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ABSTRACT

Complementary technological linkages provide access to the external technology at lower cost and compen-
sate for weak or absent local technological capabilities, which has an important role in improving carbon
emissions efficiency. This study examines this issue in the industrial sector in China. First, input—output data
are reconstructed, and the industrial carbon emissions efficiency of each province in China is calculated using
the super-SBM DEA method. Second, we examine patent text data to measure complementary technological
linkages, applying the principle of co-occurrence. We also calculate regional technological capabilities, which
are further divided into related and unrelated technological diversification. Third, we apply a benchmark
model combined with moderating effect tests. The results reveal an inverted U-shaped impact of comple-
mentary technological linkages on industrial carbon emissions efficiency, while the impact of the number of
interregional linkages is U-shaped. The interactive term of regional technological capabilities and comple-
mentary technological linkages have a positive effect on industrial carbon emissions efficiency, while the
interactive effect of related technological diversification and complementary technological linkages on
industrial carbon emissions efficiency is positive and larger than that of unrelated technological diversifica-
tion. The moderating effect tests indicate that in comparison to low-income regions, the interactive term of
regional technological capabilities and complementary technological linkages in high-income regions has a
negative influence on industrial carbon emissions efficiency. Furthermore, unrelated technological diversifi-
cation matches better with complementary technological linkages in promoting industrial carbon emissions
efficiency in high-income regions than related technological diversification. The results of this study can help

regional policymakers to choose different innovative strategies to achieve the green transition.
© 2023 Published by Elsevier Espafia, S.L.U. on behalf of Journal of Innovation & Knowledge. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

by 2060,” which is called "dual-carbon" goals for short. Based on cur-
rent pledges, it will take 71 years for the EU, 43 years for the US, and

The continuous rise of carbon (CO,) emissions has led to the sharp
acceleration of the global greenhouse effect. As the largest developing
country with carbon emissions (Yang et al., 2022), China attaches
great importance to mitigating climate change, taking it as a major
strategy for national economic and social development. At the 75th
United Nations General Assembly on September 22, 2020, China
promised that the nation’s “carbon dioxide emissions will reach a
peak in 2030 and [China would] strive to achieve carbon neutrality
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37 years for Japan from carbon peak to carbon neutrality, while China
gave itself only 30 years. This means that China, the world’s largest
developing country, has pledged to take about 30 years to achieve
the world’s highest carbon emissions intensity reduction, also repre-
senting the shortest time to achieve peak carbon and carbon neutral-
ity globally. Therefore, it is essential to reference China as an example
to investigate its carbon mitigation process and approach and share
the carbon mitigation experience with other countries.

Carbon emissions efficiency reflects the circumstances of carbon
mitigation from the input—output perspective, which can also reveal
economic growth patterns (Wu & Yao, 2022; Jin & Chen, 2022). Multi-
ple factors can affect carbon emissions efficiency (Leung & Maroto-
Valer, 2014; Wang et al., 2019; Sun & Huang, 2020), among which,
technology innovation is key to determining input—output efficiency.
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Therefore, previous studies have focused on the impact of technologi-
cal innovation on carbon emissions efficiency (Huang et al., 2020; Xie
et al,, 2021; He, Fu, & Liao, 2021). Gu (2022) demonstrated that tech-
nological innovation is beneficial for carbon emissions reduction, as
well as serving in a negative moderating role between economic
growth and carbon emissions; however, advancing renewable energy
use faces various technological challenges, which can also affect fur-
ther improvement in carbon emissions efficiency (Lewis & Nocera,
2006).

Regional technological capabilities refer to the collection of local
advantaged technologies that are important for developing mitiga-
tion technologies and enhancing carbon emissions efficiency (Shah-
zad et al, 2022). A considerable number of scholars assert that
regional technological capabilities are conducive to the improvement
of carbon emissions efficiency (Cheng et al., 2018; Xie et al., 2021; Xu
et al.,, 2021; Paramati et al., 2022); however, some research has dem-
onstrated that there is a threshold for the impact of regional techno-
logical capabilities on carbon emissions efficiency. Huang et al.
(2021) used the dynamic panel threshold model to investigate the
nonlinear relationship between energy invention patents and carbon
emissions. Liu et al. (2022) used smooth transition regression to
explore the nonlinear impact of China’s power generation and tech-
nological capabilities on carbon emissions reduction. Some scholars
have also noted that the impact of regional technological capabilities
on carbon emissions may depend on the specific regional social or
economic environment (Du et al., 2019).

Reaching the double-carbon goals as expediently as possible
requires full use of regional technological capabilities as well as the
consideration of interregional technological linkages. Interregional
technological linkages refer to low-cost access to external new tech-
nologies that compensate for weak or absent regional technological
capabilities (Balland & Boschma, 2021). Studies on carbon emissions
efficiency have primarily focused on regional technological capabili-
ties, neglecting complementary interregional technological linkages.
Previous studies have primarily measured interregional linkages
using trade linkages, labor mobility, patent cooperation, and social
ties, while minimal research has explored technological cooperation
due to data inaccessibility (Balland, 2012; Tavassoli & Carbonara,
2014; Miguelez & Moreno, 2018; Abbasiharofteh & Broekel, 2021),
leaving considerable room for further investigation.

This study endeavors to fill these research gaps in three ways. First,
to measure complementary technological linkages, we use patent co-
inventors’ text data to determine interregional technological linkages
and identify missing regional technological capabilities by applying
the principle of co-occurrence as the premise of complementary tech-
nological linkages. In contrast to the number of patents, this approach
better reflects interregional technological linkages, offering a channel
for identifying and developing the promising technologies in some
regions. Second, the study provides deep analyses of regional techno-
logical capabilities, which is divided into related and unrelated tech-
nological diversification according to the different characteristics of
local advantaged technologies. Technological diversification can
advance carbon mitigation technology; however, few studies have
analyzed the role of technological diversification in enhancing carbon
emissions efficiency. Third, this study analyzes the interactive impact
of regional technological capabilities and complementary technologi-
cal linkages on carbon emissions efficiency, which could be used to
examine whether the relationship between regional technological
capabilities and complementary technological linkages is substitut-
able or complementary combined with heterogeneous region attrib-
utes. In addition to the different characteristics of local advantaged
technologies, we further investigate the relationship between related
(or unrelated) technological diversification and complementary tech-
nological linkages, providing theoretical evidence for coordinating the
relationship between regional technological capabilities and comple-
mentary technological linkages in different regions.
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Overall, limited research has focused on carbon emissions effi-
ciency from the perspective of complementary technological link-
ages, and research on this issue is essential for promoting the
realization of China’s double-carbon goals and green economy devel-
opment. Compared with existing studies, the marginal contributions
of this study can be delineated as follows. First, unlike previous litera-
ture that primarily centered on the impact of technology innovation
or technological linkages driving carbon emissions efficiency, this
study specifically examines technological diversification, comple-
mentary technological linkages, and their interactive effects on car-
bon emissions efficiency. Second, this study use patent text data to
measure regional technological capabilities, complementary techno-
logical linkages, and related (unrelated) technological diversification,
which is more suitable to represent regional technology develop-
ment. Third, this study investigates the interactive effect between
regional technological capabilities and complementary technological
linkages on carbon emissions efficiency, also exploring the interac-
tion of related (unrelated) technological diversification and comple-
mentary technological linkages combined with heterogeneous region
features. The findings enrich the evidence regarding China’s progress
in carbon mitigation from the perspective of complementary techno-
logical linkages.

The remainder of this paper is organized as follows. The second
part presents a literature review and our research hypotheses. The
third part details the study’s methodology and data. The fourth part
presents the empirical analysis. The fifth part offers our discussion,
and the sixth part presents conclusions and future research.

Literature review and research hypotheses
Complementary technological linkages and carbon emissions efficiency

Technological innovation activities that are internally self-reliant
for a long period may become stagnant due to the lack of novel ideas
and information (Boschma, 2005). This circumstance could be solved
through the development of technological linkages that provide new
opportunities and advantages that are not locally available (Cao et al.,
2022). Technological linkages are channels of access to other regions’
knowledge, information, and technology (Bathelt et al., 2004), while
complementary technological linkages are connections to compen-
sate for missing local knowledge, information, and technology that is
abundant in other regions. Such linkages can further facilitate firms’
introduction to low-carbon technologies and increase the carbon
emissions efficiency. Complementary interregional linkages are built
on mutual trust and understanding between partners that are not
always definitive; therefore, the communication of interregional
complementary knowledge, information, and technology is uncer-
tain, and risky. The maintenance of complementary technological
linkages is also quite complex and requires a certain level of absorp-
tive capacity, while identifying, evaluating, and absorbing new tech-
nologies from elsewhere usually incurs significant costs. A surplus of
complementary interregional linkages increases the difficulty of
processing and absorbing technologies within a region (Dahlander &
Frederiksen, 2012; Breschi & Lenzi, 2015), which may crowd out, or
slow down the introduction of low-carbon technologies and even
weaken carbon emissions efficiency. Based on these arguments, we
propose the following hypothesis:

H1,: The impact of complementary technological linkages on car-
bon emissions efficiency is an inverted U shape, and an optimal
level of complementary technological linkages is possible.

Scholars have also highlighted the important role of gatekeepers
who create unique connections with external firms locally (Gallo &
Plunket, 2020). Gatekeepers can exploit technological capabilities to
translate and recode knowledge absorbed from the outside world so
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that it can be easily understood, processed, and used by firms within
the region (Giuliani & Bell, 2005; Morrison, 2008). The gatekeeper
acts as an “interface” between the region and beyond, enabling what
is known as a pipeline, promoting the communication of information
and knowledge within and beyond the region. This means that a
wider range of information and knowledge can be accessed, contrib-
uting to the update and expansion of regional technological capabili-
ties (Breschi & Lenzi, 2015). Interregional linkages are conduits for
the flow of information and knowledge, and the number of ties deter-
mines the degree of connectivity between regions (Phelps et al.,
2012). When the number of interregional linkages is lower, there is a
lack of opportunity for reorganization with external knowledge
between firms in the region, reducing the complexity and diversifica-
tion of technology, and ultimately leading to a decline in regional cre-
ativity. When the number of linkages between regions is higher, the
region gains more opportunities for information exchange, advancing
regional creativity, and accelerating the regional development of new
low-carbon technologies, ultimately enhancing carbon emissions
efficiency. Based on this, we propose the following hypothesis:

H1p,: When the number of interregional linkages exceeds a certain
threshold limit, continuing to increase the number of interre-
gional linkages enhances carbon emissions efficiency.

Complementary technological linkages, regional technological
capabilities, and carbon emissions efficiency

Regional technological capabilities are the combination of local
advantaged technologies that are developed mostly from existing
local factor endowment. If a region is not equipped with relevant fac-
tor endowment, it may be difficult to develop local advantaged tech-
nologies. Innovation is not a random event and is often partially
path-dependent (Kogler et al., 2013; Balland & Boschma, 2021).
Regions are more likely to develop new technologies related to
locally existing advantaged technologies that provide similar (but not
identical) capabilities, such as knowledge, skills, and institutions
(Boschma, 2017). Clustering reduces search and transaction costs for
firms and makes the exchange and provision of knowledge, informa-
tion, and services easier, establishing beneficial conditions for
regional low-carbon development (Xu et al., 2022). Combined with
the above assertions, these findings suggest that local technological
capabilities and complementary technological linkages are equally
important for advancing low-carbon technology innovation. Added
value can be created when local technology is combined in new ways
with externally accessible complementary technology. Firms within
a cluster no longer rely solely on internal technologies but actively
seek out useful complementary external technologies. Without com-
plementary interregional linkages, regional technology break-
throughs are likely to converge in the direction of overlap and
homogeneity, increasing the risk of technology lock-in and stagna-
tion. Conversely, without intensive complementary interregional
linkages, the value of new technology gained through interregional
linkages is likely to be unrealized. Technological linkages and local
technology complement one another, establishing a virtuous cycle of
technology innovation and promoting the development of carbon
mitigation technology; therefore, we propose the following
hypothesis:

H2,: Complementary technological linkages and regional techno-
logical capabilities jointly boost carbon emissions efficiency.

Regional technological diversification not only withstands the
negative effects of interregional technological linkages, but also
matches with interregional linkages as a pathway for reducing
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carbon emissions (Frenken et al., 2007). This is an endogenous and
dynamic process that depends on local technological capabilities
(Whittle, Lengyel, & Kogler, 2020). Linkages also reflect the different
types of regional advantaged technologies. According to the related-
ness between local advantaged technologies, technological diversifi-
cation is divided into related technological and unrelated
technological diversification. Related technological diversification
refers to higher relatedness between regional advantaged technolo-
gies, while unrelated technological diversification indicates lower
relatedness between regional advantaged technologies. As technolo-
gies are often associated with specific products and production pro-
cesses (Frenken & Boschma, 2007; Frenken et al., 2007), the
contribution of technology to improving efficiency primarily depends
on the kind of technology that is introduced and how well this tech-
nology matches existing regional technological capabilities. There-
fore, we not only need to consider external technological linkages,
but also must identify whether they complement local technological
capabilities to nurture new technology development and further
enhance the efficiency (Boschma et al., 2008).

Complementary technological linkages provide technology that a
region does not possess, from which it is more likely for related
regional technological diversification to occur for added benefits
because the complementary technologies are missing in the region. It
paves the way to complement the weak or absent regional carbon
emissions reduction technologies. In contrast, unrelated technologi-
cal diversification is a collection of advantaged technologies that
almost have no similar technology base that matches regional capa-
bilities. It is more probable for regional unrelated technological diver-
sification to overlap with complementary external technologies,
rendering complementary technological linkages less effective in
contributing to the weak or lacking local carbon emissions reduction
technologies; thus, we propose the following hypothesis:

H2,,: The impact of related technological diversification and com-
plementary technological linkages on carbon emissions effi-
ciency is greater than that of unrelated technological
diversification.

The moderating role of the regional economy

The effect of technological diversification on carbon emissions
efficiency may be influenced by the regional level of economic devel-
opment (Du et al., 2019; Milindi & Inglesi-Lotz, 2022). Furthermore,
the joint effects of interregional technological linkages and regional
technological capabilities may depend on local conditions (Breschi &
Lenzi, 2015). Due to the uneven regional economic development in
China, differences in regional technological capabilities may exist (Du
et al., 2014). Regions with high levels of economic development tend
to have superior knowledge accumulation and are more open and
inclusive, meaning that incumbent firms may face information over-
load, making external complementary technologies substitutable for
local technological capabilities (Ter Wal et al., 2016; Eriksson & Len-
gyel, 2019). At the same time, diversification is also closely related to
local technological capabilities (Boschma, 2017). Incumbent firms in
regions with high levels of economic development tend to dominate
the regional economy through technology agglomeration in the long
term, generating a greater need for breakthrough technology changes
to increase the potential for economic growth, which could be
achieved by unrelated technological diversification (Zheng et al.,
2021). Therefore, the complementary effects of unrelated technologi-
cal diversification are likely to be higher compared to related techno-
logical diversification, and the opposite could hold for regions with
low levels of economic development. Based on the above analysis,
we propose the following hypotheses:
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H3,: In comparison to low-income regions, the interaction of
complementary technological linkages and regional techno-
logical capabilities in high-income regions has a negative
effect on industrial carbon emissions efficiency.

H3,: In comparison to low-income regions, unrelated technologi-
cal diversification matches better with complementary tech-
nological linkages in high-income regions than related
technological diversification for enhancing the industrial car-
bon emissions efficiency.

Methodology and data
Model construction

To investigate the impact mechanism of complementary techno-
logical linkages on carbon emissions efficiency, we propose the fol-
lowing benchmark model:

CEE;; = a + B, InCL; + B3 InCL2 + B, InNL;; + B InNLZ

3
+ZVan+ni+9r+8n )
k=1
where i refers to the region, t is the time, CEEit represents carbon
emissions efficiency in industry i at time t, and InCLit, and InNLit
denote the logarithm of complementary technological linkages and
the logarithm of number of interregional linkages, respectively. Xit
represents three control variables, including industrial structure
(ISit), energy structure (ESit) and ownership structure (MSit). n;, 6;,
ande;.are region fixed effects, time fixed effects, and the random error
term.To test whether the interaction of regional technological capa-
bilities and complementary technological linkages improves indus-
trial carbon emissions efficiency, referencing Zheng & Ran (2021), we
further investigate the relationship between technological diversifi-
cation and complementary technological linkages on industrial car-
bon emissions efficiency, transforming the benchmark model as
follows:

CEEy = a + By My x InCLy + B, InCLi; + B5InCLZ + B, InNL; + fB5 InNLZ
3
+ Vi + 11+ O+ i @
k=1
where Mit represents regional technological capabilities (DEit),
related technological diversification (REit), and unrelated technologi-
cal diversification (UNit), respectively. §;...85 and y;...y;are the esti-
mated coefficients. The meanings of other variables are the same as
above.

We also investigate the moderating role of the regional economy
to draw different conclusions regarding the relationship between
complementary technological linkages and industrial carbon emis-
sions efficiency by comparing different regional economic levels. To
do so, we introduce the variable Inpgdp into the & (®), and the
detailed model is as follows:

CEE;s = o + ByM;: x InCLi x Inpgdp + B, InCLi x Inpgdp
+B51InCL2 x Inpgdp + B, InNL; x Inpgdp + Bs InNLZ 3)
3
x Inpgdp + Inpgdp + > "y Xie + 1; + Or + &

k=1

Variables setting

Carbon emissions efficiency (CEE). The data envelopment analysis
(DEA) method proposed by chames et al- (1978) jg 3 non-parametric effi-
ciency evaluation approach that applies a mathematical program-
ming model to calculate the efficiency scores of multiple decision
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making units (DMUs). To address the defects of the DEA model in
managing undesirable outputs, Tone (2001) was the first to propose
the slacks-based measure (SBM). Zhou et al. (2010) expanded the
SBM model, which is widely used as the “super” SBM model and can
better manage undesirable outputs, non-radial, and non-oriented
measurements.

In this study, a super-SBM DEA model with undesirable outputs is
calculated to evaluate the carbon emissions efficiency of China’s
industrial sector. Here, a production system with N DMUs is con-
structed, each of which includes three factors, including inputs (X),
desirable outputs (yd), and undesirable outputs (yu). Each unit produ-
ces S1 desirable outputs and S2 undesirable outputs through m
inputs. The input and output vectors are defined as follows:

X = [X1,Xp, o, Xn) eR™M yd = [y y3, . yd] e R,y
= V1, Y5, - Vnl 4)

Assuming that all values are positive in Eq. (4), the SBM model can
be written as follows:

— %221 Si [ Xik
Sy

d
1 n SP iyl
1 + 51+52 (Zp_l yzk + Zq:‘l ygk

minp =

Xik = E}‘:1 X,'jj.j + Sf
S.LQ Vo = 2 Vaiki —Sh (5)
y;k = Ej,'lzl yglllj +53

where Xik denotes the i input value of DMUK, y%pk, and y"pk are the
desirable outputs and undesirable outputs./ is the weighted vector.
Only when p = 1 and the slack variables (S; =0, Sg =0,and S; = 0)
meet the conditions, can DMUk be determined to be efficient in a
SBM model. The value ofp is between 0 and 1; if p < 1, the inputs and
outputs must be improved. To further rank the DMUs by efficiency
state, the improved super-SBM model (Tone, 2004) can be expressed
as follows:

3=

¢ = min

X =00 e Xihi

yr< ZF:].#kygjij

Y= Z]n:],%ky;j/lj
Aj>0,x->x,, ¥4~ <yd yi- >yt

(6)

where ¢ is the efficiency value of the DMUs that can be greater than
1, and the definitions of other variables are the same as in Eq. (5). The
super-SBM model includes undesirable outputs and can effectively
avoid the slackness problem. Moreover, DMUs are effectively ranked
in this model. Thus, a super-SBM model in this study is constructed
to evaluate total factor carbon emissions efficiency.

To evaluate efficiency more accurately, referencing previous stud-
ies, we select the three inputs of capital (K), labor (L), and energy (E)
(Xie et al.,, 2021; Fang et al., 2022), industrial added value (Y) is the
desirable output, and the undesirable output is industrial carbon
emissions (CO2) (Zhou & Nei, 2012; Tu, 2008; Chen, 2009). Due to the
inaccessibility and calculation complexity of the depreciation rates of
fixed assets in various industry sectors, we use the annual average of
industrial net fixed assets to measure capital input. The average num-
ber of employees in the industrial sector is used as labor input. Termi-
nal consumption of various energy sources in the industrial sector
(raw coal, coke, gasoline, kerosene, diesel oil, fuel oil, liquefied petro-
leum gas, natural gas, heat, and electricity) represents total energy
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Table 1
Indicators for measuring carbon emissions efficiency.
Dimensions Components Unit
Inputs Capital 10,000 yuan
Labor 1000 people
Energy Billion Btus
Desired outputs Industrial added value 10,000 yuan
Undesired outputs CO, emissions Million ton

consumption. Some missing data is determined using linear interpo-
lation and moving average methods. CO2 emissions are calculated
using the following formula given by 2006 Intergovernmental Panel
on Climate Change Guidelines for National Greenhouse Gas Invento-
ries:

Eco, =) Ei-Si-Efi 7

where ECO2 is the CO2 emissions from energy consumption; Ei rep-
resents the consumption of fossil energy, in which i indicates the
kind of fossil fuel; and Si and Efi refer to the standard coal equivalent
coefficient and the CO2 emissions factor, respectively. The indicators
for measuring CEE are presented in Table 1 below.

Complementary technology linkage (CL) and regional technological
capabilities (TD)

Following Balland & Boschma (2021), complementary technologi-
cal linkages make up for insufficient regional technological capabili-
ties with the help of other regions. However, regional technological
capabilities are measured by comparative advantage technologies
(Hidalgo et al., 2007). In this study, we use listed companies’ patent
text data to calculate the comparative advantage technology field in
detail as follows:

patent}, /> patent}, -
>_ipatentt, />, patentt, ~ (8)
0, else

RTA!, =

where t represents time, i denotes province, and k is the technology
field, which is denoted by the four-digit patent classification code
according to the International Patent Classification principle. RTA"ik is a
binary variable indicating whether province i has a comparative advan-
tage in technology field k at time t. Furthermore, we also identify tech-
nology field h, which has not achieved the comparative advantage, but
is related to the comparative advantage technology field k by the prin-
ciple of co-occurrence. Technology field h is more likely to have com-
parative advantage than other technology fields that are unrelated to
the comparative advantage technology field k. It also represents the
main direction of future research and development.

Referencing Balland & Boschma (2021), given technology field h at
time t for province i, we add up all comparative advantage technol-
ogy fields (k’) related the technology field h in province i’ and prov-
ince i, and each k’ that is not within the range of all the comparative
advantage technology fields k associated with the technology field h
in province i at time t. Province i’ technology help is the ratio of all k’
and the sum of all the technology fields (d) associated with technol-
ogy field h at time t. Here, if technology field k’ and d are present,
then Ihk’= 1 and Ihd = 1, specifically

Pheike eirzhigkne
CID;}, = . 9)
> heidzhlna

After calculating the CTD!,, we next determine the number of
interregional linkages (NLf,) between province i and province i’ by
the principle of co-occurrence of patent applicant information on the
same patent. If both patent applicants occur in the same patent infor-

mation together, an interregional linkage is established. The number
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of interregional linkage (NL,) is measured by calculating the interre-
gional linkage between province i and province i’ at time t.

Finally, we calculate the multiplication of CTD},andNL{, and NL,
for all province i’ as the complementary technological linkages (CL,)
as follows:

CLY, = 7, (CLD, x NTL, x 100) (10)

In addition, referencing Hialgo et al. (2007) and Boschma &
Capone (2015), given the technology field h at time t for province i,
regional technology capability is measured by the ratio of all compar-
ative advantage technology fields (k) related to technology field h at
time t for province i and the sum of all technology fields (d) related to
the technology field h at time ¢, as follows:

Dt — D keikznlnk
=N
> dzhlnd

Furthermore, if different comparative advantage technology fields
are related for a province, this indicates that the province is more
likely to achieve related technological diversification. In contrast, if a
province has more unrelated comparative advantage technology
fields, this indicates that the province will more likely reach unre-
lated technological diversification. Incremental and Schumpeter
innovation have the characteristics of related technological diversifi-
cation (Li & Jian, 2021), representing two different aspects of regional
technological capabilities with differing impacts on CEE. Referencing
Zheng et al. (2021), we calculate the related and unrelated technolog-
ical diversification as follows:

TD{h — (TDf)o
oo (TDY)

x 100 (11)

wfh = (12)
where O; represents the collection of technology fields that does not
have comparative advantage in province i at time t, (TD}), repre-
sents the average technological capabilities within the ensemble, and
0,o(TD!) represents the standard deviation of the technological capa-
bilities within the ensemble. If @}, <0, this indicates that the capabil-
ity of the technology field is relatively small and the corresponding
technological diversification is considered to be unrelated technolog-
ical diversification for province i. Ifw}, > 0, the corresponding techno-
logical diversification is related technological diversification for
province i. Based on this, we determine the number of related and
unrelated technological diversification fields as the value of variable
RE and UN, respectively.

Control variables

Control variables include industrial structure (IS), energy structure
(ES), and ownership structure (MS). Specifically, referencing Wei et al.
(2008) and Pang, Li, & Lu (2011), industrial structure (IS) is defined as
the proportion of added value of the secondary industry in the GDP of
each province, energy structure (ES) is defined as the proportion of
coal consumption in industrial energy consumption of each province,
and ownership structure (MS) is defined as the proportion of the
number of employees of state-owned enterprises in the total number
of regional employees.

Data sources

This study uses annual panel data in 30 provinces of China
between 2000 and 2019 (due to missing data on energy consumption
and carbon dioxide emissions in the relevant years for Tibet, our
study is limited to 30 provinces and regions of China, excluding
Tibet). Specifically, the data used to calculate the CEE include labor,
capital, and industrial output collected from the China Statistical
Yearbook and the China Industrial Economy Statistics Yearbook for
2000-2019. To eliminate the influence of inflation, capital and
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Table 2

Descriptive statistics.
Variable  Obs. Mean SD Min Max
CEE 28,058  0.692 0.357 0.131 1.533
D 28,058  3.301 6.494 0.000  100.000
RE 28,058 52.678 31.739  0.000  133.000
UN 28,058  78.871 44391 0.000  173.000
InCL 28,058  4.210 3.934 0.000 11.401
InNL 28,058  6.068 1.612 0.000 8.919
IS 28,058  0.436 0.099 0.162  0.596
ES 28,058  0.430 0.150 0.070  0.801
MS 28,058  0.796 1.492 0.013  12.908

industrial output are adjusted to constant prices in 2000 on the basis
of fixed asset investment and industrial producer price indices pub-
lished by the National Bureau of Statistics of China. The data on
energy consumption are from the China Energy Statistical Yearbook
for 2000—2019 and converted into standard coal equivalent. Among
them, any missing data for the CEE calculation are determined using
the average annual growth rate and the interpolation method.

The data for complementary technological linkages and regional
technological capabilities use patent text data of listed companies in
China National Knowledge Infrastructure patent database from 2000
to 2019. Each patent text contains information such as patent code,
patent applicant, patent address, application time, and other relevant
data. The co-occurrence of patent applicants and patent codes,
respectively determines the number of interregional linkages and
related technology fields.

The data for control variables are collected from the China Statisti-
cal Yearbook for 2000—2019. The descriptive statistics of all the varia-
bles in this study are presented in Table 2.

Empirical analysis
Unit root and cointegration tests

The Fisher—Phillips—Perron (PP) test that addresses the problem
of the unit root in a heterogeneous panel is used to test the unit root
of each variable to determine the stationarity. The results are pre-
sented in Table 3, revealing that all variable series are stable at a 1%
significance level.

Benchmark regression

Column (1) of Table 4 presents the benchmark model regression
results. The first-order coefficient of complementary technological link-
ages is significantly positive at a 1% significance level, while its square
coefficient is significantly negative. This indicates that the impact of
complementary technological linkages on industrial CEE is an inverted
U shape, and either too much or too little complementary technological
linkage will hamper the improvement of industrial CEE. The primary
term coefficient of the number of interregional linkages is significantly
negative, but its secondary term coefficient is significantly positive, indi-
cating that the influence of the number of interregional linkages on
industrial CEE is U-shaped. When the number of interregional linkages
has not reached the threshold, increased interregional linkages inhibit
the enhancement of industrial CEE. When interregional linkages exceed
the threshold, this accelerates the pace of industrial CEE. As for control
variables, the coefficients of industrial, energy, and ownership structure
are significantly negative at the 1% level. The results indicate that an
increased proportion of secondary industry, coal consumption, and
state-owned enterprises significantly weaken industrial CEE, which
aligns with the research of Wei et al. (2008). Column (2) of Table 4 indi-
cates that the interaction of regional technological capabilities and com-
plementary technological linkages has a positive effect on industrial
CEE, demonstrating that the combination of regional technological
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Table 3
Findings from panel Fisher—PP unit root test.

Variables Level First difference
chi-squared  p-value chi-squared  p-value

CEE 1835060  0.000 3709175"°  0.000
InCL 17317227 0.000 357.1096"°  0.000
InNL 199.3842°"  0.000 3746976 0.000
InCI? 168.1568""  0.000 3585322 0.000
InNI? 196.8752""  0.000 3745746 0.000
TD*InCL 161.3560°"  0.000 3623568 0.000
RE*InCL 160.0282°"  0.000 213.6033"°  0.000
UN*InCL 1619939  0.000 3583368 0.000
IS 187.3883"  0.000 368.1161°°  0.000
ES 191.7149"  0.000 369.9973"°  0.000
MS 195.8072""  0.000 3815258 0.000

Note: *** indicates 1% significance level.

Table 4
Benchmark regression results.
Variable Model1 Model2 Model3 Model4
TD*InCL 0.0008""
(18.78)
RE*InCL 0.0004™"
(38.63)
UN*InCL 0.0004""
(43.47)
InCL 0.0237" 0.0173" 0.0252"" 0.0276™"
(12.22) (8.82) (13.31) (14.67)
InCL? -0.0027"" -0.0025"" —0.0060"" -0.0071""
(~11.74) (~10.64) (—24.70) (—28.64)
InNL -0.2576"" —0.2554"" -0.2100"" -0.1952""
(—45.69) (—45.59) (~37.30) (—34.60)
InNL? 0.0340"" 0.0332" 0.0280™" 0.0266""
(68.31) (66.87) (55.03) (51.87)
IS -0.1809™" -0.1861"" -0.2706"" -0.2360""
(—8.49) (—8.78) (~12.95) (-11.41)
ES -0.2602"" -0.27517" -0.2954"" -0.2888""
(-21.15) (—22.46) (—24.58) (—24.22)
MS -0.0552"" -0.0541" —0.0540"" -0.0529""
(-50.83) (~50.02) (-51.01) (~50.28)
_cons 11394 11652 1.13557" 1.0855""
(59.46) (61.03) (60.81) (58.40)
TFE Yes Yes Yes Yes
OverallR>  0.3816 0.3995 0.4071 0.4184
F-statistic ~ 4465.89"" 4000.80"" 430219 4407.42""
RSE 0.3184 0.2926 0.3240 0.3231
(d.f=406.80) (d.f=356.82) (d.f=418.90) (d.f=400.32)
N 28,040 28,040 28,040 28,040

Note: t values are in parentheses; ***, **, and * denote 1%, 5%, and 10% significance
levels, respectively; TFE indicates time fixed effect; RSE represents the residual
standard error.

capabilities and complementary technological linkages benefit indus-
trial CEE. Columns (3) and (4) of Table 4 indicate that the coefficient of
the interaction of related technological diversification and complemen-
tary technological linkages on industrial CEE is positive and larger than
that of unrelated technological diversification. Significant differences in
the impact of different types of technological diversification are con-
firmed, while the effect of related technological diversification is stron-
ger than that of unrelated technological diversification.

Endogeneity tests

Instrumental variable method

This study adopts the instrumental variable method combined
with two-stage least squares (2SLS) to conduct the endogeneity test.
We use CL and NL lagged with one period as the instrumental varia-
bles of CL and NL with no lag, while RE and UN with two periods
lagged are taken as instrumental variables to replace CL and NL in the
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Table 5
Instrumental variable test results.
Variable Modell Model2 Model3 Model4
TD*InCLic; 0.0041""
(5.82)
RE;2*InCLir 0.0064"
(2.14)
UNieo*InCLi. 0.0013""
(3.70)
InCLir_; 0.0955* 0.0985™ —~0.1206 0.1018*
(1.91) (2.18) (-0.61) (1.89)
InCl?. ~0.0151""  —0.0155"" -0.0390" —0.0281""
(-2.73) (-3.11) (~2.02) (~3.86)
InNLi_; -1.0062"° —0.6508" 23173 —0.2565
(—6.54) (-3.83) (1.50) (~0.89)
InNI?;,_; 0.0879"" 00546  —0.2640 0.0100
(6.39) (3.40) (~1.60) (0.35)
IS —0.4835 -1.0409" -7.8632" -1.5572""
(~1.29) (—2.46) (-2.14) (-291)
ES —-0.7738""  —0.7508"" -1.7969"" —-1.0099""
(-11.41)  (-1347) (-3.22) (—6.14)
Ms -0.0340"" -0.0356" -00815"" -0.0419""
(-9.25) (-1046)  (-3.59) (—6.80)
_cons 40176 332457 14772 3.0056""
(11.66) (11.78) (1.29) (5.19)
TFE No No No No
Kleibergen—Paap rk 45823 38687  3.867 20540
LM
Cragg—Donald Wald F 11519 7657 0.907 4178
Kleibergen—Paap rk Wald F 11.498"  7.804" 0.814 4240
Hausman test 503.65°  607.83"° 605617 153197
N 10,703 10,703 10,703 10,703

Note: Z values are in parentheses; *** **, and * denote 1%, 5%, and 10% significance
levels, respectively; TFE indicates time fixed effect.

benchmark model. The second stage regression results of 2SLS are
presented in Table 5. In the test of insufficient identification of instru-
mental variables, the Kleibergen—Paap rk LM statistic passed the sig-
nificance test at the 1% level, confirming sufficient identification of
instrumental variables. In addition, the Kleibergen—Paap rk Wald F
statistic is significantly greater than the critical value of the 10% F sta-
tistical significance level proposed by Stock & Yogo (2002). This indi-
cates that there are no weak instrumental variables, and the
coefficients of TD*InCL, RE*InCL, and UN*InCL are significantly positive,
while the coefficient of InCIL? is significantly negative, which is basi-
cally consistent with our benchmark regression results.

Dynamic panel model

Considering the dynamic continuity of industrial CEE, we also
construct a dynamic panel model and use the system generalized
method of moments (SYS-GMM) estimation method to test endoge-
neity. Specifically, the lagged term of the explained variable (CEEit-
1) and the main explanatory variables (InCL, InNL, InCL? InNL?,
TD*InCL, RE*InCL, and UN*InCL) are regarded as endogenous varia-
bles, and the control variables (IS, ES, and MS) are taken as instru-
mental variables. The two-step SYS-GMM method is used for
regression, and the results are presented in Table 6. In Table 6, the
value of the AR(1) test approaches 0, while the values of AR(2) and
Hansen tests are greater than 0.05, indicating first-order autocorre-
lation but no second-order autocorrelation in the residuals. The
Hansen test confirms that the instrumental variables are valid and
all models pass the setting test. The regression results of each
explanatory variable in the sys-GMM do not significantly differ
from that of benchmark model.

Robustness tests

We conduct three robustness tests; first, displacing the dependent
variable by using the ratio of industrial added value to industrial
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Table 6
SYS-GMM test results.
Variable Model1l Model2 Model3 Model4
TD*InCL 0.0001""
(251.12)
RE*InCL 0.00001""
(271.24)
UN*InCL 0.00002""
(636.23)
InCL 0.0043™" 0.0039" 0.0038"" 0.00417"
(193.47) (446.92) (463.72) (923.51)
InCL? —-0.0004""  —0.0003"" -0.0004"" ~0.0006""
(-131.18)  (-355.79) (—425.04) (~810.33)
InNL 0.0227" 0.0204™ 0.0257" 0.0283"
(110.87) (474.41) (683.54) (889.23)
InNIL? -0.0014""  —0.0013™" -0.0017" -0.0020""
(-101.61)  (—387.55) (~554.19) (—854.38)
IS -02942"" —0.2955" -0.2996"" -0.3049"
(-539.62)  (-2471.41) (-2684.02) (—6864.68)
ES 0.0679™" 0.0664"" 0.0664"™" 0.0658""
(262.05) (1923.91) (1180.38) (1060.58)
MS -0.0043""  —0.0043"" -0.0045"" —0.0045""
(-328.80)  (-979.25) (~959.17) (—3891.42)
_cons 0.04717" 0.0574"" 0.0444™ 0.0445"
(56.93) (354.43) (425.40) (382.21)
TFE No No No No
AR(1) 0.000 0.000 0.000 0.000
AR(2) 0313 0338 0320 0.253
Hansen test 0.276 0.999 0.998 0.998
N 4136 4136 4136 4136

Note: Z values are in parentheses; ***, **, and * denote 1%, 5%, and 10% signif-
icance levels, respectively; TFE indicates time fixed effect.

carbon emission (ECO_ind) to substitute the dependent variable
(CEE). The estimated results are presented in Table 7. Second, we
replace the independent variable, taking the total import and export
trade as a substitution variable for the independent variable (CL), and
the regression results are presented in Table 8 (Zhu et al., 2017).
Third, we substitute the regression method, employing the panel
quantile model that has fewer constraints and more tolerance for
outliers and heteroskedasticity in comparison to ordinary least
squares. Referencing Xie et al. (2021), we select the three quantiles of
25%, 50%, and 75% to represent low, medium, and high industrial CEE,
as shown in Table A.1). The three robustness tests are all basically
consistent with the benchmark regression, indicating that results of
the benchmark regression are robust.

Moderating effect test

The impact of each explanatory variable may differ in terms of
regional income levels; therefore, we introduce the economic devel-
opment level dummy variable (Inpgdp). If the economic development
level of a region is higher than the median of the whole sample, then
Inpgdp = 1, otherwise Inpgdp = 0. The results of moderating effect
analysis are presented in Table 9, and basically coincide with the
benchmark regression. In economically developed regions, the
impact of complementary technological linkages on industrial CEE
presents an inverted U shape, while the number of interregional link-
ages is U-shaped. The interactive term of regional technological capa-
bilities and complementary technological linkages is significantly
negative at a 1% significance level, indicating that the relationship
between regional technological capabilities and complementary
technological linkages is not complementary but substitutable in
regions with high economic levels. The coefficients of RD*InCL*Inpgdp
and UN*InCL*Inpgdp are significantly positive at the 1% level. More-
over, the coefficient of UN*InCL*Inpgdp is obviously higher than that
of RD*InCL*Inpgdp, indicating that unrelated technological diversifica-
tion has a greater influence on promoting the industrial CEE for high-
income regions.
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Table 7
Results of robustness tests.
Variable 1) 2) (3) (4)
TD*InCL 0.0013"™
(6.92)
RE*InCL 0.0012™"
(25.04)
UN*InCL 0.0014™"
(39.94)
InCL 0.0898™" 0.0792" 0.0940"" 0.1055"
(10.46) (9.10) (11.07) (12.63)
InCL? -0.0107"" -0.0103"" -0.0202"" -0.0284"
(~10.40) (~9.96) (~18.55) (~25.89)
InNL -1.9705"" ~1.9670"" -1.8319" —~1.7158""
(~79.03) (~78.94) (~72.49) (—68.42)
InNL? 0.2084"" 0.2071" 0.1910™" 0.1778""
(94.56) (93.69) (83.46) (78.15)
IS -4.1155" 4124 -4.3768"" —4.3405"
(—43.64) (~43.76) (~46.64) (~47.23)
ES -2.1069"" —2.1314" 22094 —22237"
(-38.73) (-39.13) (—40.94) (—41.95)
MS -0.1784"" -0.1766"" -0.1749™" -0.1691""
(-37.14) (-36.72) (-36.79) (-36.13)
_cons 8.09517" 8.1374" 8.0837"" 7.8748"
(95.50) (95.83) (96.42) (95.30)
TFE Yes Yes Yes Yes
OverallR>  0.6364 0.6357 0.6461 0.6562
F-statistic = 6465.66 5672.89" 5862.25" 617889
RSE 0.1592 0.1700 0.1551 0.1536
(df=68.48) (df=70.72) (df=59.67) (d.f=64.48)
N 28,040 28,040 28,040 28,040

Note: t values are in parentheses; ***, **, and * denote 1%, 5%, and 10% signifi-
cance levels, respectively. TFE indicates time fixed effect; RSE represents the
residual standard error.

Table 8
Results of robustness tests.
Variable (1) 2) (3) (4)
TD*OPEN 0.0008""
(4.84)
RE*OPEN 0.0020""
(21.30)
UN*OPEN 0.0024""
(35.13)
OPEN 1.2295™ 1.2266"" 1.0729™" 0.9730™
(114.84) (114.46) (83.07) (76.20)
OPEN? -0.4382"" -0.4399™ -0.4188™" 04122
(—65.32) (—65.51) (—62.34) (—62.37)
InNL -0.3375" -0.3376"" —-0.2920"" -0.2578""
(~75.52) (~75.57) (-59.32) (-52.31)
InNL? 0.0301"" 0.0301" 0.0250"" 0.0208""
(78.58) (78.55) (55.33) (45.37)
IS 0.0860"" 0.0831" 01115 0.1852""
(4.72) (4.56) (6.15) (10.25)
ES 0.1673"" 0.1643"" 0.0817"" 0.0378""
(17.43) (17.08) (7.90) (3.75)
MS -0.0217"" -0.0216"" -0.0209"" -0.0197"
(—25.99) (—25.92) (-25.17) (—24.04)
Constant 1.0238"" 1.0280"" 098217 09176
(71.79) (71.98) (68.76) (64.25)
TFE Yes Yes Yes Yes
OverallR>  0.6976 0.6973 0.7183 0.2387
F-statistic  11,39233""  9979.22"" 10,186.02°"  10,561.44""
RSE 0.4430 0.4467 0.3091 0.2387
(d.f=127.00) (df=12821) (df=69.02) (d.f=68.18)
N 28,040 28,040 28,040 28,040

kK
’

Note: T values are in parentheses; and * denote 1%,5% and 10% significance
levels, respectively; TFE indicates time fixed effect; RSE represents the residual
standard error.

Discussion

Carbon mitigation is a long-term endeavor that requires identify-
ing effective approaches to improve CEE. It has been clearly
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Table 9
Results of moderating effect analysis.
Variable Modell Model2 Model3 Model4
TD*InCL*Inpgdp —0.0002""
(—8.90)
RD*InCL*Inpgdp 0.00003""
(2.95)
UN*InCL*Inpgdp 0.0001"™"
(11.95)
InCL*Inpgdp 0.0092"" 0.0125™ 0.0093"" 0.0105™
(6.03) (13.13) (6.13) (6.91)
InCL?*Inpgdp —0.0010"" -0.0012"" -0.0012"" -0.0021"
(-5.57) (~6.56) (~6.29) (-10.59)
InNL*Inpgdp —0.5665"" -05676"  —05640"  —0.5501""
(—88.02) (—88.34) (—86.93) (—83.85)
InNL?*Inpgdp 0.0524"" 0.0525"" 0.0522"" 0.0508""
(101.95) (102.23) (99.89) (95.97)
Inpgdp 13375 1.3408™" 1.3341" 1.3070""
(64.56) (64.83) (64.32) (62.82)
IS 1.9546" 1.9633" 1.94917 1.9048™
(60.99) (61.34) (60.73) (59.13)
ES —0.4890"" -0.4834" -0.4906"" -0.4845™"
(—42.57) (—42.09) (—42.67) (—42.29)
MS —0.0031"" -0.0031"" —0.0031"" —0.0031""
(~5.20) (~5.18) (-5.07) (~5.09)
_cons -031717 0321177 -03132""  -02914™"
(-14.11) (~14.31) (~13.91) (~12.95)
TFE Yes Yes Yes Yes
Overall R? 0.0004 0.0012 0.0002 0.0004
F—statistic 907.20™" 880.72"" 875417 885.517"
RSE 0.9249 0.9260 0.9246 0.9234
(df=1245) (df=1250) (df=1215) (d.f=12.09)
N 28,040 28,040 28,040 28,040

Note: t values are in parentheses; ***, **, and * denote 1%, 5%, and 10% significance
levels, respectively; TFE indicates time fixed effect; RSE represents the residual
standard error.

demonstrated that technology innovation has made an outstanding
contribution to carbon mitigation (Gu, 2022; He et al., 2021). Never-
theless, technological innovation is risky and requires considerable
expenditure. Accessing more effective and necessary technology has
become important for each region. In this study, we provide insights
into complementary technological linkages and examine their effect
on CEE.

First, the effect of complementary technological linkages on
industrial CEE presents an inverted U shape. Furthermore, the num-
ber of interregional linkages has a U-shaped impact on industrial
CEE. This is somewhat inconsistent with research that found the
impact of technological linkages to be positive. For examples, Bahar
et al. (2014) pointed out that a region that equipped a neighbor with
comparative advantage has a higher growth of exports. Boschma
(2017) demonstrated that regions are more likely to breed new
export industry that their neighbors have specialized in and have
similar export structure to their neighbors. Whittle, Lengyel, & Kogler
(2020) found that the inflowing knowledge from neighbors is impor-
tant to enhance regions’ existing knowledge capabilities. In contrast
to these studies, this study not only confirms the positive impact of
complementary technological linkages, but also determines that only
moderate external technological linkages are good for long-term
regional development.

Second, combined regional technological capabilities, and com-
plementary technological linkages indeed have the positive influence
on industrial CEE. This finding aligns with Balland & Boschma (2021),
who found a positive interactive effect of smart specialization tech-
nology density and complementary interregional linkages. In addi-
tion, this study stresses that complementary technological linkages
advance regional technological diversification with superior impact
on industrial CEE, and related technological diversification has a
more obvious positive effect on industrial CEE, in comparison to
unrelated technological diversification. This confirms previous
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studies demonstrating the importance of related diversification on
regional economic growth compared to unrelated diversification
(Frenken et al., 2007; Balland et al., 2018). The reason may be that
related diversification is easier to achieve due to existing technologi-
cal capabilities, while unrelated diversification involves uncertainty,
risk, and expenditure (Saviotti & Frenken, 2008).

Third, compared with low-income regions, both regional techno-
logical capabilities, and complementary technological linkages have a
mutually negative impact on industrial CEE in high-income regions,
where unrelated technological diversification cooperates more effec-
tively with complementary technological linkages than related tech-
nological diversification. Boschma & Capone (2016) also
demonstrated this difference in Europe, finding that western Euro-
pean regions were inclined to diversify into new industries that are
unrelated to existing industries, whereas eastern European regions
were more likely to develop new industry that was related existing
industries. In addition, Petralia et al. (2017) demonstrated that high-
income countries are more likely to diversify into unrelated technol-
ogy fields, but low-income countries are the opposite. This means
that high-income regions tend to choose unrelated technological
diversification and low-income regions prefer diversification in
related technological fields.

Conclusions and future research

Our study employs the super-SBM DEA method to evaluate indus-
trial CEE in China, calculating regional technological capabilities, and
complementary technological linkages using patent text data. We
also investigate the interactive effect of regional technological capa-
bilities and complementary technological linkages on industrial CEE,
validating the results with robustness and endogenous tests. Finally,
we conduct heterogeneity analysis to compare the regression results
in high- and low-income regions. The main findings are summarized
below.

First, the impact of complementary technological linkages on
industrial CEE presents an inverted U-shaped curve, indicating that
when complementary technological linkages have not reached a cer-
tain threshold, the increase of complementary technological linkages
is beneficial for improving industrial CEE. However, too many com-
plementary technological linkages are harmful for industrial CEE,
suggesting that an optimal level of complementary technological
linkages is present. In addition, the number of interregional linkages
has a U-shaped effect on industrial CEE. When the number of interre-
gional linkages exceeds the threshold, further increase in interre-
gional linkages can boost the industrial CEE.

Second, the interaction of regional technological capabilities and
complementary technological linkages have a positive effect on
industrial CEE, meaning that the relationship between regional tech-
nological capabilities and complementary technological linkages is
indeed complementary, not substitutable. Complementary techno-
logical linkages can compensate for weak or absent regional techno-
logical capabilities, which is an effective way to enrich regional
technological capabilities. Furthermore, the interactive coefficient of
related technological diversification and complementary technology
linkage on industrial CEE is positive and larger than that of unrelated
technological diversification. In comparison to low relatedness of
regional technological capabilities, high relatedness could combine
more effectively with complementary technological linkages and
compensate more for weak regional technological capabilities.
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Third, in comparison to low-income regions, the interactive term of
regional technological capabilities and complementary technological
linkages in high-income regions has a negative influence on industrial
CEE. Unrelated technological diversification matches better with com-
plementary technological linkages in promoting industrial CEE than
related technological diversification for high-income regions. Other
variable regression results in high-income regions are basically consis-
tent with the benchmark regression results, indicating that the regional
technological capabilities in high-income regions may be strong, and it
is difficult for complementary technological linkages to offer new or
advanced technology. Therefore, complementary technological link-
ages may partially substitute for the influence of regional technological
capabilities on industrial CEE, while unrelated technological diversifi-
cation indicates less regional advantaged technologies overlapping
with complementary technological linkages and further boosts the
industrial CEE.

With the advancement of efficiency measurement methods and
green patent data accessibility, future research will be constructed to
investigate the issues below. The first is the new trial of CEE measure-
ment. We intent to adopt the stochastic non-smooth envelopment of
data model proposed by Kuosmanen & Kortelainen (2012) to calcu-
late industrial CEE. This method is a more efficient than standard DEA
and stochastic frontier analysis methods when the distribution of the
inefficiency term is incorrectly specified. The second is the measure-
ment of the green technological capabilities and complementary
green technological linkages, if green patent text data is accessible,
which is more targeted to analyze the impact of complementary
green technological linkages on industrial CEE. The third is to regard
the city as the research subject. We could investigate the relationship
between complementary technological linkages and industrial CEE
from a more micro-level perspective, which is beneficial for promot-
ing China’s Smart City project.

In addition, CL appears to be a more effective way to transform
promising technology into the advantaged technology compared
with general technological linkage, and more advantaged technolo-
gies are the foundation of technological diversification. Technological
diversification promotes industrial diversification, which helps to
eliminate the industrial development dilemma, reach green economy
transformation, and establish a leading role for a region, which is
worth further investigation.
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Appendix A
Table A.1
Results of panel quantile regression.
Variable Model1 Model2 Model3 model4
Quantile levels
25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th
TD*InCL 0.0018"" 00012 0.0016 "
(17.08)  (11.00)  (15.40)
RE*InCL 0.0006™  0.0004”"  0.0005™"
(43.83)  (22.85)  (17.47)
UN*InCL 0.0006"" 0.0003" 0.0004""
(65.90)  (47.27)  (26.29)
InCL 0.0365" 002147 0.0219" 0.0236"° 00242 0.0129" 0.0285" 00312 0.0469" 0.0349" 003297 0.0543"
(9.37) (9.96) (7.51) (11.81)  (11.24)  (5.3100) (8.24) (10.40)  (11.96) (12.82)  (14.99)  (14.94)
InC? -0.0044"" —0.0023"" -0.0025"" -0.0035"" —0.0038"" —0.0024"" —~0.0070"" —0.0068"" —0.0093"" -0.0101"" 00082 -0.0111"
(-9.81)  (-8.74) (~7.69) (-1496) (-1253) (-8.73) (~16.30) (-17.81) (-15.58) (-3340) (-30.17) (-22.54)
InNL ~0.3250"" —0.4902"" -0.4009"" 02799 —0.4813" -0.3910"" —02617" -04694 -03621" 02223 —04362"" -0.3502""
(-20.21)  (—63.7600) (—42.10) (—28.83) (-51.58) (—48.46) (-17.58) (-52.80) (-50.67) (-32.43) (-43.00) (-43.38)
InNI? 003627 00515 0.0425" 0.0312"" 00507 0.0415" 0.0287"" 00482 0.0384"" 0.0247" 004517 0.0369"
(25.80) (89.60) (57.37) (39.06)  (65.65)  (65.52) (19.26)  (49.28)  (47.99) (35.79)  (60.55)  (41.32)
s ~0.7049"" —0.1980"" 0.4927" -0.5032"" —0.2004"" 04813 —~0.6038"" —0.4042"" 04353 -0.6562"" —0.3493"" 0.3355"
(-20.15)  (-13.82)  (14.72) (-21.80) (-10.29) (16.58) (-14.15)  (—-13.05) (9.88) (-17.28) (-1858) (7.47)
ES 0.0488"°  -0.1840" -0.7736" 0.0328" -0.2016"" —0.8000"" 0.0889"" —0.1596" —0.7942"" 015877  -0.1715"" —0.7988""
(2.83) (-14.17)  (-50.31) (3.27) (-1048) (-41.34) (6.75) (=753)  (-40.12) (11.40)  (-10.77) (-34.78)
MS -0.0447"" —0.0569" —0.0483"" —-0.0410"" —0.0531"" —0.0437" -0.0523"" -0.0531"" -0.0370"" —-0.0453"" —0.0534"" -0.0322""
(-2421) (-1591) (-6.30) (-2562) (-23.73) (-6.76) (-2852) (-37.64) (-5.79) (-23.24) (-36.28) (-8.08)
_cons 133327 182667  1.7692"" 11580 1.81527° 1.76117" 117487 191167 1.72397 1.07777" 181527 1.7553"
(27.59) (64.83) (48.71) (34.79)  (68.63)  (64.98) (25.30)  (63.11)  (74.02) (38.81)  (44.07)  (77.16)
N 28,040 28,040 28,040 28,040 28,040 28,040 28,040 28,040 28,040 28,040 28,040 28,040
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