Büttner, Thomas; Rässler, Susanne

Working Paper
Multiple imputation of right-censored wages in the German IAB employment sample considering heteroscedasticity

IAB-Discussion Paper, No. 44/2008

Provided in Cooperation with:
Institute for Employment Research (IAB)

Suggested Citation: Büttner, Thomas; Rässler, Susanne (2008) : Multiple imputation of right-censored wages in the German IAB employment sample considering heteroscedasticity, IAB-Discussion Paper, No. 44/2008, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg

This Version is available at:
http://hdl.handle.net/10419/32715

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Multiple Imputation of Right-Censored Wages in the German IAB Employment Sample Considering Heteroscedasticity

Thomas Büttner
Susanne Rässler
Multiple Imputation of Right-Censored Wages in the German IAB Employment Sample Considering Heteroscedasticity

Thomas Büttner (IAB)
Susanne Rässler (Otto-Friedrich-Universität Bamberg)

Mit der Reihe „IAB-Discussion Paper” will das Forschungsinstitut der Bundesagentur für Arbeit den Dialog mit der externen Wissenschaft intensivieren. Durch die rasche Verbreitung von Forschungsergebnissen über das Internet soll noch vor Drucklegung Kritik angeregt und Qualität gesichert werden.

The “IAB Discussion Paper” is published by the research institute of the German Federal Employment Agency in order to intensify the dialogue with the scientific community. The prompt publication of the latest research results via the internet intends to stimulate criticism and to ensure research quality at an early stage before printing.
Abstract

In many large data sets of economic interest, some variables, as wages, are top-coded or right-censored. In order to analyze wages with the German IAB employment sample we first have to solve the problem of censored wages at the upper limit of the social security system. We treat this problem as a missing data problem and derive new multiple imputation approaches to impute the censored wages by draws of a random variable from a truncated distribution based on Markov chain Monte Carlo techniques. In general, the variation of income is smaller in lower wage categories than in higher categories and the assumption of homoscedasticity in an imputation model is highly questionable. Therefore, we suggest a new multiple imputation method which does not presume homoscedasticity of the residuals. Finally, in a simulation study, different imputation approaches are compared under different situations and the necessity as well as the validity of the new approach is confirmed.

JEL classification: C24, C15

Keywords: top coding, missing data, censored wage data, Markov chain Monte Carlo

Acknowledgements: The authors thank Hermann Gartner, Hans Kiesl and Johannes Ludsteck for their support and helpful hints. Of course, all remaining errors are ours.
1 Introduction

For a large number of research questions, like analyzing the gender wage gap or measuring overeducation with earnings frontiers, it is interesting to use wage data. To address this kind of questions two types of data are usually used: surveys and process generated data, i.e. administrative data. Administrative data have several advantages, like a large number of observations, no nonresponse burden and no problems with interviewer effects or survey bias. Unfortunately, in many large administrative data sets of economic interest some variables, such as wages, are top-coded or right-censored. This problem is very common with administrative data from social security systems like the IAB employment sample (IABS), which is based on the register data of the German social insurance system. The contribution rate of this insurance is charged as a percentage of the gross wage. Is the gross wage higher than the current contribution limit, however only the amount of the ceiling is liable for the contribution. In 2008 the contribution limit in the unemployment insurance system is fixed in Western Germany at a monthly income of 5,300 euros. As therefore wages are only recorded up to this contribution limit, the wage information in this sample is censored at this limit. (Figure 1 shows the distribution of wages in the IAB employment sample in 2000).

In order to analyze wages with the IAB employment sample, we first have to solve the problem of the censored wages (see Rässler 2006). We treat this problem as a missing data problem and use imputation approaches to impute the censored wages. Gartner (2005) proposes a non-Bayesian single imputation approach to solve the problem of the censored wages. Another approach - a multiple imputation method based on draws of a random variable from a truncated distribution and Markov chain Monte Carlo techniques - is suggested by Gartner and Rässler (2005). These two approaches assume homoscedasticity of the residuals. But on the contrary of this assumption, the variance of income is smaller in lower wage categories than in higher categories and assuming homoscedasticity in an imputation model is highly questionable. Thus, in a first step, we develop a third approach, a second single imputation approach based on GLS estimation to consider heteroscedasticity.

First results of a simulation study using these three methods show the necessity to develop another method that imputes the missing wage information multiply and does not assume homoscedasticity. Therefore, we suggest a new multiple imputation method allowing for heteroscedasticity and finally compare in a simulation study the four different imputation approaches again under different situations using a sample of the IAB employment sample in order to confirm the superiority of the new approach.

The paper is organized as follows: The next section describes the four different imputation approaches. The section starts with the imputation approaches assuming homoscedasticity and continues with the new imputation approaches considering heteroscedasticity. In Section 3 we provide a description of the simulation study, followed by the results in Section 4. Finally, Section 5 concludes.
2 Imputation approaches for censored wages

Before we develop and evaluate the new multiple imputation approach, the first section of this paper describes the three different approaches to impute the missing wage information in the IAB employment sample, which were already mentioned. All of them assume that the wage in logs y_i^* for every person i is given by

$$y_i^* = x_i' \beta + \varepsilon_i \quad \text{where} \quad \varepsilon_i \overset{iid}{\sim} N(0, \sigma^2), \ i = 1, \ldots, n. \quad (1)$$

X are covariates such as education, gender or age. As the wages in the IAB employment sample are censored at the contribution limit a we observe the wage $y_{obs,i} = y_i^*$ only if the wage is lower than the threshold a. If the wage is censored, i.e. has a value greater or equal to a, then we observe the limit a instead of the true wage y_i^*:

$$y_i = \begin{cases} y_{obs,i} & \text{if } y_i^* \leq a \\ a & \text{if } y_i^* > a \end{cases} \quad (2)$$

To be able to analyze wages with our data set, we first have to impute the wages above a. We define $y_z = (y_{obs}, z)$, where z is a truncated variable in the range (a, ∞). We regard the missingness mechanism as not missing at random (NMAR, according to Little and Rubin, 1987, 2002) as well as missing by design. The first because the missingness depends on the value itself. If the limit is exceeded, the true value will not be reported but the value of the limit a. The latter because the data are missing due to the fact that they were not asked.
2.1 Homoscedastic imputation approaches

2.1.1 Homoscedastic single imputation

One possibility to impute the missing wage information is using a single imputation approach. A homoscedastic single imputation based on a tobit model is proposed by Gartner (2005). A tobit model (see Greene 2008) is used to estimate the parameter β and σ^2 of the imputation model. According to the estimated parameters the censored wage z can be imputed by draws of a random value. As we know that the true value is above the contribution limit we have to draw a random variable from a truncated normal distribution

$$z_i \sim N_{\text{trunc}} (x_i' \hat{\beta}, \hat{\sigma}^2) \text{ if } y_i = a \text{ for } i = 1, \ldots, n.$$ (3)

This means we add to the expected wage an error term ε (see Gartner 2005).

$$z_i = x_i' \hat{\beta} + \varepsilon_i \text{ if } y_i = a \text{ for } i = 1, \ldots, n$$ (4)

Using a single imputation approach, we have to consider that this method may lead to biased variance estimations. Thus, Little and Rubin (1987, 2002) suggest that imputation should rather be done in a multiple and Bayesian way according to Rubin (1978). Therefore, we better use multiple imputation approaches to impute the missing wage information. Multiple imputation is discussed in detail in Rubin (1987, 2004a, 2004b) or Rässler et al. (2007). For computational guidance on creating multiple imputations see Schafer (1997).

2.1.2 Multiple imputation assuming homoscedasticity

To start with, let $Y = (Y_{\text{obs}}, Y_{\text{mis}})$ denote the random variables concerning the data with observed and missing parts. In our specific situation this means that for all units with wages below the limit a each data record is complete, i.e., $Y = (Y_{\text{obs}}) = (X, \text{wage})$. For every unit with a value of the limit a for its wage information we treat the data record as partly missing, i.e., $Y = (Y_{\text{obs}}, Y_{\text{mis}}) = (X, ?)$. X is observed for all units. Thus, we have to multiply impute the missing data $Y_{\text{mis}} = \text{wage}$. The theory and principle of multiple imputation originates from Rubin (1978) and is based on independent random draws from the posterior predictive distribution $f_{Y_{\text{mis}} | Y_{\text{obs}}}$ of the missing data given the observed data. As it may be difficult to draw from $f_{Y_{\text{mis}} | Y_{\text{obs}}}$ directly, a two-step procedure for each of the m draws is useful:

(a) First, we perform random draws of Ξ according to the observed-data posterior distribution $f_{\Xi | Y_{\text{obs}}}$, where Ξ is the parameter vector of the imputation model.

(b) Then, we make random draws of Y_{mis} according to their conditional predictive distribution $f_{Y_{\text{mis}} | Y_{\text{obs}}, \Xi}$.

IAB-Discussion Paper 44/2008
Because

\[f_{Y_{\text{mis}}|Y_{\text{obs}}}(y_{\text{mis}}|y_{\text{obs}}) = \int f_{Y_{\text{mis}}|Y_{\text{obs}},\Xi}(y_{\text{mis}}|y_{\text{obs}},\xi) f_{\Xi|Y_{\text{obs}}}(\xi|y_{\text{obs}}) d\xi \] (5)

holds, with (a) and (b) we achieve imputations of \(Y_{\text{mis}} \) from their posterior predictive distribution \(f_{Y_{\text{mis}}|Y_{\text{obs}}} \). Due to the data generating model being used, for many models the conditional predictive distribution \(f_{Y_{\text{mis}}|Y_{\text{obs}},\Xi} \) is rather straightforward. That means it can be more or less easily formulated for each unit with missing data. In contrast, the corresponding observed-data posteriors \(f_{\Xi|Y_{\text{obs}}} \) are usually difficult to derive for those units with missing data, especially when the data have a multivariate structure. In these cases, they often do not follow a standard distribution from which random numbers can easily be generated. However, simpler methods have been developed to enable multiple imputation based on Markov chain Monte Carlo (MCMC) techniques (Schafer 1997). In MCMC the desired distributions \(f_{Y_{\text{mis}}|Y_{\text{obs}}} \) and \(f_{\Xi|Y_{\text{obs}}} \) are achieved as stationary distributions of Markov chains based on the complete-data distributions, which are easier to compute.

Imputation model

Gartner and Rässler (2005) suggest an imputation approach based on Markov chain Monte Carlo techniques to multiply impute the right-censored wages in the IAB employment sample, which contains the following steps. To be able to start the imputation based on MCMC, we first need to adapt starting values for \(\beta(0) \) and the variance \(\sigma^2(0) \) from a ML tobit estimation. Second, in the imputation step, values for the missing wages are randomly drawn from the truncated distribution in analogy to the single imputation procedure

\[z_i^{(t)} \sim N_{\text{trunc}}(x_i'\beta^{(t)}, \sigma^2(0)) \text{ if } y_i = a \text{ for } i = 1, \ldots, n. \] (6)

Then an OLS regression is computed based on the imputed data according to

\[\hat{\beta}_z^{(t)} = (X'X)^{-1}X'y_z^{(t)}. \] (7)

After this step, new random draws for the parameters can be produced according to their complete data posterior distribution. To draw the variance \(\sigma^2(t+1) \) we need the inverse of a gamma distribution, which is produced as follows:

\[g \sim \chi^2(n - k) \] (8)

\[\sigma^{-2(t+1)} = \frac{g}{RSS} \] (9)
where RSS is the residual sum of squares $RSS = \sum_{i=1}^{n} (y_i - x_i'\hat{\beta})^2$ and k is the number of columns of X.

Now new random draws for the parameter β can be performed

$$
\beta^{(t+1)} | \sigma^{2(t+1)} \sim N(\hat{\beta}_z^{(t)}, \sigma^{2(t+1)}(X'X)^{-1}).
$$

(10)

We repeat the imputation and the posterior-steps (6) to (10) 6,000 times and use $(z^{20000}, z^{30000}, \ldots, z^{60000})$ to obtain 5 complete data sets. For more details see Gartner and Rässler (2005) or Jensen et al. (2006).

2.2 Heteroscedastic imputation approaches

2.2.1 Heteroscedastic single imputation

As we assume that the variation of income is smaller in lower wage categories than in higher categories, we suppose an imputation approach considering heteroscedasticity. Therefore we first use another single imputation procedure based on the first single imputation approach, a method that does not presume homoscedasticity of the residuals.

We assume that the error variance is related to a number of exogenous variables, gathered in a vector w (not including a constant). We use a GLS model for truncated variables (e.g. `intreg` in STATA) to estimate the parameters of the imputation model, β, like in the first approach, and furthermore γ, describing the functional form of the heteroscedasticity. Then the imputation can be done by draws from a truncated normal distribution, similar to the first approach,

$$
z_i \sim N_{\text{trunc}}(x_i'\beta, \hat{\sigma}_i^2) \quad \text{where} \quad \hat{\sigma}_i^2 = e^{w_i'\gamma} \quad \text{if} \quad y_i = a \quad \text{for} \quad i = 1, \ldots, n,
$$

(11)

where w is a vector of observed variables that is a function of x, e.g subset of x variables. To consider the heteroscedastic structure of the residuals, we use here individual variances for every person to draw a random value. This solution takes into consideration the existence of heteroscedasticity, yet it does not solve the problem of biased variance estimations. Therefore, we have to derive the Bayesian solution.

2.2.2 Multiple imputation considering heteroscedasticity

Since we assume the necessity of an approach that does not presume homoscedasticity and since Little and Rubin (1987, 2002) among others show that single imputation approaches may lead to biased variance estimations, consequently we suggest a new multiple imputation approach. A first simulation study using the first three approaches shows
as well the need for this approach. This simulation study points out that, in case of a homoscedastic structure of the residuals, the multiple imputation leads to better results than a single imputation approach. But in case of heteroscedasticity the single imputation considering heteroscedasticity is superior to the multiple imputation approach suggested by Gartner and Rässler (2005). This indicates the necessity to develop another approach that combines these two properties: an approach performing multiple imputation and considering heteroscedasticity.

Imputation model

We develop this new method based on the multiple imputation approach proposed by Gartner and Rässler (2005). The basic element of the new approach is that we need additional draws for the parameters γ describing the heteroscedasticity. We start now the imputation by adapting starting values for $\beta^{(0)}$ and $\gamma^{(0)}$ from a GLS estimation for truncated variables like in the heteroscedastic single imputation approach. Then we are able to draw values for the missing wages from a truncated distribution using individual variances $\sigma^2_i = e^{w_i'\gamma}$ again like in the heteroscedastic single imputation model:

$$z_i^{(t)} \sim \text{N}_{\text{trunc}}(x_i'\hat{\beta}^{(t)}, \sigma^2_i^{(t)}) \quad \text{where} \quad \sigma^2_i^{(t)} = e^{w_i'\gamma^{(t)}} \text{ if } y_i = a \text{ for } i = 1, \ldots, n. \quad (12)$$

Then a GLS regression is computed based on the imputed data set (comparable to the OLS regression in the homoscedastic multiple imputation approach) to obtain $\hat{\beta}^{(t)}$ and $\hat{\gamma}^{(t)}$. Additionally we estimate $V(\hat{\gamma}^{(t)})$ to be able to perform the following steps. Afterwards we produce new random draws for the parameters according to their complete data posterior distribution. As we consider now the existence of heteroscedasticity, some modifications of the algorithm are necessary. In the first step, we draw the variance $\sigma^{2^{(t+1)}}$ according to

$$g \sim \chi^2(n - k) \quad (13)$$

$$\sigma^{2^{(t+1)}} = \frac{g}{RSS} \quad (14)$$

where

$$RSS = \sum_{i=1}^{n} \exp(ln z_i^2 - w_i'\gamma^{(t)}) = \sum_{i=1}^{n} \frac{(y_i^{(t)} - x_i'\hat{\beta}^{(t)})^2}{e^{w_i'\gamma^{(t)}}}. \quad (15)$$

In an additional step, we have to perform random draws for γ

$$\gamma^{(t+1)} \sim N(\hat{\gamma}^{(t)}, \hat{V}(\gamma^{(t)})) \quad (16)$$
Consequently the parameters \(\beta \) can be drawn like in the Gartner and Rässler approach, again with a slight modification compared to the homoscedastic multiple imputation:

\[
\beta^{(t+1)} | \gamma^{(t+1)}, \sigma^2(\gamma^{(t+1)}) \sim N(\hat{\beta}_z^{(t)}, \sigma^2(\gamma^{(t+1)})(\sum_{i=1}^{n} x_i x_i' e_{w_i})(n+1)^{-1}).
\]

(17)

Again, we repeat the steps (12) to (17) 6,000 times and use \((z_1^{2000}, z_1^{3000}, \ldots, z_1^{6000})\) to obtain the 5 complete data sets.

3 Simulation study

To evaluate the results delivered by these different approaches under different situations in order to show the relevance of the suggested multiple imputation approach, we perform a simulation study using the IAB employment sample. We first create a complete data set without censored wages, define a new limit and delete the wages above this limit. Afterwards, the missing wages are imputed using the different approaches and the results are compared to the complete data set.

3.1 The IAB employment sample

The German IAB employment sample (IABS) is a 2 percent random sample drawn from the IAB employee history with additional information on benefit recipients and hence is a sample of all employees covered by social security. Consequently self-employed, family workers and civil servants are not included. The data set represents approximately 80 percent of all employees in Germany. The IABS includes, among others, information on age, sex, education, wage and the occupational group. For the sample two sources of data are combined: Information on employment coming from employer reports to the social security and information about unemployment compensation coming from the German federal employment agency. As already mentioned, the wage information in the IABS is censored at the contribution limit of the unemployment insurance. For further insight on the data set see Bender et al.(2000).

To simplify the simulation design, we restrict the data for the simulation to male West-German residents. We use all workers holding a full-time job covered by social security effective on June 30th 2000. The data set contains 214,533 persons: 23,685 or 11 percent of them with censored wages. The following table shows descriptive information about the fraction of censored incomes of six educational and five age groups to demonstrate the need to impute the missing wage information. Especially for analyzing highly-skilled employees (with technical college degree or university degree) the table indicates the necessity to impute the missing wages.
<table>
<thead>
<tr>
<th>Educational Level</th>
<th><25</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/intermediate school</td>
<td>0</td>
<td>.003</td>
<td>.008</td>
<td>.012</td>
<td>.17</td>
</tr>
<tr>
<td>Vocational training</td>
<td>.001</td>
<td>.021</td>
<td>.068</td>
<td>.116</td>
<td>.150</td>
</tr>
<tr>
<td>Upper school</td>
<td>.010</td>
<td>.110</td>
<td>.232</td>
<td>.331</td>
<td>.371</td>
</tr>
<tr>
<td>Upper school and vocational training</td>
<td>.003</td>
<td>.110</td>
<td>.283</td>
<td>.393</td>
<td>.470</td>
</tr>
<tr>
<td>Technical college</td>
<td>.024</td>
<td>.190</td>
<td>.450</td>
<td>.558</td>
<td>.604</td>
</tr>
<tr>
<td>University degree</td>
<td>.056</td>
<td>.256</td>
<td>.549</td>
<td>.686</td>
<td>.769</td>
</tr>
</tbody>
</table>

Table 1: Fractions of censored wages in the original data set

For the simulation study we assume a model containing the wages in logs as dependent variable and age, squared age, nationality as well as dummies for six education levels and four categories of job level as independent variables.

3.2 Creating a complete population

To perform the simulation study, a complete population is created in order to be able to compare the results of the different approaches with a complete data base. As the wage information in our sample is right-censored, we first have to impute our sample to obtain this control population. The fact that the data set has to be imputed before starting the simulation study allows us to produce control populations with different characteristics: We create one data set where homoscedasticity is existent and another with heteroscedasticity of the residuals. To obtain the first data set (data set A) we use the homoscedastic single imputation procedure as described in section 2.1.1 to impute new wages for every person regardless if the wage was originally censored or not, according to

\[y_{new} \sim N(x' \hat{\beta}, \hat{\sigma}^2), \]

again with \(\hat{\beta} \) and \(\hat{\sigma}^2 \) from a tobit estimation based on the right-censored sample. To receive the second data set (data set B), the heteroscedastic single imputation method described in section 2.2.1 is used in order to receive a control population with heteroscedasticity of the residuals, according to

\[y_{new} \sim N(x' \tilde{\beta}, \tilde{\sigma}_i^2). \]

These two data sets will later be used as complete populations for the analysis of the results we receive by using the different approaches.

3.3 Simulation design

The simulation study consists of four steps. Each of these steps is simultaneously done for the homoscedastic data set A and the heteroscedastic population B: We draw random sam-
samples from the complete population repeatedly, define the threshold and impute the wage above this threshold using the four approaches. Then we compare the imputed data sets with the complete population.

Step 1: Drawing of a random sample

In the first step a random sample of \(n=21,453\) persons is drawn without replacement from the population of \(N=214,533\) persons (equivalent to 10 percent). This 10 percent random sample is kept to illustrate the results of the different imputations later. For the simulation study we define a new threshold. To point out the differences between the four approaches we choose a limit lower than in the original IABS (censoring the highest 30 percent of incomes appears adequate) and delete the wages above this limit.

Step 2: Imputation of the missing wage information

The deleted wage information above the threshold of this (now again right-censored) sample is imputed by using the four different approaches described above:

- Homoscedastic single imputation
- Heteroscedastic single imputation
- Multiple imputation assuming homoscedasticity
- Multiple imputation considering heteroscedasticity

For the multiple imputation approaches we set \(m=5\). That means performing one of the single imputation methods, one complete data set is obtained and performing one of the multiple imputation methods, \(m=5\) complete data sets are obtained. These imputed data sets can now be used to evaluate the quality of the different approaches by comparing them with the original complete population.

Step 3: Analysis of the results

To analyze the results of the four approaches we run OLS regressions on the imputed data sets and the 10 percent complete random sample on the one side, as well as on the complete population on the other side. As estimation model we use - simulating an analysis which is typically done with wage data - the same model as the imputation model. Afterwards we are able to evaluate which approach delivers the best imputation quality compared to the original complete data. Therefore we compare \(\hat{\beta}\) - estimated based on the imputed data sets - with the parameter \(\beta\) of the regression on the complete population.

For this purpose we compare \(\hat{\beta}\) as well as the corresponding confidence intervals. Since the multiple imputation approaches lead to five complete data sets, the estimations have to
be done five times as well. Afterwards, the results have to be combined using the combining rules first described by Rubin (1987). Thus, the multiple imputation point estimate for β is the average of the $m = 5$ point estimates

$$\hat{\beta}_{MI} = \frac{1}{m} \sum_{t=1}^{m} \hat{\beta}^{(t)}. \tag{20}$$

The variance estimate associated with $\hat{\beta}_{MI}$ has two components. The within-imputation-variance is the average of the complete-data variance estimates,

$$W = \frac{1}{m} \sum_{t=1}^{m} \text{var}(\hat{\beta}^{(t)}). \tag{21}$$

The between-imputation variance is the variance of the complete-data point estimates

$$B = \frac{1}{m-1} \sum_{t=1}^{m} (\hat{\beta}^{(t)} - \hat{\beta}_{MI})^2. \tag{22}$$

Subsequently the total variance is defined as

$$T = W + \frac{m+1}{m} B. \tag{23}$$

For large sample sizes, tests and two-sided $(1 - \alpha) \times 100\%$ interval estimates for multiply
imputed data sets can be calculated based on Student’s t-distribution according to

\[
(\hat{\beta}_{MI} - \beta) / \sqrt{T} \sim t_v \quad \text{and} \quad \hat{\beta}_{MI} \pm t_{v,1-\alpha/2} \sqrt{T}
\]

(24)

with the degrees of freedom

\[
v = (m - 1)(1 + \frac{W}{(1 + m^{-1})B})^2.
\]

(25)

We save for every approach in every iteration the estimate \(\hat{\beta}\) (or \(\hat{\beta}_{MI}\) in case of the multiple imputation approaches) and the corresponding standard error of \(\hat{\beta}\), as well as the 95 percent confidence interval based on \(\hat{\beta}\). Besides, we keep the information if the confidence interval based on \(\hat{\beta}\) contains the parameter \(\beta\) of the original data set.

Step 4: 1000 iterations

The whole simulation procedure - consisting of drawing a random sample, imputing the data using the different approaches, running a regression on the different imputed data sets and calculating the confidence intervals - is repeated 1000 times. Finally the fraction of confidence intervals based on \(\hat{\beta}\) or \(\hat{\beta}_{MI}\) containing the true parameter \(\beta\) can be calculated for the different approaches. The results of these iterations are described in the following chapter.

4 Results

This chapter contains tables showing the results of the simulation study comparing the four different approaches. The first column presents the true parameters \(\beta\) of the original complete population. The following columns show the estimates \(\hat{\beta}\) (here the average of the 1000 iterations) of the regression using the 10 percent complete random samples and the regressions using the data sets imputed by the different approaches. The tables show as well the fraction of iterations where the 95 percent confidence interval based on \(\hat{\beta}\) contains \(\beta\) (coverage).

4.1 Homoscedastic data set

Table 2 shows the results of the simulation based on the homoscedastic data set A. As expected, the simulation study shows the necessity of a multiple imputation approach, since the coverage of the two multiple imputation approaches is higher compared to the single imputations throughout almost all variables. Using a homoscedastic data set, the results do not show serious differences between the homoscedastic and the heteroscedastic multiple imputation. We receive a coverage for both of these approaches around 95 percent.
(between 0.922 and 0.965) - similar to the coverage received by the estimations using the complete random samples (between 0.948 and 0.965) - which refers to a good imputation quality. The coverage of the single imputations is for most of the variables lower than 0.95 - which indicates underestimated variances. Consequently, it can be concluded, that in case of a homoscedastic structure of the residuals, it is advisable to use a multiple imputation approach. However it does not matter if the algorithm considering heteroscedasticity is chosen in the homoscedastic case, since it just represents a generalization of the homoscedastic approach and therefore works well in case of homoscedasticity.

4.2 Heteroscedastic data set

The results based on the heteroscedastic data set B (Table 3) show a different situation. The results recommend as well the use of a multiple imputation approach, since the coverage of the single imputation approaches is again lower than 0.95 for all variables. But concerning the heteroscedastic structure of the residuals, it reveals the necessity of an approach considering heteroscedasticity. The homoscedastic approaches lead in several cases to a considerably lower coverage than the procedures that consider heteroscedasticity. The coverage of the heteroscedastic multiple imputation approach amounts again to around 95 percent and is similar to the coverage based on the complete samples (the coverage ranges between 0.917 and 0.97, except the dummy for the highest education level where the coverage is 0.896). Thus we see that in this case, the coverage of the multiple imputation approach assuming homoscedasticity is lower (between 0.478 and 0.948, for some variables even lower than the coverage received by the heteroscedastic single imputation approach, where the coverage ranges between 0.718 and 0.948). Therefore the results suggest the use of an approach considering heteroscedasticity to impute the missing wage information in case of either an homoscedastic or heteroscedastic structure of the residuals.

5 Conclusion

There is a wide range of ways to deal with censored wage data. We propose to use imputation approaches to estimate the missing wage information. Nevertheless, there are also different possibilities to impute the wages in the IAB employment sample, for example single and multiple imputation approaches. Another important question is whether the wages should be imputed considering heteroscedasticity or not.

In this paper we propose a new approach to multiply impute the missing wage information above the limit of the social security in the IAB employment sample. We have assumed that the variance of income is smaller in lower wage categories than in higher categories. Thus we have suggested and developed a multiple imputation approach considering heteroscedasticity to impute the missing wage information. The basic element of this approach is to impute the missing wages by draws of a random variable from a truncated distribution, based on Markov chain Monte Carlo techniques. The main innovation of the suggested
<table>
<thead>
<tr>
<th></th>
<th>complete data</th>
<th>single homosc.</th>
<th>single heterosc.</th>
<th>multiple homosc.</th>
<th>multiple heterosc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{\beta})</td>
<td>(\hat{\beta}) Coverage</td>
<td>(\hat{\beta}) Coverage</td>
<td>(\hat{\beta}) Coverage</td>
<td>(\hat{\beta}) Coverage</td>
</tr>
<tr>
<td>educ1</td>
<td>0.1068</td>
<td>0.1069 0.959</td>
<td>0.1074 0.951</td>
<td>0.1073 0.95</td>
<td>0.1074 0.958</td>
</tr>
<tr>
<td>educ2</td>
<td>0.1791</td>
<td>0.1790 0.965</td>
<td>0.1792 0.953</td>
<td>0.1790 0.952</td>
<td>0.1792 0.956</td>
</tr>
<tr>
<td>educ3</td>
<td>0.1305</td>
<td>0.1310 0.954</td>
<td>0.1317 0.939</td>
<td>0.1330 0.935</td>
<td>0.1318 0.955</td>
</tr>
<tr>
<td>educ4</td>
<td>0.2621</td>
<td>0.2623 0.963</td>
<td>0.2624 0.928</td>
<td>0.2654 0.888</td>
<td>0.2624 0.957</td>
</tr>
<tr>
<td>educ5</td>
<td>0.4445</td>
<td>0.4446 0.948</td>
<td>0.4409 0.868</td>
<td>0.4466 0.759</td>
<td>0.4410 0.944</td>
</tr>
<tr>
<td>educ6</td>
<td>0.5098</td>
<td>0.5096 0.962</td>
<td>0.5064 0.852</td>
<td>0.5121 0.719</td>
<td>0.5065 0.953</td>
</tr>
<tr>
<td>leve1</td>
<td>0.5449</td>
<td>0.5441 0.949</td>
<td>0.5440 0.952</td>
<td>0.5447 0.95</td>
<td>0.5440 0.949</td>
</tr>
<tr>
<td>leve2</td>
<td>0.6517</td>
<td>0.6512 0.95</td>
<td>0.6515 0.954</td>
<td>0.6524 0.951</td>
<td>0.6515 0.952</td>
</tr>
<tr>
<td>leve3</td>
<td>0.8958</td>
<td>0.8950 0.948</td>
<td>0.8973 0.95</td>
<td>0.8958 0.936</td>
<td>0.8976 0.948</td>
</tr>
<tr>
<td>leve4</td>
<td>0.8962</td>
<td>0.8956 0.953</td>
<td>0.8961 0.95</td>
<td>0.8962 0.949</td>
<td>0.8962 0.951</td>
</tr>
<tr>
<td>age</td>
<td>0.0498</td>
<td>0.0498 0.955</td>
<td>0.0500 0.943</td>
<td>0.0500 0.93</td>
<td>0.0500 0.964</td>
</tr>
<tr>
<td>sqage</td>
<td>-0.0005</td>
<td>-0.0005 0.958</td>
<td>-0.0005 0.936</td>
<td>-0.0005 0.922</td>
<td>-0.0005 0.962</td>
</tr>
<tr>
<td>nation</td>
<td>-0.0329</td>
<td>-0.0327 0.962</td>
<td>-0.0334 0.948</td>
<td>-0.0334 0.942</td>
<td>-0.0335 0.953</td>
</tr>
<tr>
<td>cons</td>
<td>2.4424</td>
<td>2.4433 0.953</td>
<td>2.4406 0.945</td>
<td>2.4405 0.932</td>
<td>2.4411 0.951</td>
</tr>
</tbody>
</table>

Table 2: Results of the homoscedastic data set
<table>
<thead>
<tr>
<th></th>
<th>complete data</th>
<th>single homosc.</th>
<th>single heterosc.</th>
<th>multiple homosc.</th>
<th>multiple heterosc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>$\hat{\beta}$</td>
<td>Coverage</td>
<td>β</td>
<td>$\hat{\beta}$</td>
</tr>
<tr>
<td>educ1</td>
<td>0.1141</td>
<td>0.1145</td>
<td>0.952</td>
<td>0.1271</td>
<td>0.794</td>
</tr>
<tr>
<td>educ2</td>
<td>0.1912</td>
<td>0.1915</td>
<td>0.955</td>
<td>0.2075</td>
<td>0.616</td>
</tr>
<tr>
<td>educ3</td>
<td>0.1442</td>
<td>0.1444</td>
<td>0.961</td>
<td>0.0947</td>
<td>0.745</td>
</tr>
<tr>
<td>educ4</td>
<td>0.2685</td>
<td>0.2686</td>
<td>0.961</td>
<td>0.2753</td>
<td>0.913</td>
</tr>
<tr>
<td>educ5</td>
<td>0.4433</td>
<td>0.4435</td>
<td>0.963</td>
<td>0.4790</td>
<td>0.366</td>
</tr>
<tr>
<td>educ6</td>
<td>0.5241</td>
<td>0.5248</td>
<td>0.954</td>
<td>0.5117</td>
<td>0.785</td>
</tr>
<tr>
<td>level1</td>
<td>0.5422</td>
<td>0.5426</td>
<td>0.955</td>
<td>0.5415</td>
<td>0.946</td>
</tr>
<tr>
<td>level2</td>
<td>0.6405</td>
<td>0.6411</td>
<td>0.95</td>
<td>0.6430</td>
<td>0.944</td>
</tr>
<tr>
<td>level3</td>
<td>0.8856</td>
<td>0.8864</td>
<td>0.945</td>
<td>0.8780</td>
<td>0.941</td>
</tr>
<tr>
<td>level4</td>
<td>0.8903</td>
<td>0.8908</td>
<td>0.952</td>
<td>0.8737</td>
<td>0.941</td>
</tr>
<tr>
<td>age</td>
<td>0.0432</td>
<td>0.0431</td>
<td>0.955</td>
<td>0.0457</td>
<td>0.645</td>
</tr>
<tr>
<td>sqage</td>
<td>-0.0004</td>
<td>-0.0004</td>
<td>0.96</td>
<td>-0.0005</td>
<td>0.59</td>
</tr>
<tr>
<td>nation</td>
<td>-0.0223</td>
<td>-0.0218</td>
<td>0.961</td>
<td>-0.0297</td>
<td>0.872</td>
</tr>
<tr>
<td>cons</td>
<td>2.5858</td>
<td>2.5865</td>
<td>0.947</td>
<td>2.5318</td>
<td>0.909</td>
</tr>
</tbody>
</table>

Table 3: Results of the heteroscedastic data set
approach is to perform additional draws for the parameter γ describing the heteroscedasticity in order to be able to allow individual variances for every individual. To confirm the necessity and validity of this new method we have used a simulation study to compare the different approaches. The results of the simulation study can be summarized as follows: The missing wage information should be imputed multiply, because single imputations may lead to biased variance estimations. Furthermore, the imputation should be done considering heteroscedasticity. As the assumption of homoscedasticity is highly questionable with wage data, the simulation study shows it is preferable to use the new approach considering heteroscedasticity, as this approach is more general: In case of homoscedastic residuals the same quality of imputation results can be expected compared to the Gartner and Rässler (2005) approach. But if heteroscedasticity is existent the simulation study confirms the necessity of our new approach.
6 References

Recently published

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/2008</td>
<td>Stephan, G. Pahnke, A.</td>
<td>A pairwise comparison of the effectiveness of selected active labour market programmes in Germany</td>
<td>7/08</td>
</tr>
<tr>
<td>30/2008</td>
<td>Moritz, M.</td>
<td>Spatial effects of open borders on the Czech labour market</td>
<td>7/08</td>
</tr>
<tr>
<td>31/2008</td>
<td>Fuchs, J. Söhnlein, D. Weber, B.</td>
<td>Demographic effects on the German labour supply: A decomposition analysis</td>
<td>8/08</td>
</tr>
<tr>
<td>33/2008</td>
<td>Garloff, A.</td>
<td>Minimum Wages, Wage Dispersion and Unemployment</td>
<td>8/08</td>
</tr>
<tr>
<td>35/2008</td>
<td>Matthes, B. Burkert, C. Biersack, W.</td>
<td>Berufsssegmente: Eine empirisch fundierte Neu- abgrenzung vergleichbarer beruflicher Einheiten</td>
<td>8/08</td>
</tr>
<tr>
<td>36/2008</td>
<td>Horbach, J. Blien, U. von Hauff, M.</td>
<td>Structural Change and Performance of the German Environmental Sector</td>
<td>9/08</td>
</tr>
<tr>
<td>37/2008</td>
<td>Kirchner, St. Oppen, M. Bellmann, L.</td>
<td>Zur gesellschaftlichen Einbettung von Organisationswandel: Einführungsdynamik dezentraler Organisationsstrukturen</td>
<td>9/08</td>
</tr>
<tr>
<td>39/2008</td>
<td>Brix, U.</td>
<td>Welche Betriebe werden verlagert: Beweggründe und Bedeutung von Betriebsverlagerungen</td>
<td>10/08</td>
</tr>
<tr>
<td>40/2008</td>
<td>Oberschachtsiek, D.</td>
<td>Founders’ Experience and Self-Employment Duration : The Importance of Being a ‘Jack-of-all-Trades’. An Analysis Based on Competing Risks</td>
<td>10/08</td>
</tr>
<tr>
<td>41/2008</td>
<td>Kropp, P. Schwengler, B.</td>
<td>Abgrenzung von Wirtschaftsräumen auf der Grundlage von Pendlerverflechtungen : Ein Methodenvergleich</td>
<td>10/08</td>
</tr>
<tr>
<td>42/2008</td>
<td>Krug, G. Popp, S.</td>
<td>Soziale Herkunft und Bildungsziele von Jugendlichen im Armutsbereich</td>
<td>12/08</td>
</tr>
<tr>
<td>43/2008</td>
<td>Hofmann, B.</td>
<td>Work Incentives? Ex-Post Effects of Unemployment Insurance Sanctions : Evidence from West Germany</td>
<td>12/08</td>
</tr>
</tbody>
</table>

As per: 17.12.2008

For a full list, consult the IAB website
http://www.iab.de/de/publikationen/discussionpaper.aspx