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Abstract

This study investigates the relationship between Artificial Intelligence (AI) and innovation inputs in
Spanish manufacturing firms. While Al is increasingly recognized as a driver of productivity and
economic growth, its role in shaping firms’ innovation strategies remains underexplored. Using firm-
level data, our analysis focuses on whether Al complements innovation inputs - specifically R&D and
Embodied Technological Change (ETC) - and whether Al can be considered as a Method of Invention,
able to trigger subsequent innovation investments. Results show a positive association between Al
adoption and both internal R&D and ETC, in a static and a dynamic framework. Furtheremore,
empirical evidence also highlights heterogeneity, with important peculiarities affecting large vs small
firms and high-tech vs low-tech companies. These findings suggest that Al may act as both a
complement and a catalyst, depending on firm characteristics.
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1. Introduction

Artificial Intelligence (Al) is a transformative technology that is reshaping how firms produce and
introduce new products to the market. Damioli et al. (2025) argue that Al is emerging as a key driver
of economic growth and productivity. However, there is a notable scarcity of empirical research
assessing the impact of Al on firms’ innovation performance, particularly regarding its role as a
complement to other innovation inputs and as a method of invention. While some scholars have
examined the role of Al in capability development (e.g., Sjodin et al., 2021), it remains unclear how
Al-driven capabilities interact with other types of firm capabilities, such as R&D investments (Mariani

etal,, 2023).

This study seeks to bridge this gap by addressing two key research questions. First, is Al a
complement to R&D and other innovation inputs, such as Embodied Technology Change (ETC)?
Second, can Al be considered a method of invention, namely fostering an increase in the subsequent
investment in other innovation inputs? The first research question will be investigated trough a
contemporaneous correlation analysis, while the second issue will be tested through an econometric

specification with a dynamic structure.

The dataset used to address our research questions comes from the "Encuesta sobre Estrategias
Empresariales” (ESEE), a survey of Spanish manufacturing firms covering the period from 1990 to
2022.1 However, queries specifically related to Al are only available for the years 2018 and 2022,

when Al started becoming relevant at the firm-level.2

This information first allows us to test the complementarity between Al and other innovation
inputs. We follow the methodology proposed by Mohnen and Roéller (2005) and Catozzella and
Vivarelli (2014), which involves a descriptive analysis of both unconditional and conditional
correlations. Then, we assess the impact of Al adoption in 2018 on innovation inputs in 2022,
including internal and external R&D expenditure and ETC. All specifications control for firm size and

other firm characteristics and include regional and industry fixed effects.

1 For more information about the SEPI Foundation and ESEE data, please refer to www.fundacionsepi.es

2 In particular, the ESEE offers insights into Al applications in the following areas: 1) “automatically guided
vehicles or systems (self-driving vehicles, drones)”; 2)“machine learning / data driven management / big data”,
3) “computer/machine vision”; and 4) “natural language processing”.
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The results from the complementary analysis indicate a certain degree of complementarity
between Al and both internal R&D and ETC. These correlations are positive and statistically
significant in both the unconditional and conditional analyses. Furthermore, in the econometric
analysis, we find a positive impact of Al adoption (in 2018) onto subsequent investments in total R&D,
internal R&D and ETC (in 2022), suggesting that Al plays the role of a method of invention, enhancing
a firm’s innovation capacity in terms of its standard innovation inputs. However, heterogeneity across
innovative firms emerge, with these effects mainly driven by large firms and companies operating in

the high-tech industries.

The remainder of the paper is structured as follows. Section 2 sets the context and reviews the
relevant literature. Section 3 describes the data and the adopted methodology. Section 4 discussess

the empirical results and Section 5 concludes.

2 The context and the extant literature

Artificial Intelligence represents a new paradigm that is transforming economic structures and
society as a whole, fostering the emergence of intelligent societies (Miller, 2019; Damioli et al., 2025;
Labaj et al,, 2025;). Liu et al. (2020) and Yogesh et al. (2021) report that Al is increasingly being
applied in the manufacturing, finance, education, healthcare, and logistics sectors. According to
Cockburn et al. (2019), Holm et al. (2023), Batabyal et al. (2025), Calvino at al. (2025) Al has the

potential to become a powerful driver of innovation, productivity gains, and economic growth.3

But what exactly is Artificial Intelligence? According to Aghion et al. (2017), Al refers to "the
capability of a machine to imitate intelligent human behaviour” or "an agent’s ability to achieve goals
in a wide range of environments.” Similarly, Liu et al. (2020) highlight a common element across Al

definitions: the performance of human-like intelligent activities programmed to accomplish specific

3 To illustrate this point, one can consider the pharmaceutical sector. When a laboratory seeks to discover
and develop a new drug, Al plays an increasingly important role by accelerating the identification of
synthesizable molecules, nucleic acid sequences, and proteins with specific structures or functions. In doing so,
it enhances both the efficiency (in terms of time and cost) and the effectiveness of drug development (Vert,
2023).



tasks. More precisely, Al systems can mimic human thinking and perform roles and tasks that were

previously carried out by people.*

In mimic humans, Agrawal et al. (2019) conceptualize Al principally as a tool that dramatically
reduces the cost of prediction. This shift has deep implications for firms, as prediction is a
fundamental input in decision-making processes, including decisions affecting R&D investment and
innovation strategies. In this new framework, Al does not replace judgment; rather, it separates
prediction from decision-making, allowing humans to increasingly focus on interpreting and acting
on Al-generated forecasts.> Moreover, Agrawal et al. (2024), discussing the the impact of Al adoption
on organizations, consider how interactions between multiple tasks influence its effectiveness. The
study, modelling both modular and non-modular systems, find that Al adoption increases decision
variation, posing challenges in organizations with interdependent decisions (as those related to

innovation activities).

In such a complex and evolving context, Al encompasses a wide range of technologies, including
machine learning, deep learning, natural language processing, computer vision, speech recognition,
intelligent decision support systems, intelligent robotic systems, as well as the novel application of
these tools across various domains (OECD, 2024). As a initial approach, Cockburn et al. (2019)
classified Al into two categories: automation-oriented applications, such as robotics, and emerging
developments, including natural language processing (NLP) and deep learning. This distinction is
important because Al (particularly with regard to the latter categories) can be considered a “General

Purpose Technology (GPT)”, and even a “method of invention”.

An innovation is considered a General Purpose Technology (GPT) when it satisfies three key
characteristics: (1) pervasiveness, (2) innovational complementarities that give rise to increasing
returns to scale in innovation and (3) an inherent potential for continuous technological
improvement. The first characteristic refers to the innovation’s pervasive applicability across multiple

sectors. As a GPT evolves and advances, it diffuses throughout the economy, fostering broad-based

4 Coccia (2019) provides a compelling example of this: the use of Al, particularly deep learning, can assist
pathologists in detecting cancer subtypes, gene mutations, and/or metastases, thereby enabling the application
of appropriate therapies.

5 To enhance Al’s potential, firms need to understand how quickly Al will impact their sector, recognize its
exponential progress, and manage the feedback in a continuous learning loop. However, concerns about
negative effects and risks of Al have sparked policy debates, including a 2023 petition calling for a pause in Al
research. Goldfarb (2024), analysing those concerns, underlines a long-term optimism about Al's
transformative potential while acknowledging short-term risks.
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productivity gains (Bresnahan & Trajtenberg, 1995). Obviously enough, this feature fully applies to
the case of Al. The second characteristic refers to innovational complementarities (IC), whereby the
productivity of R&D and other innovation activities directly benefits from the innovation in the GPT
itself (Bresnahan & Trajtenberg, 1995). These complementarities propagate throughout the economy,
amplifying the broader impact of technological advancement onto productivity and economic growth.
Finally, the third feature of a GPT stems from its role as an enabling technology, one that opens new
innovative opportunities rather than providing a final solution. In the particular case of Al, it is
enabling role is rooted in the fact that Al tools (particularly deep learning and NLP) can be used as
research devices that open new avenues of inquiry and enhances innovation productivity (Cockburn

etal, 2019).

The three GPT characteristics (which are so pronounced in the inner nature of Al) open the way
to consider Al as a method of invention (Mol). This idea was originally proposed by Griliches (1957)
in his seminal study of hybrid corn, where the discovery of double cross hybridization was considered
as a Mol. Rather than producing a single new corn variety, the innovation enabled a method that could
be applied to generate many new varieties, significantly enhancing agricultural productivity. In other
words, an innovation qualifies as a Mol when it constitutes a new way of generating innovations with

broad applicability.

Indeed, Al - particularly through deep learning, neural networks and NLP - appears to hold strong
potential as a research tool for solving those classification and prediction problems that characterize
the innovation activities, so reducing costs and improving performance in R&D projects. Much like
hybrid corn, Al expands the “innovation playbook” by enabling the discovery of new ideas and the
solution of trade-offs, thereby altering the way scientific research is conducted (Cockburn et al,
2019). Therefore, Al can be seen as a universal technology that can support other innovations.é
However, Al revolution requires to allow complementary inventions to develop, businesses to be
reorganized and workers to upskill in order to diffuse across the economy (Brynjolfsson et al. 2019;

Damioli et al,, 2021).

6 One specific case is “Generative Al” which refers to Al models that are specifically designed to produce
content, like text, program codes, images, videos, or sounds, in response to human language queries or prompts.
This tool utilizes Large Language Models (LLMs) and requires a substantial amount of data, employing
algorithms to predict responses. The Generative Al can transform innovation in boosting idea generation,
increasing individual creativity and rendering more effective the R&D investments (Calvino et al., 2025).
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More in general, when considering the Al role in science, Bianchini et al. (2022) discuss how Al is
transforming scientific discovery. Rather than merely accelerating existing research, Al is becoming
a tool for generating new hypotheses, designing experiments, and interpreting complex data. By
automating and enhancing cognitive tasks, Al enables scientists to uncover patterns and insights that
were previously difficult to reach or even to imagine. Therefore, Al has the potential to increase

research efficiency and foster interdisciplinarity.

We now turn our attention to those studies that have empirically examined the relationship
between Al and innovation performance. We have identified three main groups of contributions: 1)
studies that use patents as a proxy for Al; 2) studies that use specific technologies (particularly robots
and big data) as a proxy for Al; and 3) studies that rely on survey data, such as the Community

Innovation Survey (CIS).

Patents are a widely used instrument for measuring various aspects of innovation. With regard to
Al, Cockburn et al. (2019), drawing on data from the USPTO and published articles, examine the
changing nature of measurable innovation outputs in Al. The results suggest a shift since 2009 toward
the growing importance of application-oriented machine learning research. Similarly, Fujii and
Managi (2018), using data from WIPO’s PATENTSCOPE from 2000 to 2016, show a transition from
biological and knowledge-based models to more specific mathematical models and other Al
technologies, particularly in the United States and Japan. More recently, Damioli et al. (2025) - using
data from the European Patent Office (EPO) covering the period 2000-2016 - investigate whether Al
is initiating a new technological paradigm, using the perspective of evolutionary neo-Schumpeterian
economics. Among their findings, one stands out: Al technologies contribute to the generation and

acceleration of further innovations.

Another way to assess the impact of Al is using Big Data as a proxy: while Big Data cannot, in a strict
sense, be considered Al, it is often regarded as a key component of it. Most studies examining the
relationship between Big Data and innovation performance report a positive association, for example,
with innovative competitive advantage and with agile product and service co-creation processes (e.g.,
(Ghasemaghaei & Calic, 2019; Lozada et al., 2019).7 One interesting study that use Big Data as a proxy
of Al is put forward by Niebel et al. (2019). The authors use multiple waves of the German ZEW ICT

7 Both studies use a survey-based approach, collecting data through questionnaires conducted in the United
States and Colombia, respectively.



survey (2000, 2002, 2004, 2007, 2010, and 2015) and find that Big Data is a significant determinant
of both the likelihood that a firm becomes a product innovator and of the market success of its product

innovations.

Turning our attention to those studies using survey data, Rammer et al. (2022) explicitly adopt a
definition of Al in their analysis. Using data from the German component of the 2018 Community
Innovation Survey (CIS), which follows the Oslo Manual guidelines, the authors estimate the
relationship between Al and innovation outcomes using OLS and Probit models. Their findings reveal
a positive association between Al adoption and productinnovation (both in binary terms and in terms
of sales attributable to new products). In particular, the results indicate that Al use is positively
associated with annual sales from radical product innovations. With a slightly different approach,
Babina et al. (2024) propose a new measure of firms’ investments in Al based on their intensity of Al-
skilled hiring. In their study, Al adoption shows an enabling effect shortening experimentation time
and increasing product variety thanks to better predictions of demand (while not affecting process

innovation).

Based on the literature discussed in this section, we identify a gap in the existing research: while
the extant literature provides evidence of a positive relationship between Al adoption and innovation
performance (for instance measured in terms of product innovation), the relationship between Al and
innovation inputs has never been investigated. Indeed, if Al is a GPT and a Mol, we should expect
complementarity and boosting effects onto innovation inputs, as well. In other words, Al adoption
should come hand in hand with an increase in expenditures in R&D and other innovation inputs. This
gap carries out the two following research questions: 1) Is Al a complement to R&D, and/or to other
innovation inputs, such as ETC? Can Al adoption be considered a Mol, so fostering subsequent
investments in R&D and other innovation inputs? Indeed, if Al is a Mol, R&D projects and other
innovation inputs become more effective in generating innovative outputs and so their expected
profitability increases and therefore the incentive to invest in these activities should significantly

increase.

3  Data and methodology

To deal with the previous research questions, we use the Survey on Business Strategies (ESEE)

conducted by the Ministry of Industry and the SEPI Foundation in Spain. The ESEE survey is



representative and provides longitudinal data on firms in Spain’s manufacturing sector since 1990.
On average, 1,800 companies are surveyed from 1990 to 2023 through a questionnaire with 107
questions that contain information on the company’s balance sheet, firm characteristics, markets,
technological developments, foreign trade, employment, and so on. The ESEE has been widely used
in previous studies. For instance, to analyse the barriers to innovation (Gonzalez et al., 2005), to assess
the persistence of innovation (Triguero et al., 2014), to examine the relationship between R&D drivers

and firm’s age (Garcia-Quevedo et al., 2014).8

3.1 Identification Strategy and descriptive statistics

ESEE has included a question related to the use of Technologies 4.0 every four years®since 2018. We
use this question to identify Al users and to examine the contemporaneous complementarity between
Al and innovation inputs?in 2022, as well as the impact of Al adoption in 2018 onto innovation inputs
in 2022 (Al as a Mol). The Al indicator in our analysis includes the following four technologies: 1)
automatically guided vehicles (e.g., autonomous vehicles, drones); 2) machine learning / data-driven
management / big data; 3) computer vision/machine vision; and 4) natural language processing. In
particular, our Al indicator is equal to 1 if the firm adopted at least one of the four aforementioned

technologies and zero otherwise.

We restrict the sample to firms with non-missing Al information for both 2018 and 2022. Based
on this restricted sample, the Al variable indicates that 218 firms (21.5%) used Al in both 2018 and
2022 (always users), while 780 firms (76.9%) did not use Al in either year (never users). 10 firms

(0.9%) adopted Al between 2018 and 2022, transitioning from non-use to use (adopters), whereas 7

8 More recently, ESEE data have been used to explore the impact of ETC on employment (Pellegrino et al.,
2019), to measure the microeconomic implications of robot adoptions (Koch et al., 2021), and to examine the
role of robot adoption on product innovation (Antonioli et al., 2024).

9 The question asks to the companies in 2018 and 2022: to what extent did your company use the following
Industry 4.0 technologies in the production, marketing, or distribution of its products and services? (Select one
option for each technology): Augmented/Virtual Reality; Cyber-physical systems; Automatically guided
vehicles (e.g., autonomous vehicles, drones); Automated storage and retrieval systems; Machine learning /
Data-driven management / Big data; Cloud computing; Computer vision/machine vision; Natural language
processing; RFID-based identification and inventory systems; Industrial robotics, Touchscreens/kiosks for
client interface; IoT / lIoT (Internet of Things / Industrial IoT); 3D printing / Additive manufacturing

10 The innovation inputs are: total R&D, internal R&D, external R&D and ETC.
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firms (0.7%) discontinued Al use over the same period (stoppers). Based on these classifications, we

construct indicators of Al use for 2018 and 2022.11

Figure 1: The Al use in 2018 vs 2022 by industries
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Note: Figure 1 reports the share of firms using Al in 2018 and 2022, by industry, using the full sample of
firms from the ESEE data

Another valuable insight provided by the ESEE is its sectoral-level analysis (NACE classification).
Although we do not observe significant changes between 2018 and 2022, Figure 1 reveals substantial
heterogeneity across industries in Al adoption, as expected. The figure also shows that the sectors
with the highest rates of Al users are “Computer products, electronics and optical” (52%), “Vehicles
and accessories” (38%), “Machinery and equipment” (30%) and “Plastic and rubber products” (30%

in 2018 and 29% in 2022). In contrast, the sectors with the lowest Al user rates are “Leather, fur and

11 Specifically, firms classified as stoppers are included among the Al users in 2018, while adopters are
included among the Al users in 2022. In 2018, 22.2% of firms used Al, while 77.8% did not. In 2022, the
proportion of Al users increased slightly to 22.5%, with non-users accounting for 77.5%. The total sample for
the Al variable consists of 1,015 firms. In 2018, 225 firms were classified as Al users and 790 as non-users. In
2022, the number of Al users was 228, while the number of non-users was 787.



footwear” (10%), “Electric materials and accessories” (0% in 2018 and 9% in 2022), and “Textiles

and clothing” (7% in 2018 and 5% in2022).

Table 1: Descriptive statistics: Non-Al users vs Al users
(1) (2) (3) (4) (5) (6)

Non-Al use Al use Total

mean/sd obs mean/sd obs mean/sd obs

R&D 2.83 779  5.759 214  3.461 993
(5.10) (6.404) (5.537)
Internal R&D 2.24 779 4945 214  2.823 993
(4.679) (6.197) (5.163)
External R&D 1.679 779  3.668 214  2.108 993
(3.963) (5.450) (4.401)
ETC 2.118 750 4499 203  2.625 953
(4.640) (6.348) (5.142)
Employment 4.155 790 4892 225 4318 1015
(.838) (.952) (.917)
Collwithuni (Dummy) 0.143 790 0.32 225  0.182 1015
(.350) (.468) (.386)
% EG 1.891 629 2306 169 1979 798
(1.107) (.986) (1.095)
TCA (Dummy) 0.011 790  0.049 225 0.02 1015
(.106) (.216) (.139)
Foreign 8.678 779 18.112 214 10.711 993
(27.310) (38.030) (30.175)
PEURP (Dummy) 0.006 790 0.04 225 0.014 1015
(.079) (.196) (.117)
R&D (Dummy) 0.24 779 0458 214  0.287 993
(.427) (-499) (.453)
Internal R&D (Dummy) 0.19 779 0397 214  0.235 993
(.393) (-490) (424)
External R&D (Dummy) 0.155 779 0.322 214 0.191 993
(.362) (1469) (.394)
ETC (Dummy) 0.176 750 0.34 203  0.211 953
(.381) (.475) (.408)

Note: The table reports means and standard deviations (in parentheses) of firm-specific variables for three groups: Al non-
users (i.e., firms that never use Al in 2018 (Column 1)), Al users (firms that used Al in 2018 (Column 3)), and the full sample
(Column 5)). R&D refers to total research and development expenditure (internal and external, in logs and dummy) in 2022.
Internal R&D and External R&D denote internal and external R&D expenditures, respectively (both in logs and dummy) in
2022. Embodied Technological Change (ETC) is measured as the cost of capital goods purchased for product improvement
(inlogs and dummy) in 2022. Employment is the total number of employees (in logs) in 2022. Collwithuni captures whether
the firm collaborates with universities and/or technology centres (dummy variable) in 2022. % EG represents the
percentage of engineers and graduates in the workforce in 2022. TCA indicates the existence of a technological cooperation
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agreement (dummy variable) in 2022. Foreign refers to the share of foreign ownership (in percent) in 2022. Finally, PEURP
measures participation in EU research programs (dummy variable) in 2022.

Table 1 shows the descriptive statistics of the main variables used in our analysis. The sample
is splitinto two groups: Al non-users and Al users.!2 As can be seen, the means of the innovation inputs
(R&D, internal and external R&D, ETC) are higher for Al users than for Al non-users. This provides
preliminary evidence of a positive association between Al adoption and innovation inputs. Another
interesting finding is that employment is also higher for Al users than for Al non-users, suggesting
that - not surprisingly - large companies are more Al-intensive than their smaller counterparts. Other
controls beyond firm’s size include (see also Section 4.2): “Collwithuni” that captures whether the firm
collaborates with universities and/or technology centres (dummy variable) in 2022; “% EG”, that
represents the percentage of engineers and graduates in the workforce in 2022; “TCA”, that indicates
the existence of a technological cooperation agreement (dummy variable) in 2022; “Foreign”, that
refers to the share of foreign ownership (in percent) in 2022; and “PEURP”, that measures

participation in EU research programs (dummy variable) in 2022.

3.2 The empirical model
In this section, we present the empirical strategy adopted to assess, on the one hand, the
complementarity of Al with other innovation activities (specifically R&D - both internal and external -
and ETC13) and, on the other hand, the impact of Al adoption onto the subsequent investments in

innovation inputs (Al as a Mol).

As far as the complementarity analysis is concerned, we adopt the indirect approach, which
assumes that two (or more) activities can be considered complements if their use (or expenditure)
tends to move in the same direction, that is, if they are positively correlated. Although this test appears
straightforward, the indirect test for complementarity can be biased if the firm’s heterogeneity is not
adequately considered (Catozzella & Vivarelli, 2014). Indeed, many factors, such as the strategies of
the companies, their managerial capabilities and the characteristics of the industries influence the

innovation activities. To address this issue, Arora & Gambardella (1990) propose estimating

12 We focus on Al use in 2018, as our regression analysis examines the impact of Al adoption in 2018 on
innovation inputs in 2022. Descriptive statistics for Al users in 2022 yield similar results and are available upon
request.

13 ETC is basically the investment in innovative plants, machinery, and equipment (Catozzella & Vivarelli, 2014)

and it is considered a proxy for process innovation (Pellegrino et al,, 2019)
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conditional rather than unconditional correlations. Specifically, each input is regressed on a set of
firm-level and industry-level control variables (Z). The residuals from these regressions are then used
to compute the correlation coefficients. A positive and statistically significant correlation among the
residuals is interpreted as evidence of complementarity. However, to get consistent estimations, it is
required to properly compute residuals. In this respect, since internal and external R&D expenditures
and ETC are lower-censored at zero, OLS estimators turn out to be inconsistent in this context. To
address this issue, we employ Tobit models for these variables. Since Al is observed as a binary
variable, we use a probit model for computing Al residuals. Finally, we also use probit models when

innovation activities are measured as dummy variables (see Appendix).

To test the hypothesis of Al as a Mol, we estimate the association between the Al and the
innovation inputs using the specification outlined in Equation (1). The dependent variables (y;) are
the innovation inputs in 2022: total R&D, internal and external R&D and ETC. The main independent

variable is the Al use in 2018, measured as a binary indicator (Al;).

Vi = Bo+ B1AL + X1 Vil + v + U + € (D

We also control for a set of firm-level characteristics (Zj, ), including total employment,
collaboration with universities and/or technology centers (Collwithuni), the percentage of engineers
and graduates in the workforce (% EG), the technological cooperation agreement (TCA), the share of
foreign ownership (Foreign) and the participation in EU research programs (PEURP), all measured in
2022. Equation (1) also contains industry (v;) and regional (v, ) fixed effects. Finally, €; is the

stochastic error term.

Finally, we investigate potential heterogeneity with regard to firm'’s size and sectoral belonging.
While the general association between Al and the innovation inputs will be tested through Tobit
models when innovation inputs are considered in levels !4 and Probit models when inputs are
considered as binary variables, the heterogeneity analysis will use OLS. We opt for OLS in this case

because it facilitates the analysis of heterogeneity by firm size and technological intensity (i.e. high-

14 A Tobit model is used due to the high incidence of zero values in the dependent variables (innovation
inputs).
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vs. low-tech sectors) through the inclusion of interaction terms and the estimation of marginal

effects.15

4 Results

4.1 Complementarity analysis

In this subsection, we assess complementarity by examining both unconditional and conditional
correlations among five innovation activities: total R&D, internal and external R&D, Embodied
Technological Change (ETC) and Artificial Intelligence (Al) in 2022.

Table 2 presents the unconditional correlation results. These preliminary findings indicate
positive and statistically significant correlations among the various innovation activities, suggesting
potential complementarities. We also estimate unconditional correlations using binary indicators
(see Appendix, Table A1), and the results are consistent with those displayed in Table 2. However, as
previously noted, to avoid biased estimates of correlation, it is essential to control for firm- and sector-

level characteristics.

Table 2: Unconditional correlations (levels)

R&D Internal R&D External R&D ETC Al 2022
R&D 1
Internal R&D 0.893*** 1
External R&D 0.772%** 0.564*** 1
ETC 0.186*** 0.190*** 0.179%*** 1
Al 2022 0.226*** 0.217*** 0.207*** 0.197*** 1
Observations 936

* p<0.10, ** p<0.05, *** p<0.01

15 To compute the marginal effects, it is necessary to introduce an interaction term in Equation (1): y; = f, +
B Al + B,Size; + 01 (Al * Size;) + Yo ViZix + v; + v, + €; where Sizeiis a dummy variable equal
to one if the firm is large, and zero otherwise. After estimating the equation, we compute the marginal effect of
Ali as: 8yi/0Ali = f1+¢@Sizei. This leads to two cases: if Size = 1 (large firms), then &y;/6Ali = f1+¢ and Size = 0
(small firms) then 6yi/6Ali = 1. The same holds for the case of technological intensity (high and low-tech
sectors).
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Table 3: Conditional correlations (levels)
R&D Internal R&D  External R&D ETC Al 2022

R&D 1

Internal R&D 0.867*** 1

External R&D 0.662%** 0.389%** 1

ETC 0.0809** 0.116%** 0.0845** 1

Al 2022 0.0659* 0.0756** 0.0441 0.120%** 1
Observations 74816

* p<0.10, ** p<0.05, *** p<0.01

We then test the conditional correlation analysis. We adopt the following strategy: first, every
innovation input is regressed on a selected set of explanatory variables.1” Second, we predict the
residuals and compute the correlations among them. The results are presented in Table 3: we identify
a positive and significant correlation between artificial intelligence and, total and internal R&D (at
90% of confidence) and ETC (at 99% of confidence). We also estimate conditional correlations using
binary indicators (see Appendix, Table A2), and the results are consistent with those presented in
Table 3.18 These results provide evidence of complementarity between Al and internal R&D, and
between Al and ETC. The loss of significance of the conditional correlation between Al and external
R&D possibly reflects the (understandable) prevalent use of in-house Al in enhancing in-house
innovation activities (such as internal R&D and ETC), rather than supporting innovative activities

conducted externally and out of control.

However, while the detected contemporaneous complementarities are a necessary condition to

consider Al as an enabling technology, it is not a sufficient condition. To test whether Al is a Mol we

16 The smaller number of observations in the conditional correlation analysis is attributable to missing values
in the control variables.

17 The control variables are employment, collaboration with universities and/or tech centres, proportion of
engineers and graduates, technological cooperation agreements, foreign shareholding, participation in EU
research programs, regions, and industry fixed-effects

18 In both this correlation analysis and in the following regression estimates, we display results using binary
indicators (0/1) of the relevant variables with two purposes in mind: 1) to provide a robustness check, to be
compared with results based on the tobit methodology; 2) to give account of the relationships which may affect
the decisions to invest or not invest in the different innovation inputs.
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have to turn our attention to test the impact of Al onto subsequent investments in the various

innovative inputs.

4.2 Al as a method of invention

This subsection presents the results of the estimations assessing Al as a Mol. The dependent variables
include total R&D, internal and external R&D and ETC. As previously noted, the estimations control
for firm-level characteristics: total employment, collaboration with universities and/or technology
centres (“Collwithuni”; see Cassiman and Veugelers, 2000; Piga and Vivarelli, 2003), the proportion
of engineers and graduates in the workforce (“%EG”; see Cohen and Levinthal, 1990; Gonzalez et al,
2016), technological cooperation agreements (“TCA”; see lammarino et al., 2012; Zoia et al., 2018),
foreign ownership share (“foreign”; see Kwon and Park, 2018), and participation in EU research
programs (“PEURP”; see Gonzdles et al., 2005; Pellegrino and Piva, 2020). We also include regional

and industry fixed effects.

Table 4 presents the results from the Tobit estimations for total R&D, internal and external R&D,
and ETC. The findings indicate a positive and significant association between Al and both total and
internal R&D, as well as ETC (with the strongest association for ETC). In contrast, the relationship
between Al and external R&D is not statistically significant. The control variables present the
expected significant coefficients in the case of firm's size, scientific collaborations, educated
workforce and European programs. While cooperative agreements and foreign ownership fail to be

significant.

Table 5 reports the results from the probit estimations, using binary variables for total, internal,
and external R&D, as well as for ETC. The association between Al and the decision to engage in R&D
is positive and significant, primarily driven by the positive association between Al and the decision to
invest in internal R&D. Additionally, the results reveal a positive and significant association between

Al and the decision to acquire ETC.

Overall, our results show a positive and significant relationship between Al and most of the

innovative inputs (in both continuous and binary variable specifications).
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Table 4: The impact of Al on innovation inputs measured in levels- Tobit estimations

(1) (2) 1 (3) 1 (4)
Interna Externa
VARIABLES R&D R&D R&D ETC
Al 2018 2.791** 3.463** 1.912 4.641**
(1.296) (1.494) (1.488) (1.860)
Employment 1.660*** 1.887*** 1.395%* 3.154%**
(0.629) (0.719) (0.710) (0.919)
Collwithuni 12.989%** 12.715%** 15.397*** 5.068**
(1.155) (1.345) (1.237) (2.060)
% EG 1.925%** 2.280*** 1.968%** 0.956
(0.594) (0.713) (0.713) (0.859)
TCA -0.468 -0.285 3.124 -2.943
(2.886) (3.244) (3.218) (5.277)
Foreign -0.012 -0.005 -0.025 -0.066**
(0.018) (0.021) (0.021) (0.029)
PEURP 5.310** 7.406%** 3.477 8.063
(2.262) (2.544) (3.178) (5.490)
Constant -22.572%%  .25213*%  .33.714**  .33.326™**
(4.300) (4.845) (5.472) (6.729)
Observations 778 778 778 768

Note: All the dependent variables are in logs. Al 2018 is the use of Al in 2018. Employment is the Log of
total number of staff in the company. Collwithuni is the collaboration with universities and/or tech
centers (dummy variable). % EG captures the proportion of engineers and graduates. TCA is the
technological cooperation agreements (dummy variable). Foreign is the foreign shareholding (%).
Finally, PEURP is the participation in EU research programs (dummy variable). All specifications include
regional and industry-fixed effects. Robust standard errors are in parentheses. *p < 0.10, *p < 0.05, **p
< 0.01. The reduction in the number of observations in the ETC equation reflects missing values in the

dependent variable.
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Table 5: The impact of Al on innovation inputs measured as binary variables -
Probit estimations

(1) I (2) 1 . (3) 1 (4)
nterna xterna

VARIABLES R&D R&D R&D ETC
Al2018 0.098** 0.090** 0.043 0.086**
(0.046) (0.040) (0.035) (0.038)
Employment 0.045** 0.038** 0.025 0.057***
(0.022) (0.019) (0.017) (0.019)

Collwithuni 0.464%** 0.332%** 0.350%** 0.095%*
(0.055) (0.043) (0.040) (0.042)

% EG 0.055%** 0.051*** 0.04.0*** 0.019
(0.019) (0.017) (0.015) (0.016)

TCA -0.050 0.002 0.050 -0.067
(0.154) (0.122) (0.103) (0.112)
Foreign -0.000 0.000 -0.001 -0.001**
(0.001) (0.001) (0.000) (0.001)

PEURP 0.396*** 0.377*** 0.162 0.184
(0.141) (0.123) (0.128) (0.136)

Observations 774 774 754 744

Note: Marginal Effects. All the dependent variables are dummies (Yes or No). Al 2018 is the use of Al in 2018.
Employment is the Log of total number of staff in the company. Collwithuni is the collaboration with universities and/or
tech centres (dummy variable). % EG captures the proportion of engineers and graduates. TCA is the technological
cooperation agreements (dummy variable). Foreign is the foreign shareholding (%). Finally, PEURP is the participation
in EU research programs (dummy variable). All specifications include regional and industry fixed effects. Robust
standard errors are in parentheses. *p < 0.10, * p < 0.05, **p < 0.01. The slight reduction in observations for external
R&D is due to computational issues affecting the maximum likelihood function used in the probit model, while the
reduction in observations in the ETC equation reflects missing values in the dependent variable.

In more detail, evidence suggests that Al may favour and accelerate R&D (especially internal one),
probably supporting early-stage experimentation, reducing initial research costs, and improving
accuracy and forecasting. The emphasis on internal R&D is particularly relevant as Al might enhance
relevance and effectiveness of in-house research investments. On the other side, the lack of statistical
significance between Al and external R&D is not unexpected: indeed, Al adoption is intended to
increase in-house knowledge and internal technological and dynamic capabilities (Teece et al., 1997)

and not to support innovation activities developed outside the company.

Turning our attention to ETC, which is typically associated with improving production processes

through cost reduction and quality enhancement, Al appears to act as a catalyst, boosting ETC
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adoption (probably through increasing effectiveness, fostering productivity gains and minimizing

technical breakdowns).

4.3 Heterogeneity

In this subsection, we explore the possible heterogeneities in the relationship between firm’s Al
adoption and the subsequent investments in innovation inputs. In order to insert the relevant
interaction variables and to interpret the estimated coefficients, we estimate linear regression models
(OLS) and include the interactive terms between Al and size (large vs small companies)!® as well as
between Al and technological intensity (high-tech vs low-tech sectors).20 After estimating the models,
we compute the marginal effects to quantify the relationship and assess whether significant

differences emerge across firm size and technological level.

Table 6 displays the results for the values in levels of the dependent variables (see Panel A) and
their categorical values (see Panel B). The results suggest a positive association between Al and total
R&D, primarily driven by internal R&D in large companies. Furthermore, Al is positively associated
with ETC in large companies. The results for the categorical values follow the same direction as the

previous ones.

Conversely - although the coefficient display the expected signs - our models do not find significant
evidence regarding the enhancing role of Al in the case of small companies. These findings have
important implications. Large companies mainly drive the revealed association between Al and
innovation inputs, and this may be due to different factors. Large companies have the absorptive
capacity, the dynamic capabilities and the financial resources to assimilate new Al technologies, while
small companies often face major financial constraints and do not have enough capabilities to fully
assimilate the latest technologies and get synergies. In contrast, large companies can benefit more
from Al adoption since they rely on internal capabilities and organizational structures that enable
them to make more value from Al adoption and envisage the possible positive synergy between Al

and internal R&D activities. Similarly, ETC is positively associated to Al only in large companies. This

19 To split the sample, we use the median value of employment, which is 72 employees.

20 The classification between high- and low-tech sectors is presented in Table A.3 in the Appendix and is based
on the OECD classification. For more detail, see Hatzichronoglou (1997)
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is likely due to what discussed above and to their large-scale production structures, which are better

positioned to exploit Al-driven efficiency gains.2!

Table 6: The impact of Al on innovation input by size (OLS)

(1) (2) (3) (4)
Panel (A): Dependent variables in levels
Internal External
R&D R&D R&D ETC
Al use in Small 0.350 0.624 0.122 0.445
(0.694) (0.671) (0.482) (0.776)
Al use in Large  1.365** 1.185* 0.627 1.799**
(0.665) (0.659) (0.574) (0.735)
Observations 778 778 778 768
Panel B: Binary dependent variables
Internal External
R&D R&D R&D ETC
Al use in Small 0.037 0.069 0.020 0.038
(0.061) (0.059) (0.047) (0.064)
Alusein Large  0.105** 0.093* 0.053 0.123**
(0.053) (0.053) (0.050) (0.057)
Observations 778 778 778 768

Note: All the dependent variables are in logs in Panels A, while all in Panel B are dummies (Yes or No). Al is
the use of Al in 2018. The specification contains control variables: employment, collaboration with
universities and/or tech centers (dummy variable), the proportion of engineers and graduates,
technological cooperation agreements (dummy variable), foreign shareholding (%), and participation in EU
research programs (dummy variable). All specifications include regional and industry-fixed effects.
Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Finally, the results for the high- and low-tech industries22 are put forward in Table 7. The results
suggest a positive association of Al with total R&D, internal and external R&D in the high-tech sectors,
while the association of Al with ETC is positive and significant in the low-tech industries (while not
significant in the other three cases). The consistent positive relationships between Al adoption and

R&D in high-tech industries likely reflects these firms’ greater propensity to invest in innovation

211t is worth remebering that only manufacturing companies are included in our sample.
22 For more details regarding our classification, see Table A.3.
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activities, supported by the presence of R&D departments and the innovative nature of their
competitive environment. In this context, Al adoption appears an accelerator of all the knowledge-

intensive activities including - in this case - external R&D, as well.

Conversely, firms operating in low-tech sectors appear to significantly benefit from Al through an
enhanced access to ETC, which is the dominant channel of technological advancement in the most
traditional manufacturing industries. In these sectors, Al adoption is probably conceived as a tool to

make technological acquisition more fruitful.

Table 7: The impact of Al on innovation input by technological intensity (OLS)
(1) (2) (3) (4)

Panel A: Dependent variables in levels
R&D Internal R&D External R&D ETC

Al use in Low-tech 0.616 0.660 -0.052 1.933***
(0.563) (0.547) (0.444) (0.652)

Al use in High-tech  1.949** 1.791* 1.679** -0.284
(0.949) (0.965) (0.844) (0.981)

Observations 778 778 778 768

Panel B: Binary dependent variables

R&D Internal R&D External R&D ETC

Al use in Low-tech  0.045 0.055 -0.000 0.14.4***
(0.046) (0.045) (0.039) (0.051)

Al use in High-tech 0.168** 0.158** 0.142* -0.040
(0.077) (0.078) (0.075) (0.077)

Observations 778 778 778 768

Note: All the dependent variables are in logs in Panels A, while all in Panel B are dummies (Yes or No). Al is the use of Al in
2018. The specification contains control variables: employment, collaboration with universities and/or tech centers
(dummy variable), the proportion of engineers and graduates, technological cooperation agreements (dummy variable),
foreign shareholding (%), and participation in EU research programs (dummy variable). All specifications include regional
and industry-fixed effects. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

5 Conclusions

Artificial Intelligence, with its pervasive influence on economies and societies, is reshaping how

firms innovate and produce. Its rapid diffusion and large application require attention to fully
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comprehend risks, effects and consequences. While the existing empirical evidence, using various
proxies to operationalize Al, increasingly points to Al as a driver of productivity and economic
growth, less is known about how Al affects conventional innovation activities and whether
complementarities among Al and innovative inputs exist. However, if Al is to be considered not only
a General Purpose Technology, but also a Method of Invention, understanding its interaction with

firm’s innovation strategies is essential.

This study contributes to this debate by analysing firm-level data from the Spanish
manufacturing sector. It explores two key questions: (1) whether Al complements R&D and other
innovation inputs, specifically Embodied Technological Change; (2) whether Al can be considered
as a Mol, fostering subsequent investments in innovation inputs. Results (1) show a robust
correlation between Al adoption and internal R&D and between Al adoption and ETC (both in a
conditional and an unconditional framework) suggesting a certain degree of complementarity; (2)
highlight, in a dynamic perspective, a general positive and significant impact of Al on internal R&D

and ETC, suggesting that Al may trigger and amplify internal innovation investments.

Our findings also reveal heterogeneity across firms. Indeed, our two main results (Al fostering
internal R&D and ETC) seem to be driven by larger firms, likely able to better envisage and value
the synergic potentialities of Al adoption. Finally, splitting by industries, companies in high-tech
sectors seem to benefit more from Al in their R&D departments, while firms in more traditional

industries exploit Al in increasing their acquisition of ETC.

These results may have important policy implications: promoting Al adoption might have a
booster effect on different innovation activities acting both as a catalyst and an accelerator. Yet,
policy makers should also be aware of a significant degree of heterogeneity across industries and

across firm'’s size (implying the need for targeted industrial and innovation policies).

From a managerial perspective, evidence suggests that Al adoption can foster innovation
propensity. However, as highlighted by Bianchini et al. (2022) and Antonioli et al. (2024), in-house
dynamic capabilities, human capital endowment, and organizational change might be important

mediators of what discussed in this study.

21



The lack of data on these latter dimensions is one of the limitations of this paper; moreover,
dealing with contemporaneous correlations and with four-year-span regressions prevents us from
inferring any causal effect; finally, while the Spanish case offers valuable insights, country-specific

factors may influence the generalizability of our results.
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Appendix

Table A.1: Unconditional correlations (binary variables)

R&D Internal R&D External R&D ETC Al 2022

R&D 1

Internal R&D 0.867*** 1

External R&D 0.768*** 0.557*** 1

ETC 0.168*** 0.171%** 0.175%** 1

Al 2022 0.206*** 0.201%** 0.189%*** 0.164*** 1
Observations 936

*p<0.10, ** p<0.05, *** p<0.01

Table A.2: Conditional correlations (binary variables)

R&D Internal R&D External R&D ETC Al 2022

R&D 1

Internal R&D 0.819*** 1

External R&D 0.686%** 0.396%** 1

ETC 0.0842**  0.0890** 0.0846** 1

Al 2022 0.0636* 0.0655* 0.0466 0.105%** 1
Observations 714

*p<0.10, ** p<0.05, *** p<0.01
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Table A.3. Industrial classification: high- and low-tech sectors

Low-tech sector

High-tech sector

Meat products

Food and tobacco

Beverage

Textiles and clothing
Leather, fur and footwear
Timber

Paper

Printing

Plastic and rubber products
Non-metal mineral products
Basic metal products
Fabricated metal products
Furniture

Other manufacturing

Chemicals and pharmaceutical

Machinery and equipment

Computer products, electronics and optical
Electric materials and accessories

Vehicles and accessories

Other transport equipment

Note: Based on OCDE classification (see Hatzichronoglou, 1997)

27




