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 A B S T R A C T

In this paper, a novel message-passing algorithm, named AMP-R, based on belief propagation is proposed 
to solve the heterogeneous multi-depot vehicle routing problem (HMDVRP) in a distributed manner. Unlike 
traditional approaches, this is the first attempt to decentralize the solution process for the HMDVRP at the depot 
level, enabling each depot to independently compute and exchange messages to derive conflict-free solutions. 
The HMDVRP requires assigning customers to depots and determining routes that minimize total travel cost. 
By reformulating the problem as a maximum a posteriori estimation in a graphical model comprising depot 
and customer nodes, The proposed approach enables decentralized message calculation and exchange between 
depots, effectively addressing various types of the HMDVRP. In this process, it is derived that each message 
calculation can be reduced to a subset-visit traveling salesman problem or a capacitated vehicle routing 
problem, and approximation techniques are proposed to address these computational challenges. Furthermore, 
to ensure solution convergence and feasibility, message buffers and a refinement process are introduced. 
Extensive simulations demonstrate that the proposed AMP-R algorithm yields near-optimal solutions with 
computational efficiency, offering practical performance for complex large-scale instances where finding 
optimal solutions is challenging.
1. Introduction

The vehicle routing problem (VRP) [1–3] is a classical combinatorial 
optimization problem that has significant applications in the field of 
logistics, transportation, and multi-robot planning. The VRP involves 
a fleet of vehicles departing from a depot to visit all customers and 
then returning to the depot. The wide variety of objective functions and 
constraints in VRP has led to a diverse range of VRP variants. Initially 
introduced as the truck dispatching problem [4], VRP has evolved to 
address more complex and realistic scenarios. The variant that consid-
ers multiple depots is known as the multi-depot VRP (MDVRP) [5]. 
Another variant, which accounts for different types of vehicles, is 
referred to as the heterogeneous fleet VRP (HFVRP) [6,7]. In many 
cases, vehicles considered in VRP and its variants have limited capacity 
to serve customer demands, whereas there has also been research on 
HFVRP that considers uncapacitated vehicles [6]. Additionally, stud-
ies have addressed HFVRP scenarios where the number of vehicles 
departing from each depot is either limited [8–10] or unlimited [11–
13]. Examples of heterogeneous fleets include studies such as [9–13], 
which address vehicles with fixed and variable operating costs, as well 
as [14], which examines vehicles with different capacities and traveling 

∗ Correspondence to: 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Republic of Korea.
E-mail address: dsjang@kau.ac.kr (D.-S. Jang).

costs, and [15,16], which addresses factors such as carbon emissions 
and recycling costs. Some researches also incorporates time-dependent 
traveling time [17,18]

The VRP involving both multiple depots and heterogeneous vehicles 
is known as the heterogeneous MDVRP (HMDVRP). This problem was 
first introduced in [19], where a multi-level composite heuristic with 
reduction tests was proposed for both single-depot and multi-depot 
routing. Several subsequent studies have focused on meta-heuristic 
solutions to address the HMDVRP. For example, the problem of dis-
tributing large quantities of a single product to customers was modeled 
as the HMDVRP and solved using an ant colony optimization algorithm 
in [20]. A variable neighborhood search (VNS)-based algorithm for the 
HMDVRP was introduced in [21]. Another study [22] combined two 
meta-heuristics, the VNS and the greedy randomized adaptive search 
procedure, to effectively solve the HMDVRP with backhauls. Similarly, 
a research [23] proposed two approaches, an enhanced iterated local 
search and a hybrid genetic search with advanced diversity control, to 
solve various variants of the HMDVRP. In [24], a modified genetic al-
gorithm was developed for the HMDVRP, integrating genetic operators 
with local search strategies to improve the efficiency of the solution. In 
https://doi.org/10.1016/j.orp.2025.100341
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Fig. 1. Conceptual diagram illustrating the distributed collaboration among depots 
for solving HMDVRP, which can be applied to logistics, delivery, multi-robot mission 
planning, and warehouse management.

contrast to these meta-heuristic approaches, another study [25] aimed 
to find the optimal solution for an HMDVRP with split deliveries using 
a Benders-based branch-and-cut algorithm.

In many studies, as previously mentioned, solutions to the HMDVRP 
have typically been derived using a centralized planner. Research 
on solving the MDVRP in a decentralized manner remains limited. 
For example, one study [26] explored parallel computation to derive 
solutions using multiple processors. However, it relied on shared mem-
ory for the genetic algorithm, which made it challenging to allocate 
computing agents across separate computers in a distributed setup. 
Soeanu et al. [27] proposed a decentralized approach in which mul-
tiple computing agents, employing an optimization heuristic based on 
a random number generator, shared intermediate solutions to find 
near-optimal results. Nonetheless, in this approach, the intermedi-
ate solutions needed to be shared among all computing agents to 
effectively solve the problem. Another study [28] utilized the Vickery–
Clarke–Groves mechanism to enable route selection per depot. How-
ever, since the underlying heuristic in this study was based on the work 
of Soeanu et al. [27], it encountered the same limitation.  In [29], 
MDVRP was solved by applying a virtual center, treating it as a single 
depot VRP, and utilizing an ant colony optimization that supports par-
allel computation to reduce computational complexity. Additionally, 
Abu-Monshar et al. [30] proposed the messaging protocol-based heuris-
tics optimization (MPHO) model, allowing solutions to be obtained 
through interactions between agents. Furthermore, K-means was used 
for parallel clustering in [31], with the number of clusters matching the 
number of depots, followed by route planning. These three studies all 
addressed distributed computing but did not consider communication 
between agents performing the computations. Therefore, while com-
putation time can be reduced within a single computer, the method 
of performing computations with physically separated depots was not 
considered. 

To the best of our knowledge, no effective solution has been pro-
posed to address the MDVRP or HMDVRP in a decentralized network 
where computing agents share limited information (refer Fig.  1). How-
ever, in scenarios for large-scale logistics where a large number of 
customers and depots are spatially distributed, it may not be feasible to 
effectively aggregate problem information into a centralized computa-
tion unit. This is particularly relevant for scenarios involving dynamic 
conditions, such as mobile robot mission planning where real-time 
decentralized decision-making is crucial, which can also be modeled 
as an HMDVRP. In such cases, where conditions are time-varying and 
computations rely on a distributed network of agents, decentralized 
algorithms are essential. 

In this paper, we propose a belief propagation (BP) [32] based algo-
rithm, named approximate message passing and refinement (AMP-R), 
to solve the HMDVRP in a distributed manner. To apply the BP-based 
algorithm, we present a traditional integer programming formulation 
of the HMDVRP and, for the first time, reformulate it as a stochas-
tic inference problem in a graphical model, where the objective is 
2 
to find decision variables that maximize the joint probability of the 
model. BP is an approximation method originally developed for solving 
stochastic inference problems and has been applied to find optimal or 
near-optimal solutions for various combinatorial optimization problems 
using its max-product or max-sum forms [33–38].  The graphical model 
and the BP-based AMP-R algorithm proposed in this paper provide a 
theoretical foundation for formulating and solving variants of the HMD-
VRP in a distributed manner, accounting for vehicle heterogeneity, 
capacity constraints, and the vehicle limit of each depot. The reformu-
lation of HMDVRP as a probabilistic inference problem contributes to 
a novel perspective on solving VRP-related combinatorial optimization 
problems through message-passing approaches. The AMP-R algorithm 
enables decentralized computation by exchanging messages between 
computational agents, making it suitable for practical applications, 
such as large-scale logistics and multi-robot planning. This decentral-
ized computation framework allows AMP-R to be effectively applied 
regardless of whether the computation units are depots, vehicles, or 
other levels of distribution. Since the message calculation required for 
solving the HMDVRP is NP-hard, this paper proposes approximation 
techniques for efficient computation. Additionally, message buffers 
and a refinement process are incorporated to enhance convergence 
and ensure solution feasibility in decentralized environments. Monte 
Carlo simulations demonstrate that the proposed approach outperforms 
a centralized greedy algorithm and provides practical solutions for 
non-trivial large-scale problems where finding the optimal solution is 
challenging. 

The structure of the rest of this paper is as follows. Section 2 
introduces the mathematical formulations of the HMDVRP in the frame-
works of integer programming and stochastic inference. Section 3 de-
scribes the proposed message-passing algorithm designed to efficiently 
obtain solutions for the HMDVRP. This Section presents the derivation 
of the max-product message computation equations for solving the 
HMDVRP represented in a graphical model and discusses approxima-
tion techniques and problem transformations used to calculate these 
messages efficiently. Additionally, it explains the refinement step to 
enhance solution feasibility and the distributed implementation of the 
algorithm. Section 4 presents a numerical evaluation of the proposed 
algorithm’s performance across various HMDVRP variants, using Monte 
Carlo simulations and comparisons with greedy and optimal solutions. 
Section 5 concludes the paper.

2. Mathematical formulations

This section sequentially explains two mathematical representations 
for describing HMDVRP. Section 2.1 introduces conventional integer 
programming to explicitly state the constraints of the HMDVRP ad-
dressed in this study, and presents the key notations commonly used 
in both representations. Section 2.2 describes a method to express 
HMDVRP as a statistical inference problem in a graphical model. It 
demonstrates that this problem can represent the constraints through 
the design of conditional probability distribution functions and is equiv-
alent to finding a solution that maximizes the objective function of the 
integer program. 

2.1. Definition of HMDVRP and integer programming

The HMDVRP consists of a set of customers, 𝑪 = {𝑐1,… , 𝑐𝑛𝑐 }, a set of 
depots, 𝑫 = {𝑑1,… , 𝑑𝑛𝑑 }, and a set of vehicles, 𝑽 = {𝑣1,… , 𝑣𝑛𝑣}. Here, 
𝑛𝑐 , 𝑛𝑑 , and 𝑛𝑣 represent the number of customers, depots, and vehicles, 
respectively. Each customer 𝑐 ∈ 𝑪 has a unique demand 𝑙𝑐 , and each 
vehicle 𝑣 ∈ 𝑽  has a unique capacity 𝐿𝑣 to handle this demand. The set 
𝑼 = 𝑪 ∪𝑫 includes all customers and depots, and for convenience, the 
elements of this set are referred to as nodes. The cost or expenditure 
𝑒𝑖𝑗𝑘 refers to the cost incurred when vehicle 𝑘 ∈ 𝑽  travels from one 
node 𝑖 ∈ 𝑼 to another node 𝑗 ∈ 𝑼 . The objective of the HMDVRP is 
to minimize the total travel cost of the vehicles while satisfying several 
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constraints, which include: (i) Each customer can only be served by 
one vehicle and must be visited exactly once. (ii) Each vehicle 𝑣 must 
depart from and return to its assigned depot 𝑑𝑣. (iii) In the capacitated 
version of the problem, the total demand of the customers visited by 
each vehicle must not exceed its capacity 𝐿𝑣. (iv) Each depot 𝑑 ∈ 𝑫
has a predefined number of vehicles 𝑛𝑣,𝑑 , and the sum of all vehicles 
across the depots satisfies ∑𝑑∈𝑫 𝑛𝑣,𝑑 = 𝑛𝑣. The number of vehicles is 
considered unlimited if 𝑛𝑣,𝑑 ≥ 𝑛𝑐 for all depots.

Since the definition and formulation of HMDVRP vary slightly 
among studies, the objective and constraints of the HMDVRP addressed 
in this study are explicitly formulated as an integer programming 
problem, as shown in (1)–(8). This formulation is based on [39,40] 
and incorporates the Dantzig–Fulkerson–Johnson subtour elimination 
constraint [41].  Note that 𝑖, 𝑗, and 𝑘 represent the nodes and vehicles 
themselves, not merely their index numbers.
min

∑

𝑖∈𝑼

∑

𝑗∈𝑼

∑

𝑘∈𝑽
𝑥𝑖𝑗𝑘𝑒𝑖𝑗𝑘 (1)

s.t.
∑

𝑖∈𝑼

∑

𝑘∈𝑽
𝑥𝑖𝑖𝑘 = 0, (2)

∑

𝑖∈𝑼

∑

𝑘∈𝑽
𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑪 , (3)

∑

𝑖∈𝑼
𝑥𝑖𝑗𝑘 =

∑

𝑖∈𝑼
𝑥𝑗𝑖𝑘 ≤ 1, ∀𝑗 ∈ 𝑪 ,∀𝑘 ∈ 𝑽 , (4)

∑

𝑖∈𝑫⧵𝑑𝑘

∑

𝑗∈𝑪
𝑥𝑖𝑗𝑘 + 𝑥𝑗𝑖𝑘 = 0, ∀𝑘 ∈ 𝑽 , (5)

∑

𝑖∈𝑼

∑

𝑗∈𝑪⧵𝑖
𝑥𝑖𝑗𝑘𝑙𝑗 ≤ 𝐿𝑘, ∀𝑘 ∈ 𝑽 , (6)

∑

𝑖∈𝑺

∑

𝑗∈𝑺
𝑥𝑖𝑗𝑘 ≤ |𝑺| − 1,𝑺 ⊆ 𝑪 , |𝑺| > 1, ∀𝑘 ∈ 𝑽 , (7)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑼 ,∀𝑗 ∈ 𝑼 ,∀𝑘 ∈ 𝑽 . (8)

𝑥𝑖𝑗𝑘 is the decision variable of the integer program. If 𝑥𝑖𝑗𝑘 = 1, the 
path1 from node 𝑖 to node 𝑗 is taken by vehicle 𝑘; otherwise, 𝑥𝑖𝑗𝑘 = 0. 
Eq. (1) represents the objective, which is the sum of the costs of all 
selected paths. In the homogeneous MDVRP, the path cost 𝑒𝑖𝑗𝑘 becomes 
indistinguishable, i.e., 𝑒𝑖𝑗 . Eq. (2) signifies that a path returning to the 
same node cannot be selected, and while Eq. (3) ensures that each 
customer node is visited exactly once. Eq. (4) implies that the number 
of paths entering and leaving any node must be equal and must be less 
than or equal to 1. Eq. (5) ensures no path is drawn from depots other 
than the one to which each vehicle belongs. Eq. (6) enforces the ca-
pacity constraint of each vehicle, and Eq. (7) is the subtour elimination 
constraint, which guarantees a closed tour of selected paths for each 
vehicle. For an uncapacitated problem, (6) is removed. Furthermore, 
if vehicles in each depot are uncapacitated and homogeneous, and the 
path costs satisfy the triangle inequality, only one vehicle is required 
for each depot in an optimal solution (𝑛𝑣,𝑑 = 1,∀𝑑 ∈ 𝑫), which leads 
to 𝑛𝑑 = 𝑛𝑣.

2.2. Graphical model

To apply the BP algorithm, the HMDVRP is formulated as a maxi-
mum a posteriori (MAP) state estimation problem on a graphical model. 
A graphical model consists of nodes with random variables and edges 
that are associated with functions indicating conditional dependencies 
between those variables. In this study, we utilize the approach pre-
sented in [42] that applies BP to the set cover problem, and represent 
the HMDVRP using a pairwise Markov random field (MRF), a type of 

1 In this paper, to avoid confusion with the term ‘edge’ used in graphical 
models, we define a ‘path’ as a direct connection between two nodes, and a 
‘route’ as a series of paths that sequentially visit multiple nodes. It is important 
to note that this terminology differs from the conventional meanings of ‘path’ 
and ‘edge’ in graph theory.
3 
Fig. 2. Example graphical model for representing the HMDVRP.

graphical model. In a pairwise MRF, each undirected edge connecting 
a pair of nodes is associated with a potential function of the random 
variables at the nodes. The MAP state estimation problem involves 
finding the values of the variables that maximize the joint probability 
of all the random variables in the graphical model, which are defined 
by the potential functions.

Fig.  2 shows an example of representing the HMDVRP as a graphical 
model. Nodes are created for depots and customers, and edges connect 
each depot node to the nodes of customers that can be visited from 
the depot. The graph is bipartite in that the edges are placed only 
between the depot node group 𝑫 = {𝑑1,… , 𝑑𝑛𝑑 } and the customer 
node group 𝑪 = {𝑐1,… , 𝑐𝑛𝑐 } with no edges within either group. Each 
node is assigned variables that represent the allocation of vehicles to 
customers and their visiting order. Each edge has a potential function 
based on the variables assigned to its incident nodes, and each node 
has a potential function based on its own variables. Unlike in the 
integer program in Section 2.1, the graphical model is formulated at 
the depot-level rather than the vehicle-level. This approach is more 
natural if BP is applied in a decentralized environment, assuming that 
computations are performed at the depots. However, if every vehicle 
has computational capabilities, a graphical model can be constructed 
with the nodes for the vehicles, allowing BP to be applied through 
message passing between vehicles.

In the graphical model, the 𝑖th depot node has two types of vari-
ables: a binary vector 𝒙𝑖 ∈ {0, 1}𝑛𝑐  that represents the assignment of 
customers, and a set 𝑷 𝑖 = {𝒑𝑣 ∶ ∀𝑣 ∈ 𝑽 𝑑𝑖} of variable-length lists 
𝒑𝑣, which represent the order visiting nodes for each vehicle, where 
𝑽 𝑑𝑖 = {𝑣 ∶ ∀𝑣, 𝑑𝑣 = 𝑑𝑖} denotes the set of vehicles at 𝑑𝑖. Also, a customer 
node has a binary vector 𝒚𝑗 ∈ {0, 1}𝑛𝑑 , indicating which depot it is 
assigned to. Note that, unlike in Section 2.1, 𝑖 and 𝑗 here represent 
the index numbers (integers) of depot and customer nodes. 𝒙𝑖[𝑗] and 
𝒚𝑗 [𝑖] refer to the 𝑗th element of the binary vector at the 𝑖th depot node 
and the 𝑖th element of the binary vector at the 𝑗th customer node, 
respectively. 𝒙𝑖[𝑗] = 𝒚𝑗 [𝑖] = 1 indicates that a vehicle from the 𝑖th depot 
visits 𝑗th customer, while 𝒙𝑖[𝑗] = 𝒚𝑗 [𝑖] = 0 indicates otherwise. The list 
𝒑𝑣 is an ordered list of nodes, representing the route a vehicle 𝑣 takes, 
and it always starts and ends with the depot 𝑑𝑣 to which the vehicle 
belongs. For example, if vehicle 𝑣 belonging to depot 𝑑1 visits customers 
𝑐3, 𝑐7, and 𝑐2 in order, then 𝒑𝑣 = (𝑑1, 𝑐3, 𝑐7, 𝑐2, 𝑑1).

According to the Hammersley–Clifford theorem [43], any strictly 
positive distribution of a graphical model factorizes based on its cliques. 
In a bipartite graph of which the maximal clique size is 2, the joint 
probability distribution 𝑃 (𝑿 = {𝒙1,𝒙2,… ,𝒙𝑛𝑑 }; 𝒀 = {𝒚1, 𝒚2,… , 𝒚𝑛𝑐 };
 = {𝑷 1,𝑷 2,… ,𝑷 𝑛𝑑 }) of all variables in the graph is the product of all 
potential functions defined at its edges and nodes: 

𝑃 (𝑿, 𝒀 ,) = 1
𝑍

∏

𝜓𝑑𝑖𝑐𝑗 (𝒙𝑖, 𝒚𝑗 )
∏

𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖)
∏

𝜙𝑐𝑗 (𝒚𝑗 ) (9)

𝑖,𝑗 𝑖 𝑗
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where 𝑍 is the normalization constant for 𝑃 . By appropriately design-
ing the potential functions that constitute the joint probability 𝑃  as 
shown below, it is possible to incorporate the objective and various 
constraints of the HMDVRP. This allows the problem of finding the 
MAP state that maximizes 𝑃  to become equivalent to finding the 
optimal solution of the HMDVRP. Specifically, the potential functions 
are designed so that its total product 𝑃  becomes non-zero only if the 
solution (𝑿, 𝒀 ,) is feasible and 𝑃  is maximized when corresponding 
total cost of vehicle tours is minimized.
𝑿∗, 𝒀 ∗,∗ = argmax

𝑿,𝒀 ,
𝑃 (𝑿, 𝒀 ,) (10)

𝜓𝑑𝑖 ,𝑐𝑗 (𝒙𝑖, 𝒚𝑗 ) =

{

1, 𝒙𝑖[𝑗] = 𝒚𝑗 [𝑖],
0, otherwise,

(11)

𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖) = 𝜁 (𝒙𝑖,𝑷 𝑖)𝜂(𝑷 𝑖)𝑒−𝑤(𝑷 𝑖), (12)

𝜁 (𝒙𝑖,𝑷 𝑖) =

{

1, 𝒙𝑖[𝑗] = 1,∀𝑗 ∈ J(𝑷 𝑖) and 𝒙𝑖[𝑗] = 0,∀𝑗 ∉ J(𝑷 𝑖)
0, otherwise,

(13)

𝜂(𝑷 𝑖) =

{

1,
∑

|𝒑𝑣|−1
𝑘=2 𝑙(𝒑𝑣[𝑘]) ≤ 𝐿𝑣, ∀𝑣 ∈ 𝑽 𝑑𝑖 ,

0, otherwise,
(14)

𝑤(𝑷 𝑖) =
∑

𝑣∈𝑽 𝑑𝑖

|𝒑𝑣|−1
∑

𝑘=1
𝑒(𝒑𝑣[𝑘],𝒑𝑣[𝑘 + 1], 𝑣), (15)

𝜙𝑐𝑗 (𝒚𝑗 ) =

{

1,
∑

𝑖 𝒚𝑗 [𝑖] = 1,
0, otherwise.

(16)

In Eq. (11), the potential 𝜓𝑑𝑖 ,𝑐𝑗 (𝒙𝑖, 𝒚𝑗 ), defined for each edge con-
necting a depot node to a customer node, equals 1 only when the values 
of 𝒙𝑖[𝑗] and 𝒚𝑗 [𝑖] match; otherwise, it equals 0. The joint probability 
𝑃  cannot attain its maximum if even a single potential function is 0. 
Thus, 𝜓𝑑𝑖 ,𝑐𝑗 (𝒙𝑖, 𝒚𝑗 ) ensures the consistency between the two variables 
representing the assignment between the depot and the customer. The 
potential function 𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖) of the depot node represents the consis-
tency among the node variables (Eq. (13)), the capacity constraints 
(Eq. (14)), and the costs of the tours formed by the vehicles (Eq. (15)). 
The function 𝜁 (𝒙𝑖,𝑷 𝑖) in Eq. (13) ensures that for each customer in the 
set 𝑷 𝑖, which comprises the list of customers visited by the depot’s 
vehicles, the corresponding element in 𝒙𝑖 is set to 1; otherwise, it is 
set to 0. J(𝑷 𝑖) denotes the set of all customer indices that appear in the 
𝒑𝑣 lists within 𝑷 𝑖. In Eq. (14), 𝒑𝑣[𝑘] refers to the 𝑘th element in the 
list of nodes visited by vehicle 𝑣 belonging to the depot, and 𝑙(⋅) is a 
function representing the demand of a customer node. Therefore, a set 
𝑷 𝑖 that makes 𝜂(𝑷 𝑖) non-zero satisfies the capacity constraints for all 
vehicles of the depot. In Eq. (15), 𝑤(𝑷 𝑖) signifies the sum of path costs 
of vehicles in 𝑽 𝑑𝑖 , forming their tours according to their respective 𝒑𝑣
lists. 𝑒(𝑎, 𝑏, 𝑣) ≡ 𝑒𝑎,𝑏,𝑣 represents the cost when vehicle 𝑣 travels from 
node 𝑎 to node 𝑏. From Eqs. (12) and (15), for a feasible solution 
(𝑿, 𝒀 ,) that satisfies all other constraints, assuming the total cost of 
the tours is 𝑊 , the value of the joint probability 𝑃  is 𝑒−𝑊 . Therefore, 
𝑃  reaches its maximum value with the minimum path cost 𝑊 ∗ of the 
HMDVRP. Eq. (16) ensures that exactly one element in 𝒚𝑗 is set to 1, 
ensuring that the 𝑗th customer is visited exactly once.

3. Solution approach

This section provides a detailed explanation of how the distributed 
algorithm proposed in this study for solving HMDVRP is derived from 
BP rules and how it generates a feasible approximate solution through 
the proposed procedure. Section 3.1 presents the message update and 
MAP state computation rules when the max-product algorithm, a BP 
method for estimating the MAP state, is applied to the graphical model 
introduced in Section 2.2. Section 3.2 derives a simplified message 
representation by reducing the dimensionality of message computations 
between depot and customer nodes, reflecting the characteristics of 
the potential functions. As a result, it is shown that computing the 
messages transmitted from depot nodes to customer nodes requires 
4 
solving VRP-like problems. Section 3.3 outlines the overall proce-
dure of the proposed algorithm and describes the refinement step 
required to ensure the feasibility of the solution. Section 3.4 explains 
the approximate computation method for the messages transmitted 
from depot nodes to customer nodes, which is a core component of 
the algorithm. A representative route, commonly used in computing 
messages transmitted to multiple customer nodes, is defined, and a 
greedy method is proposed to approximately solve the VRP problem 
required for the message computation. Additionally, a transformation 
technique applicable to the uncapacitated case is introduced. Finally, 
Section 3.5 describes how the proposed method is implemented in a 
distributed network structure at the depot level. 

3.1. The max-product algorithm

The max-product algorithm [32] is a message-passing algorithm 
used to solve the MAP state estimation problem in a graphical model. 
It iteratively exchanges messages between the nodes in the graphical 
model to determine the MAP state. Messages sent from a node are 
computed based on those received from neighboring nodes and are 
used to determine the estimate of the posterior distribution, called 
the belief. In each iteration 𝑞, the algorithm exchanges messages and 
calculates the belief for each node, and the value that maximizes the 
belief is chosen as the MAP state estimate for that node’s variable. 
Thus, the max-product algorithm can determine the MAP state of 
all variables in the graph in a distributed manner through localized 
message exchanges.

Since the graphical model for the HMDVRP is a bipartite graph, 
the messages can be categorized into two types: ones sent from depots 
to customers (Eq. (17)) and others sent from customers to depots 
(Eq. (18)).

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 ) = 1
𝑧𝑑𝑖𝑐𝑗

max
𝒙𝑖 ,𝑷 𝑖

𝜓𝑑𝑖𝑐𝑗 (𝒙𝑖, 𝒚𝑗 )𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖)
∏

𝑐𝑘∈𝑪⧵𝑐𝑗

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖,𝑷 𝑖) (17)

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖,𝑷 𝑖) = 1
𝑧𝑐𝑗𝑑𝑖

max
𝒚𝑗

𝜓𝑑𝑖𝑐𝑗 (𝒙𝑖, 𝒚𝑗 )𝜙𝑐𝑗 (𝒚𝑗 )
∏

𝑑𝑘∈𝑫⧵𝑑𝑖

𝑚̃𝑞−1𝑑𝑘𝑐𝑗
(𝒚𝑗 ) (18)

The message from a node 𝑎 to another node 𝑏 is a distribution for 
the variable of receiver 𝑏. For example, 𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 ) in Eq. (17) is required 
to be computed for all possible values of 𝒚𝑗 . At this stage, for each 
possible value of 𝒚𝑗 , the maximum value of the product of functions 
involving 𝒙𝑖 and 𝑷 𝑖 on the right-hand side of Eq. (17) is computed. 
This product consists of the edge 𝜓𝑑𝑖𝑐𝑗  and node potentials 𝜙𝑑𝑖 , as well 
as the messages received from all neighboring nodes of 𝑑𝑗 , excluding 
𝑐𝑗 . Since the message represents a probability distribution, the sum of 
the message values over all 𝒚𝑗 must equal 1. Accordingly, the values 
obtained from the max operation are normalized by dividing by their 
sum, denoted as 𝑧𝑑𝑖𝑐𝑗 , to ensure that the total sum of the values in the 
message equals 1. In a similar manner, 𝑚𝑞𝑐𝑗𝑑𝑖  in Eq. (18) is computed 
by finding the maximum value over 𝒚𝑗 for each possible value of the 
variable 𝒙𝑖 and 𝑷 𝑖 of 𝑑𝑖, followed by normalization.

On the right-hand side of Eqs. (17) and (18), 𝑚̃ represents the 
average of the messages stored in buffer. Rather than sending the 
messages computed in each iteration directly, as in Eqs. (19) and (20), 
the most recent 𝑁 messages are stored in buffer, and their average 
is transmitted to the neighbor nodes. This approach is intended to 
improve the convergence of the algorithm by incorporating a damping 
effect, similar to that of the damped BP [44].

̃ 𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 ) = 1
𝑁

𝑞
∑

𝑛=𝑞−𝑁+1
𝑚𝑛𝑑𝑖𝑐𝑗 (𝒚𝑗 ) (19)

𝑚̃𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖) = 1
𝑁

𝑞
∑

𝑛=𝑞−𝑁+1
𝑚𝑛𝑐𝑗𝑑𝑖 (𝒙𝑖) (20)

The belief 𝑏𝑞 of each node is calculated by multiplying the messages 
received from all neighboring nodes with the node potential 𝜙. Similar 
to the messages, this must be computed for all possible values of 
the node’s variables. The belief for the depot nodes can be obtained 
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as shown in (21), and this contains the assignment and the vehicle 
schedules for visiting the customers. In (22), the values of 𝒙̂𝑞𝑖  and 𝑷̂

𝑞
𝑖

that maximize this belief are the MAP state estimates, providing the 
solution to the HMDVRP.
𝑏𝑞𝑑𝑖 (𝒙𝑖,𝑷 𝑖) = 1

𝑧𝑑𝑖
𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖)

∏

𝑐𝑘∈𝑪
𝑚̃𝑞−1𝑐𝑘𝑑𝑖

(𝒙𝑖) (21)

𝒙̂𝑞𝑖 , 𝑷̂
𝑞
𝑖 = argmax

𝒙𝑖 ,𝑷 𝑖
𝑏𝑞𝑑𝑖 (𝒙𝑖,𝑷 𝑖) (22)

3.2. Message calculation

In the max-product algorithm, the most computationally intensive 
task is generally the calculation of messages, as shown in Eqs. (17) and 
(18). Each message represents a distribution over all possible values of 
the receiving node’s variable, and to compute this distribution, a max 
operation is required over the transmitting node’s variable for each of 
the possible values. As a result, the computational burden increases 
as the number of possible values for the node variables grows. For 
example, the message sent from a depot node to a customer node is 
a function of 𝒚𝑗 , and the max operation needs to be carried out 2𝑛𝑑
times, which corresponds to the number of possible combinations of 
the binary vector variable 𝒚𝑗 .

However, in the graphical model described in Section 2.2, the num-
ber of required operations is significantly smaller, with only two com-
putations needed per message. Due to the potential function 𝜓𝑑𝑖𝑐𝑗 (𝒙𝑖, 𝒚𝑗 )
in Eq. (17), the result of the max operation on the right-hand side is 
independent of the values of 𝒚𝑗 except for the 𝑖th element 𝒚𝑗 [𝑖], and 
the max operation yields a non-zero value only when 𝒙𝑖[𝑗] = 𝒚𝑗 [𝑖]. 
Therefore, there is no need to perform max operations for values other 
than the two possible cases for 𝒚𝑗 [𝑖], which are 0 and 1. Similarly, in 
Eq. (18), the right-hand side is determined by the value of 𝒙𝑖[𝑗], which 
is one of the variables of the receiving node 𝑑𝑖, and is independent of 
the other components of the 𝒙𝑖 vector or the elements of 𝑷 𝑖. Thus, as 
shown in Eqs. (23) and (24), it is sufficient to compute only for the 
two possible values (0 and 1) of the binary vector component of the 
receiver’s variable, significantly reducing the computational complexity 
for each message.

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖]) = 1
𝑧𝑑𝑖𝑐𝑗

max
𝒙𝑖 ,𝑷 𝑖 ,

𝒙𝑖 [𝑗]=𝒚𝑗 [𝑖]

𝜙𝑑𝑖 (𝒙𝑖,𝑷 𝑖)
∏

𝑐𝑘∈𝑪⧵𝑐𝑗

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘]) (23)

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗]) = 1
𝑧𝑐𝑗𝑑𝑖

max
𝒚𝑗 ,

𝒙𝑖 [𝑗]=𝒚𝑗 [𝑖]

𝜙𝑐𝑗 (𝒚𝑗 )
∏

𝑑𝑘∈𝑫⧵𝑑𝑖

𝑚̃𝑞−1𝑑𝑘𝑐𝑗
(𝒚𝑗 [𝑘]) (24)

Now, Eq. (23), which describes the message sent from a depot to 
a customer, is examined in detail. The right-hand side of the equation 
is computed for both binary values of 𝒚𝑗 [𝑖]. Specifically, when 𝒚𝑗 [𝑖] =
𝒙𝑖[𝑗] = 0, the product of potential 𝜙𝑑𝑖  and messages is maximized 
over the assignment 𝒙𝑖 and the set of vehicle routes 𝑷 𝑖 that do not 
include the 𝑗th customer 𝑐𝑗 . Conversely, when 𝒚𝑗 [𝑖] = 𝒙𝑖[𝑗] = 1, the 
maximization is performed over 𝒙𝑖 and 𝑷 𝑖 that necessarily include 
𝑐𝑗 . Based on this, the message for each binary value of 𝒚𝑗 [𝑖] can be 
summarized as follows:
𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 0) = 1

𝑧𝑑𝑖𝑐𝑗
max
𝒙𝑖 ,𝑷

𝑗,0
𝑖

𝜂(𝑷 𝑗,0
𝑖 )𝑒−𝑤(𝑷

𝑗,0
𝑖 ) ∏

𝑐𝑘∈𝑷
𝑗,0
𝑖

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

×
∏

𝑐𝑘∉{𝑷
𝑗,0
𝑖 ∪𝑐𝑗}

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0) (25)

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 1) = 1
𝑧𝑑𝑖𝑐𝑗

max
𝒙𝑖 ,𝑷

𝑗,1
𝑖

𝜂(𝑷 𝑗,1
𝑖 )𝑒−𝑤(𝑷

𝑗,1
𝑖 ) ∏

𝑐𝑘∈{𝑷
𝑗,1
𝑖 ⧵𝑐𝑗}

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

×
∏

𝑐𝑘∉𝑷
𝑗,1
𝑖

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0) (26)

In these two equations, 𝑷 𝑗,0
𝑖  represents the set of vehicle routes 

within the depot that do not include customer 𝑐𝑗 , while 𝑷 𝑗,1
𝑖  represents 

the set containing at least one route that includes 𝑐𝑗 . The consistency 
between 𝒙  and 𝑷  is enforced, and thus 𝜁 (𝒙 ,𝑷 ) = 1 and is omitted 
𝑖 𝑖 𝑖 𝑖

5 
from the equations. In addition, if a customer node 𝑐𝑘 is included in 
𝑷 𝑗,0
𝑖  or 𝑷 𝑗,1

𝑖 , the received message for 𝒙𝑖[𝑘] = 1 is multiplied, and if 
not, the message for 𝒙𝑖[𝑘] = 0 is used.

Since the messages are normalized by 𝑧𝑑𝑖𝑐𝑗  after the max operation 
in Eqs. (25) and (26) to ensure that their sum equals 1, multiplying or 
dividing both equations by the same value does not affect the message 
values. Therefore, dividing both equations by ∏𝑐𝑘∈𝑪⧵𝑐𝑗 𝑚̃

𝑞−1
𝑐𝑘𝑑𝑖

(𝒙𝑖[𝑘] = 0)
simplifies them as follows:

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 0) = 1
𝑧𝑑𝑖𝑐𝑗

max
𝒙𝑖 ,𝑷

𝑗,0
𝑖

𝜂(𝑷 𝑗,0
𝑖 )𝑒−𝑤(𝑷

𝑗,0
𝑖 ) ∏

𝑐𝑘∈𝑷
𝑗,0
𝑖

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(27)

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 1) = 1
𝑧𝑑𝑖𝑐𝑗

max
𝒙𝑖 ,𝑷

𝑗,1
𝑖

𝜂(𝑷 𝑗,1
𝑖 )𝑒−𝑤(𝑷

𝑗,1
𝑖 )

×
∏

𝑐𝑘∈{𝑷
𝑗,1
𝑖 ⧵𝑐𝑗}

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(28)

It can be observed that Eqs. (27) and (28) represent the same type 
of optimization problem, differing only in whether the receiving node 
𝑐𝑗 is included or not, while both aim to find the solution 𝒙𝑖 and 𝑷 𝑖
(specifically, 𝑷 𝑗,0

𝑖  or 𝑷 𝑗,1
𝑖 ) that maximize the right-hand side. Here, 𝒙𝑖 is 

a variable indicating whether customers are assigned to depot 𝑑𝑖, and 
𝑷 𝑖 is the set of routes representing the order in which vehicles from 
the depot visit the assigned customers. Additionally, 𝜂(𝑷 𝑖) is a function 
that reflects the capacity constraint, and 𝑤(𝑷 𝑖) is the sum of the route 
costs for the selected routes 𝑷 𝑖. The last term takes the product of 
the ratios of received messages only for the customers included in 𝑷 𝑖. 
Therefore, the max operation for calculating the message becomes a 
VRP-like problem, where customers assigned to this depot are selected 
by considering the ratio of messages received from each customer, and 
the minimum-cost routes visiting the selected customers are found. 
Since visiting a customer always results in a negative route cost, the 
exponential term becomes less than 1. However, there may exist a non-
trivial solution that maximizes the right-hand side of the equation if 
there is a customer whose message ratio is sufficiently greater than 1 
so that it offsets the decrease in the exponential.

Table  1 summarizes how the depot-to-customer message compu-
tation for each variant of the HMDVRP discussed in this paper cor-
responds to different optimization problems. Unlike in standard VRP, 
the message computations in Eqs. (27) and (28) involve visiting only 
a subset of customers rather than all of them, which is indicated by 
prefixing each problem with subset-visit (SV). When vehicle capacity is 
constrained, the problem is classified as either the subset-visit capaci-
tated VRP (SV-CVRP) or the subset-visit capacitated VRP with a limited 
number of vehicles (SV-CVRP-LV), depending on whether the number 
of vehicles per depot is limited. In cases where vehicle capacity is not 
constrained, it can be treated as a type of the TSP where each vehicle’s 
depot is considered a distinct starting point, and this is referred to as the 
subset-visit multi-TSP (SV-mTSP). In this case, the edges of the TSP are 
initially assigned positive path costs, but the negative of the logarithm 
of the received message ratio in Eqs. (27) and (28) is added to the costs 
of the paths visiting each customer node (refer Section 3.4.2). A non-
trivial subset-visit solution exists only if some of these path costs are 
negative.

In solving the HMDVRP using the max-product algorithm, a form 
of BP, it becomes apparent that each time a message is calculated, 
it requires solving another NP-hard problem. Since BP is used as a 
heuristic to approximate a solution for the HMDVRP, solving these NP-
hard problems exactly for each message calculation would be highly 
inefficient. Therefore, this paper proposes an approach, named AMP, 
to compute these messages approximately, as detailed in Section 3.4. 
For uncapacitated cases, when the vehicles within a depot are ho-
mogeneous and the path costs satisfy the triangular inequality, there 
always exists an optimal solution where only one vehicle departs from 
each depot. A method for converting such an SV-TSP to an asymmetric 
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Table 1
Variants of HMDVRP covered in this study.
 Capacity Number of vehicles Problem type in message 

calculation
Notes  

 Capacitated Unlimited SV-CVRP: subset-visit capacitated 
VRP

Always be able to visit all customers.  

 Capacitated Limited SV-CVRP-LV: subset-visit 
capacitated VRP with a limited 
number of vehicles

 

 Uncapacitated Unlimited/limited SV-mTSP: subset-visit multi-TSP 
with negative edge costs

If vehicles in each depot are homogeneous and the 
path costs satisfy the triangle inequality, one 
vehicle is sufficient for each depot, i.e. 𝑛𝑣,𝑑 = 1.

 

TSP (ASP) and then applying a state-of-the-art TSP heuristic is also 
presented in Section 3.4.2.

The message sent from a customer to a depot is significantly simpli-
fied because only one binary element of 𝒚𝑗 can be nonzero, due to the 
potential function 𝜙𝑐𝑗 (𝒚𝑗 ) in (16). Taking into account the consistency 
between the two node variables, 𝒚𝑗 [𝑖] = 𝒙𝑖[𝑗], the message equation 
in (24) can be expressed for each binary value of the receiving node 
variable 𝒙𝑖[𝑗]:

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗] = 0) = 1
𝑧𝑐𝑗𝑑𝑖

max
𝑠≠𝑖

𝑚̃𝑞−1𝑑𝑠𝑐𝑗
(𝒚𝑗 [𝑠] = 1)

×
∏

𝑑𝑘∈𝑫⧵{𝑑𝑖 ,𝑑𝑠}
𝑚̃𝑞−1𝑑𝑘𝑐𝑗

(𝒚𝑗 [𝑘] = 0) (29)

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗] = 1) = 1
𝑧𝑐𝑗𝑑𝑖

∏

𝑑𝑘∈𝑫⧵𝑑𝑖

𝑚̃𝑞−1𝑑𝑘𝑐𝑗
(𝒚𝑗 [𝑘] = 0) (30)

Since only one element can be set to 1 in the customer node 
variable, in Eq. (29) the message where 𝒚𝑗 [𝑠] = 1 appears only for 
one depot node 𝑑𝑠 and maximization is performed over that index 𝑠, 
excluding the receiving node’s index 𝑖. In contrast, in Eq. (30), since the 
𝑖th element of 𝒚𝑗 is set to 1, only the messages corresponding to 𝒚𝑗 [𝑘] =
0 are multiplied. By diving Eqs. (29) and (30) by ∏𝑑𝑘∈𝑫⧵𝑑𝑖 𝑚̃

𝑞−1
𝑑𝑘𝑐𝑗

(𝒚𝑗 [𝑘] =
0) and applying the normalization, the simplified customer-to-depot 
message is derived as below, where 𝑠∗ maximizes 𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗

(𝒚𝑗 [𝑠∗] = 1).

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗] = 0) =
𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗

(𝒚𝑗 [𝑠∗] = 1)

𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗
(𝒚𝑗 [𝑠∗] = 0) + 𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗

(𝒚𝑗 [𝑠∗] = 1)
(31)

𝑚𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗] = 1) =
𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗

(𝒚𝑗 [𝑠∗] = 0)

𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗
(𝒚𝑗 [𝑠∗] = 0) + 𝑚̃𝑞−1𝑑𝑠∗ 𝑐𝑗

(𝒚𝑗 [𝑠∗] = 1)
(32)

3.3. Algorithm structure

The HMDVRP has specific parameters related to depots, vehicles, 
and customers. For depots, the parameters include their locations and 
the types of vehicles they possess. The primary parameters for vehicles 
are their capacity and locations, while the parameters for customers are 
their demands. The cost function for the path between a depot node 
and a customer node, or between customer nodes, typically utilizes 
the distance between two points. However, when considering vehicle 
heterogeneity, this function can be more complex. The cost may vary 
for the same path depending on the type of vehicle.

The algorithm (refer Algorithm 1) begins by initializing the message 
values(𝑚̃0

𝑑𝑖𝑐𝑗
 and 𝑚̃0

𝑐𝑗𝑑𝑖
) to 0.5, representing the initial probabilities of 

any depot choosing a customer and any customer choosing a depot 
as 50%. The algorithm then iterates through a predetermined number 
(𝑁𝑖𝑡𝑒𝑟) of message calculations. In each iteration, a representative set 
of routes 𝑹𝑖 is generated for each depot, and the messages (𝑚̃𝑞𝑑𝑖𝑐𝑗  and 
̃ 𝑞𝑐𝑗𝑑𝑖 ) are calculated for each depot–customer pair. The sets of routes 
𝑷 𝑗,0
𝑖  and 𝑷 𝑗,1

𝑖  in (27) and (28) differ for every depot–customer pair. 
The method for calculating 𝑹𝑖 as a substitute for 𝑷 𝑖 and using it to 
compute the messages from depots to customers, 𝑚𝑞𝑑𝑖𝑐𝑗 , is described in 
detail in Section 3.4. These messages are averaged using a buffer to 
6 
Algorithm 1 Centralized Algorithm Structure of AMP-R
1: Initialize parameters about depot, vehicle, customer. 
2: Initialize messages 𝑚̃0

𝑑𝑖𝑐𝑗
 and 𝑚̃0

𝑐𝑗𝑑𝑖
 with 1

2
. 

3: for 𝑞 = 1:𝑁iter do 
4: for each 𝑑𝑖 ∈ 𝑫 do 
5: Build 𝑹𝑖. 
6: for each 𝑐𝑗 ∈ 𝑪 do 
7: Calculate 𝑚̃𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖]) using Eqs. (40), (41), and (19). 
8: Calculate 𝑚̃𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗]) using Eqs. (31), (32), and (20). 
9: if 𝑐𝑗 ∈ 𝑹𝑖 then 𝒙̂𝑖[𝑗] = 1, else 𝒙̂𝑖[𝑗] = 0.
10: end for
11: 𝐿rem𝑑𝑖 = 𝐿𝑑𝑖 −

∑

𝑗 𝑙(𝑐𝑗 )𝒙̂𝑖[𝑗].
12: end for
13: end for
14: Get 𝒙̃𝑖,∀𝑑𝑖 ∈ 𝑫 from Refinement (Algorithm 2) with 𝒙̂𝑖, 𝐿rem𝑑𝑖 , and 𝑚̃

𝑁iter
𝑑𝑖𝑐𝑗

. 
15: for each 𝑑𝑖 ∈ 𝑫 do 
16: Obtain 𝑷̃ 𝑖 by solving the CVRP for 𝑐𝑗s satisfying 𝒙̃𝑖[𝑗] = 1.
17: end for

enhance convergence, resulting in 𝑚̃𝑞𝑑𝑖𝑐𝑗 . The messages from customers 
to depots are calculated and averaged in a similar manner. The binary 
variable 𝒙̂𝑖[𝑗] indicates whether a customer is assigned to a depot. If 
customer 𝑐𝑗 is included in 𝑹𝑖, then 𝒙̂𝑖[𝑗] becomes one. To satisfy the 
constraints of the HMDVRP, the conditions ∑𝑖 𝒙̂𝑖[𝑗] = 1 and ∑𝑗 𝒙̂𝑖[𝑗] = 1
must be met; these constraints ensure that each customer is served by a 
vehicle from a specific depot. However, these are not guaranteed to be 
met by message calculation. Therefore, a Refinement step is necessary to 
derive a solution that satisfies the constraints of the HMDVRP. Capacity 
constraints must also be satisfied, making it necessary to monitor the 
sum of the remaining capacities of all vehicles belonging to depot 𝑑𝑖. 
The total remaining capacity for depot 𝑑𝑖 is represented as 𝐿rem𝑑𝑖 .

Algorithm 2 Refinement Step.
1: 𝒙̃𝑖[𝑗] = 0,𝑀(𝑖, 𝑗) = 𝑚̃𝑁iter

𝑑𝑖𝑐𝑗
(𝒚𝑗 [𝑖]),∀𝑑𝑖 ∈ 𝑫,∀𝑐𝑗 ∈ 𝑪 . 

2: for each 𝑐𝑗 ∈ 𝑪 do 
3: if ∑𝑖 𝒙̂𝑖[𝑗] >= 1 then 
4: 𝒙̃𝑖∗ [𝑗] = 1 where 𝑖∗ = argmax𝑖𝑀(𝑖, 𝑗)𝒙̂𝑖[𝑗]. 
5: 𝐿rem𝑑𝑖 = 𝐿rem𝑑𝑖 + 𝑙(𝑐𝑗 ),∀𝑖 ∶ 𝒙̂𝑖[𝑗] = 1, 𝑖 ≠ 𝑖∗. 
6: 𝑀(𝑖, 𝑗) = 0,∀𝑖.
7: end if
8: end for
9: while 𝑀(𝑖, 𝑗) ≠ 0,∃𝑖, 𝑗 do 
10: (𝑖∗, 𝑗∗) = argmax𝑖,𝑗𝑀(𝑖, 𝑗)
11: if 𝐿rem𝑑𝑖∗ > 𝑙(𝑐𝑗∗ )𝑛𝑣,𝑑∗𝑖  then 
12: 𝒙̃𝑖∗ [𝑗∗] = 1, 𝐿rem𝑑𝑖∗ = 𝐿rem𝑑𝑖∗ − 𝑙(𝑐𝑗∗ ).
13: 𝑀(𝑖, 𝑗∗) = 0,∀𝑖.
14: else 
15: 𝑀(𝑖∗, 𝑗∗) = 0.
16: end if
17: end while

The Refinement step (Algorithm 2) uses 𝒙̂𝑖[𝑗] to calculate 𝒙̃𝑖[𝑗] that 
satisfies ∑ 𝒙̃ [𝑗] = 1 and ∑ 𝒙̃ [𝑗] = 1. If ∑ 𝒙̂ [𝑗] is equal to or 
𝑖 𝑖 𝑗 𝑖 𝑖 𝑖
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greater than 1, only the depot 𝑑∗𝑖  with the highest message value 
takes the customer 𝑗, i.e., 𝒙̃𝑖∗ [𝑗] = 1. If 𝒙̂𝑖[𝑗] = 1 but 𝒙̃𝑖[𝑗] = 0, 
this indicates that, although a depot may initially consider itself the 
best candidate to serve a particular customer 𝑐𝑗 based on its own 
calculations, comparing messages with neighboring depots reveals that 
it would be more efficient for another depot to serve 𝑐𝑗 . Therefore, the 
remaining capacity of the depot 𝑑𝑖 is increased by the demand of the 
customer 𝑐𝑗 , and this amount of demand is added to 𝐿rem𝑑𝑖 .

After this step, unassigned customers must be allocated to appro-
priate depots using message values, for which a matrix 𝑀 is defined 
to contain these values. 𝑀(𝑖, 𝑗) is initially set to the message value 
from the last iteration, 𝑚̃𝑁𝑖𝑡𝑒𝑟𝑑𝑖𝑐𝑗

(𝒚𝑗 [𝑖]). If a customer 𝑐𝑗 is already assigned 
elsewhere, 𝑀(𝑖, 𝑗) is set to zero for all depots. Once the matrix is built, 
the pair (𝑖∗, 𝑗∗) with the maximum message value is identified. If the 
remaining capacity of the depot is sufficient, the customer is assigned 
to that depot. This results in 𝒙̃∗𝑖 [𝑗∗] = 1. As customer 𝑐𝑗∗  is newly 
assigned to depot 𝑑𝑖∗ , 𝐿rem𝑑∗𝑖  is decreased. 𝑀(𝑘, 𝑗∗)s for all 𝑘s are set to 
zero to prevent this customer from being selected again. If the capacity 
is insufficient, only 𝑀(𝑖∗, 𝑗∗) is set to zero, allowing 𝑗∗ to be selected 
by another depot.

When considering the remaining capacity, it is essential that the 
available capacity exceeds the product of the customer’s demand and 
the number of vehicles at the depot. Even if the capacity appears 
sufficient, an even distribution among vehicles may pose a risk that 
an assigned customer is not included in a route. To mitigate this 
risk, the remaining capacity is evaluated comprehensively. Therefore, 
for capacitated and limited problems, the sum of vehicle capacities 
must be significantly higher than the sum of all customer demands 
for a solution to be feasible. Once the allocation is completed without 
conflicts, 𝒙̃ is finalized, allowing determination of which customers 
are assigned to each depot. Finding the optimal route for each depot 
then becomes a simple CVRP, which can be solved using the LKH 
(Lin–Kernighan–Helsgaun) heuristic [45,46].

3.4. Message approximation techniques

To send a message from a depot node to each customer node, one 
must solve either the SV-CVRP or SV-TSP for the cases where each 
customer is included and excluded, as shown in Eqs. (27) and (28). 
Repeating this process for every receiving customer node is highly 
inefficient. Therefore, by solving the SV-CVRP for all customers once, 
and then partially modifying the resulting route by adding or removing 
specific customers, the approximate messages from a single depot 
can be quickly calculated. The representative route 𝑹𝑖 appearing in 
Algorithm 1 serves as an approximate solution to 𝑷̂ 𝑞

𝑖  in Eq. (33), which 
is the optimal route of the SV-CVRP for all customers. 

𝒙̂𝑞𝑖 , 𝑷̂
𝑞
𝑖 = argmax

𝒙𝑖 ,𝑷 𝑖
𝜂(𝑷 𝑖)𝑒−𝑤(𝑷 𝒊)

∏

𝑐𝑘∈𝑷 𝒊

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(33)

Note that Eq. (33) is derived by applying the same procedure used 
in Eqs. (27) and (28) to the equation for the MAP state estimate, 
i.e., Eq. (22). Thus, the proposed AMP-R algorithm first computes an 
approximate MAP state estimate that maximizes the belief in each 
iteration, then partially adjusts this estimate to calculate approximate 
messages for each customer. The representative route 𝑹𝑖 is constructed 
by greedily selecting customers one by one until the vehicle reaches 
its capacity, making it applicable to all types of the HMDVRP shown 
in Table  1. However, when addressing uncapacitated problems where 
the vehicles in each depot are homogeneous and path costs satisfy the 
triangular inequality, the computation of 𝑹𝑖 reduces to the SV-TSP. 
For this case, the SV-TSP is converted to an asymmetric TSP (ATSP), 
allowing the application of highly effective heuristics like LKH.
7 
3.4.1. Greedy method to obtain 𝑹𝑖
This section describes the proposed greedy selection heuristic for 

finding solutions to the SV-CVRP or SV-TSP. The procedure of the 
greedy selection is described in Algorithm 3. The representative routes 
𝑹𝑖, precisely a set of routes, is incrementally constructed by adding 
customers one by one. Since the goal is to find 𝑹𝑖 that approximates 𝑷̂

𝑞
𝑖 , 

which maximizes the right-hand side of Eq. (33), each new customer 
added to 𝑹𝑖 is chosen greedily to yield the largest increase in the right-
hand side of Eq. (33). This process is repeated until the capacity of a 
single vehicle from the depot 𝑑𝑖 is filled, after which a new vehicle is 
selected, and routes are formed until the entire fleet of 𝑑𝑖 is deployed.

When customer 𝑐𝑗 is added to 𝑹𝑖, the increase in the operand of the 
max operation in Eq. (33), denoted as 𝑟𝑖𝑗 (𝑹𝑖), is estimated as shown in 
Eq. (34). 

𝑟𝑖𝑗 (𝑹𝑖, 𝑐𝑗 ) =
𝑒−𝑤(𝑹𝑖∪{𝑐𝑗})𝑚̃𝑞−1𝑐𝑗𝑑𝑖

(𝒙𝑖[𝑗] = 1)

𝑒−𝑤(𝑹𝑖)𝑚̃𝑞−1𝑐𝑗𝑑𝑖
(𝒙𝑖[𝑗] = 0)

(34)

𝑤(𝑹𝑖 ∪ {𝑐𝑗}) represents the total path cost of the route after adding 
𝑐𝑗 to 𝑹𝑖. It is chosen as the minimal increase in path cost when 𝑐𝑗
is inserted between the nodes already included in 𝑹𝑖. Each time, the 
customer with the highest 𝑟𝑖𝑗 (𝑹𝑖, 𝑐𝑗 ) is selected and added to 𝑹𝑖. If 
max𝑐𝑗∉𝑹𝑖

𝑟𝑖𝑗 (𝑹𝑖, 𝑐𝑗 ) < 1, then adding any customer does not further 
increase the right-hand side of Eq. (33), so the process terminates even 
if capacity and vehicles remain, and 𝑹𝑖 is returned.

Algorithm 3 Build 𝑹𝑖 using Greedy Method.
1: while True do 
2: 𝑪 rem = [𝑘 ∶ ∀𝑐𝑘 ∈ 𝑪 ,∀𝑐𝑘 ∉ 𝑹𝑖, 𝐿rem𝑑𝑖 > 𝑙(𝑐𝑘)]
3: if 𝑪 rem = ∅ then break;
4: 𝑘∗ = argmax𝑘∈𝑪 rem

𝑟𝑖𝑘(𝑹𝑖, 𝑐𝑘)
5: if 𝑟𝑖𝑘∗ (𝑹𝑖, 𝑐𝑘∗ ) > 1 then 
6: 𝑹𝑖 = 𝑹𝑖 ∪ {𝑐𝑘∗}
7: else 
8: break;
9: end if
10: end while

3.4.2. Transformation of SV-TSP to ATSP
For the uncapacitated HMDVRP, if certain conditions are met, 

Eq. (33) becomes equivalent to the SV-TSP. In this case, by modifying 
the graph, the problem can be transformed into an ATSP, allowing the 
application of various TSP solutions. To clarify how the path cost of 
the SV-TSP is defined, the logarithm of the right-hand side of Eq. (33) 
is taken and multiplied by −1 under the assumption that the capacity 
constraint holds. 

𝒙̂𝑞𝑖 , 𝑷̂
𝑞
𝑖 = argmin

𝒙𝑖 ,𝑷 𝑖
𝑤(𝑷 𝒊) −

∑

𝑐𝑘∈𝑷 𝒊

ln
(

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1) − 𝑚̃𝑞−1𝑐𝑘𝑑𝑖

(𝒙𝑖[𝑘] = 0)
)

(35)

𝑤(𝑷 𝑖) denotes the sum of all path costs in 𝑷 𝑖, and the second term 
originates from the messages received from each customer node in-
cluded in 𝑷 𝑖. The latter term is added only for nodes among the given 
customers that have been selected to visit. Therefore, ln 𝑚̃𝑞−1𝑐𝑘𝑑𝑖

(𝒙𝑖[𝑘] =
1) − ln 𝑚̃𝑞−1𝑐𝑘𝑑𝑖

(𝒙𝑖[𝑘] = 0) can be regarded as the benefit of visiting 
the corresponding customer node 𝑐𝑘. The path cost in the SV-TSP is 
obtained by subtracting ln 𝑚̃𝑞−1𝑐𝑘𝑑𝑖

(𝒙𝑖[𝑘] = 1) − ln 𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0) from the 

original path cost (referred to as edge cost in a general graph) for each 
customer. For this reason, unlike the standard TSP, the SV-TSP allows 
paths with negative costs, and a route satisfying Eq. (35) can be formed, 
which visits only a subset of the given customers.

To transform the SV-TSP to the ATSP, it should first be transformed 
into a problem known as the generalized TSP (GTSP) or one-in-a-set 
TSP. In the GTSP, multiple groups of nodes are given, and the goal is 
to find a Hamiltonian cycle that visits exactly one node in each group. 
To convert the SV-TSP to the GTSP, each customer node is divided into 



B.-M. Jeong et al. Operations Research Perspectives 14 (2025) 100341 
Table 2
Edge costs in GTSP and ATSP for transformation from SV-TSP.
 Edge GTSP cost ATSP cost  
 Tail Head  
 (𝑐𝑗 or 𝑑𝑖) (𝑐𝑘 or 𝑑𝑖)  
 Depot included 𝑒(𝑑𝑖 , 𝑐𝑘 , 𝑣) − ln𝑚𝑐𝑘𝑑𝑖 (1) + ln𝑚𝑐𝑘𝑑𝑖 (0) 𝑒(𝑑𝑖 , 𝑐𝑘 , 𝑣) − ln𝑚𝑐𝑘𝑑𝑖 (1) + ln𝑚𝑐𝑘𝑑𝑖 (0) +𝑀 
 excluded 0 𝑀  
 included Depot 𝑒(𝑐𝑗 , 𝑑𝑖 , 𝑣) 0  
 excluded 0 𝑒(𝑐𝑗 , 𝑑𝑖 , 𝑣)  
 included included 𝑒(𝑐𝑗 , 𝑐𝑘 , 𝑣) − ln𝑚𝑐𝑘𝑑𝑖 (1) + ln𝑚𝑐𝑘𝑑𝑖 (0) –  
 excluded – 𝑒(𝑐𝑗 , 𝑐𝑘 , 𝑣) − ln𝑚𝑐𝑘𝑑𝑖 (1) + ln𝑚𝑐𝑘𝑑𝑖 (0) +𝑀 
 included excluded 𝑒(𝑐𝑗 , 𝑑𝑖 , 𝑣) 𝑀  
 excluded 0 𝑒(𝑐𝑗 , 𝑑𝑖 , 𝑣) +𝑀  
For conciseness, 𝑚𝑐𝑘𝑑𝑖 (𝑎) denotes 𝑚𝑐𝑘𝑑𝑖 (𝒙𝑖[𝑘] = 𝑎).
Fig. 3. Example tours comparing GTSP and ATSP: the edges corresponding to the 
SV-TSP solution (Depot - A - B - Depot) are marked in red.

an included node and an excluded node, with both nodes belonging to 
the same group. Therefore, a GTSP solution selects either an included
node or an excluded node for each customer and constructs a route 
that returns to the depot. Visiting the included node implies that the 
corresponding customer is part of the representative route 𝑹𝑖 in the 
SV-TSP, while selecting the excluded node indicates otherwise. Every 
path cost toward a customer node in the SV-TSP is assigned to the 
path toward the included node of the customer in the GTSP. Path costs 
directed toward excluded nodes, as well as those from excluded nodes 
back to the depot, are all set to zero. Additionally, to ensure that the 
GTSP solution translates to a valid solution for the SV-TSP, the selected
included nodes in the GTSP solution must be visited consecutively. 
Thus, all paths leading from an excluded node to an included node are 
removed, ensuring that once an excluded node is visited, only excluded
nodes can be visited in all subsequent groups. Finally, the cost of 
returning from a customer node to the depot in the SV-TSP is copied to 
both the path from the corresponding included node to the depot and 
the paths from the included node to the excluded nodes in the other 
groups. Table  2 summarizes the path costs for each path type in the 
GTSP, and an example graph is shown in Fig.  3.

To transform the GTSP to the ATSP, the Noon-Bean transforma-
tion [47] is applied. First, connect the included and excluded nodes 
within each customer group with paths that have a cost of zero. Next, 
swap the tails (starting nodes) of paths originating from each group. In 
other words, change paths originating from the included node to start 
from the excluded node in the same group, and vice versa for paths with 
the excluded node as the tail. Finally, add a large number 𝑀 to the cost 
of paths entering each group. This ensures that the ATSP solution visits 
each group’s nodes only once, with 𝑀 set to be larger than the sum 
of all path costs in the original graph. Since the depot node remains 
unsplit and 𝑀 is added to all paths originating from the depot, there 
is no need to add 𝑀 to the paths returning to the depot. The resulting 
costs assigned in the ATSP are summarized in the last column of Table 
2.
8 
By transforming the SV-TSP to the ATSP in this way, the ATSP 
solution forms a Hamiltonian cycle, as shown in Fig.  3, visiting all
included and excluded nodes and returning to the depot. The number of 
times paths entering groups are chosen equals the number of customers. 
When a group is visited via its included node, it leaves through the
excluded node of the same group via a zero-cost path, indicating that 
the corresponding customer is selected in the SV-TSP. Also, once a 
group is first entered through an excluded node, the solution always 
exits through the included node of that group. From that point on, 
only paths leading into each group’s excluded node can be selected, 
representing groups corresponding to customers not chosen in the SV-
TSP.  The overall procedure for solving SV-TSP by converting it into an 
ATSP to obtain 𝑹 in the uncapacitated HMDVRP case is summarized in 
Algorithm 4. 

Algorithm 4 Solving SV-TSP using LKH Solver.
1: Step 1: Copy Customer Nodes
2:    Duplicate 𝑐 as 𝑐𝑖𝑛 (included) and 𝑐𝑒𝑥 (excluded) ∀𝑐 ∈ 𝑪
3: Step 2: Connect Depot to Customers
4:    Create directed edges from 𝑑𝑖 to 𝑐𝑖𝑛 and 𝑐𝑒𝑥 and directed edges from 𝑐𝑖𝑛
and 𝑐𝑒𝑥 to 𝑑𝑖 ∀𝑐 ∈ 𝑪

5: Step 3: Connect Customer Nodes
6:    Create directed edges between: (𝑐𝑘,𝑒𝑥, 𝑐𝑗,𝑒𝑥), (𝑐𝑗,𝑖𝑛, 𝑐𝑘,𝑒𝑥), (𝑐𝑗,𝑒𝑥, 𝑐𝑘,𝑖𝑛) ∀𝑐𝑗 , 𝑐𝑘∈

𝑪
7:    Create edges between 𝑐𝑗,𝑖𝑛 and 𝑐𝑗,𝑒𝑥 ∀𝑐𝑗 ∈ 𝑪
8: Step 4: Assign Edge Costs based on Table  2
9: Step 5: Solve ATSP using LKH Solver
10: Step 6: Construct Final Path
11: for each customer node in ATSP solution do 
12: if 𝑐𝑗,𝑖𝑛 is visited before 𝑐𝑗,𝑒𝑥 then 
13: 𝑹𝑖 = 𝑹𝑖 ∪ {𝑐𝑗}
14: end if
15: end for

3.4.3. Calculating messages with 𝑹𝑖
Once the representative route 𝑹𝑖 is derived, it is used to calculate 

the messages to be sent to each customer node adjacent to the depot 
𝑑𝑖 node in the graphical model. The messages in Eqs. (27) and (28) 
are defined with the optimal assignment and route, either necessarily 
excluding or including the receiving node 𝑐𝑗 , respectively. Since 𝑹𝑖 is 
an approximate solution of the subset-visit VRP-like problems for given 
customers, a certain receiving node 𝑐𝑗 may or may not be included. If 
𝑐𝑗 ∈ 𝑹𝑖, 𝑹𝑖 becomes an approximate solution of 𝑷 𝑗,1

𝑖  that maximizes the 
right side of Eq. (28), enabling direct calculation of 𝑚𝑞𝑑𝑖 ,𝑐𝑗 (𝒚𝑗 [𝑖] = 1). 
However, to compute 𝑚𝑞𝑑𝑖 ,𝑐𝑗 (𝒚𝑗 [𝑖] = 0) in Eq. (27), an approximate 
solution of 𝑷 𝑗,0

𝑖  that excludes 𝑐𝑗 is needed, which can be obtained by 
removing 𝑐𝑗 from 𝑹𝑖. On the other hand, when 𝑐𝑗 ∉ 𝑹𝑖, 𝑹𝑖 can be 
used directly to compute 𝑚𝑞𝑑𝑖 ,𝑐𝑗 (𝒚𝑗 [𝑖] = 0), while 𝑚𝑞𝑑𝑖 ,𝑐𝑗 (𝒚𝑗 [𝑖] = 1) requires 
adding 𝑐𝑗 to 𝑹𝑖.

Let the approximate solutions of 𝑷 𝑗,0
𝑖  and 𝑷 𝑗,1

𝑖  that maximize
Eqs. (27) and (28) be denoted by 𝑹𝑗,0 and 𝑹𝑗,1, respectively. For 
𝑖 𝑖



B.-M. Jeong et al. Operations Research Perspectives 14 (2025) 100341 
problems without capacity constraints, every customer 𝑐𝑘 satisfying 
𝑟𝑖𝑘(𝑹𝑖, 𝑐𝑘) ≥ 1 has already been added when calculating 𝑹𝑖 since adding 
the customer increases the right hand side of Eq. (33). Thus, 𝑹𝑗,0

𝑖  and 
𝑹𝑗,1
𝑖  can be directly obtained by simply removing 𝑐𝑗 from or adding 

it to 𝑹𝑖. In contrast, for capacity-constrained cases, other customers 
𝑐𝑘 may exist that can be added within the remaining capacity after 
excluding 𝑐𝑗 from 𝑹𝑖 and that also maximize 𝑟𝑖𝑘(𝑹𝑖−{𝑐𝑘}). Let the set of 
these customers be 𝑆add. 𝑹𝑗,0

𝑖  is constructed by inserting the customers 
in 𝑆add into the route 𝑹𝑖 − {𝑐𝑗} at positions that least increase the 
total path cost, similar to the approach in Section 3.4.1. Furthermore, 
when adding 𝑐𝑗 to obtain 𝑹𝑗,1

𝑖 , some customers already included in 𝑹𝑖
may need to be removed due to capacity limitations. Let 𝑆del denote 
the set of customers removed in greedy order of lowest 𝑟𝑖𝑘 values 
until sufficient residual capacity for 𝑐𝑗 is secured. Eqs. (36) and (37) 
summarize the definitions of 𝑹𝑗,0

𝑖  and 𝑹𝑗,1
𝑖  using this approach.

𝑹𝑗,0
𝑖 =

{

(𝑹𝑖 − {𝑐𝑗}) ∪ 𝑆add, 𝑐𝑗 ∈ 𝑹𝑖

𝑹𝑖, 𝑐𝑗 ∉ 𝑹𝑖
(36)

𝑹𝑗,1
𝑖 =

{

𝑹𝑖, 𝑐𝑗 ∈ 𝑹𝑖

(𝑹𝑖 ∪ {𝑐𝑗}) − 𝑆del, 𝑐𝑗 ∉ 𝑹𝑖
(37)

The union signifies the greedy insertion of customers, while the differ-
ence represents the removal of elements. Eqs. (27) and (28) can now 
be reformulated as follows using 𝑹𝑗,0

𝑖  and 𝑹𝑗,1
𝑖 .

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 0) = 1
𝑧𝑑𝑖𝑐𝑗

𝑒−𝑤(𝑹
𝑗,0
𝑖 ) ∏

𝑐𝑘∈𝑹
𝑗,0
𝑖

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(38)

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 1) = 1
𝑧𝑑𝑖𝑐𝑗

𝑒−𝑤(𝑹
𝑗,1
𝑖 ) ∏

𝑐𝑘∈(𝑹
𝑗,1
𝑖 −{𝑐𝑗})

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(39)

Since the representative route 𝑹𝑖 is an approximation of the right-
hand side of Eq. (33), 𝑹𝑗,0

𝑖  and 𝑹𝑗,1
𝑖  are also treated as approximate 

solutions, thus removing the max operation. In Eq. (39), the product of 
the message ratios is taken for customers in 𝑹𝑗,1

𝑖  excluding the receiving 
node 𝑐𝑗 . Using Eqs. (27) and (28), it can be shown that regardless of 
whether 𝑐𝑗 is included in 𝑹𝑖, the customers in 𝑹𝑗,1

𝑖 − {𝑐𝑗} are always 
included in 𝑹𝑗,0

𝑖 . Furthermore, the difference between the customers 
in the two routes equals 𝑆add when 𝑐𝑗 ∈ 𝑹𝑖 and 𝑆del when 𝑐𝑗 ∉ 𝑹𝑖. 
Therefore, by dividing both equations by the product of message ratios 
for customers in 𝑹𝑗,1

𝑖 − {𝑐𝑗}, the message equations can be simplified 
as follows: 𝑆 denotes 𝑆add or 𝑆del, depending on whether 𝑐𝑗 belongs to 
𝑹𝑖.

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 0) = 1
𝑧𝑑𝑖𝑐𝑗

𝑒−𝑤(𝑹
𝑗,0
𝑖 ) ∏

𝑐𝑘∈𝑆

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 1)

𝑚̃𝑞−1𝑐𝑘𝑑𝑖
(𝒙𝑖[𝑘] = 0)

(40)

𝑚𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖] = 1) = 1
𝑧𝑑𝑖𝑐𝑗

𝑒−𝑤(𝑹
𝑗,1
𝑖 ) (41)

3.5. Decentralized implementation

In this section, the decentralized version of the AMP-R algorithm 
is explained. The AMP-R exchanges messages between nodes in the 
graphical model of the HMDVRP, which is represented in a bipartite 
graph consisting of depot and customer nodes. While each depot can 
act as a computational agent, each customer cannot. Therefore, all 
message computations are processed at the depots. The depots calculate 
both 𝑚𝑑𝑖𝑐𝑗 , the messages sent from the depots to the customers, and 
𝑚𝑐𝑗𝑑𝑖 , the messages sent from the customers to the depots (refer Fig.  4). 
Exchanging these messages simulates the passing of messages within 
the overall graphical model.

The decentralized approach presented in Algorithm 5 closely resem-
bles the centralized approach described in Algorithm 1. Each depot 
individually generates its own routes 𝑷̂ 𝑖 using the decentralized al-
gorithm, which includes the computations and information exchanges 
9 
Fig. 4. Example of the distributed computation and message exchange in the AMP 
algorithm: within each depot, all messages between the depot and customer nodes 
are computed and exchanged; then, depot-to-customer messages 𝑚̃𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖]), remaining 
capacity 𝐿rem𝑑𝑖 , and assignment 𝒙̂𝑖 are shared with other depots.

Algorithm 5 Decentralized Algorithm Structure of AMP-R for Depot 𝑑𝑖
1: Initialize parameters about depot, vehicle, customer. 
2: Initialize messages 𝑚̃0

𝑑𝑖𝑐𝑗
 and 𝑚̃0

𝑐𝑗𝑑𝑖
 with 1

2
. 

3: for 𝑞 = 1:𝑁iter do 
4: Build 𝑹𝑖. 
5: for each 𝑐𝑗 ∈ 𝑪 do 
6: Calculate 𝑚̃𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖]) using Eqs. (40), (41), and (19). 
7: Calculate 𝑚̃𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗]) using Eqs. (31), (32), and (20). 
8: if 𝑐𝑗 ∈ 𝑹𝑖 then 𝒙̂𝑖[𝑗] = 1, else 𝒙̂𝑖[𝑗] = 0.
9: end for
10: 𝐿rem𝑑𝑖 = 𝐿𝑑𝑖 −

∑

𝑗 𝑙(𝑐𝑗 )𝒙̂𝑖[𝑗]. 
11: Save 𝑚̃𝑞𝑐𝑗𝑑𝑖 (𝒙𝑖[𝑗]),∀𝑐𝑗 ∈ 𝐶

12: Broadcast 𝑚̃𝑞𝑑𝑖𝑐𝑗 (𝒚𝑗 [𝑖]), 𝐿rem𝑑𝑖  and 𝒙̂𝑖,∀𝑐𝑗 ∈ 𝐶

13: Receive 𝑚̃𝑞𝑑𝑘𝑐𝑗 (𝒚𝑗 [𝑘]), 𝐿rem𝑑𝑖  and 𝒙̂𝑘,∀𝑑𝑘 ∈ 𝐷 ⧵ 𝑑𝑖,∀𝑐𝑗 ∈ 𝐶
14: end for
15: Get 𝒙̃𝑖 from Refinement (Algorithm 2) with 𝒙̂𝑖, 𝐿rem𝑑𝑖 , and 𝑚̃

𝑁iter
𝑑𝑖𝑐𝑗

,∀𝑑𝑖 ∈
𝑫,∀𝑐𝑗 ∈ 𝑪 .

16: Obtain 𝑷̃ 𝑖 by solving the CVRP for 𝑐𝑗s satisfying 𝒙̃𝑖[𝑗] = 1.

of the depots. Initially, each depot receives the same information 
about other depots, vehicles, and customers. All outgoing and incoming 
messages for a specific depot 𝑑𝑖 are initialized to 0.5. Each depot 
then performs the following steps for a predefined number 𝑁iter of 
iterations. First, each depot 𝑑𝑖 computes routes and messages in the 
same way as the centralized AMP-R algorithm, but only the messages 
sent to and from the depot 𝑑𝑖 are computed. Depots then broadcast 
and share depot-to-customer messages 𝑚̃𝑞𝑑𝑖𝑐𝑗 , remaining capacity 𝐿

rem
𝑑𝑖
, 

and the assignment result 𝒙̂𝑖. The shared messages are used to compute 
customer-to-depot messages 𝑚̃𝑞𝑐𝑗𝑑𝑖  in the next step. After exchanging and 
calculating messages for 𝑁iter iterations, each depot performs the same 
refinement process as in the centralized algorithm. Since all required 
information is shared, this produces identical results for all depots, 
ensuring no conflicts. With the allocated customers for which 𝒙̃𝑖[𝑗] = 1
after the refinement, the set of routes 𝑷̃ 𝑖 for each depot is derived by 
solving the CVRP independently.

4. Numerical simulation

This section describes the numerical simulations conducted to eval-
uate the performance of the proposed AMP-R algorithm and presents 
the corresponding results. Since the HMDVRP considered in this study 
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encompasses multiple variants, Section 4.1 first categorizes these vari-
ants and introduces the algorithms used for comparative evaluation in 
each case. Section 4.2 details the conditions for generating problem 
instances, and Section 4.3 presents the comparative evaluation results 
obtained through Monte Carlo simulations for each problem type. 
Finally, Section 4.4 analyzes the performance of the AMP-R algorithm 
on MDVRP benchmark instances to compare with other algorithms. 

4.1. Baseline

The algorithm presented in this paper can solve various variants of 
the HMDVRP in a decentralized manner. The criteria used to classify 
the problems shown in Table  1 are the capacity and the number of 
vehicles assigned to each depot. Taking into account heterogeneity, 
there are a total of eight possible cases based on three conditions: 
(1) uncapacitated and capacitated cases, (2) unlimited and limited 
number of vehicles, and (3) homogeneous and heterogeneous cases. 
However, as shown in Table  1, when the problem is uncapacitated 
and the path cost satisfies the triangle inequality, only one vehicle 
per depot is required, making it unnecessary to limit the number of 
vehicles in uncapacitated cases. Consequently, excluding the vehicle 
number limitation in the uncapacitated cases leaves only six types of 
problems. These are expressed using notation as MDVRP-(u), HMDVRP-
(u), MDVRP-(c), HMDVRP-(c), MDVRP-(c)-LV, HMDVRP-(c)-LV, where 
‘‘H ’’ indicates that heterogeneity is considered. The suffix (u) signifies 
that capacity is disregarded, while the suffix (c) indicates that capacity 
is considered. Lastly, LV  means that the number of the vehicle that each 
depot can hold is limited.

In this paper, two approaches are presented to approximate the 
messages. The first method, discussed in Section 3.4.1, uses a greedy 
method to compute the messages, which can be applied to both the 
SV-TSP and the SV-CVRP. This approach is named AMP-R-Greedy. The 
second method, described in Section 3.4.2, approximates the message 
by replacing the SV-TSP with the ATSP, deriving a near-optimal so-
lution using the LKH heuristic. This approach is named AMP-R-LKH 
and is applicable only to the uncapacitated case of variants of the 
HMDVRP. Additionally, the message approximation approach can be 
selected at each iteration step. Therefore, it is possible to initially apply 
the greedy method and then switch to the LKH in later steps. This 
hybrid approach is named AMP-R-Mix. To evaluate the performance of 
the AMP-R algorithm, additional benchmarks are necessary. One simple 
benchmark can be the greedy algorithm applied to solve the MDVRP. 
The greedy algorithm used for the HMDVRP variants is similar to the 
heuristic in [48], using a constructive approach that repeatedly selects 
the best customer–vehicle pair, followed by a 2-opt heuristic to improve 
each vehicle’s route. For an optimal solution, the problem modeled 
in Section 2.1 can be solved using the Gurobi solver. Additionally, 
in uncapacitated problems, the MDVRP can be transformed into a 
GTSP, which can then be converted into an ATSP using the Noon-Bean 
transformation [47].

Thus, for MDVRP-(u) and HMDVRP-(u), the performance of AMP-R-
Greedy, AMP-R-LKH, AMP-R-Mix, the greedy method, the LKH heuris-
tic, and the optimal solution obtained by the Gurobi solver are com-
pared. For the remaining four problem types, the performance of 
AMP-R-Greedy, the greedy method, and the optimal solution from the 
Gurobi solver are compared. By comparing the results from the AMP-
R algorithms with the benchmarks, the effectiveness of the AMP-R 
approaches in various types of the HMDVRP is demonstrated.

4.2. Problem description

This paper presents a comprehensive evaluation of various algo-
rithms for solving the HMDVRP under different constraints. To ensure 
a fair comparison, a consistent experimental setup was designed for 
all problem instances. The experiments were conducted on a 100 m 
𝑥 100 m map with four depots and a varying number of customers (10, 
10 
Table 3
Simulation settings for vehicle capacities according to vehicle type and the number of 
customers.
 Type of vehicle 𝑁𝑐 = 10 𝑁𝑐 = 20 𝑁𝑐 = 40 𝑁𝑐 = 60 𝑁𝑐 = 80 
 Type 1 (velocity : 1 m/s) 100 200 400 600 800  
 Type 2 (velocity : 1.2 m/s) 75 150 300 450 600  
 Type 3 (velocity : 0.5 m/s) 200 400 800 1200 1600  

Table 4
Convergence ratio and steps for varying buffer sizes.
 Buffer size 1 2 5 10 15 20  
 Convergence ratio (%) 2 40 76 96 94 86  
 Steps for convergence 2.0 14.6 31.8 56.3 66.2 77.1 

20, 40, 60, and 80) randomly distributed within the map. Three types 
of vehicles were considered, each with different capacity and speed 
characteristics: high capacity with low speed, low capacity with high 
speed, and medium capacity with medium speed. These vehicles were 
randomly assigned to the depots, and each depot has the same type of 
vehicles. The vehicle capacity values for the varying test conditions are 
presented in Table  3, and customer demands were randomly generated 
between 20 and 30 units. This type of numerical simulation is capable 
of reflecting various real-world scenarios that may arise in logistics and 
transportation domains. The simulated scenarios emphasize realistic 
elements such as multiple types of vehicles with different capacities 
and speeds, their assigned depots, and variations in the number of 
customers.

For each variant and problem size, 50 random instances were 
generated. The performance of each algorithm was evaluated based on 
the average total travel time for all vehicles and the computation time 
across these instances. Due to the extensive computation time required, 
Gurobi was used to obtain solutions only for problems with up to 40 
customers, with a 20 min time limit for each problem.

4.3. Simulation results

The results of our experiments are presented in graphical form, 
illustrating the trade-offs between solution quality and computation 
time for each algorithm across different problem types and sizes. This 
comprehensive analysis allows for a thorough evaluation of the effec-
tiveness and computational efficiency of the proposed decentralized 
approach in solving various HMDVRP instances.

In the MDVRP-(u) case, AMP-R-Greedy was applied to solve 50 
instances of the HMDVRP while varying the buffer size. The number 
of steps for message passing was set to 200. Table  4 shows the con-
vergence ratio and the number of steps required to reach convergence. 
Convergence was determined when the change in the message value 
was less than 10−6. The convergence ratio was calculated by dividing 
the number of cases that converged within 200 steps by the total 
number of test instances. The steps to convergence indicates the step 
count at which convergence was achieved. From Table  4, a buffer size 
of 10 demonstrated the highest convergence ratio; thus, the buffer size 
was set to 10, and the number of message exchange steps was reduced 
to 100.

The simulation was carried out using the decentralized version of 
the AMP algorithm, but all computations were performed on a single 
computer. Therefore, the reported computation time below can be 
regarded as the total calculation time used by all depots. While actual 
implementation would need to account for communication delays, it 
is expected that the computation time could be significantly reduced, 
roughly proportional to the number of depots.

Figs.  5 through 10 depict the results of the comparative numerical 
tests for the following cases, respectively: MDVRP-(u), HMDVRP-(u), 
MDVRP-(c), HMDVRP-(c), MDVRP-(c)-LV, HMDVRP-(c)-LV. On the ab-
scissa of the graphs, the number of depots and customers is represented; 
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Fig. 5. Simulation Result : MDVRP-(u) (Uncapacitated, Unlimited, Homogeneous) case.
Fig. 6. Simulation Result : HMDVRP-(u) (Uncapacitated, Unlimited, Heterogeneous) case.
for instance, 𝐷 ∶ 4, 𝐶 ∶ 10 indicates a scenario with 4 depots and 10 
customers. The ordinate of the left graph in each figure represents the 
average total travel time from a solution, while the ordinate of the right 
one displays average computation time. The shaded region in the left 
graph illustrates the 25th to 75th percentile, while the shaded region in 
the right graph shows the 1st to 99th percentile. For the computation 
time of the greedy algorithm, extremely short times have been rounded 
up to 0.001 s to better align with the graph scale. From the graphs, it 
can be observed that although the Gurobi is significantly faster than the 
LKH for small-sized instances, such as with 4 depots and 10 customers, 
computation time sharply increases as the number of customers reaches 
20. This increase makes it challenging to obtain solutions within the 
20 min time limit for larger problem instances.

Fig.  5 shows the computation results for the MDVRP-(u), while Fig. 
6 presents the results for the HMDVRP-(u) case. Overall, the AMP-
R-Greedy, the AMP-R-LKH, and the AMP-R-Mix demonstrate superior 
performance compared to the greedy algorithm. In heterogeneous con-
ditions, each depot has different types of vehicles, making the message 
values clearly distinguishable. This distinction helps aid message con-
vergence, leading to better results. In contrast, for homogeneous cases, 
exact calculations result in more similar messages across depots, which 
can rather hinder convergence. When convergence is not achieved, ad-
justments during the refinement phase can ensure compliance with the 
MDVRP constraints, though the forced nature of these adjustments can 
11 
limit solution quality improvements. As a result, under homogeneous 
conditions, the AMP-R-Greedy or the AMP-R-Mix approaches typically 
yield better results, with the AMP-R-LKH rarely outperforming the 
others. However, in heterogeneous cases, the AMP-R-LKH consistently 
provides the best performance across all instances.

Fig.  7 shows the computational results for the MDVRP-(c), while Fig. 
8 presents the results for the HMDVRP-(c). In the capacitated scenarios, 
the Gurobi solver required significantly more computation time, and 
except for the 𝐷 ∶ 4, 𝐶 ∶ 10 problem, it was unable to produce valid 
solutions within the twenty minutes time limit. Consequently, for the 
𝐷 ∶ 4, 𝐶 ∶ 40 case, Gurobi’s performance was worse than that of AMP-
R-Greedy. However, AMP-R-Greedy successfully found solutions for the 
𝐷 ∶ 4, 𝐶 ∶ 80 problem in a relatively short time (a maximum of 1 min), 
achieving performance that surpassed the greedy method. Additionally, 
as in other cases, better results were obtained in heterogeneous settings 
compared to greedy solutions.

Fig.  9 presents the computational results for the MDVRP-(c)-LV, and 
Fig.  10 shows the results for the HMDVRP-(c)-LV. In general, the results 
in Fig.  9 are similar to those in Fig.  7, and the results in Fig.  10 resemble 
those in Fig.  8. This similarity arises from adjusting the vehicles’ 
capacity, which ensured a consistent number of vehicles dispatched 
from each depot, even as the customer count increased. Once again, 
better results were obtained in heterogeneous settings compared to the 
greedy approach.
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Fig. 7. Simulation Result : MDVRP-(c)(Capacitated, Unlimited, Homogeneous) case.

Fig. 8. Simulation Result : HMDVRP-(c)(Capacitated, Unlimited, Heterogeneous) case.

Fig. 9. Simulation Result : MDVRP-(c)-LV(Capacitated, Limited, Homogeneous) case.
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Fig. 10. Simulation Result : HMDVRP-(c)-LV(Capacitated, Limited, Heterogeneous) case.
Table 5
Benchmark test results: total cost.
 Problem 𝑁𝑑 𝑁𝑐 𝐿𝑣 Gillett and Johnson [50] FIND [51] PIACO [29] AMP-R-Greedy 
 1 4 50 80 593.2 576.86 576.86 611.21  
 2 4 50 160 486.2 473.53 473.53 520.0  
 3 5 75 140 652.4 641.18 641.18 674.83  
 4 2 100 100 1066.7 1003.86 1001.49 1062.40  
 5 2 100 200 778.9 750.26 750.26 783.63  
 6 3 100 100 912.2 876.5 876.5 911.98  
 7 4 100 100 939.5 892.58 885.69 954.46  
4.4. Benchmark test

In the previous subsections, the results of the proposed AMP-R 
algorithm were compared with the optimal solutions obtained using 
Gurobi, a greedy heuristic, and LKH across various HMDVRP variants. 
Beyond these general solution methods, evaluation against dedicated 
solvers specifically designed for HMDVRP is also necessary. However, 
no suitable benchmark studies for HMDVRP exist, and therefore, a 
comparative analysis was conducted using results from centralized 
approaches reported for the MDVRP benchmark problems [49]. The 
benchmark problems originally proposed by Christofides and Eilon con-
sist of 2 to 5 depots and 50 to 100 customers, as summarized in Table 
5, with all vehicles having identical capacities. For these benchmark 
problems, the results of heuristic methods [50], the tabu search based 
FIND algorithm [51], and the parallel improved ant colony optimiza-
tion (PIACO) [29] have been previously reported, and their results are 
summarized in Table  5. The last column of the table presents the results 
of applying AMP-R-Greedy to each problem. Since AMP-R-LKH cannot 
be applied to capacitated problems, it was excluded from the compar-
ison. The results show that the two metaheuristic methods, FIND [51] 
and PIACO [29], achieved the lowest-cost solutions, and the similarity 
of these globally optimized results suggests that they are close to the 
optima. AMP-R-Greedy demonstrated comparable performance to the 
heuristic algorithm proposed by Gillett and Johnson [50]. Although 
AMP-R-Greedy performs slightly worse than centralized metaheuristic 
methods, it provides solutions within 10% of the near-optima through 
decentralized computation. 

4.5. Managerial implications

This study proposes the AMP-R algorithm based on BP and demon-
strates through simulations under various conditions that the HMDVRP 
can be effectively solved via decentralized computation. The manage-
rial implications of this research are as follows. Companies seeking to 
13 
optimize their logistics and supply chains often operate complex net-
works with multiple distribution depots. The types and characteristics 
of transportation systems available at each facility can vary signifi-
cantly. Problems involving the coordination of diverse transportation 
systems and geographically distributed depots for optimized delivery 
can be modeled as an HMDVRP. By solving such problems within 
a reasonable time frame, logistics companies can enhance resource 
utilization and operational efficiency. The AMP-R algorithm enables 
effective solutions to be derived through the exchange of assignment 
information between depots without centralized computation. This 
allows for improvements in overall supply chain efficiency without 
the need for unnecessary sharing of sensitive details, such as internal 
parameters or specifics about other depots and vehicles. In particular, 
when the scale of the supply chain is large, making centralized compu-
tation burdensome, and information sharing is restricted due to security 
concerns, the proposed method can provide significant advantages by 
enabling decentralized cooperation. Moreover, the algorithm can pro-
gressively improve the solution through continuous iterations without 
reconstructing the entire problem in response to partial changes in the 
network. This highlights its practicality as a solution that offers both 
continuity and stability in dynamic environments.

5. Conclusion

This paper presented the AMP-R algorithm, a novel message-passing 
method based on belief propagation, for effectively addressing various 
forms of the HMDVRP in both centralized and decentralized settings. 
By modeling the HMDVRP as a statistical inference problem in a 
graphical model and applying the max-product BP approach, simplified 
message equations were derived to facilitate distributed computation. 
Despite the simplification, solving the SV-TSP and SV-CVRP in the 
message computation remains computationally intensive; therefore, an 
approximation technique was developed to efficiently compute the 
messages. Message buffers and a refinement step were incorporated to 
enhance convergence and ensure compliance with HMDVRP constraints 
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at each depot. In heterogeneous scenarios, transforming the SV-TSP 
into an ATSP yielded near-optimal solutions, demonstrating the prac-
ticality of the AMP-R algorithm to problem variations. Experimental 
results indicated that the AMP-R algorithm significantly outperformed 
traditional greedy approaches, even under conditions where finding 
optimal solutions was computationally impractical. Moreover, across 
six different HMDVRP variations, the solutions obtained within limited 
computation times closely approximated optimal results.

In ideal decentralized environments with minimal communication 
delays, computation can be effectively distributed among depots, fur-
ther enhancing overall efficiency and scalability. The AMP-R algorithm 
is thus expected to make a significant contribution to logistics and task 
planning studies, offering a framework for providing practical solutions 
in decentralized vehicle routing problems. The distributed nature of 
the AMP-R algorithm makes it particularly well-suited for large-scale 
logistics and multi-robot planning problems where real-time decision-
making in decentralized settings is essential. The ability to distribute 
computations across multiple depots also has the potential to enhance 
robustness against a constrained network with limited bandwidth or 
intermittent connectivity, such as autonomous vehicles operating in 
urban areas or remote environments. Theoretical guarantees on conver-
gence and optimality in arbitrary HMDVRP instances remain an open 
problem, as BP-based methods may not always converge to the optimal 
solution.
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