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1 Introduction

The definition of the relevant geographic and product markets is a paramount concern in

antitrust investigations; see, for example, the Groceries Market inquiry (2007) carried out

by the UK Competition Commission.1 This paper provides an empirical framework for

the delineation of local retail markets. In its conceptual part, it formalizes an algorithm

to empirically identify local markets. And it proposes measures of the intensity of compe-

tition in such markets. One of the key building blocks of this framework is a micro-level

demand model that captures consumers’ trade-off between pecuniary and distance costs.

In the empirical part of the paper, a micro-level demand model is developed that combines

firm level and socio-demographic characteristics to estimate UK consumers’ preferences

for grocery store choice, allowing for heterogeneous sensitivity with regard to distance and

pecuniary costs.

Spatial competition and endogenous market definition on the basis of firm level and

socio-demographic data have received increasing attention in the academic empirical in-

dustrial organization literature. Mehta (2007) and Zwanziger et al. (2002) investigate

the US nursing home industry, while Davis (2006) focusses on movie theaters and Smith

(2004) on UK grocery retailing. The common approach to market definition is the so-

called hypothetical monopolist test which is routinely, though typically informally, applied

in antitrust investigations. It iteratively examines the hypotheses that a hypothetical mo-

nopolistic owner of successively expanding sets of retail outlets, ceteris paribus, could

profitably impose a small, but significant and non-transitory price increase. This test

rests on two essential building blocks: a demand-side model that captures consumers in-

clinations to switch between outlets; and a supply-side model that captures the change

in the hypothetical monopolist’s profit from joint ownership as a function of the contem-

plated price increase and changes in costs. Section 2 of this paper formalizes this test on

the basis of units of observations as they are typically available in competition inquiries.

This formalism provides the context for the remainder of the paper which focusses on the

demand-side considerations of this framework to geographic market definition.

On the demand side, the primary determinants of switching that are of interest, and

amenable to empirical investigation, are prices and relative distances between consumers

and alternative retail outlets. Studies such as those by some of the aforementioned authors,

as well as many antitrust inquiries, examine competition within existing market structures

and, typically, use aggregate data that are defined on the level of such pre-defined markets,

1See http://www.competition-commission.org.uk/inquiries/ref2006/grocery/index.htm for details.
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e.g. market shares and population density measures in lieu of actual household locations

and distances to stores. With the increasing abundance of micro-level demand data, there

appears to be scope for a refinement of the demand side analysis. Following Smith (2004),

this paper utilizes matched micro-level data sets to approach demand side considerations

to market definition from a micro-econometric perspective. In contrast to Smith (2004),

this analysis utilizes price information. Smith’s analysis aggregates consumer choices up

to 9 UK regions as markets in which firms are assumed to set homogenous prices across

their respective stores, and uses a Bertrand-Nash equilibrium assumption to infer price

parameters in consumers’ conditional indirect utility. The analysis in this paper proceeds

on a disaggregated basis. This approach avoids conditioning the analysis on pre-defined

notions of market boundaries, as well as other aggregation issues and potential biases

that arise when matching up market level shares and population density measures with

consumer level demand models.2

The paper is organized as follows. Section 2 provides a formal characterization of the

algorithm that is commonly referred to as the hypothetical monopolist test; it also pro-

poses measures for the intensity of competition in local markets3. This section is intended

as the context for the remainder of the paper. The empirical core of the paper starts with

Section 3, describing the micro data underlying the analysis. Section 4 provides an outline

of the micro-econometric demand model. Section 5 summarizes the main features of the

estimation methodology and addresses various related computational aspects. Section

6 presents and discusses estimation results. And Section 7 provides a brief concluding

summary.

2 A Topology for Local Market Topography

2.1 Demographic Market Definition

Partition geographic space into N areas, indexed by i ∈ I = {1, · · · , N}. In economic

geography, these are sometimes referred to as output areas. Associate with each partition

a “representative consumer”, also indexed by i. Suppose that for each representative

2A variant of the demand model presented in this paper is published as Appendix 4.2 to the UK Competition

Commission’s Provisional Findings in the Groceries inquiry (2007). The responsibility for that document lies

with the Competition Commission.
3Measuring the intensity of competition is often important in assessing whether contemplated or anticipated

mergers of retail chains induce a lessening of local competition that is substantial enough to warrant structural

remedies, such as store divestments or blocking the merger altogether.
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consumer i a demand model is estimated, e.g. of the form considered in the empirical

part of this paper. Let sij denote the share of i’s demand satisfied at store j, where

j belongs to the set J of all stores. And let Ji denote the set of stores that satisfy i’s

demand, i.e.

Ji = {j ∈ J : sij > 0}.

Let µi denote the total demand or expenditure brought to the market(s) by consumer i.

This, in a sense, captures the demand side of the market.

From the perspective of firm j ∈ Ji, the amount sijµi is the total demand or expendi-

ture accruing at store j that is attributable to consumer i. Analogous to the demand side

of the market, the supply side, from the perspective of store j, is characterized by the set

Ij = {i ∈ I : sij > 0},

i.e. the set of all representative consumers a share of whose demand is satisfied by store

j. The total demand accruing at store j is

qj =
∑

i∈Ij

sijµi.

Next, the impact of a rise in store j’s price, pj , on demand accruing at store k, k 6= j,

will be examined. Under conventional monotonicity assumptions on consumer preferences,

the own-price effect is a reduction in sij for all i ∈ Ij , while the cross-price effect is an

increase in sim for all m ∈ Ji\{j}, where i ∈ Ij , i.e. for m ∈ ⋃
i∈Ij

Ji\{j}; the latter is the

set of all stores at which any of store j’s customers also shop. Hence, if k 6∈ ⋃
i∈Ij

Ji \ {j},
then demand at store k is unaffected. If, on the other hand, k ∈ ⋃

i∈Ij
Ji \ {j}, then sik,

and therefore demand sikµi, rises for all i ∈ Ij ∩ Ik. Therefore, demand qk accruing at

store k depends on the vector or prices

pk = [pj ]j∈⋃
i∈Ik

Ji
.

Henceforth, this will be reflected in the notation qk(pk). This dependence of demand

accruing at any store on prices of other stores is, of course, an implication of the underlying

demand model for different consumers shopping at that store, but each having different

sets of choice alternatives.

The chain of inter-dependences of stores’ demands and prices allows to define mo-

nopolizable markets. These will be collections of stores whose collective price increase is

profitable. Such collections will not partition the set J of all stores, i.e. a given store can

belong to several monopolizable markets.
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Consider a collection of stores C. Total profits of this collection is

π(C) =
∑

j∈C

[
(pj − cj)qj(pj)− fj

]
,

where cj and fj are store j’s marginal and fixed costs, respectively.4 The change in joint

profits due to a joint price change is then

∆π(C) =
∑

j∈C

qj(pj) +
∑

j∈C

[
(pj − cj)

∑

k∈C

[
1{pk∈pj}

∂

∂pk
qj(pj)

]]
.

For practical purposes, a small, but significant and non-transitory price increase (SSNIP)

of 5 or 10 percent is the conventional thought experiment. The stores in C belong to the

same antitrust market if the change in joint profits ∆π(C) is positive and ∆π(C \ {j})
is non-positive for all j ∈ C; i.e. substitution of marginal consumers away from stores

in C \ {j}, e.g. to store j, renders the SSNIP unprofitable, while substitution to stores

outside C is too limited to undermine the profitability of the SSNIP. From an operational

point of view, in order to define a local market that a particular store, say k, belongs to,

this approach would be applied iteratively, starting with C = {k} and expanding C by

successively adding nearby stores.

Under symmetry assumptions, cross effects will cancel out, leading to a simplification

of the expression for ∆π(C). Define the set of consumers that is captive with respect to

C by

C(C) = {i ∈ I : Ji ⊆ C},
and the set of firm j’s consumers that are peripheral to C by

Pj(C) = {i ∈ Ij : Ji \ C 6= ∅}, j ∈ C.

Customers of store j in the peripheral set are those who have store options outside C, i.e.

they are marginal or not captive.5 Then, the effect of the collective price change on joint

profits is

∆π(C) =
∑

j∈C

qj(pj) +
∑

j∈C


(pj − cj)

∑

k∈C


 ∑

i∈Pj(C)

1{pk∈pi}
∂

∂pk
sij(pi)µi





 ,

where pi = [pj ]j∈Ji .
6

Example: As an illustration, consider the following example, visualized in Figure 1.

In this example, there are 9 representative consumers (C1-C9) and 3 stores (S1-S3).

4Marginal costs are treated as constant for simplicity; this can easily be generalized.
5Note that

⋃
j∈C Pj(C) = {i ∈ ⋃

Ij : Ji \ C 6= ∅} = {i ∈ ⋃
Ij : Ji \ C = ∅}c ⊆ C(C)c.

6Note that pj is the concatenation of pi for all i ∈ Ij .
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C1

S2

C4

C7

C8

C5

S1

C2
C3

C6

S3
C9

Figure 1: Example of a consumer (C) and store (S) configuration

The consumers choices are indicated by links to the respective store locations, so that

J1 = J4 = J7 = {2}, J2 = J3 = {1}
J5 = {1, 2, 3}, J6 = {1, 3}, J8 = {2, 3}, J9 = {3}.

The areas from which demand accrues at the stores are

I1 = {2, 3, 5, 6}
I2 = {1, 4, 5, 7, 8}
I3 = {5, 6, 8, 9}.

In this example, the prices relevant to the three stores are

p1 = [pj ]j∈⋃
I1Ji = [pj ]j∈{J2∪J3∪J5∪J6} = [p1, p2, p3]′

p2 = [pj ]j∈{J1∪J4∪J5∪J7∪J8} = [p1, p2, p3]′

p3 = [pj ]j∈{J5∪J6∪J8∪J9} = [p1, p2, p3]′.

Consider a coalition of stores C = {2, 3}. For this coalition, since J1, J4, J7, J8, J9 ⊆ C,

the set of captive consumers is

C(C) = {1, 4, 7, 8, 9},
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and the consumers peripheral to the coalition members are

P2(C) = {5}, P3(C) = {5, 6}.

This completes the illustrative example. ¤
This setup allows to distinguish different classes of competitor stores of a store k, say,

depending on the degree to which these stores are linked to store k via a chain of customers

and other stores. This essentially maps out a topography of competition around a given

stores or a chain of substitution.

Define the set of direct competitors of store k by

C
(0)
k = {j ∈ J \ {k} : Ik ∩ Ij 6= ∅}.

Direct competitors are stores that share customers with store k. The first level of stores

indirectly competing with k are those that share customers with direct competitors. Define

accordingly the first degree competitive periphery of store k by

C
(1)
k = {j ∈ J \ {k} : Ij ∩ Im 6= ∅,m ∈ C

(0)
k }.

Note that C
(0)
k ⊂ C

(1)
k . This permits to inductively define the competitive periphery of

degree s by

C
(s)
k = {j ∈ J \ {k} : Ij ∩ Im 6= ∅,m ∈ C

(s−1)
k }, s = 1, · · · ,

where C
(s−1)
k ⊂ C

(s)
k for positive integers s.

This sequence of sets defines a hierarchy of dependence of store k’s strategic decisions,

e.g. with regard to price, on the strategic decisions of its competitors. Conditional on

the decisions by stores j ∈ C
(0)
k , k’s decisions are independent of the decisions of store

j ∈ C
(1)
k \ C

(0)
k , and therefore independent of the decisions by stores j ∈ C

(s)
k \ C

(0)
k

for s = 1, · · · . More generally, conditional on decisions by stores j ∈ C
(t)
k , for some

t = 0, 1, · · · , store k’s decisions are independent of the decisions of stores j ∈ C
(t+1)
k \C

(t)
k ,

and therefore of independent of those by stores j ∈ C
(s)
k \C(t)

k for s = t+1, · · · . This is akin

to a backward first-order Markov property operating within the competitive topography

around a store.

2.2 Measures of Intensity of Local Competition

Suppose a collection of stores C has been identified as a hypothetically monopolizable

market, as above. The set C can be partitioned into non-overlapping sets of stores Jf
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belonging to different fascias f ∈ F out of the set of all fascias F , so that C =
⋃

f∈F (Jf ∩
C).

Denote the hypothetical monopoly profit with respect to the stores in C by

πM (C) = max
pj ,j∈C





∑

j∈C

[(pj − cj)qj(pj)− fj ]



 .

Similarly, denote the actual, empirically observable joint oligopoly profits by

πE(C) =
∑

f∈F
max

pj ,j∈(Jf∩C)

{
(pj − cj)qj(pj)− fj

∣∣p−f
}

,

where the maximizations are over the set of fascia-level prices, given the optimal level of

prices of competing fascias, denoted by p−f = [pk]k∈C\Jf
.7 Finally, denote the hypothetical

joint oligopoly profits of stores setting prices individually by

πC(C) =
∑

j∈C

max
pj

{
(pj − cj)qj(pj)− fj

∣∣p−j
}

,

where p−j = [pk]k∈C\{j}. The value πC(C) is the most competitive (hypothetical) profit

outcome, given the local market defined by the set of stores C, and can as such serve as

a benchmark to assess effective competition. Note that under these hypothetical pricing

conduct scenarios, the functional forms of demand accruing at the various stores are

assumed to remain the same. This means that it is implicitly assumed that a different

store owner/price setter, apart from price, does not alter any other demand relevant

features (quality, range, service) of the store. Hence, this approach, as more generally

the entire hypothetical monopolist test methodology, amounts to a partial equilibrium

analysis.

Since joint profits are expected to be non-increasing with increasing levels of compe-

tition, on the basis of these definitions it follows that

πM (C) ≥ πE(C) ≥ πC(C).

In other words, the empirically observable profit outcome πE(C) is expected to lie some-

where between two hypothetical extremes, the profit outcomes of the hypothetical monop-

olistic and the hypothetical competitive conduct. One measure of effective competition

one might consider, then, is the ratio

s(C) =
πM (C)− πE(C)
πM (C)− πC(C)

∈ [0, 1],

7Note that different stores of a given fascia are allowed to charge different prices.
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which quantifies the degree to which the empirical outcome attains the hypothetical com-

petitive outcome, conditional on the set of stores C.

Alternatively, a utility based welfare measure can be considered. Let the hypothetical

monopolistic prices be

[pM
j (C)]j∈C = arg max

pj ,j∈C





∑

j∈C

[(pj − cj)qj(pj)− fj ]



 ,

and similarly the hypothetical competitive prices

pC
j (C) = max

pj

{
(pj − cj)qj(pj)− fj

∣∣p−j
}

j ∈ C,

while [pE
j (C), j ∈ C] denote the observed prices. Then, along the lines of the condi-

tional indirect utility model outlined in the empirical part of the paper, let V (pM (C)) be

the consumers’ (aggregate) indirect utility, conditional on the hypothetical monopolistic

prices, while V (pC(C)) and V (pE(C)) denote the indirect utilities conditional on the

hypothetical competitive and empirically observed prices, respectively. With conditional

indirect utility, the competitive ranking is

V (pM (C)) ≤ V (pE(C)) ≤ V (pC(C)).

Taking the hypothetically competitive outcome as the benchmark, the degree of consumer

welfare achieved relative to hypothetical competition can be measured by

su(C) =
V (pE(C))
V (pC(C))

.

This completes the formal framework for antitrust market delineation and competitive

assessment. It rests on two essential components: the demand model that characterizes

switching behavior in response to price changes, such as a SSNIP, conditional on store

attributes, such as distance to consumers, amongst others including e.g. range and stores

size; and profit calculations, which require cost data or, as a potentially crude approx-

imation, margin data.8 This framework provides the context for the following demand

analysis for grocery shopping in the UK, which explicitly captures consumer heterogeneity

in the trade-off between the sensitivity to price and distance.

3 Data

The remainder of the paper presents results from the estimation of a micro-level consumer

choice model, based on TNS consumer choice data. This analysis is of interest in its own
8Davis (2006) carries out an analysis based on margins.
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right, as it sheds light on substitution patterns that are relevant in antitrust investigations.

The analysis summarized in this part models consumer level choice of supermarket fascia

for a consumer’s one-stop shopping (OSS) and non-OSS trips.9

The TNS data used in this analysis are UK household level data on grocery shopping

trips.10 The sample comprises n = 11382 households for whom various socio-demographic

measures are observed, such as residential location in terms of UK output area, house-

hold size, social grade, ownership of cars and various others which were not used in the

present analysis. Each household reports on each grocery shopping trip, using a home

scanner, recording date and retail outlet, total spend and an itemized list of grocery items

purchased.11 The present analysis draws on TNS data relating to the 4-week period 09

Oct - 05 Nov 2006 and considers two types of shopping trips: random one-stop shopping

(OSS) trips, defined for each household as a random trip out of all shopping trips with

expenditure at least 60 percent of average weekly spending; and random non-OSS trips,

defined for each household as a random trip out of all shopping trips with expenditure

less than 60 percent of average weekly spending.12.

The TNS data were merged with data on attributes of UK retail outlets by the main

retailers, including fascia, location, store size, presence of petrol station, ATMs, cafete-

ria/restaurant and toilets at the retail outlet.13 Using mapping software, for each house-

hold in the TNS data set a household specific choice set for grocery shopping was con-

structed which consists of all the stores with net sales area of at least 280 m2 within 20

mins drive time around the center of the consumer’s output area; if there are less than

30 stores for a consumer within 20 mins drivetime, the choice set also includes more dis-

tant stores, up to a maximum drive time of 90 mins. As a by-product, household-store

9See below for a definition of OSS and non-OSS. Data on the two types of shopping trips are analyzed

separately, although it is recognized that a more comprehensive model of dynamic shopping behavior would

account for their dependence through intra-household inventory management.
10The TNS data sample was provided by the UK Competition Commission.
11TNS state that the scanner data are corroborated by purchase receipts which TNS households are asked to

submit.
12The analysis considers single OSS and non-OSS trips per household. The academic literature to date

offers little in terms of tractable dynamic microeconomic consumer choice models, hence this approach, to

a considerable extent, is predicated by this fact. A feasible alternative would be to treat multiple trips per

household as independent, but as this would presumably be a misrepresentation of the data generating process

it was not further pursued in the present analysis
13The analysis looks at Asda, Coop, Marks & Spencer, Morrisons, Sainsbury’s, Somerfield, Tesco and Wait-

rose.
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distances are recorded as additional store attributes from the household’s perspective.14

Finally, in order to carry out an analysis beyond a merely hedonic approach which

solely rests on non-pecuniary choice attributes, for each store a price measure was con-

structed. This measure amounts to a weighted average price for a selection of branded

goods which are sold by all retailers that are considered in this analysis.15 Further details

on the construction of this price measure are provided in Appendix A and a companion

paper.

Summary statistics of the sample of TNS households are given in Table 1, and of the

stores in the union of choice sets in Table 2.
HH size Cars Social Grade OSS Non-OSS Choice

(in %) (in %) (in %) (%) (Spend, £) (Spend, £) (# alt.s)

0 - 15.67 A,B 10.7 5 9.41 1.28 14

1 20.83 51.80 C1,C2 59.0 25 24.63 4.53 19

2 34.93 28.16 D,E 30.3 50 42.52 9.15 23

3 16.76 3.39 75 66.13 16.84 34

4 18.24 0.73 95 111.44 34.72 54

5 6.82 0.15

≥ 6 2.43 0.10

Table 1: TNS sample.

14It is worth noting that not all store characteristics are available for every store. This means that, in the

actual analysis, stores for which the respective characteristics are not observed could not be considered. This

leads to choice sets for some households which contain fewer than 30 choice alternatives.
15Preliminary analyses also experimented with the weighted average price for a wider selection of goods that

also includes certain non-branded items, as well as with un-weighted price measures. These measures suffer

from potential measurement error due to unobserved quality differences which, in turn, is likely to introduce

bias in estimation. They were therefore not considered any further.
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Sales Area Distance Price Other Attributes ∃ ∈ Choice set

(%) (net, in m2) (in mins) (in £) (in %) Fascia (in %)

min 241 1 2.26 Petrol 31.6 Asda 89.9

25 818 12 2.36 ATMs 70.4 Coop 69.3

50 1640 17 2.62 Café 40.0 M& S 94.6

75 3326 20 3.17 Toilets 58.3 Morrisons 89.3

max 9566 90 4.39 Sainsbury’s 92.5

Somerfield 95.6

Tesco 98.3

Waitrose 47.8

Table 2: Store attributes.

4 Demand Model

This section describes the empirical model used for analysis. The model follows a wide

literature in modern empirical microeconometric demand analysis in allowing for hetero-

geneity in consumer choice, taking into account differences in consumer characteristics

that are likely to shape consumer preferences.16 The appropriate econometric framework

for this analysis is a mixed multinomial logit (MMNL) model for discrete response.17 The

MMNL model is a generalization of the conventional multinomial logit model for discrete

response18, overcoming that model’s well-known implausibility of independence from ir-

relevant alternatives (IIA).19 As a framework for microeconometric analysis of discrete

response, this model is also attractive for a number of other reasons. It overcomes some

of the computational intractabilities encountered in other discrete choice models that do

not suffer from the IIA property, such as e.g. the multinomial probit model. Moreover,

the MMNL model does not rely on severe distributional or functional form restrictions.

16See, e.g., Hausman and Wise (1978) in the context of discrete response, and Beckert (2005), Dubin and

McFadden (1984) and Smith (2004) for joint discrete and continuous choices.
17See McFadden and Train (2000) for a comprehensive discussion of the MMNL model, and the literature

cited therein. Models of this type have been used previously in the microeconometric analysis of consumer

choice in retail markets; e.g. Smith (2004). The MMNL model is an essential building block in most empirical

work in industrial organization using market level data, following Berry (1994) and Berry, Levinsohn and Pakes

(1995).
18See McFadden (1973, 1975, 1984) and Luce (1959, 1977).
19See, e.g., Debreu (1960). Nested multinomial logit (NMNL) models (McFadden (1978, 1981)) are an

alternative approach to overcoming the IIA problem.
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Indeed, the generality of the MMNL model is due to the fact, first demonstrated by Mc-

Fadden20, that, under mild regularity conditions, any discrete choice model, arising from

a latent random utility model, can be approximated as closely as desired by a MMNL

model. The remainder of this section briefly reviews the MNL model and its main prop-

erties and subsequently introduces the MMNL model; see McFadden and Train (2000) for

further details and discussion.21

Denote the indirect utility derived by consumer i from choosing store j in her choice

set Ji by

uij = x′ijθ + εij

where xij is a vector of store attributes, possibly interacted with consumer characteris-

tics, θ is a parameter vector, and εij is an idiosyncratic utility component that captures

unobserved store and consumer taste attributes, for j ∈ Ji. Assuming that εij has a type

1 extreme value distribution and is identically and independently distributed across i and

j, the model yields MNL choice probabilities

Pij(xi; θ) = Pr(uij > uik ∀k 6= j; k, j ∈ Ji)

=
exp(x′ijθ)∑

k∈Ji
exp(x′ikθ)

,

where xi = (x′k)
′
k∈Ji

.

Let the price of product j, pj , be an element of xij , with parameter θ0 < 0 which is

an element of the vector θ. Note that this model, then, yields point own price elasticities

of the form

ηjj(xi; θ) :=
∂Pij(xi; θ)

∂pj

pj

Pij(xi; θ)
= (1− Pij(xi; θ))pjθ0,

while point cross price elasticities are of the form

ηjk(xi; θ) :=
∂Pij(xi; θ)

∂pk

pk

Pik(xi; θ)
= −Pik(xi; θ)pkθ0, j, k ∈ Ji,

i.e. point cross price elasticities in response to a change in pk do not vary across j (IIA

property), regardless of how close products j and k are located in characteristic space and

what relative valuation consumer i places in these.

The MMNL generalizes this model by allowing consumer i’s valuation of price and

other characteristics to depend on i’s observable and unobservable characteristics. In

doing so, the model allows for heterogeneity in consumer tastes that permits substitution

20McFadden and Train (2000), Theorem 1.
21The MNL model presented here is often referred to as conditional logit because it conditions on choosing

within a given choice set, thereby preventing by design any substitution to a potential outside alternative.
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patterns in response to price changes that capture the consumer’s idiosyncratic taste

for product attributes. This implies, for example, that the MMNL model allows for

consumers who value a certain product attribute, say geographic proximity of a store, to

exhibit a higher substitution elasticity with respect to other nearby stores, rather than a

substitution elasticity that is uniform across all stores, as in the MNL model.

Define a MMNL model as a MNL model with random coefficients θ drawn from a

parametric conditional cumulative distribution function G(θ; zi, β), i.e.

Pij(xi, zi; β) =
∫

θ
Pij(xi; θ)dG(θ; zi, β) = Eθ [Pij(xi; θ)|zi;β] ,

where zi is a vector of consumer i’s observed characteristics, Eθ[·|zi, β] is the conditional

expectation operator with respect to the conditional distribution G(θ; zi, β), β is a vector

of parameters, and j ∈ Ji.22

Notice that the integral is analytically intractable and, hence, must be approximated

by simulation. Simulation can be carried out by drawing θ̃s, s = 1, · · · , S, randomly from

G(θ; zi, β), conditional on zi and given β, and approximating Pij(xi, zi;β) by its simulated

analogue

P̃ij,S(xi, zi; β) =
1
S

S∑

s=1

Pij(xi; θ̃s) = ES

[
Pij(xi; θ̃s)|zi; β

]
,

where the operator ES [·|zi;β] denotes an empirical expectation, or sample average, across

the S simulated MNL probabilities {Pij(xi; θ̃s), s = 1 · · · , S}, evaluated at the simulation

sample draws, conditional on zi and given β.

As a consequence of mixing, the point own and cross-price elasticities induced by the

MMNL model differ from their MNL counterparts, and are given by

εjj(xi, zi;β) :=
Eθ [Pij(xi; θ)(1− Pij(xi; θ))θ0pj |zi; β]

Eθ [Pij(xi; θ)|zi;β]
,

εjk(xi, zi;β) := −Eθ [Pij(xi; θ)Pik(xi; θ)θ0pk|zi; β]
Eθ [Pij(xi; θ)|zi;β]

, j, k ∈ Ji,

so that the point cross-price elasticity is seen to overcome the limitations imposed by the

MNL model.

In the particular implementation of the MMNL model considered here, the coefficients

on price and drive time distance in the indirect utility are allowed to be random on

R2− = {w ∈ R2 : w1 ≤ 0, w2 ≤ 0}, with a cumulative distribution function G(θ; zi, β) that

is jointly log-normal, with a conditional mean that depends linearly on zi, and allowing for

22This notation is more general than maybe needed. Non-random components of θ will have probabilistic

point mass at a point and can then be viewed as elements of β.
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the possibility of correlation between the random coefficients . The vector zi is taken to

include household size as well as indicators for social groups and E and of car ownership.

5 Estimation

This section provides a very brief overview of the estimation methodologies appropriate

for the empirical models examined in this analysis.

The parameter vector of interest in the MNL model θ can be estimated by maximizing

the sample log-likelihood function (ML estimation), obtaining the ML estimator (MLE)

θ̂n = arg max
θ





n∑

i=1

∑

j∈Ji

δij ln(Pij(xi; θ))





for a sample of n consumers, where δij = 1 if consumer i chooses alternative j, and

δij = 0 otherwise. Based on the MLE θ̂n, point own and cross price elasticities can be

estimated as En

[
ηjj(xi; θ̂n)

]
and En

[
ηjk(xi; θ̂n)

]
, respectively, where the operator En[·]

is defined analogously as above. It is a well known result in classical econometric theory

that, if the MNL model accurately captures the true data generating process, i.e. the

distributional assumptions underlying the MNL model are valid and the indirect utility

function is appropriately specified, then the MLE is consistent, asymptotically normally

distributed and fully efficient.

This is to be compared to the estimation methodology suitable for the MMNL. The

parameters of interest of the MMNL model, β, can be estimated by maximizing the

simulated log-likleihood function (MSL estimation), obtaining the MSL estimator (MSLE)

β̂n,S = arg max
β





n∑

i=1

∑

j∈Ji

δij ln
(
P̃ij,S(xi, zi; β)

)


 .

Simulation sampling introduces additional noise into the estimator, so that the asymptotic

variance-covariance matrix of the MSLE is inflated relative to the asymptotic variance-

covariance matrix of the MLE, by a factor of 1 + 1
S .23 In the application of the MMNL

model carried out in this analysis, the number of simulation sample draws is S = 10. This

induces a loss of efficiency of the MSLE relative to the MLE of about 10 percent. Clearly,

as more simulation sample draws are added, i.e. as S is increased, the relative efficiency

loss is diminished, albeit at computational cost.

23See, e.g., McFadden and Ruud (1994).
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In case of the MMNL model, the point own and cross price elasticities can be estimated

by En

[
ε̃jj(xi, zi; β̂n,S)

]
and En

[
ε̃jk(xi, zi; β̂n,S)

]
, respectively, where ε̃jk is the simulated

analogue to εjk which replaces the operator Eθ by ES . For the purpose of competition

assessment, arc own and cross elasticities, typically associated with a 5 percent price rise,

are of interest. In the MMNL model, define the α-percent arc price elasticity by

αjk(xi, zi; β) =
Eθ [Pij((xi \ pk), (1 + α)pk; θ)|zi, β]− Eθ [Pij(xi; θ)|zi, β]

Eθ [Pij(xi; θ)|zi, β]
,

where (xi \ pk) denotes the vector xi with the component pk omitted. The displayed

expression corresponds to an α-percent arc own price elasticity when j = k and an α-

percent arc cross price elasticity otherwise. Arc elasticities can readily be estimated by

ES

[
α̃jk(xi, zi; β̂n,S)

]
, where, similarly, α̃ is a simulated analogue to α.

The accuracy of the estimation of the asymptotic variance-covariance matrix hinges on

the computational and numerical complexity of the estimation problem and on the validity

of the asymptotic convergence. An alternative approach to estimating the estimator

variance covariance matrix, which some authors argue is more robust and, in any event,

computationally more convenient, is to generate bootstrap replications of the estimator

and approximate the true, but unknown sampling distribution of the estimator by the

empirical distribution of the bootstrap replicates.24 The analysis presented in this paper

mimics this approach by generating 10 MSLEs on the basis of 10 samples of the entire

data set and deducing a bootstrap MSLE as the sample mean and a bootstrap variance-

covariance matrix as the sample variance-covariance matrix of these.25 Although it is

not fully explored in the present analysis, the bootstrap approach provides the additional

advantage that the variability of derived estimates, such as elasticity point estimates,

can be readily assessed. This compares favorably to the more cumbersome derivation of

uncertainty estimates on the basis of the asymptotic distribution of the estimator, using

the so-called delta method (Taylor series expansion).

6 Estimation Results

This section presents MSL estimation results, using the methodology described in the

foregoing two sections. The first part reports and compares MNL and MMNL estimates
24See, e.g., Efron and Tibshirani (1993).
25Strictly speaking, the bootstrap approach chosen here was less efficient than it could have been, because

the bootstrap samples consisted of sub-samples of the entire population, without the typical replications. The

loss in efficiency appears negligible, however, given the large sample and the results of some auxiliary runs on

larger data sets that yield point estimates that are remarkably close to the mean bootstrap results.
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based on the OSS data, and offers some insights from specification testing. The second

part considers some derived estimates. The third part carries out the same analysis for

non-OSS data.

6.1 Estimation Results for OSS Data

Table 3 presents MNL and MMNL point estimates, and for the latter bootstrap standard

errors, as well as minimum and maximum bootstrap replicates.26 The table also reports

the values of the log-likelihood at the MLE for the MNL, and the value of the simulated log-

likelihood at the MSLE for the MMNL. While informative, these numbers are not directly

comparable because, conditional on the data, the former is a constant, while the latter

is a random variable, due to the additional simulation noise. In other words, repeated

simulation samples, conditional on the data, i.e. conditional on the {zi, i = 1, · · · , n},
will generate a distribution of the value of the simulated log-likelihood function whose

variance is due to simulation noise.
26Net sales area is in 1000 m2. The variable mission cost is defined as the interaction between spend and net

sales area, scaled by 1e− 08.
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MNL std.error MMNL std.error min max

distance (intercept) -0.2412 0.0023 -1.2221 0.1275 -1.5686 -1.0961

distance (hh size) -0.1994 0.0109 -0.2207 -0.1789

distance (soc gr DE) 5.1311 0.1395 4.9730 5.4765

distance (cars> 0) -0.0000 0.0003 -0.0006 0.0000

distance (std dev) 0.5081 0.027 0.4840 0.5711

net sales area -0.0181 0.0142 -2.2435 0.0649 -2.3745 -2.1880

mission cost 3.5214 0.2005 4.3626 0.3508 4.1468 5.3263

petrol 0.1809 0.0290 4.3121 0.0966 4.2028 4.4816

ATMs 0.2749 0.0528 0.1520 0.0080 0.1459 0.1723

restaurant 0.1765 0.0334 -0.7933 0.0614 -0.8792 -0.6427

toilets 0.4914 0.0508 3.1599 1.0068 0.3354 3.7773

price (intercept) -7.6530 1.0640 4.4106 0.1200 4.1439 4.5683

price (hh size) 0.4056 0.0112 0.3870 0.4256

price (soc gr DE) 4.3542 0.2042 3.9143 4.6051

price (std dev) 1.0091 0.0298 1.0534 0.9471

Asda 16.4536 580.8978 1.8873 0.1892 1.7574 2.4038

M&S 2.08130 904.4186 -3.6754 0.7782 -4.2618 -1.5166

Morrisons 16.8094 580.8977 2.1289 0.6092 1.5108 3.8018

Sainsbury’s 18.5671 580.8975 1.1866 0.1009 0.9655 1.3818

Somerfield 23.6604 580.8976 -5.0673 0.3143 -5.5801 -4.6356

Tesco 17.0485 580.8977 5.1998 0.814 4.6477 7.4424

Waitrose 22.6120 580.8975 0.9684 0.0777 0.7703 1.0476

distance-price cov -0.3016 0.0118 -0.3232 -0.2829

log-lik. -19179 -10769

Table 3: ML and MSL estimation results; OSS data.
The MMNL estimation results exhibit several notable differences compared to the

MNL estimates. While the average distance effects are comparable, the MMNL model

exhibits a substantially larger average price sensitivity, which, next to the MMNL re-

finement of the MNL, leads to different predicted substitution patterns, as shown below.

Note that in the MMNL model the intercepts of the random coefficients correspond to

− exp(−1.2221) = −0.2946; this implies, for example, that the expected distance coeffi-

cient for a two person household of social groups A-C is -0.2250, but it is substantially

higher for households in social groups D and E. The trade-off between price and distance

is further explored below. The MMNL model estimates of the standard deviation of the
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random price and distance coefficients suggest that there is considerable heterogeneity in

consumers’ distance and price sensitivity, and that, conditional on socio-demographics, on

average more price sensitive consumer are less sensitive with regard to distance. Moreover,

larger households appear to be more price sensitive than smaller ones, but less distance

sensitive; the coefficient on car ownership in the distance coefficient is presumably poorly

identified because the effect is picked up by the household size coefficient.27 The MMNL

model also appears to produce statistically significant and economically plausible fascia

effects, unlike the MNL model.

The MNL model, if appropriate, can be estimated more efficiently than the MMNL

model because, in this case it would impose valid restrictions and it does not require

simulation. Hence it is of interest to empirically examine whether the restriction imposed

by the MNL model, which is obviously nested within the class of MMNL models, hold in

the sample. The null hypothesis of the MNL being appropriate can be tested by means of

a Lagrange multiplier (LM) test. This test has the appealing property that its asymptotic

χ2 distribution does not depend on the mixing distribution. Details of the test procedure

are given in McFadden and Train (2000). For the models considered in Table 3, the LM

test statistic takes the value 438, which exceeds the 5 percent critical value of a χ2
2 which

is 5.99. Hence, the null hypothesis of no mixing (i.e. MNL) can be robustly rejected.

It may also be worth noting that the adjusted R2 statistic for the estimated MMNL

model of 0.69 compares favorably to the adjusted R2 statistic for the estimated MNL

model, which is 0.44. Strictly speaking, however, the same qualification applies with

regard to comparability as in the case of the values of the log-likelihood functions evaluated

at the estimators.

While the model appears to reproduce the sample market shares for the large fascias,

it attempts to attribute some choices to fascias which were never chosen for OSS shopping

in the sample, such as Coop and M&S; this appears to be predominantly at the expense

of Sainsbury’s predicted share. Table 4 provides a comparison of actual and predicted

shares.
27Tobit regressions of number of cars on household size and other household characteristics exhibit a statis-

tically significant and positive coefficient on household size, i.e. larger households tend to have more cars.
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Fascia actual predicted

Asda 0.2348 0.2753

Coop 0 0.0395

M& S 0 0.0358

Morrisons 0.1642 0.1450

Sainsbury’s 0.2021 0.1045

Somerfield 0.0424 0.0436

Tesco 0.3416 0.3096

Waitrose 0.0150 0.0133

Table 4: Actual vs. predicted shares, MMNL model.

6.2 Derived Estimates

On the basis of the MSLE, arc elasticities for a 5 percent price rise can be estimated, as

outlined above. The resulting estimates permit to assess the competitive constraints that

the various fascias exert on each other. Table 5 provides point estimates. The table can

be read along its rows, i.e. it gives the proportionate change of the predicted share of the

column fascia in response to a 5 percent increase in the row fascia’s price. For comparison,

Table 6 provides MNL point estimates of point own and cross price elasticities which by

model design lack the power to distinguish differential substitution patterns arising from

consumer preference heterogeneity.

Asda Coop MS Morr. Sains. Somerf. Tesco Waitr.

Asda -0.4606 0.0274 0.0241 0.2086 0.0439 0.0175 0.2830 0.0146

Coop 0.0046 -0.1616 0.0082 0.0079 0.0084 0.0083 0.0075 0.0071

M&S 0.0038 0.0075 -0.1596 0.0063 0.0093 0.0073 0.0066 0.0103

Morr. 0.0529 0.0253 0.0214 -0.2677 0.0320 0.0175 0.0588 0.0138

Sains. 0.0169 0.0208 0.0247 0.0241 -0.1901 0.0179 0.0286 0.0285

Somerf. 0.0039 0.0106 0.0101 0.0072 0.0093 -0.1363 0.0063 0.0085

Tesco 0.1210 0.0541 0.0505 0.1632 0.0900 0.0339 -0.2340 0.0464

Waitr. 0.0009 0.0026 0.0040 0.0016 0.0042 0.0024 0.0024 -0.1526

Table 5: MMNL estimated arc elasticities, 5 percent price rise of row fascia, OSS data.
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Fascia own price elasticity cross price elasticity

Asda -0.3678 0.1781

Coop -0.7105 4.71e-10

M&S -0.7308 1.81e-10

Morrisons -0.4537 0.1173

Sainsbury’s -0.4852 0.1505

Somerfield -0.7888 0.0453

Tesco -0.3359 0.2336

Waitrose -0.7441 0.0372

Table 6: MNL estimated point elasticities.
The MMNL estimates in table 5 suggest that Asda, Morrisons and Tesco are each

others’ strongest competitors, while Sainsbury is more constrained by Tesco and Morrisons

than by Asda and itself, in turn, imposes a relatively weak constraint on them. The MNL

model is not capable of delivering this more refined competitive assessment. Indeed, apart

from the cross price elasticities being uniform across competitors, Table 6, together with

Table 4, also shows that they are closely aligned with the fascia shares in the sample, e.g.

Tesco’s cross elasticity being 50 percent larger than Asda’s.

The estimated model can also be used to empirically assess the extent to which con-

sumers will choose more distant OSS shopping in response to a fascia’s price rise. Table 7

shows the expected increment in distance, in terms of drive time, conditional on switching

to a competing fascia in response to a 5 percent price rise of the row fascia. The second

column displays the fraction of the row fascia’s consumers that are predicted to switch to

more distant stores, while the third column lists the fraction that is predicted to switch

to more distant store with larger sales area than the biggest store of the row fascia in the

choice set. The table suggests that only a relatively small fraction of consumers is diverted

to stores farther away than the stores of the fascia that hypothetically raises price by 5

percent.
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Distance increment Fraction Fraction

to larger stores

Fascia (in mins) (in %) (in%)

Asda 8.1614 4.24 2.82

Coop 10.0336 4.15 2.56

M&S 7.2744 3.44 2.38

Morrisons 8.3299 4.68 3.35

Sainsbury’s 6.7438 4.24 2.21

Somerfield 7.6990 9.18 5.65

Tesco 9.5841 8.56 5.21

Waitrose 8.1293 1.68 0.70

Table 7: Predicted substitution effects, OSS 5 percent price increase
Similarly, the substitution pattern to large stores in response to a price rise can be

estimated. Table 8 displays the respective proportions switching to stores of various size

categories in response to a 5 percent price rise of the row fascia. Column (1) provides the

row fascia’s predicted market share after it hypothetically raises its price by 5 percent;

column (2) the predicted market share loss, i.e. the difference between column (1) and

the second column in Table 4; column (3) and column (7) are the ex post market shares

of the row fascia’s stores with net sales area exceeding 2000m2 and 1400m2, respectively;

column (4) corresponds to the predicted loss in market share accruing at stores of at least

2000m2 net sales area; this can be compared with the row fascia’s market share diverted to

competitor stores with net sales area exceeding 2000m2 (column (5)) and 1400m2 (column

(8)); columns (6) and (9) put diverted markets shares to competitors with at least 2000m2

and 1400m2 sales area in proportion to total lost market share, i.e. columns (5) and (8)

in relation to column (2). The results in Table 8 suggest large proportions of diverted

demand in response to a price rise accrue at large stores. On average, about two thirds

accrue at stores with net sales area exceeding 2000m2, and for the big four UK grocers

four fifth accrue at stores with net sales area of at least 1400m2
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Fascia (1) (2) (3) (4) (5) (6) (7) (8) (9)

Asda 14.85 -12.68 14.54 -12.37 8.49 66.96 14.78 10.34 81.56

Coop 3.31 -0.64 0.11 -0.02 0.43 67.88 0.35 0.52 80.90

M&S 3.01 -0.57 0.03 -0.00 0.37 65.56 0.38 0.44 77.51

Morrisons 10.62 -3.88 8.14 -2.95 2.82 72.79 10.30 3.18 81.85

Sainsbury’s 8.47 -1.99 6.29 -1.48 1.29 65.10 7.31 1.54 77.30

Somerfield 3.76 -0.59 0.08 -0.01 0.38 64.45 0.44 0.46 77.12

Tesco 23.71 -7.24 14.90 -4.61 5.72 78.94 18.17 6.53 90.14

Waitrose 1.12 -0.20 0.24 -0.04 0.12 58.56 0.63 0.15 71.82

Table 8: Predicted substitution effects by store size, OSS data; in percent.

6.3 Non-OSS Data

This subsection presents estimates based on the sample of non-OSS trips. Table 9 parallels

Table 3 in the first subsection and summarizes MNL and MMNL point estimates, next to

standard error estimates as described above.
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MNL std.error MMNL std.error min max

distance (intercept) -0.26880 0.0030 -1.1625 0.1189 -1.2698 -0.8402

distance (hh size) -0.2266 0.0700 -0.4450 -0.1949

distance (soc gr DE) 5.0732 0.3065 4.5382 5.5564

distance (cars > 0) 0.0001 0.0005 -0.0008 0.0010

distance (std dev) 0.4896 0.0588 0.3298 0.5483

net sales area -0.0387 0.0165 -2.1372 0.1369 -2.2448 -1.7962

mission cost 9.6093 0.7344 4.2533 0.1899 4.0103 4.5726

petrol 0.0708 0.0381 4.3551 0.3244 4.0516 5.2095

ATMs 0.0979 0.0537 0.1523 0.0070 0.1466 0.1708

restaurant 0.0812 0.0434 -0.7919 0.0154 -0.8229 -0.7640

toilets 0.0777 0.0529 2.8392 2.4955 -4.2338 4.2201

price (intercept) -4.3474 0.7686 4.4615 0.0785 4.3886 4.6100

price (hh size) 0.3935 0.0169 0.3581 0.4205

price (soc gr DE) 4.3967 0.1530 3.9896 4.5620

price (std dev) 0.9935 0.0401 1.0466 0.9048

Asda 19.8140 751.5414 1.8231 0.0678 1.7003 1.9597

M&S 2.5765 1144.392 -3.9083 0.3189 -4.6720 -3.4679

Morrions 20.0350 751.5414 2.0171 0.1048 1.8600 2.2631

Sainsbury’s 20.9548 751.5413 1.2049 0.0331 1.1565 1.2806

Somerfield 23.755 751.5413 -5.1998 0.6151 -6.9144 -4.7924

Tesco 19.9693 751.5414 5.0932 0.1695 4.7679 5.2790

Waitrose 23.2831 751.5413 1.0780 0.1766 0.9793 1.5597

distance price cov -0.3049 0.0122 -0.3307 -0.2910

Table 9: ML and MSL estimation results; non-OSS data.
As one might expect for non-OSS trips, the implied arc price elasticities are estimated

to be slightly lower than in case of OSS trips. Table 10 provides the respective derived

MMNL estimates.
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Asda Coop MS Morr. Sains. Somerf. Tesco Waitr.

Asda -0.4220 0.0274 0.0238 0.1824 0.0421 0.0178 0.2327 0.0145

Coop 0.0051 -0.1624 0.0082 0.0078 0.0085 0.0084 0.0078 0.0071

M&S 0.0042 0.0076 -0.1603 0.0064 0.0095 0.0075 0.0068 0.0105

Morr 0.0548 0.0245 0.0212 -0.2598 0.0314 0.0178 0.0565 0.0138

Sains 0.0183 0.0212 0.0253 0.0245 -0.1875 0.0183 0.0291 0.0290

Somerf 0.0044 0.0107 0.0101 0.0074 0.0094 -0.1388 0.0066 0.0085

Tesco 0.1236 0.0546 0.0507 0.1529 0.0880 0.0345 -0.2233 0.0459

Wait 0.0011 0.0027 0.0043 0.0017 0.0044 0.0025 0.0025 -0.1529

Table 10: MMNL estimated arc elasticities, 5 percent price rise of row fascia, non-OSS data.
Similarly, non-OSS is slightly more local, or more sensitive to distance, both in the

MNL and the MMNL model. This implies somewhat smaller expected incremental travel

distance in response to a 5 percent price rise, conditional on switching. Table 11 provides

comparators for non-OSS to Table 7.

Distance increment Fraction Fraction

to larger stores

Fascia (in mins) (in %) (in%)

Asda 8.5246 4.40 2.50

Coop 9.3949 3.92 2.14

M&S 7.8290 3.80 2.14

Morrisons 9.2949 4.52 2.38

Sainsbury’s 5.5781 5.23 3.57

Somerfield 7.8619 8.68 5.83

Tesco 6.7482 9.27 6.42

Waitrose 7.1613 0.83 0.59

Table 11: Predicted substitution effects in terms of distance and size, non-OSS
Finally, substitution patterns with respect to store size can be inferred for non-OSS

trips, comparable to the results for OSS trips in Table 8 above. For non-OSS trips, the

corresponding derived estimates are reported in Table 12, with column definitions as for

Table 8.
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Fascia (1) (2) (3) (4) (5) (6) (7) (8) (9)

Asda 15.08 -11.01 14.75 -10.75 7.30 66.33 15.01 8.95 81.26

Coop 3.47 -0.67 0.11 -0.02 0.45 67.38 0.37 0.54 80.75

M&S 3.20 -0.61 0.03 -0.01 0.40 65.02 0.40 0.47 77.24

Morr 11.01 -3.87 8.39 -2.93 2.79 72.16 10.68 3.15 81.50

Sains 9.02 -2.08 6.66 -1.55 1.33 64.10 7.75 1.60 76.77

Somerf 3.94 -0.63 0.08 -0.01 0.41 64.19 0.47 0.49 77.02

Tesco 24.77 -7.12 15.43 -4.50 5.60 78.63 18.96 6.38 89.54

Wait 1.24 -0.22 0.24 -0.04 0.13 58.02 0.67 0.16 71.63

Table 12: Predicted substitution effects by store size, non-OSS data; in percent.
A comparison of Tables 8 and 12 suggests that Asda and Tesco lose a slightly larger

share of the OSS market than in the non-OSS market in response to a hypothetical 5

percent price rise, while the opposite holds for for smaller retailers such as Coop, M&S,

Sainsbury’s and Somerfield. For Morrisons, the estimated effect is about the same for the

two types of shopping. The previous finding that large proportions of OSS is diverted to

stores with large net sales area appears to also hold for non-OSS.

In summary, the results delivered by the analysis provide evidence of heterogeneity

in consumers sensitivity to price and distance attributes of the relevant retail offering,

controlling for other observable attributes of choice alternatives and taking account of

the consumer’s socio-demographic profile. Poorer consumers are found to be more price

and distance sensitive than richer consumers; larger households are more price sensitive,

but, being more likely to own a car, are less sensitive to distance; unobserved consumer

characteristics that are likely to govern their sensitivity to distance, e.g. health and

physical mobility, are found to be negatively correlated with those that govern their

sensitivity to price.

The analysis also presents own and cross price elasticities of fascia choice probabili-

ties. These suggest that Asda, Morrisons and Tesco are each others’ strongest competitors,

while Sainsbury is more constrained by Tesco and Morrisons than by Asda and itself, in

turn, imposes a relatively weak constraint on them. Moreover, the estimated model sug-

gests that, in response to a fascia’s price rise, only a relatively small fraction of consumers

is prepared to incur higher travel costs conditional on switching to competing fascias,

between 1 and 9 percent, regardless of shopping type; the induced travel costs arise from

more distant shopping, with increments estimated to range from 6 to 10 minutes for OSS,

and from 5.5 to 9 minutes for non-OSS. Similarly, conditional on switching to a competitor

in response to a fascia’s price increase, the estimated model suggests that on average two
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thirds of the diverted consumption goes to large stores, with net sales area above 2000 m2,

and for the big four UK fascias four fifth is diverted to stores with net sales area above

1400 m2; only a comparably small fraction is predicted to turn to smaller stores. This

suggests that store size is a defining strategic variable with regard to a fascia’s design of

the product offering. These findings appear robust with respect to the two definitions of

shopping employed in the analysis, OSS and non-OSS.

7 Concluding Remarks

This paper provides a micro-econometric framework for geographic antitrust market def-

inition and competitive assessment, embedded into the classical hypothetical monopolist

test paradigm. Focussing on its demand-side component, it presents a demand model

in an application for UK grocery retailing that captures the essential trade-off between

distance and pecuniary costs. It builds on a general random utility model for fascia choice

that allows for observed and unobserved heterogeneity in consumer preferences. It identi-

fies socio-demographic household characteristics that drive price and distance sensitivity

in one-stop and non-one-stop grocery shopping. The analysis suggests a trade-off between

sensitivity with respect to price and distance, with poorer households being more sensi-

tive to both and larger households being more sensitive to price, while being less resistant

to more distant shopping. With regard to competition relevant insights, this analysis

provides evidence that, in response to a fascia’s hypothetical price rises, most consumers

who switch to a competitor fascia are likely to switch to one with larger net sales area,

but only a small fraction of those who switch are expected to travel further to do their

grocery shopping. These findings appear robust with respect to the definition of shopping

employed in the analysis.

Future work will use this model, nested within the framework of Section 2, to combine

it with cost or margin data in order to define hypothetically monopolizable markets,

similar to Davis (2006) and Smith (2004).

A Construction of Price Measures28

The price measure is based on the responses to MPQ question 58, in which the CC defined

about 220 product categories and asked parties to provide store-level prices for their top-

selling product (SKU) in the particular category (top-selling across all stores of the party,

28With thanks to Jonathan Beck for contributing this section on the construction of price measures.
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e.g. for Tesco top-selling across all Tesco fascias including One-Stop).

This implies that, for many product categories, the given prices are not for the same

product (e.g. for ice-cream one party gives the Haagen-Daz price and another gives the

own-label price.)

1) Selection of component goods

For the six product definitions covered in the Brands-basket, however, (almost) all

parties gave prices for exactly the same product (e.g. for lemonade the price of Schweppes

Original Lemonade.)

The larger baskets were determined by selecting those 47 out of the 220 product

definitions that will not include well-known brands (KVI) - these product definitions

mainly relate to basic groceries like flour, fruits, vegetables, meat, etc. (see product list

in last e-mail). However, most stores did not seem to sell all 47 products in this basket.

Therefore, the number of products in the basket was iteratively reduced by those products

with the largest shares of missing values across stores, to arrive at basket sizes of 33, 16

and 12 products. Therefore, by definition store coverage of the respective price measure

increases when the number of products in the basket decreases.

Since most stores seem to sell the six branded products, these were added to the above

16- and 12-product baskets to increase their product coverage without loosing too many

stores.

2) Weights

In the ”Plain” version or the price measure, the posted prices of the component prod-

ucts are simply added. Thus each has the same weight.

In the ”Weighted” version of the price measure, the total revenue generated by sales of

the component goods were calculated across all stores (national GBP-sales of the compo-

nent goods). Each product weight in the basket is then its share in total basket revenues

(national GBP-sales of this product divided by national GBP-sales of all products in the

basket). Thus the price of bananas tends to have a larger weight in the price mesaure in

which it is included, while the price of cabbage tends to have a small weight.
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