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Abstract 

This study investigates the relationship between Artificial Intelligence (AI) and innovation inputs in 

Spanish manufacturing firms. While AI is increasingly recognized as a driver of productivity and 

economic growth, its role in shaping firms’ innovation strategies remains underexplored. Using firm-

level data, our analysis focuses on whether AI complements innovation inputs - specifically R&D and 

Embodied Technological Change (ETC) - and whether AI can be considered as a Method of Invention, 
able to trigger subsequent innovation investments. Results show a positive association between AI 

adoption and both internal R&D and ETC, in a static and a dynamic framework. Furtheremore, 

empirical evidence also highlights heterogeneity, with important peculiarities affecting  large vs small 

firms and high-tech vs low-tech companies. These findings suggest that AI may act as both a 

complement and a catalyst, depending on firm characteristics.  
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1. Introduction 

Artificial Intelligence (AI) is a transformative technology that is reshaping how firms produce and 

introduce new products to the market. Damioli et al. (2025) argue that AI is emerging as a key driver 

of economic growth and productivity. However, there is a notable scarcity of empirical research 

assessing the impact of AI on firms’ innovation performance, particularly regarding its role as a 

complement to other innovation inputs and as a method of invention. While some scholars have 

examined the role of AI in capability development (e.g., Sjo din et al., 2021), it remains unclear how 

AI-driven capabilities interact with other types of firm capabilities, such as R&D investments (Mariani 

et al., 2023). 

This study seeks to bridge this gap by addressing two key research questions. First, is AI a 

complement to R&D and other innovation inputs, such as Embodied Technology Change (ETC)? 

Second, can AI be considered a method of invention, namely fostering an increase in the subsequent 

investment in other innovation inputs? The first research question will be investigated trough a 

contemporaneous correlation analysis, while the second issue will be tested through an econometric 

specification with a dynamic structure. 

The dataset used to address our research questions comes from the ”Encuesta sobre Estrategias 

Empresariales” (ESEE), a survey of Spanish manufacturing firms covering the period from 1990 to 

2022.1  However, queries specifically related to AI are only available for the years 2018 and 2022, 

when AI started becoming relevant at the firm-level.2  

This information first allows us to test the complementarity between AI and other innovation 

inputs. We follow the methodology proposed by Mohnen and Ro ller (2005) and Catozzella and 

Vivarelli (2014), which involves a descriptive analysis of both unconditional and conditional 

correlations. Then, we assess the impact of AI adoption in 2018 on innovation inputs in 2022, 

including internal and external R&D expenditure and ETC. All specifications control for firm size and 

other firm characteristics and include regional and industry fixed effects. 

 
1 For more information about the SEPI Foundation and ESEE data, please refer to www.fundacionsepi.es 
2 In particular, the ESEE offers insights into AI applications in the following areas: 1) “automatically guided 

vehicles or systems (self-driving vehicles, drones)”; 2)“machine learning / data driven management / big data”, 
3) “computer/machine vision”; and 4) “natural language processing”. 
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The results from the complementary analysis indicate a certain degree of complementarity 

between AI and both internal R&D and ETC. These correlations are positive and statistically 

significant in both the unconditional and conditional analyses. Furthermore, in the econometric 

analysis, we find a positive impact of AI adoption (in 2018) onto subsequent investments in total R&D, 

internal R&D and ETC (in 2022), suggesting that AI plays the role of a method of invention, enhancing 

a firm’s innovation capacity in terms of its standard innovation inputs. However, heterogeneity across 

innovative firms emerge, with these effects mainly driven by large firms and companies operating in 

the high-tech industries.  

 

The remainder of the paper is structured as follows. Section 2 sets the context and reviews the 

relevant literature. Section 3 describes the data and the adopted methodology. Section 4 discussess 

the empirical results and Section 5 concludes. 

 

2     The context and the extant literature 

Artificial Intelligence represents a new paradigm that is transforming economic structures and 

society as a whole, fostering the emergence of intelligent societies (Miller, 2019; Damioli et al., 2025; 

La baj et al., 2025;). Liu et al. (2020) and Yogesh et al. (2021) report that AI is increasingly being 

applied in the manufacturing, finance, education, healthcare, and logistics sectors. According to 

Cockburn et al. (2019), Holm et al. (2023), Batabyal et al. (2025), Calvino at al. (2025) AI has the 

potential to become a powerful driver of innovation, productivity gains, and economic growth.3 

But what exactly is Artificial Intelligence? According to Aghion et al. (2017), AI refers to ”the 

capability of a machine to imitate intelligent human behaviour” or ”an agent’s ability to achieve goals 

in a wide range of environments.” Similarly, Liu et al. (2020) highlight a common element across AI 

definitions: the performance of human-like intelligent activities programmed to accomplish specific 

 
3 To illustrate this point, one can consider the pharmaceutical sector. When a laboratory seeks to discover 

and develop a new drug, AI plays an increasingly important role by accelerating the identification of 
synthesizable molecules, nucleic acid sequences, and proteins with specific structures or functions. In doing so, 
it enhances both the efficiency (in terms of time and cost) and the effectiveness of drug development (Vert, 
2023). 



4 

tasks. More precisely, AI systems can mimic human thinking and perform roles and tasks that were 

previously carried out by people.4  

In mimic humans, Agrawal et al. (2019) conceptualize AI principally as a tool that dramatically 

reduces the cost of prediction. This shift has deep implications for firms, as prediction is a 

fundamental input in decision-making processes, including decisions affecting R&D investment and 

innovation strategies. In this new framework, AI does not replace judgment; rather, it separates 

prediction from decision-making, allowing humans to increasingly focus on interpreting and acting 

on AI-generated forecasts.5 Moreover, Agrawal et al. (2024), discussing the the impact of AI adoption 

on organizations, consider how interactions between multiple tasks influence its effectiveness. The 

study, modelling both modular and non-modular systems, find that AI adoption increases decision 

variation, posing challenges in organizations with interdependent decisions (as those related to 

innovation activities).  

In such a complex and evolving context, AI encompasses a wide range of technologies, including 

machine learning, deep learning, natural language processing, computer vision, speech recognition, 

intelligent decision support systems, intelligent robotic systems, as well as the novel application of 

these tools across various domains (OECD, 2024). As a initial approach, Cockburn et al. (2019) 

classified AI into two categories: automation-oriented applications, such as robotics, and emerging 

developments, including natural language processing (NLP) and deep learning. This distinction is 

important because AI (particularly with regard to the latter categories) can be considered a “General 

Purpose Technology (GPT)”, and even a “method of invention”. 

An innovation is considered a General Purpose Technology (GPT) when it satisfies three key 

characteristics: (1) pervasiveness, (2) innovational complementarities that give rise to increasing 

returns to scale in innovation and (3) an inherent potential for continuous technological 

improvement. The first characteristic refers to the innovation’s pervasive applicability across multiple 

sectors. As a GPT evolves and advances, it diffuses throughout the economy, fostering broad-based 

 
4 Coccia (2019) provides a compelling example of this: the use of AI, particularly deep learning, can assist 

pathologists in detecting cancer subtypes, gene mutations, and/or metastases, thereby enabling the application 
of appropriate therapies. 

5 To enhance AI’s potential, firms need to understand how quickly AI will impact their sector, recognize its 
exponential progress, and manage the feedback in a continuous learning loop. However, concerns about 
negative effects and risks of AI have sparked policy debates, including a 2023 petition calling for a pause in AI 
research. Goldfarb (2024), analysing those concerns, underlines a long-term optimism about AI’s 
transformative potential while acknowledging short-term risks. 
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productivity gains (Bresnahan & Trajtenberg, 1995). Obviously enough, this feature fully applies to 

the case of AI. The second characteristic refers to innovational complementarities (IC), whereby the 

productivity of R&D and other innovation activities directly benefits from the innovation in the GPT 

itself (Bresnahan & Trajtenberg, 1995). These complementarities propagate throughout the economy, 

amplifying the broader impact of technological advancement onto productivity and economic growth. 

Finally, the third feature of a GPT stems from its role as an enabling technology, one that opens new 

innovative opportunities rather than providing a final solution. In the particular case of AI, it is 

enabling role is rooted in the fact that AI tools (particularly deep learning and NLP) can be used as 

research devices that open new avenues of inquiry and enhances innovation productivity (Cockburn 

et al., 2019). 

The three GPT characteristics (which are so pronounced in the inner nature of AI) open the way 

to consider AI as a method of invention (MoI). This idea was originally proposed by Griliches (1957) 

in his seminal study of hybrid corn, where the discovery of double cross hybridization was considered 

as a MoI. Rather than producing a single new corn variety, the innovation enabled a method that could 

be applied to generate many new varieties, significantly enhancing agricultural productivity. In other 

words, an innovation qualifies as a MoI when it constitutes a new way of generating innovations with 

broad applicability. 

Indeed, AI - particularly through deep learning, neural networks and NLP - appears to hold strong 

potential as a research tool for solving those classification and prediction problems that characterize 

the innovation activities, so reducing costs and improving performance in R&D projects. Much like 

hybrid corn, AI expands the “innovation playbook” by enabling the discovery of new ideas and the 

solution of trade-offs, thereby altering the way scientific research is conducted (Cockburn et al., 

2019). Therefore, AI can be seen as a universal technology that can support other innovations.6 

However, AI revolution requires to allow complementary inventions to develop, businesses to be 

reorganized and workers to upskill in order to diffuse across the economy (Brynjolfsson et al. 2019; 

Damioli et al., 2021). 

 
6 One specific case is “Generative AI” which refers to AI models that are specifically designed to produce 

content, like text, program codes, images, videos, or sounds, in response to human language queries or prompts. 
This tool utilizes Large Language Models (LLMs) and requires a substantial amount of data, employing 
algorithms to predict responses. The Generative AI can transform innovation in boosting idea generation, 
increasing individual creativity and rendering more effective the R&D investments (Calvino et al., 2025). 
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More in general, when considering the AI role in science, Bianchini et al. (2022) discuss how AI is 

transforming scientific discovery. Rather than merely accelerating existing research, AI is becoming 

a tool for generating new hypotheses, designing experiments, and interpreting complex data. By 

automating and enhancing cognitive tasks, AI enables scientists to uncover patterns and insights that 

were previously difficult to reach or even to imagine. Therefore, AI has the potential to increase 

research efficiency and foster interdisciplinarity.  

We now turn our attention to those studies that have empirically examined the relationship 

between AI and innovation performance. We have identified three main groups of contributions: 1) 

studies that use patents as a proxy for AI; 2) studies that use specific technologies (particularly robots 

and big data) as a proxy for AI; and 3) studies that rely on survey data, such as the Community 

Innovation Survey (CIS). 

Patents are a widely used instrument for measuring various aspects of innovation. With regard to 

AI, Cockburn et al. (2019), drawing on data from the USPTO and published articles, examine the 

changing nature of measurable innovation outputs in AI. The results suggest a shift since 2009 toward 

the growing importance of application-oriented machine learning research. Similarly, Fujii and 

Managi (2018), using data from WIPO’s PATENTSCOPE from 2000 to 2016, show a transition from 

biological and knowledge-based models to more specific mathematical models and other AI 

technologies, particularly in the United States and Japan. More recently, Damioli et al. (2025) – using 

data from the European Patent Office (EPO) covering the period 2000–2016 - investigate whether AI 

is initiating a new technological paradigm, using the perspective of evolutionary neo-Schumpeterian 

economics. Among their findings, one stands out: AI technologies contribute to the generation and 

acceleration of further innovations.  

Another way to assess the impact of AI is using Big Data as a proxy:  while Big Data cannot, in a strict 

sense, be considered AI, it is often regarded as a key component of it. Most studies examining the 

relationship between Big Data and innovation performance report a positive association, for example, 

with innovative competitive advantage and with agile product and service co-creation processes (e.g., 

(Ghasemaghaei & Calic, 2019; Lozada et al., 2019).7 One interesting study that use Big Data as a proxy 

of AI is put forward by Niebel et al. (2019). The authors use multiple waves of the German ZEW ICT 

 
7 Both studies use a survey-based approach, collecting data through questionnaires conducted in the United 

States and Colombia, respectively. 
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survey (2000, 2002, 2004, 2007, 2010, and 2015) and find that Big Data is a significant determinant 

of both the likelihood that a firm becomes a product innovator and of the market success of its product 

innovations. 

Turning our attention to those studies using survey data, Rammer et al. (2022) explicitly adopt a 

definition of AI in their analysis. Using data from the German component of the 2018 Community 

Innovation Survey (CIS), which follows the Oslo Manual guidelines, the authors estimate the 

relationship between AI and innovation outcomes using OLS and Probit models. Their findings reveal 

a positive association between AI adoption and product innovation (both in binary terms and in terms 

of sales attributable to new products). In particular, the results indicate that AI use is positively 

associated with annual sales from radical product innovations. With a slightly different approach, 

Babina et al. (2024) propose a new measure of firms’ investments in AI based on their intensity of AI-

skilled hiring. In their study, AI adoption shows an enabling effect shortening experimentation time 

and increasing product variety thanks to better predictions of demand (while not affecting process 

innovation). 

Based on the literature discussed in this section, we identify a gap in the existing research: while 

the extant literature provides evidence of a positive relationship between AI adoption and innovation 

performance (for instance measured in terms of product innovation), the relationship between AI and 

innovation inputs has never been investigated. Indeed, if AI is a GPT and a MoI, we should expect 

complementarity and boosting effects onto innovation inputs, as well. In other words, AI adoption 

should come hand in hand with an increase in expenditures in R&D and other innovation inputs. This 

gap carries out the two following research questions: 1) Is AI a complement to R&D, and/or to other 

innovation inputs, such as ETC? Can AI adoption be considered a MoI, so fostering subsequent 

investments in R&D and other innovation inputs? Indeed, if AI is a MoI, R&D projects and other 

innovation inputs become more effective in generating innovative outputs and so their expected 

profitability increases and therefore the incentive to invest in these activities should significantly 

increase. 

3 Data and methodology 

To deal with the previous research questions, we use the Survey on Business Strategies (ESEE) 

conducted by the Ministry of Industry and the SEPI Foundation in Spain. The ESEE survey is 
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representative and provides longitudinal data on firms in Spain’s manufacturing sector since 1990. 

On average, 1,800 companies are surveyed from 1990 to 2023 through a questionnaire with 107 

questions that contain information on the company’s balance sheet, firm characteristics, markets, 

technological developments, foreign trade, employment, and so on. The ESEE has been widely used 

in previous studies. For instance, to analyse the barriers to innovation (Gonza lez et al., 2005), to assess 

the persistence of innovation (Triguero et al., 2014), to examine the relationship between R&D drivers 

and firm’s age (Garcí a-Quevedo et al., 2014). 8 

 

    3.1  Identification Strategy and descriptive statistics 

ESEE has included a question related to the use of Technologies 4.0 every four years9 since 2018. We 

use this question to identify AI users and to examine the contemporaneous complementarity between 

AI and innovation inputs10 in 2022, as well as the impact of AI adoption in 2018 onto innovation inputs 

in 2022 (AI as a MoI). The AI indicator in our analysis includes the following four technologies: 1) 

automatically guided vehicles (e.g., autonomous vehicles, drones); 2) machine learning / data-driven 

management / big data; 3) computer vision/machine vision; and 4) natural language processing. In 

particular, our AI indicator is equal to 1 if the firm adopted at least one of the four aforementioned 

technologies and zero otherwise. 

We restrict the sample to firms with non-missing AI information for both 2018 and 2022. Based 

on this restricted sample, the AI variable indicates that 218 firms (21.5%) used AI in both 2018 and 

2022 (always users), while 780 firms (76.9%) did not use AI in either year (never users). 10 firms 

(0.9%) adopted AI between 2018 and 2022, transitioning from non-use to use (adopters), whereas 7 

 
8 More recently, ESEE data have been used to explore the impact of ETC on employment (Pellegrino et al., 

2019), to measure the microeconomic implications of robot adoptions (Koch et al., 2021), and to examine the 
role of robot adoption on product innovation (Antonioli et al., 2024). 

9 The question asks to the companies in 2018 and 2022: to what extent did your company use the following 
Industry 4.0 technologies in the production, marketing, or distribution of its products and services? (Select one 
option for each technology): Augmented/Virtual Reality; Cyber-physical systems; Automatically guided 
vehicles (e.g., autonomous vehicles, drones); Automated storage and retrieval systems; Machine learning / 
Data-driven management / Big data; Cloud computing; Computer vision/machine vision; Natural language 
processing; RFID-based identification and inventory systems; Industrial robotics, Touchscreens/kiosks for 
client interface; IoT / IIoT (Internet of Things / Industrial IoT); 3D printing / Additive manufacturing 

10 The innovation inputs are: total R&D, internal R&D, external R&D and ETC. 
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firms (0.7%) discontinued AI use over the same period (stoppers). Based on these classifications, we 

construct indicators of AI use for 2018 and 2022.11  

Figure 1: The AI use in 2018 vs 2022 by industries 

 

Note: Figure 1 reports the share of firms using AI in 2018 and 2022, by industry, using the full sample of 

firms from the ESEE data 

 

Another valuable insight provided by the ESEE is its sectoral-level analysis (NACE classification). 

Although we do not observe significant changes between 2018 and 2022, Figure 1 reveals substantial 

heterogeneity across industries in AI adoption, as expected. The figure also shows that the sectors 

with the highest rates of AI users are “Computer products, electronics and optical” (52%), “Vehicles 

and accessories” (38%), “Machinery and equipment” (30%) and “Plastic and rubber products” (30% 

in 2018 and 29% in 2022). In contrast, the sectors with the lowest AI user rates are “Leather, fur and 

 
11  Specifically, firms classified as stoppers are included among the AI users in 2018, while adopters are 

included among the AI users in 2022. In 2018, 22.2% of firms used AI, while 77.8% did not. In 2022, the 

proportion of AI users increased slightly to 22.5%, with non-users accounting for 77.5%. The total sample for 

the AI variable consists of 1,015 firms. In 2018, 225 firms were classified as AI users and 790 as non-users. In 

2022, the number of AI users was 228, while the number of non-users was 787. 
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footwear” (10%), “Electric materials and accessories” (0% in 2018 and 9% in 2022), and “Textiles 

and clothing” (7% in 2018 and 5% in2022). 

Table 1: Descriptive statistics: Non-AI users vs AI users 
  (1) (2) (3) (4) (5) (6) 

 
Non-AI use 

 
AI use 

 
Total 

 
  mean/sd obs mean/sd obs mean/sd obs 

R&D 2.83 779 5.759 214 3.461 993 

 (5.10)  (6.404)  (5.537)  
Internal R&D 2.24 779 4.945 214 2.823 993 

 (4.679)  (6.197)  (5.163)  
External R&D 1.679 779 3.668 214 2.108 993 

 (3.963)  (5.450)  (4.401)  
ETC 2.118 750 4.499 203 2.625 953 

 (4.640)  (6.348)  (5.142)  
Employment 4.155 790 4.892 225 4.318 1015 

 (.838)  (.952)  (.917)  
Collwithuni (Dummy) 0.143 790 0.32 225 0.182 1015 

 (.350)  (.468)  (.386)  
% EG 1.891 629 2.306 169 1.979 798 

 (1.107)  (.986)  (1.095)  
TCA (Dummy) 0.011 790 0.049 225 0.02 1015 

 (.106)  (.216)  (.139)  
Foreign 8.678 779 18.112 214 10.711 993 

 (27.310)  (38.030)  (30.175)  
PEURP (Dummy) 0.006 790 0.04 225 0.014 1015 

  (.079)  (.196)  (.117)  
R&D (Dummy) 0.24 779 0.458 214 0.287 993 

 (.427)  (.499)  (.453)  

Internal R&D (Dummy) 0.19 779 0.397 214 0.235 993 

 (.393)  (.490)  (.424)  

External R&D (Dummy) 0.155 779 0.322 214 0.191 993 

 (.362)  (.469)  (.394)  

ETC (Dummy) 0.176 750 0.34 203 0.211 953 

 (.381)  (.475)  (.408)  
Note: The table reports means and standard deviations (in parentheses) of firm-specific variables for three groups: AI non-

users (i.e., firms that never use AI in 2018 (Column 1)), AI users (firms that used AI in 2018 (Column 3)), and the full sample 

(Column 5)). R&D refers to total research and development expenditure (internal and external, in logs and dummy) in 2022. 

Internal R&D and External R&D denote internal and external R&D expenditures, respectively (both in logs and dummy) in 

2022. Embodied Technological Change (ETC) is measured as the cost of capital goods purchased for product improvement 

(in logs and dummy) in 2022. Employment is the total number of employees (in logs) in 2022. Collwithuni captures whether 

the firm collaborates with universities and/or technology centres (dummy variable) in 2022. % EG represents the 

percentage of engineers and graduates in the workforce in 2022. TCA indicates the existence of a technological cooperation 
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agreement (dummy variable) in 2022. Foreign refers to the share of foreign ownership (in percent) in 2022. Finally, PEURP 

measures participation in EU research programs (dummy variable) in 2022. 

 

 
Table 1 shows the descriptive statistics of the main variables used in our analysis. The sample 

is split into two groups: AI non-users and AI users.12 As can be seen, the means of the innovation inputs 

(R&D, internal and external R&D, ETC) are higher for AI users than for AI non-users. This provides 

preliminary evidence of a positive association between AI adoption and innovation inputs. Another 

interesting finding is that employment is also higher for AI users than for AI non-users,  suggesting 

that – not surprisingly - large companies are more AI-intensive than their smaller counterparts. Other 

controls beyond firm’s size include (see also Section 4.2): “Collwithuni” that captures whether the firm 

collaborates with universities and/or technology centres (dummy variable) in 2022; “% EG”, that 

represents the percentage of engineers and graduates in the workforce in 2022; “TCA”, that indicates 

the existence of a technological cooperation agreement (dummy variable) in 2022; “Foreign”, that 

refers to the share of foreign ownership (in percent) in 2022; and  “PEURP”,  that measures 

participation in EU research programs (dummy variable) in 2022. 

 
 

    3.2    The empirical model 

In this section, we present the empirical strategy adopted to assess, on the one hand, the 

complementarity of AI with other innovation activities (specifically R&D - both internal and external -

and ETC13  ) and, on the other hand, the impact of AI adoption onto the subsequent investments in 

innovation inputs (AI as a MoI). 

As far as the complementarity analysis is concerned, we adopt the indirect approach, which 

assumes that two (or more) activities can be considered complements if their use (or expenditure) 

tends to move in the same direction, that is, if they are positively correlated. Although this test appears 

straightforward, the indirect test for complementarity can be biased if the firm’s heterogeneity is not 

adequately considered (Catozzella & Vivarelli, 2014). Indeed, many factors, such as the strategies of 

the companies, their managerial capabilities and the characteristics of the industries influence the 

innovation activities. To address this issue, Arora & Gambardella (1990) propose estimating 

 
12 We focus on AI use in 2018, as our regression analysis examines the impact of AI adoption in 2018 on 

innovation inputs in 2022. Descriptive statistics for AI users in 2022 yield similar results and are available upon 

request. 
13 ETC is basically the investment in innovative plants, machinery, and equipment (Catozzella & Vivarelli, 2014) 

and it is considered a proxy for process innovation (Pellegrino et al., 2019) 
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conditional rather than unconditional correlations. Specifically, each input is regressed on a set of 

firm-level and industry-level control variables (Z). The residuals from these regressions are then used 

to compute the correlation coefficients. A positive and statistically significant correlation among the 

residuals is interpreted as evidence of complementarity. However, to get consistent estimations, it is 

required to properly compute residuals. In this respect, since internal and external R&D expenditures 

and ETC are lower-censored at zero, OLS estimators turn out to be inconsistent in this context. To 

address this issue, we employ Tobit models for these variables. Since AI is observed as a binary 

variable, we use a probit model for computing AI residuals. Finally, we also use probit models when 

innovation activities are measured as dummy variables (see Appendix). 

To test the hypothesis of AI as a MoI, we estimate the association between the AI and the 

innovation inputs using the specification outlined in Equation (1). The dependent variables (𝑦𝑖) are 

the innovation inputs in 2022: total R&D, internal and external R&D and ETC. The main independent 

variable is the AI use in 2018, measured as a binary indicator (𝐴𝐼𝑖). 

𝑦𝑖 = 𝛽0 + 𝛽1𝐴𝐼𝑖 + ∑ 𝛾𝑘𝑍𝑖𝑘
6
𝑘=1 + 𝜐𝑗 + 𝜐𝑟 + 𝜖𝑖      (1) 

We also control for a set of firm-level characteristics ( 𝑍𝑖𝑘  ), including total employment, 

collaboration with universities and/or technology centers (Collwithuni), the percentage of engineers 

and graduates in the workforce (% EG), the technological cooperation agreement (TCA), the share of 

foreign ownership (Foreign) and the participation in EU research programs (PEURP), all measured in 

2022. Equation (1) also contains industry (𝜐𝑗 ) and regional (𝜐𝑟 ) fixed effects. Finally, 𝜖𝑖  is the 

stochastic error term. 

Finally, we investigate potential heterogeneity with regard to firm’s size and sectoral belonging. 

While the general association between AI and the innovation inputs will be tested through Tobit 

models when innovation inputs are considered in levels 14  and Probit models when inputs are 

considered as binary variables, the heterogeneity analysis will use OLS. We opt for OLS in this case 

because it facilitates the analysis of heterogeneity by firm size and technological intensity (i.e. high- 

 
14 A Tobit model is used due to the high incidence of zero values in the dependent variables (innovation 

inputs). 



13 

vs. low-tech sectors) through the inclusion of interaction terms and the estimation of marginal 

effects.15 

 

4 Results 

4.1 Complementarity analysis 

In this subsection, we assess complementarity by examining both unconditional and conditional 

correlations among five innovation activities: total R&D, internal and external R&D, Embodied 

Technological Change (ETC) and Artificial Intelligence (AI) in 2022. 

       Table 2 presents the unconditional correlation results. These preliminary findings indicate 

positive and statistically significant correlations among the various innovation activities, suggesting 

potential complementarities. We also estimate unconditional correlations using binary indicators 

(see Appendix, Table A1), and the results are consistent with those displayed in Table 2. However, as 

previously noted, to avoid biased estimates of correlation, it is essential to control for firm- and sector-

level characteristics. 

Table 2: Unconditional correlations (levels) 

  R&D Internal R&D External R&D ETC AI 2022 

R&D 1         

Internal R&D 0.893*** 1    

External R&D 0.772*** 0.564*** 1   

ETC 0.186*** 0.190*** 0.179*** 1  

AI 2022 0.226*** 0.217*** 0.201*** 0.191*** 1 

Observations 936         

* p<0.10, ** p<0.05, *** p<0.01  
 

 
15 To compute the marginal effects, it is necessary to introduce an interaction term in Equation (1): 𝑦𝑖 = 𝛽0 +

𝛽1𝐴𝐼𝑖 + 𝛽2𝑆𝑖𝑧𝑒𝑖 + ∅1(𝐴𝐼𝑖 ∗ 𝑆𝑖𝑧𝑒𝑖) + ∑ 𝛾𝑘𝑍𝑖𝑘
6
𝑘=1 + 𝜐𝑗 + 𝜐𝑟 + 𝜖𝑖  where Sizei is a dummy variable equal 

to one if the firm is large, and zero otherwise. After estimating the equation, we compute the marginal effect of 

AIi as: δyi/δAIi = β1+ϕSizei. This leads to two cases: if Size = 1 (large firms), then δyi/δAIi = β1+ϕ and Size = 0 

(small firms) then δyi/δAIi = β1. The same holds for the case of technological intensity (high and low-tech 

sectors). 
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Table 3: Conditional correlations (levels) 

  R&D Internal R&D External R&D ETC AI 2022 

R&D 1     

Internal R&D 0.867*** 1    

External R&D 0.662*** 0.389*** 1   

ETC 0.0809** 0.116*** 0.0845** 1  

AI 2022 0.0659* 0.0756** 0.0441 0.120*** 1 

Observations 74816         

* p<0.10, ** p<0.05, *** p<0.01      
 

     We then test the conditional correlation analysis. We adopt the following strategy: first, every 

innovation input is regressed on a selected set of explanatory variables.17  Second, we predict the 

residuals and compute the correlations among them. The results are presented in Table 3: we identify 

a positive and significant correlation between artificial intelligence and,  total and internal  R&D (at 

90% of confidence) and ETC (at 99% of confidence). We also estimate conditional correlations using 

binary indicators (see Appendix, Table A2), and the results are consistent with those presented in 

Table 3.18  These results provide evidence of complementarity between AI and internal R&D, and 

between AI and ETC. The loss of significance of the conditional correlation between AI and external 

R&D possibly reflects the (understandable) prevalent use of in-house AI in enhancing in-house 

innovation activities (such as internal R&D and ETC), rather than supporting innovative activities 

conducted externally and out of control. 

     However, while the detected contemporaneous complementarities are a necessary condition to 

consider AI as an enabling technology, it is not a sufficient condition. To test whether AI is a MoI we 

 
16 The smaller number of observations in the conditional correlation analysis is attributable to missing values 

in the control variables. 
17 The control variables are employment, collaboration with universities and/or tech centres, proportion of 

engineers and graduates, technological cooperation agreements, foreign shareholding, participation in EU 

research programs, regions, and industry fixed-effects 
18 In both this correlation analysis and in the following regression estimates, we display results using binary 

indicators (0/1) of the relevant variables with two purposes in mind: 1) to provide a robustness check, to be 
compared with results based on the tobit methodology; 2) to give account of the relationships which may affect 
the decisions to invest or not invest in the different innovation inputs. 
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have to turn our attention to test the impact of AI onto subsequent investments in the various 

innovative inputs. 

 

4.2 AI as a method of invention 

This subsection presents the results of the estimations assessing AI as a MoI. The dependent variables 

include total R&D, internal and external R&D and ETC. As previously noted, the estimations control 

for firm-level characteristics: total employment, collaboration with universities and/or technology 

centres (“Collwithuni”; see Cassiman and Veugelers, 2000; Piga and Vivarelli, 2003), the proportion 

of engineers and graduates in the workforce (“%EG”; see Cohen and Levinthal, 1990; Gonza lez et al, 

2016), technological cooperation agreements (“TCA”; see Iammarino et al., 2012; Zoia et al., 2018), 

foreign ownership share (“foreign”; see Kwon and Park, 2018), and participation in EU research 

programs (“PEURP”; see Gonza les et al., 2005; Pellegrino and Piva, 2020). We also include regional 

and industry fixed effects. 

Table 4 presents the results from the Tobit estimations for total R&D, internal and external R&D, 

and ETC. The findings indicate a positive and significant association between AI and both total and 

internal R&D, as well as ETC (with the strongest association for ETC). In contrast, the relationship 

between AI and external R&D is not statistically significant. The control variables present the 

expected significant coefficients in the case of firm’s size, scientific collaborations, educated 

workforce and European programs. While cooperative agreements and foreign ownership fail to be 

significant.  

Table 5 reports the results from the probit estimations, using binary variables for total, internal, 

and external R&D, as well as for ETC. The association between AI and the decision to engage in R&D 

is positive and significant, primarily driven by the positive association between AI and the decision to 

invest in internal R&D. Additionally, the results reveal a positive and significant association between 

AI and the decision to acquire ETC.  

Overall, our results show a positive and significant relationship between AI and most of the 

innovative inputs (in both continuous and binary variable specifications).  
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Table 4: The impact of AI on innovation inputs measured in levels- Tobit estimations 

  (1) (2) (3) (4) 

VARIABLES 
R&D 

Internal 
R&D 

External 
R&D 

ETC 

 
    

AI 2018 2.791** 3.463** 1.912 4.641** 
 (1.296) (1.494) (1.488) (1.860) 

Employment 1.660*** 1.887*** 1.395** 3.154*** 
 (0.629) (0.719) (0.710) (0.919) 

Collwithuni 12.989*** 12.715*** 15.397*** 5.068** 
 (1.155) (1.345) (1.237) (2.060) 

% EG 1.925*** 2.280*** 1.968*** 0.956 
 (0.594) (0.713) (0.713) (0.859) 

TCA -0.468 -0.285 3.124 -2.943 
 (2.886) (3.244) (3.218) (5.277) 

Foreign -0.012 -0.005 -0.025 -0.066** 
 (0.018) (0.021) (0.021) (0.029) 

PEURP 5.310** 7.406*** 3.477 8.063 
 (2.262) (2.544) (3.178) (5.490) 

Constant -22.572*** -25.213*** -33.714*** -33.326*** 

 (4.300) (4.845) (5.472) (6.729) 

 
    

Observations 778 778 778 768 
Note: All the dependent variables are in logs. AI 2018 is the use of AI in 2018. Employment is the Log of 
total number of staff in the company. Collwithuni is the collaboration with universities and/or tech 
centers (dummy variable). % EG captures the proportion of engineers and graduates. TCA is the 
technological cooperation agreements (dummy variable). Foreign is the foreign shareholding (%). 
Finally, PEURP is the participation in EU research programs (dummy variable). All specifications include 
regional and industry-fixed effects. Robust standard errors are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p 
< 0.01. The reduction in the number of observations in the ETC equation reflects missing values in the 
dependent variable. 
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Table 5: The impact of AI on innovation inputs measured as binary variables –  

Probit estimations 
 

  (1) (2) (3) (4) 

VARIABLES 
R&D 

Internal 
R&D 

External 
R&D 

ETC 

      
AI 2018 0.098** 0.090** 0.043 0.086** 
 (0.046) (0.040) (0.035) (0.038) 

Employment 0.045** 0.038** 0.025 0.057*** 
 (0.022) (0.019) (0.017) (0.019) 

Collwithuni 0.464*** 0.332*** 0.350*** 0.095** 
 (0.055) (0.043) (0.040) (0.042) 

% EG 0.055*** 0.051*** 0.040*** 0.019 
 (0.019) (0.017) (0.015) (0.016) 

TCA -0.050 0.002 0.050 -0.067 
 (0.154) (0.122) (0.103) (0.112) 

Foreign -0.000 0.000 -0.001 -0.001** 
 (0.001) (0.001) (0.000) (0.001) 

PEURP 0.396*** 0.377*** 0.162 0.184 
 (0.141) (0.123) (0.128) (0.136) 
 

    
Observations 774 774 754 744 

Note: Marginal Effects. All the dependent variables are dummies (Yes or No). AI 2018 is the use of AI in 2018. 
Employment is the Log of total number of staff in the company. Collwithuni is the collaboration with universities and/or 
tech centres (dummy variable). % EG captures the proportion of engineers and graduates. TCA is the technological 
cooperation agreements (dummy variable). Foreign is the foreign shareholding (%). Finally, PEURP is the participation 
in EU research programs (dummy variable). All specifications include regional and industry fixed effects. Robust 
standard errors are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.  The slight reduction in observations for external 
R&D is due to computational issues affecting the maximum likelihood function used in the probit model, while the 
reduction in observations in the ETC equation reflects missing values in the dependent variable. 

 
 

In more detail, evidence suggests that AI may favour and accelerate R&D (especially internal one), 

probably supporting early-stage experimentation, reducing initial research costs, and improving 

accuracy and forecasting. The emphasis on internal R&D is particularly relevant as AI might enhance 

relevance and effectiveness of in-house research investments. On the other side, the lack of statistical 

significance between AI and external R&D is not unexpected: indeed, AI adoption is intended to 

increase in-house knowledge and internal technological and dynamic capabilities (Teece et al., 1997) 

and not to support innovation activities developed outside the company.  

Turning our attention to ETC, which is typically associated with improving production processes 

through cost reduction and quality enhancement, AI appears to act as a catalyst, boosting ETC 
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adoption (probably through increasing effectiveness, fostering productivity gains and minimizing 

technical breakdowns). 

 

4.3 Heterogeneity 

In this subsection, we explore the possible heterogeneities in the relationship between firm’s AI 

adoption and the subsequent investments in innovation inputs. In order to insert the relevant 

interaction variables and to interpret the estimated coefficients, we estimate linear regression models 

(OLS) and include the interactive terms between AI and size (large vs small companies)19  as well as 

between AI and technological intensity (high-tech vs low-tech sectors).20 After estimating the models, 

we compute the marginal effects to quantify the relationship and assess whether significant 

differences emerge across firm size and technological level. 

     Table 6 displays the results for the values in levels of the dependent variables (see Panel A) and 

their categorical values (see Panel B). The results suggest a positive association between AI and total 

R&D, primarily driven by internal R&D in large companies. Furthermore, AI is positively associated 

with ETC in large companies. The results for the categorical values follow the same direction as the 

previous ones.  

 

     Conversely - although the coefficient display the expected signs - our models do not find significant 

evidence regarding the enhancing role of AI in the case of small companies. These findings have 

important implications. Large companies mainly drive the revealed association between AI and 

innovation inputs, and this may be due to different factors. Large companies have the absorptive 

capacity, the dynamic capabilities and the financial resources to assimilate new AI technologies, while 

small companies often face major financial constraints and do not have enough capabilities to fully 

assimilate the latest technologies and get synergies. In contrast, large companies can benefit more 

from AI adoption since they rely on internal capabilities and organizational structures that enable 

them to make more value from AI adoption and envisage the possible positive synergy between AI 

and internal R&D activities. Similarly, ETC is positively associated to AI only in large companies. This 

 
19 To split the sample, we use the median value of employment, which is 72 employees. 
20 The classification between high- and low-tech sectors is presented in Table A.3 in the Appendix and is based 
on the OECD classification. For more detail, see Hatzichronoglou (1997) 
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is likely due to what discussed above and to their large-scale production structures, which are better 

positioned to exploit AI-driven efficiency gains.21  

 

Table 6: The impact of AI on innovation input by size (OLS) 

  (1) (2) (3) (4) 

Panel (A): Dependent variables in levels 

  
R&D 

Internal 
R&D 

External 
R&D 

ETC 

AI use in Small 0.350 0.624 0.122 0.445 

 (0.694) (0.671) (0.482) (0.776) 

     

AI use in Large 1.365** 1.185* 0.627 1.799** 

 (0.665) (0.659) (0.574) (0.735) 

Observations 778 778 778 768 

Panel B: Binary dependent variables 

 
R&D 

Internal 
R&D 

External 
R&D 

ETC 

          

AI use in Small 0.037 0.069 0.020 0.038 

 (0.061) (0.059) (0.047) (0.064) 

     

AI use in Large 0.105** 0.093* 0.053 0.123** 

 (0.053) (0.053) (0.050) (0.057) 

Observations 778 778 778 768 
Note: All the dependent variables are in logs in Panels A, while all in Panel B are dummies (Yes or No). AI is 
the use of AI in 2018. The specification contains control variables: employment, collaboration with 
universities and/or tech centers (dummy variable), the proportion of engineers and graduates, 
technological cooperation agreements (dummy variable), foreign shareholding (%), and participation in EU 
research programs (dummy variable). All specifications include regional and industry-fixed effects. 
Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 
 
 

     Finally, the results for the high- and low-tech industries22 are put forward in Table 7. The results 

suggest a positive association of AI with total R&D, internal and external R&D in the high-tech sectors, 

while the association of AI with ETC is positive and significant in the low-tech industries (while not 

significant in the other three cases). The consistent positive relationships between AI adoption and 

R&D in high-tech industries likely reflects these firms’ greater propensity to invest in innovation 

 
21 It is worth remebering that only manufacturing companies are included in our sample. 

22 For more details regarding our classification, see Table A.3. 
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activities, supported by the presence of R&D departments and the innovative nature of their 

competitive environment. In this context, AI adoption appears an accelerator of all the knowledge-

intensive activities including - in this case - external R&D, as well.  

Conversely, firms operating in low-tech sectors appear to significantly benefit from AI through an 

enhanced access to ETC, which is the dominant channel of technological advancement in the most 

traditional manufacturing industries. In these sectors, AI adoption is probably conceived as a tool to 

make technological acquisition more fruitful. 

Table 7: The impact of AI on innovation input by technological intensity (OLS) 

  (1) (2) (3) (4)  
Panel A: Dependent variables in levels 

  R&D Internal R&D External R&D ETC  

AI use in Low-tech 0.616 0.660 -0.052 1.933***  

 (0.563) (0.547) (0.444) (0.652)  

      
AI use in High-tech 1.949** 1.791* 1.679** -0.284  

 (0.949) (0.965) (0.844) (0.981)  
Observations 778 778 778 768   

Panel B: Binary dependent variables 

      

 R&D Internal R&D External R&D ETC  

AI use in Low-tech 0.045 0.055 -0.000 0.144***  

 (0.046) (0.045) (0.039) (0.051)  

      

AI use in High-tech 0.168** 0.158** 0.142* -0.040  

 (0.077) (0.078) (0.075) (0.077)  

Observations 778 778 778 768  
Note: All the dependent variables are in logs in Panels A, while all in Panel B are dummies (Yes or No). AI is the use of AI in 
2018. The specification contains control variables: employment, collaboration with universities and/or tech centers 
(dummy variable), the proportion of engineers and graduates, technological cooperation agreements (dummy variable), 
foreign shareholding (%), and participation in EU research programs (dummy variable). All specifications include regional 
and industry-fixed effects. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

  5 Conclusions 
 

Artificial Intelligence, with its pervasive influence on economies and societies, is reshaping how 

firms innovate and produce. Its rapid diffusion and large application require attention to fully 
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comprehend risks, effects and consequences. While the existing empirical evidence, using various 

proxies to operationalize AI, increasingly points to AI as a driver of productivity and economic 

growth, less is known about how AI affects conventional innovation activities and whether 

complementarities among AI and innovative inputs exist. However, if AI is to be considered not only 

a General Purpose Technology, but also a Method of Invention, understanding its interaction with 

firm’s innovation strategies is essential.  

 

      This study contributes to this debate by analysing firm-level data from the Spanish 

manufacturing sector. It explores two key questions: (1) whether AI complements R&D and other 

innovation inputs, specifically Embodied Technological Change; (2) whether AI can be considered 

as a MoI, fostering subsequent investments in innovation inputs. Results (1) show a robust 

correlation between AI adoption and internal R&D and between AI adoption and ETC (both in a 

conditional and an unconditional framework) suggesting a certain degree of complementarity; (2) 

highlight, in a dynamic perspective, a general positive and significant impact of AI on internal R&D 

and ETC, suggesting that AI may trigger and amplify internal innovation investments. 

 

      Our findings also reveal heterogeneity across firms. Indeed, our two main results (AI fostering 

internal R&D and ETC) seem to be driven by larger firms, likely able to better envisage and value 

the synergic potentialities of AI adoption. Finally, splitting by industries, companies in high-tech 

sectors seem to benefit more from AI in their R&D departments, while firms in more traditional 

industries exploit AI in increasing their acquisition of ETC. 

 

      These results may have important policy implications: promoting AI adoption might have a 

booster effect on different innovation activities acting both as a catalyst and an accelerator. Yet, 

policy makers should also be aware of a significant degree of heterogeneity across industries and 

across firm’s size (implying the need for targeted industrial and innovation policies). 

 

      From a managerial perspective, evidence suggests that AI adoption can foster innovation 

propensity. However, as highlighted by Bianchini et al. (2022) and Antonioli et al. (2024), in-house 

dynamic capabilities, human capital endowment, and organizational change might be important 

mediators of what discussed in this study. 
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     The lack of data on these latter dimensions is one of the limitations of this paper; moreover, 

dealing with contemporaneous correlations and with four-year-span regressions prevents us from 

inferring any causal effect; finally, while the Spanish case offers valuable insights, country-specific 

factors may influence the generalizability of our results. 
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Appendix  

Table A.1: Unconditional correlations (binary variables) 
 

  R&D Internal R&D External R&D ETC AI 2022 

R&D 1     

Internal R&D 0.867*** 1    

External R&D 0.768*** 0.557*** 1   

ETC 0.168*** 0.171*** 0.175*** 1  

AI 2022 0.206*** 0.201*** 0.189*** 0.164*** 1 

Observations 936         

* p<0.10, ** p<0.05, *** p<0.01      
 

 

Table A.2: Conditional correlations (binary variables) 

  R&D Internal R&D External R&D ETC AI 2022 

R&D 1     

Internal R&D 0.819*** 1    

External R&D 0.686*** 0.396*** 1   

ETC 0.0842** 0.0890** 0.0846** 1  

AI 2022 0.0636* 0.0655* 0.0466 0.105*** 1 

Observations 714         
* p<0.10, ** p<0.05, *** p<0.01 
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Table A.3. Industrial classification: high- and low-tech sectors 

Low-tech sector High-tech sector  

Meat products Chemicals and pharmaceutical 

Food and tobacco Machinery and equipment 

Beverage Computer products, electronics and optical 

Textiles and clothing  Electric materials and accessories 

Leather, fur and footwear Vehicles and accessories 

Timber Other transport equipment 

Paper   

Printing   

Plastic and rubber products   

Non-metal mineral products   

Basic metal  products   

Fabricated metal  products   

Furniture   

Other manufacturing   
Note: Based on OCDE classification (see Hatzichronoglou, 1997) 


