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 A B S T R A C T

Assigning aircraft to gates is one of the most important daily decision problems that airport professionals face. 
The solution to this problem has raised a significant effort, with many researchers tackling many different 
variants of this problem. However, most existing studies on gate assignment contain only a static perspective 
without considering possible future disruptions and uncertainties. We bridge this gap by looking at gate 
assignments as a dynamic decision-making process. This paper presents the Real-time Gate Assignment Problem 
Solution (REGAPS) algorithm, an innovative method adept at resolving pre-assignment issues and dynamically 
optimizing gate assignments in real-time at airports through the integration of Deep Reinforcement Learning 
(DRL). This work represents the first time that DRL is used with real airport data and a configuration containing 
a large number of flights and gates. The methodology combines a tailored Markov Decision Process (MDP) 
formulation with the Asynchronous Advantage Actor–Critic (A3C) architecture. Multiple factors, such as flight 
schedules, gate availability, and passenger walking time, are considered. An empirical case study demonstrates 
that the REGAPS outperforms two classic deep Q-learning algorithms and a traditional Genetic Algorithm in 
terms of reducing passenger walking time and apron gate assignment. Finally, supplementary experiments 
highlight REGAPS’s adaptability under various gate assignment rules for international and domestic flights. 
The finding demonstrates that not only did REGAPS outperform COVID restrictions, but it can also produce 
considerable benefits under other policies.
1. Introduction

One of the most significant current discussions in airport operation 
discipline is gate assignment, the process of allocating flights to airport 
gates. Based on the statistical data acquired by IATA [1], in 198 of 
354 airports surveyed, they lack the capacity to fulfill the existing 
demand, necessitating a greater degree of flexibility in the assignment 
of gates. Thus, it is vital to analyze the nature of the gate assignment 
problem (GAP) and design an efficient and effective approach to ease 
the stress of airport coordination. Many research works have tackled 
gate assignment [2]. One key issue with most of the past studies is 
that they were conducted from a static perspective, assuming a static 
environment without any unpredictable changes. As a result, no last-
minute disturbances are taken into account. However, existing research 
shows that flight delays negatively affect the performance of static gate 
assignments [3]. Consequently, these solutions can only be used as 
strategic planning, from which airport professionals must deviate in 
real-time to accommodate unplanned changes.

In practice, airport professionals assign gates in two stages: first 
in pre-assignment and then in real-time. In the pre-assignment phase, 
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gates are assigned in advance based on previous data. As plane travel 
is so readily disrupted, the pre-assignment plan will almost certainly 
diverge from the final plan. Operators often handle disturbances man-
ually, depending on their experience. Some researchers observed the 
deviation and attempted to solve it [4–6]. These attempts to mitigate 
the impact of disruption by strengthening the assignment plan’s robust-
ness or researching solutions to the reassignment challenge. However, 
current systems are incapable of rapidly adjusting the assignment plan 
in response to changes in the flight schedule, and no previous work has 
investigated automatic adjustment of the assignment schedule from a 
real-time perspective.

This study aims to bridge existing research gaps by departing from a 
static viewpoint in gate assignments, by analyzing the gate assignment 
procedure as a dynamic, real-time decision-making process. Thus, our 
main research objective can be described as: To develop a unified decision 
support system for both static and dynamic scenarios. In other words, our 
model can be used at the two stages, in pre-assignment and then in 
real-time after disruptions occur. Our solution stands-out for being a 
single model that can be run at any time, with updated information, 
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and by being able to provide a solution in a matter of milliseconds. 
Our objective is to explore the efficacy of this promising approach 
in addressing the stochastic and dynamic nature of gate allocation 
challenges. We propose that by leveraging the sequential decision-
making of Deep Reinforcement Learning (DRL), our framework may 
effectively manage urgent and frequent changes. We anticipate that this 
approach will (1) enhance current gate allocation methods by reducing 
future instances of undesirable remote gate usage, (2) strike a balance 
between competing objectives such as minimizing passenger walking 
time and prioritizing flight schedules, and (3) exhibit exceptional flexi-
bility, enabling swift execution under varying flight configurations with 
remarkably fast run times.

Our approach to the Gate Assignment Problem (GAP) involves two 
stages, each leveraging Markov Decision Processes (MDP) and DRL 
methodologies. MDP provides a data-based framework for automat-
ically solving sequential decision-making problems. With MDP, the 
environment is modeled as a set of states and actions that can be 
performed to control the system’s state. The goal is to control the 
system in such a way that some performance criteria is maximized. 
This modeling constitutes the base for the DRL model. DRL has the 
advantage of not having to rely on a complete and accurate model of 
the environment. Therefore, it can maximize rewards in environments 
where the exact dynamics of the environment are not known. We 
employ the Asynchronous Advantage Actor-Critic (A3C) architecture 
to address the GAP due to its unique properties — using multiple 
independent interacting agents allows for greater exploration in less 
time. Initially, we address the GAP from a static perspective, termed 
pre-assignment, where gate assignments are made before operational 
commencement. Subsequently, we transition to real-time assignment, 
where gate assignments are dynamically adjusted in response to evolv-
ing operational conditions, including real-time flight schedule changes. 
With each approaching flight, a decision is made, and we monitor 
the results before adjusting our decisions. Leveraging the inherent 
adaptability of MDP and RL, our framework seamlessly incorporates 
real-time adjustments, ensuring efficient and responsive gate allocation 
within airport operations.

This paper is organized as follows: Section 2 describes past GAP 
research as well as contemporary DRL applications in the transportation 
sector. In Section 3, an MDP formulation is proposed, which is tightly 
tailored to the GAP. Section 4 incorporates the developed MDP into 
the A3C architecture and builds the real-time GAP solution (REGAPS). 
The hypotheses for the implemented method are presented in Section 5. 
Section 6 conducts an empirical case study based on real airport data 
and evaluates and validates the model’s performance. Note that the 
specific airport is not disclosed due to privacy issues. Section 7 dis-
cusses whether the initial hypotheses were verified. Finally, Section 8 
concludes this paper.

2. Related work

This section covers the state-of-the-art on research on gate as-
signment. Previous works on this topic are described in Section 2.1. 
Additionally, given that DRL is prominent in this work, Section 2.2 
describes the latest advances in this area outside of GAP. Finally, 
Section 2.3 will clearly define the gaps in literature to be covered by 
this work.

2.1. Gate Assignment Problem (GAP)

Research into GAP has a long history in the operations research 
discipline due to its practical importance. There are multiple types of 
approaches with respect to the solution methodologies. These can be 
categorized into four parts:

• Expert systems design software to simulate the decision-making 
process of human experts. Some studies that fall into this category 
are Brazile & Swigger [7], Gosling [8], Srihari & Muthukrish-
nan [9] and Su & Srihari [10].
2 
• Exact methods are one of the most focused methodologies for GAP 
mainly modeled as Integer programming or Linear Programming. 
For instance, Barbic [11] published one of the earliest studies 
using a branch and bound algorithm with a lower bound that 
minimizes the total walking distance of the passengers. Mangoubi 
& Mathaisel [12] proposed a greedy heuristic approach and a 
linear programming relaxation method to minimize the total 
walking distance. Bolat [13] focused his objective on minimizing 
the difference between the minimum and maximum slack times, 
using a branch-and-bound algorithm and a heuristic approach 
called branch-and-trim. The primary limitation of exact methods 
is the extensive computation time. In practical GAPs, the objective 
is not to find a globally optimal solution but rather to obtain a 
satisfactory solution within a reasonable time frame.

• Stochastic Processes and Heuristic: this is the example of the work 
from Haghani and Chen [14] that proposed a heuristic algorithm 
to minimize passenger walking distance by assigning successive 
flights to the same slot. Ding et al. [15] developed a greedy 
algorithm to acquire an initial schedule for the hybrid algorithms 
based on Tabu search and Simulated Annealing later on. Recently, 
Jie Li et al. [16] presented a column generation-based algo-
rithm to solve gate assignment with combinational gates. Jiang 
et al. [17] introduce a novel approach to optimizing airport gate 
assignments, addressing harbor apron safety constraints through 
a two-phase mathematical model. Refinements to the branch-
and-price method improve efficiency and accuracy in solving 
the problem. She et al. [18] addresses the Airport Gate Assign-
ment Problem (AGAP) by proposing a multi-objective integer 
programming model and a two-phase Monte Carlo-based NSGA-
II algorithm. Computational analyses validate the efficacy of the 
approach in providing economical, robust gate assignments. The 
drawback of stochastic processes lies in their inherent high com-
putational complexity, coupled with the challenge of generating 
realistic scenarios.

• Reinforcement learning (RL) approaches: these offer an advantage 
over stochastic processes by not needing to specify a model. 
RL, the subject of this paper, is model-free, providing a data-
driven, learning-based framework to formulate and solve sequen-
tial decision-making problems. RL has been widely used in avia-
tion, with applications ranging from airline revenue management 
to aircraft altitude control [19]. Many aviation-related scenarios 
can be conceptualized as sequential decision problems, making RL 
an ideal tool. In various domains, RL has demonstrated promising 
outcomes. Nevertheless, to the best of the authors’ knowledge, 
the work Yildizi et al. [20] stands as the pioneering and sole 
attempt to apply RL to gate assignment. Their preliminary study 
uncovered a time complexity issue when dealing with more than 
12 gates. Nonetheless, a variety of RL algorithms and techniques 
exist, and determining the most suitable one for each problem 
requires extensive examination. It is evident that further research 
is warranted to explore the potential of RL for GAP. To this end, 
we propose a more complex RL algorithm capable of handling a 
larger number of gates.

Despite all the effort that has been done to assist on-ground oper-
ations, few of them are actually implemented in airports. One of the 
major issues is that these approaches are mainly designed from a static 
perspective. These solve the Pre-assignment problem, which is consid-
erably different from the final gate assignment once perturbations in 
real-time operations occur. Although some solutions are formulated as 
stochastic and robust approaches, and try to solve GAP from a dynamic 
perspective, with the limitation of heuristic algorithms, these can only 
minimize idle time and gate conflicts, but do not fully adjust to future 
uncertainties and perturbations.

Furthermore, the scale of the problem warrants the utilization of 
methods that are not reliant on specific models and can effectively 
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incorporate the temporal dimension of action sequences. First, the fact 
that RL learns by direct training in the environment renders it applica-
ble to any airport configuration. Note that the decision space for this 
problem can vary largely, from the number of flights to the multitude of 
gates, depending on the unique characteristics of each airport. Second, 
gate assignment represents a sequential dilemma wherein the allocation 
of specific gates at present influences the future availability of gates for 
subsequent aircraft. RL has the ability to consider future states when 
making decisions. Lastly, for large airports, real-time evaluation using 
conventional methods is not a solution, given their larger execution 
times.

2.2. Deep Reinforcement Learning (DRL)

To find the next-generation solution for the GAP, we resort to DRL. 
The foundation of RL is the MDP, which is molded with the gate 
assignment process. This section explores DRL works employed in other 
areas. RL aims to achieve a maximum reward through actions made 
by the agent and the interaction reward with the environment. The RL 
framework has become promising due to its ability to learn the dynam-
ics of the environment through direct interaction with the environment. 
With improved data availability and computational power, RL studies 
in aviation now range from airline revenue management to air traffic 
control (ATC) [19].

Recently, DRL has emerged. This coalesces deep learning (DL) and 
RL together and exploits both of their advantages the most. DL is widely 
used for function approximation and value prediction. There have been 
many precedents regarding DRL implementation in the transportation 
discipline. Lin [21] proposed a DRL approach toward the Electric Vehi-
cle Routing Problem with Time windows. Yu [22] offered a solution for 
online vehicle routing with neural combinatorial optimization and DRL. 
There are also applications on smart transportation systems concerning 
the rebalancing problem of the Bike-sharing system [21]. Li et al. [23] 
present a novel heuristic algorithm for the Gate Assignment Problem 
(GAP) in airport management. Combining tabu search with reinforce-
ment learning, it efficiently explores solutions, outperforming existing 
methods in solution quality and computation time across real-world 
benchmarks. Sui et al. [24] introduce a tactical conflict resolution 
strategy using Deep Reinforcement Learning to mitigate the increasing 
risk of flight conflicts in airspace. Controllers’ actions are modeled as 
a Markov Decision Process, trained by the Deep Q Network algorithm. 
Simulation experiments confirm the strategy’s feasibility and alignment 
with real-world flight safety regulations. Zhang et al. [25] address 
the Multi-Trip Vehicle Routing Problem with Time Windows using a 
novel Coordinated Multi-agent Hierarchical Deep Reinforcement Learn-
ing  approach. By structuring a three-layered framework, this method 
enhances solution quality and convergence rates, outperforming tra-
ditional heuristic algorithms and reinforcement learning techniques. 
Results indicate significant improvements in cost effectiveness and 
operational robustness, demonstrating the effectiveness of the proposed 
approach in transportation scheduling.

DRL has also been employed to address dynamic resource allocation 
problems. In this context, gate allocation can also be conceptualized as 
a type of resource, suggesting that insights from this research domain 
may be relevant. Jia Wang et al. [26] propose an incremental rein-
forcement learning framework for dynamic resource allocation, where 
task patterns are extracted from large-scale data. They construct an 
environment model that enables a learning agent to infer the logic of 
task service operations and calculate feedback scores for each allocation 
decision. Applications of dynamic resource allocation also extends to 
the transportation sector. For instance, Ying He et al. [27] propose 
a general framework that enables fast-adaptive resource allocation in 
dynamic vehicular environments by integrating hierarchical reinforce-
ment learning with meta-learning. This approach allows the framework 
to quickly adapt to new environments by fine-tuning only the top-level 
master network, while the low-level sub-networks continue to make 
3 
optimal resource allocation decisions. In another example, Hongbin 
Liang et al. [28] model the resource allocation problem in the Internet 
of Vehicles as a semi-Markov decision process, incorporating a resource 
reservation strategy and a secondary resource allocation mechanism. A 
RL algorithm is applied to solve the model.

2.2.1. DRL algorithms
DRL is also a generalized term for a large class of algorithms. One 

branch of DRL is called value-based approaches. The algorithm’s core 
is the value function that directly indicates the value or reward of 
an action. Deep Q-learning Network (DQN) [29] is a commonly used 
DRL model. However, it tends to overestimate the Q-value [30]. Many 
attempts have been carried out to solve this deficiency, and many 
variants emerged, such as Double DQN (DDQN) [31], and Dueling 
DQN [32]. A second branch is Policy-based approaches. The difference 
from value-based approaches is that rather than directly adjusting the 
action based on the reward, it adjusts the probability of choosing a 
certain action. A commonly used policy-based algorithm is the REIN-
FORCE algorithm [33]. There are also many other researchers who 
have adopted DRL in the transportation field [34–38].

In recent years, actor-critic algorithms [39] have been proposed to 
take advantage of the best properties of value-based and policy-based 
algorithms. These are divided into two parts: (1) generating an action 
based on a state, and (2) computing the Q-value of the action. The 
actor takes an action based on the given state, while the critic evaluates 
the action with the value-based function. Then the actor adjusts the 
probability of the selected action based on the critic’s evaluation. 
Even though these methods sound promising, implementing them has 
many difficulties. Actor-critic requires Artificial Neural Network (ANN) 
training both in the Actor and Critic models, which no doubt imposed 
great difficulty in network training. Also, the Q-value generated by the 
critic model is unable to tell the actor how much better or worse is the 
chosen action. The Asynchronous Advantage Actor-Critic (A3C) [39], 
used in this work, is one of the solutions to conquer these drawbacks. 
This model asynchronously parallel trains different agents on multiple 
independent environments. Each agent will update the global network 
asynchronously. This strategy not only exploits most of the computing 
capability of a workstation but also greatly accelerates the training 
process [40–42]. Note that the A3C algorithm was picked over an 
Advantage Actor–Critic (A2C) approach due to its asynchronous aspect, 
which has shown faster learning times [43] on a multi-core CPU 
computer as used by the authors.

2.3. Literature gaps

The review of the existing literature underscores a critical gap in 
addressing the dynamic nature of the GAP, which has predominantly 
been approached from a static perspective, focusing on Pre-assignment. 
Despite sporadic efforts to incorporate stochastic and robust methods, 
existing solutions remain hindered by heuristic algorithms and struggle 
to adapt to real-time perturbations and uncertainties. In response to 
this challenge, our study proposes a novel approach that integrates 
DRL techniques with the MDP framework. Specifically, we employ the 
A3C algorithm, renowned for its parallel training capability, enabling 
efficient decision-making in time-sensitive scenarios.

What sets our approach apart is its unique capability to seamlessly 
address both pre-assignment and real-time assignment challenges with 
minimal modification. By leveraging the synergistic capabilities of DRL 
and MDP, our framework offers enhanced flexibility and adaptability 
in optimizing gate assignments across various operational scenarios. 
Comparing with other approaches, DRL has the following advantages:

• The process of customizing the DRL environment and reward 
function is straightforward. Operators can easily design or mod-
ify gate-related information, such as the number of gates, their 
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distance from security checkpoints, and the specific flights as-
signed to each gate, based on the unique requirements of the air-
port. This flexibility enables airports to tailor the system to their 
operational needs without requiring advanced technical expertise.

• DRL allows us to anticipate future changes and disruptions while 
generating fast and effective solutions to support operators in 
making decisions under tight time constraints. Operators can 
easily incorporate changes and disturbances by updating the state 
space, enabling the system to adapt swiftly to evolving condi-
tions and ensuring that decision-making remains responsive and 
efficient.

• DRL is capable of handling both static and dynamic scenarios 
simultaneously or switching between them as needed by opera-
tors, providing the flexibility to accommodate varying operational 
demands. Depending on the operator’s requirements, DRL can 
generate either pre-assignment results or real-time assignment 
results, allowing the system to adapt to different scheduling and 
decision-making contexts efficiently.

3. Model formulation

The GAP poses a significant operational challenge in airports, re-
volving around the allocation of arrival and departure flights to suit-
able gates. The primary goal is to optimize gate assignments, taking 
into account key factors like minimizing passenger walking distances, 
maximizing gate utilization, and mitigating operational delays. In our 
research, we incorporate real-time gate assignment using reinforcement 
learning techniques to fully harness its potential advantages. Note that 
the real-time assignment is applied after the pre-assignment, consider-
ing the deviations between the actual and original flight schedules as 
the disturbance.

This study models a gate assignment problem as a Markov decision 
process (MDP). We consider that an airport has a series of nodes 𝐼 =
{1, 2,…}. Each node is regarded as a gate at the airport for aircraft to 
park temporarily and for passenger alighting and boarding. The set of 
gates 𝐼 is classified into 𝐼𝑏 and 𝐼𝑎, where 𝐼𝑏 is the subset of nodes in 
𝐼 that are Bridge Gates and 𝐼𝑎 are the Apron gates (Remote gates). A 
bridge gate is a gate that is directly connected to the terminal with a 
bridge, while a remote gate needs a shuttle bus to transfer passengers 
between the terminal and the aircraft. We define 𝐹 = {1, 2,…} as the 
set of flights. The optimization problem here is to ensure that every 
flight in 𝐹  has a gate in 𝐼 while minimizing the total cost.

Section 3.1 presents the key assumptions, followed by demonstrat-
ing the state transition process in the MDP (Section 3.2) and the 
objective functions (Section 3.4). Finally, Section 3.5 formulates the 
constraints imposed on the decision variables.

3.1. Key assumptions

The following assumptions are considered in this work:

Assumption 1: Similar type of flights occupy the gate with a similar 
amount of time, and the aircraft will be towed away or ready for 
departure. Aircraft will not occupy the gate just for waiting purposes. 
The occupation time of the gate consists of several parts, as shown in 
Fig.  1:

(a) Taxiing/towing time.
(b) Ground service.
(c) Passenger alighting and boarding.
(d) Idle time.

Assumption 2: We assume that the capacity of the airport apron is 
infinite. When there is no vacant bridge gate, the aircraft will be 
assigned to the Apron.
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Assumption 3: Considering that the gate assignment process occurs 
subsequently to obtaining the flight schedule, we assume that all flights 
can successfully land without encountering any additional infrastruc-
ture complications. Limited runway capacity, or priorities between 
airlines, for example, are not considered.

3.2. State formulation

The RL algorithm has a discrete state space. Given the infrastructure 
and settings, the GAP is regarded as an MDP in which each stage 
𝑛 refers to the flights in 𝐹 . Each stage 𝑛 is characterized by the 
corresponding tuple of state variables 𝑠𝑛, and influenced by the decision 
variables 𝑥𝑛. Herein, we define the states tuple: 

𝑠𝑛 = (𝑓𝑛, 𝜏𝑛). (1)

Each state 𝑛 contains the arrival times 𝑓𝑛, which is determined in 
pre-assignment scenario and dynamically updated in real-time assign-
ment scenario and the gate size of the required flight (medium or large), 
𝜏𝑛. The gate sizes considered are as follows:

• 𝜏𝑛 = 2: medium size, can accommodate small or medium aircraft.
• 𝜏𝑛 = 3: large size, can accommodate small, medium, or large 
aircraft.

Note that a larger gate can also be used by smaller aircraft. The 
distinction between small, medium, and large aircraft is clarified in 
following Section 3.3.

Finally, note that additional information could be used to hopefully 
provide more information on future perturbations. However, it was 
decided to keep this simplified state formulation for the following 
reasons:

• Ensuring method agnosticism with respect to airport layout al-
lows for versatile application across various airports.

• Environmental factors, such as weather conditions, are delib-
erately excluded within this approach. The intention is not to 
predict disturbances but, instead, to react to them within the 
decision-making framework of the GAP at the airport.

• With this state formulation, the algorithm utilizes identical inputs 
to those of conventional methods employed as baselines. This 
alignment facilitates direct comparisons,

• Future flight schedules contain information for the complete day, 
which warrants a large state space. Increasing this state would 
further considerably increase the training time of the algorithms.

3.3. Action formulation

There is a set of discrete actions, where each one represents a 
gate that the agent may select. For each state, the number of possible 
actions corresponds to the number of available gates. Consequently, 
this RL model can be run for different airport configurations, with 
the only modification being the number of gates. Each action, 𝑥𝑛, is 
characterized as a tuple, and on top of the gate number, it has multiple 
attributes which represent the limitations of the gate: 

𝑥𝑛 = (𝐼𝑛, 𝜆𝑛, 𝜂𝑛, 𝜔𝑛, 𝜌𝑛). (2)

𝐼𝑛 represents the gate number, which is the actual element that agent 
chooses, other elements serve as constraints. 𝜆𝑛 is the compatible 
aircraft size for this gate:

• 𝜆𝑛 = 1: small aircraft (i.e. under 100 seats).
• 𝜆𝑛 = 2: medium aircraft (i.e. between 100 and 200 seats).
• 𝜆 = 3: large aircraft (i.e. more than 200 seats).
𝑛
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Fig. 1. The several phases of the gate assignment process.
Fig. 2. State transition.
𝜂𝑛 is the occupation time for this gate. Finally, 𝜔𝑛 is the earliest 
available time, and it is determined as follows: 
𝜔𝑛 = ̂𝑓𝐼𝑛 + ̂𝜂𝐼𝑛 (3)

where ̂𝑓𝐼𝑛  is the flight arrival time the last time Gate 𝐼𝑛 was chosen. 
̂𝜂𝐼𝑛  is the gate occupation time when last time Gate 𝐼𝑛 is selected. 𝜌𝑛 is 
a binary indicator showing whether this gate is an Apron gate.

The different settings of 𝑥𝑛 influence the overall performance of the 
gate assignment. It was chosen to define all possible actions in the form 
of 𝑥𝑛, instead of just the gate identification, as to give more information 
to the RL model to make its decision.

The terminal condition of this MDP is when all the inbound flights 
get their gate assignment command. Fig.  2 demonstrates the state tran-
sition process, characterized by the state transition function 𝑝(𝑠𝑛, 𝑥𝑛).

3.4. Objective formulation

Given the current circumstances and the requirements of the airport 
ground operations, a multi-objective approach is preferred. Based on 
the performance selection method [44], (1) the number of the remote 
gate and (2) passenger walking time are applied as the objectives in this 
paper. These objectives are then combined into a single reward that is 
given to the RL agent. The weight of two objectives are determined 
according to the priority lined out in [44].

The number of remote gates cost, 𝐿, is denoted as: 

𝐿 =
𝑓
∑

𝑛=1
𝜌𝑛 (4)

We interpret Passenger walking time as an average man walking time 
taken from the security check to the boarding gate, denoted in Eq.  (5). 

𝑡𝑝𝑤𝑡,𝐼𝑛 =
𝑑𝑝𝑤𝑡,𝐼𝑛

𝑣
, (5)

where 𝑡(𝑝𝑤𝑡,𝐼𝑛) is the passenger’s walking time from the security check 
to the chosen Boarding Gate 𝐼  at State 𝑛. Parameter 𝑑  is the 
𝑛 (𝑝𝑤𝑡,𝐼𝑛)
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distance from security check to the chosen Boarding gate 𝐼𝑛 at State 𝑛. 
In turn, 𝑣 is the average human walking velocity (i.e. 5.43 km/h). The 
objective is to minimize the total PWT, denoted in Eq.  (6). 

𝑇𝑝𝑤𝑡 =
𝑓
∑

𝑛=1
𝑡𝑝𝑤𝑡,𝐼𝑛 (6)

With the two cost components mentioned above, the total cost function 
is demonstrated as follows: 
𝐶 = 𝛼𝐿 + (1 − 𝛼)𝑇𝑝𝑤𝑡, (7)

where 𝛼 is a coefficient that balances the two objectives’ trade-offs. We 
assume 𝛼 = 0.8, as we come up with this number upon agreement with 
airport operators. The overall objective function for the GAP is then 
defined: 
𝑚𝑖𝑛[𝐶], (8)

3.5. Constraints

GAP is subjected to a set of regulatory constraints. Constraint (9) 
demonstrates the selected gate must be one of the functioning gates: 
𝐼𝑛 ∈ 𝐼 (9)

Note that functioning means that the gate is working and can be used. 
Constraint (10) shows the lower (upper) bounds of the gate occupation 
time (𝜂), which is different according to Assumption 1: 
𝜂𝑚𝑖𝑛 ≤ 𝜂𝑛 ≤ 𝜂𝑚𝑎𝑥 (10)

Constraint (11) indicates the type of the gate: 

𝜌𝑛 =

{

1 if 𝐼𝑁 ∈ 𝐼𝑎,∀𝑛 = 1, 2, 3,…
0 otherwise

(11)

where 𝐼𝑎 indicates Apron gates, and 𝐼𝑏 Bridge gates. There are also a 
set of operational constraints that must be complied with. Constraint 
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(12) defines that the selected gate must be available when the flight is 
arriving: 
𝜔𝑛 ≤ 𝑓𝑛, (12)

where 𝜔𝑛 represents the earliest available time of the gate, and 𝑓𝑛 the 
arrival time of the flight. Finally, constraint (13) sets that the gate size, 
𝜏𝑛, must be compatible with the aircraft size, 𝜆𝑛: 

𝜆𝑛 ≤ 𝜏𝑛. (13)

4. Deep reinforcement learning model

DRL is a machine learning scheme where an agent interacts with 
the environment over a series of time steps. At each state, the agent 
performs an action according to the policy. The environment then 
changes according to the action. A reward is given to the agent — 
this reward evaluates how good the environmental change was. The 
RL model uses this reward to evaluate how good the performed action 
was. The long-term reward is the accumulative immediate reward when 
the environment reaches its terminal state. RL aims to maximize long-
term reward over episodes of the training process. In other words, RL 
attempts to find the actions that yield better rewards.

Section 4.1 defines the components of the developed RL model: 
state, actions, reward, and action shaping. Section 4.2 defines the RL 
algorithm employed in the work, the A3C. Finally, Section 4.3 defines 
how the RL model is used to produce a new real-time gate assignment 
based on delays of incoming aircraft.

4.1. Incorporation of components

The vital components of the RL model that are used in this paper 
are presented here:

• State: Defined in Section 3.2 as 𝑠𝑛 = (𝑓𝑛, 𝜏𝑛). The size of the state 
space in length equals the total flights.

• Action: Defined in Section 3.3 as 𝑥𝑛 = (𝐼𝑛, 𝜆𝑛, 𝜂𝑛, 𝜔𝑛, 𝜌𝑛). The size 
of the action space equals the number of available gates.

• Reward: Since reinforcement learning relies on the accumulation 
of immediate rewards, the total cost 𝐶 must be decomposed. The 
total cost comprises two components: the cost associated with 
assigning flights to remote gates and the walking time cost from 
security to the boarding gate. These can be interpreted as the 
costs corresponding to two types of actions: assigning a flight to a 
remote gate or to a bridge gate. To reflect this, we designed two 
mutually exclusive terms in the immediate reward function: 
𝑟𝑛 = 𝛼𝜌𝑛 + (1 − 𝛼)(1 − 𝜌𝑛)𝑡𝑝𝑤𝑡,𝐼𝑛 (14)

where 𝑟𝑛 represents immediate reward at state 𝑛, 𝜌𝑛 and necessary 
information needed in 𝑡𝑝𝑤𝑡,𝐼𝑛  can be acquired in 𝑥𝑛.
In Eq.  (14), only one of the two terms is applied depending on 
𝜌𝑛 in 𝑥𝑛. While traditional reinforcement learning (RL) focuses on 
solving a maximization problem, the Gate Assignment Problem 
(GAP) is framed as a minimization problem. Assigning flights to 
apron gates is most always undesirable; therefore, the first half 
of the reward is taken the opposite. A negative reward signals to 
the agent that this action is unfavorable. For actions involving 
bridge gates, which traditionally result in positive rewards, we 
invert the term to ensure the reward remains positive while 
prioritizing lower walking times. This adjustment ensures that a 
lower walking time corresponds to a higher reward. The final 
immediate reward function is defined as follows, incorporating 
𝛼 to regulate the relative importance of the two terms. 
𝑟𝑛 = −𝛼𝜌𝑛 + (1 − 𝛼)(1 − 𝜌𝑛)𝑡−1𝑝𝑤𝑡,𝐼𝑛

(15)
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• Action Shaping [45–47]: this technique is used to train the 
agent to choose better actions. There will be various gates that 
are unavailable or unsuitable to choose from at each state. The 
chance of selecting these faulty gates should be zero. We employ 
an action mask to filter out all the impossible actions at each 
stage, forcing the agent only to choose legal actions, considerably 
improving learning efficiency. The action mask is implemented 
through a vector: 

Mask𝑎(𝑆𝑡𝑎𝑡𝑒) = [mask𝑎,1(𝑠𝑡𝑎𝑡𝑒),… ,mask𝑎,𝑛(𝑠𝑡𝑎𝑡𝑒)], (16)

where mask𝑎,𝑛(𝑠𝑡𝑎𝑡𝑒) is defined as follows: 

mask𝑎,𝑛(𝑠𝑡𝑎𝑡𝑒) =

{

1 if 𝐼𝑁 ∈ 𝐼𝑎𝑣𝑎,∀ 𝑛 = 1, 2, 3,…
0 otherwise

(17)

where 𝐼𝑎𝑣𝑎 represents the subset of gates that are currently func-
tional, available, and have a size matching the aircraft and suffice 
all the other constraints. Thus, the mask will only enable the RL 
agent to pick gates that are functional and match the size of the 
flight and meet other requirements.
Finally, the action mask design is adaptable and can be easily 
customized to different settings and cases. We may set the proba-
bilities of invalid actions to zero by adding an extra layer before 
the action probability calculation in the Actor network.

4.2. Asynchronous Advantage Actor Critic (A3C)

In general, the DRL algorithm has two categories: Value-based and 
Policy-Based. The value-based approach is a deterministic policy, in 
which when the model is optimized to the best, every state’s corre-
sponding action is determined, while Policy-based is stochastic. In a 
policy-based algorithm, every state/action series in each episode is 
denoted as Trajectory (𝜏): 

𝜏 = {𝑠1, 𝑥1, 𝑠2, 𝑥2,… , 𝑠𝑛, 𝑥𝑛} (18)

The probability of this trajectory is:
𝑝𝜃(𝜏) = 𝑝(𝑠1)𝜋𝜃(𝑥1|𝑠1)𝑝(𝑠2|𝑠1, 𝑥1)𝜋𝜃(𝑥2|𝑠2)...

= 𝑝(𝑠1)𝛱𝑁
𝑛=1𝜋𝜃(𝑥𝑛|𝑠𝑛)𝑝(𝑠𝑛+1|𝑠𝑛, 𝑥𝑛) (19)

The total reward of this trajectory is: 

𝑅(𝜏) =
𝑁
∑

𝑛=1
𝑟𝑛 (20)

The goal is to find the best policy 𝜋𝜃 , that can optimize the total 
reward 𝑅(𝜏).

However, it is difficult to find a satisfying policy. To solve this 
drawback, the Actor-Critic (AC) framework has been put forward. In 
the AC algorithm, the agent is comprised of an actor and a critic. 
The actor acts under the current state using the current policy, then 
the environment will switch to a new state and return the immediate 
reward to the critic. The critic will judge the action based on the reward 
and return it to the actor for updating and calibrating the policy. A3C is 
proposed based on the AC algorithm, where the difference is that A3C 
employs multiple agents working concurrently, and asynchronously 
trains the Artificial Neural Network (ANN), therefore accelerating the 
training process while enhancing the convergence significantly.

Here, we present the working process of one agent.
Similar to AC algorithm, The A3C algorithm has a policy function 

𝜋𝜃(𝑥𝑛|𝑠𝑛), and a value function 𝑉𝜃𝑣 (𝑠𝑛),where 𝜃, 𝜃𝑣 are weights param-
eters. Both policy and value functions are updated after certain steps 
of action. The value of the discounted reward, 𝐷𝑅(𝜏), tells the agent 
which actions are rewarding and which are not. 

𝐷𝑅(𝜏) = 𝑟1 + 𝛾𝑟2 + 𝛾2𝑅3... =
∞
∑

𝛾𝑛−1𝑟𝑛 (21)

𝑛=1
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where 𝛾(0 < 𝛾 < 1) is the discount factor. The greater discount factor 
the more the agent is more focused on the future reward. Thus, the 
value function is defined as: 

𝑉𝜃𝑣 (𝑆𝑛) = 𝐸[𝐷𝑅(𝜏)|𝑠 = 𝑠𝑛, 𝜋] = 𝐸[
∞
∑

𝑛=1
𝛾𝑛−1𝑟𝑛|𝑠 = 𝑠𝑛, 𝜋] (22)

Rather than use one-step Time-Difference-error(TD-error) in AC, 
we use n-step TD-error to better update the parameters. The update 
performed can be seen as: 
∇𝜃𝐽 (𝜃) = ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑥𝑛|𝑠𝑛)𝐴𝜃,𝜃𝑣 (𝑠𝑛, 𝑥𝑛) (23)

𝐴𝜃,𝜃𝑣 (𝑠𝑛, 𝑥𝑛) = 𝑄(𝑠𝑛, 𝑥𝑛) − 𝑉𝜃𝑣 (𝑠𝑛) (24)

where 𝑄(𝑠𝑛, 𝑥𝑛) =
∑𝑁

𝑛=1 𝛾
𝑛−1𝑟𝑛 + 𝛾𝑛𝑉𝜃𝑣 (𝑠𝑛+1).

To encourage exploration and avoid premature convergence, an 
entropy item is adopted. The Actor network parameter update is per-
formed based on the following accumulated gradient: 
𝑑𝜃 ← 𝑑𝜃 + ∇𝜃′ 𝑙𝑜𝑔𝜋𝜃′ (𝑥𝑛|𝑠𝑛)𝐴𝜃′ ,𝜃𝑣 (𝑠𝑛, 𝑥𝑛) + 𝛽∇𝜃′𝐻(𝜋𝜃′ (𝑠𝑛)) (25)

where 𝐻(𝜋𝜃′ (𝑠𝑛)) is the entropy, 𝛽 controls the relative importance of 
the entropy and the reward. The Critic-network parameter update is 
performed based on the following accumulated gradient: 

𝑑𝜃𝑣 ← 𝑑𝜃𝑣 +
𝜕(𝐴𝜃′ ,𝜃𝑣 (𝑠𝑛, 𝑥𝑛))

2

𝜕𝜃′𝑣
(26)

Finally, the proposed A3C-based Gate assignment algorithm is
demonstrated in Algorithm 1 [29].

Algorithm 1 A3C-based Gate Assignment Algorithm
1: Initialization:
2: Initialize global actor-network and critic network parameters with 

𝜃 and 𝜃𝑣
3: Set global Episode Counter T=0 and thread episode counter t=0
4: Initialize thread actor-network and critic network parameters with 

𝜃′ and 𝜃′𝑣
5: Initialize 𝑇𝑚𝑎𝑥, 𝑡𝑚𝑎𝑥, 𝑁, 𝛾, 𝛽
6: DO:
7: Set t = 1
8: Reset 𝑑𝜃 = 0 and 𝑑𝜃𝑣 = 0
9: while 𝑇 < 𝑇𝑚𝑎𝑥 do
10:  Retrieve parameters from the global network: 𝜃′ = 𝜃, 𝜃′𝑣 = 𝜃𝑣
11:  Obtain state 𝑠𝑛
12:  while 𝑡 < 𝑡𝑚𝑎𝑥 do
13:  Choose action 𝑥𝑛 under the policy 𝜋𝜃(𝑥𝑛|𝑠𝑛)
14:  Get reward 𝑟𝑛 and new state 𝑠𝑛+1
15:  𝑡 = 𝑡 + 1
16:  end while
17:  

𝑄 =

{

0, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠𝑡𝑎𝑡𝑒
𝑉𝜃′ (𝑠𝑛), 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠𝑡𝑎𝑡𝑒

(27)

18:  while 𝑡 = 𝑡𝑚𝑎𝑥 do
19:  𝑄 = 𝑟𝑛 + 𝛾𝑄
20:  Update thread actor-network parameter: 

𝑑𝜃 ← 𝑑𝜃 + ∇𝜃′ 𝑙𝑜𝑔𝜋𝜃′ (𝑥𝑛|𝑠𝑛)𝐴𝜃′ ,𝜃𝑣 (𝑠𝑛, 𝑥𝑛) + 𝛽∇𝜃′𝐻(𝜋𝜃′ (𝑠𝑛)) (28)

21:  Update thread critic-network parameter: 

𝑑𝜃𝑣 ← 𝑑𝜃𝑣 +
𝜕(𝐴𝜃′ ,𝜃𝑣 (𝑠𝑛, 𝑥𝑛))

2

𝜕𝜃′𝑣
(29)

22:  end while
23:  Perform asynchronous update 𝜃 and 𝜃𝑣 using 𝑑𝜃 and 𝑑𝜃𝑣
24:  T= T+1
25: end while
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The global framework of the A3C algorithm is illustrated in Fig.  3. 
The agent is comprised of an actor and a critic. The actor acts under 
the current state using the current policy. Then the environment will 
switch to a new state and return the immediate reward to the critic. 
The critic will judge the action based on the reward and return it 
to the actor for updating and calibrating the policy. A3C is proposed 
based on the Actor-Critic algorithm, where the difference is that A3C 
employs multiple agents working concurrently and asynchronously 
training the ANN, accelerating the training process while enhancing the 
convergence significantly.

4.3. Real-time Gate Assignment Problem Solution (REGAPS)

With the successful implementation of the A3C-GAP algorithm, 
the Gate Pre-assignment Problem has been solved. However, the pre-
assignment schedule always deviates from the actual schedule due to 
multiple causes, such as weather conditions and regulations. Hence, 
the proposed REGAPS algorithm diagram is demonstrated in Fig.  4. At 
Time Zero, which marks the beginning of the day, the model initiates 
the execution of an algorithm that treats gate assignment as a pre-
assignment problem, relying on the original flight schedule. Under 
normal circumstances, the operator proceeds with gate assignments per 
the predetermined schedule when no delays are encountered. However, 
upon detecting a delay (at Reschedule point T, Fig.  4), the model 
promptly updates the flight schedule and re-executes the algorithm 
using the revised input, thus obtaining an updated assignment. The 
figure labeled as Fig.  5 provides a detailed explanation of how flight 
schedules are updated. Note that in this paper, we assume that once 
the gate occupation time (which includes boarding time) is completed, 
the aircraft will either be ready for takeoff or moved to the apron in 
the event of a delay, as Assumption 1. Therefore, departure delays do 
not affect gate usage in our current model. It shows that when delays 
or changes in schedules are identified, only the arrival times of affected 
flights are adjusted, while the assigned gates and arrived flights remain 
the same. This iterative process ensures the attainment of real-time 
gate assignments, facilitating their completion in response to changing 
conditions.

To solve the real-time assignment problem, the initialization should 
be set as the new timetable of the arriving flights, and the gate oc-
cupation states should be set simultaneously. Also, several buffers are 
applied to store the best action, best reward, state information, and gate 
occupation status.

5. Hypotheses

The following hypotheses are established regarding how the RE-
GAPS algorithm can improve gate assignment over conventional meth-
ods:

Hypothesis 1: The REGAPS algorithm is poised to surpass other meth-
ods by strategically considering the sequence of actions over time. Note 
that the REGAPS algorithm does not possess additional information 
compared to other methods, and does not predict disturbances. How-
ever, we hypothesize that its unique capacity lies in learning from 
past experiences. The REGAPS algorithm can discern which decisions 
result in more favorable outcomes. For instance, it can learn which gate 
allocation patterns lead to reduced Apron usage by day’s end.
Hypothesis 2: The REGAPS algorithm will prioritize reducing Apron 
gate usage, as this value was made paramount in the reward formula-
tion (Section 3.4).
Hypothesis 3: The REGAPS will improve upon conventional method 
in environments with higher complexity and uncertainties. In environ-
ments with lower complexity, it is expected that conventional methods 
already perform well and the introduction of REGAPS may be not 
represent and improvement.
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Fig. 3. The A3C framework.

Fig. 4. Diagram of the proposed REGAPS.
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Table 1
Pre-assignment experiment results.
 Gate number Quantity Category 
 59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,80,82,84 18 High-risk 
 50,51,53,54,55,56,57,58,60,62,64,86,88,90,91,92,94,95,96,97,98 21 Low-risk  
Fig. 5. Flight schedule updating diagram.
Hypothesis 4: The REGAPS algorithm is expected to exhibit superior 
execution speed, as RL methods are known for being more efficient 
speed-wise when compared to conventional methods [48].

Confirmation of these hypotheses through the performed use case 
will be discussed in Section 7.

6. Results

The presented results are divided into the following sections. Sec-
tion 6.1 describes the settings of the conducted experiments. The 
methodology is first tested using actual airport data under the Non-
sharing policy during COVID-19 times to verify and validate the model. 
Sections 6.2 and 6.3 present the pre-assignment and the real-time gate 
assignment results, respectively. Note that, for pre-assignment, we refer 
to the algorithm as A3C-GAP. Only, during the real time assignment, 
the term REGAPS is used. Section 6.4 applies the methodology un-
der various assignment policies (i.e. Complete Sharing, Non-Sharing, 
Partial Sharing policy) to further test the model’s universality. Finally, 
Section 7 discusses future improvements.

6.1. Experimental settings

We use real data from an airport under the COVID-19 regulations. 
The data covered the period from July 7th, 2021 to July 8th, 2021, 
containing 124 flights. The experiment was carried out on a Mac mini, 
M1 chip, 8 cores and 16 GB RAM. In A3C algorithm, Actor network uses 
following full connected network: 𝑁 × 64 × 128 ×𝐴, N is the dimension 
of the states, and A is the total of Actions. Critic network uses similar 
structure: 𝑁 × 64 × 128 × 1.

Due to the requirements of the Technical Guidelines for Airport 
Epidemic Prevention and Control posted by the Civil Aviation Adminis-
tration of China [49], airports need to categorize arriving flights based 
on the risk level. And different category flights have different dedicated 
gates. High-risk flights (mostly international, 15 flights) and Low-risk 
flights (mostly domestic ones, 109 flights) are strictly separated. Based 
on the consultation of the on-ground operators, we assume that low-risk 
flights occupy slots for 60 min. Because of the strict border control and 
security check requirements, a high-risk flight can occupy a slot for up 
to 4 h (240 min). These values were provided by the operators at the 
target airport and, according to their statements, are similar to values 
applied all through China.

The layout of the airport terminal is shown in Fig.  6. The second 
floor (2F) is for passengers arriving from domestic and international 
flights. The Middle floor (MF) is for domestic flight departure, and the 
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Table 2
Hyper parameters of machine learning algorithms used in this experiment.
 Hyper parameter A3C DQN DDQN 
 Learning rate 1e−6 1e−6 1e−6  
 Discount factor 0.96 0.96 0.96  
 Network update frequency 5 500 500  
 Hidden layers 3 3 3  
 Episodes 12 000 12000 12000 
 Exploration rate – 0.3 0.3  
 Memory capacity – 10 000 10000 

third floor (3F) is for security checks and international flight departure. 
Passengers must first arrive at 3F to complete the check-in procedure 
and pass the security check. Then, domestic flight passengers will go to 
the MF for boarding, while international flight passengers will take an 
independent passage to the boarding gate. Different types of passengers 
will take different routes inside the terminal, resulting in different 
walking times. In this case, domestic passengers will walk from the 
security check to the predestined boarding gate.

The number of boarding gates in Fig.  6 corresponds to the gate 
numbers in Fig.  7, which connects passengers and aircraft. The airport 
classifies its bridge gates as High-risk and Low-risk, as displayed in 
different colors in Fig.  7, and explicitly stated in Table  1.

The original flight schedule, actual flight schedule, and on-ground 
allocation results are based on the First-come-first-served (FCFS) rule 
and are acquired at the same airport. In this rule, gates are assigned 
based on the arrival times of the aircraft.

6.2. Pre-assignment experimental results and analysis

This section will conduct an experiment and comparison on the pre-
assignment problem. Note that, for pre-assignment, algorithms produce 
a gate assignment plan for the complete day in one run. One output of 
all algorithms contains the gate assigned for very flight. Herein, no real-
time assignment is yet performed. The A3C-GAP algorithm will perform 
based on the original flight schedule. Classic RL algorithms Deep Q-
Learning(DQN) [29] and Double-DQN(DDQN) [31] are applied as a 
comparison. The hyper parameters are provided in Table  2. The number 
of episodes is determined to provide sufficient time for DQN and DDQN 
algorithms to learn and converge. Most other hyper-parameters and 
implementation are coming from [50].

The Genetic Algorithm (GA) is a heuristic approach, also used 
for comparison purposes, the detailed implementation can be viewed 
at [51]The objective of this GA is to minimize costs regarding less apron 
gates usage and less passenger walking time. The selection of a GA over 
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Fig. 6. Layout of the case airport.
Fig. 7. Gate layout of the terminal.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
alternative methodologies was predicated upon its extensive adoption 
as evidenced in scholarly works [18,52,53]. The continued utilization 
of GA by researchers until recent times [53] underscores its enduring 
relevance and scientific merit, affirming its continued vitality within 
the field.

As previously explained, the GAP is divided into two parts: Low-risk 
flight assignment and High-risk flight assignment. Thus, the experiment 
is bipartite. All methods are run separately for these two assignments. 
The results of both assignments are shown side by side for comparison.

Fig.  8 displays the learning curves of each algorithm under different 
scenarios. We consider the best reward and assignment plan acquired 
from each algorithm experiment as the finalized assignment plan. As 
shown in Fig.  8, the proposed A3C-GAP algorithm achieves the best 
results in both cases. Additionally, based on the shadow area, the A3C-
GAP algorithm has a much smaller variance than DQN and DDQN, 
which means it is more stable. According to the algorithm execution 
durations outlined in Table  3, A3C exhibits significantly swifter perfor-
mance compared to DQN and DDQN across both scenarios, completing 
with a total runtime of 185 s. In contrast, both DQN and DDQN require 
over 1200 s to complete their execution.

Per Table  3, the A3C-GAP algorithm’s best-accumulated reward 
is 17.42, overtaking GA’s best-accumulated reward −14.67. Classic 
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reinforcement learning algorithms DQN and DDQN acquired fairly 
low rewards: −44.96 and −60.56. In the realm of computational ef-
ficiency, the A3C-GAP algorithm demonstrates superior convergence 
speed compared to both DQN and DDQN algorithms, which exhibit 
prolonged convergence times and insufficient reward accumulation. 
This is explained by the fact due to the additional workers, A3C collects 
data faster. Additionally, as every single worker instance also has their 
own environment, the collected data is more diverse, which leads to 
more robust results.

The Genetic Algorithm (GA) does not lag behind the A3C-GAP 
algorithm. Notably, GA and A3C-GAP yield comparable outcomes in 
high-risk scenarios, characterized by a reduced number of flights and 
thereby diminished complexity. Nevertheless, the A3C-GAP algorithm 
stands out in terms of the performance speed. Once the complexity 
of the environment increases, as it is the case from high-risk to low-
risk flights, the running of time GA method increases by roughly 53%. 
In turn, A3C-GAP increases only by roughly 19%. Regarding low-risk 
flights, A3C-GAP is faster than GA by almost 39%. This runtime is 
particularly crucial in busy airports, where prompt decision-making is 
imperative.

Finally, it is interesting to note that, despite the primary optimiza-
tion objective was centered on Apron gates reduction, the A3C-GAP 
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Fig. 8. Pre-assignment experiment learning curves.
Table 3
Pre-assignment experiment results.
 Type of flights Low-risk flights High-risk flights
 Type of algorithm REGAPS GA DQN DDQN REGAPS GA DQN DDQN 
 Total reward [−] 17.42 −14.67 −44.96 −60.56 45 39.32 32.32 37.16  
 Passenger walking time [m] 1574.78 1668.89 1617.81 1640.04 33.82 48.99 51.05 30.84  
 Apron [−] 14 32 45 51 0 0 4 7  
 Algorithm running time [s] 185 302 1260 1298 156 198 653 681  
algorithm effectively mitigates passenger walking time, rendering it 
superior across all metrics relative to alternative methods. Naturally, 
this is due to the fact that Apron gates are the ones with the highest 
walking time.

In Table  4, a segment of the assignment results is presented to 
better elucidate the reasons behind the superior performance of the 
A3C-GAP algorithm over the GA, to the extent possible due to the 
black-box nature of a DRL algorithm. Here, it is important to note that 
both algorithms have access to the same information, and optimize the 
same cost function. Both algorithms output a gate assignment solution 
for all gates during the day. Table  4 shows an excerpt of only the 
initial 12 flights of the day. All gates are available at the beginning 
of the day. It is clear that both algorithms do not select the same gates. 
Additionally, the GA utilized 2 apron gates — selection is made over 
leaving the remaining non-apron gates available for future flights. The 
A3C algorithm did not use any apron gate. Finally, the A3C algorithm is 
able to select gate ‘92’ for two subsequent flights. This shows the higher 
capability of the A3C algorithm to understand the sequential nature of 
the GAP, resulting in reduced usage of apron gates.

6.3. Real-time experimental results and analysis

A real-time gate assignment experiment was conducted to validate 
the REGAPS algorithm. The algorithm for the same complete work day 
as the pre-assignment experiment. We consider the deviations between 
the actual and original flight schedules as the disturbance. Thus, the 
goal for the implementation of the RL model is to adapt to flight delays. 
Every time a deviation longer than 20 min is considered a disturbance 
(similarly to on-ground staff), which will trigger the reschedule module 
and update the flight schedule. The final comparison is between the 
actual assignment (i.e. as the Real case) and REGAPS.

Per Table  5, the REGAPS algorithm is significantly more effective 
under both scenarios than in the Real case. The REGAPS reduced both 
11 
the usage of Apron gates and the total walking time. Additionally, to be 
noted that the low-risk flight assignment task includes a large amount 
of computation, whereas the high-risk task has few computation sce-
narios. This experiment proved that the REGAPS algorithm can yield a 
satisfying result under different levels of computational workload.

The respective Sankey chart of REGAPS and Real case are shown 
in Figs.  9(a) and 9(b). A Sankey chart is a type of flow diagram used 
to visualize the movement of quantities between different categories. 
In this context, it illustrates the distribution between apron gate and 
bridge gate assignments, highlighting the quantity of gates used and 
their respective utilization. Not only REGAPS greatly minimized the 
Apron gate assignment, but it also deployed fewer gates of the airport. 
Further, the assignment schedule is planned out evenly to avoid the 
intensive use of one gate. This means that REGAPS can make better 
use of each gate. The comparison between REGAPS and the Real case 
revealed that the former could achieve a significantly better outcome 
and reduce the occupation of airport resources.

6.4. Effectiveness with policy changes

Sections 6.2 and 6.3 proved the REGAPS algorithms’ validity using 
real-world data during the COVID period. Past COVID, the rules for gate 
assignments have changed. Various airports have different approaches 
to gate assignment. As a result, they design their policies.

According to CAAC guidelines, the optimum policy is complete gate 
sharing between international and domestic aircraft to maximize the 
use of bridge gates. However, unlike domestic passengers, international 
travelers must go through customs and passport checks. To allow the 
gate to be shared by two types of planes, airports must use a specific 
bridge to segregate the passenger flow line, which requires terminal and 
bridge modifications and construction and is costly. As a result, rather 
than implementing a complete sharing or non-sharing policy, airports 
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Table 4
Assignment examples — different actions between A3C and GA for the same scenario.
 A3C GA

 Gate number Boarding distance (m) Apron (Y/N) Gate number Boarding distance (m) Apron (Y/N) 
 92 1169 N 64 784 N  
 56 1055 N 98 1241 N  
 90 1105 N 62 830 N  
 96 1232 N 57 1100 N  
 57 1100 N 94 1207 N  
 58 997 N – 1241 Y  
 62 830 N 56 1055 N  
 55 1138 N 50 1122 N  
 97 1232 N 88 1035 N  
 51 1121 N – 1241 Y  
 92 1169 N 60 900 N  
 86 989 N 51 1121 N  
 Total walking distance (m) – 13137 – – 12877 –  
 Passenger walking time (min) – 145.14 – – 142.28 –  
Fig. 9. The Sankey chart of real-time assignment.
Table 5
Results of the real-time assignment.
 Type of flights Low-risk flights High-risk flights
 Type of algorithm REGAPS Real REGAPS Real  
 Total reward [−] 12.28 −13.78 45.17 10.42  
 Passenger walking time [m] 1362.68 1527.1 48.25 74.72  
 Apron [−] 19 32 0 3  

typically implement a partial sharing policy, meaning that only parts 
of the gates can be shared between different types of flights.

We conduct real-time gate assignment experiments with various 
policies to investigate the model’s universality. The policies are ex-
pressed below:

Policy 1: Complete Sharing: All terminal gates are available for inter-
national and domestic aircraft.
Policy 2: Non-sharing: Gates are grouped into two sorts. Each type of 
gate is earmarked for exclusive use (see Section 6.1).
Policy 3: Partial Sharing: As demonstrated in Fig.  10 and Table  6. A 
portion of the gates are reserved for each type of flight. The remaining 
gates are shared.

Table  7 displays the results. Note that real data is only available 
for the Non-sharing policy, as only this policy was practiced during the 
period airport was monitored. To simulate an on-ground assignment, 
we apply the FCFS rule, which outperforms the real case instance. 
This is because there are more elements to consider during on-ground 
operations, such as the airline’s preference or using a specific gate. 
FCFS can still provide a reference value at a certain level because 
it is better than the Real situation. REGAPS outperforms FCFS in all 
12 
three policies. The passenger walking time is much shorter, and FCFS, 
especially under the complete sharing policy, gives the model more 
flexibility to explore. Also, the gates with the shortest distance are 
often given to international flights, as now, due to the complete sharing 
policy, domestic flights, which are much larger in quantity, can also use 
them. Furthermore, under both complete and partial sharing policies, 
REGAPS reduced Apron assignment to zero, which airports manage-
ment strives for. These findings revealed that the REGAPS algorithm 
has good, and a high degree of adaptability to varied settings and 
requirements.

7. Discussion & Future work

This section will further discuss the results of our work at a higher 
level. First, taking into account the results in Section 6, the follow-
ing can be said regarding the hypotheses previously elaborated in 
Section 5:

Hypothesis 1: The REGAPS algorithm outperforms other methods, 
even though it receives the same input and optimizes the same ob-
jective function. To be noted that the REGAPS algorithm is agnostic 
regarding the causes of disturbances, it simply reacts to future flight 
plans. However, the training over data of airport allows the DRL 
algorithm to find optimal sequences of gate allocation that result in 
lower Apron usage at the end of a run. Results from Table  6 show that 
the REGAPS algorithm uses fewer apron gates and has a better balance 
of gate usage. This hypothesis is confirmed. We further hypothesize 
that the improved efficiency of the A3C-GAP algorithm is due to the 
capability of RL of optimizing problems requiring sequential decision 
making.
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Fig. 10. Gate layout under Partial Sharing policy.
Table 6
Classification of the gates (Partial sharing).
 Gate number Quantity Category  
 59,61,63,65,67,69,71,73, 8 International 
 75,77,79,81,83,85,87,80,82,84, 50,51,53,54,55,56,57,58,60,62,64 21 Shared  
 86,88,90,91,92,94,95,96,97,98 10 Domestic  
Table 7
Experiment results under different policies.
 Policy Complete sharing Non-sharing Partial sharing
 Algorithm REGAPS FCFS Real REGAPS FCFS Real REGAPS FCFS Real 
 Passenger walking time [m] 448.8 849.74 – 1410.93 1375.32 1601.88 981.34 993.21 –  
 Apron [−] 0 2 – 19 25 35 0 3 –  
Hypothesis 2: The REGAPS algorithm had a more considerable im-
provement on the reduction of Apron gates (see Table  3). This hypoth-
esis is confirmed.
Hypothesis 3: Given the results of Table  3, the REGAPS algorithm is 
particular relevant when the complexity of the environment increases, 
i.e. higher traffic density, lower gate availability. As a result, the 
REGAPS is not relevant in a simplest environment, i.e. a not-busy 
airport. This hypothesis is confirmed.
Hypothesis 4: The REGAPS algorithm was found to run faster than 
other algorithms (see Table  3). This hypothesis is confirmed.

In resume, experimental testing has shown that the REGAPS model 
has the potential to improve upon current methods for gate alloca-
tion due to its short execution time and ability to find optimal gate 
allocation based on multi objectives. In pre-assignment scenarios, our 
algorithm reduced apron gate usage by more than 50% compared to 
GA, DQN, and DDQN algorithms, while also decreasing the average 
passenger walking time. Additionally, it achieved a 40% reduction 
in computation time compared to the second-best algorithm, GA. In 
real-time assignment, REGAPS reduced apron gate usage by over 50% 
and significantly enhanced the total reward. It also optimized gate 
utilization, preventing the overuse of any single bridge gate without 
increasing apron gate usage, leading to a more balanced allocation of 
resources.

Additionally, the following remarks can be made regarding the 
robustness of the model. First, since REGAPS can initiate training from 
any intermediate state and dynamically adjust the state and action 
spaces, it has the flexibility to account for the impacts of various 
disruptions. These include handling changes in flight schedules due 
to diverse factors, as well as gate malfunctions, allowing the system 
to adapt and respond to real-time operational challenges effectively. 
Second, typically, airport operators receive accurate flight schedules 
only one to three days in advance. Our experiment, which used a 
two-day schedule, is representative of the workload encountered at 
most airports. While changes in flight and/or gate quantity can affect 
the training duration, these variations are unlikely to cause significant 
differences in the overall process. Third, REGAPS employs a stochastic 
policy to generate results, meaning that each run may lead to differ-
ent actions while yielding similar rewards. However, this variability 
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only impacts states that have been retrained. As long as the system 
delivers results before the aircraft’s landing, this variation is unlikely 
to cause significant operational issues, ensuring that any differences in 
decision-making remain manageable and do not disrupt overall airport 
operations.

Finally, based on the model and data limits, the data we have is 
not a perfect representation of the current state of operations, as it 
used data from the COVID period. Nevertheless, using this data enable 
us to increase the size of the data available for training, which, we 
believe, ultimately improved the optimality of the method. The shown 
results show that the inclusion of this data ended up being favorable 
for training of the model. Thus, there are a few future directions to 
investigate. First, additional real-time data should be integrated. For 
example, live flight information and passenger data, or global informa-
tion such as potential future flight schedules and aircraft data would 
enable more accurate and dynamic gate assignments, considering the 
latest information and minimizing disruptions. Additionally, this work 
should be further validated in other real-world airport environments. 
However, this would require collaboration with airport authorities to 
conduct extensive field tests to assess its performance, usability, and 
impact on operational efficiency.

Additionally, in the future, departure delays should be considered. 
This is a source of uncertainty in the model, as some gates may not 
be free at the expected time. This will likely require some extra infor-
mation being add to state information, more specifically the estimated 
time a gate will become available. The MDP would then need to learn 
how to manage this uncertainty in gate availability.

Finally, infrastructure limitations affecting the availability of pas-
senger bridges at each gate should be included as constraints. This 
should be modeled through action masks, to better reflect real-life 
scenarios. However, the result is the further expansion of the state 
and action spaces. These future works aim to enhance the REGAPS 
framework, expand its capabilities, and ensure its practical applicability 
in real-world airport operations.

8. Conclusions

A novel strategy for optimizing gate assignment is proposed in 
this research. To handle both the pre-assignment and real-time assign-
ment problems, a new approach is built on the A3C RL framework 
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to automate the gate assignment process to achieve real-time assign-
ment called Real-time Gate Assignment Problem Solution (REGAPS). 
The methodology’s effectiveness is proven using real data in static 
pre-assignment and real-time assignment scenarios. We compared our 
model to two classic RL algorithms (i.e. DQN, DDQN) and a traditional 
heuristic algorithm (i.e. Generic Algorithm). The results reveal that 
REGAPS outperforms competing techniques in important performance 
indicators (i.e. Passenger walking time, Apron gate assignment). Addi-
tionally, a supplement experiment was run to examine the performance 
of REGAPS under various policies (i.e. complete, partial, and non-
sharing of the terminal gates). The finding demonstrates that REGAPS 
outperforms other techniques under covid-19 restrictions and is also 
beneficial under the other mentioned policies.

Finally, future work will focus on integrating real-time data and 
conducting real-world implementation and validation to enhance the 
REGAPS framework’s effectiveness in optimizing gate assignments. This 
method shall be applied to additional airports with a different topology 
of gates.
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