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Abstract:	

In an earlier paper (Nomaler & Verspagen, 2022) we introduced a ‘supervised learning’ based 
alternative to the competing unsupervised learning algorithms (e.g., Hidalgo and Hausmann, 2009 
vs. Tacchella et al, 2012) proposed in the so-called ‘economic complexity’ literature. Similar to the 
existing ones, our alternative, which we refer to as the “Canonical Correlation Complexity Method 
(CCCM)”, also aims at reducing the high dimensionality in data on the empirical patterns of co-
location (be it nations or regions) of specializations in products or technologies, while the ultimate 
objective is to understand the relationship between specialization, diversification, and economic 
development. In our alternative method which combines the toolkit of the Canonical Correlation 
Analysis with that of Principal Component Analysis, the data on trade or technology specializa-
tions and multiple dimensions of economic development are processed together from the very 
beginning in order to identify the patterns of mutual association. This way, we are able to identify 
the products or technologies that can be associated with the level or the growth rate of per capita 
GDP, and (un)employment. In this follow up paper, we use the CCCM to analyse the development 
patterns of European regions in relation to their respective technology specializations. Our 
findings provide insights for EU’s industrial policies, especially those considered under the ‘smart 
specialization’ framework.         
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1.	Introduction	

In this paper we describe the second stage of our research project on the Canonical Correlation 
Complexity Method (CCCM) which combines the long-established methods Canonical Correlation 
Analysis (CCA) with Principal Correlation Analysis (PCA) in the context of economic complexity 
research. Our first paper in this research project (Nomaler & Verspagen, 2022) has described the 
method in detail, and reported on the application of CCCM to the case of international trade 
(exports) and its relation to economic competitiveness. The scope of the first paper was a broad 
international one, covering the 100+ largest economies in the world. 

In this paper, we shift the attention to the economic competitiveness of European regions, and the 
role of technological capabilities in this. The role of technology in economic development and 
growth has been well researched (e.g., Freeman and Soete, 1997; Nelson and Winter, 1982). 
Technological change provides both productivity gains, and new products and services that 
represent welfare gains to society. Technology can also be guided towards the solution of societal 
problems, such as global warming (Schot and Steinmueller, 2018).  

In the present paper, we look at technology as a source of economic development as indicated by 
GDP per capita and its growth rate (for a similar approach, see, e.g., Fagerberg, 1987), as well as 
its relation to employment and unemployment (see, e.g., Freeman and Soete, 1987). The focus is 
on sub-national European regions (as in Fagerberg et al., 1997).  

Our approach is rooted in the complexity literature (for an overview, see, e.g., Freire, 2021), which 
stresses the role of productive capabilities in competitiveness of, in this case, regions. By focusing 
on technology, we interpret productive capability as mainly influenced by technology. We use 
patents as the technology indicator, which means that our emphasis is on an output indicator of 
the inventive process (see, e.g., Pavitt, 1985 for an overview of the characteristics of patents as 
technology indicators). This means that we disregard the influence of technology through the 
diffusion of international or interregional technology flows. These flows have been considered as 
an important source of technological catching-up (e.g., Abramovitz, 1986, Fagerberg, 1987, 
Fagerberg et al., 1997). By focusing on patents, the emphasis is on the (global) technological 
frontier, rather than on technological catching-up.  

The main aim of the analysis is to use the CCCM to assess the competitiveness of the regions of the 
European Union (plus the United Kingdom) in light of their technological specialization as 
indicated by European patents. The aim is not to introduce the CCCM as such, or explore its general 
workings, as this has been done in Nomaler and Verspagen, 2022. In fact, we refer to this earlier 
paper for most (formal) details of the method, and assume here that the reader is familiar with 
the basics as described therein. 

The rest of this paper is laid out as follows. In the next section, we describe the data that will be 
used in the analysis. This concerns both the data on economic competitiveness (development 
level, growth, employment and unemployment) and the data on patents (technological 
specialization). Unfortunately, and due to changes in regional classifications, data on the economic 
competitiveness variables is available only for a single recent period (2015 – 2018), which means 
we cannot apply the panel perspective in Nomaler & Verspagen, 2022.  
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In Section 3, we present some details of the CCCM that are useful for the specific context of this 
paper. Section 4 presents the part of the analysis that selects a value for the threshold parameter 
f that is used in the CCCM. This parameter governs how much of the variation between regions in 
terms of the large number (5,000+) of patent variables that is retained in the later stages of the 
algorithm. Contrary to the case in Nomaler and Verspagen, 2022, we find that a high value of the f 
parameter can be used in the data set under consideration here. Section 4 also summarizes the 
basic estimation results (including parameter values) of the CCCM. Here we face a choice between 
using the raw estimated parameters, which correspond to composite factors of the 
competitiveness variables, or so-called rotated components, which correspond to pure 
competitiveness variables. This choice is representational only, i.e., it has no impact on the 
predictive power, or the relation between the patent variables and the predictions of the method. 
As in Nomaler and Verspagen, 2022, we opt for rotated components, because these turn out to be 
easier to interpret. 

Section 5 presents some basic outcomes with regard to the predictive power of the method. We 
show that the quality of in-sample predictions is high, but that out-of-sample predictions are 
somewhat weaker. However, the quality of these out-of-sample predictions can only be assessed 
for two out of five competitiveness variables, due to data limitations. As in Nomaler and 
Verspagen, 2022, we find that in-sample prediction residuals add power to the out-of-sample 
predictions. This implies that deviations between actual and predicted values tend to be persistent 
over time within the region. 

In Section 6 we present the bulk of our results. This section deals with the technological 
competitiveness profiles of the European regions in our sample, by exploring the relationship 
between the five competitiveness variables and technological specialization as related to the 
patent variables. We link technological competitiveness to six broad technology fields, and we 
show that in terms of the relation between technology and economic competitiveness, Europe is 
divided into two major parts. One of these parts can be seen as leading, in the sense that 
technology is related to above-average economic performance in these regions, and another part 
is more peripheral in the sense that technology is related to sub-average performance. Section 7 
summarizes our main line of argumentation and presents the conclusions. 

 

2.	Descriptive	statistics	

Our data set consists of all NUTS-2 regions of the European Union Member States, plus the UK.1 
We opt for the NUTS-2 level because at this level sufficient data are available for our economic 
variables, and the majority of regions has a large enough number of patents in order to be able to 
calculate meaningful patent indicators. We exclude one region (FI20, Åland) because the 
economic data are incomplete. At the NUTS-2 level, five countries consist of only a single region 
(Cyprus, Estonia, Latvia, Luxemburg, and Malta), while another three countries (Croatia, 
Lithuania, and Slovenia) consist of two regions. All other countries have three or more regions in 
our data set. The total number of regions is 275. 

                                                            
1 We use the 2016 version of NUTS. 
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Table 2.1 shows descriptive statistics for the five variables that we use in the economic 
competitiveness data set. These variables are GDP per capita in 2015 (measured at current market 
prices in PPS to the Euro), the growth rate of GDP per capita (in the same units) over the period 
2015-2018, the unemployment rate in 2015, the growth rate of the unemployment rate over 
2015-2018, and the growth of employment (in persons) over 2015-2018. We report the 
descriptives for GDP per capita in K€ as well the natural log (ln) version (ln of the € value). The 
latter is what we will use in the analysis. 

The table shows values per country (unweighted average of the regions in the country), as well as 
values for the entire set of 275 regions, and the averages of the country values (as reported in the 
table). As is well known, there are substantial differences between countries, as well as within 
countries. The richest country (in terms of GDP per capita) is Luxemburg, followed by Ireland, 
while the poorest is Bulgaria. However, the within-country standard deviation of GDP per capita 
is very high in Ireland, although it is even higher in the United Kingdom. 

Growth of GDP per capita is highest in Romania, followed by a number of Eastern-European 
countries (Bulgaria, Estonia, Croatia, Lithuania, Latvia, Slovenia) as well as Cyprus. 
Unemployment is highest in Greece and Spain, followed by Croatia, Portugal, Slovenia and Italy. 
All these countries have double-digit unemployment rates. Germany and the United Kingdom 
have the lowest unemployment rates. The growth rate of the unemployment rate is negative in all 
countries (i.e., the unemployment rate declined), with many countries showing double-digit 
growth rates. However, countries showing high unemployment rates in 2015 (such as Greece, 
Italy and Spain) are not the ones that show the largest decline in unemployment. Finally, 
employment grows at a positive rate in all countries, although the rate is modest (in most cases at 
a slower rate than GDP per capita).  

Figure 2.1 shows maps of these variables, as well as the number of patents. For the number of 
patents, we use totals over the 2010 – 2015 period. We use these cumulative numbers because 
the yearly numbers are rather volatile, especially at the high level of disaggregation that we will 
use in the CCCM. Using the cumulative number of patents over a somewhat longer period is also 
consistent with the strongly cumulative nature of technology (e.g., Nelson and Winter, 1982; 
Freeman and Soete, 1997).  
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Table	2.1.	Descriptive	statistics	for	variables	of	the	economic	competitiveness	data	set	

  Averages Standard deviation 

 N Y€ Y gY U gU gE Y€ Y gY U gU gE 
Austria 9 36.9 10.5 1.8 5.0 -6.78 1.3 6.31 0.18 0.55 2.13 2.98 0.53 
Belgium 11 33.1 10.4 1.6 8.7 -10.35 1.5 11.28 0.31 0.83 4.10 3.30 0.38 
Bulgaria 6 12.2 9.3 4.4 9.8 -13.12 0.7 4.74 0.32 1.13 1.62 5.88 1.01 
Cyprus 1 23.8 10.1 4.9 14.9 -14.54 3.6       
Czech Republic 8 25.4 10.1 3.2 5.1 -18.32 1.4 10.64 0.31 0.74 1.68 1.90 0.54 
Germany 38 34.5 10.4 1.8 4.6 -8.77 1.1 7.59 0.21 0.84 1.67 3.42 0.80 
Denmark 5 34.1 10.4 2.6 5.9 -6.40 1.4 7.44 0.20 0.61 0.35 1.13 0.53 
Estonia 1 22.1 10.0 4.5 6.1 -5.46 0.9       
Greece 13 17.7 9.8 0.9 23.8 -5.93 2.1 3.62 0.18 1.67 4.37 6.32 1.27 
Spain 19 25.3 10.1 2.2 21.3 -9.69 2.5 5.12 0.20 0.62 5.95 3.23 1.39 
Finland 4 31.2 10.3 2.6 9.0 -7.52 1.3 6.52 0.19 0.80 0.91 1.60 0.27 
France 22 26.7 10.2 1.0 9.7 -5.04 0.7 5.76 0.17 0.87 1.61 3.09 1.22 
Croatia 2 17.2 9.7 4.0 15.7 -15.43 1.3 0.45 0.03 0.10 0.50 1.02 0.50 
Hungary 8 18.9 9.8 2.8 6.7 -15.51 1.8 8.52 0.36 1.16 2.23 3.07 0.84 
Ireland 3 47.9 10.7 1.4 9.7 -14.84 2.8 16.86 0.40 4.99 0.49 0.33 0.69 
Italy 21 27.6 10.2 2.1 11.9 -4.37 0.8 7.57 0.28 0.53 5.11 3.36 0.72 
Lithuania 2 24.7 10.1 4.3 8.8 -11.38 1.3 6.80 0.28 0.13 1.10 1.61 1.87 
Luxemburg 1 78.0 11.3 1.2 6.3 -5.29 2.9       
Latvia 1 18.6 9.8 4.5 9.9 -8.08 0.2       
Malta 1 27.1 10.2 3.6 4.9 -10.88 6.2       
Netherlands 12 34.7 10.4 1.7 6.5 -15.62 1.6 7.23 0.20 1.11 0.98 0.96 0.64 
Poland 17 18.7 9.8 2.7 7.6 -16.10 0.5 6.75 0.27 0.39 1.64 2.69 3.66 
Portugal 7 21.8 10.0 2.4 12.8 -14.34 2.2 3.41 0.14 1.01 1.50 1.78 0.55 
Romania 8 16.7 9.6 7.6 6.8 -12.88 0.6 8.68 0.39 1.11 2.44 1.80 0.89 
Sweden 8 34.4 10.4 1.0 6.7 -5.70 1.6 6.88 0.17 0.96 1.00 2.60 0.49 
Slovenia 2 24.0 10.1 4.1 9.0 -13.85 2.2 4.30 0.18 0.24 1.45 1.85 0.00 
Slovak Republic 4 27.4 10.1 0.0 10.6 -14.79 1.8 16.19 0.49 0.81 3.41 2.43 0.41 
United Kingdom 41 32.2 10.3 0.4 4.5 -6.21 1.0 24.23 0.36 1.04 1.43 6.89 1.18 
Total sample 275 28.3 10.2 1.9 9.0 -9.37 1.3 13.79 0.38 1.74 6.19 5.73 1.45 
Between countries  28.3 10.1 2.7 9.4 -10.61 1.7 5.55 0.14 0.92 1.74 1.90 0.73 

Variable names: N = number of regions, Y€ = GDP per capita in K€PPS, Y = ln(GDP per capita), gY = growth rate 
(%) of GDP per capita, U = unemployment rate, gU = growth rate (%) of U, gE = growth rate of employment 
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Figure	2.1.	Maps	of	the	variables	in	the	economic	competitiveness	data	set,	and	number	
of	patents	(patents	are	totals	over	2010‐2015	period)	
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The maps in Figure 2.1 show that all of these variables show spatial concentration. GDP per capita 
is (still) high in the so-called blue banana regions (although in our case, it is a red banana), which 
stretches from the south of the United Kingdom, through Belgium and the Netherlands, south 
Germany and the Alps to North Italy (see, e.g., Faludi, 2015). South of Ireland, Denmark and the 
Southern Scandinavian regions also show high GDP per capita.  

The blue (red) banana does not, however, generally show high values of growth of GDP per capita. 
This is highest in the East (almost all of the post-EU-15 countries show high growth rates), as well 
as in Spain and Portugal. Unemployment is highest in the South, including France (especially the 
Northern French regions), and is generally low in the blue banana area. Unemployment grows 
rapidly in France and Italy, employment grows rapidly in Spain, Greece and part of Eastern 
Europe.  

Finally, the number of patents is especially high in the blue banana area, as well as in Southern 
Sweden and North Denmark, North-East Spain, and large parts of Austria, France and Finland. On 
the other hand, most of Eastern Europe has low levels of patenting, with the exception of the 
Warsaw and Budapest areas. 

Next, Figure 2.2 shows revealed technological advantages (RTA) of the regions. We define these 
in a similar way as the revealed comparative advantage (RCA) indicator that was used in the 
analysis of trade in our earlier paper (i.e., the indicator is scaled to [0,1] with ½ as the neutral 
value). Total global patents are used as the reference category, i.e., our RTA indicators indicate 
specialization of the European regions vis-à-vis the global totals, not intra-European 
specialization. Although we will use much more detailed technology classes in the CCA complexity 
analysis, for the purpose of the maps, we classified patents in just six technology groups. Five of 
these are derived from the classification proposed by Schmoch (2008). This classification is based 
on IPC (International Patent Class) codes, both at the 8-digit and 4-digit level. Every IPC code is 
assigned to one of the technology classes, which means that the classes as defined by Schmoch are 
mutually exclusive (an IPC code will be assigned to only one of the Schmoch classes). We also add 
a few IPC classes to the classification that were not included originally.2  

The sixth broad technology class consists of all patents with a CPC classification with codes Y02 
or Y04. The CPC classification is used by the patent office to tag patents on either climate change 
mitigation (CPC code Y02) or so-called smart electricity grids (CPC code Y04). Because the smart 
grids play a large role in sustainable energy use and distribution, these two CPC codes together 
represent technologies to combat climate change. Note that every patent that has a CPC tag also 
has an IPC class assigned to it. This means that while the five Schmoch classes, the CPC Y02/4 class 
overlaps with the five Schmoch classes.  

The maps show somewhat of a dichotomy between, on the one hand, electrical engineering and 
instruments, which have relatively few regions with technological specialization, and, on the other 
hand, chemicals, mechanical engineering and other fields, where we find relatively many regions 
that are specialized in these fields.  

                                                            
2 These are A61P (added to chemicals/pharmaceuticals), B33Y (additive manufacturing/3D-printing, added 
to mechanical engineering), C13B (added to food chemistry), G01Q (added to instruments/measurement), 
G16B (added to electrical engineering/computer technology), G16H (added to instruments/medical 
technology), G21B (added to mechanical engineering/other special purpose machines) and H04W (added 
to electrical engineering/digital communication). 
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Figure	2.2.	Maps	of	technological	specialization	(by	patents)	in	six	large	areas	(2010‐
2015) 
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In the map for CPC Y02/4 the regions with strongest specialization are found on the outskirts of 
Europe (most of Denmark. South France, East Poland and a few regions in Bulgaria and Romania. 
On the whole, this map shows relatively few regions with positive specialization in these CPC 
codes, which indicates that the majority of European regions is not specialized in climate-related 
technologies. 

	

3.	A	brief	overview	of	methods 

For a general description and (mathematical) details of the CCCM, we refer to Nomaler and 
Verspagen (2022). Here we provide a brief overview, in line with the specifics of this second 
paper. 

In implementing the CCCM, we use patent data at the finest possible aggregation level, which is 8-
digit IPC classes and 8-digit CPC classes (Y02 and Y04). In our baseline estimations, we use 
cumulative patent data for the period 2010 – 2015, as was the case in the previous section. In 
order to reduce the impact of random noise, we exclude observations with few patents. This 
concerns both regions, i.e., regions with less than 10 patents over the period are excluded from 
the sample, and patent classes, i.e., patent classes (IPC or CPC) with less than 10 patents over the 
period are excluded. This leaves us, in the 2010 – 2015 period, with a sample of 267 (out of 275) 
regions, 5,019 (out of a possible 7,327) 8-digit IPC codes, and 48 (out of a possible 49) 8-digit CPC 
codes. 

With five indicators of economic competitiveness, 267 regions and 5,067 (=5,019+48) patent-
based variables, the raw data that we use in our analysis consists of the matrix L, a 267x5 sized 
matrix of the (de-meaned) competitiveness data set, and M, the 267x5,067 sized matrix of de-
meaned RTA figures. The first step of our procedure is to reduce the dimension of M with principal 
component analysis (PCA): 

𝐌∗ ൌ 𝐌𝐕		 	 	 	 	 	 	 	 	 	 (1) 

where V is a 5,067xn matrix of loadings (i.e., this matrix contains the weights used to obtain the 
reduced-dimension scores). Essentially, V consists of the eigenvectors of the matrix product MTM	
that are associated with its largest n eigenvalues (that account for no more than a fraction f of the 
variance in the RTA data set), as stacked horizontally in decreasing order of the associated 
eigenvalues. We will elaborate below on how we choose the value for f.  

The standard Canonical Correlation Analysis (CCA) procedure takes the matrices M* and L as input 
and computes the weight matrices A	(of size 5x5) and B	(of size nx5), as well as a vector r that 
contains the five canonical correlation coefficients. The elements of r can be seen as a measure of 
goodness of fit for each composite competitiveness dimension that is derived in the CCA. The 
weight matrices A and B are chosen by the CCA in such a way that the correlation coefficient 
between the first columns of LA and M*B is maximized, and given this relationship, the correlation 
between the second columns is maximized, etc. 

The matrix product VB (5,067x5) contains the ‘complexity’ scores for the patent classes, 
separately in each of the five competitiveness dimensions. The matrix product MVB (267x5), 
contains the region-level complexity scores, again, separately in each five competitiveness 
dimensions. 

In predicting, we can choose to either predict the values of the composite factors (LA) generated 
by the CCA, or the underlying (five) individual indicators that make up the matrix L. Like in 
Nomaler and Verspagen, 2022, and as will be explained in Section 5 below, we will opt for the 
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latter, because this gives a more direct picture in the form of the indicators that we are interested 
in. In order to obtain this prediction at the indicator level, we need to perform what we call a 
rotation of the CCA results. The rotation post multiplies the patent class complexity scores and the 
region-level complexity scores by the matrix rA‐1. Accordingly, our in-sample predictions 
(indicated by a hat above the matrix variable) of the five original competitiveness indicators 
populate the 267x5 sized matrix 

𝐋መ ൌ 𝐌𝐕𝐁𝐫𝐀ି𝟏			 	 	 	 	 	 	 	 	 (2) 

and the patent class complexity scores that can directly be associated by the five original 
competitiveness indicators populate the 5,067x5 sized matrix are 

 𝐂 ൌ 𝐕𝐁𝐫𝐀ି𝟏		 	 	 	 	 	 	 	 	 	 (3) 

Thus, 𝐋መ ൌ 𝐌𝐂	 	 	 	 	 	 	 	 	 	 (4) 

 

4.	Selecting	the	f	threshold:	stability	vs	predictive	power 

We will now proceed to present results on stability and predictive power of the CCCM for these 
data, with the aim to select a value for the threshold f as used in the CCA stage of the algorithm. 
The threshold parameter f governs how much of the variation in the patent data (as transformed 
into RTA values) we retain in the second (CCA) stage of the procedure. On the one hand, including 
more variation (a higher value for f) will lead to higher predictive power (at least in-sample), but 
on the other hand, a higher value for f may lead to instability (across time periods) of the scoring 
parameters for the RTA variables. In Nomaler and Verspagen, 2022, which dealt with data on 
international trade instead of patent data, we selected a value f = 0.65. 

We have 5,067 patent-based variables in the data set that is used for the baseline estimations. 
Each one of those is an RTA indicator, scaled on the interval [0, 1] as before, indicating the region’s 
revealed technological advantage in the related class. Also as before, we use the global patent 
numbers as the comparison, which implies that the RTA indicators represent specialization 
relative to the global totals, not intra-European specialization. All IPC classes together form one 
specialization domain, and the same holds for all CPC codes. In other words, the RTA indicators 
attached to IPC classes represent specialization the particular class relative to all other IPC classes, 
and the RTA indicators attached to CPC classes represent specialization the particular class 
relative to all other CPC classes. 

Figure 4.1 shows the resulting relation between predictive power and stability of scores. The size 
of the dots corresponds to the f	value that was used, with larger dots corresponding to larger 
values. We use values 0.45 to 0.95 in steps of 0.05, and add the value 0.99 as the last one. On the 
vertical axis, we show, for each of the five variables in the competitiveness data set, the root mean 
squared error (RMSE) of the in-sample predictions for the variable. Obviously, the aim is to have 
minimal RMSE, which corresponds to the best predictions. On the vertical axis, we show the 
stability of the estimated patent score parameters. This is not straightforward to measure, as we 
do not have a panel data set as in Nomaler and Verspagen, 2022. With the panel data set, we could 
split the sample into two periods, and compare the score parameters between those two periods.  

This is impossible in the current data set, as we have data on our competitiveness variables for 
only one period (2015-2018). Therefore, we resort to another way of judging stability of the 
scores. We implement two slightly different data sets, which both use the same data for the 
competitiveness variables, but have two different patent data sets. In the first data set (the 
baseline as we described it above), we use cumulative patent data for the period 2010 – 2015, as 
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was the case in the previous section. In the second data set, we use patent data for a shorter period, 
i.e., 2013 – 2015. We then compare the resulting score parameters (for patent classes) for the two 
data sets by calculating the correlation coefficient between the scores.  

Obviously, because we use cumulative numbers of patents over the period and the shorter period 
is embedded in the longer one, this threshold is more restrictive in case of the shorter period. 
Therefore, we have a different number of regions and patent classes in the two samples. We deal 
with this by calculating correlation (as an indicator for stability) between the classes that are 
present in both estimations.  

 

  
GDP per capita Growth of GDP per capita 

Unemployment rate Growth of unemployment rate 

 

 

Growth of employment  
Figure	4.1.	Stability	and	RMSE	of	in‐sample	predictions	

 

The figure shows a rather different trade-off than what we presented in Nomaler and Verspagen, 
2022, where we used data on trade specialization, as well as a different set of competitiveness 
variables. In the present case, the expectations about predictive power (RMSE) are by-and-large 
confirmed: we find that the largest f values (largest dots) always yield the lowest RMSE. And 
although the picture is slightly mixed over the five variables, we find no substantial stability 
penalty for higher f values. In two cases (growth of the unemployment rate and growth of 
employment), the largest f values also show the highest stability. In two other cases, GDP per 
capita and its growth rate, the highest f values yield intermediate stability, and in one case (the 
unemployment rate), the highest f values yield stability values on the lower side. 

This suggests that (in)stability is not something to worry about in this data set, and therefore we 
proceed to use a high f value. We pick f = 0.95, mostly because the higher value (f = 0.99) 
sometimes brings us close to the limit of the number of variables (PCA components), which is 
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equal to the number of regions. With f = 0.95, our baseline run uses 205 PCA components, which 
is well below the 267 regions. The observations in Figure 3.1 with f = 0.95 are colored red. 

We now proceed to the details of the CCA estimation with f = 0.95. Table 4.1 shows the loading 
matrix A for the five competitiveness variables. Each column presents the loadings for one 
particular factor, and the corresponding canonical correlation of these factors is documented in 
the last row. In the interpretation of these coefficients, it is important to keep in mind that a high 
unemployment rate, as well as (positive) growth of the unemployment rate are generally 
considered non-desirable features of the regional economy, while the three other variables are 
generally considered as desirable properties. Thus, the first factor, with its high loading on GDP 
per capita and relatively high loading on the growth rate of unemployment, combines “positive” 
and “negative properties of the regional economy.  

This is different for the second factor, which also has a high loading on GDP per capita, a relatively 
high loading on the growth rate of GDP per capita, and relatively strongly negative loading on the 
unemployment rate, which are all “positive” properties. But the second factor also has a relatively 
strongly negative loading on the growth rate of employment, which is a negative property. 

 

Table	4.1.	The	loading	matrix	(A)	for	the	competitiveness	data	set,	and	canonical	
correlations	

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
GDP per capita 0.819 2.827 0.727 -0.745 -0.696 

Growth of GDP per capita -0.012 0.212 0.443 0.186 0.360 
Unemployment rate -0.074 0.044 0.108 -0.109 -0.087 

Growth of unemployment rate 0.129 -0.117 0.108 0.036 0.016 
Growth of employment 0.055 -0.203 0.092 0.694 -0.308 

Canonical correlation 0.956 0.917 0.875 0.808 0.748 
 

Also, the third factor mixes positive properties (high positive loadings on GDP per capita and its 
growth rate, and mildly positive on the growth rate of employment) with negative properties 
(mildly positive loadings on unemployment and its growth rate). The fourth factor loads high on 
the growth rate of employment, but strongly negative on GDP per capita. Thus, also the fourth 
factor mixes positive and negative properties of the regional economy. Finally, also the fifth factor 
is mixed: strongly negative on GDP per capita and growth of employment, but positive on the 
growth rate of GDP per capita. This pattern seems indicative of a catching-up region (initially with 
low GDP per capita, but growing relatively rapidly).  

The mixed character of all five factors makes them hard to interpret in a straightforward way. 
Thus we opt, as we did in Nomaler and Verspagen, 2022, to continue the interpretation of the 
results and our predictions in terms of the so-called rotated components, which provide a pure 
interpretation in terms of the five individual variables in the competitiveness data set. For 
completeness, we document these rotated loadings in Table 4.2.  
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Table	4.2.	The	rotated	loading	matrix	(rA‐1)	for	the	competitiveness	data	set	

 Factors (labeled by variable) 

 GDP per  
capita 

Gr of  
GDP pc 

Unempl.  
rate 

Gr of  
unempl.  

rate 

Gr  
of empl. 

GDP per capita 0.250 -0.640 -2.993 0.042 -0.002 
Growth of GDP per capita 0.233 0.369 -1.068 -0.021 0.001 

Unemployment rate -0.016 0.764 3.071 0.019 0.002 
Growth of unemployment rate 0.002 0.458 -1.459 -0.012 0.009 

Growth of employment -0.090 0.861 -2.103 -0.003 -0.006 
 

 

	

	 	

	

	

Figure	5.1.	In‐sample	prediction	
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5.	Prediction	

We now move to look in detail at how well the CCCM predicts the five competitiveness variables. 
Figure 5.1 shows the correlation plots between the actual value of the variables (horizontal axis) 
and the in-sample predicted value (vertical axis). All of these correlations are fairly strong, with 
the highest R2 obtained for the growth of the unemployment rate (0.86), closely followed by GDP 
per capita (0.85). Some of these relations indicate a degree of misspecification, indicated by a non-
linearity in the plots. For example, the model predicts that a range of regions is at a relatively low 
level of GDP per capita, while in fact these regions do vary in regard of this variable (this is 
indicated by a more or less horizontal cloud of points at the bottom of the graph). Another example 
is a set of regions that has rather high unemployment, but is predicted to have lower 
unemployment rates. However, overall, the in-sample predictions are of fairly high quality (higher 
than in Nomaler and Verspagen, 2022 where we looked at data on exports and countries). 

Table 5.1 documents some summary statistics of the in-sample predictions. The comparison 
between the standard deviation of the actual regional deviations from the average and the 
standard deviation of regional predictions is an interesting feature. Remember that we use 
centered (de-meaned) data, which implies that we predict deviations from the average. The 
comparison between the two standard deviations provides additional information to the 
correlations documented in Figure 5.1. We see that the standard deviation of the predicted 
deviations is close to, although smaller than the standard deviation of the actual deviations.  

The fact that these standard deviations are relatively close is a positive characteristic of the 
predictions. Relatively smaller standard deviations of the predictions would yield very flat slopes 
in Figure 5.1, indicating that the variation of predictions is much smaller than the variations of the 
actual values, and this would make the predictions less accurate. The standard deviations are, 
roughly, in the range of 80 – 90% of the actual standard deviations, with the highest value (92%) 
obtained for GDP per capita and the lowest value (78%) for the growth rate of employment. 

 

Table	5.1.	Prediction‐related	summary	statistics	

 GDP pc gr GDP pc Unemp gr Unemp gr emp 
Average of the variable 10.171 1.932 9.009 -9.371 1.300 
StDev of regional deviations 0.385 1.743 6.192 5.733 1.451 
StDev of regional predictions 0.353 1.440 5.097 5.163 1.129 
	

In terms of assessing out-of-sample predictions, we are severely limited by the data. As already 
indicated, we have data for the variables in the competitiveness data set only for the period 2015-
2018. Therefore, we have no possibility to investigate the quality of any out-of-sample predictions 
for the growth rate variables in the data set, simply because the actual data are not available. 
However, with some adjustments, we can investigate the quality of the 2018 out-of-sample 
predictions for (log of) GDP per capita and the unemployment rate. While the in-sample 
predictions of these variables refer to 2015, we used data for 2018 to calculate growth rates of 
these variables, and we can also predict the 2018 values using the CCCM. In order to maximize the 
variation in our patent-related variables (RTA) between estimation and prediction, we implement 
an estimation with patent data for 2013-2015 (cumulative number of patents overt the period, as 
before) and just GDP per capita and the unemployment rate for 2015 as the competitiveness 
variables. We use these estimations (the rotated patent class score variables) on 2015-2018 
patent data (again, RTAs) to generate 2018 predictions for the two variables.  
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These predictions are documented in Figure 5.2 (correlations). Both correlations are (much) 
lower than the corresponding ones for in-sample predictions. Thus, the out-of-sample predictions 
are worse than the in-sample predictions, as was the case in Nomaler and Verspagen, 2022. The 
correlation for GDP per capita is the highest of the two (R2 = 0.47). For the unemployment rate, 
we see that some of the predictions are negative, which is actually an economic impossibility, and 
which therefore detracts from the quality of this prediction. 

	

	 	
Figure	5.2.	Out‐of‐sample	prediction,	without	in‐sample	residuals	
	

As in Nomaler and Verspagen, 2022, we also present predictions in which we add the in-sample 
residual from the estimation on which the predictions are based. This assumes that the prediction 
errors are somehow persistent within a region over time. These out-of-sample predictions are 
documented in Figure 5.3. The observed R2 values are indeed somewhat higher than in Figure 5.3, 
which suggests that the residuals indeed have predictive power. However, there are still some 
regions with negative predicted unemployment. 

	

	 	
Figure	5.3.	Out‐of‐sample	prediction,	with	in‐sample	residuals	
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Figure	5.4.	Maps	of	the	in‐sample	residuals,	per	variable	
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The fact that these in-sample residuals are important for the out-of-sample predictions also 
suggests that there are variables related to regional economic performance that are not included 
in our data set, and hence have been left out of the CCCM. If such variables exist, and if these 
variables change slowly over time, then we would indeed expect that the in-sample residuals are 
persistent over time. And although technology is an important determinant of economic 
performance, it is to be expected that there are other variables that are important for prediction 
(but have not been included in the analysis).3  

Figure 5.4 provides a geographical overview of the value of these residuals. Each of these maps 
uses four colors, where the yellows indicate negative residuals, and the orange and red hues 
indicate positive values. The borderlines in the positive or negative domain is formed by the 
median value, of either positives or negatives.  

The overall impression from these maps is that positive and negative values of the residuals are 
pretty much spread-out over the European Union. There are some clusters of especially the red 
values, e.g., for Bulgaria and Romania for the growth of GDP per capita, and for a part of Spain for 
all variables except the growth of employment. But it seems to be the case that such geographical 
patterns are a minor part of the explanation of the residuals of the in-sample predictions of the 
CCCM. 

 

6.	Which	technologies	are	related	to	economic	performance?	

We now turn to investigating how the patent class variables (regions’ RTAs in 8-digit IPC and CPC 
Y02/4 codes) are related to economic performance, as indicated by the outcomes of the CCCM 
(with f = 0.95). First, we look at the rotated scores of the patent (IPC+CPC Y02) variables for the 
five variables in the competitiveness data set. It is important to remember that whereas other 
approaches in the ‘economic complexity’ literature provide a single-dimensional indicator for the 
fine-grained technology classes, our approach generates several such indicators (fives in this 
case), each associated with a different dimension of economic performance of the regions. These 
are the respective columns of the 5,067x5 sized matrix C given by equation 3. 

Because the five economic competitiveness variables are only weakly, and sometimes negatively, 
correlated, we would generally expect that the patent class scores (columns of matrix C) would 
also not be strongly correlated. Figure 6.1 shows, as an example, the scatter plot between the first 
and third columns of matrix C, which are respectively associated with per capita GDP and the 
unemployment rate. The key thing to observe is that the mildly negative relation is, most of all, 
highly scattered. Only a fraction of the patent classes that are associated with relatively higher 
(lower) performance are also associated with higher (lower) unemployment rates. Table 6.1 gives 
the correlation coefficients between the five columns of matrix C, as well as the correlation 
coefficients between the original variables (between brackets). All of these correlations are 
relatively low. In terms of the scores of the patent class variables (RTAs), this means that the five 
dimensions that the CCCM identifies indeed measure different things. 

 

                                                            
3 We also ran the algorithm with country dummy variables included in the “right hand side” data, alongside 
the patent variables. This did not yield any major differences as compared to the results reported here. Thus, 
it seems that country dummy variables are generally not good candidates for “explaining” the persistence 
of the in-sample residuals. 
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Figure	6.1.	The	first	two	dimensions	of	the	totated	scores	of	patent	class	variables	plotted	
agians	each	other:	Scores	associated	with	GDP	pc	vs.	those	associated	with	the	growth	rate	
of	GDP	pc.	 

 

Table	6.1.	Correlation	matrix	of	the	patent	class	scores	(columns	of	matrix	C),	and	of	the	
five	competitiveness	variables	

 gr GDP pc Unemp gr Unemp gr Emp 
GDP pc -0.118 (-0.338) -0.264 (-0.374) 0.165 (0.260) 0.034 (0.112) 
gr GDP pc  -0.004 (0.043) -0.210 (-0.334) 0.054 (0.002) 
Unemp   0.069 (0.009) 0.242 (0.212) 
gr Unemp    -0.312 (-0.282) 

Note: values between brackets are the correlation coefficients between the original competitiveness 
variables (over 267 regions). 

 

As we have 5,067 patent variables, there is too much information to consider each individual 
patent class. Therefore, we analyze the patent score variables at the level of the aggregate classes 
as defined in the Schmoch classification that was used above in Section 2. In this case, we look, in 
first instance, at the lower-level classes instead of the five classes of Section 2. There are 33 of such 
classes, and these are presented in Table 6.2, which also documents how these 33 classes are 
grouped into the five classes of Section 2. 
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Table	6.2.	Technology	fields	based	Schmoch’s	scheme	

Electrical	engineering	    737	
1 Machinery, apparatus, energy  354 
2 Audio-visual technology  70 
3 Telecommunications  76 
4 Digital communication  36 
5 Basic communication processes  84 
6 Computer technology*  101 
7 Semiconductors  16 
Instruments	    608	

8 Optics  87 
9 Measurement**  267 

10 Control  114 
11 Medical technology  140 
Chemicals	    1814	
12 Organic fine chemistry  307 
13 Biotechnology  60 
14 Pharmaceuticals  45 
15 Macromolecular chemistry, polymers  187 
16 Food chemistry  105 
17 Basic materials chemistry  435 
18 Materials, metallurgy  242 
19 Surface technology, coating 119 
20 Micro-structure and nano-technology 19 
21 Chemical engineering  223 
22 Environmental technology  72 
Mechanical	engineering	    3151	
23 Handling  236 
24 Machine tools & additive manufacturing***  476 
25 Engines, pumps, turbines  366 
26 Textile and paper machines  450 
27 Other special purpose machines  580 
28 Thermal processes and apparatus  267 
29 Mechanical elements  287 
30 Transport  489 
Other	fields	    1017	
31 Furniture, games  267 
32 Other consumer goods  432 
33 Civil engineering  318 

Notes: * This field merges the fields “Computer technology” and “IT methods for management” from the 
original scheme; ** This field merges the fields “Measurement” and “Analysis of biological materials” from 
the original scheme; *** “Additive manufacturing” which was not in the original scheme was added to this 
field. The right column gives the number of 8-digit IPC classes in the field. 
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Figure 6.2 presents boxplots describing the distribution of the patent class scores (i.e., the five 
respective columns of the matrix C according to equation 3) over the 33 technology fields, with 
the set of CPC variables aggregated in an additional (34th) class. There is one set of boxplots for 
each variable in the competitiveness data set, as there is also one set of scores for each of these 
variables. We use rotated scores, which result from the loadings in the PCA that summarizes the 
information of the 5,067 patent variables, and the rotated score variables of the principal 
components. The colors in the boxplots indicate the six large technology groups (five Schmoch 
classes plus the CPC class), and the boxplots are presented left-to-right in the order of the 
technology fields in Table 6.1 (the CPC class on the right-hand side). 

 

  

  

 

 

Figure	6.2.	Boxplots	of	patant	class	score	variables,	five	competitiveness	variables,	by	
technlogy	field	

 

The boxplots provide one overall impression, which holds almost without exception for all five 
variables: dividing up the 5,067 patent classes over the 34 groups does not discriminate the high 
from the low scores in terms of averages. This is seen by the fact that the distributions for the 34 
groups are very similar: the boxes indicating the 1st to 3rd quartile range almost always overlap 
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for all 34 classes, and also most of the classes have outlier observations on the low as well as the 
high side. There are only two proper exceptions to this pattern, which are the pharmaceuticals 
class and the micro-structures and nano-technology class, both in the chemicals group, for the 
unemployment rate variable. For these two classes, the distribution of scores lies somewhat 
higher than for the other classes, indicating that, on the whole, specialization in these classes tends 
to be associated with higher unemployment rates. 

However, the general tendency that the boxplots indicate is that all of these 34 technology classes 
contain patent codes that are associated with high values of the competitiveness variable, as well 
as low and middle-range values. In other words, which of the 34 technology field a specific 8-digit 
IPC (or CPC) code fits into, is not indicative of the for the nature of that 8-digit class in terms of the 
relation between technology specialization and economic performance.  

This outcome is not specific to the technology classification of Schmoch. We also looked at the 
distribution of the scoring coefficients over technology fields defined in different ways. For 
example, we aggregated the 8-digit IPC codes into 4-digit IPC codes, of which there are 605, and 
into 3-digit IPC codes (there are 125 of these) as well as into NACE codes (we used the PATSTAT 
concordance between IPC and NACE, which yields 83 classes in our data set). Despite the fact that 
all these alternatives have more sub-categories than our 34 fields in Figure 6.2, they all yield the 
same basic conclusion: these ways of aggregating 8-digit classes do not help in distinguishing 
between low or high scoring coefficients of the detailed classes.  

However, this does not necessarily mean that the large technology fields are not helpful in 
distinguishing between economic performance of the regions in our sample, because economic 
performance as predicted by the CCCM depends on the scoring coefficients combined with the 
regional technology specialization pattern (both at the lowest level of aggregation). The regional 
predictions are obtained by the product sum of the 5,067 technology specialization variables and 
their associated regional RTA scores (see equation 4). Thanks to the linear nature of the analysis 
framework, these regional predictions can be fully decomposed down to their 5,067 constituent 
contributors, or to any aggregation of these 5,067 classes, such as the Schmoch categories in Table 
6.2. These aggregations can also be used for an ‘analysis of variance’ type of exercise.  

To put it formally, for each i of our five different competitiveness variables, we rewrite equation 
4 in a decomposed form as  

𝐋መ ௜ ൌ 𝐌𝑪ଙ෡  𝑓𝑜𝑟 ∀𝑖 ൌ 1,2,3,4,5       (5) 

where 𝑪ଙ෡ 	is the diagonalized form (of size 5,067x5,067) of the vector that is the ith column of matrix 
C.4 Clearly, for all practical purposes, there is too much detailed information in each 267x5067 
sized matrix 𝐋መ ௜ . We can aggregate this (column-wise) into the Schmoch categories (or any other 
set of aggregate categories of choice, such as 3-digit IPC) by using the according concordance 
matrix F	where Fhg =1 if the 8-Digit that corresponds to row h belongs to the aggregate (Schmoch) 
category that corresponds to column g	and 0 otherwise. Say the aggregation scheme comprises q 
categories. Then, the aggregated decomposition (facilitated by the 5067xq sized matrix F), for 
each competitiveness variable i, will be given by the 267xq matrix 

𝐋መ 𝐢
𝐀𝐠𝐠 ൌ 𝐌𝑪ଙ෡ 𝐅		 	 	 	 	 	 	 	 	 (6) 

For example, for i=1, which corresponds to the per capita GDP indicator, and opting for the five 
broad Schmoch classes, plus the CPC Y02/4 classes aggregated into one Greentech category (thus 

q=6), the 6 elements on the hth row of the 267x6 matrix 𝐋መ 𝟏
𝐀𝐠𝐠	will give the respective contribution 

                                                            
4 𝑪ଙ෡ ሺ𝑘,𝑚ሻ ൌ 𝐂ሺ𝑘, 𝑖ሻ if 𝑘 ൌ 𝑚, and 0 otherwise. 
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of Electrical Engineering, Instruments, Chemicals, Mechanical Engineering, Other fields, and 
Greentech to our (in-sample) prediction of the deviation of the per capita GDP of region h from 
the mean value of this variable over all regions in our sample (i.e., 𝐋መ 𝒉). We can take it one step 
further and add to this matrix one more (i.e., a 7th) column that gives our in-sample prediction 
errors (i.e., 𝐞∗,𝒊 ൌ  𝐋∗,𝒊 െ 𝐋መ ∗,𝒊). This gives a full decomposition of the actual (as opposed to 
predicted) deviations of the per capita GDP of regions from the mean. For each of our 

competitiveness indicator i, let us refer to this full decomposition as 𝐋𝐢
𝐀𝐠𝐠ା. 

Further note that, by construction, the average for each individual column of 𝐋𝐢
𝐀𝐠𝐠ା	is zero, and 

just as our total predictions, reflects a dimension as a vector of deviations from a mean. Therefore, 
the (q+1)x(q+1) sized matrix product 

𝐶𝑜𝑣ሺ𝐋𝐢
𝐀𝐠𝐠ାሻ ൌ ൫𝐋𝐢

𝐀𝐠𝐠ା൯
𝐓
൫𝐋𝐢

𝐀𝐠𝐠ା൯        (7) 

is the (q+1)x(I+1) sized covariance matrix of the decomposition of our de-meaned prediction of 
the ith competitiveness indicator, and it holds that 

𝑉𝑎𝑟ሺ𝐋∗,𝒊ሻ ൌ ∑ ∑ 𝐶𝑜𝑣ሺ𝐋𝐢
𝐀𝐠𝐠ାሻ௠௞

௤ାଵ
௞ୀଵ

௤ାଵ
௠ୀଵ        (8) 

That is, just as 𝐋𝐢
𝐀𝐠𝐠ା	 is a full	decomposition of the ith (de-meaned) competitiveness indicator, 

𝐶𝑜𝑣ሺ𝐋𝐢
𝐀𝐠𝐠ାሻ is a full decomposition of the variance	of the indicator. For better interpretability, the 

variance decomposition can also be expressed in terms of shares, and given the symmetry of a 
covariance matrix around the diagonal, in a diagonal plus upper diagonal form matrix 

 𝑉𝑎𝑟𝐷𝑒𝑐𝑜𝑚𝑝𝑆ℎ𝑟൫𝐋∗,𝒊൯௠௞ ൌ

⎩
⎪
⎨

⎪
⎧2

஼௢௩ሺ𝐋𝐢
𝐀𝐠𝐠శሻ೘ೖ

௏௔௥ሺ𝐋∗,𝒊ሻ
, 𝑖𝑓 𝑚 ൏ 𝑘

஼௢௩ሺ𝐋𝐢
𝐀𝐠𝐠శሻ೘ೖ

௏௔௥ሺ𝐋∗,𝒊ሻ
, 𝑖𝑓 𝑚 ൌ 𝑘

 

     (9)	

This variance decomposition is shown in Table 6.3 for all five variables. The six diagonal values in 
each panel (indicated in orange) are the respective variances of the contributions of the six 
technology categories to the overall variance of the variable. Of these six variances, the highest 
one is always associated to the mechanical engineering field (which is also the field that has most 
technology classes in our sample). For example, we see a contribution of 8.2% for GDP per capita, 
and 13.2% for growth of the unemployment rate. This suggests that mechanical engineering is the 
field that adds most to the regional predictions of per capita GDP. On the other hand, the 
contribution of the CPC variable is to predictions is only marginal, in each of the five panels.  

These diagonal values always add up to a relatively minor share of the total variance of the 
variable (i.e., in each panel of Figure 6.3). For example, for per capita GDP, the diagonal values 
contribute 23.7% of the total variance, and for growth of the unemployment rate, they add 27.5%, 
which is the highest share among the five variables. The table also shows the share of the variance 
of the residuals, and we can note that one minus this share is the R2 of the regression of actual 
values on the predicted values. The share of the residuals in total variance is smallest for growth 
of the unemployment rate, closely followed by GDP per capita, which suggests that these are the 
variables that the method predicts best (in-sample).  
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Table	6.3.	Decomposition	of	the	variance	in	each	competitiveness	indicator	down	to	5	
Schmoch	groups,	CPC	Y02/4	and	(in‐sample)	prediction	residuals	

GDP	per	capita	 	      
 Elect	Eng	 Instruments	 Chemicals	 Mech	Eng	 Other	fields	 CPC	Y02/4	 Residual	
Elect	Eng	 0.020	 0.030 0.039 0.045 0.031 0.009 0.001 
Instruments	   0.026	 0.059 0.057 0.046 0.013 0.002 
Chemicals	    0.071	 0.098 0.064 0.018 -0.003 
Mech	Eng	     0.082	 0.074 0.015 0.000 
Other	fields	      0.034	 0.014 0.001 
CPC	Y02/4	       0.003	 -0.001 
Residual	             0.153	

	   Share Variance (diagonals, orange): 0.237 
   Share Covariance (off diagonals blue): 0.610 
   Total	Explained	(R2):	 0.847	

growth	of	GDP	per	capita	
	 Elect	Eng	 Instruments	 Chemicals	 Mech	Eng	 Other	fields	 CPC	Y02/4	 Residual	
Elect	Eng	 0.015	 0.010 0.032 0.036 0.007 0.001 0.002 
Instruments	   0.013	 0.044 0.042 0.019 0.004 0.002 
Chemicals	    0.084	 0.128 0.056 0.011 0.003 
Mech	Eng	     0.092	 0.058 0.009 -0.002 
Other	fields	      0.021	 0.005 -0.003 
CPC	Y02/4	       0.002	 -0.002 
Residual	             0.311	

	   Share Variance (diagonals, orange): 0.227 
   Share Covariance (off diagonals blue): 0.463 
   Total	Explained	(R2):	 0.689	

Unemployment	rate	
	 Elect	Eng	 Instruments	 Chemicals	 Mech	Eng	 Other	fields	 CPC	Y02/4	 Residual	
Elect	Eng	 0.026	 0.038 0.029 0.060 0.024 0.007 0.005 
Instruments	   0.027	 0.023 0.066 0.026 0.007 -0.001 
Chemicals	   0.071	 0.110 0.041 0.003 0.008 
Mech	Eng	   0.099	 0.062 0.011 -0.010 
Other	fields	   0.019	 0.004 -0.002 
CPC	Y02/4	       0.001	 -0.001 
Residual	             0.247	

	   Share Variance (diagonals, orange): 0.244 
   Share Covariance (off diagonals blue): 0.509 
   Total	Explained	(R2):	 0.753	

growth	of	the	Unemployment	rate	
	 Elect	Eng	 Instruments	 Chemicals	 Mech	Eng	 Other	fields	 CPC	Y02/4	 Residual	
Elect	Eng	 0.013	 0.010 0.040 0.040 0.013 0.001 -0.001 
Instruments	   0.020	 0.049 0.075 0.027 0.007 0.001 
Chemicals	    0.086	 0.162 0.051 0.010 0.001 
Mech	Eng	     0.132	 0.075 0.015 0.001 
Other	fields	      0.023	 0.006 -0.002 
CPC	Y02/4	       0.002	 0.000 
Residual	             0.140	

	   Share Variance (diagonals, orange): 0.275 
   Share Covariance (off diagonals blue): 0.585 
   Total	Explained	(R2):	 0.860	

growth	of	Employment	
	 Elect	Eng	 Instruments	 Chemicals	 Mech	Eng	 Other	fields	 CPC	Y02/4	 Residual	
Elect	Eng	 0.015	 0.011 0.032 0.038 0.014 0.001 -0.002 
Instruments	   0.008	 0.027 0.035 0.011 0.001 -0.002 
Chemicals	    0.092	 0.115 0.043 0.008 0.015 
Mech	Eng	     0.098	 0.049 0.008 -0.011 
Other	fields	      0.020	 0.002 -0.001 
CPC	Y02/4	       0.001	 0.001 
Residual	             0.369	

	   Share Variance (diagonals, orange): 0.235 
   Share Covariance (off diagonals blue): 0.396 
   Total	Explained	(R2):	 0.631	
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For all variables, the largest share of the total variance is brought about by the covariances among 
the six technology classes, which is the sum of the off-diagonal values as indicated in blue. We 
observe marginal covariance values between the technology classes and the residuals (the area in 
green), however, by definition these values add up to zero. The share of the covariances in total 
variance is highest for GDP per capita, at 61%, closely followed by the growth of the 
unemployment rate (58.5%).  

In order to investigate the nature of the covariances between technology fields in terms of their 
predictive power further, we apply PCA on the covariance matrix of the components of regional 
predictions by technology field. This is done for every of the five individual economic 
competitiveness variables, and the results are documented in Table 6.4, which presents the 
loadings on the six technology fields of the first component, as well as the explained variance of 
this first component5. The latter ranges between about 72% (for the growth rate of employment) 
and 80% (for the growth rate of unemployment).  

From the PCA in Table 6.4, we would be able to construct five compositive factors (using the factor 
loadings) that can be used as (in-sample) predictions of the regional deviations in each variable. 
Obviously these five “technology fields PCA predictions” are of a lesser quality than the full (in-
sample) predictions that were displayed in Figure 5.1, yet still rather good predictions as indicated 
by the large share of variance captured by the first component.  

The loadings show a consistent pattern between the five variables, with the highest loading always 
found for the mechanical engineering field, followed by chemicals. The CPC field always has the 
smallest loading. To a large extent, this pattern mimics the size of the groups, as indicated by the 
last column in the table. Mechanical engineering is the largest field with about 41% of the 5,067 
detailed 8-digit classes, followed by chemicals with 26.5%, and these are also the two fields with 
the highest loadings, across all five economic competitiveness variables. In fact, the correlation 
between the last column of the table and each of the other five columns is very large. This 
correlation coefficient ranges between 0.94 (for GDP per capita) and 0.99 (for the unemployment 
rate). 

 

Table	6.4.	Principal	Components	Analysis	to	maximize	the	share	of	explained	variance	of	
regional	predictions	

 GDP pc gr GDP pc Unemp gr Unemp gr emp Sh IPC/CPC 
Electrical engineering 0.2323 0.1534 0.2565 0.1388 0.1698 0.104 
Instruments 0.3191 0.1953 0.2655 0.2287 0.1444 0.088 
Chemicals 0.5596 0.6411 0.5176 0.5587 0.6487 0.265 
Mechanical engineering 0.6178 0.6750 0.7259 0.7473 0.6918 0.408 
Other fields 0.3760 0.2639 0.2591 0.2360 0.2229 0.125 
CPC Y02/4 0.0893 0.0453 0.0409 0.0471 0.0341 0.009 
Share of variance 0.731 0.768 0.704 0.802 0.717  

Note: the last column gives the share of the technology field in the total number (5,067) of fully 
disaggregated patent classes (CPC and IPC). 

 

                                                            
5 I.e., the first 6 figures on ith column Table 6.4 gives the leading eigenvector of the covariance matrix 

൫𝐋𝐢
𝐀𝐠𝐠൯

𝐓
൫𝐋𝐢

𝐀𝐠𝐠൯	and the last figure	is the leading eigenvalue, normalized by the sum of all 6 eigenvalues. 
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This reinforces the impression that the aggregation of the 5,067 8-digit codes into six broad fields 
resembles a more or less random process of grouping, an impression that was already emerging 
from Figure 6.2, which re-shuffles the 5,067 detailed classes in 34 technology fields, and the 34 
technology fields into the six fields in Table 6.4. Therefore, the relatively high quality of the (in-
sample) predictions that was documented in Section 5 above, must be seen as the result of 
variation in the scores of the 8-digit patent classes, not so much the variation at the level of 34 or 
6 technology fields.  

This result is, in a sense, discouraging for policymakers, because it suggests that the question 
which technology classes are related to economic performance can only be answered properly at 
the lowest level of aggregation, and this is not a very insightful level of analysis for identifying 
policy options. The (8-digit) technology classes with the strongest relation to economic 
performance are found in a wide range of technology fields, and the policymaker who would want 
to target these classes would have to be very specific and selective. If, on the other hand, the 
policymaker would target a broad class, like mechanical engineering, she would only reach a 
relatively small part of the detailed classes that are strongly related to economic performance. 

In summary, we may picture the regions, or rather their specific technological specializations, as 
samples from the distribution of scores at the detailed level of 5.067 classes. Aggregating the 
sample to just six technology fields, provides a picture in which the covariances between the six 
fields dominate. But these covariances do not inform policymakers very well, because they 
provide little information on which specific technologies should be targeted. Moreover, it is clear 
that in terms of the six large technology fields, the ultimate result of this sampling in terms of 
regional variation is much dominated by the relative size of the six fields in terms of these classes: 
the larger classes (chemicals and mechanical engineering) account for the largest part of the 
variance.  

This reasoning on the importance of variation at the 8-digit level technology classes vs. the 
importance of covariance at the level of six classes alerted us to the possibility of performing the 
analysis on the basis of more aggregated patent data. Therefore, we repeated the entire analysis 
as described so far (keeping also the value f = 0.95 for detailed results) with just 42 patent classes 
in the basic underlying data set (i.e., matrix M). These 42 classes are the 33 Schmoch classes as in 
Table 6.2, plus nine CPC classes (at the 4-digit level). Note that this data set defies the basic idea 
of the complexity literature that the “product space” (in this case patent classes) usually contains 
many more entities than the number of geographical units: we have 42 patent classes, which is 
smaller than the 267 regions. 

We found that the outcomes of this analysis differ in two major ways relative to the 5,067 x 267 
data set. First, the predictions that result from the 42 x 267 data set are by far inferior to those 
resulting from the larger data set. This can be seen, for example, from the fact that the prediction 
residuals account for 67.5% of the total variance of the regional deviations (this is an average 
across the five variables) in the results of the smaller data set, while they account for only 24.4% 
when using the larger data set.  

Second, when we use the smaller data set, the pure variances of the six technology fields (i.e., 
disregarding the covariances between them) explain a much larger share of the variance of the 
total predicted deviations: on average 98.4% vs. 32.5% when using the larger data set. This means 
that if we wanted to provide policymakers with broader technology fields to base their action on 
instead of very specific (8-digit) patent classes, then we would have to accept a major loss in terms 
of predictability.  
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Figure	6.3.	Predictions	for	regional	disparities	of	GDP	per	capita,	by	six	technology	fields 
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To gain further insight into the predictions using the full (8-digit) detail, we explore the 
geographical dimension of the six-way (as in Table 6.3) technological decomposition of our 
predictions, by displaying the geographical variation given by each column of our 267x6 

decomposition matrix 𝐋𝐢
𝐀𝐠𝐠,	for each of the five competitiveness indicators. That makes 30 maps. 

The first six maps, that decompose the variation of our predictions of per capita GDP, are shown 
in Figure 6.3, while the other 24 maps can be found in the appendix. In each map, the predictions 
data have been arranged in four intervals. Two of these contain negative values, and two contain 
positive values. The two intervals with positive (negative) data have been separated by the 
median values of all positive (negative) values in the map.  

These maps provide us with a valuable lesson on an important methodological issue regarding 
the level of aggregation in the economic complexity literature, and which also has policy 
implications. We illustrate the issue with the maps for GDP per capita in Figure 6.3, and the top-
left panes of Figures 2.1 and 2.2 above. Figure 2.1 shows a clear concentration of relatively high 
levels of welfare (i.e., GDP per capita) in the so-called blue banana regions, as discussed above.  
Figure 2.2 suggests that, with RTAs computed at the level of the five Schmoch categories (plus CPC 
Y02/4), none but a few blue banana regions appear to be (strongly) specialized in technologies 
related to Electrical Engineering. This combination of observations suggests that there is no or 
only a weak association between technological specialization in Electrical Engineering and 
welfare. However, in all maps in Figure 6.3, including the one on Electric engineering, it is possible 
to identify (though broadly) the blue banana regions, which indicates that higher welfare is 
actually associable with certain subcategories (at 8-digit resolution) under each of the five 
Schmoch fields, certainly not excluding Electric engineering. The devil is in the detail.6 

This suggests that (selective) ‘diversification’ is a better concept key to understand economic 
competitiveness/performance than ‘specialization’. By its very nature, and as a concept for the 
policy maker, specialization must refer to rather aggregate entities, such as the Schmoch 
categories, or a sectoral scheme such as NACE. Our analysis shows that these classifications are 
not very useful to identify the potential sources of competitiveness (of European regions). On the 
other hand, diversification as a (policy) strategy seems to make more sense, because the highly 
disaggregated (8-digit) technology classes that are associated with a specific policy target variable 
(as GDP per capita, in Figure 6.3), can be targeted by diversification, even if it is along with other 
classes that are not associated to high levels of GDP per capita, or are related to high values of 
other policy target variables. From this point of view, the idea of ‘smart specialization’ (see, e.g., 
Balland et al., 2019) might better be coined ‘smart diversification’. 

Beyond this, the maps suggest that the predicted impact of the technology specialization variables 
on the economic competitiveness variables in European regions shows a clear and marked spatial 
pattern. In order to investigate this further, we conclude our analysis by summarizing the 
similarities between European regions in terms of the relationship between their technological 
specialization and economic variables in a network analysis.  

To do this, we start from our decomposition of the predicted regional disparities in terms of the 
six technology fields (the five aggregated Schmoch fields plus CPC), That is, once again (i.e., as used 

to produce the maps in Figure 6.3 and in the appendix), we use the five 267x6 matrices 𝐋መ 𝐢
𝐀𝐠𝐠 (as 

defined by equation 6, for each of the competitiveness variables), each of which decompose the 
respective dimension of the total predicted regional disparity into six sub-category values. We 
stack these five matrices horizontally in order to construct a 30-dimensional space (6 technology 

                                                            
6 Our discussion here is in terms of only one of our five variables, GDP per capita, but the conclusions extend 
to the other variables as well.  
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fields x 5 competitiveness variables), in which we can position the regions by their scores on each 
of the dimensions. In order to map this space, we z-score the 30 dimensions (for normalization), 
and then calculate the Euclidean distance between the regions in this z-scored space. Finally, we 
calculate the similarity between two regions as 10/d, where d is the Euclidean distance in 30-
dimensional space (the value 10 is an arbitrary scaling factor that doesn’t influence the results). 
These similarity values are used to graph a network between regions.  

We use the Linlog method (Noack, 2009) to graph this method, and use the VOS software 
(Waltman et al., 2010) to display the network. We also use the procedure in Newman (2004) to 
distinguish clusters of regions.7 In order to stress the largest similarities in the network, we cut all 
regional connections with a value below 1.95. This threshold keeps 252 of the 267 regions 
connected to each other in the network, and the 15 non-connected regions become isolates. 
Threshold values larger than 1.95 break the network into components of which the second-largest 
contains more than one region. At the 1.95 threshold, 90% of all connections in the original 
network (which is fully connected) are cut. 

 

 

Figure	6.4.	Network	map	of	252	European	regions,	based	on	similarity	of	their	
distribution	of	predicted	regional	disparities	over	technology	fields	

 

The network is displayed in Figure 6.4. There are three clusters, distinguished by color, which 
show a clear coherence. On the right side of the figure, we see the green cluster with many Eastern 
and Southern European regions. The blue cluster on the left-hand side contains many regions from 

                                                            
7 We set the attraction parameter in VOS to 6, repulsion to 0, and resolution to 1. Minimum cluster size is 
set to 4 and clusters smaller than this size are merged with the nearest larger cluster. 
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the blue banana zone, as well as (other) regions from Germany, the Netherlands, France, and 
Scandinavia. The purple cluster is in between. 

This network and its partition suggest a European regional divide. Figure 6.5 presents the 
European regional map with regions colored according to the clusters in Figure 6.5. The colors are 
the same between the two figures, with the added red color for the regions that dropped out of 
the largest network component due to the thresholding. The map in Figure 6.5 brings out clearly 
that in terms of regional predictions of the five competitiveness variables by the CCA complexity 
method, Europe is divided in a center-periphery pattern.  

The center consists of West/Central Europe, Scandinavia, the South of the UK, and North Italy. The 
periphery is South Europe except North Italy, and Eastern Europe. We find isolated parts of the 
periphery that are similar to the center, e.g., parts of Poland and the Madrid regions. The purple 
regions are in between center and periphery, and are mostly found in Belgium, the Netherlands, 
the Czech Republic, Hungary and Poland. The red regions, which are dissimilar to the rest of 
Europe, are found scattered over the map. 

 

 

 

Figure	6.5.	Network	clusters	of	252	European	regions,	geographical	representation	
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7.	Summary	and	conclusions	

In this second paper of the Canonical Correlation Complexity project, we analyzed European (sub-
national) regions, taking their technological specializations in terms of detailed 8-digit patent 
classes as the “predictors” of five economic competitiveness variables: GDP per capita and its 
growth rate, the unemployment rate and its growth rate, and the growth rate of employment. One 
basic conclusion is that the CCCM generates relatively good predictions, both in-sample and out-
of-sample.  

Like in Nomaler and Verspagen, 2022, which used trade data to predict a slightly different set of 
economic competitiveness variables for countries, we find here that the in-sample prediction 
errors (residuals) add to the out-of-sample predictive power. This suggests that the part of 
economic competitiveness that is not related to technological specialization is persistent over 
time. Thus, while it is entirely reasonable that technology specialization alone cannot make 
prefect predictions, we also learn that the part of the economic variables that is not related to 
technological specialization changes only slowly over time.  

The CCCM identifies a number of patent classes that are positively (or negatively) related to each 
of the economic competitiveness variables. It would be tempting to use lists of detailed (8-digit) 
technology classes to inform policymakers about which technologies are related to strong 
economic performance, so that they could target these technologies in their policies. But such a 
recommendation has several major pitfalls.  

First, and this is generally applicable to any industrial or innovation policy that targets specific 
goals, what may work in one regional context may not work in another, and, moreover, several 
regions targeting the same technology classes at the same time may induce competition that 
diminishes the effect of the policy (“not every region can be a Silicon Valley”). Thus, we need to be 
very careful in drawing simple but far-reaching policy conclusions from the CCCM results. Based 
on our analysis in Nomaler and Verspagen, 2022, which provides a detailed comparison of the 
CCCM with other complexity algorithms, we feel that this caution should be applied to the entire 
set of complexity algorithms. 

Second, our results suggest that the scores of the 8-digit patent classes (i.e., their weights in 
predicting the economic competitiveness variables) cannot very easily be aggregated to broader 
technology fields with the aim to inform policy. If we aggregate the 5,067 individual 8-digit classes 
to six broad technology fields, the variation within the six fields accounts for only a small fraction 
of the total variation of the regional predictions (typically around or slightly below one third of 
the total variance). This means that it is very hard to formulate policy recommendations that 
suggest stimulating one or a few of the broad technology fields across European regions.  

The reason for this result is that each of the six broad technology fields contains several 8-digit 
patent classes with low scores/weights, as well as several classes with high scores. Targeting the 
broad technology classes does not distinguish enough between the technology classes that are 
positively or negatively related to economic performance. This leaves the policymaker who wants 
to use our results with two options. On the one hand, she could target very specific technology 
classes, and on the other hand, she could try to stimulate technological diversification. The first of 
these options (targeting detailed technology classes) is difficult because they are very specific 
(and because of the first pitfall identified above). The second option, diversification, may target 
broad technology fields (in specific regions), with the aim to make a broad range of technologies 
accessible, among which are technologies related to specific economic policy variables, such as 
growth and employment. 
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In this respect, we suggest that the various decompositions8 that we proposed in Section 6 above, 
and which are largely complementary to our core method (canonical correlation-based 
complexity analysis), may prove to be a useful input in the ‘smart specialization’ policy discussion. 
These decompositions, which are likely also applicable to other complexity algorithms, are a 
potential policy toolkit that combines the methods of the economic complexity and the product 
space literatures.  

In terms of further research, one option that we want to pursue concerns the tradeoff that we 
identified between the level of aggregation of the basis patent data set and the nature of 
predictions obtained using CCCM. In our main analysis, we used a very detailed patent data set (8-
digit technology codes), and this yields good predictions, but little usefulness of the broad 
technology fields, as summarized above. On the other hand, when we used a more aggregated 
patent data set from the start (42 technology fields instead of 5,067 8-digit classes), the usefulness 
of the six technology fields increased, but the quality of the predictions dropped considerably. We 
expect that such a tradeoff will also manifest itself for other complexity algorithms (as discussed 
in detail in Nomaler and Verspagen, 2022). But this expectation remains to be investigated in 
further research. 
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Appendix.	Additional	maps	

This appendix documents a number of additional (to Figure 6.3 of the main text) maps, each of 
which breaks down the regional predictions of the competitiveness variables by six technology 
fields (i.e., respective columns of the matrices 𝐋መ ௜  as given by equation 5).  

In each map, the predictions data have been arranged in four intervals. Two of these contain 
negative values, and two contain positive values. The two intervals with positive (negative) data 
have been separated by the median values of all positive (negative) values in the map. 
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Figure	A1.	Predictions	for	regional	disparities	of	the	growth	of	GDP	per	capita,	by	six	
technology	fields	
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Figure	A2.	Predictions	for	regional	disparities	of	the	unemployment	rate,	by	six	
technology	fields	
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Figure	A3.	Predictions	for	regional	disparities	of	growth	of	the	unemployment	rate,	by	
six	technology	fields	

 



35 
 

  

  

  
Figure	A4.	Predictions	for	regional	disparities	of	the	growth	of	employment,	by	six	
technology	fields	
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