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 A B S T R A C T

Over the last decades, dynamic pricing has become increasingly popular. To solve pricing problems, however, 
is particularly challenging if the customers’ and competitors’ behavior are both strategic and unknown. 
Reinforcement Learning (RL) methods are promising for solving such dynamic problems with incomplete 
knowledge. RL algorithms have shown to outperform rule-based competitor heuristics if the underlying Markov 
decision process is kept simple and customers are myopic. However, the myopic assumption is becoming 
increasingly unrealistic since technology like price trackers allows customers to act more strategically. To 
counteract unknown strategic behavior is difficult as pricing policies and consumers buying patterns influence 
each other and hence, approaches to iteratively update both sides sequentially are time consuming and 
convergence is unclear. In this work, we show how to use RL algorithms to optimize prices in the presence 
of different types of strategic customers that may wait and time their buying decisions. We consider strategic 
customers that (i) compare current prices against past prices and that (ii) anticipate future price developments. 
To avoid frequently updating pricing policies and consumer price forecasts, we endogenize the impact of 
current price decisions on the associated changes in forecast-based consumer behaviors. Besides monopoly 
markets, we further investigate how the interaction with strategic consumers is affected by additional 
competing vendors in duopoly markets and present managerial insights for all market setups and customer 
types.
1. Introduction

1.1. Dynamic pricing and strategic customer behavior

Enterprises can utilize dynamic pricing strategies by adjusting prices 
frequently to changes in demand, resource prices, and other relevant 
factors. Digital sales environments significantly increase the sales data 
available to incumbent companies [1]. Insights into customer behavior, 
particularly responses to different offer prices, may be exploited by 
a seller adopting offering prices to maximize profits [2]. Dynamic 
pricing strategies emerged in various industries, including airline tick-
eting, electricity prices, gasoline pricing, or hotel fees and are studied 
extensively, see, e.g., [3–5], and [6].

Facing dynamic prices, customers have the opportunity to study 
past offers – as reference prices, cf. [7], or in order to anticipate 
future prices – and postpone their purchase, strategically aiming for 
the lowest offer price [8]. Strategic customer behavior is studied as part 
of investigations on dynamic pricing [2] and self-contained [9,10] but 
leaves a variety of open research questions as pointed out in the survey 
by [11].
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Enabling the simulation of pricing strategies and their outcomes, 
dynamic programming (DP) or RL techniques can be leveraged to 
calculate or predict a pricing policy that leads to the highest possible 
profit [2]. Therefore, the complexity of the actual market is reduced 
to some elementary features that are modeled suitably. Based on the 
outcomes of the simulation in an environment created as a digital twin 
of a real market, to some extent, conclusions from the optimal policy 
can be drawn to be later applied in the real world.

In this work, we aim to extend studies on strategic customer be-
havior and its influence on optimized dynamic pricing strategies. For 
this reason, types of consumer strategies for postponing a purchase to 
achieve a higher consumer rent are investigated. Our work targets to 
optimize pricing strategies under different customer behaviors defined 
by reasonable rules, i.e., buying policies building on varying availability 
of information on past prices, and study the results for vendors and 
customers. Furthermore, we seek to explore how such pricing strate-
gies should be further adapted in extended scenarios with additional 
duopoly competition.

In this context, we study whether RL methods can be used to 
optimize dynamic pricing strategies in such scenarios. As a customer 
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base, we examine four different types of customers with backward and 
forward-looking purchase behavior. We seek to model the problem such 
that RL-based solutions converge after a sufficient number of training 
steps and find approximated equilibria between vendor and customer 
actions.

Finally, the ability to compute optimized pricing policies and to an-
alyze the associated interplay with consumers’ and competitors’ strate-
gies is beneficial for researchers and practitioners. The results can 
help industry vendors to better understand strategic interaction in 
specific markets and to use inferred insights to maximize profits by 
counteracting strategic customer behavior in practice. On the other 
hand, consumers also benefit from our analysis as best-performing 
buying strategies can be identified by our evaluations as well.

1.2. Contributions

The optimization of pricing strategies in the presence of strategic 
consumers under incomplete information and additional competitive 
merchants is a challenging and understudied problem.

While small Markov Decision Process (MDP) problems with full 
information can be solved by standard DP methods, already slightly 
more complex ones can only be solved approximately. If – as in prac-
tical applications – complete information about the model dynamics is 
not available, the problem gets further difficult, and effective learning 
techniques are required. In this regard, advanced RL techniques can be 
a suitable alternative as they are able to address more complex MDPs 
with incomplete information. However, latest developments in com-
puter science, primarily RL, have rarely been tested in dynamic pricing 
problems in the presence of strategic customers and competition.

Particularly, optimized pricing policies for scenarios with an un-
known share of customers – that actively time their sales while dy-
namically comparing prices to older reference prices or to anticipated 
future prices – have hardly been studied and it remains unclear to 
which results such optimized policies lead to for both merchants and 
consumers.

In this context, our paper studies how to determine optimized 
pricing policies for competitive markets with patient consumers even 
though unknown to the seller. Our contributions can be summarized as 
follows.

• We study the mutual interplay of a self-learning dynamic pricing 
agent, a competing merchant, and unknown mixtures of myopic, 
price-aware, and price-anticipating consumers. We show how 
to formulate the problem within an MDP market environment 
such that RL techniques can be successfully applied in various 
market scenarios where the agent has no initial knowledge of the 
underlying environment.

• Our model allows to optimize counter-strategies against different 
types of buying strategies. These buying strategies can include the 
following strategic components: (i) the ability to wait for better 
prices, (ii) comparing current prices to older reference prices, and 
(iii) price anticipations.

• While existing work is mostly limited to one or two-period models 
when modeling reference prices and price predictions, we are 
able to optimize prices in the presence of more realistic consumer 
behaviors that take longer sequences of periods into account. This 
allows us to study consumers that are influenced by longer price 
patterns and that are able to anticipate future price developments 
for multiple periods ahead.

• Although changes in the agent’s policy and consumers demand 
influence each other, we avoid mutual subsequent updates of the 
agent’s beliefs in demand on the one hand and the consumers’ be-
liefs in future prices on the other. Instead, we use a synchronized 
learning process. At the agent’s side, we endogenize the ability to 
learn the impact of single price decisions on changes in consumer 
demand. On the customer side, we use an auto-regressive price 
2 
prediction approach that works with comparably few data. This 
allows controlling the impact of price decisions on both expected 
future profits as well as associated changes in consumers’ demand 
behavior via their influence on price forecasts.

• Further, we are able to extend the monopoly setup to a duopoly 
market against another competing merchant. Thereby, we can 
study the influence of a competitor on both the optimized pricing 
policy of the agent and the customers purchase timing.

• We provide extensive numerical evaluations for different types 
of customers in monopoly as well as duopoly setups. Besides 
recurring and reference price-based customer behaviors, we par-
ticularly study how to counteract mixtures of price-anticipating 
and myopic customers.
Finally, we are able to analyze and compare how the shares of 
certain types of non-myopic consumers affects the consumer rent 
of myopic consumers as well as the rewards of both competing 
merchants. Moreover, we can compare different backward and 
forward-looking customer behaviors regarding the performance 
at the consumer side.

• We provide an open-source simulation and evaluation frame-
work, see code repository https://anonymous.4open.science/r/
StrategicCustomerRL-6C1E/.

The remainder of this paper is organized as follows. In Section 2, 
we discuss related works. In Section 3, we introduce our market model 
and propose the modeling of different types of forward- and backward-
looking customer behavior as well as a competitive vendor, which 
strategically responds to the agent’s prices. Further, we describe how 
to embed RL methods in the proposed MDP environment. In Section 4, 
we present our evaluation results for various scenarios, compare the 
performances of all market participants, and infer managerial insights. 
In Section 5, we summarize the main results obtained, discuss limita-
tions of our models, and provide ideas for future research. Section 6 
concludes the paper.

2. Related work

This section provides a research overview on dynamic pricing (Sec-
tion 2.1) and strategic customer behavior (Section 2.2). We present re-
lated works as an intersection of findings from operations research and 
management science, economics, and computer science. In Section 2.3, 
we describe the research gap our paper seeks to address.

2.1. Dynamic pricing

Dynamic pricing can be defined as identifying optimal prices or a 
pricing strategy for unchanged products such as goods or services for 
different points in time or customer groups, according to [12,13].

The topic of dynamic pricing has received much attention in recent 
years. Originating in the first description of optimal price calculations 
in economic settings by [14], it is applied to various use cases and 
studied by different scientific communities today. [2] concludes that 
the operations research and management science cluster generally aims 
to find a seller’s optimal pricing policy. At the same time, economists 
try to explain price formation and buying behavior in markets. The 
computer science community was found to study more complex market 
simulations that are no longer tractable with mathematical analyses. At 
this point, complex machine learning techniques are conducted to find 
optimal policies.

[15] provide a recent literature review on competitive online retail 
and categorize whether a product competes with identical or differenti-
ated products, the influence of time dependency on the simulation of a 
market, and the overall market structure. They found that substitute 
competition is high because of the higher number of product offers 
but did not neglect the possible effect of differentiated products. Fur-
thermore, the authors identified that time-dependent pricing policies 
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outperform their static counterparts. Regarding the market structure, 
Gerpott and Berends discovered that most studies use a monopolistic or 
duopolistic setup for simplification of the in-reality oligopoly structured 
market.

Early works, see, e.g., [16–18] for a monopoly setup or [19,20] 
for duopoly markets, often assume stylized demand dynamics, a full 
information setup, or myopic consumer behavior to be able to identify 
optimal pricing policies analytically.

In contrast, the growing influence of the computer science commu-
nity increased interest in more complex models that cannot be solved 
analytically anymore. Instead, approaches based on machine learning 
were put forward to enable the inclusion of more influencing factors 
towards a more realistic market implementation.

In this context, [21] concluded that RL allows for solutions to previ-
ously intractable problems. They highlight the appropriate fit between 
the nature of RL algorithms optimizing a reward in the long run and a 
vendor optimizing revenue in a market.

The studies of [22,23] used RL algorithms to simulate a market 
environment with multiple vendors and complex dynamics. Further, 
there are more applied simulations in the areas of airline ticketing [24], 
inventory management [25], electricity prices [26], or regenerative 
electric heating [27]. Most recent applications of deep RL in dynamic 
pricing were made by [28] pricing access to express lanes, [29] using 
Proximal Policy Optimization (PPO) in a ride pricing problem, [30] 
using a Soft Actor Critic (SAC) algorithm for electric vehicle charging 
prices, or [31] applying Deep Deterministic Policy Gradient (DDPG) as 
well in the vehicle charging domain.

2.2. Strategic customer behavior

Rational consumer behavior and particularly, the subarea of strate-
gic customer behavior used in dynamic pricing models is widely stud-
ied. Strategic customer behavior can be defined as anticipating future 
price changes and adjusting purchase timing accordingly [32]. Origi-
nating in 1972, [33] discovered that even a monopoly vendor has to 
offer its product at the margin cost without achieving any profit when 
facing strategic customers.

[10] present classifications for studies on strategic customer be-
havior. The capacity indicates the amount of products a vendor can 
sell. It can be limited or infinite and additionally used for decision-
making. Prices can be determined at the beginning or during the 
selling horizon, i.e., time of pricing. The pricing policy can be classified 
into markup, markdown, or a combination. A markup policy can only 
increase prices to react to market change, while markdown policies are 
limited to decreasing prices. The majority of papers use a combination 
of both. A demand arrival process can be simultaneous at the beginning 
of the selling horizon or sequential during the horizon. The number 
of time periods can be discrete or continuous and finite or infinite. 
Most publications act in a finite discrete time setting. Customers and 
vendors can consider the time in their decision-making or not, i.e., time 
preference. The market setup can be a monopoly, duopoly, or oligopoly. 
Furthermore, the criterion of information setting indicates the degree of 
available information to customers and vendors. In their summary, they 
mention the issue of comparing the results of different studies.

[32] put forward a dynamic pricing model with intertemporal de-
mand, having customers maximize their utility by choosing whether 
to accept the current price offer of a monopolistic vendor, postpone 
their buying to wait for a better offer, or exit the market. Contrary 
to intuition, they found that the ability to wait enables the vendor to 
benefit.

The more recent survey by [11] categorizes research on strategic 
customer behavior into three mechanisms (Pricing, Inventory, and In-
formation) and summarize existing strategies that have been developed 
to mitigate the profit decrease of a company with strategic customers 
3 
for all of them. Furthermore, they conclude that strategic customers’ be-
havior as well as vendors’ policies to counteract have to be researched 
via learning methods with regard to increasing amounts of available 
sales data.

Many existing works often use analytical tractable models (e.g. [34]),
which as an advantage allow for analytic results, but on the downside 
limiting market complexity to a certain degree and requiring vendors to 
have crucial information on demand and market dynamics. Addition-
ally, in earlier investigations, considered customer behaviors inhibit 
only a small degree of strategy by considering only one or two last 
periods (e.g. [35]) influencing the buying policy, which, in turn, does 
not allow to model consumers’ price anticipation in a fully realistic 
manner.

2.3. RL-based learning approaches and research gap

[11] query to research how strategic customers could leverage 
information on past prices to monitor prices or predict future price tra-
jectories. Despite the high availability of studies on strategic customer 
behavior in dynamic pricing research, there is comparably few related 
work on applying learning techniques, like state-of-the-art RL methods. 
While multiple usages of RL in dynamic pricing are studied solely, see 
Section 2.1, the combination with strategic customer behavior is scarce 
to our knowledge.

[36] use an aggregating algorithm to dynamically price a perishable 
product and simultaneously learn the market in a monopoly setup. [37] 
study a Stackelberg game under a two-period model to learn a single 
consumers valuations of a product using Bayesian learning techniques.

One of the first approaches using Deep Q-networks (DQN) and 
SARSA to learn pricing policies and ordering quantities in the presence 
of strategic consumers (in a monopoly market) was done by [38], 
including the modeling of substitute products. Their calculation with 
markdown prices for used products in the second of two combined 
decision periods and the inclusion of inventory considerations show 
that DQN and SARSA are suitable for solving large-scale pricing opti-
mizations. However, the customer’s strategy employed in this study can 
be explained as the choice between buying a new or a used product, 
without explicit anticipating of future prices or consideration of past 
prices. The works by [39,40] use deep RL techniques to study joint 
dynamic pricing and inventory control problems with reference price 
effects. Price anticipations of customers or competing sellers are not 
considered.

Overall, how to counteract strategic customer behavior with for-
ward and backward-looking variants has not sufficiently been stud-
ied, probably since classical DP methods are not suitable given the 
problem’s complexity and information structure.

RL methods seem to be a promising alternative but have been 
comparably rarely been used in this domain as they cannot be applied 
in a straightforward way. To be able to successfully apply RL meth-
ods to markets with complex strategic consumers their behavior and 
observable state components have to be modeled with care.

In this paper, we show how to model different strategic consumer 
behaviors, including reference price-based as well as price-anticipating 
ones, in a way such that state-of-the-art RL methods can be applied. 
Most importantly, we avoid to use data-intensive price forecasts on the 
consumer side as the sequential interplay of mutually updating pricing 
policies at the vendor’s side and the consumer’s price forecast is time 
consuming and its convergence remains unclear. Instead, we endog-
enize the consumer’s price forecast based on current price histories 
within a tractable state space. This way, no iterative adaption of pricing 
policies and price forecasts is necessary as the impact of current price 
decisions on rewards and particularly also the associated change in the 
forecast-based consumer behavior can be taken into account.
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3. Model description

In this section, we define our market model as an MDP (Section 3.1) 
and model four different types of strategic customers (Section 3.2). In 
Section 3.3, we describe how to embed RL methods in the proposed 
MDP environment and identify suitable algorithms to be used in the 
evaluation.

3.1. Market environment

In the following, we describe the market setup, a firm’s admissible 
controls, competitors’ reactions, the consumer arrival process, and a 
firm’s objective. A code repository is available.2

3.1.1. Setup
We consider an infinite time horizon with discrete time periods. 

We consider 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 competing firms. Each firm sells a (standardized) 
product. We simplify our market to one offered product without inven-
tory constraints such as storage cost or a limited number of available 
products.

3.1.2. A firm’s controls and competitors’ reactions
Each firm 𝑘, 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, sets a price 𝑝(𝑘) ∈ 𝐴, for his/her 

product, where 𝐴 denotes the set of admissible prices with a maximum 
offer price 𝑎𝑚𝑎𝑥. We mainly take the perspective of firm 1 and seek to 
apply a self-learning strategy, while – in case of competition – other 
competitors use rule-based strategies. The set of admissible price can 
be modeled continuously or discrete, providing the agent vendor with 
a set of possible actions.

Taking the perspective of one specific firm, e.g., firm 𝑘 = 1, this firm 
sets its price at the beginning of a period of length one, e.g., from time 
𝑡 to 𝑡 + 1, taking into account the current prices 𝑝(𝑡) ∈ 𝐴𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠  of all 
competing firms at time 𝑡.

Within the period (𝑡, 𝑡 + 1) each firm 𝑘 = 2,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 of the 
competing 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 − 1 firms adjusts its price at its corresponding point 
in time 𝜏(𝑘) ∈ (𝑡, 𝑡+1) in a similar way by reacting to the current prices 
at time 𝜏(𝑘), i.e., 𝑝(𝜏(𝑘)).

In this context, for each firm, we assume non-anticipating Marko-
vian strategies, where all competitors’ current prices are observable.

As price response strategies, in general, deterministic as well as 
probability distributions over admissible prices can be used. Further, 
besides current prices also, e.g., the historic prices of the last ℎ periods 
up to time 𝑡 (denoted by 𝐻 (ℎ)

𝑡 ) could be used as input. Competitors’ 
strategies are mutually not observable by the merchants.

3.1.3. Modeling of consumer behavior
We consider a stream of arriving consumers whose number, type, 

and timing can be defined in a steady deterministic or in a random 
fashion. We consider 𝑛𝑐 different non-exclusive types of customers. 
Further, we allow for seasonal demand with cycle length 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠, i.e., for 
all consumer types demand in period 𝑡 is characterized by the season 
(e.g. the weekday, month, or the season of the year), where we use the 
cyclic formulation, 𝑡 = 0, 1,…, 
𝑖𝑠𝑒𝑎𝑠𝑜𝑛(𝑡) = 𝑡 mod 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 ∈ {0, 1,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1}. (1)

A single consumer of type 𝑐, 𝑐 = 1,… , 𝑛𝑐 , arriving at a certain point 
in time 𝑡 observes the current offer prices 𝑝𝑡 ∶= (𝑝(1)(𝑡),… , 𝑝(𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠)(𝑡))
for all 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 firms.

The choice behavior of consumers of type 𝑐 can be defined arbi-
trarily and may include a no-buy option (cf. 𝑘 = 0 as no firm make a 
sale). In our model, we assume that a single customer buys at most one 
product and that the buying behavior of consumer type 𝑐 in period 𝑡
is expressed as a probability distribution for buying no item at all (cf. 

2 https://anonymous.4open.science/r/StrategicCustomerRL-6C1E/
4 
𝑃 (𝑐,0)
𝑡 (𝑝𝑡;𝐻

(ℎ)
𝑡 ) ≥ 0) or buying a product from firm 𝑘 (cf. 𝑃 (𝑐,𝑘)

𝑡 (𝑝𝑡;𝐻
(ℎ)
𝑡 ) ≥

0), 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, given the current prices 𝑝𝑡 ∈ 𝐴𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠  (and a price 
history 𝐻 (ℎ)

𝑡 ) such that for all 𝑐 = 1,… , 𝑛𝑐 and 𝑡 = 0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1, we 
have 

∑

𝑘=0,1,…,𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠

𝑃 (𝑐,𝑘)
𝑡 (𝑝𝑡;𝐻

(ℎ)
𝑡 ) = 1. (2)

Note, while for myopic consumers demand only depends on the 
current prices 𝑝𝑡, for certain consumer types 𝑐 we allow that their 
buying probabilities at time 𝑡, cf. (2), additionally depend on last 
historic prices, cf. 𝐻 (ℎ)

𝑡 , up to a certain age ℎ (which may vary with 
𝑐).

3.1.4. Problem formulation from a single firm’s perspective
A firm 𝑘’s rewards, 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, are characterized by its sales. 

By 𝑖(𝑘)𝑡 , we denote the number of items sold to firm 𝑘 within period 
(𝑡, 𝑡+ 1), which are obtained from the number of realized sales 𝑌 (𝑐,𝑘)

𝑡  of 
firm 𝑘 for customers of type 𝑐, cf. (2).

We allow that a firm’s policy may depend on current competitors’ 
prices as well as a recent history 𝐻 (𝑛𝑙𝑎𝑠𝑡)

𝑡  involving the last 𝑛𝑙𝑎𝑠𝑡 periods. 
Given a pricing policy 𝑝(𝑘)𝑡 = 𝑎(𝑘)𝑡 (𝑝𝑡;𝐻

(𝑛𝑙𝑎𝑠𝑡)
𝑡 ), a firm 𝑘’s random accumu-

lated future profits from time 𝑡 on (discounted on time 𝑡) amount to, 
𝑡 ≥ 0, 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, 

𝐺(𝑘)
𝑡 ∶=

∞
∑

𝑗=𝑡
𝛾𝑗−𝑡 ⋅ 𝑖(𝑘)𝑗 ⋅ 𝑝(𝑘)𝑗 , (3)

where the discount factor for one time period is 𝛾.
Our firm 1’s goal is to determine a non-anticipating (Markovian) 

feedback pricing policy that for a given initial state 𝑠0 characterized by 
current market prices 𝑝0 and historic prices 𝐻 (𝑛𝑙𝑎𝑠𝑡)

0 , i.e., 

𝑠0 ∶=
(

𝑝0,𝐻
(𝑛𝑙𝑎𝑠𝑡)
0

)

, (4)

maximizes the expected total discounted rewards, cf. (3), from time 
𝑡 = 0 on: 
𝐸
(

𝐺(1)
0 | 𝑠0

)

. (5)

Due to the size of the state space, standard dynamic programming 
(DP)-based solution techniques (also assuming complete information 
about the dynamics of the underlying process) are, in general, not 
applicable.

Hence, we seek to apply RL algorithms to the problem as an alterna-
tive approach. Note, this is possible as long as states, actions, rewards, 
and state transitions of the MDP can be expressed in a standardized way 
- the so-called environment. Before embedding and selecting suitable 
RL algorithms, see Section 3.3, we first introduce the modeling of 
different classes of strategic behaviors within our MDP model.

3.2. Description of different types of customer behaviors

In Section 3.2.1–3.2.4, we describe the overall modeling of four 
different versions (types) of customer’s behavior in detail. Therefore, 
we define specific strategies characterized by demand probabilities 
𝑃 (𝑐,𝑘)
𝑡 (𝑝𝑡;𝐻

(ℎ)
𝑡 ), cf. (2), in the presence of a given price history 𝐻𝑡 and 

a certain waiting behavior. Note, this formulation allows for using 
arbitrary choice models.

Further, in our model, all customer types except the myopic one 
are able to postpone their buy and to wait for better prices. Next, we 
define the customer behaviors based on the demand function of the 
myopic customer and add different specific rules to decide whether to 
wait or not. Note, consumer types are not exclusive and some of their 
components can overlap.

3.2.1. Myopic customer
In general, we consider a ‘‘myopic customer’’, cf. type 𝑐 = 0, with 

seasonal demand characterized by probabilities 𝑃 (0,𝑘)
𝑡 (𝑝𝑡), cf. (2). In case 

of no sale, the consumer leaves the market and does not wait for better 
prices or systematically checks prices in future periods.

https://anonymous.4open.science/r/StrategicCustomerRL-6C1E/
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3.2.2. Recurring customer
We model a so-called ‘‘recurring customer’’, cf. type 𝑐 = 1, exactly as 

the myopic customer, cf. 𝑃 (1,𝑘)
𝑡 (𝑝𝑡), with the extension of being able to 

postpone his/her buy. For this reason, when simulating/evaluating the 
model, we consider a waiting pool for types of recurring consumers. All 
customers who are drawn not to accept one of the current price offers 
enter this pool and may return the next timestep. Note, the size of the 
waiting pool is not observable for the vendors.

3.2.3. Price-aware customer
A so-called ‘‘price-aware consumer’’, cf. type 𝑐 = 2, acts reference 

price based and evaluates current prices against historic prices. Hence, 
within the probabilities 𝑃 (2,𝑘)

𝑡 (𝑝𝑡;𝐻
(𝛿)
𝑡 ), we can formulate decision rules 

such as ‘‘buy if and only if the best current price within 𝑝 is at least 𝑥% 
lower than the lowest price within the prices of the last 𝛿 periods, cf. 𝐻 (𝛿)

𝑡 , 
and the current offer is below a certain upper threshold price’’. As this class 
of behavior includes waiting options, we also consider a corresponding 
waiting pool.

3.2.4. Anticipating customer
For modeling the so-called ‘‘anticipating customer’’, cf. type 𝑐 = 3, 

we leverage a basic auto-regressive (AR) approach to predict future 
minimum prices. Here, we assume that customers know the number 
of seasons (cf. weekly or monthly cycles). Note, the cycle length of 
a seasonal effect could also be discovered automatically (e.g., by an 
autocorrelation analysis in case of more complicated seasonal patterns).

In each timestep 𝑡, we consider the set of current prices 𝑝𝑡 and the 
latest price history 𝐻 (𝜙)

𝑡 = (𝑝𝑡−1,… , 𝑝𝑡−𝜙) to fit an auto-regressive model 
𝐴𝑅(𝐻 (𝜙)

𝑡 ) of order 𝜙. As customers look for best prices, in our modeling, 
we consider the time series of minimum prices over all firms to predict 
best future prices. Alternatively, the 𝐴𝑅 model could also be applied 
for each firm 𝑘 separately to fit and predict prices on a firm level.

We denote 𝜑0,… , 𝜑𝜙 as parameters and 𝜖 as error term of 𝐴𝑅(𝐻 (𝜙)
𝑡 ). 

The parameters can be adjusted using an ordinary least-squares ap-
proach to minimize the difference between predicted and actual values. 
As a result, we obtain a simple model that allows predicting a one-
dimensional time series. Considering a firm’s last 𝜙 period’s prices 𝑝ℎ
until time 𝑡 as well as current price 𝑝𝑡, i.e., ℎ = 𝑡− 𝜙, 𝑡− 𝜙+ 1,… , 𝑡, the 
price 𝑝𝑡+1 at 𝑡 + 1 of the next timestep can be estimated by 𝑧𝑡+1 with 

𝑧𝑡+1(𝐻
(𝜙)
𝑡 ) = 𝐴𝑅(𝐻 (𝜙)

𝑡 ) =
𝜙
∑

ℎ=0
𝜑(ℎ mod 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠) ⋅ 𝑝𝑡−ℎ. (6)

Furthermore, by using the value 𝑧𝑡+1, we can also predict the price 
𝑝𝑡+2 of the second-next timestep via 𝑧𝑡+2, and so on. This enables us 
to predict prices of even more prospective timesteps. We model the 
price-anticipating customer to predict at time 𝑡 the next 𝜃 period’s 
prices.

Based on such predictions (for each firm or minimum prices over 
time) this type of customer may follow decision rules such as ‘‘buy if 
there is no price prediction for the next 𝜃 periods that is better than the 
current offer and the current offer is below a certain upper threshold price’’. 
To account for uncertainty or risk-averse effects future price predictions 
can be easily combined with certain mark-ups or penalties.

Finally, such decision rules can be formulated within probabilities 
𝑃 (3,𝑘)
𝑡 (𝑝𝑡;𝐻

(𝜙)
𝑡 ) as long as the required input for prediction, cf. 𝑝𝑡 and 

𝐻 (𝜙)
𝑡 , is contained. Due to the waiting options, we also consider a 

corresponding waiting pool for the price-anticipating consumer type.

3.3. Application of RL methods and agent selection

3.3.1. RL environment formulation
Based on the model description and problem formulation given in 

Section 3.1, we describe how different RL algorithms can be applied to 
our problem by mapping the proposed MDP market model to a standard 
RL framework.
5 
Standard RL frameworks usually require a discrete-time (turn-based)
setup and are characterized by a so-called environment, which includes 
states, actions, reward signals, and state transition dynamics. The RL 
agent plays against the environment by choosing actions from a certain 
action space and receiving (aggregated) reward signals and associated 
state transitions.

From firm 1’s, i.e., the agent’s perspective, the observable state 𝑠𝑡 at 
time 𝑡 is characterized by the current prices of the competitors as well 
as the price history (up to a certain number of periods). Note, waiting 
pools, which are part of the full state (𝑠̃𝑡) of the environment (to be used 
for simulation) are – as in practice – not observable to the vendors.

Further, a firm’s action is simply its current offer price. Hence, for 
an RL agent, the action space is given by the price set 𝐴.

The reward signal of a firm is the aggregated reward associated 
to realized sales (within one period), which is characterized by the 
underlying customer behavior, cf. (2), including the defined arrival 
streams of interested consumers of different types, see Section 3.2.

Finally, state transitions for 𝑠̃𝑡 (including 𝑠𝑡) are organized via the 
MDP described in Section 3.1 and governed by the evolution of buying 
and waiting customers, cf. Section 3.2, as well as the subsequent price 
adjustments of all competing firms. This, in general, requires that 
certain, e.g., rule-based, policies are assigned to the competing firms, 
see Section 3.2.1.

The agent’s objective is to find a price update strategy depending 
on observable states 𝑠𝑡 that maximizes expected discounted long-term 
rewards, cf. (5). Note, the agent does not know internals of the envi-
ronment, i.e., the defined consumer behaviors, their mixture, and the 
defined competitors’ strategies.

Finally, within the described environment, different standard RL 
algorithms can be applied by using common RL libraries.

3.3.2. RL algorithm selection
Potential state-of-the-art RL algorithms for our problem are so-

called Q-Learning-based techniques and policy gradient algorithms.
Here, we will focus on RL algorithms using neural networks; note 

that tabular methods (as used in classical dynamic programming) can-
not handle the problem because the size of the state space exceeds the 
computational limits by far.

Further, as also the action space of our problem will be typically 
large, we decided to consider algorithms that use a continuous action 
space. The main reason for this is that for a discrete formulation, 
neural networks require an output neuron for each individual action. 
However, the size of a discrete action space |𝐴| becomes large with 
fine-grained price levels.

In line with this, for example, [41] found that Soft Actor Critic 
(SAC), cf. [42], performed better than Deep-Q-Learning (DQN), cf. [43], 
on their pricing benchmarks.

Finally, as RL methods with continuous action space, we tested the 
following state-of-the-art RL algorithms to be applied to our problem: 
DDPG [44], TD3 [45], A2C [46], SAC, and PPO [47].

For our kinds of experiments PPO performed best and thus, we 
selected PPO for our evaluation. Further, as we look for solutions 
avoiding tedious tuning, we use the default hyperparameters and test 
their suitability for our problem, see Appendix  A.1, Table  7.

4. Evaluation

Our evaluation is organized as follows.
In Section 4.1, we define exemplary test strategies for the competi-

tor and, in particular, specify sales probabilities and decision rules for 
the different types of consumer behaviors. Then, in Section 4.2, we 
explain the market simulation, define the experimental setup, specify 
the observable state used by the agent, and provide details regarding 
the training process and final performance evaluations.

In Experiment 1, as our baseline model, cf. Section 4.3, we study 
how to optimize prices in the presence of myopic customers with 
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seasonal demand. In Experiment 2, cf. Section 4.4, we examine the 
performance of RL agents in case of a share of recurring customers.

In Experiment 3, cf. Section 4.5, we consider price-aware customers 
(cf. reference price effects). In Experiment 4, cf. Section 4.6, we study 
how an RL agent learns to counteract in scenarios in which a certain 
share of the consumer base is price-anticipating.

Note, neither the type of an arriving customer is observable nor 
the share of non-myopic customers is known to the agent. In all 
experiments, we consider monopoly as well as duopoly settings against 
an undercutting competitor. Further, we study examples with time-
homogeneous and seasonal demand.

4.1. Example strategies for competitors and consumers

In this section, we describe the competitor’s strategy used in duopoly
setups (Section 4.1.1), the arrival of consumers (Section 4.1.2), and 
finally define all 4 types of consumer behaviors to be used in our eval-
uation (Section 4.1.3–4.1.6). To be able to assess whether self-learning 
agents are able to obtain reasonable and effective pricing strategies 
in unknown and competitive markets, we consider synthetic customer 
behaviors mimicking backward and forward-looking consumers that 
actively time the purchases.

4.1.1. Competitor’s strategies
To challenge the agent with an aggressive opponent, we consider a 

standard undercutting competitor, which is offering a lower price than 
the current market price and, therefore, his/her policy depends on the 
other vendor’s offer price. We model the competitor vendor to always 
undercut the agent vendor’s price 𝑝 by a certain threshold 𝛥 in every 
timestep but not lower than a certain minimum price 𝑎𝑓𝑙𝑜𝑜𝑟. Hence, the 
response policy denoted by 𝑎𝑐𝑜𝑚𝑝(𝑝), 𝑝 ∈ 𝐴, is: 

𝑎𝑐𝑜𝑚𝑝(𝑝) =

{

𝑝 − 𝛥 𝑝 − 𝛥 ≥ 𝑎𝑓𝑙𝑜𝑜𝑟
𝑎𝑓𝑙𝑜𝑜𝑟 otherwise.

(7)

The competitor’s strategy is not known to the agent (and could also be 
chosen differently).

4.1.2. Consumer arrivals
We assume a constant amount of customers 𝑖𝑚𝑎𝑥 arriving at each 

period. Regarding the multiple types of customers, we determine how 
many customers arrive for each type as follows. We use probabilities 
𝐶(𝑐) for an arriving customer to be of type 𝑐, 𝑐 = 0, 1,… , 𝑛𝑐 , i.e., 

∑

𝑐=0,1,…,𝑛𝑐

𝐶(𝑐) = 1, (8)

where 𝑐 = 0 refers to myopic customers.
We then randomly draw the absolute number of arriving customers 

per type from a multinomial distribution based on 𝐶(𝑐). Also, the shares 
𝐶(𝑐) are unknown to the merchants.

4.1.3. Myopic customer behavior
As a test example, we define the buying probabilities of myopic 

customers (type 𝑐 = 0) motivated by standard multinomial logit (MNL) 
models. Given a price 𝑝, 𝑝 ∈ 𝐴, we calculate a (time-dependent) utility 
score 𝑢𝑡(𝑝) by, 𝑡 = 0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1, 

𝑢𝑡(𝑝) =
−𝛼 ⋅ 𝑒𝑝−𝛽𝑡 − 𝑝

𝛼 + 𝛽𝑡
, (9)

where 𝛼 and 𝛽𝑡, 𝑡 = 0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠−1, are choosable scale parameters. Fi-
nally, we use the softmax function to define probability values 𝑃 (0,𝑘)

𝑡 (𝑝)
for any 𝑝 ∈ 𝐴𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 , 𝑡 = 0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1, 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, 

𝑃 (0,𝑘)
𝑡 (𝑝) = 𝑒𝑢𝑡(𝑝(𝑘))

∑𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠
𝑗=0 𝑒𝑢𝑡(𝑝(𝑗))

, (10)

where 𝑢𝑡(𝑝(0)) ∶= 𝑢(0) corresponds to the case of no sale, cf. 𝑘 = 0. 
In the duopoly case, we assign arriving myopic customers uniformly 
distributed to the first and the second half period, i.e., before or after 
the competitor’s price update.
6 
4.1.4. Recurring customer
We model the recurring customer (type 𝑐 = 1) based on the myopic 

customer, cf. 𝑃 (1,𝑘)
𝑡 (𝑝) ∶= 𝑃 (0,𝑘)

𝑡 (𝑝), see Section 4.1.3, with the extension 
of being able to postpone his/her buy. With a certain probability 𝜋𝑟𝑒𝑚𝑎𝑖𝑛
all recurring customers who do not to accept one of the current price 
offers enter/remain in a waiting pool. If a recurring consumer buys a 
product, he/she leaves the waiting pool. In the next period, besides new 
arriving consumer of recurring type, every customer in the waiting pool 
of size 𝑤(1)

𝑡  returns to the market (with a certain probability 𝜋𝑟𝑒𝑡𝑢𝑟𝑛) to 
consider a sale again. Hence, on average, a share of 1 − 𝜋𝑟𝑒𝑡𝑢𝑟𝑛 waiting 
consumers leaves the market (which, e.g., reflects waiting costs or 
consumer disappointment, cf. [48]. As an upper bound for the waiting 
pool we use a comparably large value 𝑤𝑚𝑎𝑥.

Note, in the duopoly case, the waiting pool is organized identically. 
Here, we let new and returning recurring customers arrive uniformly 
distributed in the first and the second half period, i.e., before or after 
the competitor’s price update.

4.1.5. Price-aware customer
For the price-aware customer (type 𝑐 = 2), we use a decision 

rule, which is based on a comparison of the current price(s) and the 
minimum prices of the last 𝛿 periods are used as input, cf. 𝐻 (𝛿)

𝑡 . While 
in the monopoly case, we simply have 𝐻 (𝛿)

𝑡 =
(

𝑝(1)𝑡−1, 𝑝
(1)
𝑡−2,… , 𝑝(1)𝑡−𝛿

)

, in 
the duopoly case the consumers consider the minimum of both com-
petitors’ prices for all half-periods within the last 𝛿 periods, i.e., 𝐻 (𝛿)

𝑡 =
(

min𝑘=1,2
(

𝑝(𝑘)𝑡−0.5

)

,min𝑘=1,2
(

𝑝(𝑘)𝑡−1

)

,… ,min𝑘=1,2
(

𝑝(𝑘)𝑡−𝛿

))

 with 2⋅𝛿 entries.
The decision rule for price-aware consumers is characterized by 

𝑃 (2,𝑘)
𝑡 (𝑝𝑡;𝐻

(𝛿)
𝑡 ) ∶= 𝜋(𝑘)

2 (𝑝𝑡;𝐻
(𝛿)
𝑡 ), 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, where 

𝜋(𝑘)
2 (𝑝𝑡;𝐻

(𝛿)
𝑡 ) =

⎧

⎪

⎨

⎪

⎩

1 𝑝(𝑘)𝑡 ≤ min 𝑘=1,…,𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠
𝑖=1∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 ,…,𝛿

{

𝑝(𝑘)𝑡−𝑖

}

⋅ ℎ𝑟𝑒𝑙_𝑟𝑒𝑓 and 𝑝(𝑘)𝑡 ≤ 𝑊 𝑇𝑃𝑚𝑎𝑥

0 otherwise.

(11)

Note, the rule uses the minimum price over the last 𝛿 periods as a 
reference price. If multiple firms 𝑘 qualify for a sale, we use a uniform 
draw. Here, the relative threshold 0 ≤ ℎ𝑟𝑒𝑙_𝑟𝑒𝑓 ≤ 1 determines how much 
cheaper – compared to last prices – current prices have to be, such that 
a sale is considered; 𝑊 𝑇𝑃𝑚𝑎𝑥 is a given threshold for the maximum 
willingness-to-pay (it could also be randomized). In case of no sale, 
similar to the recurring customers, the price-aware customers use their 
waiting pool of size 𝑤(2)

𝑡  as well as probabilities 𝜋𝑟𝑒𝑚𝑎𝑖𝑛 and 𝜋𝑟𝑒𝑡𝑢𝑟𝑛.
Again, in case of a duopoly, we let new and returning price-aware 

customers arrive uniformly distributed in the first and the second half 
period and consider a corresponding different price history on a half 
period level.

4.1.6. Anticipating customer
For the price-anticipating customer (type 𝑐 = 3), we use the AR 

approach, cf. (6), described in Section 3.2.4, where the minimum 
prices of the last 𝜙 periods are used as input, cf. 𝐻 (𝜙)

𝑡 . While in the 
monopoly case, we simply have 𝐻 (𝜙)

𝑡 =
(

𝑝(1)𝑡−1, 𝑝
(1)
𝑡−2,… , 𝑝(1)𝑡−𝜙

)

, in the 
duopoly case the consumers consider the minimum of both competi-
tors’ prices for all half-periods within the last 𝜙 periods, i.e., 𝐻 (𝜙)

𝑡 =
(

min𝑘=1,2
(

𝑝(𝑘)𝑡−0.5

)

,min𝑘=1,2
(

𝑝(𝑘)𝑡−1

)

,… ,min𝑘=1,2
(

𝑝(𝑘)𝑡−𝜙

))

 with 2 ⋅ 𝜙 en-
tries.

Hence, we use price forecasts for the next 𝜃 periods for the minimum 
price over all firms 𝑘 in 𝑖 periods from now, i.e., 𝑧𝑡+𝑖(𝐻 (𝜙)

𝑡 ), where we 
consider 𝑖 = 1∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, 2∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠,… , 𝜃 − 1∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, 𝜃. Based on these 
forecasts, we let the price-anticipating consumers use the following de-
cision rule, i.e., 𝑃 (3,𝑘)

𝑡 (𝑝𝑡;𝐻
(𝜙)
𝑡 ) ∶= 𝜋(𝑘)

3 (𝑝𝑡;𝐻
(𝜙)
𝑡 ), 𝑘 = 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠, where

𝜋(𝑘)
3 (𝑝𝑡;𝐻

(𝜙)
𝑡 ) =

{

1 𝑝(𝑘)𝑡 ≤ min𝑖=1∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 ,…,𝜃 𝑧𝑡+𝑖(𝐻
(𝜙)
𝑡 ) and 𝑝(𝑘)𝑡 ≤ 𝑊 𝑇𝑃𝑚𝑎𝑥

0 otherwise.

(12)
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Fig. 1. Overview of the simulation sales and price updates within one period.
If multiple firms 𝑘 qualify for a sale, we use a uniform draw. 
Price-anticipating customers also use a waiting pool, cf. size 𝑤(3)

𝑡 , and 
follow the probabilities 𝜋𝑟𝑒𝑚𝑎𝑖𝑛 and 𝜋𝑟𝑒𝑡𝑢𝑟𝑛. Although the predicted price 
minimum might be more than one period away, we assume that the 
consumer may check the next period’s market situation to potentially 
update his/her price forecast.

Further, similarly to the price-aware consumers, we assign price-
anticipating consumers in a random uniform way to a period’s first and 
second half and consider a correspondingly updated price history on a 
half period level.

Recall, the decision rules of all types of customers are not known to 
the agent.

4.2. Simulation, experimental setup and performance evaluation

In this section, we describe the simulation of our market frame-
work and specify the environment, i.e. states, actions, rewards, and 
state transitions, to be used by RL algorithms (Section 4.2.1). Fur-
ther, we provide all parameters to reproduce our experimental setup 
(Section 4.2.2) and explain the training procedure and performance 
evaluations (Section 4.2.3).

4.2.1. Simulation step algorithm and used observable state
The simulation of the sales events 𝑖(𝑘)𝑡  happens in an algorithm 

that is executed every timestep 𝑡, inhibiting all aspects of the vendor 
actions and the customer’s buying behavior. Further, the state spaces 
are updated, and rewards are calculated each timestep. Fig.  1 presents 
an overview of the algorithm of one simulation step.

In our evaluation, the observable state of the agent is specified as 
follows. In the monopoly setup, the state 𝑠𝑡 is given by the own last 
𝑛𝑙𝑎𝑠𝑡 period’s prices, i.e., 

𝑠𝑡 ∶=
(

𝐻 (𝑛𝑙𝑎𝑠𝑡)
𝑡

)

=
(

𝑝(1)𝑡−1, 𝑝
(1)
𝑡−2,… , 𝑝(1)𝑡−𝑛𝑙𝑎𝑠𝑡

)

. (13)

In the duopoly setup, the agent’s state 𝑠𝑡 is given by the current price 
of the competitor (𝑝(2)𝑡 ) and the minimum of both competitors’ prices 
for all half-periods within the last 𝑛𝑙𝑎𝑠𝑡 periods, i.e.,

𝑠𝑡 ∶=
(

𝑝(2)𝑡 ,𝐻 (𝑛𝑙𝑎𝑠𝑡)
𝑡

)

=
(

𝑝(2)𝑡 , min
𝑘=1,2

(

𝑝(𝑘)𝑡−0.5

)

, min
𝑘=1,2

(

𝑝(𝑘)𝑡−1

)

,… , min
𝑘=1,2

(

𝑝(𝑘)𝑡−𝑛𝑙𝑎𝑠𝑡

)

)

. (14)

Hence, in the duopoly case the state 𝑠𝑡 has 2 ⋅ 𝑛𝑙𝑎𝑠𝑡 + 1 entries. The 
state transition in each step to 𝑠𝑡+1 is straightforward, i.e., the most 
recent minimum prices of the last two half periods are updated while 
the minimum prices of the two oldest half periods leave the state.

After the price offers 𝑝𝑡 from the agent vendor and optional com-
petitors are collected, we let constant amount of new customers 𝑖𝑚𝑎𝑥
arrive. To determine how many customers arrive for each type, we 
randomly draw the absolute number of arriving customers per type,
i.e., 𝑋(0)

𝑡 ,… , 𝑋(𝑛𝑐 )
𝑡  out of 𝑖𝑚𝑎𝑥, using a multinomial distribution based 

on the probabilities 𝐶(𝑐), see (8). Hence, we have 𝐸(𝑋(𝑐)
𝑡 ) = 𝑖𝑚𝑎𝑥 ⋅𝐶(𝑐).

In the next step, we add the drawn number of waiting customers 𝑤⃗𝑡
for every customer type that is able to postpone purchases, cf. 𝑐 = 1, 2, 3. 
7 
Now, with 𝑁 (𝑐)
𝑡 = 𝑋(𝑐)

𝑡 + 𝑤(𝑐)
𝑡  we get the total number of customers of 

each type 𝑐 eligible to buy an item at this timestep per type.
To update the competitor offers fairly, we split the simulation step 

into 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 partial steps, where each vendor iteratively updates its 
offer, starting with the agent vendor. Therefore, we draw the belonging 
to partial steps for each customer and aggregate, yielding 𝑁 (𝑐′)

𝑡 . Starting 
with the iteration of the agent vendor, no competitor offers are up-
dated. The next step is executed separately for every customer type. 
Using a defined customer behavior, we calculate the realized demand 
(in each partial step) based on the current price vector 𝑝.

We use the demand probabilities 𝑃 (𝑐,𝑘)
𝑡 (𝑝𝑡;𝐻

(ℎ)
𝑡 ) of each consumer 

type to multinomially draw the number of customers buying in this 
partial step. First, we do this for every customer; later, we accumulate 
the sales from all consumer types to calculate the number of sales of 
firm 𝑘 for this partial step 𝑖(𝑘′)𝑡 . Here, we denote 𝑌 (𝑐′)

0 ,… , 𝑌 (𝑐′)
𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠  as the 

number of buying customers (for a partial step) per type 𝑐 to finally 
determine 𝑖(𝑘′)𝑡  for all firms 𝑘, i.e., 

𝑖(𝑘
′)

𝑡 =
𝑛𝑐
∑

𝑐′=0
𝑌 (𝑐′)
𝑘′ . (15)

After that, we update the offer price of the first competitor, draw 
again, and repeat until every competitor was updated. In the end, we 
accumulate all 𝑖(𝑘′)𝑡  to get 𝑖(𝑘)𝑡 .

At the end of one simulation step, we calculate the reward (𝑟𝑡) and 
update the state information (𝑠̃𝑡 including 𝑠𝑡). The seasonal component 
is updated via (1), while all not buying customers, i.e., 𝑌 (𝑐)

0 , enter 
their corresponding waiting pools, cf. 𝑤⃗𝑡, if they postpone their buy. 
Furthermore, the storage of last prices, cf. 𝐻 (ℎ)

𝑡 , is updated to include 
the most recent offer 𝑎𝑡 and drop the most previous out of the storage.

4.2.2. Reproducible experimental setup
For all our simulation runs, we use the parameters given in Table  1 

if not stated otherwise.

4.2.3. Training and performance evaluation
Training: We define one training episode to last 𝑇 = 70 timesteps 

(cf. 10 weeks) and set a limit of training episodes to 100000. The 
number of training steps until convergence ranges from 10000 training 
episodes in simple experiments to 75000 in our most complex market 
environments, with markets of higher relative amounts of strategic cus-
tomer behavior requiring longer training. After each training episode, 
the environment is set back to an initial state containing zero values 
for current prices, price histories, and waiting pools, cf. 𝑠̃𝑡 ∶= (0,… , 0).

Further, for all experiments, we use five independent training runs 
with different random seed values. All experiments were run on a 
MacBook Air with an Apple M1 processor and 8 GB RAM (runtime 
about 1 h per 20000 episodes).

Performance Evaluation: By definition trained policies do only 
depend on the state considered in the infinite horizon MDP, see Sec-
tion 3.1.4. Further, we use the learned policy without random effects 
(cf. exploration rate during training).

Since the vendor agent model bases its prediction on recent prices, 
in the beginning of an episode, offer prices do either not yet exist or 
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Table 1
Overview of the chosen model parameters for our experiments.
 Variable Explanation Default  
 𝛾 Discount factor for one period 0.9999  
 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 Number of seasons (cycle length, types of periods, weekdays) 7  
 𝑇 Number of timesteps per training episode (cf., e.g., 10 weeks) 70  
 𝑎𝑚𝑎𝑥 Maximum offer price 10  
 𝐴 Admissible prices (continuous) [0, 𝑎𝑚𝑎𝑥]  
 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 Number of vendors (cf. monopoly (1) vs. duopoly case (2)) 1 or 2  
 𝑛𝑙𝑎𝑠𝑡 Number of last periods with 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 prices each (cf. agent’s state) 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠  
 𝑎𝑓𝑙𝑜𝑜𝑟 Undercutting strategy price floor (competitor) 1  
 𝛥 Undercutting difference (competitor) 1  
 𝑛𝑐 Number of non-myopic customer types, 𝑐 = 0, 1,… , 𝑛𝑐 (0 myopic) 3  
 𝑖𝑚𝑎𝑥 Number of new arriving customers (aggregated over all types) 50  
 𝑤𝑚𝑎𝑥 Maximum amount of waiting customers per type 1000  
 𝑢(0) Utility of not buying (myopic customer) 1  
 𝛼 Adjustment parameter for utility function 𝑢𝑡 (myopic customer) 4  
 𝛽𝑡 Level for utility 𝑢𝑡 (seasonal demand case, 𝑡 = 0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1) (4,6,7,3,6,5,7) 
 𝜋𝑟𝑒𝑚𝑎𝑖𝑛 Probability (per period) to stay in waiting pool (type 𝑐 = 1, 2, 3) 0.95  
 𝜋𝑟𝑒𝑡𝑢𝑟𝑛 Probability (per period) to visit the market (type 𝑐 = 1, 2, 3) 0.95  
 𝛿 Number of periods for past reference (price-aware customer) 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1  
 ℎ𝑟𝑒𝑙_𝑟𝑒𝑓 Relative reference price threshold (price-aware customer) 0.9  
 𝑊 𝑇𝑃𝑚𝑎𝑥 Maximum willingness to pay (type 𝑐 = 2, 3) 7  
 𝜙 Number of periods for forecasting input (price-anticipating cust.) 2 ⋅ 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠  
 𝜃 Forecasting horizon in periods (price-anticipating customer) 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1  
 ℎ𝑟𝑒𝑙_𝑔𝑎𝑝 Relative price threshold (price-anticipating customer) 0.9  
are distorted. Hence, evaluation runs include an initial phase of at-
tunement. To obtain representative long-term performance results, we 
exclude this phase of attunement from the evaluation of a pricing policy 
(to lose the influence of the initial state). Further, due to the repeating 
dynamics of the 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 = 7 base periods in our infinite horizon model, 
cf. (1), the visited states and the associated realized price trajectories 
have a repeating cyclical structure. As this steady-state pattern goes on 
forever, it is sufficient to measure the performance for a finite selection 
of some of these steady-state cycles. To count only such steady-state 
cycles and to not include biases resulting from a (randomly) chosen 
starting state (phase of attunement), in our performance evaluation, 
we discard the first half of an episode (e.g. 𝑇 ∕2 = 70∕2 time steps, 5 
cycles) – the time that is typically needed to reach the steady state. 
Then, for the remaining half of the episode, we measure the steady-
state performance of the policy over 𝑇 ∕2 time steps (5 cycles). Such 
evaluation runs are repeated.

For each experiment, we use 1000 evaluation runs (for all single 
training runs each) to analyze the trajectories of reward, offer price, and 
number of customer buys per timestep by visual inspection. Further, 
if the investigated customer behavior is able to postpone a purchase, 
we display the number of waiting customers. We average the results 
for each type of customer behavior, also considering the average sales 
price. In duopoly markets, we do this for both vendors and the total 
market.

Finally, in sensitivity analyses, we illustrate and discuss the impact 
of the share of a certain customer type by showing the average sales 
price and the number of customers buying with an increasing share of 
the non-myopic type, given myopic customers as the remaining base 
customer group. We again average results over 1000 evaluation runs 
(for 3 training runs) evaluating the agent’s sales and, in case of a 
duopoly, include the competitor’s sales.

4.3. Experiment 1: Myopic customers & seasonal demand (baseline model)

The first experiment serves as a baseline without strategic customer 
behavior to present our market simulation framework. We show the 
results for a monopoly (Section 4.3.1) and duopoly setup (Section 4.3.2) 
with customers having a season-dependent demand and compare the 
results to the optimal values in the monopoly case.

4.3.1. Monopoly setup
Fig.  2 presents the trajectories associated to the application of the 

optimized policy obtained after the training phase in a monopoly setup. 
8 
To visualize the steady state, we refrain from the influence of initial 
states and show the second half of a simulation episode (i.e. 70/2 peri-
ods = 5 cycles). The agent sets the same prices every seven timesteps,
i.e., every cycle of seasons. Most customers buy for these prices, and 
low variations can be deducted from the stochastic demand behavior. 
Agent rewards follow the cyclical pattern. Fig.  3 further illustrates that, 
during training in a monopoly setup, the agent sets different offer prices 
for different seasons, converging after about 15000 training episodes.
Comparison to optimal prices. For the setup with 100% myopic cus-
tomers and seasonal demand Table  2 shows that the prices offered by 
the agent vendor are close to the optimal prices for each season, which 
in this basic setup are tractable under full information. We calculate 
the expected reward given a certain price and conclude that smaller 
differences in the offer price must not change the expected reward. We 
use the mean of all differences between actual and optimal prices and 
profits as performance metric, indicating how well the agent sets prices 
to maximize profits. In this experiment with a monopoly setup, the 
agent reaches 99.37% of the optimal prices and 99.96% of the optimal 
profits.

4.3.2. Duopoly setup
Fig.  4 shows trajectories of a duopoly setup against the undercutting 

competitor (7). We conclude that the agent finds cyclical offer prices 
for each season again. It is constantly undercut by 𝛥 by its competitor. 
Agent and competitor mostly alternate in making many customers 
accept their offers, and variations are caused by stochastic customer 
behavior.

Nevertheless, the agent can gain a slight advantage when lowering 
its price offer as a response to a decreased demand, because of the 
higher competitor price offer in the following half timestep. Further-
more, Table  3 shows that the agent can achieve a higher total reward 
than the competitor, caused by higher offer prices on average. On the 
other hand, the competitor benefits each second half period because of 
its perfectly fitting undercut offer, adjusted to the agent’s offer. Higher 
deviations from average sales and average offer prices of the competitor 
are caused by keeping the undercut price from the last timestep as
well.

More generally, a duopoly setup can be advantageous for the cus-
tomer base since the competitive offer might cause prices to decrease, 
causing a higher number of sales. Each vendor loses a significant 
amount of revenue and is forced to decrease price offers in comparison 
to a monopoly market.
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Fig. 2. 100% Myopic Customers in a Monopoly: Second half of a simulated episode with seasonal demand, i.e. rewards, offer prices, and realized sales over time. The policy was 
trained for 15000 episodes and depends on the season, cf. 𝑡 mod 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 ∈ {0, 1,… , 6} (Section 4.3.1).
Fig. 3. Learned offer prices (and standard deviations) over 25000 training episodes for three exemplary seasons with low, medium, and high demand (cf. 𝛽3 = 3, 𝛽5 = 5, 𝛽6 = 7) 
in a monopoly setup (Section 4.3.1), averaged over 5 independent training runs.
Main findings 1. This experiment demonstrates the correct modeling 
and implementation of a seasonally dependent demand causing cyclic 
price patterns in a monopoly and a duopoly setup. We compare the 
results of the learned policy of our vendor agent to a tractable optimal 
solution in the monopoly case and conclude that when applying PPO 
we are able to reach this optimal solution after less than 15000 training 
episodes.

4.4. Experiment 2: Recurring customers

Experiment 2 studies the customer behavior of type 𝑐 = 1 that 
is strategic to a small degree and follows simple rule-based mecha-
nisms. We aim to observe whether minor strategic considerations, even 
9 
marginally as postponing a purchase, influence the learned pricing 
policy.

4.4.1. Monopoly case
Fig.  5 shows simulated trajectories of a market with only recurring 

customers in a monopoly setup. It is visible that the agent vendor can 
benefit from the customers’ ability to wait, caused by the seasonally 
dependent demand. Contrary to the customers’ intended behavior of 
waiting for the lowest offer price, the agent finds the seasons with 
highest demand and sets its offer price of all seasons to the optimal 
price for those specific seasons. This causes a behavior where customers 
do not buy during the seasons of lower demand. They wait until the 
seasons with the highest demand, find an offer price that fits, and 
accept the high offer price.
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Table 2
Comparison of learned vs. optimal prices and associated rewards for all 7 seasons (cf. 0-6) and in total (∑) for 100% myopic customers with seasonal 
demand in a monopoly setup. The agent is able to learn a near-optimal policy after 15000 training episodes (Section 4.3.1). Results are averaged over 5 
independent training runs and 1000 evaluation runs each.
 Metric Demand Beta (𝛽𝑡) ∑

 3 4 5 6 7

 Season 3 0 5 1 & 4a 2 & 6a 0–6

 

Ac
tu
al

Offer Price 2.77 3.85 4.77 5.98 6.97
 Reward per Customer 2.03 2.94 3.83 4.75 5.65 29.60
 Reward per Timestep 101.70 147.14 191.29 237.29 282.35 1480.21
 Reward per half Episode 508.48 735.70 956.46 1186.45 1411.74 7401.06

 

O
pt
im
al Offer Price 2.76 3.85 4.92 5.97 7.02

 Reward per Customer 2.03 2.94 3.85 4.75 5.65 29.62
 Reward per Timestep 101.73 147.14 192.38 237.44 282.35 1480.83
 Reward per half Episode 508.65 735.70 961.90 1187.20 1411.75 7404.15

a The values for seasons 1 & 4 and seasons 2 & 6 (same 𝛽𝑡) are similar and have been averaged.
Fig. 4. 100% Myopic Customers in a Duopoly against the undercutting competitor: Second half of a simulated episode with seasonal demand, i.e., both firms’ rewards, offer prices, 
and sales over time. The agent’s policy was trained for 15000 training episodes (Section 4.3.2).
Table 3
100% Myopic Customers in Monopoly vs. Duopoly Setups: Performance metrics of 
Experiment 1 with seasonal demand, i.e., offer prices, sales prices, number of sales, and 
rewards. Results are averaged over 5 independent training runs and 1000 evaluation 
runs each. ∅ denotes the mean average and ∑ denotes the total sum per episode 
(Section 4.3.2).
 Metric Monopoly Duopoly

 

Ag
en
t ∅ Offer Price 5.25 4.92

 ∅ Sales Price 5.27 4.71
 ∑ Customers Buying 1 401.88 705.44
 ∑ Revenue 7 382.09 3319.40

 

Co
m
p.

∅ Offer Price – 3.92
 ∅ Sales Price – 3.57
 ∑ Customers Buying – 883.28
 ∑ Revenue – 3 151.55

 

To
ta
l ∅ Sales Price 5.27 4.07

 ∑ Customers Buying 1 401.88 1588.71
 ∑ Revenue 7 382.09 6470.95

4.4.2. Duopoly case
In a duopoly market, see Fig.  6, prices follow a cyclical pattern of 

the defined week length. Prices are set to a high price near 𝑎 = 10, 
𝑚𝑎𝑥

10 
avoiding that recurring customers accept the offer of the competitor, 
cf. causing them to postpone their buy. In the first half of a timestep 
following the low demand, the agent achieves high reward caused by 
the not updated competitor offer. After undercutting this offer, the 
competitor profits in the second half. Fewer customers wait in the 
duopoly market.

Table  4 presents a numerical evaluation of the recurring customer. 
The agent exploiting the recurring behavior can achieve a sales price 
of 7.00 in the monopoly setup and has many customers accepting this 
offer. Rewards are higher than in a market with myopic customers 
having the same seasonal demand but not being able to wait. In the 
duopoly market, this effect fades, by the competitor causing a cyclical 
price pattern with decreasing offer prices.

Counteracting this effect, we also evaluated the case with 90% 
myopic customers. The resulting trajectories are similar to those of 
Experiment 1, cf. Figs.  2 and 4, retaining the cyclical price pattern 
caused by different demands per season. The numerical evaluation 
in Table  4 shows that the remaining 10% recurring customers are 
still performing slightly worse than their myopic counterparts, due to 
their identical demand model. Overall, the market simulation with a 
small share of recurring customers mostly equals one with only myopic 
customers.
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Fig. 5. 100% Recurring Customers in a Monopoly: Second half of an episode with seasonal demand, i.e., rewards, offer prices, sales, and waiting pool (after 10000 training 
episodes). The agent reacts to the ability to wait by not lowering prices for low demand seasons (Section 4.4.1).
Fig. 6. 100% Recurring Customers in a Duopoly against the undercutting competitor: Second half of a simulated episode with seasonal demand, i.e., both firms’ rewards, offer 
prices, sales, and the waiting pool size over time (results after 20000 training episodes) (Section 4.4.2).
4.4.3. Sensitivity analysis: Impact of the share of recurring customers
In order to analyze the impact of the share of recurring customers, 

we run simulations for different compilations of myopic and recurring 
customers. We increase the relative number of recurring customers by 
ten percent until no myopic customers are left. Fig.  7 shows the average 
sales price per customer and the normalized number of customers 
buying in both market setups over 3 independent training runs with 
each 1000 simulation runs.

The evaluation of the average sales prices supports our conclusion 
above. In a monopoly market, the agent increases prices, contrarily 
letting customers wait for higher prices as more recurring customers 
enter the monopoly market. With increasing prices, the number of 
11 
sales decreases more for myopic customers. This holds true only to 
some extent in the duopoly market. Sales prices increase from a lower 
averaged price with only myopic customers, causing a decrease in 
myopic sales after a share of 60% recurring customers. In both markets, 
more recurring customers buy caused by the chance to return to the 
market after not accepting the first offer.

Main findings 2. Experiment 2 presents a market simulation with a 
customer behavior being able to postpone purchases. We identify that 
this ability does not guarantee a better performance, bringing along the 
ability to be exploited by a vendor agent. Such an exploitation can be 
circumvented to a small degree by consulting a competitive vendor, or 
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Table 4
10% & 100% Recurring Customers in Monopoly vs. Duopoly Setups: Performance metrics of Experiment 2 with seasonal demand, i.e., offer and sales prices, 
realized sales, and rewards. Results are averaged over 5 independent training runs and 1000 evaluation runs each. ∅ denotes the mean average, ∑ denotes 
the total sum per episode (Sections 4.4.1–4.4.2).
 Metric Monopoly Duopoly

 Combination of Combination of
 1.0 rec. 0.9 myo. 0.1 rec. 1.0 rec. 0.9 myo. 0.1 rec.
 

Ag
en
t ∅ Offer Price 6.84 5.19 6.46 4.86

 ∅ Sales Price 7.00 5.24 5.25 5.67 4.67 4.68
 ∑ Cust. Buying 1 567.33 1261.38 170.60 856.77 636.38 77.41
 ∑ Revenue 10975.14 6612.07 896.18 4860.02 2971.39 362.58

 

Co
m
p.

∅ Offer Price – – – 5.45 3.86
 ∅ Sales Price – – – 4.49 3.53 3.53
 ∑ Cust. Buying – – – 835.03 793.50 96.73
 ∑ Revenue – – – 3 742.67 2800.52 341.22

 

To
ta
l ∅ Sales Price 7.00 5.24 5.25 5.09 4.04 4.04

 ∑ Cust. Buying 1 567.33 1261.38 170.60 1691.80 1429.88 174.14
 ∑ Revenue 10975.14 6612.07 896.18 8602.69 5771.91 703.80
Fig. 7. Impact of the Share of Recurring Customers (with seasonal demand) in % (x-axis) if the remaining share of customers is myopic: Average sales prices and number of sales 
(normalized) for both types, i.e., the recurring customers and the myopic customers, in the monopoly and the duopoly setup (each after 15000–20000 training episodes). Results 
are averaged over 3 independent training runs and 1000 evaluation runs each (Section 4.4.3).
avoided by using a sufficiently large group of myopic customers causing 
the optimal pricing policy to restore the seasonal price pattern.

Independent of the ability to be exploited, our modeling of the 
recurring customer cannot achieve significantly higher consumer rent 
than their myopic counterparts. This is caused by having the same 
demand function and no rule explicitly aiming at a lower price but 
instead just not accepting too high prices.

4.5. Experiment 3: Price-aware customers

In contrast to the recurring customer, our modeling of a price-aware 
customer is able to store recent prices and thereby to decide based on 
historical reference data. This modeling does not predict future prices 
but waits until the current offer price is lower than past reference 
prices.

4.5.1. Monopoly case
Fig.  8 presents trajectories of a simulation episode of such a market 

with only price-aware customers in a monopoly market. A pattern 
of prices can be observed where the agent sets the highest possible 
price for a series of timesteps as a preparation to decrease the offer 
afterwards. In the timesteps following this series of high price offers, 
the agent constantly decreases prices such that customers accept the 
offers, until reaches a very low price, and, finally, increases prices 
again.
12 
The chance of customers being lost during a series of not purchasing, 
given by 𝜋𝑟𝑒𝑚𝑎𝑖𝑛 and 𝜋𝑟𝑒𝑡𝑢𝑟𝑛 causes the notable surpassing of 𝑊 𝑇𝑃𝑚𝑎𝑥 of 
the offer price to be beneficial. Instead of four times setting a price 
of ten followed by one offer for 6.99, the agent does not lose waiting 
customers by further decreasing prices. That is why the length of one 
price cycle is just dependent on the possible price range in this scenario.

The numerical evaluation in Table  5 shows a large difference be-
tween average offer prices and average sales prices in the market 
with 100% price-aware customers. When evaluating a market with a 
small share of price-aware customers, they are able to outperform their 
myopic counterparts, achieving an average sales price of 51.39% of the 
myopic with an ordinary number of purchases.

4.5.2. Duopoly case
In a duopoly market with 100% price-aware customers, the agent 

and the competitor constantly undercut each other until the competitor 
offers its floor price 𝛼𝑓𝑙𝑜𝑜𝑟 = 1. Because of the agent’s ability to further 
surpass the competitors’ price, all customers accept the very low offer 
of the agent, cf. Table  5.

We show a market with 10% price-aware customers and 90% my-
opic customers in Fig.  9. The cyclic price pattern for the myopic 
customers is restored. The price-aware customer always accepts the 
offer of the competitor in the second half of the season with minimum 
demand. Since the agent does not make profit with price-aware cus-
tomers in a duopoly setup at all, the pricing pattern is not optimized 
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Fig. 8. 100% Price-Aware Customers (with 𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in a Monopoly: Second half of an episode, i.e., rewards, offer prices, sales, and waiting pool (after 60000 training 
episodes). The ‘‘Price-aware Demand’’ indicates the highest price the customer would accept in 𝑡 (Section 4.5.1).
Fig. 9. 10% Price-Aware Customers (with 𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in a Duopoly against the undercutting competitor (7): Second half of a simulated episode, i.e., both firms’ rewards, offer 
prices, sales, and the waiting pool size over time (after 17500 training episodes). The 90% myopic customers lead to a pricing pattern than can be exploited by price-aware 
customers (Section 4.5.2).
towards exploiting them. That is why the waiting pool shows a less 
cyclical trajectory. Only a smaller number of price-aware customers 
buys the product for 42.99% of the average price of myopic customers, 
cf. Table  5.

4.5.3. Sensitivity analysis: Impact of the share of price-aware customers
Studying different relative amounts of customers, Fig.  10 presents 

the average sales prices and normalized average number of sales in 
both market settings. In comparison to the recurring customer, it can 
be observed that the price-aware is achieving lower sales prices than 
the myopic base customer group introducing the seasonal demand. The 
13 
price-aware customer benefits highly from the agent vendor offering 
near-optimal prices for the myopic base group until there are more than 
50% price-aware customers in a monopoly market. After this point, the 
agent adopts prices more towards maximizing profits from price-aware 
customers, resulting in lower average sales prices of the myopic and 
higher prices for the price-aware behavior. Despite an increase in sales 
prices, there are more price-aware customers buying.

In a duopoly setup, the realized sales price as a combination of agent 
and competitor sales is increased more steep after a higher share of 
price-aware customers participates in the market. This yields an effect 
of decreasing number of sales of the myopic customers with increasing 
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Table 5
10% & 100% Price-Aware Customers (with 𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in Monopoly vs. Duopoly Setups: Performance metrics of Experiment 3, i.e., offer prices, sales 
prices, realized sales, and rewards. Results are averaged over 5 independent training runs and 1000 evaluation runs each. ∅ denotes the mean average, ∑
is the total sum per episode. The 90% myopic customers lead to a pricing pattern that is exploited by price-aware customers (Sections 4.5.1–4.5.2).
 Metric Monopoly Duopoly

 Combination of Combination of
 1.0 p.-aw. 0.9 myo. 0.1 p.-aw. 1.0 p.-aw. 0.9 myo. 0.1 p.-aw.
 

Ag
en
t ∅ Offer Price 6.75 5.32 1.22 4.91

 ∅ Sales Price 5.43 5.37 2.76 0.69 4.70 4.00
 ∑ Cust. Buying 1 470.46 1239.77 131.60 1179.54 635.18 0.01
 ∑ Revenue 8 005.33 6655.29 363.15 808.65 2983.33 0.04

 

Co
m
p.

∅ Offer Price – – – 1.01 3.91
 ∅ Sales Price – – – 1.00 3.56 1.75
 ∑ Cust. Buying – – – 0.10 795.52 86.62
 ∑ Revenue – – – 0.10 2 834.01 151.99

 

To
ta
l ∅ Sales Price 5.43 5.37 2.76 0.69 4.07 1.75

 ∑ Cust. Buying 1 470.46 1239.77 131.60 1179.64 1430.70 86.83
 ∑ Revenue 8 005.33 6655.29 363.15 808.75 5817.34 152.05
Fig. 10. Impact of the Share of Price-Aware Customers (𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in % (x-axis) if the remaining share of customers is myopic: Average sales prices and number of sales 
(normalized) for both types, i.e., the price-aware customers and the myopic customers, in the monopoly and the duopoly setup (each after 15000–60000 training episodes). Results 
are averaged over 3 independent training runs and 1000 evaluation runs each (Section 4.5.3).
share of the price-aware type, until a price-race-to-the-bottom results 
from over 80% price-aware customers. This causes high numbers of 
sales with low average sales prices for both types.
Main findings 3. This experiment presents market dynamics when in-
cluding strategic customer behavior, being able to observe past prices. 
Despite its inherent ability to be exploited in a monopoly market 
without a base customer group having seasonal demand, the price-
aware buying behavior benefits highly in a market having cyclical 
offer price patterns. In monopoly and duopoly markets with 90% 
myopic customers, they achieve discounts of 50%–60% in comparison 
to non-strategic behavior.

4.6. Experiment 4: Price-anticipating customers

In the last experiment, we study counteracting the price-anticipating 
customer behavior, using an auto-regression to predict future prices, 
thereby being forward-oriented instead of solely observing past prices.

4.6.1. Monopoly case
Fig.  11 presents simulated trajectories for a monopoly market with 

only price-anticipating customers. In contrast to Experiment 3, the 
agent is not able to exploit the anticipating behavior just by setting a 
series of prices to 𝑎𝑚𝑎𝑥, but rather offering a sinusoidal price trajectory. 
The predictions of the anticipating customer are not exactly matching 
the offer prices, nevertheless, the anticipating customers achieve a 
better average sales price, i.e. 5.83, than the average offer price of 6.63.
14 
In a market with 90% myopic customers with seasonal demand and 
10% price-anticipating customers, we find that the price-anticipating 
customers can gain a competitive advantage over the myopic cus-
tomers, paying 49.04% of the average sales price of the myopic cus-
tomers. A sufficiently high amount of price-anticipating customers 
are purchasing and achieving a better average sales price than the 
price-aware behavior, cf. Table  6.

4.6.2. Duopoly case
In a duopoly market, the price-anticipating customer predicts the 

minimum of two price trajectories by always taking the minimum offer 
price as input to the auto-regression as described in Section 3.2.4. This 
again causes customer behavior where anticipating customers do not 
accept the higher price offer, similar to the price-aware behavior in 
Section 4.5.2. Further, the undercutting competitor (7) always offers a 
lower price, except when the price floor is reached.

We studied a duopoly market with price-anticipating customers 
only and a duopoly market with 90% myopic customers as a base 
group. While the composition of a market with two vendors and only 
price-anticipating customers results in a pricing policy of offer prices 
near the price floor of the undercutting competitor in our modeling, 
Fig.  12 shows the simulation trajectories of a market with 10% price-
anticipating and 90% myopic customers. It can be observed that the 
anticipating customers accept minimal price offers from the competitor, 
while remaining market dynamics follow the outcome of a duopoly 
market with only myopic customers.
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Fig. 11. 100% Price-Anticipating customers (with 𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in a Monopoly: Second half of an episode, i.e., rewards, offer prices, sales, and waiting pool (results after 75000 
training episodes). The ‘‘Price-anticipating Forecast’’ indicates the forecast in 𝑡 + 1 for 𝑡 (Section 4.6.1).
Fig. 12. 10% Price-Anticipating Customers (with 𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in a Duopoly against the undercutting competitor (7): Second half of a simulated episode, i.e., both firms’ rewards, 
offer prices, sales, and the waiting pool size (after 25000 training episodes). The 90% myopic customers lead to a pricing pattern that can be exploited by anticipating customers 
(Section 4.6.2).
Analyzing the metrics in Table  6, it can be concluded that the 
competitor causes offer prices to decrease, resulting in another 42.20% 
discount of the already low average sales price in a monopoly mar-
ket with 10% price-anticipating customers. A sufficient number of 
purchases is realized, all accepting the competitor offer.

4.6.3. Sensitivity analysis: Impact of the share of price-anticipating cus-
tomers

Investigating the impact of the share of price-anticipating customers 
in a monopoly market with myopic customers having seasonally depen-
dent demand as a base group, we can observe that price-anticipating 
customers are able to benefit only if they are a minority in the simulated 
15 
market, see Fig.  13. If there are more than 30% price-anticipating 
customers in our simulation market, this type of customer cannot 
outperform the myopic customers regarding consumer rent. In some 
configurations, they even pay higher average sales prices.

In a duopoly market, sales prices are increasing with rising share 
of anticipating customers until 70% while normalized myopic sales 
decrease. After a certain point the average sales price for both customer 
types drop, resetting the number of myopic sales to the prior level that 
was realized with a large share of myopic customers.

Main findings 4. We studied the price-anticipating customer behavior 
using an auto-regressive forecast in a monopoly and duopoly setup. 
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Table 6
10% & 100% Price-Anticipating Customers (𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in Monopoly vs. Duopoly Setups: Performance metrics of Experiment 4, i.e., offer/sales prices, 
realized sales, and rewards. Results are averaged over 5 independent training runs and 1000 evaluation runs each. ∅ denotes the mean average, ∑ is the 
total sum per episode. The 90% myopic customers lead to a cyclic pricing pattern that is exploited by anticipating customers (Sections 4.6.1–4.6.2).
 Metric Monopoly Duopoly

 Combination of Combination of
 1.0 antic. 0.9 myo. 0.1 antic. 1.0 antic. 0.9 myo. 0.1 antic.
 

Ag
en
t ∅ Offer Price 6.63 5.17 1.32 4.88

 ∅ Sales Price 5.83 5.20 2.55 0.79 4.65 4.60
 ∑ Cust. Buying 1 663.41 1266.69 79.69 1175.89 641.79 0.02
 ∑ Revenue 9 686.40 6589.64 203.28 936.24 2981.20 0.092

 

Co
m
p.

∅ Offer Price – – – 1.00 3.87
 ∅ Sales Price – – – 1.00 3.53 1.46
 ∑ Cust. Buying – – – 0.12 793.18 69.17
 ∑ Revenue – – – 0.12 2 797.85 102.71

 

To
ta
l ∅ Sales Price 5.83 5.20 2.55 0.89 4.03 1.49

 ∑ Cust. Buying 1 663.41 1266.69 79.69 1176.02 1434.97 69.19
 ∑ Revenue 9 686.40 6589.64 203.28 936.36 5779.05 102.80
Fig. 13. Impact of the Share of Price-Anticipating Customers (𝑊 𝑇𝑃𝑚𝑎𝑥 = 7) in % (x-axis) if the remaining share of customers is myopic: Average sales prices and number of sales 
(normalized) for both types, i.e., the price-anticipating customers and the myopic customers, in the monopoly and the duopoly setup (each after 15000–75000 training episodes). 
Results are averaged over 3 independent training runs and 1000 evaluation runs each (Section 4.6.3).
With the ability to include the impact of single price decisions on 
consumers’ price anticipations the agent accomplishes to deal with 
an unknown share of price-anticipating customers among myopic con-
sumers. We find that anticipating prices and adopting the buying 
behavior accordingly causes an increase in consumer rent, which can 
be further heightened by a competitor offering lower prices. In total, 
this behavior outperforms the price-aware behavior in our modeling. 
In most of our studied market setups, the price-anticipating customers 
are able to identify the minimum offer and postpone their buy when 
given a higher option, leaving fewer opportunity to be exploited by a 
vendor adopting its pricing policy.

5. Discussion

In this section, we summarize our main results and infer managerial 
insights (Section 5.1). Furthermore, we present limitations of our study 
(Section 5.2) and examine future research opportunities (Section 5.3).

5.1. Summary of results and managerial insights

In the following, we summarize our insights into how a merchant 
can counteract different strategic consumer behaviors in different situ-
ations. Finally, we also discuss which consumer behavior performs best 
in different market scenarios.
16 
5.1.1. Counteracting myopic consumer behavior
Experiment 1 showed a monopoly and duopoly market containing 

myopic customers with unknown stochastic demand behavior, depend-
ing on the current season. In this simple baseline setup, the MDP 
is tractable under full information, allowing the calculation of the 
optimal policy. This allowed to verify that the RL agent is able to learn 
near-optimal policies without prior knowledge. The optimal solution 
involves adjusting offer prices per type of season. Prices can differ 
a lot and following the seasonal demand intensity of the (myopic) 
consumers.

In case of competition (against an undercutting merchant) – as 
expected – we overall observe lower prices and reduced rewards. 
Now, the agent has to balance between undercutting the competitor 
to increase profits and raising prices again to avoid a price race to a 
less rewarding price level at the bottom. This is achieved by increasing 
prices in periods of low demand, such that the agent offers the better 
price in periods with high possible reward. We find that in both market 
scenarios the required training time is modest.

5.1.2. Counteracting patient consumer behavior
Next, in Experiment 2, we studied a recurring customer behavior, 

also completely unknown to our vendor agent. In case of a decision 
against purchasing for a given price offer, this type might return to 
the market at a later period. In line with earlier studies, see [32], 
the waiting ability serves vendors to counteract their customers by 
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introducing higher prices at times of low demand. This causes them 
to visit the market in future periods of high demand, reducing their 
consumer rent in case of a purchase. That is why in markets with high 
share of recurring customers, the vendor agent offers stable prices at the 
highest demand level, preventing customers to purchase smaller offers.

Myopic customers experience a slightly decreasing consumer rent 
with an increasing share of recurring customers, caused by increasing 
offer prices in periods of low demand. On the other hand, the vendor 
agent benefits from exploiting the recurring behavior. This effect is less 
pronounced in a competitive market as the agent additionally has to 
deal with the interfering effect of being undercut, similar to Experiment 
1.

5.1.3. Counteracting reference price-based consumer behavior
In Experiment 3, we considered recurring customers with a price-

aware buying behavior, suitable to recognize and wait for small prices. 
This behavior causes increased consumer rent in market setups with 
a large base group of myopic customers. However, in case the share 
of price-aware consumers surpasses a certain threshold, the agents 
focuses on maximizing revenue from this type. Price-aware consumers 
are counteracted by first offering constant prices at a very high level, 
which generates a high reference price and a swelling waiting pool. 
Second, the price is dropped to the maximum willingness to pay such 
that a large number of price-aware customers within the waiting pool 
purchase. In few subsequent periods prices are dropped again (cf. 
skimming policies), which can be explained as follows. Raising the 
price directly and starting another phase of restoring the reference price 
results in losing customers that are still in the waiting pool (they return 
to the market with a probability smaller than 1 and leave the pool with 
a positive probability). Below the threshold (in our setting) of about 
60% price-aware customers, it is not worth investing in high reference 
prices as the agent loses sales from the myopic customers.

Price-aware customers perform noticeably better than myopic cus-
tomers in monopoly and duopoly market setups as long as there is a 
sufficiently large myopic base group. However, in this case, myopic 
customers are not affected by the strategic customer group entering the 
market. The agent suffers from a decent share of price-aware customers 
while it benefits from a large share in monopoly setups. In duopoly 
setups, the agent suffers even more from price-aware customers as the 
agent cannot form the reference price alone. Under competition, the 
agent either sets really low offer prices to sell to a large share of price-
aware customers or focuses on the more rewarding myopic customers, 
dependent on the relative combination, i.e., the associated expected 
total reward.

5.1.4. Counteracting price-anticipating consumer behavior
Finally, in Experiment 4, we studied a multi-period price-

anticipating behavior, yielding buying decisions at the expected min-
imum price offer of a price trajectory. We find that this behavior is 
effective to recognize and wait for small prices, given a number of 
last offer prices as input. As long as the share of myopic customers 
is large, this customer type is able to benefit even more than price-
aware customers. In scenarios with a small share of strategic customers, 
the waiting pool accumulated until the time of the predicted price 
minimum, resulting in many positive customer decisions at that period. 
Again, with a large share of anticipating customers, the vendor agent 
counteracts this behavior by setting long price trends aiming to find 
conditions fulfilling the strategic customer decision rule at high prices 
close to their maximum WTP.

We find that price-anticipating customers outperform all other be-
haviors in monopoly and duopoly markets with a large myopic base 
group. The vendor agent suffers from a small share of price-anticipating 
customers and benefits from a large one in a monopoly setup. In a 
duopoly setup with many price-anticipating customers, prices oscillate 
near the price floor of the competitor strategy. Note, that the agent 
cannot form the price history – that is crucial for price forecasts and in 
17 
turn, for future demand – alone. Further, the undercutting competitor 
always sets the lowest price within a cycle, which besides, is also antici-
pated by strategic consumers. In a duopoly with few price-anticipating 
customers, the agent focuses on maximizing reward from the myopic 
base group, having to consider the competitor behavior as well.

5.1.5. Comparison of the effectiveness of different strategic consumer be-
haviors

Our experiments also allow to compare the performance of different 
buying behaviors from a consumer perspective. Next, for small as well 
as large sizes of the myopic base group, we summarize which behavior 
performed best with regard to consumer rent. We distinguish monopoly 
and duopoly setups.

• In a monopoly with 90% of myopic consumers, for the remaining 
10% the price-anticipating behavior performed best.

• In a monopoly with 10% of myopic consumers, for the remaining 
90% the price-aware behavior performed best.

• In a duopoly with 90% of myopic consumers, for the remaining 
10% the price-anticipating behavior performed best.

• In a duopoly with 10% of myopic consumers, for the remaining 
90% the price-aware behavior performed best.

Overall, we find that strategic customer behavior exceeding the abil-
ity to postpone a purchase by a forward or backward-looking element 
is beneficial. In monopoly and duopoly markets with 10% price-aware 
or price-anticipating customers, they achieve discounts of 50%–60% 
compared to a myopic base group.

Naturally, our results obtained from the considered numerical ex-
amples may not hold in general. Nevertheless, the proposed framework 
remains a useful tool to study the effects of strategic interaction of 
competing vendors and strategic customers.

5.2. Limitations

The limitations of our model are the following:
The lack of testing different RL algorithms can be seen as a limita-

tion. Also, results are to some degree stochastic and a larger number of 
runs would have to be used to quantify mean values and their standard 
deviations accurately. Further, also a thorough hyperparameter tuning 
for PPO could have been performed.

In the existing framework, alternative rule-based competitor strate-
gies or oligopoly setups could have been evaluated. The equidistant 
timing of both competitors to adapt their prices could be generalized or 
randomized. Moreover, letting also the competitor apply self-learning 
strategies is worth investigating. However, in such cases the dynamics 
of the environment change if competitors change their behavior (cf. 
Markov property).

Exploring other demand setups or decision rules might bring about 
different results and could be worth exploring in future research:

First, consumer arrivals could also be set up differently. Our ap-
proach of drawing the customer types and their buying decisions 
multinomially (with a constant number of new arriving customers) 
out of a demand probability yields valid results but could also be 
generalized. Also, additional firm-specific (e.g., sustainability) features 
could be included [49].

Second, adapting or randomizing hyperparameters such as the 
thresholds for the maximum willingness-to-pay or the relative compar-
isons, as well as probabilities to wait and to return would be interesting. 
Also, the demand parameter 𝛽𝑡 could be chosen differently in further 
examples. Further, variations of different price history lengths might 
lead to other phenomena.

Third, also various mixtures of shares of different customers of 
certain type [50] could be investigated regarding the firm’s pricing 
policy and rewards as well as the mutual impact on the different 
customer types’ performances.
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Fourth, the modeling of a price-anticipating customer could as well 
be done with other regressive forecasts. The strengths of the model to 
be able to endogenize the impact of such forecasts, however, requires 
the history lengths of the sellers and vendors to be of somewhat similar 
lengths (cf. size of the state space).

Another simplification of our model is the absence of inventory 
considerations. In this regard, considering problem versions with re-
maining inventory levels in finite horizon settings or joint ordering 
decisions in infinite horizon settings seem possible. In our model, the 
state space as well as the action space would have to be extended by 
single dimensions. While this seems tractable, the complexity of the 
model increases and in turn, the required amount of training steps 
might increase as well.

Finally, the direct application of the model in practice is not possible 
as thousands of periods of exploration cannot be done in an online 
manner. Instead, it is required to define a suitable environment that 
allows to pretrain agents effectively. Here, the data-driven calibration 
of auxiliary training environments or digital twins is a promising 
opportunity (but this is not focus of the paper).

5.3. Future research

Our work poses a step towards the evaluation of complex market 
simulations and the learning of near-optimal pricing policies coun-
teracting strategic customer behavior. Despite the required effort to 
investigate different buying strategies, there is a research gap for more 
complex market situations combined with customer behavior that is 
strategic to a high degree. For instance, the influence of more than two 
vendors in an oligopoly setup might bring along different effects on 
optimized actions for all market participants. Furthermore, inventory 
constraints, particularly in finite horizon settings, could be researched 
regarding the strategy of anticipating customers. Note, in this context, 
the consideration of a potential run out (cf. product availability) or 
a depreciation of the product value could be taken into account by 
strategic consumers. Other market characteristics could be altered as 
well, such as using continuous time intervals, allowing only markdown- 
or markup pricing policies, or varying information settings.

In addition, the usage of RL to optimize the decision-making on 
the customer side might also be an interesting research field. Training 
multiple agents on both vendor and customer side can enable the 
identification of optimal policies in more complex market settings. 
However, it is challenging to fulfill the Markov property of events being 
independent of historical actions in the modeling of such a market.

Finally, the applicability of this framework in practice has to be 
researched. We demonstrate that non-myopic customer behaviors can 
be modeled differently and examine essential factors for predicting a 
buying policy based on past prices. A vendor was able to counteract 
some of these strategies. In practice, it has to be discovered whether 
there is sufficient data to create and use a digital twin environment 
like our market simulation framework. [51], for instance, show how 
to use estimations of demand probabilities and competitor reactions 
in recommerce markets by using linear regressions based on historical 
data to define a digital twin, which is used for pretraining before 
applying the learned policy in an unobservable market environment. 
Similar approaches could be used for our models as well.

6. Conclusion

In this paper, we have studied how to use RL techniques to approxi-
mate equilibria between price-optimizing vendors and different kinds of 
backward- and forward-looking customers. Besides monopoly markets 
we also studies duopoly markets against rule-based competitors. Note, 
such equilibria of vendor and consumer strategies – that mutually 
influence each other – can only be identified in dynamic games if 
the vendor’s state accounts for all price information that is relevant 
to the consumers’ decisions rules. Based on a concise modeling of 
18 
Table 7
Hyperparameters for Proximal Policy Optimization (PPO).
 Parameter Value  
 Learning rate 3 ⋅ 10−4 
 Steps per update 2048  
 Minibatch size 64  
 Epochs per update 10  
 clip_range (𝜀) 0.2  
 Discount factor (𝛾) 0.9999 
 Generalized advantage estimator factor (𝜆) 0.95  
 Entropy coefficient 0  
 Value function coefficient 0.5  

consumer behaviors and a corresponding counterpart within a tractable 
state space on the vendor’s side we are able to compute optimized 
pricing policies without iteratively updating consumer behaviors under 
changing policies. Instead, the synchronized learning process allows to 
study the strategic interplay of competing vendors and various kinds of 
non-myopic consumer behavior.

Our reproducible experimental results demonstrate the applicability 
and the effectiveness of our models in different market scenarios. 
Further, the results allow to explain different phenomena and to an-
alyze various performance comparisons. On the one hand, the results 
obtained provide insights into how to counteract different forms of 
strategic customer behavior by not losing too much rewards from 
myopic customer shares. On the other hand, we can verify and quantify 
the increase in consumer rent when using backward-looking reference 
price-based behaviors or forward-looking price-anticipating behaviors, 
respectively. The long-term performances of the policies obtained as 
well as associated price and sales trajectories over time are discussed 
for different market scenarios and managerial recommendations are 
inferred. Further, we identified limitations of the derived models and 
proposed promising model extensions and research directions for future 
work.
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See Table  8
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Table 8
Overview of the notation of our main parameters and variables.
 Symbol Explanation  
 𝑡 Current timestep  
 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 Number of seasons (cycle length)  
 𝑖𝑠𝑒𝑎𝑠𝑜𝑛(𝑡) Index of season at time 𝑡, 𝑖𝑠𝑒𝑎𝑠𝑜𝑛(𝑡) ∈ {0,… , 𝑛𝑠𝑒𝑎𝑠𝑜𝑛𝑠 − 1}, 𝑡 = 0, 1,…  
 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 Number of vendors  
 𝑘 Vendor index, 𝑘 = 0, 1,… , 𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 (0 for no buy option)  
 𝐴 Admissible prices (action space)  
 𝑎𝑡 Chosen action (of firm 1) at time 𝑡  
 𝑝𝑡 Vector of all price offers at time 𝑡, 𝑝𝑡 = (𝑝(1)𝑡 ,… , 𝑝(𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 )𝑡 )  
 𝑎𝑐𝑜𝑚𝑝(𝑝) Competitor offer price response to firm 1’s current price 𝑝 (duopoly case)  
 𝑛𝑙𝑎𝑠𝑡 Length of considered price history in periods (parameter)  
 ℎ Index of time lag, ℎ = 1,… , 𝑛𝑙𝑎𝑠𝑡  
 𝑝𝑡−ℎ Stored prices of all firms ℎ timesteps ago (in time 𝑡), ℎ = 1,… , 𝑛𝑙𝑎𝑠𝑡  
 𝐻 (ℎ)

𝑡 Set of all stored prices for last ℎ periods at time 𝑡, i.e., 𝐻 (ℎ)
𝑡 = (𝑝𝑡−1 ,… , 𝑝𝑡−ℎ)  

 𝑛𝑐 Number of classes of (strategic) customer types  
 𝑐 Customer types index, 𝑐 = 0, 1,… , 𝑛𝑐 (0 for myopic)  
 𝐶(𝑐) Average share of new arriving customers of type 𝑐, 𝑐 = 0, 1,… , 𝑛𝑐 (parameter)  
 𝑁 (𝑐)

𝑡 Number of customers eligible to buy per type 𝑐 at 𝑡  
 𝑃 (𝑐,𝑘)

𝑡 (𝑝𝑡;𝐻
(ℎ)
𝑡 ) Probabilities of consumer type 𝑐 to buy at firm 𝑘 in 𝑡 given 𝑝𝑡 and history 𝐻 (ℎ)

𝑡  
 𝑤(𝑐)

𝑡 Number of waiting customers of type 𝑐 at time 𝑡  
 𝑤⃗𝑡 Vector of waiting customers at time 𝑡, 𝑤⃗𝑡 = (𝑤(1)

𝑡 ,… , 𝑤(𝑛𝑐 )
𝑡 )  

 𝑖𝑚𝑎𝑥 Number of new arriving customer per period  
 𝑋(𝑐)

𝑡 Number of interested customers in period 𝑡 of type 𝑐 (random)  
 𝑌 (𝑐,𝑘)

𝑡 Number of customers in period 𝑡 of type 𝑐 buying at vendor 𝑘 (random)  
 𝑖(𝑘)𝑡 Total number of customers buying at firm 𝑘 in period 𝑡 (random)  
 𝛾 Discount parameter (for on period)  
 𝑟𝑡 Reward (of RL agent/firm 1) at time 𝑡  
 𝑠̃𝑡 Full state of the system at time 𝑡, i.e., 𝑠̃𝑡 = (𝑝𝑡 ,𝐻

(𝑚𝑎𝑥(𝑛𝑙𝑎𝑠𝑡 ,𝜙,𝛿))
𝑡 , 𝑤⃗𝑡)  

 𝑠𝑡 State of the system observable for firms at time 𝑡, i.e., 𝑠𝑡 = (𝑝𝑡 ,𝐻
(𝑛𝑙𝑎𝑠𝑡 )
𝑡 )  

 𝑢𝑡 Utility score (myopic customer)  
 𝛼, 𝛽𝑡 Scale parameter (myopic customer)  
 𝜋𝑟𝑒𝑚𝑎𝑖𝑛 Probability (per period) to stay in the waiting pool (type 𝑐 = 1, 2, 3)  
 𝜋𝑟𝑒𝑡𝑢𝑟𝑛 Probability (per period) to visit the market (type 𝑐 = 1, 2, 3)  
 𝛿 Number of periods for past reference (price-aware customer)  
 ℎ𝑟𝑒𝑙_𝑟𝑒𝑓 Relative price threshold (price-aware customer)  
 𝑊 𝑇𝑃𝑚𝑎𝑥 Maximum willingness to pay (type 𝑐 = 2, 3)  
 𝜙 Number of last periods for forecasting input (price-anticipating cust.)  
 𝜃 Forecasting horizon in periods (price-anticipating customer)  
 ℎ𝑟𝑒𝑙_𝑔𝑎𝑝 Relative price threshold (price-anticipating customer)  
 𝐴𝑅(𝐻 (𝜙)

𝑡 ) Auto-regressive function for price forecasts given a price history 𝐻 (𝜙)
𝑡  

 𝜑𝑖 Parameter of 𝐴𝑅(𝐻 (𝜙)
𝑡 ), 𝑖 = 0,… , 𝜙 (price-anticipating customer)  

 𝑧𝑡+𝑖 Price prediction at time 𝑡 for timestep 𝑡 + 𝑖, 𝑖 = 1∕𝑛𝑣𝑒𝑛𝑑𝑜𝑟𝑠 ,… , 𝜃  
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