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Abstract

In this paper we are studying a multiple player two-armed bandit model
with two risky arms in discrete time. Players have to find the superior arm
and can learn from others’ history of choices and successes. In equilibrium,
there is no conflict between individual and social rationality. If agents de-
part from perfect rationality and use count heuristics, they can benefit from
coordination (or centralization) of search activities. We test the conjecture
that agents gain from coordination with a between-subject design in two
treatments. In the experiments we find no gains from coordination. In-
stead, we find less severe deviations from the equilibrium strategy in the
non-coordinated treatment.
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1 Introduction

Economic decision makers often have to make choices without knowing the costs
and benefits of possible alternatives. Consumers, for example, have to choose be-
tween goods they have never tried out before. Firms have to pursue projects with
uncertain rewards. Selected goods and projects yield their uncertain rewards only
after some time lag. These decision situations rely on the gathering of decision rel-
evant information. The acquisition of these information needs learning. Kenneth
Arrow stresses the fact that learning is a product of agents’ experience and exper-
iments. “Learning can only take place through the attempt to solve a problem and
therefore only takes place during activity” (Arrow, 1962, p. 155). Many of these
learning processes can be modeled as search problems. Firms’ problem of selecting
between rivaling technologies, business strategies or investment opportunities or
consumers’ selection of occupation, consumer goods and prices all fall into this
category of search problems.

In this paper we are studying a decision making problem where agents choose
at several instances in time one out of two actions. Upon that choice agents
receive a payoff and learn more about future expected payoff from that action.
Such a problem is known as a bandit problem. As an example Rothschild (1974)
models choices of price by a monopolist. The monopolist learns about consumer
demand through his choices. These bandit problems can also be used to model
other decision problems such as job search or choices of technologies. A recent
survey on bandit problems is provided by Sundaram (2005). For several simple
cases this decision problem can often be solved with the help of Gittins indices
(see Gittins, 1979; Gittins and Jones, 1979).

When learning, one’s own experience is not the only source of information.
Learning does not only take place in isolation. Instead, decisions makers are em-
bedded in a broader system of social relations (Granovetter, 1985). This holds for
relationships among consumers as well as relationships between and within firms.
Based on the social learning theory of the psychologist Albert Bandura (1977),
decision makers can learn from the experiments and experience of their peers,
colleagues, neighbors and friends. In these socially embedded decision making
situations agents are influenced by what others are doing.

As a consequence, we want to discuss the strategic interaction of two agents who
simultaneously face a bandit problem. Each agent’s payoff is determined by his
own actions and is not influenced by the action of the other. However, agents can
benefit from the information that the choices of others reveal. This more complex
problem of parallel search is treated by Vishwanath (1988). Parallel search allows
to simultaneously explore several projects whose rewards are initially uncertain.
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Understanding how people use available information from others is not only
important to understand individual decision making. Formal models of social
learning yield interesting results for aggregate behavior. How people use the in-
formation made available by others also influences the performance of the whole
system. In the models of Banerjee (1992) and Bikhchandani et al. (1992) agents
make one-shot decisions based on their private signal and the past actions of others.
As a consequence, agents may end up in an information cascades and rationally ig-
nore their private signal. They follow the decisions of previous agents and choose
suboptimal alternatives. This phenomenon is also known as “herding” or “herd
behavior”.

Other models of social learning incorporate repeated choice and information
on payoffs of actions. In contrast to the models of information cascades, these
models also allow for learning from one’s own experience and acknowledge the fact
that many social relations are long-lasting. Ellison and Fudenberg (1993, 1995)
show that social learning and communication with random interaction in large
populations may lead to efficient long-run learning on the social level even if agents
are boundedly rational. Bala and Goyal (1998, 2001) model social learning in large
social networks as a generalized bandit problem of parallel search.1 They analyze
the convergence of behavior of boundedly rational agents and the optimality of
choice. As a result optimality and convergence depend crucially on the degree of
local and global interaction and the heterogeneity of agents.

Motivated by the literature on diffusion of innovation and collaborative R&D,
we consider a choice between two alternatives with unequal payoffs. In the context
of the diffusion of innovations these two alternatives can be interpreted as two
rivaling technologies, standards, or goods competing for potential adopters. In
the diffusion process one of the major obstacles is to convince potential adopters
that the innovation can be used in a beneficial way. Geroski (2000) or Rogers
(2003) provide an overview on the role of information in the diffusion process.
In the choice situation we consider, agents can only learn about the quality of
alternatives through their own or other’s experiments. In contrast to the notion of
network externalities, put forward by Katz and Shapiro (1985) or Arthur (1989),
learning from others in our model is not based on direct payoff externalities between
adopters. The payoff gained directly from choices is independent from the choices
of other users in our model setting.

Another possible application of our model is the decision of firms between
different R&D possibilities. Firms engaging in R&D face similar search problems
when developing products or processes based on rivaling standards or technologies.

1Bala and Goyal also use a two-armed bandit model with choice between two lotteries for
illustration. See Goyal (2007) for an comprehensive overview.
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Firms which are operating in the same market might obtain some information
about their opponents’ research portfolio and, even, research success. There are
various channels through which informations leave the firm, for example movement
of personnel, informal networks between engineers and scientists in different firms
or formal R&D coordination and joint ventures (see Mansfield, 1985; von Hippel,
1987). This information on the activities of others in turn will affect the firm’s
own research behavior. Again, like in the case of diffusion of innovations, we
abstract from any direct payoff interaction between agents through patenting or
early market entry.

Recent field experiments suggest that the experience of other members of the
social network matter for adoption choices of new technologies. Duflo and Saez
(2003) and Bandiera and Rasul (2006) show in very different social settings that
the adoption by colleagues, neighbors and family members is highly correlated with
individual adoption propensity.2 However, field data faces the reflection problem
as discussed in (Manski, 1993, 2000). The researcher cannot infer from field data,
whether the observed individual behavior is influenced by group behavior (e.g.
through learning from others) or simply reflects unobserved heterogeneity. Addi-
tionally, field data usually provides no information about the nature and intensity
of social interaction. A wide range of possible theoretical explanations may cause
the observed behavior: learning through communication and coordination, obser-
vational learning, conformity or social norms.

Models of social learning have shown that the duration and intensity of infor-
mation exchange yield very different results for aggregate behavior. Laboratory
experiments allow to test the theoretical considerations on decision making and
learning in a controlled environment. Prominently, experiments address social
learning in the model environments of information cascades. Anderson and Holt
(1997) were the first to replicate the environment of information cascades in the
laboratory. As predicted by the models of Banerjee (1992) and Bikhchandani et al.
(1992), cascades emerge in these experiments, i.e. participants herd on subopti-
mal alternatives. However, participants depart from fully rational behavior and
tend to rely more on their private information. Subsequent studies like Huck and
Oechssler (2000) found that participants’ behavior can be better explained by sim-
ple count heuristics. Kübler and Weizsäcker (2004) test the case of costly private
information in information cascades and find that participants overly rely on pri-
vate information because they apply only short chains of reasoning. Participants’

2Additionally, there is a rich empirical literature treating social learning externalities in the
context of technology adoption (Foster and Rosenzweig, 1995; Munshi, 2004; Conley and Udry,
2005) welfare and health program usage (Bertrand et al., 2000; Miguel and Kremer, 2004; Munshi
and Myaux, 2006) job search (Topa, 2001) and criminal activity(Glaeser et al., 1996) in an
impressive variety of settings.
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systematically misperceive the error rate of previous decision makers.
In our model we investigate the effects of decision making heuristics or rules of

thumb on the overall efficiency of search and learning. We compare the payoffs of
these rules of thumb with payoffs of count rules for a pair of two agents which can
observe each others choices and payoffs. We find gains from coordination when
agents’ behavior departs from Bayesian updating and simple count heuristics are
used.

In this paper we will test our theoretical predictions of individual decision
making with social learning in a two-arm bandit game experimentally. Banks
et al. (1997) tests how people actually make decisions and learn from their own
experience in various bandit games. The most likely decision rule that explained
participants’ behavior were stationary strategies, i.e. count rules. Charness and
Levin (2005) investigate deviations from Bayesian updating for individual learning
in a choice situation similar to ours. McElreath et al. (2005) and Efferson et al.
(2007) are the only studies we are aware of that test social learning in a bandit
game.3 However, in contrast to their experiments, we look at participants that
interact for more than one round and have more information about the history of
their fellow participants’ choices.

The outline of the paper is as follows: The next section presents the model
of choice we apply. In this section we will also analyze the theoretical effect of
decision heuristics compared to fully rational behavior. Section 3 describes the
experimental design and procedures. The results of the experiment are presented
in section 4. Section 5 concludes.

2 Model

We examine the decision making and learning of two agents in a two-armed bandit
game. We will start with the basic structure of the game. After that, the equilib-
rium solution is discussed and expected equilibrium payoffs are calculated, we will
compare these results with expected payoffs of agents who use decision-making
heuristics.

In this game two agents, A and B, can choose between two lotteries, X and Y .
The lotteries can be interpreted as returns from search or payoffs from the use of a
certain technology or good. These two lotteries, X and Y , have the probabilities
pX and pY to make a profit. For simplicity we normalize the size of the profit to 1.
Hence, alternative X wins a profit of 1 with probability pX and a profit of 0 with
probability (1 − pX). In the context of rivaling technologies, a profit of 1 might

3Efferson et al. (2007) test a modified experimental design of McElreath et al. (2005) with a
more field-like subject pool in Bolivia.
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be interpreted as a successful experiment, trial or positive feedback from ongoing
developments or trials.

There are two possible states of the world, X or Y . In the state X the probabil-
ity to win a prize pX using X is higher than the probability to win a prize pY using
Y . In the state Y the probability pY is higher than pX . A possible interpretation
might be that in state X the alternative X is more successful, while in state Y

the alternative Y is more successful. States determine probabilities pX and pY as
follows:

state pX pY

X p p

Y p p

with p > p and p = 1− p

Ex ante, both states, X and Y , have a given probability. For simplicity we
assume here that this probability is 1/2 for both states. Additionally we assume
that p and p add up to 1. The probability of a certain state of the world is known
to the agents, so are the values for p and p. What the agents do not know is the
actual state of the world. Hence, probabilities pX and pY are not known to the
agents ex ante. The only way to find out the state of the world is to make an
experiment or to learn from the experiment of the other agent.

Time is discrete with t ∈ {0, 1, . . . , T}. In each round t each agent can choose
(explore, research) one experiment, either X or Y . As both agents simultaneously
make experiments, each agent can observe the other agent’s experiment only after
all experiments in t are made. At the end of round t every agent gets feedback
about his own profit and the profit of the other agent. If a profit of 1 is won in a
experiment we call it a success.

In order to find an optimal strategy for agents we first look at some notational
issues. The number of experiments with X in round t is called et

X . The number
of experiments with Y is called et

Y . The number of successes in round t with X is
called st

X , the number of successes with Y is called st
Y .

For convenience we will denote the total number of experiments that have been
run up to round t with X and Y as follows:

Et
X =

t∑

τ=0

eτ
X Et

Y =
t∑

τ=0

eτ
Y

Similarly we will also denote the total number of successes with X and Y as
follows:

St
X =

t∑

τ=0

sτ
X St

Y =
t∑

τ=0

sτ
Y
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Here we consider a situation where experiments and successes are publicly
known. These publicly known experiments and successes define the History Ht.
We will identify the history with the number of experiments and successes, i.e.
Ht = (St

X , St
Y , Et

X , Et
Y ). Initially H0 = (0, 0, 0, 0).

Agents can update their beliefs about the probabilities of the states of the
world Pr(X | Ht) and Pr(Y | Ht). Initially Pr(X | H0) = Pr(Y | H0) = 1/2.
Agents can use these probabilities about the states of the world to determine the
probabilities pt

X of a success with X and the probability pt
Y of a success with Y.

Initially p0
X = p0

Y =
(
p + p

)
/2 = 1/2.

Given (unknown) probabilities pX and pY , in any given round t, the probability
to observe the given history Ht = (St

X , St
Y , Et

X , Et
Y ) is

Pr(Ht | pX , pY ) =

(
Et

X

St
X

)

pX
St

X (1− pX) Et
X−St

X

(
Et

Y

St
Y

)

pY
St

Y (1− pY ) Et
Y −Et

Y .

Since in the X-state (pX , pY ) = (p, p) and the in Y -state (pX , pY ) = (p, p) the
conditional probabilities of X and Y are

Pr
(
X | Ht

)
=

Pr
(
Ht | p, p

)

Pr
(
Ht | p, p

)
+ Pr

(
Ht | p, p

) , (1)

Pr
(
Y | Ht

)
=

Pr
(
Ht | p, p

)

Pr
(
Ht | p, p

)
+ Pr(Ht | p, p)

. (2)

The probability of a success with X and Y is, hence,

pt
X

(
Ht

)
= Pr

(
XH | Ht

)
p +

(
1− Pr

(
XH | Ht

))
p (3)

pt
Y

(
Ht

)
= Pr

(
YH | Ht

)
p +

(
1− Pr

(
YH | Ht

))
p (4)

Each agent can now choose an experiment, X and Y . The choices of agents
A and B will be called (cA, cB) with cA, cB ∈ {X, Y }. Such a pair of choices will
lead to a couple of consequences (sA, sB) with sA, sB ∈ {0, 1}. If, e.g., agent A was
successful with the experiment we will say sA = 1, if agent A was not successful
we will say sA = 0. We will denote the probabilities of an outcome (sA, sB) given
a pair of choices (cA, cB) with Pr(sA, sB | cA, cB). Such an outcome will yield
an immediate payoff ut and will also generate a new history Ht+1. All possible
consequences are summarized in table 1.

A pair of strategies (SA,SB) defines for each history Ht an expected profit
ut (Ht | SA,SB) in round t where ut can be constructed from table 1 with Pr (sA, sB | cA, cB)

as probability weights. A strategy S of an agent is a function that prescribes
for each history Ht a probability to choose either X or Y in the next round

7
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(cA, cB) (sA, sB) Pr(sA, sB |cA, cB) ut Ht+1

X,X 0, 0 (1− pt
X)2 (0, 0) St

X St
Y Et

X + 2 Et
Y

X, X 1, 0 (1− pt
X) · pt

X (1, 0) St
X + 1 St

Y Et
X + 2 Et

Y

X, X 0, 1 (1− pt
X) · pt

X (0, 1) St
X + 1 St

Y Et
X + 2 Et

Y

X, X 1, 1 (pt
X)2 (1, 1) St

X + 2 St
Y Et

X + 2 Et
Y

X,Y 0, 0 (1− pt
X)(1− pt

Y ) (0, 0) St
X St

Y Et
X + 1 Et

Y + 1
X,Y 1, 0 pt

X(1− pt
Y ) (1, 0) St

X + 1 St
Y Et

X + 1 Et
Y + 1

X, Y 0, 1 (1− pt
X)pt

Y (0, 1) St
X St

Y + 1 Et
X + 1 Et

Y + 1
X, Y 1, 1 pt

X · pt
Y (1, 1) St

X + 1 St
Y + 1 Et

X + 1 Et
Y + 1

Y,X 0, 0 (1− pt
X)(1− pt

Y ) (0, 0) St
X St

Y Et
X + 1 Et

Y + 1
Y,X 1, 0 pt

Y (1− pt
X) (1, 0) St

X St
Y + 1 Et

X + 1 Et
Y + 1

Y,X 0, 1 (1− pt
Y )pt

X (0, 1) St
X + 1 St

Y Et
X + 1 Et

Y + 1
Y,X 1, 1 pt

X · pt
Y (1, 1) St

X + 1 St
Y + 1 Et

X + 1 Et
Y + 1

Y, Y 0, 0 (1− pt
Y )2 (0, 0) St

X St
Y Et

X Et
Y + 2

Y, Y 1, 0 (1− pt
Y ) · pt

Y (1, 0) St
X St

Y + 1 Et
X Et

Y + 2
Y, Y 0, 1 (1− pt

Y ) · pt
Y (0, 1) St

X St
Y + 1 Et

X Et
Y + 2

Y, Y 1, 1 (pt
Y )2 (1, 1) St

X St
Y + 2 Et

X Et
Y + 2

Table 1: Choices and their consequences

t + 1. Furthermore, given a history Ht, a strategy S also determines a proba-
bility distribution for Ht+1 which, as long as t < T , leads to an expected profit
ut+1 (Ht+1|SA,SB).

We will assume that players maximize their own expected total profits

E

(
T∑

τ=0

uτ (Hτ |SA,SB)

)

.

An equilibrium is a pair of strategies (SA,SB), such that for each history the
prescribed choices maximize expected total profits. If, in a given subgame, there
is more than one equilibrium in pure strategies, we assume that players play both
strategies with equal probability.

The profit maximizing strategy implies that agents will choose X in the last
round if pT

X > pT
Y . Agents will choose Y if pT

X < pT
Y . This determines the profits

for the game that is played in the preceding rounds. For the preceding rounds the
game can be solved given parameters p and p with backward induction.

It is interesting to observe that in each subgame Ht where a pure equilibrium
is played, this equilibrium implies X if pt

X > pt
Y and Y if pt

Y < pt
X . In these cases,

there is no conflict between individual and social rationality. Both agents, A and
B, will choose the same alternative. Given this rational behavior of agents we
can compute all expected total profits, given T , p and p. The solid line in figure 1
shows the expected total profit for one agent and variations of p and p respectively,
given T = 2.

Expected total profits are higher when the difference of
∣∣∣p− p

∣∣∣ is larger. If the
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Figure 1: Expected total profits (T=2)

two alternatives are easier to distinguish and p approaches 0, the expected total
profit approaches 2.5 in a game of three rounds (T = 2). In this case, players
are indifferent in the first round; their expected profit of the first round equals
1/2. After the first round, players find out about the true state of the world
with certainty and their expected profit in later rounds is 1. If p approaches 0.5,
alternatives are almost indistinguishable. As a consequence, expected total profit
drops to 1.5 as players are indifferent in every round. E.g., if p = .25 and p = .75

each agent would earn an expected total profit of 1.7969.
Calculating equilibrium profits per backward induction is complicated and

takes time. Agents may, instead, get around this cognitively demanding and time
consuming strategy by using “good” rules of thumb as argued by Baumol and
Quandt (1964). Experiments on information cascades and bandit games suggest
that participants’ behavior can be predicted more accurately by simpler count
heuristics (e.g. see Anderson and Holt, 1997; Banks et al., 1997; Huck and
Oechssler, 2000). Agents that follow a simple count heuristic do not maximize
expected total profits but will choose the alternative that has been most successful
in the past. As a consequence, agents will choose X if St

X > St
Y and Y if St

Y > St
X .

If both alternatives have the same number of successes, St
X = St

Y , agents are indif-
ferent and we assume that they choose either X or Y with equal probability. We
can calculate expected total profits for a situation where both agents follow this
count heuristic, given T , p and p. Results for variations of p and p respectively are
shown by the dashed line in figure 1. Again, expected total profits increase when
the alternatives are easier to distinguish, although there are considerable efficiency
losses compared to expected equilibrium profits.

These efficiency losses occur especially in situations where little or no profits

9
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occur and agents are indifferent. In the first round, for example, it is possible that
both agents choose either X or Y and end up in a history H = (0, 0, 0, 2) or H =

(0, 0, 2, 0). In equilibrium both players should choose X in H = (0, 0, 0, 2)and Y

in H = (0, 0, 2, 0). In contrast, players using a count heuristic are again indifferent
between X and Y and make suboptimal decisions.

Agents that use such a heuristic could profit from making coordinated experi-
ments. In situations where agents are indifferent, they could raise their profits by
coordinating on (X, Y ) or (Y, X). If the game lasts for three rounds (T = 2), they
would end up with expected profits equal to equilibrium profits for all values of p.
E.g., if p = .25 and p = .75 and agents use the count heuristic, then expected total
profit per agent are 1.7197. If agents coordinate, they could obtain an expected
total profit of 1.7969 each. For longer games (T > 2), efficiency gains are still con-
siderable and expected profits in the case of coordination very close to equilibrium
profits.

In summary, the usage of simple count heuristics decreases expected total prof-
its. However, players that use a count heuristic can coordinate their activities and
increase there profits. In short games boundedly rational agents that coordinate
their activities can even reach the expected total profit of agents that use the
equilibrium strategy.

3 Experimental design

Based on the theoretical results of our model and the effects of heuristics on total
expected profits, we want to test experimentally if non-coordinated search really
leads to the predicted efficiency losses. Additionally we want to investigate whether
players follow the equilibrium strategy. In order to investigate this questions we
use two different treatments with a between-subject design.

In treatment PARTNER we let two players choose simultaneously between X

and Y in the same fashion as in the model. Like in the model, decisions are made
simultaneously and information about the history is common knowledge. Hence,
participants can learn from their own experience and the experience of a fellow
participant. In treatment SINGLE decisions are made by only one player. This
player makes two choices simultaneously in every round and has full information
about the history. As a consequence SINGLE players can only learn from their
own experience but have the same number of observed experiments as players in
treatment PARTNER.

Treatment PARTNER reflects the situation of two agents with sustained social
interaction and full information about each others. Treatment SINGLE reflects
a case of perfect coordination where the decision making problem of the model

10
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collapses to a situation with only one agent. This is admittedly a stylized descrip-
tion of coordination activities of agents in the form of communication, contracts
or centralization of acitivies. Nevertheless, it provides a benchmark case of per-
fect coordination. This coordination should lead to higher profits in treatment
SINGLE if players use a count heuristic. If players use the equilibrium strategy,
average expected profits should not differ between SINGLE and PARTNER.

The experiment was conducted from September to December 2008 in the com-
puter laboratory of the University of Jena using z-Tree (Fischbacher, 2007). Par-
ticipants were 94 students from the University of Jena. Participants were recruited
by the use of ORSEE (Greiner, 2004). Students come from a wide range of sub-
jects and the composition of students does not differ between treatments regarding
major subjects and age.

4 sessions with 62 participants were conducted in treatment PARTNER and
2 sessions with 32 participants in treatment SINGLE. 5 sessions comprised 16
participants and one session in treatment PARTNER 12 participants. For this
experiment the search problem lasts for three rounds (T = 2) with p = .25 and
p = .75. Participants play 30 search problems in one session. This repetition allows
to capture learning effects of individuals who repeatedly face such search problems.
Participants were supplied with pen and paper to write down the results of every
round of the 30 search problem in a table. Participants could therefore consult
this table to learn from previous search problems before entering their choice in
the computer.

Participants in treatment PARTNER were randomly matched in anonymous
groups of 2 for each search problem. Matching groups had the size of 4 or 16
subjects and participants were not informed about the size of matching groups. In
each of the 30 search problems a new state of the world for each group of matched
participants was selected. As a result there are 9 independent observations in
treatment PARTNER and 32 independent observations in treatment SINGLE.

In treatment SINGLE, subjects were matched in pseudo-groups of 2 for each
search problem. In each of the 30 search problems a new state of the world
for each pseudo-group was generated. However, participants were not informed
that these pseudo-groups were formed and did not get any information about
fellow participants in the same pseudo group. The seed of the random number
generator for matching and states of the world was set to the same value for
both treatments. Using this procedure there is at least one subject in treatment
PARTNER which shares the same sequence of states of the world as one subject
in treatment SINGLE.

Participants received a flat fee of EUR 4 for participation. In treatment PART-
NER each point of received profit was exchanged for additional EUR 3. As par-
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ticipants of treatment SINGLE made two choices per round, each point of profit
was exchanged for EUR 1.50. To avoid income effects or hedging, players are paid
only for one selected game out of 30 repetitions. This game is randomly selected
by a draw from an physical urn at the end of each session. Participants received
an average payment of EUR 9,13 with an minimum payment of EUR 4 and a
maximum payment of EUR 13.

4 Results

In order to test our theoretical predictions we first look at the earned profit of
players in the experiment. If players use a count heuristic we expect higher total
profits in treatment SINGLE than in the PARTNER-treatment. Specifically, we
expect higher profits in t = 1 and to a lesser degree in t = 2. In the first round
(t = 0) average profits should not differ as players in both treatments are indifferent
between X and Y .

Table 2 reports the average total profit and average profits in round 0, 1 and
2. In the PARTNER-treatment the average profit of both group members is cal-
culated. In treatment SINGLE the average of the first and the second choice per
subject is reported. These pairs of decisions remain our main level of observations
throughout the rest of the analysis. Our analysis focuses on the obtained overall
profits and especially on the second round of the game and to a smaller degree on
the third round. In the first round we expect profits to converge to 0.5, which is
indeed the case.

Average total profits in treatment PARTNER (1.747) are higher than average
total profits in treatment SINGLE (1.712) and the difference is largest in the
second round (t=1). Figure 4 shows the average total profits per search problem in
each treatment compared to the simulated expected equilibrium profits. For both
treatments total average profits seem to rise in the first half of the experiment and
fluctuate around equilibrium profits in the second half.

A closer look at the data in the regression analysis in Table 3 shows that that
profits differ significantly between the two treatments only in t=1 (column (3),
p=0.061).4 In the last period, the difference in profits is no longer significant (col-
umn (5), p=0.533). Overall, total profit over all rounds does not significantly differ
between the two treatments (column (1), p=0.390), although the point estimate
is negative. The empirical total profits allow for an easy comparison with our

4We also introduce Repetition dummies or time trends to account for learning effects during
the course of the session. As observations within matching groups are correlated we correct the
standard errors for the correlation within matching groups using cluster robust standard errors
with matching groups as clusters . Note that in treatment SINGLE matching groups coincide
with subjects. As a dependent variable we use the same methodology as in table 2.
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simulation results for the equilibrium strategy and the count heuristic. In the case
of equilibrium strategy no difference is expected between the two treatments; and
as predicted no large difference is found. However, in the case of the simple count
heuristic a average total profit of 1.7197 is expected in treatment PARTNER and
a higher profit of 1.7969 due to coordination in treatment SINGLE. In contrast
to this empirical prediction, our experiments show a slightly higher total profit
in treatment PARTNER. The diffence in payoffs between the two treatments is
largest in the second round of the game. This second round is decisive because
it is the most error-prone situation of the game when using the optimal strategy.
In the third round agents have gathered considerably more information about the
state of the world in both treatments and the difference gets smaller. In line with
figure4 we find significant learning trends over repetitions of the game in all rounds
of the game.
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Figure 2: Average total profit per repetition

As a result non-coordinated search in treatment PARTNER did not lead to
lower profits. Instead non-coordinated participants even seem to achieve higher
payoffs than participants in treatment SINGLE which had the opportunity to
coordinate their actions. Why is this the case? To answer this question, we directly
looked at decisions and checked whether participants coordinated and how often
participants follow the equilibrium strategy.

Coordination is most crucial at the beginning of the game in t = 0. In treatment
PARTNER, (X, Y ) or (Y, X) is chosen in 51.5% of all games, which is close to a
coin flip. In treatment SINGLE, (X, Y ) or (Y, X) is chosen in 48.5% of all games

13

Jena Economic Research Papers 2009 - 065 



PARTNER SINGLE

Avg total Avg total

profit profit

n 900 960

All repetitions

Mean total profit 1.747 1.712

(0.671) (0.669)

Mean profit, t = 0 0.492 0.509

(0.357) (0.360)

Mean profit, t = 1 0.617 0.579

(0.353) (0.367)

Mean profit, t = 2 0.638 0.625

(0.351) (0.353)

Standard errors in parenthesis.

Table 2: Average profits in treatments

Dependent Variable Total Profit Profit Profit

(t=0,1,2) (t=1) (t=2)

Column (1) (2) (3) (4) (5) (6)

Intercept 1.559*** 1.594*** 0.544*** 0.578*** 0.547*** 0.566***

(0.082) (0.045) (0.055) (0.022) (0.047) (0.028)

Dummy SINGLE -0.035 -0.035 -0.039* -0.039* -0.014 -0.014

(0.041) (0.040) (0.021) (0.016) (0.022) (0.022)

ln(Repetition) 0.062*** 0.016* 0.029***

(0.017) (0.009) (0.010)

Repetition dummys Yes No Yes No Yes No

Notes: OLS with clustered standard errors (41 clusters); n=1860

Levels of significance: *** 1% ** 5% *10%

Table 3: Regression Analysis of Profits

14

Jena Economic Research Papers 2009 - 065 



in the first round. The difference in coordinating between the two treatments is
not signifiant (see table4, column (7), p=0.355). As a result, participants in the
SINGLE treatment do not use the opportunity to coordinate their choices.5

For all pairs of decisions Ht is given. As a consequence, we can calculate
pt

X(Ht) and pt
Y (Ht) for every round. Given these probabilities of success, we can

directly derive the optimal strategy for every pair of decisions. If pt
X and pt

Y differ
from 0.5, the optimal strategy prescribes a clear prediction for players’ behavior.
If pt

X > 0.5 > pt
Y , both players in treatment PARTNER should choose alternative

X in t; in treatment SINGLE the player should select X for his first and second
choice in t. If pt

Y > 0.5 > pt
X , both choices in the next round should include

Y . Note that in the first round pt
X = pt

Y = 0.5, which means that players are
indifferent and any pair of decisions is optimal. Hence, our analysis of optimal
decision-making only focuses on choices in the second and third round (t = 1, 2).

Given the optimal pair of strategies, two types of errors are now conceivable: (1)
One of the two decisions in t violates the equilibrium strategy or (2) both decisions
in t are not in line with the optimal strategy. We call the former case 1xERROR
and the latter case 2xERROR. In treatment PARTNER the case 1xERROR implies
that one of the two players departs from the equilibrium strategy, while 2xERROR
implies that both players do not follow the equilibrium strategy. In the SINGLE-
treatment 1xERROR means that the player is indifferent between X and Y and
that one decision of the player is not optimal, while 2xERROR implies that the
player does not follow the equilibrium strategy.

Table 4 reports the share of rounds with errors 1xERROR or 2xERROR. Errors
do occur in 10.4% of all rounds (t = 1, 2) in treatment PARTNER and 15.4% of all
rounds (t = 1, 2) in treatment SINGLE. However, this difference is not significant
as the regression analysis in table 5 reveals.6 Average error rates over all repetitions
and all types of errors do not differ at the 10% significance level between the two
treatments (column (5), p=0.166). For the occurance of 1xERRORS, the diffence
between treatments is not signifcant (column (1), p=0.369).

The case 2xERROR (both choices violate the equilibrium strategy) occurs in
0.9% of all rounds (t = 1, 2) in treatment PARTNER and 3.4% of all rounds
(t = 1, 2) in treatment SINGLE. This difference between the two treatments is
significant (p=0.028 in column (3) in 5). Seemingly, in both treatments the case
that one player makes two errors or that two players both make errors is a rare
event. Nevertheless, the case that two players simultaneously make an error at the
same time occurs less often than the case that one player makes two errors in a

5This behavior is invariant over time, i.e. participants do not seem to learn that coordination
in the first round is superior.

6We use the fraction of round with errors in each game as the dependent variable. Standard
errors are corrected for correlations within clusters. See footnote on page 12 for more details.
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PARTNER SINGLE

% of rounds % of rounds

(t=1,2) (t=1,2)

n 900 960

All repetitions

1xERROR 0.094 0.119

(0.227) (0.249)

2xERROR 0.010 0.034

(0.081) (0.137)

1xERROR or 2xERROR 0.104 0.154

(0.246) (0.298)

Standard errors in parenthesis.

Table 4: Average number of errors in treatments

Dependent Variable 1xERROR 2xERROR Any Error Coordination

(t=1,2) (t=1,2) (t=1,2) (t=0)

Column (1) (2) (3) (4) (5) (6) (7)

Intercept 0.245*** 0.202*** 0.044*** 0.029*** 0.289*** 0.231*** 0.555***

(0.045) (0.031) (0.024) (0.014) (0.048) (0.031) (0.049)

Dummy SINGLE 0.025 0.025 0.024** 0.024** 0.049 0.049 -0.058

(0.028) (0.027) (0.011) (0.011) (0.036) (0.035) (0.063)

ln(Repetition) -0.043*** -0.008* -0.051*** -0.023

(0.010) (0.004) (0.010) (0.019)

Repetition dummys Yes No Yes No Yes No Yes

Notes: OLS with clustered standard errors (41 clusters); n=1860 ; Levels of significance: *** 1% ** 5% * 10%

Table 5: Regression Analysis of Errors
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row. Non-coordinated decision-making here reduces the number of errors.
Figure 3 depicts the share of rounds with errors for each repetition. As the

regression analysis in table 5 shows, overall error rates tend to go down with the
number of repetitions of the game. As the share of 2xERROR is quite low over the
hole range of the experiment, the learning trend is considerably less pronounced.
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Figure 3: Share of rounds with errors per repetition

As a result of the error rates analysis, the equilibrium strategy is applied in
almost 85% of all rounds and explains at least one decision per round in more
than 95% of all rounds. Overall, both treatments do differ only to a small degree
regarding the number of errors made. Especially severe departures from the equi-
librium strategy, as in the case of 2xERROR, happen less often if decisions are
made by different individuals. Unsurprisingly, profits in both treatments do not
differ that much given this high degree of optimality.

Although departures from the equilibrium strategy do happen only in a small
proportion of cases, these errors might be simply a result of players following a
heuristic. The count heuristic allows a different pair of choices in 27.7% of all
rounds (t = 1, 2) in treatment PARTNER and 34.1% of all rounds (t = 1, 2)
in treatment SINGLE. However, the vast majority of this conflicting situations
between the equilibrium strategy and the count heuristic involves either the one
or the other being indifferent between X and Y. In these cases the equilibrium
makes a clear prediction which alternative is to choose and the count heuristic is
indifferent between X of Y or vice versa. The case that the equilibrium strategy
and the count heuristic are not indifferent but make conflicting predictions occurs
only in 1.7% of all rounds (t = 1, 2) in treatment PARTNER and 2.1% of all rounds
(t = 1, 2) in treatment SINGLE. These rare cases do not allow to classify subjects
into users of either the equilibrium strategy or the count heuristic.

Nevertheless, we can look at all cases of 1xERROR and 2xERROR and compare
whether the count heuristic explains these situations. In these cases the count
heuristic must be either indifferent between X and Y or makes a clear-cut but
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PARTNER SINGLE

% of 1xERROR explained 29.4% 25.3%

by count heuristic

% of 2xERROR explained 50.0% 28.8%

by count heuristic

% of 1xERROR and 2xERROR 31.4% 26.1%

explained by count heuristic

Table 6: Proportion of errors explained by count heuristic

conflicting prediction to the equilibrium strategy. Table 6 reports all pairs of
decisions of 1xERROR and 2xERROR that can be explained by the count heuristic
for all repetitions of the game. Overall, around one quarter to one third of all
errors can be explained by a count heuristic that makes conflicting behavioral
predictions. Remarkably, half of the 2xERROR-cases in the PARTNER-treatment
can be explained by the count heuristic.

5 Conclusion

In this paper we analyzed a choice situation of two rivaling technologies, goods or
standards in the context of a two-armed bandit model. In the model agents have
to learn about the superior alternative by making experiments and learning from
the experiments of others. Our model has shown that agents can not make gains
from coordinated search if they use the equilibrium strategy but only when agents
use a less demanding count heuristic instead.

We test the conjecture that agents gain from coordination with a between-
subject design in two treatments. Additionally we test whether agents do indeed
coordinate or follow the equilibrium strategy. In the treatment PARTNER two
subjects make one decision per round and can learn from their own experience and
the experience of the other subject. In the treatment SINGLE one subjects makes
two decisions per round and can learn only from his own experience, but has the
opportunity to coordinate the two choices.

As a result of the experiment we do not find efficiency losses by non-coordinated
search. Instead we find that total profits do not differ much in the two treatments.
Contrary to our theoretical considerations, average profits in the PARTNER-
treatment even seem to be slightly higher. An analysis of decisions reveals that
players do seem to coordinate their actions when they have the opportunity to
do so. Players in both treatments use the equilibrium strategy to a very high
degree. The case that two decisions in a round are not in line with the equilibrium
strategy happens less often in treatment PARTNER than in treatment SINGLE.
Hence, the existence of two individuals making simultaneous decisions decreases
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the probability that all decisions in a round are not in line with the equilibrium
strategy. Overall, participants of the experiment showed a surprisingly high degree
of optimality and do not seem to use the count heuristic primarily. Nevertheless,
the count heuristic explains a large share of non-optimal behavior.

Contrary to theory, coordination of search processes has not yielded higher
profits in the experiment. Instead decisions made by separate individuals increase
the optimality of decision making and decrease the probability of severe errors,
although the potential effect of increased optimality on profits seems to be rather
small. These experimental results shed a new light on the benefits of coordination
in R&D and diffusion processes. At least in our well-structured model environment
coordination did not have any positive effect on the efficiency of search. Given the
high costs of coordination in R&D and diffusion processes that are not captured
in our experimental design, coordination might even be detrimental for search-
efficiency if our experimental results are transferable to this context. Additionally
decentralized search did decrease the probability of severe errors in our experi-
mental setting. In the context of coordination in R&D and diffusion processes,
centralization of search might lead to very costly undesirable developments.
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