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Abstract. In this paper, we reexamine Eliaz’s results (2002) of fault tolerant
implementation on one hand and we extend theorems 1 and 2 of Doghmi and Ziad (2008
a) to bounded rationality environments, on the other. We identify weak versions of the
k-no veto power condition, in conjunction with unanimity and variants of k-monotonicity,
are sufficient for implementability in k- Fault Tolerant Nash equilibria (k-FTNE). In
addition, these new conditions are stable by intersection which makes it possible to check
directly the k − FTNE implementability of the social choice correspondences. We apply
these results to exchange economies with single -peaked preferences, to finite allocation
problems, and to equilibrium theory. Firstly, we note that our conditions are satisfied by
all monotonic solutions contrary to Eliaz’s results (2002). Secondly, in exchange economy
when preferences are single-peaked, the k-monotonicity is sufficient for the k − FTNE
implementation for the correspondences and both necessary and sufficient for the functions.
However, the results are negatives for the no-monotonic solutions.
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1 Introduction

Implementation theory studies the problem of a planner who faces a certain
number of agents and a set of options. Each agent has preferences over
various options. A difficulty arises in the asymmetry of information between
planner and agents. This asymmetric information comes because the planner
does not know the exact preferences of agents. If for example, the options are
public goods, the agents will state false preferences in order to participate
with lower cost, and once the public property is constructed, they can use it
like everyone. So that the agents reveal their true preferences, the planner
will implement a mechanism (non-cooperative game) where the strategies
of players depend essentially on the preference profiles and the options (or
alternatives) set. A social choice correspondence (SCC) is implementable
in a given solution concept if the payment with this solution of the game
corresponds to the socially desired alternative and vice versa. The planner,
thus, hopes via this game to get the agents to reveal their sincere preferences.

In a complete information environment where the solution concept is Nash
equilibrium and the agents are rational in their behavior, Maskin (1977,
1999) was the first to be interested in this question. He showed that a
SCC which is Nash implementable must satisfy a property now known as
Maskin monotonicity. This property stipulates that if an option is socially
chosen with a preference profile R, and if all other options ranked below it
(in the large sense) remain below it for a new profile R′, then this option
must be chosen with the preference profile R′. For sufficiency, Maskin
proposes an additional property called no veto power, which stipulates that
if an option is better than all other options for all players except at most
one, this option must be socially selected. However, this latter property is
sufficient but not necessary for Nash implementation. Thus, in the literature
of implementation theory, several authors have suggested replacements for
no veto power property (Moore and Repullo 1990; Sjöström 1991; Danilov
1992; Yamato 1992; Ziad 1997,1998; Bochet 2007; Benoit and Ok 2006,2008;
Doghmi and Ziad 2008 a, 2008 b; and Zhou 2008).

Moore and repullo (1990) gave a full characterization (i.e., necessary
and sufficient conditions) for an implementable SCCs. Unfortunately, these
conditions depend on a priori unknown sets. Sjöström (1991) proposed
an algorithm to determine these unknown sets and then to apply the
characterization of Moore and Repullo. The weakness of this algorithm
is that it is not operational when the SCC is not implementable (in this
case, it does not produce an answer). Ziad (1997,1998) cured this defect
by generalizing the concept of monotonicity introduced initially by Maskin.
Danilov (1992) and Yamato (1992) proposed an elegant sufficient condition
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called strong monotonicity.
Thomson (1990) tried to apply these various conditions to models of

exchange economies with single-peaked preferences. Thomson showed that
the Maskin theorem applies only to the Pareto correspondence. Also, he
demonstrated that the no envy correspondence, the individually rational
correspondence from equal division, and the intersection of these two
correspondences satisfy strong monotonicity. Then they are Nash implementable
as well. However, Thomson illustrated that the intersections of some
strong monotonic correspondences do not satisfy strong monotonicity e.g.,
the intersection of the individually rational correspondence from equal
division and the Pareto correspondence, or the intersection of the no
envy correspondence and Pareto correspondence. Strong monotonicity is
unfortunately unstable by intersection.

Doghmi and Ziad (2008 a) identified new sufficient conditions called strict
monotonicity, strict weak no veto power and weak no veto power. They
showed that any SCC satisfying either the conjunction of strict monotonicity
with strict weak no veto power and unanimity or the conjunction of
Maskin monotonicity with weak no veto power and unanimity is Nash
implementation. These results extend Maskin’s theorem. In addition,
intersections of SCCs satisfying these conditions also satisfy the same
conditions. This stability property is an extremely useful tool in identifying
Nash implementable SCCs. Doghmi and Ziad (2008 b) provided applications
of these new results to solutions of the problems of fair division in exchange
economies with single-peaked preferences, and to finite allocation problems .

In exchange economies with single-peaked preferences, Doghmi and Ziad
(2008 b) gave a full characterization by showing that Maskin monotonicity,
alone, is necessary and sufficient for Nash implementability. Thus, in this
setting, the problems of identifying Nash implementable SCCs have finally
been solved. Also, Doghmi and Ziad (2008 b) gave a generalization for
implementability of the solutions of the problems of finite allocations. But the
question is: what about the implementability of these solutions in bounded
rationality environments?

In standard implementation theory, the solution concept analyzes rational
behavior of players. Each player can choose its best strategy. However, this
literature of full rationality has been criticized by several authors (Hurwicz,
1986; Moore, 1992; Sjostrom, 1993; Segal, 1999; Cabrales, 2000; and Cabrales
and Ponti, 2000). The question is how to find a solution when there are slight
deviations from full rationality. Part of the answer, in complete information
environments, was given by Eliaz (2002) ( see also Doghmi and Ziad, 2007 and
Matsushima, 2008 for Bayesian environments). In his model, Eliaz assumes
that there is a minority of k players who are “faulty” in the sense that they
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do not understand the rules of the game, or they make mistakes. The planner
and non-faulty players know only that there exist at most k faulty players in
the population. They know neither their identity, nor their exact number, nor
their behaviors. Eliaz defined a new solution concept called k-Fault Tolerant
Nash Equilibrium (k−FTNE). This solution concept requires that a player
responds in an optimal manner to the non-faulty players, independently of
the identity and strategies of the faulty players. In a society of at least
three players, Eliaz (2002) showed that any SCC that satisfies a version of
monotonicity (stronger than Maskin monotonicity, called k-monotonicity)
and the no veto power condition is k − FTNE implementable when faulty
players are in a minority. He showed also that any k−FTNE implementable
SCC must satisfy weak k-monotonicity.

Thus, Eliaz (2002) uses the no veto power condition. This condition is
not satisfied by several applications. We consider the following domains.

(1) Exchange economies with single peaked preferences. In this domain,
only the Pareto correspondence (P ) can (probably) be implemented
by Eliaz’s result (2002), but the no-envy correspondence(NE), the
individually rational correspondence from equal division (Ied), the core
correspondence from equal division, the group no-envy correspondence,
the (P ∩ NE) correspondence, the (P ∩ Ied) correspondence, and the
(NE ∩ Ied) correspondence cannot.

(2) Finite allocation problems. In this domain, although the weak Pareto
correspondence can (probably) be implemented in k−FTNE by Eliaz’s
conditions, the weak Core correspondence cannot.

(3) Equilibrium theory. For this setting, in pure exchange economies, the
constrained Walrasian equilibrium is implementable in k − FTNE
by Eliaz’s conditions, but in the general case of exchange economies
with production and with possibly satiated preferences, the constrained
Walrasian equilibrium with slack is not.

With two examples, Eliaz (2002) shows that there is no logical relationship
between the necessary condition for Nash implementation and the necessary
condition for faulty Nash implementation. For non Nash implementable
correspondences, this is encouraging, they may be faulty Nash implementability.
For this, we consider the following environments.
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(4) The no-monotonic solutions in exchange economies with single peaked
preferences. The Proportional solution, the Symmetrically proportional
solution, the Equal-distance solution, and the Equal-distance solution
do not satisfy Maskin monotonicity. Therefore, it are not Nash
implementable. Can these solutions be implemented in k − FTNE?

(5) The no-monotonic solutions in finite allocation. The strong Pareto
correspondence and the strong Core correspondence do not satisfy
Maskin monotonicity . Therefore, they are not Nash implementable.
Can these correspondences be implemented in k − FTNE?

To answer these questions, we extend theorems 1 and 2 of Doghmi and
Ziad (2008 a) by reexamining Eliaz’s results of fault tolerant implementation.
We give new sufficient conditions called strict k-monotonicity, strict weak k-
no veto power, and weak k-no veto power. We propose two combinations. The
first combination contains strict k-monotonicity, strict weak k-no veto power,
and unanimity. In the second combination, we consider the conjunction
of Maskin monotonicity with weak k-no veto power, and unanimity. We
demonstrate that if a social choice correspondence satisfies either of these
new combinations, it can be implemented in k − FTNE.

The rest of this paper is organized as follows. In Section 2, we introduce
notations and definitions. In Section 3, we state and prove our main results.
In sections 4, 5 and 6, we give several applications of our results with respect
to domains of exchange economies with single peaked preferences, to finite
allocation problems, and to equilibrium theory. We conclude by remarks.

2 Notations and definitions

Let A be a set of alternatives, and let N = {1, ..., n} be a finite set of
individuals, with generic element i. Each individual i is characterized by
a preference relation Ri defined over A, which is a complete, transitive,
and reflexive relation in some class <i of admissible preference relations.
Let < = Πi∈N<i. An element R = (R1, R2, ..., Rn) ∈ < is a preference
profile. The relation Ri indicates the individual’s i preference. For a, b ∈ A,
the notation aRib means that the individual i prefers weakly a to b. The
asymmetrical and symmetrical parts of Ri are noted respectively by Pi and
Ii.
A social choice correspondence (SCC) F is a function from < into 2A \ Ø,
that associates with every R a nonempty subset of A. For all Ri ∈ <i and
all a ∈ A, the lower contour set for agent i at alternative a is noted by:
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L(a,Ri) = {b ∈ A | aRib}. The strict lower contour set and the indifference
lower contour set are noted respectively by LS(a,Ri) = {b ∈ A | aPib} and
LI(a,Ri) = {b ∈ A | a ∼i b}.
A mechanism (or form game) is given by Γ = (S, g) where S = Πi∈NSi;
Si denotes the strategy set of the agent i and g is a function from S
to A. The elements of S are denoted by s = (s1, s2, ..., sn) = (si, s−i),
where s−i = (s1, ..., si−1, si+1, ..., sn). When s ∈ S and bi ∈ Si, (bi, s−i) =
(s1, ..., si−i, bi, si+1, ..., sn) is obtained after replacing si by bi, and g(Si, s−i)
is the set of results which agent i can obtain when the other agents choose
s−i from S−i = Πj∈N,j 6=iSj.
A Nash equilibrium of the game (Γ, R) is a vector of strategies s ∈ S such
that for any i, g(s)Rig(bi, s−i) for all bi ∈ Si, i.e. when the other players
choose s−i, the player i cannot deviate from si. Given N(g,R, S) the set of
Nash equilibria of the game (Γ, R), a mechanism Γ = (S, g) implements a
SCC F in Nash equilibria if for all R ∈ <, F (R) = g(N(g,R, S)).
We say that a SCC F is implementable in Nash equilibria if there is a
mechanism which implements it in these equilibria.

A k-Fault Tolerant Nash Equilibrium (k−FTNE) of the game (Γ, R) is a
vector of strategies s∗ ∈ S such that for any i, g(s∗i , s

∗
N\M∪{i}, sM)Rig(bi, s

∗
N\M∪{i}, sM)

for all bi ∈ Si, for all sM ∈ SM and for all M ⊆ N such that | M |≤ k,
i.e. when the other non-faulty players choose s∗N\M∪{i} regardless of the
strategies of the faulty players, the non-faulty player i cannot deviate from
s∗i . The difference d(s, s′) between any pair of strategies s and s′, such
that d(s, s′) =| {i ∈ N : si 6= s′i} |, measures the number of players who
do not choose the same strategies in both profiles. Given B(s, k) the set
of profiles that are different from s by at most k strategies such that for
any profile of strategies s ∈ S: B(s, k) = {s′ ∈ S : d(s, s′) ≤ k}. Given
Nk(g,R, S) the set of k−FTNE of the game (Γ, R), a mechanism Γ = (S, g)
implements a SCC F in k − FTNE if for all R ∈ <, F (R) = g(Nk(g,R, S))
and g(B(s∗, k)) ⊆ F (R) for all s∗ ∈ Nk(g,R, S).
We say that a SCC F is implementable in k−FTNE if there is a mechanism
which implements it in this notion of equilibrium.

Now, we introduce the fundamental conditions in classical Nash implementation
theory. Maskin (1977/1999) showed that any Nash implementable SCC must
satisfies the following property:

Definition 1 (Maskin Monotonicity). A SCC F satisfies monotonicity if
for all R,R′ ∈ <, for any a ∈ F (R), if for any i ∈ N , L(a,Ri) ⊆ L(a,R′i),
then a ∈ F (R′).
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For sufficiency, Maskin (1977/1999) gave the following additional property:

Definition 2 (No-veto power). A SCC F satisfies no veto power if for i,
R ∈ <, and a ∈ A, if L(a,Rj) = A for all j ∈ N\{i}, then a ∈ F (R).

Next, we introduce the Doghmi and Ziad’s conditions (2008) which are
used to reexamine Maskin’s theorem (1977, 1999):

Definition 3 (strict monotonicity). A SCC F satisfies strict monotonicity
if for all R,R′ ∈ <, for any a ∈ F (R), if for any i ∈ N , LS(a,Ri) ∪ {a} ⊆
L(a,R′i), then a ∈ F (R′).

Definition 4 ( Versions of weak no veto power)
i) strict weak no veto power. A SCC F satisfies strict weak no veto
power if for i, R ∈ <, and a ∈ F (R), if for R′ ∈ <, b ∈ LS(a,Ri) ⊆ L(b, R′i)
and L(b, R′j) = A for all j ∈ N\{i}, then b ∈ F (R′).
ii) weak no veto power. A SCC F satisfies weak no veto power if for
i, R ∈ <, and a ∈ F (R), if for R′ ∈ <, b ∈ L(a,Ri) ⊆ L(b, R′i) and
L(b, R′j) = A for all j ∈ N\{i}, then b ∈ F (R′).

Definition 5 (Unanimity). A SCC F satisfies unanimity if for any a ∈ A
and any R ∈ <, if for any i ∈ N , L(a,Ri) = A, then a ∈ F (R).

Finally, we introduce the fundamentals conditions in bounded rationality
environment. In this setting, Eliaz (2002) identified the following conditions:

Definition 6 (k-monotonicity). A SCC F satisfies k-monotonicity if for all
R,R′ ∈ <, for any a ∈ F (R), if for any M ⊆ N with | M |≥ k + 1 and for
some i ∈M , L(a,Ri) ⊆ L(a,R′j) for all j ∈M , then a ∈ F (R′).

Definition 7 (weak k-monotonicity). A SCC F satisfies weak k-monotonicity
if for all R,R′ ∈ <, for any a ∈ F (R), if for any M ⊆ N with | M |≥ k + 1
and for some i ∈ M , there is an outcome ai ∈ F (R) satisfying L(ai, Ri) ⊆
L(aj, R′j) for all j ∈M , then a ∈ F (R′).

Eliaz (2002) showed that any SCC satisfying k-monotonicity and no veto
power conditions can be implemented in k − FTNE, and all k − FTNE
implementable SCC’s are weakly k-monotonic.
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3 New sufficient conditions for faulty Nash

implementation

In this section, we state and prove our main results. We start by introducing
the following condition: it says that if an alternative is selected for some
profile of preferences R, and for all subsets M of at least k + 1 players, if by
at least one of them, all subset contains the chosen alternative and all other
alternatives ranked strictly below it remain below it (in large sense) for all
players of M for a new profile R′, then this alternative must be chosen for
the new profile R′.

Definition 8 (strict k-monotonicity ). A SCC F satisfies strict k-monotonicity
if for all R,R′ ∈ <, for any a ∈ F (R), if for any M ⊆ N with | M |≥ k + 1
and for some i ∈ M , LS(a,Ri) ∪ {a} ⊆ L(a,R′j) for all j ∈ M , then
a ∈ F (R′).

Remarks.

• strict k-monotonicity implies k-monotonicity. They become equivalent,
if the preferences are strict.

• strict k-monotonicity implies weak k-monotonicity.

• strict k-monotonicity implies Maskin monotonicity.

• if k = 0 then strict k-monotonicity reduce to Doghmi and Ziad’s
condition (2008) of strict monotonicity.

Next, we introduce two weak versions of k-no veto pwer.1

Definition 9 (strict weak k-no veto power ). A SCC F satisfies strict weak
k-no veto power if for some M ⊆ N with |M |≤ k+1, R ∈ <, and a ∈ F (R),
if for R′ ∈ < and for some i ∈ M , b ∈ LS(a,Ri) ⊆ L(b, R′j) for all j ∈ M
and L(b, R′j) = A for all j ∈ N\M , then b ∈ F (R′).

Definition 10 (weak k-no veto power ). A SCC F satisfies weak k-no veto
power if for some M ⊆ N with | M |≤ k + 1, R ∈ <, and a ∈ F (R), if
for R′ ∈ < and for some i ∈ M , b ∈ L(a,Ri) ⊆ L(b, R′j) for all j ∈ M and
L(b, R′j) = A for all j ∈ N\M , then b ∈ F (R′).

1A SCC F satisfies k-no veto power if for some M ⊆ N with |M |≤ k + 1, R ∈ <, and
a ∈ A, if L(a, Rj) = A for all j ∈ N\M , then a ∈ F (R).
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If k = 0 then strict weak k-no veto and weak k-no veto power power
reduce to Doghmi and Ziad’s conditions (2008) of strict weak no veto power
and weak no veto power.

Finally, to characterize the k−FTNE implementable SCC’s, we propose
two combinations. In the first combination, we consider the conjunction
of strict k-monotonicity, strict weak k-no veto power and unanimity. In
the second combination, we bind Maskin monotonicity with weak k-no veto
power and unanimity conditions. We show that any SCC satisfying either of
these two combinations can be implemented in k − FTNE, as the following
theorems illustrate.

Theorem 1 Let n ≥ 3 and k + 1 < n
2
. If a SCC F satisfies strict k-

monotonicity, strict weak k-no veto power and unanimity, then F can be
implemented in k − FTNE.

Theorem 2 Let n ≥ 3 and k + 1 < n
2
. If a SCC F satisfies k-monotonicity,

weak k-no veto power and unanimity, then F can be implemented in k −
FTNE.

Because the proofs of theorems 1 and 2 follow the same arguments, we
give just the proof of theorem 1.

Proof of theorem 1. For this proof, we utilize the same fault tolerant
mechanism used by Eliaz (2002). Let Γ = (S, g) be a mechanism which is
defined as follows: For each i ∈ N , let Si = < × A × N, where N consists
of the nonnegative integers. The generic element of strategic space Si is
noted by: si = (Ri, ai,mi). Each agent announces a preference profile, an
optimal alternative for this profile and a nonnegative integer. The function
g is defined as follows:

Rule 1: If at least n− k players announce (R, a,m) such that a ∈ F (R),
then the outcome is a.

Rule 2: If exactly n − k − 1 players announce (R, a,m) such that a ∈
F (R), then the outcome is a, unless all of the remaining k + 1 players agree
on (R′, b, . )and b ∈ LS(a,Ri) 6= Ø for everyone of them, in which case the
outcome is b.

Rule 3: In any other situation, g(s) = ai∗ , where i∗ is the index of the
player of which the number mi∗ is largest ( in case of a tie the identity of i∗

is immaterial).
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Before proving the result, let precise that for a profile of strategies, if
two or more strategies are identical, we suppose for simplicity and without
any restriction of generality that these strategies are the first one. Also
to simplify the proof, for a profile s∗ containing more that n − k identical
strategies, we write s∗ = (s∗1, s

∗
2, ..., s

∗
n−k, sn−k+1, ..., sn), else we write s∗ =

(s∗1, s
∗
2, ..., s

∗
n−k′ , sn−k′+1, ..., sn), with k′ > k. Let us show that for all R ∈ <,

F (R) = g(Nk(g,R, S)) and g(B(s∗, k)) ⊆ F (R) for all s∗ ∈ Nk(g,R, S). The
proof contains two steps:

Step 1. For all R ∈ <, F (R) ⊆ g(Nk(g,R, S)).
Let R ∈ < and a ∈ F (R). For each i ∈ N , let si = (R, a, 1). Then, by

rule 1, g(s) = a and for all s′ ∈ B(s, k), g(s′) = a. We want to show that
s ∈ Nk(g,R, S)). Let us choose any individual i and any deviation from s′

by the strategy s̃i such that s̃i = (R̃, ai, m̃). If ai ∈ LS(a,Ri) 6= Ø, then, by
rule 2, g(s̃i, s

′
−i) = ai. But, since LS(a,Ri) ⊆ L(a,Ri), then g(s)Rig(s̃i, s

′
−i),

thus s ∈ Nk(g,R, S)). If ai /∈ LS(a,Ri) , then g(s) = g(s̃i, s
′
−i), thus s ∈

Nk(g,R, S)).

Step 2. For all R ∈ <, g(Nk(g,R, S)) ⊆ F (R) and g(B(s∗, k)) ⊆ F (R)
for all s∗ ∈ Nk(g,R, S) .

Let s∗ ∈ Nk(g,R, S). Let us show that g(s∗) ∈ F (R) and ∀s′ ∈ B(s∗, k),
g(s′) ∈ F (R). For that, we will study the various possibilities of writing the
profile of strategies s∗.

Substep 2.1. For all R ∈ <, g(Nk(g,R, S)) ⊆ F (R).
Case a: s∗ = (s∗1, s

∗
2, ..., s

∗
n−k, sn−k+1, ..., sn) and s′ = (s∗1, s

∗
2, ..., s

∗
n−k, s

′
n−k+1, ..., s

′
n).

Suppose there exists (R′, a,m) ∈ < × A × N, with a ∈ F (R′), such that s∗

is defined by s∗i = (R′, a,m) for any i ∈ N . Then, by rule 1, g(s∗) = a and
∀s′ ∈ B(s∗, k), g(s′) = a.

Let Hk be the subset of k players deviating from s∗ and let us take any
i ∈ N \ Hk. Let M be the union of the all subset Hk of k players and
the various players i ∈ N \ Hk, i.e., M ≡ Hk ∪ i, with | M |≥ k + 1.
Since, each subset M contains at least one non-faulty player i′,2 we take any
b ∈ LS(a,R′i′)∪{a}. Let s̃i′ = (R′, b,m′) a deviation for the non-faulty player
i′. For a profile s′ ∈ S, the k players of the subset Hk play (R′, b,m′). Then,
by rule 2, g(s̃i′ , s

∗
N\M , s

′
M\{i′}) = b for all j ∈ M . Since s∗ ∈ Nk(g,R, S),

a = g(s∗)Rjg(s̃i′ , s
∗
N\M , s

′
M\{i′}) = b for all j ∈ M . Therefore, LS(a,R′i′) ∪

2To clarify this point, we consider this example. Let N = {1, 2, 3, ..., 7} and k = 2.
Without loss of generality, we fix the index 1 and 2 for the faulty players such that
H2 ≡ {1, 2}. In this case, for all i ∈ N \H2 ≡ {3, 4, ..., 7}, the subset M with | M |≥ 3
takes the following forms: M ≡ {1, 2, 3}, M ≡ {1, 2, 3, 4}, ...,M ≡ N . Thus, subset M
contains at least one non-faulty player of the index 3.
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{a} ⊆ L(a,Rj) for all j ∈M . By strict k-monotonicity, a ∈ F (R).
Case b: s∗ = (s∗1, s

∗
2, ..., s

∗
n−k, sn−k+1, ..., sn) and s′ = (s∗1, s

∗
2, ..., s

∗
n−k, s

′
n−k+1, ..., s

′
n).

Assume there is a subset Hk of k players in N , a player τ in N \Hk , we let
M ≡ Hk∪{τ}, with |M |= k+1. Let R′ ∈ < and a ∈ A such that a ∈ F (R′).
For all j ∈ N \M , s∗j = (R′, a,m) and sM = (s∗τ , sHk) = (R′′, a′,m′) 6= s∗j . In
the profile s∗ there are exactly n− k− 1 players announce (R′, a,m) and the
remaining k + 1 players agree on (R′′, a′,m′), in this case,

g(s∗) =

{
a′ if ai ∈ LS(a,Ri) 6= Ø
a otherwise.

There are two subcases:
Subcase b1: If g(s∗) = a′,

By definition a′ ∈ LS(a,R′i) 6= Ø for all i ∈M . Since the subset M contains
at least one non-faulty player τ , we take any b ∈ LS(a,R′τ ) 6= Ø. Let s̃τ be a

deviation such that s̃τ = (R̃, b, m̃) and let s̃Hk be a deviation by the subset Hk

of k players such that s̃Hk = (R̃, b, m̃). Then, by rule 2, g(s̃τ , s
∗
N\M , s̃M\{τ}) =

b for all j ∈ M . But, since s∗ ∈ Nk(g,R, S), b ∈ L(a′, Rj) for all j ∈ M .
Hence, we have a′ ∈ LS(a,R′τ ) ⊆ L(a′, Rj) for all j ∈M . (1)

Next, because n ≥ 3 and k + 1 < n
2
, for any other deviation j ∈ N \M

and any b ∈ A, let s̃j = (R̃, b, m̃) a deviation. In this case the subset Hk

of k players will play the same strategy profile s̃Hk = (R̃, b, m̃) as that of
player j, m̃ is the unique greatest integer in the profile (s̃j, s

∗
N\Hk∪j, s̃Hk).

By rule 2, g(s̃j, s
∗
N\Hk∪j, s̃Hk) = b. Since s∗ ∈ Nk(g,R, S), we have a′ =

g(s)Rig(s̃j, s
∗
N\Hk∪j, s̃Hk) = b. Therefore, A ⊆ L(ai, Rj) for all j ∈ N \M .

(2)
From (1), (2) and by k-strict weak no veto power, we have a′ ∈ F (R).
Subcase b2: If g(s∗) = a,

By the same reasoning used in case a, we obtain by strict k-monotonicity
that a ∈ F (R).

Case c: s∗ = (s∗1, s
∗
2, ..., s

∗
n−k, sn−k+1, ..., sn) and s′ = (s∗1, s

∗
2, ..., s

∗
n−k, s

′
n−k+1, ..., s

′
n):

∀i ∈ N , s∗i = (R′, a,m) with a /∈ F (R′), g(s∗) = a. Let b ∈ A and i ∈ N ,
s̃i = (R′, b,m′), where m′ > m, then, g(s̃i, s

∗
−i) = b. As s∗ ∈ Nk(g,R, S),

then, a = g(s∗)Rig(s̃i, s
∗
−i) = b. Therefore, A ⊆ L(a,Ri) for all i ∈ N . Since

the SCC F satisfies unanimity then a ∈ F (R).

Case d: The last case is the opposite of the previous cases,
s∗ = (s∗1, s

∗
2, ..., s

∗
n−k′ , sn−k′+1, ..., sn) with k′ > k. We obtain g(s∗) = al:

ml is the maximum of the integers m. Let b ∈ A, and s̃i = (R′, b,ml + 1)
a deviation. Therefore, g(s̃i, s

∗
−i) = b. As s∗ ∈ N(g,R, S), then,
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g(s∗)Rig(s̃i, s
∗
−i) = b. Thus, A ⊆ L(g(s∗), Ri) for all i ∈ N . By unanimity

g(s∗) ∈ F (R).

Substep 2.2. For all R ∈ <, g(B(s∗, k)) ⊆ F (R) for all s∗ ∈ Nk(g,R, S)
. Let s∗ ∈ Nk(g,R, S) and suppose that g(s∗) = a and let s′ ∈ B(s∗, k),
if g(s′) = a we have no thing to prove. In the following we suppose that
g(s′) 6= a

Let s∗ ∈ Nk(g,R, S) and s′ ∈ B(s∗, k) be profiles of strategies. Assume
that g(s′) is defined by rule 2. In s′ there are exactly n− k − 1 players who
agree on (R′, a,m) and the remaining agree on (R′′, a′,m′)

g(s′) =

{
a′ if a′ ∈ LS(a,Ri) 6= Ø
a otherwise.

By the same reasoning used in subcases b1 and b2, we obtain that
g(s′) ∈ F (R).

Secondly when g(s′) is determined by Rule 3. Let s′i = (R′, c, m̃) a
strategies profile where a subset M (with cardinality less or equal k) of
players deviate from s∗, with m̃ > m. Let s̃ = (s∗1, s

∗
2, ..., s

∗
n−k, s̃n−k+1, ..., s̃n)

and s̃M = (R̃, d, m̃′), with m̃′ > m̃. Then, s̃ ∈ B(s∗, k), by Rule 3,
g(s̃) = d. Let ŝ = (s∗1, s

∗
2, ..., ŝj, ..., s

∗
n−k, s̃n−k+1, ..., s̃n) a strategies profile

in which j ∈ N \M announces ŝj = (R̂, e, m̂) with m̂ > m̃′ and ŝ−j = s̃−j.
Then, by Rule 3, g(ŝ) = e. Therefore, each player has some beliefs on
the possibility of deviation of faulty players. He obtains his most preferred
outcome by announcing the largest integer when others players play their
strategies. Since s∗ ∈ Nk(g,R, S), it must that a = g(s∗) ∼i b for all i ∈ N
and for all b ∈ A. Thus, for all s′ ∈ B(s∗, k), g(s′) ∼i b for all i ∈ N and for
all b ∈ A. Therefore A ⊆ L(g(s′), Ri). Since the SCC F satisfies unanimity
then g(s′) ∈ F (R). Q.E.D.

4 Applications in exchange economies with

Single-peaked preferences

Let N = {1, ..., n} be a set of n agents which must share a quantity Ω ∈ R++

of a certain perfectly divisible good. The preference of each agent i ∈ N
is represented by a continuous and single-peaked preference relation Ri over
[0,Ω] (the asymmetrical part is written Pi and the symmetrical part Ii). For
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all xi, yi ∈ [0,Ω], xiRiyi mean that, for the agent i, to consume a share xi is
as good as to consume the quantity yi.

Definition 11 (Single-peaked preferences )
A preference relation Ri is single peaked if there is a number p(Ri) ∈ [0,Ω]
such that for all xi ∈ [0,Ω] if yi < xi ≤ p(Ri) or p(Ri) ≤ xi < yi, then xiPiyi.
We call p(Ri) the peak of Ri.

Let D ⊆ < be the class of all such preference relations. For R ∈
D , let p(R) = (p(R1), ..., p(Rn)) be the profile of peaks (or of preferred
consumptions). A single peaked preference relation Ri ∈ Di is described
by the function ri : [0,Ω] → [0,Ω] which is defined as follows: ri(xi) is the
consumption of the agent i on the other side of the peak which is indifferent to
xi (if it exists), else, it is 0 or Ω. Formally, if xi ≤ p(Ri), then, ri(xi) ≥ p(Ri)
and xiIiri(xi) if such a number exists or ri(xi) = Ω otherwise; if xi ≥ p(Ri),
then, ri(xi) ≤ p(Ri) and xiIiri(xi) if such a number exists or ri(xi) = 0
otherwise.

A feasible allocation for the economy (R,Ω) is a vector x ≡ (xi)i∈N ∈ Rn
+

such that
∑

i∈N xi = Ω and X is the set of the feasible allocations. We note
that the feasible allocations set is X = [0,Ω] × [0,Ω] × ... × [0,Ω]. Thus,
L(x,Ri) = X is equivalent to L(xi, Ri) = [0,Ω]. For the set L(x,Ri) = X,
xRiy for all y ∈ X implies that xiRiyi.

Lemma 1 (Doghmi and Ziad (2008 b))
Let R,R′ ∈ D and x, y ∈ X. If preferences are single-peaked, yi ∈ LS(xi, Ri),
and LS(xi, Ri) ⊆ L(yi, R

′
i), then L(yi, R

′
i) = [0,Ω].

In exchange economies with single peaked preferences, we have the
following proposition.

Proposition 1 : In exchange economies with single peaked preferences,
strict k-monotonicity becomes equivalent to k-monotonicity.

Proof. This proof is omitted as it follows the same argument as proof of
Proposition 4 in Doghmi and Ziad (2008b).

Theorem 3 Let n ≥ 3 and k + 1 < n/2. Let F be a SCC (respectively
let f : < → A be a social choice function) satisfying i) unanimity, ii)
(P (R1), P (R2), ....., P (Rn)) ∈ F (R), then F can be implemented in k-FTNE
if F satisfies k-monotonicity (respectively f can be implemented in k-FTNE
if and only if f satisfies k-monotonicity).
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Proof. By Lemma 1 and unanimity, the strict weak k-no veto power
condition always holds independently of the solution. The condition ii)
implies strict weak k-no veto power for F . By Proposition 1, strict k-
monotonicity is equivalent to k-monotonicity. For a social choice function,
the k-monotonicity condition becomes equivalent to weak k-monotonicity
which is necessary condition for k − FTNE implementability. Q.E.D.

For k = 0, the theorem 3 has as a role to close the gap in Maskin theorem
in exchange economies with single-peaked preferences. In this environment,
the Maskin monotonicity condition is, alone, necessary and sufficient for Nash
implementation.

a) Pareto correspondence, P

The Pareto correspondence is the solution which associates each economy
with its feasible allocation set such that there does not exist any other feasible
allocation that all agents prefer weakly and at least one prefers strictly.

P (R) = {x ∈ X : @x′ ∈ X such that for all i ∈ N , x′iRixi, and for some
i ∈ N , x′iPixi}.

Let x ∈ P (R). It is easy to check that if
∑

i∈N p(Ri) ≥ Ω, for all i ∈ N ,
then xi ≤ p(Ri) and that if

∑
i∈N p(Ri) ≤ Ω, for all i ∈ N , then xi ≥ p(Ri).

3

Proposition 2 : Let 0 ≤ k < n. The Pareto correspondence satisfies strict
k-monotonicity.

Proof. Let R,R′ ∈ D and x, y ∈ X. Let x ∈ P (R). Suppose that∑
i∈N p(Ri) ≥ Ω ( similar statements can be proved for

∑
i∈N p(Ri) ≤ Ω).

Then, ∀i ∈ N , xi ≤ p(Ri). Suppose that the Pareto correspondence
does not satisfies strict k-monotonicity. Therefore, for all M ⊆ N , with
| M |≥ k + 1 and for some i ∈ M , LS(xi, Ri) ∪ {xi} ⊆ L(xj, R

′
j) for

all j ∈ M , but x /∈ P (R′). By feasibility, we have
∑

i∈N p(R
′
i) ≥ Ω.

Thus x /∈ P (R′) implies that there exists i ∈ N such that xi ≥ p(R′i). If
p(R′i) ≥ p(Ri), then xi ≥ p(Ri), i.e. x /∈ P (R), a contradiction. Else, i.e.,
p(R′i) ≤ p(Ri), we have, for all M ⊆ N , with |M |≥ k + 1, for some i ∈M ,
LS(xi, Ri) ∪ {xi} ⊆ L(xj, R

′
j) for all j ∈ M . If we take M ≡ N , then we

must have xi ≥ p(Ri), i.e. x /∈ P (R), a contradiction. Q.E.D.

The strict k-monotonicity condition implies k-monotonicity. According
to Thomson (1990), the Pareto correspondence satisfies the no veto power
condition. Therefore, the Pareto correspondence is k−FTNE-implementable

3See Sprumont (1991).
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by Eliaz’s result. Thus, our result coincides with that of Eliaz (2002).
However, the following solutions of the no-envy correspondence, the individually
rational correspondence from equal division, the core correspondence from
equal division, the group no-envy correspondence and also all their intersections
do not satisfy the no veto power condition. Thus, Eliaz’s result (2002) can not
inform us about the k − FTNE-implementability of these correspondences.

b) No-Envy correspondence, NE, (Foley, 1967)

The no-envy correspondence selects the allocations at which no agent
prefers someone else´s consumption to his own. Formally:

Let R ∈ D , NE(R) = {x ∈ X if xiRixj for all i, j ∈ N}.

Proposition 3 : Let 0 ≤ k < n. The No-Envy correspondence satisfies
strict k-monotonicity.

Proof. Let R,R′ ∈ D , x ∈ X and x ∈ NE(R). Suppose that xi ≤ p(Ri)
( similar statements can be proved for xi ≥ p(Ri)). Suppose that no-envy
correspondence does not satisfies strict k-monotonicity. Therefore, for all
M ⊆ N , with |M |≥ k+1 and for some i ∈M , LS(xi, Ri)∪{xi} ⊆ L(xj, R

′
j)

for all j ∈ M , but x /∈ NE(R′). Therefore, there are i, j ∈ N such that
xjP

′
jxi, i.e., xj /∈ L(xi, R

′
i). We have for all M ⊆ N , with | M |≥ k + 1

and for some i ∈M , LS(xi, Ri) ∪ {xi} ⊆ L(xj, R
′
j) for all j ∈M . By taking

M ≡ N , xj /∈ LS(xi, Ri) ∪ {xi}. There are two cases:
i) The number ri(xi) exists. In this case we have either xj ∈]xi, ri(xi)[,

i.e., xjPjxi, and hence x /∈ NE(R), a contradiction. Or xj ∈ [ri(xi),Ω], i.e.
rj(xj) ∈ LS(xi, Ri) ∪ {xi}. But rj(xj) ∼j xj, i.e., xj ∈ LS(xi, Ri) ∪ {xi}
which contradicts our assumption that xj /∈ LS(xi, Ri) ∪ {xi}.

ii) The number ri(xi) does not exist. In this case xjPjxi and hence x /∈
NE(R), a contradiction. Q.E.D.

c) Individually Rational Correspondence from Equal Division, Ied

Ied(R) = {x ∈ X : xiRi(M/n) for all i ∈ N}

Proposition 4 : Let 0 ≤ k < n. The Individually Rational Correspondence
from Equal Division satisfies strict k-monotonicity.

Proof. Omitted, it is very similar that of proposition 3.

d) Core Correspondence from Equal Division, Ced

Ced(R) = {x ∈ X : @S ⊆ N and (x′i)i∈S such that (i)
∑

i∈S x
′
i =| S | Ω/n,

(ii) for all i ∈ S, x′iRixi and for some i ∈ S, x′iPixi}
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Proposition 5 : Let 0 ≤ k < n. The Core Correspondence from Equal
Division satisfies strict k-monotonicity.

Proof. Let R,R′ ∈ D and x, x′ ∈ X. Let x ∈ Ced(R). Suppose that∑
i∈N p(Ri) ≥ Ω ( similar statements can be proved for

∑
i∈N p(Ri) ≤ Ω).

Suppose that Core Correspondence from Equal Division does not satisfies
strict k-monotonicity. Therefore, for all M ⊆ N , with |M |≥ k + 1 and for
some i ∈ M , LS(xi, Ri) ∪ {xi} ⊆ L(xj, R

′
j) for all j ∈ M , but x /∈ Ced(R′).

We have Ced(R
′) ⊆ P (R′). Therefore, we have two cases:

(i) x /∈ Ced(R′) and x /∈ P (R′). In this case, we use the same arguments
used in the proof of proposition 2.

(ii) x /∈ Ced(R′) and x ∈ P (R′). In this case, for all i ∈ N , xi ≤ p(R′i).
There are two subcases:

α) p(Ri) ≤ p(R′i). (a1) If xi ≥ p(Ri), then x /∈ P (R), therefore x /∈
Ced(R), a contradiction. (a2) If xi ≤ p(Ri), since x /∈ Ced(R

′), therefore
∃S ⊆ N and (x′i)i∈S such that (1)

∑
i∈S x

′
i =| S | Ω/n, (2) for all i ∈ S,

x′iR
′
ixi and for some i ∈ S, x′iP

′
ixi, then (xi)i∈S < (x′i)i∈S. Since we have

xi ≤ p(Ri) for i ∈ N , and we have for all M ⊆ N , with |M |≥ k+ 1 and for
some i ∈M , LS(xi, Ri)∪ {xi} ⊆ L(xj, R

′
j) for all j ∈M , by taking M ≡ N ,

there is S ⊆ N and (x′i)i∈S such that (3)
∑

i∈S x
′
i =| S | Ω/n, (4) for all i ∈ S,

x′iRixi and for some i ∈ S, x′iPixi. Thus, x /∈ Ced(R), a contradiction.
β) p(R′i) ≤ p(Ri). By feasibility, we have

∑
i∈N p(R

′
i) ≥ Ω. We have

also by statement (ii), x ∈ P (R′). Therefore for all i ∈ N , xi ≤ p(R′i). By
the same arguments used in (a2), we find that x /∈ Ced(R), a contradiction.
Q.E.D.

e) Group No-Envy correspondence, GNE

Let R ∈ D , GNE(R) = {x ∈ X: @S, S ′ ⊆ N with | S |=| S ′ | and (yi)i∈S
such that

∑
S yi =

∑
S′ xi, for all i ∈ S, yiRixi, and for some i ∈ S, yiPixi}.

Proposition 6 : Let 0 ≤ k < n. The Group No-Envy correspondence
satisfies strict k-monotonicity.

Proof. Since it is very similar that of proposition 5, we have omitted it.

Corollary 1 : The Pareto correspondence, the no-envy correspondence, the
individually rational correspondence from equal division, the core correspondence
from equal division and the group no-envy correspondence are all implementable
in k-FTNE by theorems 1 and 3.
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4.1 Stability and k − FTNE implementability of the
intersection of fair division solutions

In this subsection, we introduce the notion of stability by intersection. We
notice that our conditions are preserved under intersection. This tool of
stability allow us to identify directly the k − FTNE implementability of
various correspondences.

Definition 12 (Stability by intersection, Doghmi and Ziad (2008 a) )
A given condition (C) is stable by intersection, if for any SCCs F and G
satisfying (C) then the correspondence defined by F ∩G 6= Ø satisfies (C)

Remark 1 The k-strict-monotonicity, the strict weak k-no veto power,
unanimity and condition (ii) of theorem 3 are stable by intersection.

Corollary 2 : The (P ∩NE) correspondence, the (P ∩ Ied) correspondence,
and the (NE ∩ Ied) correspondence are all implementable in k-FTNE by
theorems 1 and 3.

4.2 On no-monotonic solutions of the problem of fair
division

In this subsection, we study the possible k − FTNE implementability of
no-monotonic solutions. We begin by the following solution: it select the
allocation for which each agent holds a share proportionally with its preferred
consumption if at least one preferred consumption is positive, and an average
share if the preferred consumption of each agent equals zero.

f) Proportional solution, Pro

Let R ∈ D , x = Pro(R) if x ∈ X and (i) when
∑

i∈N p(Ri) ≥ 0, and
∃λ ∈ R+ s.t. ∀i ∈ N , xi = λp(Ri); and (ii) when

∑
i∈N p(Ri) = 0, x =

(Ω/n, ...,Ω/n).

Proposition 7 : The Proportional solution does not satisfies weak k-
monotonicity.

Proof. The Proportional solution is a function, i.e. the choice set is
a singleton. In this case, k-monotonicity and weak k-monotonicity are
equivalent. We have k-monotonicity implies Maskin monotonicity. The
Proportional solution does not satisfy monotonicity. Therefore, it does not
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satisfies weak k-monotonicity. Q.E.D.

The following solution is quite simply a version of the proportional
solution where the units of the good are treated symmetrically above or
below the preferred consumptions.

g) Symmetrically proportional solution, SPro

Let R ∈ D , x = SPro(R) if x ∈ X and (i) when
∑

i∈N p(Ri) ≥ Ω, and
∃λ ∈ R+ s.t. ∀i ∈ N , xi = λp(Ri); and (ii) when

∑
i∈N p(Ri) ≤ Ω, ∃λ ∈ R+

s.t. Ω− xi = λ(Ω− p(Ri)) for all i ∈ N .

Proposition 8 : The Symmetrically proportional solution does not satisfies
weak k-monotonicity.

Proof. We omit the proof of this proposition. It is very similar of that of
proposition 7.

Contrary to the proportionality, the solution below compares distances
from preferred consumptions unit for unit. It selects the allocation at which
all agents have same distance from their preferred consumptions, except when
boundary problems occur; in this case, the agents which would have negative
consumptions, instead get zero.

h) Equal-distance correspondence, Dis

Let R ∈ D , x = Dis(R) if x ∈ X and (i) when
∑

i∈N p(Ri) ≥ Ω, ∃d ≥ 0
s.t. ∀i ∈ N , xi = max{0, p(Ri)− d}; and (ii) when

∑
i∈N p(Ri) ≤ Ω, ∃d ≥ 0

s.t. xi = p(Ri) + d for all i ∈ N .

Proposition 9 : The Equal-distance correspondence does not satisfy weak
k-monotonicity.

Proof. We omit the proof of this proposition. It is very similar to that of
proposition 7.

i) Equal-sacrifice correspondence, Sac

This solution is based on the idea of the measurement of “the sacrifice”
at allocation x by the size of agent i’s upper contour set at xi. It selects
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efficient allocations at which sacrifices are equal across agent, except when
boundary problems occur; in this case, the agents which would have negative
consumptions, instead get zero.

Let R ∈ D , x ∈ Sac(R) if x ∈ X and (i) when p(R) ≥ M , ∃σ ≥ 0 s.t.
∀i ∈ N , ri(xi)−xi ≤ σ, strict inequality holding only if xi = 0; and (ii) when∑

i∈N p(Ri) ≤ Ω, ∃σ ≥ 0 s.t. xi − ri(xi) = σ for all i ∈ N .

Proposition 10 : The Equal-sacrifice correspondence does not satisfy weak
k-monotonicity.

Proof. We omit the proof of this proposition. It is very similar to that of
proposition 7.

By propositions 7-10 and Eliaz’s result (2002) of necessity, we have the
following corollary:

Corollary 3 The Proportional correspondence, the Symmetrically proportional
correspondence, the Equal-distance correspondence and the Equal-sacrifice
correspondence are all not implementable in k-FTNE.

5 Application to finite allocation problems

5.1 k − FTNE implementability of the Pareto correspondence

The weak Pareto correspondence is the solution which associates each
economy with its feasible allocation set such that some agent weakly prefers
to at any other feasible allocation. Formally,

Pw(R) = {x ∈ X : ∃i ∈ N such that xRiy for all y ∈ X}.
Eliaz (2002) showed that the weak Pareto correspondence satisfies

the necessary condition of k − FTNE implementability, i.e., weak k-
monotonicity. Also, it satisfies the no veto power condition. For sufficiency,
we show that the weak Pareto correspondence satisfies k-monotonicity. 4

Proposition 11 : The weak Pareto correspondence satisfies k-monotonicity.

Proof. Let R,R′ ∈ < and x, y ∈ X. Let x ∈ Pw(R). Suppose that weak
Pareto correspondence does not satisfy k- monotonicity. Therefore, for all

4The weak Pareto correspondence is a monotonic social choice correspondence that
satisfies no veto power in any environment, and hence it can be implemented in Nash
equilibria.
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M ⊆ N , with |M |≥ k + 1 and for some i ∈M , L(x,Ri) ⊆ L(x,R′j) for all
j ∈ M (*), but x /∈ Pw(R′). Therefore, there does not exist i ∈ N such that
for all y ∈ X, xR′iy, i.e., there does not exist i ∈ N such that L(x,R′i) = X.
By taking M ≡ N , we must have by (*) that does there not exist i ∈ N such
that L(x,Ri) = X, i.e., x /∈ Pw(R), a contradiction. Q.E.D.

By proposition 1 of Eliaz (2002), we have the following corollary,

Corollary 4 : The weak Pareto correspondence can be implemented in k-
FTNE.

Now, we return to the concept of Pareto correspondence studied in section
4. We revise the name of Pareto correspondence to mean (strong) Pareto
correspondence. Formally, it is defined as follows,

Ps(R) = {x ∈ X : @y ∈ X such that for all i ∈ N , yRix, and for some
i ∈ N , yPix}.

In this environment, differently from that of exchange economies with
single-peaked studied in section 4, the strong Pareto correspondence is
not monotonic and hence it is not Nash implementable. But, the no-
existence of the logical relationship between Maskin monotonicity and
weak k-monotonicity as suggested by Elaiz (2002), makes us curios to see
whether there is a possible k − FTNE implementability. However, the next
proposition shows the opposite. The strong Pareto correspondence is not
weakly k-monotonic and hence it is not k − FTNE implementable.

Proposition 12 : The strong Pareto correspondence does not satisfy weak
k-monotonicity.

Proof. Consider the following example. Let N = {1, 2, 3}, k = 1 and
X = {x, y, z, w}. Let R,R′ ∈ < be defined by:

R: R1 R2 R3

xy yz xz
z x y
w w w

R′: R′1 R′2 R′3
xyz yz xyz
w xw w

Ps(R) = {x, y, z} Ps(R
′) = {y, z}

Let M ⊆ N with | M |≥ 2. We have {x, y, z} ∈ Ps(R). For M = {1, 2},
L({x, y, z}, Ri=2) ⊆ L({x, y, z}, R′j=1,2). We preceed by the same reasoning
for M = {1, 3}, M = {2, 3}, and M = {1, 2, 3}. We obtain that ∀M ⊆ N
with |M |≥ 2, and for some i ∈M , L({x, y, z}, Ri) ⊆ L({x, y, z}, R′j) for all
j ∈M , but x /∈ Ps(R′). Q.E.D.
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Corollary 5 : The strong Pareto correspondence is not implementable in
k-FTNE.

5.2 k−FTNE implementability of the core correspondence in coalitional
games

A coalitional game contains a finite set N = {1, ..., n} of agents with n ≥ 3, a
nonempty set X of outcomes, a preference profile R ∈ <, and a characteristic
function ν : 2N \Ø→ 2X . A coalition, denoted S, is simply a set of agents,
i.e. a subset of N such that S ⊂ N . An outcome x ∈ X is strongly blocked
by a coalition S if there is a y ∈ ν(S) such that yPix for all i ∈ S. An
outcome x ∈ X is weakly blocked by a coalition S if there is a y ∈ ν(S) such
that yRix for all i ∈ S and yPix for some i ∈ S.

5.2.1 The weak core correspondence

The nonempty weak core of a coalitional game is the set of all outcomes that
are not strongly blocked by any coalition S. Formally, the nonempty weak
core of a coalitional game environment is represented by:

Cw(R) = {x ∈ ν(N) : @S ⊆ N and @y ∈ ν(S) such that yPix, ∀i ∈ S}.

We can rewrite this definition as following.

Cw(R) = {x ∈ ν(N) : ∀S ⊆ N , ∃i ∈ S such that xRiy ∀y ∈ ν(S)}.

Proposition 13 : The nonempty weak core correspondence satisfies k-
monotonicity.

Proof. Let R,R′ ∈ <, x, y ∈ X and x ∈ Cw(R). Let for all M ⊆ N , with
| M |≥ k + 1, and for some i ∈ M , L(x,Ri) ⊆ L(x,R′j) for all j ∈ M (**),
but x /∈ Cw(R′). Thus, ∀S ⊂ N , @i ∈ S such that xR′iy ∀y ∈ ν(S). Thus,
∀S ⊂ N and ∀y ∈ ν(S)}, @i ∈ S such that y ∈ L(x,R′i). By taking S ≡ M ,
we must have by (**) that ∀S ⊂ N , @i ∈ S such that xRiy ∀y ∈ ν(S)}, i.e.,
x /∈ Cw(R), a contradiction. Q.E.D.

Proposition 14 : The nonempty weak core correspondence satisfies k-weak
no veto power.

Proof. Let R,R′ ∈ <, x, y ∈ X and x ∈ Cw(R). Suppose that Cw
does not satisfy weak k-no veto power. Therefore, for some M ⊆ N with
|M |≤ k+ 1, and for some i ∈M , y ∈ L(x,Ri) ⊆ L(y,R′j) for all j ∈M and
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L(y,R′j) = X for all j ∈ N\M , but y /∈ Cw(R′). Therefore, ∀S ⊂ N , @i ∈ S
such that yR′iz ∀z ∈ ν(S). Thus, ∀S ⊂ N , ∀z ∈ ν(S), @i ∈ S such that
z ∈ L(y,R′i). We have for some M ⊆ N with |M |≤ k+1, (i) for some i ∈M ,
L(x,Ri) ⊆ L(y,R′j) for all j ∈ M , and (ii) L(x,Rj) ⊆ X = L(y,R′j) for all
j ∈ N\M . Therefore, ∀S ⊂ N , ∀z ∈ ν(S), @i ∈ S such that z ∈ L(x,Ri), a
contradiction, because x ∈ Cw(R). Q.E.D.

Corollary 6 : The nonempty weak core correspondence is implementable in
k-FTNE by theorem 2.

5.2.2 The strong core correspondence

The strong core of a coalitional game is the set of all outcomes that are not
weakly blocked by any coalition S. Formally, the strong core of a coalitional
game environment is represented by:

Cs(R) = {x ∈ ν(N) : @S ⊆ N and @y ∈ ν(S) such that yRix for all i ∈ S
and yPix for some i ∈ S.

Since there is a logical relationship among strict k-monotonicity, k-
monotonicity, and Maskin monotonicity, the no-monotonic strong core
correspondence salsifies neither k-monotonicity nor strict k-monotonicity.
Thus, the strong core correspondence satisfies neither our sufficient conditions
nor that of Eliaz (2002). To know its possible k − FTNE implementability,
we have checked if it satisfies the necessary condition of weak k-monotonicity.
The response is negative as the following proposition shows.

Proposition 15 : The strong core correspondence does not satisfy weak k-
monotonicity.

Proof. Consider the following example. Let N = {1, 2, 3}, k = 1, and
X = {x, y, z, w}. We define ν : 2N \ Ø → 2X as ν{1, 2} = {x, z}, ν{1, 3} =
{x, y}, ν{2, 3} = {y, w}, ν{N} = {X}, and ν{S} = Ø for all other coalitions
S. Let R,R′ ∈ < be defined by:

R: R1 R2 R3

y xw z
xw z xy
z y w

R′: R′1 R′2 R′3
xyzw w yzw

yz x
x

Cs(R) = {y, z} Cs(R
′) = {w}

In this example, we have {y, z} ∈ Cw(R) and for all M ⊆ N with |M |≥
2, (i) for some i ∈ M , L(y,Ri) ⊆ L(y,R′j) for all j ∈ M , and (ii) for some
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i ∈M , L(z,Ri) ⊆ L(z,R′j) for all j ∈M but y /∈ Cs(R′). Therefore, Cs does
not satisfy weak k-monotonicity. Q.E.D.

Corollary 7 : The strong core correspondence is not implementable in k-
FTNE.

6 Application to Equilibrium theory: the

constrained Walrasian correspondence with

slack

In a special case of private ownership economy, i.e., pure exchange economies,
Eliaz (1999, 2002) showed the k−FTNE implementability of the constrained
Walrasian correspondence and the constrained Walrasian function. In this
setting, the no veto power condition is trivially checked. However, for
the general case with production and with possibly satiated preferences,
Sjöström (1990) showed that a general version of the constrained Walrasian
correspondence, called constrained Walrasian correspondence with slack
(Mas-Colell,1988,1992), does not satisfy no veto power 5. Thus, Elaiz’s
results cannot inform us about the k − FTNE implementability of this
correspondence. In the following, we define the constrained Walrasian
correspondence with slack in an environment of exchange economies with
possibly satiated preferences, and we apply our results.

Let E be an economy formed by: (a) a finite number K of goods; (b) a
finite number J of firms such that each firm j is specified by its nonempty
production set Zj ⊂ RK ; (c) a finite number I of consumers such that each
consumer i is specified by its nonempty consumption set Xi ⊂ RK . Let
B = {p ∈ RK :‖ p ‖≤ 1} be the price set. Every consumer i is endowed
with a preference relation Ri which is irreflexive and transitive, an initial
endowment of goods wi ∈ Xi, and a share sij of the profits of firm j. The

shares are non-negatives and they satisfy
∑I

i=1 sij = 1 for all j. We assume
the nonempty consumption sets Xi and Zj are closed and convex; and no
free disposal is allowed.

Definition 13 Let p∗ ∈ RK be a price vector, let (z∗j )j=1,...,J be a production
plan and let (x∗i )i=1,...,I be a consumption plan. The triplet (p∗, (z∗j ), (x

∗
i )) is

a constrained Walrasian equilibrium with slack of the economy E, denoted
CEs(E), if there is α ≥ 0 such that:

5The constrained Walrasian correspondence with slack is Nash implementable
(Sjöström (1990)).
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i) p∗.z∗j ≥ p∗.zj for all zj ∈ Zj for all j (profit maximization);

ii) x∗iRixi for all xi ≤
∑

i∈I wi such that p∗.xi ≤ p∗.wi+
∑J

j=1 sijp
∗.z∗j +α

(preference maximization);
iii)

∑I
i=1 x

∗
i =

∑I
i=1wi +

∑J
j=1 z

∗
j (feasibility).

Remark 2 If α = 0 the constrained Walrasian equilibrium with slack
becomes quite simply the usual definition of constrained Walrasian equilibrium
in the general case with production. If α = 0 and the available production
technology is given by Z = RK

− , the constrained Walrasian equilibrium with
slack reduce to constrained Walrasian equilibrium introduced by Hurwicz,
Maskin and Postlewaite (1995).

Proposition 16 : The constrained Walrasian correspondence with slack
satisfies k-monotonicity.

Proof. Let R,R′ ∈ <, x∗ ∈ XI , z
∗ ∈ ZJ and (p∗, x∗, z∗) ∈ CEs(E) where

p∗ ∈ RK
+ . Suppose that CEs does not satisfy k-monotonicity. Therefore, for

all M ⊆ I, with |M |≥ k+ 1, and for some i ∈M , L(x∗i , Ri) ⊆ L(x∗j , R
′
j) for

all j ∈ M , but x∗ /∈ CEs(E ′). Thus, ∃j ∈ I and ∃y ∈ XI such that yjP
′
jx
∗
j

and p∗.yi ≤ p∗.wi +
∑J

j=1 sijp
∗.z∗j + α for all i ∈ I. Thus, yj /∈ L(x∗j , R

′
j).

By taking M ≡ I, yj /∈ L(x∗j , Rj), i.e., yjPjx
∗
j , a contradiction, because

x∗ ∈ CEs(E) . Q.E.D.

Proposition 17 : The constrained Walrasian correspondence with slack
satisfies weak k-no veto power.

Proof. Let R,R′ ∈ <, x∗ ∈ XI , z
∗ ∈ ZJ and (p∗, x∗, z∗) ∈ CEs(E)

where p∗ ∈ RK
+ . Suppose that CEs does not satisfies weak k-no veto power.

Therefore, for some M ⊆ I with | M |≤ k + 1, for some i ∈ M , x′i ∈
L(x∗i , Ri) ⊆ L(x′j, R

′
j) for all j ∈ M , and L(x′j, R

′
j) = XI for all j ∈ I\M ,

but x′ /∈ CEs(E ′). Thus, ∃j ∈ I and ∃y ∈ XI such that yjP
′
jx
′
j and p∗.yi ≤

p∗.wi+
∑J

j=1 sijp
∗.z∗j +α for all i ∈ I. Thus, yj /∈ L(x′j, R

′
j). We have for some

i ∈ M , L(x∗i , Ri) ⊆ L(x′j, R
′
j) for all j ∈ M and L(x∗j , Rj) ⊆ XI = L(x′j, R

′
j)

for all j ∈ I\M . Therefore, yj /∈ L(x∗j , Rj), i.e., yjPjx
∗
j , a contradiction,

because x∗ ∈ CEs(E) . Q.E.D.

Corollary 8 : The constrained Walrasian correspondence with slack is
implementable in k-FTNE by theorem 2.
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7 Conclusion

We have extended theorems 1 and 2 of Doghmi and Ziad (2008 a) to
bounded rationality environments by reexamining Eliaz’s results (2002)
of fault tolerant implementation. We have identified two combinations
of sufficient conditions to implement SCCs in k − FTNE: (1) strict k-
monotonicity, strict k-no veto power, and unanimity, (2) k-monotonicity,
k-no veto power, and unanimity. In addition, these conditions are stable by
intersection which makes it possible to check in a direct way the k−FTNE
implementability of various social choice correspondences. We have applied
these results to exchange economies with single -peaked preferences, to finite
allocation problems, and to equilibrium theory. Firstly, we have noted,
contrary to Eliaz’s results (2002), that our conditions are satisfied by all
monotonic solutions and particularly those which do not satisfy the no-
veto power condition. Secondly, in exchange economy when preferences
are single-peaked, our condition of k-strict weak no-veto power always
holds independently of the solution. Thus, in these environments, the k-
monotonicity is, alone, sufficient for the k − FTNE implementation for the
correspondences and both necessary and sufficient for functions. The no-
existence of the logical relationship between Maskin monotonicity and weak
k-monotonicity as suggested by Elaiz (2002), was encouraging for a possible
k − FTNE implementability. Not all was well however. Thus, to find an
application to example 4 (p 603)of Eliaz (2002) remains an open question.
We can also propose two others questions for future research.

Firstly, we can study the degree of faultness. If, for example, the planner
imposes a cost for the players who reach certain degree, what occurs in this
case?

Secondly, if in exchange economies with single peaked preferences, the
agents have initial endowments, are the correspondences studied here Nash
implementable and/or k − FTNE implementable ?
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