range tem-
poral dependencies, resulting in low-fidelity activity sched-
ules, and thus cannot provide a consistent basis for energy
demand modeling and further investigations such as capacity
expansion and investment planning. Neural networks are
rarely studied but can overcome this shortcoming. Inter-
actions between household members are widely neglected,
as models tend to simulate individual occupants indepen-
dently. This aspect is particularly important for mobility
activities conducted jointly or separately, especially when
car availability is limited. However, the review revealed that
mobility modeling is underrepresented and barely covered in
recent reviews, including its requirements for activity-based
modeling. The concept of consistent sector coupling has not
yet been realized, as no model exists that captures all energy
demands, including appliances, domestic hot water, space
heating, and mobility, at a highly interlinked level. Modelers
should be more aware of the future challenges in modeling
energy demand in residential buildings.

Validation methods are currently limited. The literature
lacks open benchmarking datasets and comparable metrics
that make scientific progress over time visible. Domain-
agnostic approaches from synthetic-data research offer po-
tential for future development, not only for validation but
also for modeling.
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Appendix
A. Details of subgroup differentiation of reviewed models

Table 4: Categories used to subgroup occupants in the reviewed models, with the number of distinguishing characteristics
for each subgroup in brackets. Not all combinatorially possible options are investigated. Data-driven indicates clustering by
similar activity patterns (outputs), as opposed to a priori subgroup differentiation.
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D
ay
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Aerts et al. [165] ✓ 7
Baetens and Saelens [174] ✓ ✓ ✓(4) ✓(3)
Barsanti et al. [188] 21 ✓(5) ✓(4) ✓(4) ✓

Bizzozero et al. [172] ✓(2) ✓(3) ✓(5)
Bottaccioli et al. [134] 12 ✓(2) ✓(1) ✓(5) ✓(2)
Buttitta and Finn [157] ✓ 6 ✓(2)
Chen et al. [185] ✓ 4 ✓(2)
Collin et al. [166] 14 ✓ ✓(2)
Diao et al. [178] ✓ 10 ✓(2)
Farzan et al. [170] ✓(6) ✓(2) ✓(2) ✓(2)
Fischer et al. [167] 7 ✓(4) ✓(3)
Flett and Kelly [175] ✓(3) ✓(2) ✓(3) ✓(3) ✓(3)
Foteinaki et al. [181] ✓(2)
Good et al. [154] ✓(6) ✓(2)
Jeong et al. [183] ✓ ✓(3) ✓(2)
Johnson et al. [163] 5 ✓(2) ✓(2) ✓(2)
Kleinebrahm et al. [63] ✓(7) ✓(6) ✓(7)
Koupaei et al. [184] ✓(5) ✓(3)
McKenna et al. [155] ✓(6) ✓(2)
Müller et al. [182] 21 ✓(2) ✓(2) ✓(6) ✓(5) ✓(10) ✓(4)
Muratori et al. [28] 5 ✓(3) ✓(2) ✓(2)
Nijhuis et al. [171] ✓ ✓ ✓

Osman et al. [186] ✓ 6/9 ✓ ✓(2) ✓ ✓ ✓(2)
Richardson et al. [152] ✓(6) ✓(2)
Rueda et al. [82] ✓ ✓ ✓(2) ✓ ✓ ✓ ✓ ✓

Wilke et al. [161] 37 ✓(2) ✓(4) ✓(6) ✓(7)
Yamaguchi et al. [179] 59 ✓(4) ✓(2) ✓(2) ✓(4) ✓(2)
Yu et al. [189] 8 ✓(5) ✓(2)
Zhang et al. [187] 6 ✓(3) ✓(2)
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B. Details of appliance modeling of reviewed models

Table 5: Modeling of appliance demand in activity-based load profile models

Model
Linkage between

activity schedule and
appliance usage

Appliance
selection

Trigger of
appliance start

Duration of
electricity demand

per appliance
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ty

sch
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Widén and Wäckelgård [158] ✓ 6 – ✓ ✓ – – ✓ (✓) ✓

Widén et al, [128] ✓ 6 – ✓ ✓ – – ✓ (✓) ✓

Grahn et al. [159] ✓ 6 – ✓ ✓ – – ✓ (✓) ✓

Sandels et al. [160] ✓ 6 – ✓ ✓ – – ✓ (✓) ✓

Muratori et al. [28] ✓ 5 ✓ – ✓ – – – – ✓

Muratori [4] ✓ 5 ✓ – ✓ – – – – ✓

Johnson et al. [163],[164] ✓ ? ✓ – ✓ – – ✓ – ✓

Collin et al. [166] ✓ 10 ✓ – – ✓ – ✓ – ✓

Farzan et al. [217] ✓ 6 ✓ – ✓ – – – – ✓

Bizzozero et al. [172] ✓ 7 ✓ – ✓ – – (✓) – ✓

Gruosso et al. [173] ✓ 7 ✓ – ✓ – – (✓) – ✓

Diao et al. [194] ✓ 6 ✓ – ✓ – – – – ✓

Taniguchi et al. [132] ✓ 13+ – ✓ ✓ – – (✓) – (✓)
Müller et al. [182] ✓ 10 – ✓ ✓ – – ✓ – ✓

Chen et al. [185] ✓ 4 – ✓ ✓ – – ✓ – ✓

Osman et al. [186] ✓ 4 – ✓ ✓ – – ✓ (✓) ✓

Zhang et al. [187] ✓ (4) (✓) – ✓ – – – – ✓

Barsanti et al. [188] ✓ ? ✓ ✓ – ✓ ✓ ✓ – –
Yu et al. [189] ✓ 11 – ✓ – ✓ – ✓ – –
Wang et al. [190] ✓ 11 ✓ – – ✓ – ✓ – (✓)
Richardson et al. [153] ✓

Has to be
probabilistic,
as no detailed
information

provided
at activity level

– ✓ ✓ ✓ – ✓

Good et al. [154] ✓ – ✓ ✓ ✓ – ✓

McKenna and Thomson [156] ✓ – ✓ ✓ ✓ – ✓

Nijhuis et al. [171] ✓ – ✓ – – ✓ –
Baetens and Saelens [174] ✓ – ✓ ✓ – ✓ –
Flett and Kelly [176] ✓ – ✓ ✓ (✓) (✓) (✓)
Flett and Kelly [177] ✓ – ✓ ✓ (✓) (✓) (✓)
Bottaccioli et al. [134] ✓ – ✓ ✓ ✓ (✓) –
Fischer et al. [167] ✓ – ✓ ✓ ✓ (✓) –
Fischer et al. [168] ✓ – ✓ ✓ ✓ (✓) –
Foteinaki et al. [181] ✓ ✓ – – – ✓ –
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C. Details of hot water modeling of reviewed models

Table 6: Modeling of hot water demand including activity-based load profile models

Model Linkage activity schedule
and hot water demand

Hot water
demand

Energy
demand Comment

–
Ind
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◦
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Sandels et al. [160] ✓ 4 ✓ ✓ ✓
Separate Markov chain;
based on Widén et al. [119]

Fischer et al. [168] ✓ 3 ✓ ✓

McKenna and
Thomson [156] ✓ 3 ✓ ✓ Combined with heating
Baetens and
Saelens [174] ✓ 0 ✓ ✓

Flett and Kelly [177] ✓ 2 ✓ (✓) Energy demand not specified;
different behavior groups

Widén et al. [128] ✓(4) 25 ✓ ✓ Based on Widén et al. [119]
Johnson et al.[164] ✓(3) 4 ✓ ✓ Based on Widén et al. [119]
Farzan et al. [170] ✓(3) 3 ✓ ✓ Only gas demand
Bizzozero et al. [172],
Gruosso et al. [173] ✓(?) ? ✓ (✓) Energy demand not specified
L. Diao [178] ✓(3) - ✓ ✓

Only electric demand
of water heaters

Taniguchi et al. [132] ✓(?) ? ✓ ✓
Only electric demand
of water heaters;

Bottacioli et al. [134] ✓(2) 2 ✓ ✓ As R. Diao et al. [194]
Müller et al. [182] ✓(4) 4 ✓ (✓) Daily frequency restrictions

energy demand not specified
Chen et al. [185] ✓(4) 5 ✓ ✓

Osman et al. [186] ✓(4) 4 ✓ ✓

Duration-based mapping;
daily frequency restrictions;
austere & wasteful volumes
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D. Details of mobility modeling of reviewed models

Table 7: Modeling of mobility behavior and demand in activity-based approaches
Model Activities Demand Charging

At
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s)
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(L1
,L2

,L3
)

+ Grahn et al. [159] ✓ 1 – Duration
dependent Average 1 Direct L1, L2

+ Muratori et al. [162] – 2 – Partly
constant

Two-Dimensional
Markov Chain 1/2 Direct L1, L2

+ Muratori [4] ✓ 2 – Partly
constant

Two-Dimensional
Markov Chain 1 Direct L1, L2

+ Gruosso et al. [173] ✓ 2 (✓) Duration
dependent

Acceleration,
Urban / Rural 2 Direct Maximum

by car type
+ Farzan et al. [170] ✓ 2 – Duration

dependent Average 1 Optimized
or random L1

+ Yu et al. [189] ✓ 8 1 – Probabilistic Average 1 Optimized not specified
+ Wang et al. [190] ✓ 5 – Duration

dependent Trip averages 1+ Direct L1 or
lower

◦ Müller et al. [182] ✓ 8 4 – Partly
constant Average 1 Direct Maximum

by car type
– Fischer et al. [169] – 7 3 – Partly

constant
Different

(probabilistic) 1/2 Different
(probabilistic) L1, L2, L3

Roorda et al. [197] – 10 3+ ✓

Kleinebrahm et al. [63] ✓ 4 1 (✓) No demand modeled (only mobility activities)
Hilgert et al. [196] – 6 –
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E. Details of time-use survey data sources

Table 8: Main activity data sources of reviewed models. Participant numbers are taken directly from the papers.
One reason for the difference in participant numbers is that filtered subsets are sometimes used.

Participants
Country Abbreviation Used in paper (first author) Households Persons
Australia TUS AU Jeong [183] 3 626 6 902
Belgium TUS BE 05 Aerts [165], Baetens [174] 3 455 6 400
Canada TUS CA 15-16 Rueda [82], Osman [186] ? 17 390
Denmark TUS DK 08/09 Foteinaki [181] 4 679 9 640
France TUS FR 98/99 Wilke [161] 7 949 15 441
Germany HETUS DE Fischer [167] 5 200 14 000

Fischer [168] 7 200 32 000

TUS DE 12/13
Müller [182] 5 000 11 000
Barsanti [188] 4 021 10 364
Yu [189] 5 040 12 000

TUS DE 01/02 Kleinebrahm [63] 5 443 11 921
MID 08/09 Fischer [169] 20 000 40 000

(70 000 trips)
MID 17 Müller [182] 5 000 11 000
MOP 01-17 Kleinebrahm [63] 900–1 900 1 500–3 100
MOP Müller [182], Yu [189] ? ?

Italy TUS IT 08/09 Bizzozero [172], Gruosso [173] ? ?
TUS IT 13 Bottaccioli [134] 27 000 60 000

Japan TUS JP 06 Yamaguchi [179], Taniguchi [132] 7 681 18 291
Netherlands TUS NL Nijhuis [171] ? 2 042

TUS NL 05 Flett [177] (only validation) ? ?
Sweden TUS SE 96 Widen [158], Grahn [159] 169 431

Widen [128], Sandels [160] 179 463
TUS SE 07 Widen [128, 158] (only validation) 5 13

United Kingdom TUS UK 00 Richardson [152, 153], Collin [166], ? ?Good [154], McKenna [155, 156]
Flett [175–177] ? 20 000

TUS UK 05 Flett [175] (only validation) ? 5 000
UK HES Wang [190] 250 ?

TUS UK 14/15
Ramírez-Mendiola [180] ? 15 000
Buttitta [157] 4 733 10 208
Zhang [187] 4 238 10 208

METER Wang [190] 14 ?
LTDS Wang [190] 14 ?

United States TUS US Farzan [170] ? ?
TUS US 03–09 Muratori [4, 28] ? ?

Muratori [162] ? 13 000
TUS US 03–11 Johnson [163, 164] ? 124 517
TUS US 09 Diao [178] ? 13 133
TUS US 13–17 Chen [185] ? 55 000
TUS US 19 Koupaei [184] ? ?
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