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Inventor networks in emerging key technologies:

information technology vs. semiconductors

Holger Graf∗

July 15, 2009

Abstract

We analyze the development of the German knowledge base measured

by co-classifications of patents by German inventors and relate this techno-

logical development to changes in the structure of the underlying inventor

networks. Our central hypothesis states that technologies which become

more central to the knowledge base are also characterized by a higher

connectedness of the inventor network. We exemplify our theoretical con-

siderations in a comparative study of two patenting fields – information

technology and semiconductors. It turns out that information technology

shows the highest increases in patents but shows no of a key technology.

Contrary, semiconductors develops towards a key technology, despite a

moderate increase in the number of patents. The dynamic analysis of in-

ventor networks in both fields shows an increasing connectedness and the

emergence of a large component in semiconductors but not in information

technology, which is in line with our expectations.

Keywords: Knowledge relatedness; Innovator networks; Interdisciplinary

research; Patents; Key Technology

JEL Classification: O31; Z13

1 Introduction

In a recent study Wuchty et al. (2007) show that research across all fields is
increasingly performed in teams. Between 1975 and 2000, average team size
in patenting has risen from 1.7 to 2.3 inventors per patent and the tendency
towards increased team size can be observed in all patenting subfields (Wuchty
et al., 2007). While some authors suggest that this is due to the increasing
capital intensity of research in laboratory sciences (de Solla Price, 1963), or an
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increasing division of labor between specialized scholars (Jones, 2005), Wuchty
et al. (2007) argue that this is unlikely to explain similar increases in fields with
low capital intensity such as the social sciences, or in fields where the growth
of the knowledge stock has been comparably slow. Guimerà et al. (2005)
propose a model of network formation in which increasing specialization leads
to the emergence of a large connected community of actors. In a longitudinal
study on network formation of all patenting inventors in the U.S. from 1975 to
2002, Fleming and Frenken (2007) observe a sudden rise of a giant component
in Silicon Valley but not in the Boston region. This result is explained by
differences in the rate of labor mobility between the two regions.

We suggest another mechanism that could be responsible for differences in
team building and component size distribution based on the nature of the tech-
nology and economic incentives for team building. We view innovation as a
directed search process, where the direction of innovation is guided by techno-
logical and economic opportunities. Its path-dependent nature manifests itself
in technological trajectories which are guided by paradigms that are only dis-
rupted in few instances (Dosi, 1982). Technological opportunities decline over
the course of an industry life cycle as the variety of technological solutions de-
creases in the paradigmatic stage (Malerba and Orsenigo, 1997). However, tech-
nologies are not to be seen in isolation. While opportunities in terms of variety
might decrease over time within a specific field, new opportunities can emerge
through combinations of previously unrelated fields, i.e. through a changing
source, or through an increasing pervasiveness when the technology is applied
to new markets (Malerba and Orsenigo, 1997). For example, the early publica-
tions that tackled economic problems in applying social network analysis opened
the door for many economists who follow this approach. Such interdisciplinary
tendencies can be observed in many scientific or technological fields, however, in
most cases scientists and engineers are not educated in such an interdisciplinary
way. As such, teams of authors of publications or patents become more preva-
lent than individual authors, especially in fields that connect to other fields.
On the basis of these considerations, we develop our central hypothesis which
states that technologies which become more central to the knowledge base are
also characterized by a higher connectedness of the inventor network.

We exemplify our theoretical considerations in a comparative study of two
patenting fields – information technology (IT) and semiconductors – which are
quite similar in many respects, but differ in one important characteristic. In
a first step, we map the technological knowledge base (i.e. a network of tech-
nologies), to identify key technologies which we assume to be characterized by
a high betweenness centrality. To observe changes within the structure of the
knowledge base, we build such networks for seven consecutive years and calcu-
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late growth rates of network positions. It turns out that IT shows the highest
increases in patents and in degree centrality, while betweenness centrality grows
only slowly. Contrary, semiconductors shows the highest growth in betweenness
centrality while patents and degree centrality only show a moderate increase.
To put it clearly, over the period of observation, semiconductors developed by
far more into the direction of a key technology than did IT.

In the second step, we construct inventor networks where inventors are re-
lated by common team membership. The dynamic analysis of the networks
shows an increasing connectedness and the emergence of a large component in
semiconductors but not in information technology, which is in line with our
expectations.

The remainder of the paper is structured as follows. In section 2, we present
a short review of the literature that constitutes the building blocks of our ar-
gument. The analysis of the German knowledge base and the identification of
interesting objects of analysis is conducted in section 3. In section 4, we study
the structural characteristics and changes that occurred in the IT and semi-
conductor inventor networks. Our results are summarized in the concluding
section 5.

2 Theoretical building blocks

2.1 Cumulativeness and changing technological opportu-

nities

In his highly influential article on the nature of the innovative process, Dosi
(1988, pp. 222–223) presents five stylized facts about innovation, that are shared
by most, if not all, scholars of innovation. (i) uncertainty, which is not simply
the lack of all relevant information about the occurrence of known events but
also the existence of techno-economic problems whose solution procedures are
unknown and the inability to predict precisely the consequences of one’s actions;
(ii) increasing reliance of major new technological opportunities on advances
in scientific knowledge; (iii) increasing complexity of research and development
activities which causes such activities to be more formally organized rather than
carried out by individual innovators; (iv) increasing role of experimentation in
the form of learning-by-doing and learning-by-using; and (v) the cumulative
character of innovative activity.

Here, we will concentrate on two of these facts, namely on the cumulative
character of innovative activity and on the sources of technological opportu-
nities. The path-dependent nature of innovation processes manifests itself in
trajectories which are guided by technological paradigms (Dosi, 1982). Along
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these trajectories, knowledge is accumulated by generating knowledge built on
previous findings, just as Isaac Newton already noted in 1676 “If I have seen fur-
ther it is only by standing on the shoulders of giants.”1 An increasing knowledge
stock will then have consequences for later scholars as they will have to learn
more and more about their field before being capable of developing something
new. This might lead to either a longer time before researchers can produce
new knowledge or it might lead to specialization which demands team building
to tackle complex scientific problems.

While the direction of the search process for new ideas is surely dependent
on past achievements, it is also guided by actual and perceived opportunities.
Opportunities in terms of deepening a technological field are often subject to de-
creasing returns. At a point where advances can only be made at very high effort
and cost, actors will generate new opportunities through combinations of previ-
ously unrelated fields, i.e. through a changing source, or through an increasing
pervasiveness when the technology is applied to new markets (Malerba and Ors-
enigo, 1997). In one sector, plenty of opportunities might arise from advances in
the sciences, in others, changes in the demand structure might call for new so-
lutions. Pavitt (1984) showed how sectors differ in terms of their sources of new
opportunities. But these patterns are far from static, many industries follow a
life cycle in which not only the market structure and demand conditions change
but also opportunities for generating novelty. The literature on the industry
life cycle provides us with many examples how innovation shifts from product
innovation (generating variety) to process innovation in large scale manufac-
turing, such as automobiles, penicilin, TV, or tyres (Klepper, 1996; Buenstorf
and Klepper, 2009). Interestingly, there are also counterexamples like the laser
industry (Buenstorf, 2007), where such a development (at least so far) did not
take place. One explanation here is the ongoing formation of submarkets by spe-
cialized producers (Klepper and Thompson, 2006), which might be considered
as a form of increasing pervasiveness.

In both cases, changing source or increasing pervasiveness, a technological
field is subject to changes in its relatedness to other fields or in its relative
position within knowledge space. A technology that holds a central position in
knowledge space is to be considered a key technology that functions as a source
of novelty not only in terms of its own development but for many other fields
as well.

1The metaphor of a dwarf standing on the shoulder of a giant is actually attributed to
Bernard of Chartres and dates back to the twelfth century, see http://en.wikipedia.org/

wiki/Standing_on_the_shoulders_of_giants, May 28, 2009
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2.2 Knowledge Relatedness

The issue of measuring relatedness between different fields is far from new and
various approaches have been taken to broaden our understanding. Scherer
(1982) or Pavitt (1984) use information on knowledge flows to measure related-
ness between industries and show how knowledge produced in one sector influ-
ences progress in others. Patents have been used by Jaffe (1989) to show that
the productivity of R&D varies systematically across clusters of technologically
related firms, and that this variation is related to the notion of “technological op-
portunity.” Teece et al. (1994) introduce the theoretical concept of technological
coherence and derive implications for firms’ diversifying strategies that are con-
firmed by Breschi et al. (2003), who show that firms diversify only into related
fields of their existing technology portfolio. Accordingly, Nesta and Saviotti
(2005) show that firms with a coherent knowledge base are more successful in
innovation. In a related study, Nesta and Saviotti (2006) show the importance
of knowledge integration for firms’ stock market value in biotechnology.

This bulk of research suggests that knowledge flows or spillovers tend to
occur more intensely between related fields, but this literature does not address
the issue of the dynamics of knowledge relatedness and how it might be shaped
by actors’ decisions to direct their search towards new opportunities. Before we
are going to tackle this problem, let us move into some empirical regularities
regarding the organization of innovation on a more micro-level, i.e. in network
studies of innovation.

2.3 Knowledge spillovers through interpersonal relation-

ships

A number of studies, which build on the work of Jaffe et al. (1993), trace knowl-
edge flows through people. Johnson and Mareva (2002) perform their exercise
on biotechnology patents in the US but in addition calculate measures on in-
terpersonal networks. Their findings suggest a negative effect of distance on
knowledge flows which decreases over time while the connectedness of actors is
of growing importance. Using a sample of highly cited, semiconductor-related
patents, Almeida and Kogut (1999) also replicate the study by Jaffe et al. (1993).
Focussing on mobility patterns of engineers, they find individual patent holders
to be highly localized only in Silicon Valley. Breschi and Lissoni, using Ital-
ian patent data (2003), and US patent data (2009), additionally control for the
mobility of inventors across companies and space, as well as for the network
ties established by this mobility, referred to as social proximity. In their in-
terpretation, geographical proximity is not a sufficient condition for the flow of
knowledge, as localization effects vanish for citing and cited patents that are not
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linked by network relationships. They conclude that the observations of local-
ized knowledge spillovers are due to social proximity, which is higher between
co-located firms or other organizations. These findings are supported by Singh
(2003, 2005), who performs similar studies using US patent data.

The research by Zucker, Darby and co-authors also highlights the impor-
tance of contacts between people in the transfer of knowledge. In biotechnol-
ogy, Zucker et al. (1998b) find localized effects through the connections of star
scientists to local firms, which they cannot demonstrate to be spillovers. In
another paper, the authors claim that these effects are largely mediated by
market mechanisms like contractual cooperations or scientists who start their
own firm (Zucker et al., 1998a). Interpersonal networks are considered an im-
portant channel for the diffusion of knowledge and information in various other
studies (e.g. Zander and Kogut, 1995; Sorenson, 2003). Sorenson (2004) show
that the importance of these transmission channels depends on the complexity
of the underlying knowledge base, and in particular, that knowledge complexity
limits the rate at which knowledge diffuses across geographic boundaries.

Within these networks of collective invention and innovation, knowledge ex-
change can only be effective if several conditions are met. First, a certain degree
of technological proximity or technological relatedness between the actors is re-
quired in the sense that technical problems can be solved commonly (Mowery
et al., 1998; Cantner and Graf, 2004, 2006). Secondly, the knowledge bases
of the (potential) cooperation partners should be different and show a certain
degree of complementarity. Third, even when the two former conditions are
met, actors have to have some abilities or absorptive capacities to understand
the technological knowledge of others (Cohen and Levinthal, 1989). Fourth,
geographical proximity as well as social proximity are often helpful to find the
appropriate cooperation partner, especially when thinking of informal exchange
or the transfer of so-called tacit knowledge (Breschi and Lissoni, 2003; Boschma,
2005; Boschma and ter Wal, 2007). Last but not least, in a dynamic context,
factors such as success, trust, and learning to cooperate become relevant for the
repeated and continued exchange of knowledge between actors.

2.4 Inventor networks: Increasing team size and the for-

mation of large components

Having discussed why actors want to access other competencies and to engage
in exchanging knowledge and capabilities, necessarily leads to the question on
the structures of the resulting relationships and their development over time.
Over the second half of the 20th century the generation of knowledge seems to
have been subject to a major shift towards an increasing dominance of team-
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work (Wuchty et al., 2007). This development can be observed across all fields
of research. In the sciences average team size almost doubled between 1955 and
2000 and in while in 1956 17.5% of all papers were written by teams this figure
increased to 51.5% in 2000. In patenting average team size increased from 1.7 to
2.3 inventors per patent between 1975 and 2000, and this tendency towards in-
creased team size is observed across all patenting subfields (Wuchty et al., 2007).
While some authors suggest that this is due to the increasing capital intensity
of research in laboratory sciences (de Solla Price, 1963), this can not explain
why this sharp increase in teamwork is also observed in the social sciences or
economics. Another explanation is an increasing division of labor between spe-
cialized scholars (Jones, 2005). However, Wuchty et al. (2007) argue that this is
unlikely to explain similar increases in fields where the growth of the knowledge
stock has been comparably slow. Others argue that the costs of communication
have decreased, making collaboration between researchers from different places
in the world more attractive.

The way teams are formed and how this extends to the formation of net-
works have attracted considerable research. Guimerà et al. (2005) investigate
how the mechanisms by which creative teams self-assemble and determine the
structure of these collaboration networks. They propose a model for the self-
assembly of creative teams that has its basis in three parameters: team size, the
fraction of newcomers in new productions, and the tendency of incumbents to
repeat previous collaborations. In their model, increasing specialization leads
to the emergence of a large connected community of actors. In a longitudinal
study on network formation of all patenting inventors in the US from 1975 to
2002, Fleming and Frenken (2007) observe a sudden rise of a giant component
in Silicon Valley but not in the Boston region. Their result is explained by
differences in the rate of labor mobility between the two regions.

2.5 Hypotheses

Based on the previous discussion, we suggest a mechanism that could be respon-
sible for differences in team building and component size distribution between
different technologies. To summarize, we view innovation as a directed search
process, where the direction of innovation is guided by technological and eco-
nomic opportunities. Technological opportunities decline over the course of
an industry life cycle as the variety of technological solutions decreases in the
paradigmatic stage (Malerba and Orsenigo, 1997). However, technologies are
not to be seen in isolation. While opportunities in terms of variety might de-
crease over time within a specific field, new opportunities can emerge through
combinations of previously unrelated fields, i.e. through a changing source, or
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through an increasing pervasiveness when the technology is applied to new mar-
kets (Malerba and Orsenigo, 1997).

The direction of the search process should influence the position of a tech-
nology within the knowledge base. In cases where opportunities are to be found
in knowledge deepening activities, we should expect to observe a relatively sta-
ble position within the knowledge base. If opportunities arise from widening
activities through combinations of previously unrelated fields, the technology is
expected to move towards the center of the knowledge base and develop char-
acteristics of a key technology.

Such interdisciplinary tendencies can be observed in many scientific or tech-
nological fields. However, in most cases scientists and engineers are not educated
in such an interdisciplinary way. As such, teams of authors of publications or
patents become more prevalent than individual authors, especially in fields that
connect to other fields. Our argument is not different from the explanation of
Jones (2005), but adds a deeper understanding of the reason why we observe
an increasing formation of interdisciplinary teams and why this process differs
between fields of research. On the basis of these considerations, we develop our
central hypothesis which states that technologies which become more central
to the knowledge base are also characterized by a higher connectedness of the
inventor network.

This connectedness might be measured in two ways. On the individual level,
we should observe an increasing degree centrality in technologies that develop
towards a key technology. Regarding the structural properties of the network,
we would expect the formation of a large component in such a technology.

With these hypotheses, the question of causality remains obscured, though.
In principle, the causality could run in both directions. Whenever actors per-
ceive new opportunities in form of connections of their own field of expertise to
other areas, they might react to these new opportunities through the formation
of interdisciplinary teams. But where do these new opportunities originate? It
might well be that through processes of search and experimentation, successful
interdisciplinary teams open up these new opportunities.

3 Mapping the technological knowledge base

Our theorizing in the previous sections leads to our research design that has to
be performed in two steps. In a first step, we construct the knowledge base of
Germany to identify technologies that show significant developments in terms
of patenting or in terms of their position within the knowledge base. In a
second step, these interesting cases are then analyzed in terms of their inventor
networks in section 4.
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In our setting the knowledge base is to be understood as a network of in-
terrelated parts of knowledge, where two fields of knowledge are related if new
knowledge (in our case a patent but this exercise could be performed with aca-
demic papers as well) touches both of these fields. The more often two fields are
connected, the closer they are assumed to be in technology space (Nesta and
Saviotti, 2005, 2006).

We use applications at the German patent office to construct the knowledge
base for each year from 1995 to 2001 and use the publishing date to avoid
truncation. On each patent, several IPC classes are named and they cover the
technological areas for which the patent is relevant. These classes are either
provided by the applicant or by patent examiners during the process of review
and specify the relevant technological fields. As patents, which share common
technological classes, are assumed to be more closely related than other patents,
the frequency of co-occurrence is assumed to be proportional to the intensity of
the linkage (Saviotti, 2004). We use this information to link the n technologies
in our network in the following way: if a patent is in class i and in class j, there
is one link between nodes i and j. The more co-occurences of two technologies,
Jij are observed, the stronger these two are assumed to be related. Notice that
resulting relations between technological classes are not directed as they would
be if citation data were used.

We follow the notation of Nesta and Saviotti (2006) with Ω as the resulting
n × n matrix of co-occurences, which can be thought of absolute technological
relations:

Ω =



J11 · · · J1j · · · J1n

...
. . .

...
Ji1 Jij Jin

...
. . .

...
Jn1 · · · Jnj · · · Jnn


. (1)

However, technological classes in which many patents are assigned, have a higher
chance of co-occurrence. Therefore, we construct a measure of relatedness based
on the matrix Ω as in Nesta and Saviotti (2006). For the calculation of the
expected number of co-occurences, we assume a random process of patents being
assigned to technologies i and j that follows a hypergeometric distribution with
a mean of µij and a variance of σ2

ij calculated as follows:

µij =
OiOj

K
, (2)

σ2
ij = µij

(
K −Oi

K

)(
K −Oj

K − 1

)
, (3)
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(b) Relatedness of technologies i and j (τij)

Figure 1: Knowledge base of Germany 1995 – 2001

where K is the total number of patents, Oi of which are assigned to technology
i and Oj in technology j. Relatedness is then defined as

τij =
Jij − µij

σij
, (4)

which is positive for technologies that co-occur more often than expected (Jij >

µij) and negative if Jij < µij .
For the technological aggregation of IPC classes, we classify patents accord-

ing to a technology-oriented classification that distinguishes 5 sectors and 30
technologies based on the International Patent classification (IPC). This classi-
fication has been elaborated jointly by the ‘Fraunhofer-Institut für Systemtech-
nik und Innovationsforschung’ (FhG-ISI), the ‘Observatoire de Sciences et des
Techniques’ (OST), and the ‘Science and Technology Research Policy Unit of
the University of Sussex’ (SPRU) and is provided in table 2.

We visualize the German knowledge base for the whole period (1995 to
2001) in figure 1 in the form of a levelplot. Figure 1(a) displays the network
of co-occurences, while in figure 1(b) the relatedness between technologies τij
determines the coloring of cells.

Strong connections can be observed between technologies 1 to 7 which covers
five technologies within the sector of electrical engineering together with optics
and analysis, measurement and control technology. Another group of connected
technologies is in technologies within large scale chemistry and process engineer-
ing (14 to 19). What can also be read from this plot are the generic features
of analysis, measurement and control technology (7) and electrical machinery
(1), which show high levels of connection to many different fields. Especially
strong linkages exist between 16 (Macromolecular chemistry, polymers) and 19
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(Materials processing, textiles, paper) and between 26 (Mechanical elements)
and 27 (Transport).

While the general structure of both figures is the same, it is noteworthy that
in figure 1(b), high patenting fields such as transport (27) or analysis, measure-
ment and control technology (7) are not as much related to other fields as if
the absolute number were considered. Since we control for the absolute number
of patents in figure 1(b), these differences do not surprise us, but make us feel
more comfortable in analyzing the knowledge base according to co-occurences
in the following.

This analysis provides a static picture of the German knowledge base cover-
ing patenting activities over a seven year period. It represents the strengths of
the German innovation system in automobiles and chemicals as rather distinct
subsystems with instruments connecting the knowledge base. However, our
primary interest lies in the changes that occurred during that period. The late
1990s were characterized by major advances in fields such as IT, semiconductors,
or biotechnology and we wonder how these advancements changed the techno-
logical knowledge base. For that purpose, we display changes in the importance
of technologies according to three different variables in figure 2. Overall, corre-
lations of these variables between different years suggest quite a stable structure
(they range between 0.89 and 0.99), but we can observe significant changes for
some fields.

In figure 2(a) technologies are sorted in descending order of the number of
patents in 1995 and values for subsequent periods (1997, 1999, 2001) are plot-
ted in that order. We can observe a deepening of the knowledge base in the
sense that strong patenting fields such as transport (27), analysis (7), and elec-
trical machinery (1) all show increasing numbers of patent applications. Some
fields become decidedly stronger such as engines (24), telecommunications (3),
or information technology (4). Figure 2(b) visualizes changes in the degree cen-
trality of technologies, i.e. how strong a technology is connected to any other.
Here, we see that analysis (7) remains the most central technology, transport
(27) is becoming more connected, while a sharp decrease in connections is ob-
served for the chemical industry (17). While this type of centrality accounts
for the relevance of a technology for other fields, it does not take into account
the whole structure of the knowledge base. The high values in transport, for
example, arise because of its strong relations to mechanical elements but not to
the multitude of other fields. As such, we consider betweenness centrality to be
a better indicator for key technologies. In social network analysis, betweenness
centrality is measured as the frequency with which a node is positioned between
pairs of other nodes on the shortest path connecting them. For the knowledge
base of Germany we find analysis (7), chemical engineering (18), and electrical
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Figure 3: Scatterplot of growthrates in patenting, degree and betweenness centrality
of technological classes

machinery (1) to be the three most important and persistent key technologies.
The most drastic increase in this measure appears for semiconductors (5), where
betweenness more than doubles.

To provide a more structured impression of the development of technological
positions within the knowledge base, we calculate growth rates of the number
of patents, degree, and betweenness centrality between 1995 and 2001. In fig-
ure 3, where these growth rates are plotted against each other, two interesting
cases appear. IT (4) and semiconductors (5) seem to follow quite distinct pat-
terns in terms of integration with other technological fields. While IT shows
high increases in patents and in degree centrality, betweenness centrality shows
only a slight increase. Contrary, semiconductors shows a very high growth rate
in betweenness centrality while patents and degree centrality increase less pro-
nounced.

4 Inventor networks in IT and semiconductors

One question that arises from the exercise above, is on the relation between i)
the integration of a specific technology – or its development – within the knowl-
edge base and ii) the organization of the innovation process within a specific
technology. One can imagine that the organization of the innovation process dif-
fers between technologies that deepen their specific knowledge base and those
that widen its knowledge base in establishing connections to other fields. The
development of patents that link different technological fields clearly needs dif-
ferent capabilities than the development of patents that only touch one field.
Apparently, competencies for widening knowledge might not be found within a
single person but we should expect them to arise from the collaboration within
teams of inventors. As such, we hypothesize that a field that is increasingly

13

Jena Economic Research Papers 2009 - 059



central within the knowledge base, should also be characterized by increasing
interaction between inventors.

To provide an answer to this question, we analyze inventor networks in the
two fields identified in the previous section as showing quite distinct develop-
ments: IT (4) and semiconductors (5). For the purpose of comparison it is for-
tunate that these two fields belong to the same sector and are also quite similar
in terms of the number of patents and inventors. Furthermore, the top appli-
cants show up in both technologies. Siemens, Bosch, and Infineon are among
the top 5, Philips, Daimler and Fraunhofer are among the top 10 applicants in
both fields.

To reconstruct inventor networks, we relate inventors by common team mem-
bership as documented on patents; i.e. two inventors are related if their collab-
oration is documented by their common naming on the same patent (Balconi
et al., 2004; Fleming et al., 2007). Since knowledge exchange between individuals
does not occur at one point in time, the common procedure in constructing such
networks is to consider patents from more than one year. We decided to take
three-year moving windows2, which implies fewer connections than in longer
periods but provides us with more observations to analyze the development of
the networks. This also implies the assumption that relationships between team
members are broken up if they are not renewed in terms of collaboration.

In table 1, we present descriptive statistics of these two networks for the
years 1997 to 2001 to analyze gradual changes in the network structure. A com-
parison of the development of the inventor networks in these two technologies
shows some interesting features. Information technology is the larger network in
terms of inventors and also grew faster between 1997 and 2001. The growth rate
of the IT network between the first and last year is 0.795, while the semiconduc-
tor network grew by 0.464. Since information technology was chosen because of
its sharp increase in patenting, this result does not surprise us. However, the
connectedness of the two networks shows strong differences. One indicator of
the connectedness of a network is the share of actors within the main compo-
nent. Components are connected parts of the network and the main component
is simply the one with the highest number of members. The formation of large
components has been analyzed by Fleming and Frenken (2007) for regional
networks. In IT, we observe no such formation with the number of inventors
starting at 28 in 1997, peaking at 107 in the following year, and declining to
a value of 59 in 2001. Given the size of this network this is a very small main
component and accordingly we observe a share in the range between 1% and
3% of all inventors within that main component. This volatility implies a high
fragility of this largest connected part of the network. The picture of semicon-

2Fleming et al. (2007) e.g. use a five-year moving window.
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Table 1: Dynamics of the inventor network in IT and semiconductors

1997 1998 1999 2000 2001

Information technology (4)

Nodes 2946 3430 4146 4584 5287
Number of components 1460 1716 2067 2277 2533
Size of main component 28 107 87 53 59
Share in main component 0.95% 3.12% 2.10% 1.16% 1.12%
Isolates 784 952 1138 1272 1379
Share of isolates 26.61% 27.76% 27.45% 27.75% 26.08%
Centralization 0.0102 0.0195 0.0140 0.0098 0.0109
Density 0.0007 0.0006 0.0005 0.0004 0.0004
Mean degree 1.9579 2.0093 2.0014 2.0414 2.1865

Semiconductors (5)

Nodes 2122 2394 2694 2849 3107
Number of components 754 813 887 908 934
Size of main component 78 256 291 334 475
Share in main component 3.68% 10.69% 10.80% 11.72% 15.29%
Isolates 307 341 363 397 404
Share of isolates 14.47% 14.24% 13.47% 13.93% 13.00%
Centralization 0.0199 0.0242 0.0200 0.0220 0.0179
Density 0.0014 0.0013 0.0012 0.0012 0.0011
Mean degree 2.9161 3.1997 3.2858 3.5114 3.5558

Note: Networks are reconstructed from patent applications within a three-year
window up to the specified year.

ductors is a different one. Here, the share of inventors in the main component
starts at 3.7% and continually rises up to 15.3% in 2001. This result meets our
expectation of an increased connectedness in a technology that becomes more
central within the knowledge base.

If we consider interdisciplinary teams to be a reaction to technological oppor-
tunities that arise from an increased pervasiveness, isolated inventors who have
no contacts to other actors should also be less common in a widening technology
compared to a deepening one. Again, meeting our expectations, the share of
isolated inventors in IT is almost twice as high compared to semiconductors and
it seems to be much easier to generate novelty as a single inventor in IT than it
is in semiconductors.

Centralization is not so much a measure of connectedness than of the con-
centration of inventive activities among inventors. In table 1, we report the
centralization measure based on degree centrality, i.e. on the number of linkages
of an actor. The theoretical minimum of this index is 0 for a ring structure
or any network in which every actor has the same number of linkages and its
maximum is 1 for networks in which all actors are connected to a single, central
actor (star network). In both networks centralization takes rather low values
between 0.01 and 0.025 and is always higher in the semiconductor network.

The network density is defined as the number of all linkages divided by the

15

Jena Economic Research Papers 2009 - 059



0%

2%

4%

6%

8%

10%

12%

14%

16%

1997 1998 1999 2000 2001

S
ha

re
 in

 m
ai

n 
co

m
po

ne
nt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n 
de

gr
ee

IT - share in mc Semiconductors  - share in mc
IT - mean degree Semiconductors - mean degree

Figure 4: Connectedness of inventor networks in IT and semiconductors

number of possible linkages and gives an impression of the connectedness of
the network. This measure is somewhat problematic in comparing networks of
different sizes as the number of possible linkages increases geometrically while
the actual number of linkages usually does not since inventors are constrained
in their capacities to have contacts to other actors. Therefore, we also report
the mean degree, i.e. the average number of ties. In both networks the mean
degree increases steadily, indicating a general tendency towards an increasing
relevance of teamwork which is in line with the results by Wuchty et al. (2007).
But again, we observe sharp differences between both technologies. While in
IT the mean degree is comparably low and increases only slightly from 1.96 in
1997 to 2.18 in 2001, values in semiconductors increase twice as fast and at a
higher level from 2.92 to 3.56 in semiconductors.

The central statistics for our comparison of the connectedness in the inventor
networks of IT and semiconductors are presented in figure 4 to illustrate the
sharp differences in the share of inventors within the main component and the
mean degree.

5 Conclusions

Many scholars have performed research on how sectors, industries, or technolo-
gies are interrelated and how knowledge flows from one field to the other or how
certain fields draw on the knowledge produced in other fields. Quite often this
research comes with an explicit or implicit criticism on existing classifications
of industry, but few consider these relations to be of a changing nature. We
performed an exploratory exercise to get an idea of how such a process might
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be explained and which consequences it might have for the organization of the
innovation process. More specifically, we analyzed the relationship between the
changing position of technologies within the knowledge base and the changes
within the underlying inventor networks, i.e. the structure of actors that pro-
duce new knowledge and thereby not only constitute but also actively change
the knowledge base and react to new opportunities.

In addition to existing explanations of increasing team size, we could iden-
tify another mechanism where the nature of technological opportunities plays
an important role for the incentives to form larger teams in the process of inno-
vation. If opportunities within a specific domain are still abundant, innovation
deepens the existing knowledge and networks play only a minor role. Whenever
opportunities arise from broadening the field of applications or from drawing on
the knowledge of a variety of technologies, interdisciplinary teams are formed
which constitute larger network structures among inventors. We propose that
the nature of technological opportunities is driving the process that determines
if a certain field develops towards a key technology.

This research has to viewed as a first step into the analysis of a co-evolution
of technology and invention networks and certainly has its limitations. Patents
as a data source have to be viewed critically and some of these drawbacks
might well affect our results. Many innovations are not patented which is the
reason why we can only observe the tip of the iceberg of actual relations in the
innovation process. The fact that patents are increasingly used for strategic
purposes (Cohen et al., 2000; Blind et al., 2006, 2009) might also mislead us,
since no teams of inventors are needed for patents that do not reflect actual
progress in knowledge production. For the analysis of such a co-evolutionary
process, the time span that we covered is certainly short and similar studies will
have to test our results with developments in more technological areas.
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Appendix

Table 2: Concordance between IPC and technology codes
Industry Technology IPC-Code

I. ELECTRICAL ENGINEERING

1. Electrical machinery and
apparatus, electrical energy

F21; G05F; H01B, C, F, G, H, J, K, M, R, T; H02;
H05B, C, F, K

2. Audiovisual technology G09F, G; G11B; H03F, G, J; H04N-003, -005, -009,
-013, -015, -017, R, S

3. Telecommunications G08C; H01P, Q; H03B, C, D, H, K, L, M; H04B, H, J,
K, L, M, N-001, -007, -011, Q

4. Information technology G06; G11C; G10L

5. Semiconductors H01L, B81

II. INSTRUMENTS

6. Optics G02; G03B, C, D, F, G, H; H01S

7. Analysis, measurement, control
technology

G01B, C, D, F, G, H, J, K, L, M, N, P, R, S, V, W;
G04; G05B, D; G07; G08B, G; G09B, C, D; G12

8. Medical technology A61B, C, D, F, G, H, J, L, M, N

9. Nuclear engineering G01T; G21; H05G, H

III. CHEMISTRY, PHARMACEUTICALS

10. Organic fine chemistry C07C, D, F, H, J, K

11. Pharmaceuticals, cosmetics A61K, P

12. Biotechnology C07G; C12M, N, P, Q, R, S

13. Agriculture, food chemistry A01H; A21D; A23B, C, D, F, G, J, K, L; C12C, F, G,
H, J; C13D, F, J, K

14. Materials, metallurgy C01; C03C; C04; C21; C22; B22; B82

15. Surface technology, coating B05C, D; B32; C23; C25; C30

16. Macromolecular chemistry,
polymers

C08B, F, G, H, K, L; C09D, J

17. Chemical industry and petrol
industry, basic materials
chemistry

A01N; C05; C07B; C08C; C09B, C, F, G, H, K; C10B,
C, F, G, H, J, K, L, M; C11B, C, D

IV. PROCESS ENGINEERING, SPECIAL EQUIPMENT

18. Chemical engineering B01B, D (without -046 to -053), F, J, L; B02C; B03;
B04; B05B; B06; B07; B08; F25J; F26

19. Materials processing, textiles,
paper

A41H; A43D; A46D; B28; B29; B31; C03B; C08J; C14;
D01; D02; D03; D04B, C, G, H; D05; D06B, C, G, H,
J, L, M, P, Q; D21

20. Handling, printing B25J; B41; B65B, C, D, F, G, H; B66; B67

21. Agricultural and food machinery
and apparatus

A01B, C, D, F, G, J, K, L, M; A21B, C; A22; A23N,
P; B02B; C12L; C13C, G, H

22. Environmental technology A62D; B01D-046 to -053; B09; C02; F01N; F23G, J

V. MECHANICAL ENGINEERING, MACHINERY

23. Machine tools B21; B23; B24; B26D, F; B27; B30

24. Engines, pumps, turbines F01B, C, D, K, L, M, P; F02; F03; F04; F23R

25. Thermal processes and apparatus F22; F23B, C, D, H, K, L, M, N, Q; F24; F25B, C;
F27; F28

26. Mechanical elements F15; F16; F17; G05G

27. Transport B60; B61; B62; B63B, C, H, J; B64B, C, D, F

28. Space technology, weapons B63G; B64G; C06; F41; F42

29. Consumer goods and equipment A24; A41B, C, D, F, G; A42; A43B, C; A44; A45;
A46B; A47; A62B, C; A63; B25B, C, D, F, G, H; B26B;
B42; B43; B44; B68; D04D; D06F,N ; D07; F25D;
G10B, C, D, F, G, H, K

30. Civil engineering, building, mining E01; E02; E03; E04; E05; E06; E21

Source: ISI OST INPI classification (update 2005) (Schmoch, 2008).

18

Jena Economic Research Papers 2009 - 059



References

Almeida, P. and Kogut, B. (1999). Localization of knowledge and the mobility
of engineers in regional networks. Management Science, 45(7):905–917.

Balconi, M., Breschi, S., and Lissoni, F. (2004). Networks of inventors and the
role of academia: An exploration of italian patent data. Research Policy,
33:127–145.

Blind, K., Cremers, K., and Mueller, E. (2009). The influence of strategic
patenting on companies’ patent portfolios. Research Policy, 38(2):428–436.

Blind, K., Edler, J., Frietsch, R., and Schmoch, U. (2006). Motives to patent:
Empirical evidence from germany. Research Policy, 35(5):655–672.

Boschma, R. (2005). Proximity and innovation: A critical assessment. Regional
Studies, 39(1):61–74.

Boschma, R. A. and ter Wal, A. L. J. (2007). Knowledge networks and innovative
performance in an industrial district: The case of a footwear district in the
south of italy. Industry and Innovation, 14(7):177–199.

Breschi, S. and Lissoni, F. (2003). Mobility and social networks: Localised
knowledge spillovers revisited. Working Paper 142, Cespri.

Breschi, S. and Lissoni, F. (2009). Mobility of skilled workers and co-invention
networks: an anatomy of localized knowledge flows. Journal of Economic
Geography, 9(4):439–468.

Breschi, S., Lissoni, F., and Malerba, F. (2003). Knowledge-relatedness in firm
technological diversification. Research Policy, 32(1):69–87.

Buenstorf, G. (2007). Evolution on the shoulders of giants: Entrepreneurship
and firm survival in the german laser industry. Review of Industrial Orga-
nization, 30(3):179–202.

Buenstorf, G. and Klepper, S. (2009). Heritage and agglomeration: The akron
tyre cluster revisited. Economic Journal, 119(537):705–733.

Cantner, U. and Graf, H. (2004). Cooperation and specialization in german
technology regions. Journal of Evolutionary Economics, 14(5):543–562.

Cantner, U. and Graf, H. (2006). The network of innovators in jena: An appli-
cation of social network analysis. Research Policy, 35(4):463–480.

Cohen, W. M. and Levinthal, D. A. (1989). Innovation and learning: the two
faces of r&d. Economic Journal, 99(397):569–596.

Cohen, W. M., Nelson, R. R., and Walsh, J. P. (2000). Protecting their intellec-
tual assets: Appropriability conditions and why u.s. manufacturing firms
patent (or not). Technical report, NBER Working Paper No. W7552.

de Solla Price, D. J. (1963). Little Science, Big Science. Columbia Univ. Press,
New York.

19

Jena Economic Research Papers 2009 - 059



Dosi, G. (1982). Technological paradigms and technological trajectories : A
suggested interpretation of the determinants and directions of technical
change. Research Policy, 11(3):147–162.

Dosi, G. (1988). The nature of the innovative process. In Dosi, G., Freeman,
C., Nelson, R., Silverberg, G., and Soete, L., editors, Technical Change and
Economic Theory, pages 221–238. Pinter, London.

Fleming, L. and Frenken, K. (2007). The evolution of inventor networks in the
silicon valley and boston regions. Advances in Complex Systems, 10(1):53–
71.

Fleming, L., King, Charles, I., and Juda, A. I. (2007). Small worlds and regional
innovation. Organization Science, 18(6):938–954.
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