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Canonical Correlation Complexity of European
Regions
Onder Nomaler & Bart Verspagen

UNU-MERIT

Abstract:

In an earlier paper (Nomaler & Verspagen, 2022) we introduced a ‘supervised learning’ based
alternative to the competing unsupervised learning algorithms (e.g., Hidalgo and Hausmann, 2009
vs. Tacchella et al, 2012) proposed in the so-called ‘economic complexity’ literature. Similar to the
existing ones, our alternative, which we refer to as the “Canonical Correlation Complexity Method
(CCCM)”, also aims at reducing the high dimensionality in data on the empirical patterns of co-
location (be it nations or regions) of specializations in products or technologies, while the ultimate
objective is to understand the relationship between specialization, diversification, and economic
development. In our alternative method which combines the toolkit of the Canonical Correlation
Analysis with that of Principal Component Analysis, the data on trade or technology specializa-
tions and multiple dimensions of economic development are processed together from the very
beginning in order to identify the patterns of mutual association. This way, we are able to identify
the products or technologies that can be associated with the level or the growth rate of per capita
GDP, and (un)employment. In this follow up paper, we use the CCCM to analyse the development
patterns of European regions in relation to their respective technology specializations. Our
findings provide insights for EU’s industrial policies, especially those considered under the ‘smart
specialization’ framework.
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specialization; revealed technological advantage; European regional development; smart
specialization
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1. Introduction

In this paper we describe the second stage of our research project on the Canonical Correlation
Complexity Method (CCCM) which combines the long-established methods Canonical Correlation
Analysis (CCA) with Principal Correlation Analysis (PCA) in the context of economic complexity
research. Our first paper in this research project (Nomaler & Verspagen, 2022) has described the
method in detail, and reported on the application of CCCM to the case of international trade
(exports) and its relation to economic competitiveness. The scope of the first paper was a broad
international one, covering the 100+ largest economies in the world.

In this paper, we shift the attention to the economic competitiveness of European regions, and the
role of technological capabilities in this. The role of technology in economic development and
growth has been well researched (e.g., Freeman and Soete, 1997; Nelson and Winter, 1982).
Technological change provides both productivity gains, and new products and services that
represent welfare gains to society. Technology can also be guided towards the solution of societal
problems, such as global warming (Schot and Steinmueller, 2018).

In the present paper, we look at technology as a source of economic development as indicated by
GDP per capita and its growth rate (for a similar approach, see, e.g., Fagerberg, 1987), as well as
its relation to employment and unemployment (see, e.g., Freeman and Soete, 1987). The focus is
on sub-national European regions (as in Fagerberg et al., 1997).

Our approach is rooted in the complexity literature (for an overview, see, e.g., Freire, 2021), which
stresses the role of productive capabilities in competitiveness of, in this case, regions. By focusing
on technology, we interpret productive capability as mainly influenced by technology. We use
patents as the technology indicator, which means that our emphasis is on an output indicator of
the inventive process (see, e.g., Pavitt, 1985 for an overview of the characteristics of patents as
technology indicators). This means that we disregard the influence of technology through the
diffusion of international or interregional technology flows. These flows have been considered as
an important source of technological catching-up (e.g., Abramovitz, 1986, Fagerberg, 1987,
Fagerberg et al,, 1997). By focusing on patents, the emphasis is on the (global) technological
frontier, rather than on technological catching-up.

The main aim of the analysis is to use the CCCM to assess the competitiveness of the regions of the
European Union (plus the United Kingdom) in light of their technological specialization as
indicated by European patents. The aim is not to introduce the CCCM as such, or explore its general
workings, as this has been done in Nomaler and Verspagen, 2022. In fact, we refer to this earlier
paper for most (formal) details of the method, and assume here that the reader is familiar with
the basics as described therein.

The rest of this paper is laid out as follows. In the next section, we describe the data that will be
used in the analysis. This concerns both the data on economic competitiveness (development
level, growth, employment and unemployment) and the data on patents (technological
specialization). Unfortunately, and due to changes in regional classifications, data on the economic
competitiveness variables is available only for a single recent period (2015 - 2018), which means
we cannot apply the panel perspective in Nomaler & Verspagen, 2022.



In Section 3, we present some details of the CCCM that are useful for the specific context of this
paper. Section 4 presents the part of the analysis that selects a value for the threshold parameter
fthatis used in the CCCM. This parameter governs how much of the variation between regions in
terms of the large number (5,000+) of patent variables that is retained in the later stages of the
algorithm. Contrary to the case in Nomaler and Verspagen, 2022, we find that a high value of the f
parameter can be used in the data set under consideration here. Section 4 also summarizes the
basic estimation results (including parameter values) of the CCCM. Here we face a choice between
using the raw estimated parameters, which correspond to composite factors of the
competitiveness variables, or so-called rotated components, which correspond to pure
competitiveness variables. This choice is representational only, i.e., it has no impact on the
predictive power, or the relation between the patent variables and the predictions of the method.
As in Nomaler and Verspagen, 2022, we opt for rotated components, because these turn out to be
easier to interpret.

Section 5 presents some basic outcomes with regard to the predictive power of the method. We
show that the quality of in-sample predictions is high, but that out-of-sample predictions are
somewhat weaker. However, the quality of these out-of-sample predictions can only be assessed
for two out of five competitiveness variables, due to data limitations. As in Nomaler and
Verspagen, 2022, we find that in-sample prediction residuals add power to the out-of-sample
predictions. This implies that deviations between actual and predicted values tend to be persistent
over time within the region.

In Section 6 we present the bulk of our results. This section deals with the technological
competitiveness profiles of the European regions in our sample, by exploring the relationship
between the five competitiveness variables and technological specialization as related to the
patent variables. We link technological competitiveness to six broad technology fields, and we
show that in terms of the relation between technology and economic competitiveness, Europe is
divided into two major parts. One of these parts can be seen as leading, in the sense that
technology is related to above-average economic performance in these regions, and another part
is more peripheral in the sense that technology is related to sub-average performance. Section 7
summarizes our main line of argumentation and presents the conclusions.

2. Descriptive statistics

Our data set consists of all NUTS-2 regions of the European Union Member States, plus the UK.1
We opt for the NUTS-2 level because at this level sufficient data are available for our economic
variables, and the majority of regions has a large enough number of patents in order to be able to
calculate meaningful patent indicators. We exclude one region (FI20, Aland) because the
economic data are incomplete. At the NUTS-2 level, five countries consist of only a single region
(Cyprus, Estonia, Latvia, Luxemburg, and Malta), while another three countries (Croatia,
Lithuania, and Slovenia) consist of two regions. All other countries have three or more regions in
our data set. The total number of regions is 275.

1 We use the 2016 version of NUTS.



Table 2.1 shows descriptive statistics for the five variables that we use in the economic
competitiveness data set. These variables are GDP per capitain 2015 (measured at current market
prices in PPS to the Euro), the growth rate of GDP per capita (in the same units) over the period
2015-2018, the unemployment rate in 2015, the growth rate of the unemployment rate over
2015-2018, and the growth of employment (in persons) over 2015-2018. We report the
descriptives for GDP per capita in K€ as well the natural log (In) version (In of the € value). The
latter is what we will use in the analysis.

The table shows values per country (unweighted average of the regions in the country), as well as
values for the entire set of 275 regions, and the averages of the country values (as reported in the
table). As is well known, there are substantial differences between countries, as well as within
countries. The richest country (in terms of GDP per capita) is Luxemburg, followed by Ireland,
while the poorest is Bulgaria. However, the within-country standard deviation of GDP per capita
is very high in Ireland, although it is even higher in the United Kingdom.

Growth of GDP per capita is highest in Romania, followed by a number of Eastern-European
countries (Bulgaria, Estonia, Croatia, Lithuania, Latvia, Slovenia) as well as Cyprus.
Unemployment is highest in Greece and Spain, followed by Croatia, Portugal, Slovenia and Italy.
All these countries have double-digit unemployment rates. Germany and the United Kingdom
have the lowest unemployment rates. The growth rate of the unemployment rate is negative in all
countries (i.e., the unemployment rate declined), with many countries showing double-digit
growth rates. However, countries showing high unemployment rates in 2015 (such as Greece,
Italy and Spain) are not the ones that show the largest decline in unemployment. Finally,
employment grows at a positive rate in all countries, although the rate is modest (in most cases at
a slower rate than GDP per capita).

Figure 2.1 shows maps of these variables, as well as the number of patents. For the number of
patents, we use totals over the 2010 - 2015 period. We use these cumulative numbers because
the yearly numbers are rather volatile, especially at the high level of disaggregation that we will
use in the CCCM. Using the cumulative number of patents over a somewhat longer period is also
consistent with the strongly cumulative nature of technology (e.g., Nelson and Winter, 1982;
Freeman and Soete, 1997).



Table 2.1. Descriptive statistics for variables of the economic competitiveness data set

Averages Standard deviation

N Y€ Y gY U gU gE Y€ Y gY U gU gE
Austria 91369 105 18 50 -678 13| 631 0.18 0.55 2.13 298 0.53
Belgium 11331 104 16 87 -1035 1.5|11.28 031 083 410 3.30 0.38
Bulgaria 6122 93 44 98 -1312 07| 474 032 113 162 588 1.01
Cyprus 1238 101 49 149 -1454 3.6
Czech Republic 8|254 101 32 51 -1832 141064 031 0.74 168 190 0.54
Germany 381345 104 18 46 -877 11| 759 021 084 1.67 342 0.80
Denmark 51341 104 26 59 -640 14| 7.44 020 0.61 035 113 0.53
Estonia 1(221 100 45 6.1 -546 09
Greece 13177 98 09 238 -593 21| 362 0.18 1.67 437 632 127
Spain 19 | 253 101 22 213 -969 25| 512 020 0.62 595 3.23 1.39
Finland 41312 103 26 90 -752 13| 652 019 0.80 091 1.60 0.27
France 221|267 102 10 97 -504 07| 576 0.17 087 161 3.09 1.22
Croatia 21172 9.7 40 157 -1543 13| 045 0.03 0.10 050 1.02 0.50
Hungary 81189 98 28 67 -1551 18| 852 036 116 223 3.07 0.84
Ireland 31479 107 14 97 -1484 281686 040 499 049 033 0.69
Italy 211|276 102 21 119 -437 08| 757 028 053 511 336 0.72
Lithuania 21247 101 43 88 -11.38 13| 680 0.28 0.13 110 1.61 1.87
Luxemburg 17780 113 12 63 -529 29
Latvia 11186 98 45 99 -8.08 0.2
Malta 1271 102 36 49 -1088 6.2
Netherlands 12 | 34.7 104 1.7 6.5 -1562 16| 7.23 020 1.11 098 096 0.64
Poland 171187 98 27 7.6 -1610 05| 6.75 027 039 1.64 2.69 3.66
Portugal 71218 100 24 128 -1434 22| 341 014 101 150 1.78 0.55
Romania 81167 96 76 68 -1288 06| 868 039 111 244 1.80 0.89
Sweden 8|344 104 10 6.7 -570 16| 688 0.17 096 1.00 2.60 0.49
Slovenia 21240 101 41 90 -1385 22| 430 0.18 0.24 145 1.85 0.00
Slovak Republic 41274 101 0.0 10.6 -14.79 18| 16.19 049 081 341 243 041
United Kingdom 411322 103 04 45 -621 1.0|2423 036 1.04 143 6.89 1.18
Total sample 2751283 102 19 90 -937 13]13.79 038 174 6.19 573 1.45
Between countries 283 101 27 94 -1061 1.7 555 0.14 092 1.74 190 0.73

Variable names: N = number of regions, Y€ = GDP per capita in K€PPS, Y = In(GDP per capita), gY = growth rate
(%) of GDP per capita, U = unemployment rate, gU = growth rate (%) of U, gE = growth rate of employment
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Figure 2.1. Maps of the variables in the economic competitiveness data set, and number
of patents (patents are totals over 2010-2015 period)



The maps in Figure 2.1 show that all of these variables show spatial concentration. GDP per capita
is (still) high in the so-called blue banana regions (although in our case, it is a red banana), which
stretches from the south of the United Kingdom, through Belgium and the Netherlands, south
Germany and the Alps to North Italy (see, e.g., Faludi, 2015). South of Ireland, Denmark and the
Southern Scandinavian regions also show high GDP per capita.

The blue (red) banana does not, however, generally show high values of growth of GDP per capita.
This is highest in the East (almost all of the post-EU-15 countries show high growth rates), as well
as in Spain and Portugal. Unemployment is highest in the South, including France (especially the
Northern French regions), and is generally low in the blue banana area. Unemployment grows
rapidly in France and Italy, employment grows rapidly in Spain, Greece and part of Eastern
Europe.

Finally, the number of patents is especially high in the blue banana area, as well as in Southern
Sweden and North Denmark, North-East Spain, and large parts of Austria, France and Finland. On
the other hand, most of Eastern Europe has low levels of patenting, with the exception of the
Warsaw and Budapest areas.

Next, Figure 2.2 shows revealed technological advantages (RTA) of the regions. We define these
in a similar way as the revealed comparative advantage (RCA) indicator that was used in the
analysis of trade in our earlier paper (i.e., the indicator is scaled to [0,1] with % as the neutral
value). Total global patents are used as the reference category, i.e., our RTA indicators indicate
specialization of the European regions vis-a-vis the global totals, not intra-European
specialization. Although we will use much more detailed technology classes in the CCA complexity
analysis, for the purpose of the maps, we classified patents in just six technology groups. Five of
these are derived from the classification proposed by Schmoch (2008). This classification is based
on IPC (International Patent Class) codes, both at the 8-digit and 4-digit level. Every IPC code is
assigned to one of the technology classes, which means that the classes as defined by Schmoch are
mutually exclusive (an [PC code will be assigned to only one of the Schmoch classes). We also add
a few IPC classes to the classification that were not included originally.?

The sixth broad technology class consists of all patents with a CPC classification with codes Y02
or Y04. The CPC classification is used by the patent office to tag patents on either climate change
mitigation (CPC code Y02) or so-called smart electricity grids (CPC code Y04). Because the smart
grids play a large role in sustainable energy use and distribution, these two CPC codes together
represent technologies to combat climate change. Note that every patent that has a CPC tag also
has an IPC class assigned to it. This means that while the five Schmoch classes, the CPC Y02 /4 class
overlaps with the five Schmoch classes.

The maps show somewhat of a dichotomy between, on the one hand, electrical engineering and
instruments, which have relatively few regions with technological specialization, and, on the other
hand, chemicals, mechanical engineering and other fields, where we find relatively many regions
that are specialized in these fields.

2These are A61P (added to chemicals/pharmaceuticals), B33Y (additive manufacturing/3D-printing, added
to mechanical engineering), C13B (added to food chemistry), G01Q (added to instruments/measurement),
G16B (added to electrical engineering/computer technology), G16H (added to instruments/medical
technology), G21B (added to mechanical engineering/other special purpose machines) and H04W (added
to electrical engineering/digital communication).
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In the map for CPC Y02/4 the regions with strongest specialization are found on the outskirts of
Europe (most of Denmark. South France, East Poland and a few regions in Bulgaria and Romania.
On the whole, this map shows relatively few regions with positive specialization in these CPC
codes, which indicates that the majority of European regions is not specialized in climate-related
technologies.

3. A brief overview of methods

For a general description and (mathematical) details of the CCCM, we refer to Nomaler and
Verspagen (2022). Here we provide a brief overview, in line with the specifics of this second

paper.

In implementing the CCCM, we use patent data at the finest possible aggregation level, which is 8-
digit IPC classes and 8-digit CPC classes (Y02 and Y04). In our baseline estimations, we use
cumulative patent data for the period 2010 - 2015, as was the case in the previous section. In
order to reduce the impact of random noise, we exclude observations with few patents. This
concerns both regions, i.e.,, regions with less than 10 patents over the period are excluded from
the sample, and patent classes, i.e., patent classes (IPC or CPC) with less than 10 patents over the
period are excluded. This leaves us, in the 2010 - 2015 period, with a sample of 267 (out of 275)
regions, 5,019 (out of a possible 7,327) 8-digit IPC codes, and 48 (out of a possible 49) 8-digit CPC
codes.

With five indicators of economic competitiveness, 267 regions and 5,067 (=5,019+48) patent-
based variables, the raw data that we use in our analysis consists of the matrix L, a 267x5 sized
matrix of the (de-meaned) competitiveness data set, and M, the 267x5,067 sized matrix of de-
meaned RTA figures. The first step of our procedure is to reduce the dimension of M with principal
component analysis (PCA):

M* = MV (1)

where V is a 5,067xn matrix of loadings (i.e., this matrix contains the weights used to obtain the
reduced-dimension scores). Essentially, V consists of the eigenvectors of the matrix product M™
that are associated with its largest n eigenvalues (that account for no more than a fraction f of the
variance in the RTA data set), as stacked horizontally in decreasing order of the associated
eigenvalues. We will elaborate below on how we choose the value for f.

The standard Canonical Correlation Analysis (CCA) procedure takes the matrices M*and L as input
and computes the weight matrices A (of size 5x5) and B (of size nx5), as well as a vector r that
contains the five canonical correlation coefficients. The elements of r can be seen as a measure of
goodness of fit for each composite competitiveness dimension that is derived in the CCA. The
weight matrices A and B are chosen by the CCA in such a way that the correlation coefficient
between the first columns of LA and M*B is maximized, and given this relationship, the correlation
between the second columns is maximized, etc.

The matrix product VB (5,067x5) contains the ‘complexity’ scores for the patent classes,
separately in each of the five competitiveness dimensions. The matrix product MVB (267x5),
contains the region-level complexity scores, again, separately in each five competitiveness
dimensions.

In predicting, we can choose to either predict the values of the composite factors (LA) generated
by the CCA, or the underlying (five) individual indicators that make up the matrix L. Like in
Nomaler and Verspagen, 2022, and as will be explained in Section 5 below, we will opt for the



latter, because this gives a more direct picture in the form of the indicators that we are interested
in. In order to obtain this prediction at the indicator level, we need to perform what we call a
rotation of the CCA results. The rotation post multiplies the patent class complexity scores and the
region-level complexity scores by the matrix rA-l. Accordingly, our in-sample predictions
(indicated by a hat above the matrix variable) of the five original competitiveness indicators
populate the 267x5 sized matrix

L = MVBrA—! (2)

and the patent class complexity scores that can directly be associated by the five original
competitiveness indicators populate the 5,067x5 sized matrix are

C=VBrA™l 3)
Thus, L. = MC (4)

4. Selecting the fthreshold: stability vs predictive power

We will now proceed to present results on stability and predictive power of the CCCM for these
data, with the aim to select a value for the threshold fas used in the CCA stage of the algorithm.
The threshold parameter f governs how much of the variation in the patent data (as transformed
into RTA values) we retain in the second (CCA) stage of the procedure. On the one hand, including
more variation (a higher value for f) will lead to higher predictive power (at least in-sample), but
on the other hand, a higher value for f may lead to instability (across time periods) of the scoring
parameters for the RTA variables. In Nomaler and Verspagen, 2022, which dealt with data on
international trade instead of patent data, we selected a value f= 0.65.

We have 5,067 patent-based variables in the data set that is used for the baseline estimations.
Each one of those is an RTA indicator, scaled on the interval [0, 1] as before, indicating the region’s
revealed technological advantage in the related class. Also as before, we use the global patent
numbers as the comparison, which implies that the RTA indicators represent specialization
relative to the global totals, not intra-European specialization. All IPC classes together form one
specialization domain, and the same holds for all CPC codes. In other words, the RTA indicators
attached to IPC classes represent specialization the particular class relative to all other IPC classes,
and the RTA indicators attached to CPC classes represent specialization the particular class
relative to all other CPC classes.

Figure 4.1 shows the resulting relation between predictive power and stability of scores. The size
of the dots corresponds to the f value that was used, with larger dots corresponding to larger
values. We use values 0.45 to 0.95 in steps of 0.05, and add the value 0.99 as the last one. On the
vertical axis, we show, for each of the five variables in the competitiveness data set, the root mean
squared error (RMSE) of the in-sample predictions for the variable. Obviously, the aim is to have
minimal RMSE, which corresponds to the best predictions. On the vertical axis, we show the
stability of the estimated patent score parameters. This is not straightforward to measure, as we
do not have a panel data set as in Nomaler and Verspagen, 2022. With the panel data set, we could
split the sample into two periods, and compare the score parameters between those two periods.

This is impossible in the current data set, as we have data on our competitiveness variables for
only one period (2015-2018). Therefore, we resort to another way of judging stability of the
scores. We implement two slightly different data sets, which both use the same data for the
competitiveness variables, but have two different patent data sets. In the first data set (the
baseline as we described it above), we use cumulative patent data for the period 2010 - 2015, as

9



was the case in the previous section. In the second data set, we use patent data for a shorter period,
i.e, 2013 - 2015. We then compare the resulting score parameters (for patent classes) for the two
data sets by calculating the correlation coefficient between the scores.

Obviously, because we use cumulative numbers of patents over the period and the shorter period
is embedded in the longer one, this threshold is more restrictive in case of the shorter period.
Therefore, we have a different number of regions and patent classes in the two samples. We deal
with this by calculating correlation (as an indicator for stability) between the classes that are
present in both estimations.
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Figure 4.1. Stability and RMSE of in-sample predictions

The figure shows a rather different trade-off than what we presented in Nomaler and Verspagen,
2022, where we used data on trade specialization, as well as a different set of competitiveness
variables. In the present case, the expectations about predictive power (RMSE) are by-and-large
confirmed: we find that the largest f values (largest dots) always yield the lowest RMSE. And
although the picture is slightly mixed over the five variables, we find no substantial stability
penalty for higher f values. In two cases (growth of the unemployment rate and growth of
employment), the largest f values also show the highest stability. In two other cases, GDP per
capita and its growth rate, the highest f values yield intermediate stability, and in one case (the
unemployment rate), the highest fvalues yield stability values on the lower side.

This suggests that (in)stability is not something to worry about in this data set, and therefore we
proceed to use a high f value. We pick f = 0.95, mostly because the higher value (f = 0.99)
sometimes brings us close to the limit of the number of variables (PCA components), which is
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equal to the number of regions. With f= 0.95, our baseline run uses 205 PCA components, which
is well below the 267 regions. The observations in Figure 3.1 with f= 0.95 are colored red.

We now proceed to the details of the CCA estimation with f= 0.95. Table 4.1 shows the loading
matrix A for the five competitiveness variables. Each column presents the loadings for one
particular factor, and the corresponding canonical correlation of these factors is documented in
the last row. In the interpretation of these coefficients, it is important to keep in mind that a high
unemployment rate, as well as (positive) growth of the unemployment rate are generally
considered non-desirable features of the regional economy, while the three other variables are
generally considered as desirable properties. Thus, the first factor, with its high loading on GDP
per capita and relatively high loading on the growth rate of unemployment, combines “positive”
and “negative properties of the regional economy.

This is different for the second factor, which also has a high loading on GDP per capita, a relatively
high loading on the growth rate of GDP per capita, and relatively strongly negative loading on the
unemployment rate, which are all “positive” properties. But the second factor also has a relatively
strongly negative loading on the growth rate of employment, which is a negative property.

Table 4.1. The loading matrix (A) for the competitiveness data set, and canonical
correlations

Factor 1 Factor2 Factor3 Factor4 Factor5

GDP per capita 0.819 2.827 0.727  -0.745 -0.696

Growth of GDP per capita  -0.012 0.212 0.443 0.186 0.360
Unemployment rate -0.074 0.044 0.108 -0.109 -0.087

Growth of unemployment rate 0.129 -0.117 0.108 0.036 0.016
Growth of employment 0.055 -0.203 0.092 0.694 -0.308
Canonical correlation 0.956 0.917 0.875 0.808 0.748

Also, the third factor mixes positive properties (high positive loadings on GDP per capita and its
growth rate, and mildly positive on the growth rate of employment) with negative properties
(mildly positive loadings on unemployment and its growth rate). The fourth factor loads high on
the growth rate of employment, but strongly negative on GDP per capita. Thus, also the fourth
factor mixes positive and negative properties of the regional economy. Finally, also the fifth factor
is mixed: strongly negative on GDP per capita and growth of employment, but positive on the
growth rate of GDP per capita. This pattern seems indicative of a catching-up region (initially with
low GDP per capita, but growing relatively rapidly).

The mixed character of all five factors makes them hard to interpret in a straightforward way.
Thus we opt, as we did in Nomaler and Verspagen, 2022, to continue the interpretation of the
results and our predictions in terms of the so-called rotated components, which provide a pure
interpretation in terms of the five individual variables in the competitiveness data set. For
completeness, we document these rotated loadings in Table 4.2.
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Table 4.2. The rotated loading matrix (rA-1) for the competitiveness data set

Factors (labeled by variable)

GDP per Grof Unempl. Gr of Gr
capita GDP pc rate unempl. of empl
rate )
GDP per capita 0.250 -0.640 -2.993 0.042 -0.002
Growth of GDP per capita 0.233  0.369 -1.068  -0.021 0.001
Unemploymentrate  -0.016 0.764 3.071 0.019 0.002
Growth of unemployment rate 0.002  0.458 -1.459  -0.012 0.009
Growth of employment  -0.090 0.861 -2.103  -0.003  -0.006
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Figure 5.1. In-sample prediction
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5. Prediction

We now move to look in detail at how well the CCCM predicts the five competitiveness variables.
Figure 5.1 shows the correlation plots between the actual value of the variables (horizontal axis)
and the in-sample predicted value (vertical axis). All of these correlations are fairly strong, with
the highest R2 obtained for the growth of the unemployment rate (0.86), closely followed by GDP
per capita (0.85). Some of these relations indicate a degree of misspecification, indicated by a non-
linearity in the plots. For example, the model predicts that a range of regions is at a relatively low
level of GDP per capita, while in fact these regions do vary in regard of this variable (this is
indicated by a more or less horizontal cloud of points at the bottom of the graph). Another example
is a set of regions that has rather high unemployment, but is predicted to have lower
unemployment rates. However, overall, the in-sample predictions are of fairly high quality (higher
than in Nomaler and Verspagen, 2022 where we looked at data on exports and countries).

Table 5.1 documents some summary statistics of the in-sample predictions. The comparison
between the standard deviation of the actual regional deviations from the average and the
standard deviation of regional predictions is an interesting feature. Remember that we use
centered (de-meaned) data, which implies that we predict deviations from the average. The
comparison between the two standard deviations provides additional information to the
correlations documented in Figure 5.1. We see that the standard deviation of the predicted
deviations is close to, although smaller than the standard deviation of the actual deviations.

The fact that these standard deviations are relatively close is a positive characteristic of the
predictions. Relatively smaller standard deviations of the predictions would yield very flat slopes
in Figure 5.1, indicating that the variation of predictions is much smaller than the variations of the
actual values, and this would make the predictions less accurate. The standard deviations are,
roughly, in the range of 80 - 90% of the actual standard deviations, with the highest value (92%)
obtained for GDP per capita and the lowest value (78%) for the growth rate of employment.

Table 5.1. Prediction-related summary statistics

GDPpc grGDPpc Unemp grUnemp gremp

Average of the variable 10.171 1.932  9.009 -9.371  1.300
StDev of regional deviations 0.385 1.743  6.192 5.733 1451
StDev of regional predictions  0.353 1.440  5.097 5163 1.129

In terms of assessing out-of-sample predictions, we are severely limited by the data. As already
indicated, we have data for the variables in the competitiveness data set only for the period 2015-
2018. Therefore, we have no possibility to investigate the quality of any out-of-sample predictions
for the growth rate variables in the data set, simply because the actual data are not available.
However, with some adjustments, we can investigate the quality of the 2018 out-of-sample
predictions for (log of) GDP per capita and the unemployment rate. While the in-sample
predictions of these variables refer to 2015, we used data for 2018 to calculate growth rates of
these variables, and we can also predict the 2018 values using the CCCM. In order to maximize the
variation in our patent-related variables (RTA) between estimation and prediction, we implement
an estimation with patent data for 2013-2015 (cumulative number of patents overt the period, as
before) and just GDP per capita and the unemployment rate for 2015 as the competitiveness
variables. We use these estimations (the rotated patent class score variables) on 2015-2018
patent data (again, RTAs) to generate 2018 predictions for the two variables.
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These predictions are documented in Figure 5.2 (correlations). Both correlations are (much)
lower than the corresponding ones for in-sample predictions. Thus, the out-of-sample predictions
are worse than the in-sample predictions, as was the case in Nomaler and Verspagen, 2022. The
correlation for GDP per capita is the highest of the two (R? = 0.47). For the unemployment rate,
we see that some of the predictions are negative, which is actually an economic impossibility, and
which therefore detracts from the quality of this prediction.
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Figure 5.2. Out-of-sample prediction, without in-sample residuals

As in Nomaler and Verspagen, 2022, we also present predictions in which we add the in-sample
residual from the estimation on which the predictions are based. This assumes that the prediction
errors are somehow persistent within a region over time. These out-of-sample predictions are
documented in Figure 5.3. The observed R2 values are indeed somewhat higher than in Figure 5.3,
which suggests that the residuals indeed have predictive power. However, there are still some
regions with negative predicted unemployment.

125 GDP pc 25 Unemployment °

120 20 - - .®

115

R?=0.5917. 15

GDP pc, predicted (2018)

Unemployment, predicted (2018)
i
o

9.0 9.5 10.0 10.5 11.0 115 12.0 12,5 0 5 10 15 20 25
GDP pc, actual (2018) Unemployment, actual (2018)

Figure 5.3. Out-of-sample prediction, with in-sample residuals
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The fact that these in-sample residuals are important for the out-of-sample predictions also
suggests that there are variables related to regional economic performance that are not included
in our data set, and hence have been left out of the CCCM. If such variables exist, and if these
variables change slowly over time, then we would indeed expect that the in-sample residuals are
persistent over time. And although technology is an important determinant of economic
performance, it is to be expected that there are other variables that are important for prediction
(but have not been included in the analysis).3

Figure 5.4 provides a geographical overview of the value of these residuals. Each of these maps
uses four colors, where the yellows indicate negative residuals, and the orange and red hues
indicate positive values. The borderlines in the positive or negative domain is formed by the
median value, of either positives or negatives.

The overall impression from these maps is that positive and negative values of the residuals are
pretty much spread-out over the European Union. There are some clusters of especially the red
values, e.g., for Bulgaria and Romania for the growth of GDP per capita, and for a part of Spain for
all variables except the growth of employment. But it seems to be the case that such geographical
patterns are a minor part of the explanation of the residuals of the in-sample predictions of the
CCCM.

6. Which technologies are related to economic performance?

We now turn to investigating how the patent class variables (regions’ RTAs in 8-digit IPC and CPC
Y02/4 codes) are related to economic performance, as indicated by the outcomes of the CCCM
(with f= 0.95). First, we look at the rotated scores of the patent (IPC+CPC Y02) variables for the
five variables in the competitiveness data set. It is important to remember that whereas other
approaches in the ‘economic complexity’ literature provide a single-dimensional indicator for the
fine-grained technology classes, our approach generates several such indicators (fives in this
case), each associated with a different dimension of economic performance of the regions. These
are the respective columns of the 5,067x5 sized matrix C given by equation 3.

Because the five economic competitiveness variables are only weakly, and sometimes negatively,
correlated, we would generally expect that the patent class scores (columns of matrix C) would
also not be strongly correlated. Figure 6.1 shows, as an example, the scatter plot between the first
and third columns of matrix C, which are respectively associated with per capita GDP and the
unemployment rate. The key thing to observe is that the mildly negative relation is, most of all,
highly scattered. Only a fraction of the patent classes that are associated with relatively higher
(lower) performance are also associated with higher (lower) unemployment rates. Table 6.1 gives
the correlation coefficients between the five columns of matrix C, as well as the correlation
coefficients between the original variables (between brackets). All of these correlations are
relatively low. In terms of the scores of the patent class variables (RTAs), this means that the five
dimensions that the CCCM identifies indeed measure different things.

3 We also ran the algorithm with country dummy variables included in the “right hand side” data, alongside
the patent variables. This did not yield any major differences as compared to the results reported here. Thus,
it seems that country dummy variables are generally not good candidates for “explaining” the persistence
of the in-sample residuals.
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Figure 6.1. The first two dimensions of the totated scores of patent class variables plotted
agians each other: Scores associated with GDP pc vs. those associated with the growth rate
of GDP pc.

Table 6.1. Correlation matrix of the patent class scores (columns of matrix C), and of the
five competitiveness variables

gr GDP pc Unemp gr Unemp gr Emp
GDP pc -0.118 (-0.338) -0.264(-0.374)  0.165 (0.260)  0.034 (0.112)
gr GDP pc -0.004 (0.043) -0.210(-0.334)  0.054 (0.002)
Unemp 0.069 (0.009)  0.242 (0.212)
gr Unemp -0.312 (-0.282)

Note: values between brackets are the correlation coefficients between the original competitiveness
variables (over 267 regions).

As we have 5,067 patent variables, there is too much information to consider each individual
patent class. Therefore, we analyze the patent score variables at the level of the aggregate classes
as defined in the Schmoch classification that was used above in Section 2. In this case, we look, in
firstinstance, at the lower-level classes instead of the five classes of Section 2. There are 33 of such
classes, and these are presented in Table 6.2, which also documents how these 33 classes are
grouped into the five classes of Section 2.
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Table 6.2. Technology fields based Schmoch’s scheme

Electrical engineering 737
1 Machinery, apparatus, energy 354
2 Audio-visual technology 70
3 Telecommunications 76
4 Digital communication 36
5 Basic communication processes 84
6 Computer technology* 101
7 Semiconductors 16

Instruments 608
8 Optics 87
9 Measurement** 267

10 Control 114

11 Medical technology 140

Chemicals 1814

12 Organic fine chemistry 307

13 Biotechnology 60

14 Pharmaceuticals 45

15 Macromolecular chemistry, polymers 187

16 Food chemistry 105

17 Basic materials chemistry 435

18 Materials, metallurgy 242

19 Surface technology, coating 119

20 Micro-structure and nano-technology 19

21 Chemical engineering 223

22 Environmental technology 72

Mechanical engineering 3151

23 Handling 236

24 Machine tools & additive manufacturing*** 476

25 Engines, pumps, turbines 366

26 Textile and paper machines 450

27 Other special purpose machines 580

28 Thermal processes and apparatus 267

29 Mechanical elements 287

30 Transport 489

Other fields 1017

31 Furniture, games 267

32 Other consumer goods 432

33 C(ivil engineering 318

Notes: * This field merges the fields “Computer technology” and “IT methods for management” from the
original scheme; ** This field merges the fields “Measurement” and “Analysis of biological materials” from
the original scheme; *** “Additive manufacturing” which was not in the original scheme was added to this
field. The right column gives the number of 8-digit IPC classes in the field.
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Figure 6.2 presents boxplots describing the distribution of the patent class scores (i.e., the five
respective columns of the matrix C according to equation 3) over the 33 technology fields, with
the set of CPC variables aggregated in an additional (34th) class. There is one set of boxplots for
each variable in the competitiveness data set, as there is also one set of scores for each of these
variables. We use rotated scores, which result from the loadings in the PCA that summarizes the
information of the 5,067 patent variables, and the rotated score variables of the principal
components. The colors in the boxplots indicate the six large technology groups (five Schmoch
classes plus the CPC class), and the boxplots are presented left-to-right in the order of the
technology fields in Table 6.1 (the CPC class on the right-hand side).
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Figure 6.2. Boxplots of patant class score variables, five competitiveness variables, by
technlogy field

The boxplots provide one overall impression, which holds almost without exception for all five
variables: dividing up the 5,067 patent classes over the 34 groups does not discriminate the high
from the low scores in terms of averages. This is seen by the fact that the distributions for the 34
groups are very similar: the boxes indicating the 1st to 3rd quartile range almost always overlap
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for all 34 classes, and also most of the classes have outlier observations on the low as well as the
high side. There are only two proper exceptions to this pattern, which are the pharmaceuticals
class and the micro-structures and nano-technology class, both in the chemicals group, for the
unemployment rate variable. For these two classes, the distribution of scores lies somewhat
higher than for the other classes, indicating that, on the whole, specialization in these classes tends
to be associated with higher unemployment rates.

However, the general tendency that the boxplots indicate is that all of these 34 technology classes
contain patent codes that are associated with high values of the competitiveness variable, as well
as low and middle-range values. In other words, which of the 34 technology field a specific 8-digit
IPC (or CPC) code fits into, is not indicative of the for the nature of that 8-digit class in terms of the
relation between technology specialization and economic performance.

This outcome is not specific to the technology classification of Schmoch. We also looked at the
distribution of the scoring coefficients over technology fields defined in different ways. For
example, we aggregated the 8-digit IPC codes into 4-digit IPC codes, of which there are 605, and
into 3-digit IPC codes (there are 125 of these) as well as into NACE codes (we used the PATSTAT
concordance between IPC and NACE, which yields 83 classes in our data set). Despite the fact that
all these alternatives have more sub-categories than our 34 fields in Figure 6.2, they all yield the
same basic conclusion: these ways of aggregating 8-digit classes do not help in distinguishing
between low or high scoring coefficients of the detailed classes.

However, this does not necessarily mean that the large technology fields are not helpful in
distinguishing between economic performance of the regions in our sample, because economic
performance as predicted by the CCCM depends on the scoring coefficients combined with the
regional technology specialization pattern (both at the lowest level of aggregation). The regional
predictions are obtained by the product sum of the 5,067 technology specialization variables and
their associated regional RTA scores (see equation 4). Thanks to the linear nature of the analysis
framework, these regional predictions can be fully decomposed down to their 5,067 constituent
contributors, or to any aggregation of these 5,067 classes, such as the Schmoch categories in Table
6.2. These aggregations can also be used for an ‘analysis of variance’ type of exercise.

To put it formally, for each i of our five different competitiveness variables, we rewrite equation
4 in a decomposed form as

L, =MC, forvi=1,234,5 (5)

where C, is the diagonalized form (of size 5,067x5,067) of the vector that is the it column of matrix
C.4 Clearly, for all practical purposes, there is too much detailed information in each 267x5067
sized matrix L;. We can aggregate this (column-wise) into the Schmoch categories (or any other
set of aggregate categories of choice, such as 3-digit IPC) by using the according concordance
matrix F where Fng=1 if the 8-Digit that corresponds to row h belongs to the aggregate (Schmoch)
category that corresponds to column g and 0 otherwise. Say the aggregation scheme comprises g
categories. Then, the aggregated decomposition (facilitated by the 5067xq sized matrix F), for
each competitiveness variable i, will be given by the 267xq matrix

188 = MCF (6)

For example, for i=1, which corresponds to the per capita GDP indicator, and opting for the five
broad Schmoch classes, plus the CPC Y02 /4 classes aggregated into one Greentech category (thus

q=6), the 6 elements on the hth row of the 267x6 matrix i.[l\gg will give the respective contribution

4C,(k,m) = C(k,i) if k = m, and 0 otherwise.
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of Electrical Engineering, Instruments, Chemicals, Mechanical Engineering, Other fields, and
Greentech to our (in-sample) prediction of the deviation of the per capita GDP of region h from
the mean value of this variable over all regions in our sample (i.e., L;,). We can take it one step
further and add to this matrix one more (i.e.,, a 7th) column that gives our in-sample prediction
errors (ie., e,; = L,; — i.*'l-). This gives a full decomposition of the actual (as opposed to
predicted) deviations of the per capita GDP of regions from the mean. For each of our

competitiveness indicator i, let us refer to this full decomposition as L?gg+.

Further note that, by construction, the average for each individual column of L?gg"L is zero, and

justas our total predictions, reflects a dimension as a vector of deviations from a mean. Therefore,
the (g+1)x(g+1) sized matrix product

Cov(Ly®8%) = (Ly#8) (L{#") 7)

is the (g+1)x(I+1) sized covariance matrix of the decomposition of our de-meaned prediction of
the ith competitiveness indicator, and it holds that

A
Var(L.y) = Sy Tty Cov(Li® )y (8)

That is, just as L?gg+ is a full decomposition of the ith (de-meaned) competitiveness indicator,

Cov(L?gng) is a full decomposition of the variance of the indicator. For better interpretability, the
variance decomposition can also be expressed in terms of shares, and given the symmetry of a
covariance matrix around the diagonal, in a diagonal plus upper diagonal form matrix

Agg+
Saa i m <k
VarDecompShr(L.;) = COU(L@ggJ,)' . 9)
—L 2 ifm=k
k Var(Ls;)

This variance decomposition is shown in Table 6.3 for all five variables. The six diagonal values in
each panel (indicated in orange) are the respective variances of the contributions of the six
technology categories to the overall variance of the variable. Of these six variances, the highest
one is always associated to the mechanical engineering field (which is also the field that has most
technology classes in our sample). For example, we see a contribution of 8.2% for GDP per capita,
and 13.2% for growth of the unemployment rate. This suggests that mechanical engineering is the
field that adds most to the regional predictions of per capita GDP. On the other hand, the
contribution of the CPC variable is to predictions is only marginal, in each of the five panels.

These diagonal values always add up to a relatively minor share of the total variance of the
variable (i.e., in each panel of Figure 6.3). For example, for per capita GDP, the diagonal values
contribute 23.7% of the total variance, and for growth of the unemployment rate, they add 27.5%,
which is the highest share among the five variables. The table also shows the share of the variance
of the residuals, and we can note that one minus this share is the R? of the regression of actual
values on the predicted values. The share of the residuals in total variance is smallest for growth
of the unemployment rate, closely followed by GDP per capita, which suggests that these are the
variables that the method predicts best (in-sample).
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Table 6.3. Decomposition of the variance in each competitiveness indicator down to 5
Schmoch groups, CPC Y02 /4 and (in-sample) prediction residuals

GDP per capita
Elect Eng Instruments Chemicals Mech Eng Other fields CPCY02/4 Residual
Elect Eng 0.020 0.030 0.039 0.045 0.031 0.009 0.001
Instruments 0.026 0.059 0.057 0.046 0.013 0.002
Chemicals 0.071 0.098 0.064 0.018 -0.003
Mech Eng 0.082 0.074 0.015 0.000
Other fields 0.034 0.014 0.001
CPCY02/4 0.003 -0.001
Residual 0.153
Share Variance (diagonals, orange): 0.237
Share Covariance (off diagonals blue): 0.610
Total Explained (R2): 0.847
growth of GDP per capita
Elect Eng Instruments Chemicals Mech Eng Other fields CPCY02/4 Residual
Elect Eng 0.015 0.010 0.032 0.036 0.007 0.001 0.002
Instruments 0.013 0.044 0.042 0.019 0.004 0.002
Chemicals 0.084 0.128 0.056 0.011 0.003
Mech Eng 0.092 0.058 0.009 -0.002
Other fields 0.021 0.005 -0.003
CPCY02/4 0.002 -0.002
Residual 0.311
Share Variance (diagonals, orange): 0.227
Share Covariance (off diagonals blue): 0.463
Total Explained (R2): 0.689
Unemployment rate
Elect Eng Instruments Chemicals Mech Eng Other fields CPCY02/4 Residual
Elect Eng 0.026 0.038 0.029 0.060 0.024 0.007 0.005
Instruments 0.027 0.023 0.066 0.026 0.007 -0.001
Chemicals 0.071 0.110 0.041 0.003 0.008
Mech Eng 0.099 0.062 0.011 -0.010
Other fields 0.019 0.004 -0.002
CPCY02/4 0.001 -0.001
Residual 0.247
Share Variance (diagonals, orange): 0.244
Share Covariance (off diagonals blue): 0.509
Total Explained (R2): 0.753
growth of the Unemployment rate
Elect Eng Instruments Chemicals Mech Eng Other fields CPCY02/4 Residual
Elect Eng 0.013 0.010 0.040 0.040 0.013 0.001 -0.001
Instruments 0.020 0.049 0.075 0.027 0.007 0.001
Chemicals 0.086 0.162 0.051 0.010 0.001
Mech Eng 0.132 0.075 0.015 0.001
Other fields 0.023 0.006 -0.002
CPCY02/4 0.002 0.000
Residual 0.140
Share Variance (diagonals, orange): 0.275
Share Covariance (off diagonals blue): 0.585
Total Explained (R2): 0.860
growth of Employment
Elect Eng Instruments Chemicals Mech Eng Other fields CPCY02/4 Residual
Elect Eng 0.015 0.011 0.032 0.038 0.014 0.001 -0.002
Instruments 0.008 0.027 0.035 0.011 0.001 -0.002
Chemicals 0.092 0.115 0.043 0.008 0.015
Mech Eng 0.098 0.049 0.008 -0.011
Other fields 0.020 0.002 -0.001
CPCY02/4 0.001 0.001
Residual 0.369
Share Variance (diagonals, orange): 0.235
Share Covariance (off diagonals blue): 0.396
Total Explained (R2): 0.631
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For all variables, the largest share of the total variance is brought about by the covariances among
the six technology classes, which is the sum of the off-diagonal values as indicated in blue. We
observe marginal covariance values between the technology classes and the residuals (the area in
green), however, by definition these values add up to zero. The share of the covariances in total
variance is highest for GDP per capita, at 61%, closely followed by the growth of the
unemployment rate (58.5%).

In order to investigate the nature of the covariances between technology fields in terms of their
predictive power further, we apply PCA on the covariance matrix of the components of regional
predictions by technology field. This is done for every of the five individual economic
competitiveness variables, and the results are documented in Table 6.4, which presents the
loadings on the six technology fields of the first component, as well as the explained variance of
this first components. The latter ranges between about 72% (for the growth rate of employment)
and 80% (for the growth rate of unemployment).

From the PCA in Table 6.4, we would be able to construct five compositive factors (using the factor
loadings) that can be used as (in-sample) predictions of the regional deviations in each variable.
Obviously these five “technology fields PCA predictions” are of a lesser quality than the full (in-
sample) predictions that were displayed in Figure 5.1, yet still rather good predictions as indicated
by the large share of variance captured by the first component.

The loadings show a consistent pattern between the five variables, with the highestloading always
found for the mechanical engineering field, followed by chemicals. The CPC field always has the
smallest loading. To a large extent, this pattern mimics the size of the groups, as indicated by the
last column in the table. Mechanical engineering is the largest field with about 41% of the 5,067
detailed 8-digit classes, followed by chemicals with 26.5%, and these are also the two fields with
the highest loadings, across all five economic competitiveness variables. In fact, the correlation
between the last column of the table and each of the other five columns is very large. This
correlation coefficient ranges between 0.94 (for GDP per capita) and 0.99 (for the unemployment
rate).

Table 6.4. Principal Components Analysis to maximize the share of explained variance of
regional predictions

GDPpc grGDPpc Unemp grUnemp gremp ShIPC/CPC

Electrical engineering 0.2323 0.1534 0.2565 0.1388 0.1698 0.104
Instruments 0.3191 0.1953 0.2655 0.2287 0.1444 0.088
Chemicals 0.5596 0.6411 0.5176 0.5587 0.6487 0.265
Mechanical engineering 0.6178 0.6750 0.7259 0.7473 0.6918 0.408
Other fields 0.3760 0.2639 0.2591 0.2360 0.2229 0.125
CPCY02/4 0.0893 0.0453 0.0409 0.0471 0.0341 0.009
Share of variance 0.731 0.768  0.704 0.802  0.717

Note: the last column gives the share of the technology field in the total number (5,067) of fully
disaggregated patent classes (CPC and IPC).

5 Le,, the first 6 figures on ith column Table 6.4 gives the leading eigenvector of the covariance matrix

T
(L#8) " (L2%8) and the last figure is the leading eigenvalue, normalized by the sum of all 6 eigenvalues.
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This reinforces the impression that the aggregation of the 5,067 8-digit codes into six broad fields
resembles a more or less random process of grouping, an impression that was already emerging
from Figure 6.2, which re-shuffles the 5,067 detailed classes in 34 technology fields, and the 34
technology fields into the six fields in Table 6.4. Therefore, the relatively high quality of the (in-
sample) predictions that was documented in Section 5 above, must be seen as the result of
variation in the scores of the 8-digit patent classes, not so much the variation at the level of 34 or
6 technology fields.

This result is, in a sense, discouraging for policymakers, because it suggests that the question
which technology classes are related to economic performance can only be answered properly at
the lowest level of aggregation, and this is not a very insightful level of analysis for identifying
policy options. The (8-digit) technology classes with the strongest relation to economic
performance are found in a wide range of technology fields, and the policymaker who would want
to target these classes would have to be very specific and selective. If, on the other hand, the
policymaker would target a broad class, like mechanical engineering, she would only reach a
relatively small part of the detailed classes that are strongly related to economic performance.

In summary, we may picture the regions, or rather their specific technological specializations, as
samples from the distribution of scores at the detailed level of 5.067 classes. Aggregating the
sample to just six technology fields, provides a picture in which the covariances between the six
fields dominate. But these covariances do not inform policymakers very well, because they
provide little information on which specific technologies should be targeted. Moreover, it is clear
that in terms of the six large technology fields, the ultimate result of this sampling in terms of
regional variation is much dominated by the relative size of the six fields in terms of these classes:
the larger classes (chemicals and mechanical engineering) account for the largest part of the
variance.

This reasoning on the importance of variation at the 8-digit level technology classes vs. the
importance of covariance at the level of six classes alerted us to the possibility of performing the
analysis on the basis of more aggregated patent data. Therefore, we repeated the entire analysis
as described so far (keeping also the value f= 0.95 for detailed results) with just 42 patent classes
in the basic underlying data set (i.e., matrix M). These 42 classes are the 33 Schmoch classes as in
Table 6.2, plus nine CPC classes (at the 4-digit level). Note that this data set defies the basic idea
of the complexity literature that the “product space” (in this case patent classes) usually contains
many more entities than the number of geographical units: we have 42 patent classes, which is
smaller than the 267 regions.

We found that the outcomes of this analysis differ in two major ways relative to the 5,067 x 267
data set. First, the predictions that result from the 42 x 267 data set are by far inferior to those
resulting from the larger data set. This can be seen, for example, from the fact that the prediction
residuals account for 67.5% of the total variance of the regional deviations (this is an average
across the five variables) in the results of the smaller data set, while they account for only 24.4%
when using the larger data set.

Second, when we use the smaller data set, the pure variances of the six technology fields (i.e.,
disregarding the covariances between them) explain a much larger share of the variance of the
total predicted deviations: on average 98.4% vs. 32.5% when using the larger data set. This means
that if we wanted to provide policymakers with broader technology fields to base their action on
instead of very specific (8-digit) patent classes, then we would have to accept a major loss in terms
of predictability.
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Figure 6.3. Predictions for regional disparities of GDP per capita, by six technology fields
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To gain further insight into the predictions using the full (8-digit) detail, we explore the
geographical dimension of the six-way (as in Table 6.3) technological decomposition of our
predictions, by displaying the geographical variation given by each column of our 267x6

decomposition matrix L?gg, for each of the five competitiveness indicators. That makes 30 maps.
The first six maps, that decompose the variation of our predictions of per capita GDP, are shown
in Figure 6.3, while the other 24 maps can be found in the appendix. In each map, the predictions
data have been arranged in four intervals. Two of these contain negative values, and two contain
positive values. The two intervals with positive (negative) data have been separated by the
median values of all positive (negative) values in the map.

These maps provide us with a valuable lesson on an important methodological issue regarding
the level of aggregation in the economic complexity literature, and which also has policy
implications. We illustrate the issue with the maps for GDP per capita in Figure 6.3, and the top-
left panes of Figures 2.1 and 2.2 above. Figure 2.1 shows a clear concentration of relatively high
levels of welfare (i.e.,, GDP per capita) in the so-called blue banana regions, as discussed above.
Figure 2.2 suggests that, with RTAs computed at the level of the five Schmoch categories (plus CPC
Y02/4), none but a few blue banana regions appear to be (strongly) specialized in technologies
related to Electrical Engineering. This combination of observations suggests that there is no or
only a weak association between technological specialization in Electrical Engineering and
welfare. However, in all maps in Figure 6.3, including the one on Electric engineering, it is possible
to identify (though broadly) the blue banana regions, which indicates that higher welfare is
actually associable with certain subcategories (at 8-digit resolution) under each of the five
Schmoch fields, certainly not excluding Electric engineering. The devil is in the detail.6

This suggests that (selective) ‘diversification’ is a better concept key to understand economic
competitiveness/performance than ‘specialization’. By its very nature, and as a concept for the
policy maker, specialization must refer to rather aggregate entities, such as the Schmoch
categories, or a sectoral scheme such as NACE. Our analysis shows that these classifications are
not very useful to identify the potential sources of competitiveness (of European regions). On the
other hand, diversification as a (policy) strategy seems to make more sense, because the highly
disaggregated (8-digit) technology classes that are associated with a specific policy target variable
(as GDP per capita, in Figure 6.3), can be targeted by diversification, even if it is along with other
classes that are not associated to high levels of GDP per capita, or are related to high values of
other policy target variables. From this point of view, the idea of ‘smart specialization’ (see, e.g.,
Balland et al., 2019) might better be coined ‘smart diversification’.

Beyond this, the maps suggest that the predicted impact of the technology specialization variables
on the economic competitiveness variables in European regions shows a clear and marked spatial
pattern. In order to investigate this further, we conclude our analysis by summarizing the
similarities between European regions in terms of the relationship between their technological
specialization and economic variables in a network analysis.

To do this, we start from our decomposition of the predicted regional disparities in terms of the
six technology fields (the five aggregated Schmoch fields plus CPC), That is, once again (i.e., as used
to produce the maps in Figure 6.3 and in the appendix), we use the five 267x6 matrices i.?gg (as
defined by equation 6, for each of the competitiveness variables), each of which decompose the
respective dimension of the total predicted regional disparity into six sub-category values. We
stack these five matrices horizontally in order to construct a 30-dimensional space (6 technology

6 Qur discussion here is in terms of only one of our five variables, GDP per capita, but the conclusions extend
to the other variables as well.
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fields x 5 competitiveness variables), in which we can position the regions by their scores on each
of the dimensions. In order to map this space, we z-score the 30 dimensions (for normalization),
and then calculate the Euclidean distance between the regions in this z-scored space. Finally, we
calculate the similarity between two regions as 10/d, where d is the Euclidean distance in 30-
dimensional space (the value 10 is an arbitrary scaling factor that doesn’t influence the results).
These similarity values are used to graph a network between regions.

We use the Linlog method (Noack, 2009) to graph this method, and use the VOS software
(Waltman et al., 2010) to display the network. We also use the procedure in Newman (2004) to
distinguish clusters of regions.” In order to stress the largest similarities in the network, we cut all
regional connections with a value below 1.95. This threshold keeps 252 of the 267 regions
connected to each other in the network, and the 15 non-connected regions become isolates.
Threshold values larger than 1.95 break the network into components of which the second-largest
contains more than one region. At the 1.95 threshold, 90% of all connections in the original
network (which is fully connected) are cut.
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Figure 6.4. Network map of 252 European regions, based on similarity of their
distribution of predicted regional disparities over technology fields

The network is displayed in Figure 6.4. There are three clusters, distinguished by color, which
show a clear coherence. On the right side of the figure, we see the green cluster with many Eastern
and Southern European regions. The blue cluster on the left-hand side contains many regions from

7 We set the attraction parameter in VOS to 6, repulsion to 0, and resolution to 1. Minimum cluster size is
set to 4 and clusters smaller than this size are merged with the nearest larger cluster.
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the blue banana zone, as well as (other) regions from Germany, the Netherlands, France, and
Scandinavia. The purple cluster is in between.

This network and its partition suggest a European regional divide. Figure 6.5 presents the
European regional map with regions colored according to the clusters in Figure 6.5. The colors are
the same between the two figures, with the added red color for the regions that dropped out of
the largest network component due to the thresholding. The map in Figure 6.5 brings out clearly
that in terms of regional predictions of the five competitiveness variables by the CCA complexity
method, Europe is divided in a center-periphery pattern.

The center consists of West/Central Europe, Scandinavia, the South of the UK, and North Italy. The
periphery is South Europe except North Italy, and Eastern Europe. We find isolated parts of the
periphery that are similar to the center, e.g., parts of Poland and the Madrid regions. The purple
regions are in between center and periphery, and are mostly found in Belgium, the Netherlands,
the Czech Republic, Hungary and Poland. The red regions, which are dissimilar to the rest of
Europe, are found scattered over the map.
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Figure 6.5. Network clusters of 252 European regions, geographical representation
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7. Summary and conclusions

In this second paper of the Canonical Correlation Complexity project, we analyzed European (sub-
national) regions, taking their technological specializations in terms of detailed 8-digit patent
classes as the “predictors” of five economic competitiveness variables: GDP per capita and its
growth rate, the unemployment rate and its growth rate, and the growth rate of employment. One
basic conclusion is that the CCCM generates relatively good predictions, both in-sample and out-
of-sample.

Like in Nomaler and Verspagen, 2022, which used trade data to predict a slightly different set of
economic competitiveness variables for countries, we find here that the in-sample prediction
errors (residuals) add to the out-of-sample predictive power. This suggests that the part of
economic competitiveness that is not related to technological specialization is persistent over
time. Thus, while it is entirely reasonable that technology specialization alone cannot make
prefect predictions, we also learn that the part of the economic variables that is not related to
technological specialization changes only slowly over time.

The CCCM identifies a number of patent classes that are positively (or negatively) related to each
of the economic competitiveness variables. It would be tempting to use lists of detailed (8-digit)
technology classes to inform policymakers about which technologies are related to strong
economic performance, so that they could target these technologies in their policies. But such a
recommendation has several major pitfalls.

First, and this is generally applicable to any industrial or innovation policy that targets specific
goals, what may work in one regional context may not work in another, and, moreover, several
regions targeting the same technology classes at the same time may induce competition that
diminishes the effect of the policy (“not every region can be a Silicon Valley”). Thus, we need to be
very careful in drawing simple but far-reaching policy conclusions from the CCCM results. Based
on our analysis in Nomaler and Verspagen, 2022, which provides a detailed comparison of the
CCCM with other complexity algorithms, we feel that this caution should be applied to the entire
set of complexity algorithms.

Second, our results suggest that the scores of the 8-digit patent classes (i.e., their weights in
predicting the economic competitiveness variables) cannot very easily be aggregated to broader
technology fields with the aim to inform policy. If we aggregate the 5,067 individual 8-digit classes
to six broad technology fields, the variation within the six fields accounts for only a small fraction
of the total variation of the regional predictions (typically around or slightly below one third of
the total variance). This means that it is very hard to formulate policy recommendations that
suggest stimulating one or a few of the broad technology fields across European regions.

The reason for this result is that each of the six broad technology fields contains several 8-digit
patent classes with low scores/weights, as well as several classes with high scores. Targeting the
broad technology classes does not distinguish enough between the technology classes that are
positively or negatively related to economic performance. This leaves the policymaker who wants
to use our results with two options. On the one hand, she could target very specific technology
classes, and on the other hand, she could try to stimulate technological diversification. The first of
these options (targeting detailed technology classes) is difficult because they are very specific
(and because of the first pitfall identified above). The second option, diversification, may target
broad technology fields (in specific regions), with the aim to make a broad range of technologies
accessible, among which are technologies related to specific economic policy variables, such as
growth and employment.
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In this respect, we suggest that the various decompositions® that we proposed in Section 6 above,
and which are largely complementary to our core method (canonical correlation-based
complexity analysis), may prove to be a useful input in the ‘smart specialization’ policy discussion.
These decompositions, which are likely also applicable to other complexity algorithms, are a
potential policy toolkit that combines the methods of the economic complexity and the product
space literatures.

In terms of further research, one option that we want to pursue concerns the tradeoff that we
identified between the level of aggregation of the basis patent data set and the nature of
predictions obtained using CCCM. In our main analysis, we used a very detailed patent data set (8-
digit technology codes), and this yields good predictions, but little usefulness of the broad
technology fields, as summarized above. On the other hand, when we used a more aggregated
patent data set from the start (42 technology fields instead of 5,067 8-digit classes), the usefulness
of the six technology fields increased, but the quality of the predictions dropped considerably. We
expect that such a tradeoff will also manifest itself for other complexity algorithms (as discussed
in detail in Nomaler and Verspagen, 2022). But this expectation remains to be investigated in
further research.
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Appendix. Additional maps

This appendix documents a number of additional (to Figure 6.3 of the main text) maps, each of
which breaks down the regional predictions of the competitiveness variables by six technology
fields (i.e., respective columns of the matrices L; as given by equation 5).

In each map, the predictions data have been arranged in four intervals. Two of these contain
negative values, and two contain positive values. The two intervals with positive (negative) data
have been separated by the median values of all positive (negative) values in the map.
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