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A B S T R A C T

Maintenance is pivotal in the industrial sector, influencing efficiency, reliability, safety, and profitability. An 
organized spare parts inventory supports maintenance efforts by minimizing downtime, ensuring safety, and 
optimizing maintenance budgets. Effective spare parts management enhances maintenance operations and im
proves cash flow. Conversely, human error can greatly diminish the effectiveness of maintenance efforts. This 
paper presents a mathematical model aimed at minimizing costs through optimized preventive maintenance 
(PM) planning, effective spare parts inventory control, and reduction of human error. The study provides 
decision-makers with crucial insights for strategically managing maintenance procedures while accounting for 
the effect of human error. The model is validated in real-world scenarios through sensitivity analysis, focusing on 
the shape parameter of the Weibull distribution, and the equipment’s effective rate. Findings reveal that as the 
number of periods increases, maintenance operations follow a specific, predictable cycle. Moreover, the optimal 
human error probability (HEP) for cost minimization is identified as 0.02. These insights guide decision-makers 
in recognizing factors influencing human error and implementing proactive strategies to enhance maintenance 
performance.

1. Introduction

Maintenance operations are critical for improving organizational 
efficiency and ensuring reliable system performance, especially when 
substantial investments are made in production machinery [1–4]. Inef
fective maintenance can lead to machine failures, downtime, and 
increased costs, including opportunity costs, reputational damage, and 
disruptions to production schedules [5,6]. Preventive maintenance (PM) 
is a widely adopted strategy to minimize unplanned breakdowns and 
downtime. However, poorly timed or inadequately executed PM can 
negatively impact efficiency and incur additional costs, such as resource 
allocation and temporary production halts. Effective planning and 
execution of maintenance are therefore essential to balance these 
trade-offs and optimize organizational performance [7–10].

Optimal planning of maintenance operations depends heavily on the 
effective management of spare parts inventory. Excessive spare parts 
inventory can lead to higher holding costs and unnecessary expendi
tures, while insufficient inventory can prolong downtime and result in 
greater losses due to machine inactivity [8–10]. To address these chal
lenges, it is crucial to optimize the spare parts inventory control policy. 

This presents a significant challenge in balancing costs through optimal 
inventory management while ensuring system reliability [11,12].

Both PM and corrective maintenance (CM) significantly influence the 
condition and virtual age of machinery. Effective maintenance planning 
must account for these factors to optimize the timing and frequency of 
PM operations, thereby enhancing machine reliability. However, even 
well-planned maintenance can fail due to human error, leading to 
improper implementation and increased system costs. Human Error 
Probability (HEP) is a quantitative measure used to estimate the likeli
hood of human errors occurring in specific tasks or systems [13,14]. It is 
commonly employed in human reliability analysis (HRA) to evaluate 
safety in industries such as aviation, nuclear power, healthcare, and 
manufacturing. HEP is typically expressed as a probability value ranging 
from 0 (no chance of error) to 1 (certainty of error) [10,15].

HEP during PM, CM, or inspections can undermine the effectiveness 
of maintenance and inflate costs. To mitigate this, maintenance plans 
must incorporate strategies to reduce human error, ensuring both cost 
efficiency and improved machine reliability [16–18]. Given the signif
icant impact of human error on maintenance operation costs and the 
virtual age of machines, it is essential to consider human errors when 
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optimizing maintenance plans.
In this study, data on human error, costs, and the virtual age of 

machines were collected from historical data in a case study. The cost of 
human error and the machine’s virtual age functions were estimated 
using a regression method based on HEP. Thus, the proposed model 
quantitatively incorporates human error, highlighting its effects on costs 
and the virtual age of the machine. When estimating the cost function, 
two key challenges arise. First, the cost associated with human error in 
maintenance operations increases as the level of error rises. Second, 
improving contextual factors to mitigate human error also incurs addi
tional costs. Contextual factors, which include environmental, organi
zational, and task-related elements, play a critical role in shaping HEP. 
By identifying, assessing, and optimizing these factors, industries can 
effectively reduce human errors, enhance safety measures, and improve 
overall system reliability.

Therefore, the cost function of human error related to maintenance 
operations is estimated by considering both aspects. Consequently, 
optimizing maintenance plans and minimizing human error are essential 
for reducing costs and achieving economic success across various in
dustries. Although human error significantly affects maintenance oper
ations, previous studies have largely overlooked this aspect, focusing 
instead on non-human factors. While spare parts have been examined in 
some studies, none have specifically investigated the repercussions of 
human error in maintenance operations. The model presented in this 
paper quantitatively considers the influence of human error, contrib
uting to a more comprehensive analysis of the problem.

The research focuses on a case study of a cement company that 
operates continuously, utilizing heavy machinery with significant in
vestment. Given the characteristics of the industry, proper and optimal 
maintenance operations are crucial for minimizing stochastic break
downs and total costs. The model presented for this case study is multi- 
product, multi-machine, and multi-condition, providing a comprehen
sive approach to the problem. The objective of this research is to identify 
the optimal values for inventory management of spare parts, as well as 
for planning PM and CM operations, while considering the impact of 
associated human errors. Accordingly, in line with previous studies in 
this field, we emphasize five major contributions of this paper: 

1. Impact of Human Errors on Equipment Utilization and Virtual 
Age: 

The study investigates how human errors affect the effective rate 
of equipment utilization and the virtual age of equipment. By 
modeling these relationships, the research offers insights into how 
human errors accelerate equipment deterioration and provides 
strategies to minimize their impact on operational efficiency.

2. Development of an Integrated Optimization Model: 
The study proposes a novel optimization model that integrates 

maintenance operations, spare parts inventory control, and human 
error management into a unified framework. This holistic approach 
addresses the interdependencies between these components, 
enabling more efficient and cost-effective decision-making.

3. Innovative Maintenance Planning Incorporating Equipment 
Lifespan: 

The research pioneers a quantitative approach to maintenance 
planning by integrating equipment conditions and lifespan into the 
decision-making process. A novel constraint is introduced to account 
for equipment lifespan, allowing for the determination of threshold 
limits for maintenance activities in an innovative and systematic 
manner.

4. Consideration of Machine Setup Costs During Downtime: 
The study incorporates machine setup costs during production line 

downtime caused by PM and CM operations. This inclusion allows 
for more accurate budgeting and resource allocation, optimizing 
production efficiency and minimizing financial disruptions during 
maintenance periods.

5. Simultaneous Implementation of Condition-Based Maintenance 
(CBM) and Time-Based Maintenance (TBM): 

Unlike traditional PM models that rely solely on time- or usage- 
based scheduling, this study integrates both CBM and TBM to 
enhance maintenance decision-making.

6. Practical Application and Validation: 
The model is applied to a real-world case study of a cement factory, 

utilizing data from maintenance logbooks to validate its effective
ness. This practical application demonstrates the model’s ability to 
address real industrial challenges and improve maintenance prac
tices in complex operational environments.

7. Quantitative Analysis of Human Error Costs in Maintenance: 
The research introduces a novel mathematical model to quantify 

the costs associated with human error in maintenance tasks. Using 
regression methods, the study estimates the cost function linked to 
the probability of human error, addressing a critical gap in existing 
literature. This approach provides a systematic way to evaluate and 
mitigate the financial impact of human errors.

The remainder of this paper is organized as follows:
The second section offers a concise overview of prior research on this 

topic. The problem statement and case study are presented in Section 3. 
Section 4 details the methods employed in this study. The research 
findings are presented in Section 5. Section 6 examines the sensitivity 
analysis conducted to validate the proposed model. Lastly, Section 7
presents managerial insights, while Section 8 discusses notable conclu
sions and offers suggestions for future studies.

2. Literature review

Research conducted in this field focused on maintenance operations 
exclusively and ignored human error’s impact on these operations. Liu 
et al. [19] introduced a model that takes into account buffer inventory 
and imperfect PM in production system. Zheng et al. [6] highlighted the 
cost-effectiveness of policies based on production quantity and 
condition-based maintenance for managing a deteriorating production 
system. Lynch, et al. [20] investigated the impact of an effective main
tenance system on industrial performance. Bismut et al. [21] improved 
the maintenance and inspection strategies for the piping systems in 
nuclear fuel power plants. Emami-Mehrgani et al. [22] examined the 
effects of human errors on repairable production systems and proposed 
an optimal policy to reduce production costs.. Morato et al. [23] intro
duced optimal maintenance planning for deteriorating structural com
ponents using a Dynamic Bayesian Network (DBN) and Markov decision 
process.

Szpytko et al. [24] proposed a compatible and straightforward 
simulation approach based on a risk assessment model to optimize 
maintenance scheduling in different case studies. Liu et al. [25] pro
posed an integrated model that takes into account buffer stocks and 
imperfect PM in production systems. Sharifi and Taghipour [26] pro
posed an integrated model for production and maintenance planning. 
Kim et al. [27] presented a potential approach for optimizing inspection 
and maintenance planning. Zhang et al. [12] explored the simultaneous 
optimization of maintenance and spare parts inventory for a 
series-parallel system with dual failure modes.

Nasrfard et al. [28] introduced a Petri net model that considers the 
state of deterioration, inspection, age-dependent repair processes, and 
random repair. Brǐs and Thuy Tran [29] studied the problem of 
multi-objective maintenance optimization to minimize costs and maxi
mize availability. Saleh et al. [30] introduced an intelligent Petri net 
algorithm to optimize maintenance operations for wind turbines. Fekri 
et al. [31] explored the workshop flow scheduling problem with limited 
multi-skilled human resources in PM. Zhu et al. [32] introduced an 
optimization model and algorithm for spare parts, taking into account 
trade-offs between cost and time as well as precedence constraints. Jiang 
et al. [33] optimized PM interval and the maximum inventory level, 
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with the ultimate goal of minimizing system downtime and inventory 
holding costs.

Cao et al. [34] examined an optimization model for decision-making 
aimed at the sustainable maintenance of intricate road networks. Their 
work introduced a bi-level programming approach that addresses the 
diverse characteristics of subnetworks, varying maintenance standards, 
and the allocation of maintenance funds. Levitin et al. [35] focused on 
the optimization of CM for multistate systems with storage, particularly 
production-storage systems in various industries. They addressed the 
impact of random external shocks on system performance and introduce 
a corrective maintenance policy (CMP). Liu et al. [36] provided an 
optimal condition-based maintenance policy for leased equipment, 
considering hybrid PM and periodic inspection. The authors addressed 
the complexity of leased equipment structures due to technological 
advancements, posing challenges for lessors in developing maintenance 
policies. Lee et al. [37] developed an optimized scheduling model for 
railway lines using a sophisticated deep reinforcement learning 
algorithm.

Liu et al. [38] introduced two innovative PM policies that account for 
substantial repair downtime. One policy is time-based, scheduling pre
ventive replacements at one of two predetermined calendar intervals, 
contingent on the system’s condition. Zhou and Zheng [39] introduced a 
multi-objective decision optimization model for prioritizing mainte
nance and repair of bus failures. Mikhail et al. [40] introduced a 
data-driven optimization method that considers contextual conditions. 
They combined machine learning and reinforcement learning tech
niques with a reliability-based remaining useful life methodology. Wang 
et al. [41] introduced a dynamic predictive maintenance strategy for 
predicting the remaining useful life (RUL) of systems. Zheng et al. [42] 
explored the joint optimization of maintenance and spare part ordering 
from multiple suppliers for systems with multiple components.

Zeng et al. [43] addressed a novel challenge in integrating PM with 
robot disassembly line balancing (DLB) to enhance the efficiency and 
stability of robotic disassembly systems. Their study focuses on opti
mizing both conventional disassembly scenarios and PM scenarios, 
while also improving the transition efficiency between these two con
texts. O’Neil et al. [44] introduced a new resilience framework designed 
to optimize the performance of critical network infrastructures, such as 
power grids, telecommunications, and transportation systems. This 
framework tackles the challenges posed by disruptions caused by stress 
events and aims to enhance network resilience through efficient 
post-disruption restoration. Lima et al. [45] presented a novel model for 
managing imperfect maintenance in multi-component systems, specif
ically addressing the Selective Maintenance Problem (SMP) by incor
porating both perfect PM and CM actions.

Tian et al. [46] introduced a heuristic algorithm that provides 
near-optimal solutions for this complex issue, focusing on efficient 
resource utilization and long-term system performance. They also 
developed a Selective Serial Maintenance Sequence Planning (SSMSP) 
model to optimize maintenance activities for mechanical equipment 
with multiple components. This model addresses inefficiencies, high 
costs, and resource wastage by integrating worker physical exertion and 
rest time into maintenance planning, thereby ensuring sustainable 
schedules. Additionally, it employs a multi-objective optimization 
approach to balance maintenance benefits, costs, and resource 
constraints.

Zhang et al. [47] focused on enhancing the reliability and mainte
nance efficiency of wind-photovoltaic (PV) hybrid power systems. They 
developed a reliability model and a maintenance optimization model 
that incorporates energy complementarity strategies. This study ad
dresses the intermittency of renewable energy systems and aims to 
reduce maintenance costs across different failure modes and scenarios. 
The proposed maintenance optimization model integrates energy 
complementarity strategies to optimize system performance and mini
mize costs. Wei and Cheng [48] developed a maintenance policy opti
mization framework for self-service systems aimed at maximizing profit 

by balancing service revenue and maintenance costs. Their model ac
counts for unique failure-induced demand-and-system interactions and 
employs a Tabu-search algorithm to optimize maintenance policies.

Leppinen et al. [49] tackled the challenge of optimizing maintenance 
schedules for multi-component systems by considering technical struc
tural dependencies, which significantly impact the cost-efficiency of 
maintenance policies. Their study introduced directed graphs as a tool to 
represent the economic and structural dependencies of the system, 
including scenarios where maintaining one component necessitates 
disassembling or maintaining others. The maintenance scheduling 
problem is modeled as a Markov Decision Process (MDP) and solved 
using a modified policy-iteration algorithm to determine the most 
cost-efficient maintenance policy. Bafandegan Emroozi et al. [50] 
assessed HEP in maintenance tasks using the Cognitive Reliability and 
Error Analysis Method (CREAM) and System Dynamics (SD) modeling. 
Their study identifies and quantifies factors influencing HEP, explores 
their interactions, and estimates associated costs using machine learning 
techniques. Ultimately, the research determines the optimal HEP value 
to minimize costs and accidents, providing managers with scenarios for 
effective budget allocation and improved ergonomics. Table 1 provides 
an overview of previous studies on maintenance. 

• TBM is scheduled at fixed intervals to ensure regular preventive ac
tions and avoid unexpected failures.

• CBM is incorporated through real-time condition monitoring of the 
equipment, allowing early detection of potential failures and 
enabling adaptive maintenance interventions before scheduled TBM 
actions.

Previous studies have provided valuable insights into maintenance 
operations, as shown in Table 1. However, they did not consider the 
impact of human error on maintenance metrics. This oversight is sig
nificant because the human factor plays a critical role in maintenance 
operations, and neglecting it may lead to inaccurate results. Prior 
research has primarily focused on non-human factors, such as machine 
reliability and failure rates, while overlooking the effects of human 
error. To address this gap, our research aims to examine how HEP affects 
the total cost and the virtual age of machines resulting from mainte
nance operations. This paper conducts a quantitative analysis to deter
mine the extent to which human error influences these costs and 
machine age. Additionally, we explore inventory control policies for 
spare parts to enhance maintenance planning.

Implementing an effective inventory control policy can help reduce 
downtime and maintenance costs by ensuring that spare parts are 
readily available when needed. It is important to note that previous 
studies have examined maintenance operations planning based on either 
condition-based or time-based maintenance. However, in our study, we 
investigate both condition-based and time-based maintenance simulta
neously. This dual approach allows us to identify which maintenance 
strategy is more effective for different types of machines and mainte
nance tasks. Overall, our research aims to provide a comprehensive 
understanding of the impact of human error on maintenance operations 
and the importance of an effective inventory control policy.

3. Methodology

This section outlines a comprehensive and systematic methodology 
for optimizing maintenance operations, spare parts inventory control, 
and human error management within a cement factory. By integrating 
these critical components into a unified optimization model, the 
research aims to achieve cost-effective and efficient maintenance prac
tices while rigorously adhering to operational constraints. The incor
poration of real-world data from the cement factory not only enhances 
the model’s accuracy but also ensures its practical applicability and 
relevance to industrial settings. This approach provides a robust 
framework for balancing cost reduction, operational efficiency, and 
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equipment reliability in complex maintenance environments.

3.1. Notation

This section outlines the symbols and notations used in the paper. 
Table 2 presents the notations and definitions used throughout the 
mathematical model described in this paper.

3.2. Problem statement and case study

The primary purpose of this research is to identify the optimal values 
for decision variables related to maintenance operations 
(Voit,Qit,Bit,Iit,bBit ,bIit), spare parts inventory control 
(zkjt,ajt,ψcjt,ξcj,ξ́cj,t

[m]

kjt ,t[p]jt ), and human error (p, pk), aiming to reduce costs 
while adhering to various constraints. It is important to note that car
rying out PM and CM operations can lead to production line downtime 
and disrupt organizational processes. In this model, the timing and 
frequency of each level of PM operations are determined based on ma
chine age, cost constraints, and other organizational limitations.

In this study, focusing on the case of a cement factory, maintenance 
operations are examined for two critical pieces of equipment: a rotary 
kiln and a clinker silo. The analysis includes four key spare parts asso
ciated with this equipment: bearings, a side motor, seals, and a pair of 

brushes. Additionally, the study considers three different levels of PM 
operations and one feature to assess the condition of the equipment (i.e., 
noise). It is worth mentioning that the model is specifically designed for 
repairable mechanical equipment that undergoes a deterioration process 
and operates independently. The data used for the research comes from 
the maintenance logbooks of the plant and is presented in Tables 1A and 
2A in the Appendix.

Simultaneously, the availability of spare parts is crucial for carrying 
out maintenance effectively and promptly, making spare parts inventory 
control a critical component of the process. This paper optimizes the 
order quantity of spare parts. Furthermore, the optimal level of human 
error is identified based on the conditions that influence human resource 
errors (i.e., Common Performance Conditions (CPCs)), as well as its 
impact on machine age and associated costs. The cost of human error in 
maintenance tasks and its effect on machine age are considered as a 
function of human error. Fig. 1 illustrates the structure and logic of the 
model through a detailed diagrammatic representation.

3.3. Assumption related to the presented model

The following assumptions underpin the model presented:
Constrained Time Horizon
The model operates within a finite time horizon, with all operations, 

costs, and activities analyzed over this duration. This ensures the model 

Table 1 
Previous studies on maintenance.

No Reference Maintenance 
Strategy

Subcategory Distribution of 
failure function

Function estimation 
related to HEP

Inventory 
management of 
spare parts

Solution approach

Cost Reductionn 
coefficient

1 [20] PM TBM – ✖ ✖ ✔ Genetic algorithm (GA)
2 [33] PM, CM TBM Weibull ✖ ✖ ✔ Monte Carlo Simulation
3 [16] PM, CM TBM Non-homogenous 

Markov processes
✖ ✖ ✖ Hamilton–Jacobi–Bellman (HJB)

4 [19] PM, CM TBM Uniform ✖ ✖ ✖ Kushner and Dupuis’ method and value 
iteration or policy iteration algorithms

6 [27] PM, CM TBM Log-Normal ✖ ✖ ✖ SAW, TOPSIS, ELECTRE
7 [25] PM, CM TBM Gamma ✖ ✖ ✔ A Lagrangian relaxation-based heuristic 

approach
8 [42] PM, CM CBM Weibull ✖ ✖ ✖ The policy-iteration algorithm in the semi- 

Markov decision process (SMDP)
9 [26] PM, CM TBM Weibull ✖ ✖ ✖ GA, simulated annealing (SA) algorithm, and a 

teaching–learning-based optimization (TLBO)
10 [24] PM, CM TBM Weibull ✖ ✖ ✖ Petri net algorithm
11 [21] PM, CM TBM Gamma ✖ ✖ ✖ Heuristic parameters optimization
12 [23] PM, CM CBM Weibull ✖ ✖ ✖ the POMDP dynamics
14 [12] PM, CM CBM Gamma ✖ ✖ ✔ Monte Carlo simulation
15 [32] PM, CM CBM uniform ✖ ✖ ✔ Heuristic-based on a standard critical path 

method.
16 [28] PM, CM CBM Weibull ✖ ✖ ✖ Petri net algorithm
17 [29] PM, CM TBM Exponential ✖ ✖ ✖ Innovative and updated calculation 

methodology by MATLAB software
19 [31] PM TBM – ✖ ✖ ✖ Metaheuristic method (GA)
20 [34] PM, CM CBM Exponential ✖ ✖ ✖ Metaheuristic method (GA)
21 [35] CM CBM – ✖ ✖ ✖ Metaheuristic method (GA)
22 [40] PM, CM CBM Kaplan-Meier (KM) ✖ ✖ ✖ machine learning and reinforcement learning
23 [37] PM, CM CBM Exponential ✖ ✖ ✖ Deep reinforcement learning
24 [36] PM, CM CBM Gamma ✖ ✖ ✖ Metaheuristic method
25 [38] PM, CM CBM Exponential ✖ ✖ ✖ Mathematical model
26 [41] PM CBM – ✖ ✖ ✔ CNN
27 [42] – – Exponential ✖ ✖ ✔ Hybrid deep reinforcement learning algorithm 

(HDRL)
28 [45] PM, CM SMP – ✖ ✖ ✖ Heuristic algorithm
29 [46] PM, CM TBM – ✖ ✖ ✖ Enhanced metaheuristic (brainstorming 

optimization + large neighborhood search)
30 [49] PM, CM TBM Exponential ✖ ✖ ✖ MDP model, Modified policy-iteration 

algorithm
31 [50] PM, CM – – ✔ ✔ ✖ SD modeling and machine learning
32 This 

study
PM, CM TBM, CBM Weibull ✔ ✔ ✔ Mathematical model (GAMS)

Condition-Based Maintenance: CBM, Time-Based Maintenance: TBM, Selective Maintenance Problem (SMP).
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aligns with practical planning periods, such as financial years or project 
lifespans.

Spare Parts Shortage Costs
The cost implications of spare parts shortages are modeled based on 

the cumulative shortage over the planning horizon. This approach ac
counts for variations in demand and inventory levels while ensuring that 
downtime costs resulting from spare part unavailability are compre
hensively captured.

Maintenance Cost Dependencies
Spare part costs for maintenance are influenced by dynamic in

ventory levels and service-level requirements, incorporating penalties 

for stockouts and overstocking.
Cost of Corrective and Preventive Actions
The cost of replacing parts post-failure is explicitly higher than 

preventive replacement costs due to unplanned downtime and potential 
secondary damages. This difference is dynamically calculated based on 
severity and time-of-failure scenarios.

Failure Rate Distribution
The failure rate exhibits an increasing trend over time, modeled 

using a Weibull distribution with a shape parameter (β > 1). The initial 
parameter estimates were informed by expert judgment, ensuring 
alignment with domain knowledge, and subsequently refined and vali

Table 2 
Notations.

Sets

M The set of periods represented by the index t;
K The set of different level types of PM represented by the index k;
J The set of equipment indexed by j;
I The set of spare parts indexed by i;
C The set of equipment conditions indexed by c;

Decision variables

p[total] Human error probability.
pk Human error probability associated with conducting kthlevel of PM operations.
zkjt The binary variable equals 1 if a PM operation is performed on the machine j at the kth level in period t; Otherwise, it equals 0.
ajt The virtual age of the machine j in period t.

t[p]jt
The available time on machine j for carrying out production operations in period t.

t[m]

kjt
Preventive maintenance time on the machine j at the level k in period t.

ψcjt The level of implementation of PM operations on machine j under condition c in period t.
Voit The binary variable for ordering or not ordering spare parts i in period t.
bIit The binary variable equals 1 if there is inventory available for ith spare parts in period t; Otherwise, it equals 0.
bBit The binary variable equals 1 if there is a shortage for ith spare parts in period t. Otherwise, it equals 0.
Bit The amount of shortage of ith spare parts in period t.
Iit The amount of holding of ith spare part in period t.
Qit The order quantity of ith spare part in period t.

Parameters

Shit The cost of shortage of ith spare part in period t (each unit).
hit The cost of holding of ith spare part in period t (each unit).
Csetjt Setup cost after machine downtime resulting from PM and CM operations on jthmachine in period t.
dpikjt The demand for ith spare parts for the implementation of PM operations at kthlevel on machine j in period t.
dcijt The demand for ith spare parts for implementation of CM operations on machine j in period t.
COit The fixed ordering cost for ithspare part in period t.
LT[E]

i The lead time of emergency orders for ith spare parts.
MTTRjt CM time on jth machine in period t.
Warit The warehouse capacity for ith spare parts in period t.
Nmkjt The number of technicians needed to perform PM operations on the jth machine at kthlevel in period t.
Nrjt The number of technicians needed to perform CM operations on jthmachine in period t.
Nspijt The number of ith spare parts to carry out CM operation on jthmachine in period t.
Hmkjt The cost associated with human resources for PM operations on the jthmachine at kthlevel in period t.
Hrjt The cost associated with human resources for CM operations on machine j in period t.
Cljt The cost of the lost opportunity of production line downtime on machine j in period t.
Cuit Price of each unit of ith spare part in period t.
ACjt The noise of jthmachine in period t.
COit Ordering cost of ith spare part in period t.
cdit purchasing cost of each unit of ith spare part in period t.
Q[max]

it The maximum quantity for ordering ith spare parts in period t.
ϑcjt The optimal level of PM operations on jthmachine under cthcondition in period t.
ξ́cj The upper threshold for cthcondition on machine j.
ξcj The lower threshold for cthcondition on machine j.
r The learning coefficient of human resources in the implementation of PM operations on machine j.
μ The number of levels of PM operations.
H Length of the planning horizon.
β Weibull distribution shape parameter.
η Weibull distribution scale parameter.
αk The effective rate of virtual age through the executionkthlevel of PM operation.
l The interval length.
AEj The minimum accessibility* of jth machine.
TB The maximum allocated budget.
pcurrent The probability of human error in the current state.

* In this paper, machine’s accessibility is considered as the available and operational time of the equipment.
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dated using Maximum Likelihood Estimation (MLE) for greater accuracy 
and reliability.

Learning Curve Effects on PM Times
Over time, personnel improve in performing PM, reducing the time 

required per task. This improvement follows a refined learning curve, 
incorporating plateau points where skill improvements diminish.

Corrective Maintenance (CM) Costs Stability
CM costs are assumed constant per unit task, but additional costs 

such as logistical delays, material surcharges, or overtime penalties are 
considered in sensitivity analyses.

Exclusion of Opportunistic Maintenance
Opportunistic maintenance actions are excluded; however, the 

model provides the flexibility to integrate them in future expansions.
Immediate CM Operations
CM operations are executed without delays upon fault detection. The 

fault detection system is assumed to be robust, with negligible lag be
tween failure and response.

Preventive Maintenance Levels
PM is categorized into three levels—minimal, imperfect, and perfect. 

Each level’s effectiveness is probabilistically modeled, incorporating 
both human error and equipment improvement factors. This provides 
realistic variations in outcomes based on effort and expertise.

Impact of CM on Failure Rate
CM is modeled as minimal, assuming it restores equipment func

tionality without altering its inherent failure characteristics, which 
remain Weibull-distributed with stable parameters.

Single Level of CM Operations
The study assumes a uniform CM approach. Future work may explore 

differentiated CM levels based on failure severity.
Inventory Control System
Spare parts for PM follow a fixed-order interval (FOI) system, with 

reorder points optimized for minimum total cost, considering order size, 
holding costs, and stockout penalties. Under this approach (FOI), orders 
are placed at predetermined, regular intervals, rather than being trig
gered by a reorder point. The order quantity is determined based on the 
inventory position at the review time to ensure sufficient stock until the 
next review period.

Alignment of Inspection and PM Periods
Inventory inspections coincide with PM periods, optimizing sched

uling and resource utilization.
Dual Spare Parts Ordering System
Spare parts are procured through regular and emergency orders, 

with emergency orders incurring higher costs but ensuring service 
continuity during unexpected demand spikes.

Fig. 1. Representation of the mathematical model’s structure.
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The virtual age of a machine
The virtual age of a machine is defined as the measure of its effective 

age, based on factors such as operational history, maintenance, and 
usage, rather than its actual chronological age.

Homogeneous Weibull Parameters Across Equipment
This study assumes identical scale (η) and shape (β) parameters for 

the Weibull distribution across all equipment types, implying consistent 
failure characteristics under similar operational conditions.

3.4. Mathematical model

3.4.1. The objective function
The objective function of this research is so as to reduce inventory 

control costs associated with spare parts, downtime, human error, and 
CM and PM operation costs

Inventory control
The inventory control system ensures that spare parts are available 

when needed for maintenance operations. The model incorporates 
safety stock levels and reorder points to prevent stockouts.If the in
ventory level of spare parts falls below the safety stock level, an emer
gency order is triggered. Emergency orders are expedited to minimize 
downtime, but they incur higher costs compared to regular orders. This 
ensures that maintenance operations can proceed without significant 
delays, even in cases of unexpected spare parts shortages.

Inventory holding cost of spare parts
Holding costs are determined by the spare parts ordered in excess of 

the demand at the end of each time period. Since the demand for these 
spare parts is influenced by machine failures, its quantity is estimated 
using the demand function for machine failure, making it a random 
variable. In reality, the demand for spare parts derives from the overall 
demand for CM and PM operations that require spare parts replacement. 
Hence, the demand for spare parts is also a random variable, and the 
following equations are employed to calculate the average inventory 
and shortages. 

Iit = Qit + Ii(t− 1) − dcit −
∑

k∈K
dpikt − Bi(t− 1) (1) 

Bit = − Qit − Ii(t− 1) + dcit +
∑

k∈K
dpikt + Bi(t− 1)

Qit = Q[max]
it − Ii(t− 1) (2) 

Based on the stochastic behavior model proposed by Xiang et al., 
2018 [51] inventory and shortage are formulated as a backorder with a 
loss function in Eq. (3). 

l(ϑ,w) = E[max (ϑ − w,0)] (3) 

E represents the expected value of the random variable ω and the scalar 
variable ϑ. As previously mentioned, demand for spare parts is a random 
variable, and the order quantity for spare parts, inventory, and shortage 
are scalar variables. Therefore, Eqs. (4) and 5 can be presented for 
nonlinear estimation of inventory and shortage. 

Iit = l

(

Qit + Ii(t− 1) −
∑

k∈K
dpikt − Bi(t− 1), dcit

)

= E

[

max

(

Qit + Ii(t− 1) − dcit −
∑

k∈K
dpikt − Bi(t− 1),0

)]

= E

(

Qit + Ii(t− 1) − dcit −
∑

k∈K
dpikt − Bi(t− 1)

)+

(4) 

Bit = l

(

− Qit − Ii(t− 1) +
∑

k∈K
dpikt + Bi(t− 1), − dcit

)

= E

[

max

(

− Qit − Ii(t− 1) + dcit +
∑

k∈K
dpikt + Bi(t− 1),0

)]

= E

(

− Qit − Ii(t− 1) + dcit +
∑

k∈K
dpikt + Bi(t− 1)

)+

(5) 

Consequently, Eqs. (6) and 7 can be formulated as follows: 

E

[

Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K
dpikt − dcit

]

≤ It

⇒Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K
dpikt − E[dcit] ≤ Iit

(6) 

E

[
∑

k∈K
dpikt − dcit − Qit − Ii(t− 1) + Bi(t− 1)

]

≤ Bit

⇒
∑

k∈K
dpikt − E[dcit] − Qit − Ii(t− 1) + Bi(t− 1) ≤ Bit

(7) 

where 

E[dcit] =
∑

j∈J
Nscijt

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

Therefore, given the stochastic nature of spare parts demand, the 
inventory average in each period is multiplied by the holding cost per 
unit according to Eq. (8). If the random demand surpasses the number of 
spare parts ordered for that period, the cost of shortages is included in 
the total cost. In this model, the total shortage cost is calculated by 
multiplying the shortage by the cost of shortage in each unit, as specified 
in Eq. (9). 

∑

i∈I

∑

t∈M
hitbIit

(

Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K
dpikt − E[dcit]

)

+
∑

i∈I

∑

t∈M
ShitbBit

(
∑

k∈K
dpikt − E[dcit] − Qit − Ii(t− 1) + Bi(t− 1)

) (8) 

where 

E[dcit] =
∑

j∈J
Nscijt

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

(9) 

Eq. (4) represents the expected inventory average as the difference 
between the ordered amount of spare parts and their demand. This 
equation indicates that if the ordered quantity of spare parts exceeds the 
random demand, the expression will have a positive value, and if the 
demand for spare parts exceeds the ordered quantity of spare parts, the 
expected inventory will be zero. Similarly, Eq. (5) shows the expected 
shortage average. Eq. (10) is always non-negative It is evident that these 
two equations cannot simultaneously assign values to themselves. In 
other words, if there is inventory in any period, there will be no 
shortage, and vice versa. Therefore, Eq. (9) represents this fact as 
follows: 

bBit + bIit = 0 ⇒ bBit + bIit ≤ 1 (10) 

Ordering cost of spare parts
The ordering costs in this study comprise of two different scenarios, 

and the decision regarding the type of ordering strategy depends on the 
inventory level. If the inventory level of spare parts is lower than the 
reorder point but higher than the safety stock level at the inspection 
point, the ordering timing will follow the usual procedure. Nevertheless, 
if the inventory level of spare parts falls below the safety stock level, the 
ordering will be done in an emergency state, leading to a reduction in 
ordering timing and an increase in costs compared to the usual situation.

Therefore, emergency orders are a critical component of the 
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maintenance policy. When spare parts are unavailable in the inventory 
and fall below the safety stock level, the system initiates an emergency 
procurement process. This process reduces the lead time for spare parts 
delivery but increases the associated costs. The decision to place an 
emergency order is based on the urgency of the maintenance task and 
the criticality of the equipment. For example, CM tasks that require 
immediate attention are prioritized for emergency orders to minimize 
production downtime.

Fig. 2 clearly and comprehensively illustrates the process of ordering 
spare parts and its relationship with PM and CM operations. Thus, to 
calculate the ordering cost according to the type of ordering strategy, we 
can exploit Eq. (11) that: 

COit =

⎧
⎨

⎩

0 if ROPit < Iit
NOit if SSit ≤ Iit ≤ ROPit
EOit if Iit < SSit

⇒COit

=

⎧
⎨

⎩

0 if ROPit + 1 ≤ Iit
NOit if SSit ≤ Iit ≤ ROPit
EOit if Iit ≤ SSit − 1

(11) 

In order to calculate the ordering cost, it needs to be multiplied by 
the decision variable that is related to ordering or not ordering in each 
period. Consequently, the total cost for different periods can be calcu
lated using Eq. (12), where the ordering cost is assumed to be a fixed cost 
in this study. Besides, the cost of purchasing spare parts is also depen
dent on the binary variable of ordering or not ordering. The cost of 
purchasing spare parts in each period is equal to the multiplication of the 
purchasing cost per unit of spare parts and the ordered quantity. If an 
order is placed in a specific period, this cost will be added to the model. 

Otherwise, no cost will be included in the model for that period. The 
order quantity in each period is obtained through the difference between 
the inventory level and the maximum order quantity. 

TOit =
∑

i∈I

∑

t∈M
VOit .COit +

∑

i∈I

∑

t∈M
CuitQitVOit (12) 

Qit = Q[max]
it − Ii(t− 1) (13) 

Eq. (14) defines the constraint that is related to the demand for spare 
parts and its dependence on the binary variable of ordering or not 
ordering. This equation clarifies that if the binary variable VOt equals 
zero, no order will be placed, and as a result, the value of Qt will be zero. 
However, if VOit equals one, the value of Qt can vary from zero to its 
maximum value (Q[max]), depending on the current inventory level. 

Qit ≤ Q[max]
it VOit (14) 

Downtime cost
Machine downtime can occur due to several reasons, and this study 

focuses on three significant factors. First, it involves the unavailability of 
spare parts during maintenance operations. Second, it concerns the 
average time required to perform CM to restore the machine to pro
duction operations. Third, it pertains to the execution of PM operations 
at various levels, which necessitates temporary halts in the production 
line. Notably, the time required for these operations will decrease as 
employees gain experience from performing them more frequently.

To calculate the cost of machine downtime, we begin by determining 
the cost per unit of time for production line downtime and then multiply 
it by the duration of the machine downtime. The costs associated with 
machine downtime, specifically the second and third types, will be 

Fig. 2. The inventory control system of spare parts.
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discussed in later sections, as they depend on the time required for PM 
and CM operations. For now, our focus is solely on the cost of machine 
downtime caused by the unavailability of spare parts during machine 
repairs. In such cases, maintenance operations require spare parts to be 
available. However, when the inventory level for a specific spare part 
needing replacement is zero, the machine must be halted until the in
ventory is replenished and the required demand is met. Therefore, Eq. 
(15) defines the cost of machine downtime as the lost opportunity cost. 
This represents the cost of production line downtime caused by the 
shortage of required parts during CM and PM operations, respectively. 

∑

i∈I

∑

j∈J

∑

t∈M

(
CljtLT[E]

i + EOit
)
bBi(t− 1)

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

+
∑

i∈I

∑

kʹ,k∈K

kʹ<k

∑

j∈J

∑

t∈M

(
CljtLT[E]

i + EOit
)
bBi(t− 1)zkʹjt

(15) 

k′ represents the level of PM that requires spare parts. In this paper, since 
a lower level corresponds to a higher intensity of PM, a k′ value less than 
k indicates a greater need for spare parts, whereas not all levels of PM 
require spare parts.

The CM cost
Since the machine breakdown is not predictable, it happens sto

chastically; as a result, the maintenance operation that occurs after the 
machine’s breakdown is stochastic [52,53]. Taking into account the 
increase of machine age and during its lifetime, the components of the 
machine gradually deteriorate until eventually, failure occurs. In this 
research, the failure functions of various machines are represented using 
the Weibull distribution, with parameter values determined according to 
the degradation process and failure events. The Weibull distribution is 
used in research to estimate machine failures. This distribution has two 
parameters: shape and scale [54–57]. Eq. (16) illustrates the probability 
density function of the Weibull distribution. In this equation, β param
eter is the shape parameter, and η is the scale parameter. 

f(t) =
β
η

(t
η

)β− 1
exp

[

−
(t

η

)β]

β > 1, η > 0, t > 0 (16) 

In Eqs. (16)–(19), the shape parameter (β) is defined as greater than 
one. In the Weibull distribution, a shape parameter greater than one 
indicates that the failure probability of the machine increases with its 
age. Conversely, a shape parameter equal to one implies a constant 
failure probability over time, while a value smaller than one signifies a 
decreasing failure probability over time. In this research, since the 
machine is deteriorating, the value of β is defined as greater than one. 
Eq. (17) shows the cumulative distribution function of the Weibull dis
tribution as follows: 

F(t) = 1 − exp
[

−
(t

η

)β]

β > 1, η > 0, t > 0 (17) 

Therefore, Eq. (18) shows the failure rate in the Weibull distribution 
that: 

h(t) =
f(t)

1 − F(t)
=

β
η

(
t
η

)β− 1
exp

[

−
(

t
η

)β]

exp
[

−
(

t
η

)β] =
β
η

(t
η

)β− 1
(18) 

As a result, the average number of failures in each period with length 
L is presented according to Eq. (19): 

∫ajt+l

ajt

β
η

(t
η

)β− 1
dt =

(
1
η

)β[(
ajt + l

)β
−
(
ajt
)β
]

E(T) = MTTF = ηΓ
(

1 +
1
β

)

T ∼ Weibull(α, β)

(19) 

In this research, it is assumed that CM is performed in a minimal 
form, meaning the virtual age of the machine remains unchanged after 
the CM operation, and the machine’s condition stays “as bad as old.” 
Consequently, no improvement in the machine’s condition is consid
ered. By adopting this proactive maintenance approach, referred to as 
minimal CM, the frequency of failures occurring in each time period can 
be effectively determined using the rate function h(t), as defined in Eq. 
(18). The total cost of CM operations is then calculated by multiplying 
the number of machine failures by the associated costs. These costs per 
failure consist of both time-dependent and time-independent 
components.

Time-dependent costs include the opportunity cost, which represents 
the loss incurred from halting the production line, and labor costs, which 
vary depending on the hours required for equipment repair. Time- 
independent costs in CM activities include expenses such as procuring 
parts, purchasing spare components, and preparing equipment for 
resumed production. These costs are contingent on the frequency of CM 
operations. In this study, the duration of CM is assumed to be fixed, 
meaning it does not vary based on the number of CM instances or the 
system’s failure time. Additionally, the study assumes a single level for 
CM operations. Eq. (20) outlines the total cost of the CM operation as 
follows: 

∑

j∈J

∑

t∈M

( (
Cljt + HrjtNrjt

)
MTTRjt + Csetjt

)
[((

ajt + l
)β

− aβ
jt

)

ηβ

]

(20) 

MTTRjt = ηjtΓ

(

1+
1
βjt

)

(21) 

The PM cost
The system is inspected at regular intervals, which are determined 

based on equipment conditions such as machine age, production rate, 
and noise levels (monitored by sound sensors). These inspections are 
scheduled to proactively identify potential issues and plan maintenance 

Fig. 3. The learning influence of PM operations.
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activities effectively. The frequency of inspections is optimized to bal
ance the need for timely maintenance with cost constraints. For 
example, older machines or those operating under higher stress condi
tions may require more frequent inspections.

Similar to CM operations, PM operations also incur both time- 
independent and time-dependent costs. The duration of PM operations 
varies across different levels and depends on the frequency of PM exe
cutions and the surface type. This implies that, due to employees’ 
experience and learning, the time required for PM operations fluctuates 
based on their frequency, with variations observed across different 
levels of PM operations. Eq. (22) serves as the time adjustment function 
for these operations. Here, γ represents the time needed for the initial 
PM operation, while r signifies the experience curve percentage. Fig. 3

depicts the learning curve, illustrating how operation time decreases 
with the repetition of the task. This curve visually demonstrates the 
efficiency gained through experience and practice in executing these 
operations.. 

t[m]

kjt = γkjzkjt

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1+
∑

l∈M

l≤M− 1

ʹ
zkjl

⎞

⎟
⎟
⎟
⎟
⎟
⎠

lnr
ln2 (22) 

This study explores the effect of PM operations on minimizing the 
age of machines. Fig. 4 visually illustrates the impact of PM operations 

Fig. 4. The effect of various levels of PM operations and learning on the machine’s age.

Fig. 5. Integrated approach of CM and PM for equipment performance enhancement.
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on machine age. The coefficient αk represents the effective rate, which 
specify the effectiveness of PM operations in reducing machine age. 
When each level of PM operation is executed, the effective lifespan of the 
machine decreases by a factor proportional to the αk coefficient related 
to each level of PM operation. If PM operations are not performed at a 
specific level during a particular period, the coefficient zkt(αk) becomes 
zero, and there is no change in the machine’s lifespan. In this scenario, 
the lifespan of the machine is calculated as the sum of the effective 
lifespan from the preceding period and the duration of the current 
period. Subsequently, the virtual age of the machine is computed using 
Eq. (23). Fig. 5 illustrates the disparity between actual time and virtual 
time resulting from the application of different levels of PM.

Overall, Fig. 4 illustrates the impact of a comprehensive maintenance 
strategy that integrates both CM and PM operations to maximize 
equipment performance, minimize downtime, and optimize operational 
efficiency. This study explores three distinct levels of PM operations: 
inspection and equipment servicing (third level), equipment servicing 
and repair (second level), and equipment servicing combined with parts 
replacement (first level). The effective rate’s value varies across these 
levels in proportion to the impact of implementing PM operations on the 
machine’s performance. Consequently, the effective rate (αk) fluctuates 
accordingly. These levels cover the spectrum from “as good as new” to 
“as bad as old.” For example, conducting PM operations at the third level 
results in a different outcome compared to the other levels. After 
implementing PM measures at this level, the equipment tends to degrade 
to an “as bad as old” state.

PM operations at the second level involve repairing worn-out parts 
and providing some degree of overall equipment servicing. However, 
this often results in incomplete maintenance, causing the machine’s 
condition to fluctuate between “as bad as old” and “as good as new.” In 
contrast, PM operations at the first level, which include servicing and 
replacing specific parts, fully restore the equipment to an “as good as 
new” condition. As a result, the equipment’s lifespan is effectively reset, 
making it function like a new machine. Therefore, the effective rate (αk) 
in this study varies depending on the level of PM operations conducted, 
ranging from zero to one

Considering this study’s focus on the impact of human errors on the 
effective rate and, consequently, on the virtual lifespan of the equip
ment, the execution of various levels of PM operations reduces the 
equipment’s virtual lifespan (at). Therefore, the implementation of PM 
operations on the equipment proves effective, and its effectiveness on 
the virtual lifespan depends on the human error rate associated with 
these specific levels of maintenance activities (pk). For instance, 
executing the first level (replacement and servicing of equipment) 
should ideally restore the equipment to a “good as new” state, resulting 
in a lifespan of zero. However, the effectiveness of this level’s imple
mentation is contingent upon human error, thereby diminishing its ef
fect and preventing the equipment from attaining a “good as new” state.

In fact, human error hinders any significant improvement in the 
virtual lifespan of the equipment. This scenario only changes when the 
HEP is zero, and the effective rate remains constant, independent of the 
value of p. Therefore, while executing this level effectively extends the 
equipment’s lifespan, its impact on the virtual lifespan relies on human 
error (pk). Despite full execution at this level, the absence of human error 
ensures the operation’s impact on the equipment’s lifespan remains 
incomplete.

Therefore, considering the impact of human error, the implementa
tion of different levels of PM operations can negatively affect the ma
chine’s age. While the different levels of PM operations influence the 
machine’s age, the extent of their impact on the virtual age of the ma
chine depends on the HEP (αk(1 − pk)). As a result, these operations are 
carried out imperfectly, leading to only a partial impact on the ma
chine’s age.The presence of human error negatively affects the execu
tion of various levels of maintenance operations, resulting in 
consistently imperfect impacts on the machine’s age. Figs. 4 and 5
illustrate the effect of various levels of PM operations on the failure rate 

and the virtual age of the equipment. The virtual age of the machine is 
calculated using Eq. (23). 

ajt =
(
aj(t− 1) + l

)
(

1 −
∑

k∈K
zkjtαk(1 − pk)

)

(23) 

The selection of PM operations to be performed in each period can be 
determined based on the machine’s condition, which includes factors 
such as its lifetime, production rate, noise levels, and other machine- 
specific conditions. This study simultaneously focuses on time-based 
maintenance and condition-based maintenance. In this research, the 
symbols ξ and ξ’ represent the upper and lower threshold values, 
respectively. These values enable the determination of suitable levels of 
PM operations based on the machine’s age and other machine condi
tions, while also considering their associated costs and effects on other 
expenses. The symbol μ denotes the maximum number of levels, which is 
set to 3 in this study, while ψ represents the levels of PM operations. Eq. 
(24) represents the determination of the level of PM operation depen
dent on the machine’s age. 

ξ́1j −
ξ́1j − ξ1j

μ − 2
(
ψ1jt − 1

)
≤ ajt− 1 + l ≤ ξʹ

1j −
ξ́1j − ξ1j

μ − 2
(
ψ1jt − 2

)
, μ > 2

(24) 

Eq. (25) represents the method for determining the required level of 
PM based on a specific machine condition, namely noise. This condition 
is evaluated and monitored by a sound sensor installed on the 
equipment. 

ξ́2j −
ξ́2j − ξ2j

μ − 2
(
ψ2jt − 1

)
≤ ACtj ≤ ξ́2j −

ξʹ
2j − ξ2j

μ − 2
(
ψ2jt − 2

)
, μ > 2 (25) 

If the level of PM operations depends on multiple machine condi
tions, it is essential to implement the level of PM that yields the most 
significant improvement in machine condition. For instance, if the level 
of PM is established based on the machine’s age, and the level of PM 
operation is set to 2 in a specific period (ψ1t = 2), and if the level of PM is 
determined on the basis of the machine’s noise, and levels of PM oper
ations is set to 1 in that same period (ψ2t = 1), the first level of PM (ψ =

1) should be selected. This level creates a greater improvement in the 
machine conditions compared to the second level. Therefore, to create 
such conditions, Eq. (26) needs to be considered as a constraint. 

ψ [total]
jt = min

{
ψ1jt ,ψ2jt,…,ψcjt

}
⇒ ψcjt ≥ ψ [total]

jt (26) 

So, the general form is defined as Eq. (27). 

ξ́cj −
ξ́cj − ξcj

μ − 2
(
ψcjt − 1

)
≤ ϑcjt ≤ ξ́cj −

ξ́cj − ξcj

μ − 2
(
ψcjt − 2

)
μ > 2 (27) 

Thus, Eq. (27) defines the general form, where ϑcjt denotes the crit
ical parameter value of the machine based on condition c in period t. In 
order to establish a connection between Eqs. (23) and (27) and ensure 
logical PM levels, Eqs. (28) and (29) must also be taken into account. Eq. 
(28) indicates that only one level of PM operation is permitted at each 
inspection point. In other words, based on the machine conditions and 
costs, only one level of PM operation can be selected at each inspection 
point, which satisfies the logic of this problem. Eq. (29) establishes the 
relationship between Eqs. (26)–(28). Furthermore, Eq. (27) determines 
the appropriate level of PM operation based on the machine conditions. 
ψcjt represents the level of PM operation, and based on Eq. (28), it is 

possible to define the relationship between ψ [Total]
jt and kjt as Eq. (29). 

∑

k∈K
zkjt = 1 (28) 

ψ [total]
jt =

∑

k∈K

kkzkjt (29) 

The total costs associated with PM operations are addressed in Eq. 
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(30). The decision variable (zkt), which is binary, represents the execu
tion or non-execution of each level of PM operations on certain machines 
in each period. The time function for executing each level of PM oper
ations is based on Eq. (31). 

∑

k∈K

∑

j∈J

∑

t∈M

( (
Cljt + HmkjtNmkjt

)
t[m]

kjt + Csetjt

)

zkjt (30) 

t[m]

kjt = γkjzkjt

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1+
∑

l∈M

l≤M− 1

ʹ
zkjl

⎞

⎟
⎟
⎟
⎟
⎟
⎠

lnr
ln2 (31) 

The human error cost
Due to human involvement in inspection, PM, and CM operations, 

these processes are inherently susceptible to human error. Such errors 
can result in costly consequences, including incorrect maintenance 
procedures, misdiagnoses, unnecessary PM expenditures, and increased 
CM costs due to undetected failures. Therefore, minimizing human error 
is crucial to ensuring maintenance operations align with predefined 
targets and support cost-effective decision-making.

On one hand, if the HEP in CM, PM, and inspection activities exceeds 
acceptable levels—leading to excessive costs—organizations will seek to 
reduce these errors. This effort often involves investing in improved 
contextual conditions to lower the likelihood of human mistakes, such as 
enhanced training, clearer procedures, and better-designed human- 
machine interfaces (HMIs). HEP is influenced by various factors, 
including cognitive overload, fatigue, time constraints, ambiguous 
procedures, and suboptimal HMIs. Additionally, environmental, orga
nizational, and task-specific elements can either exacerbate or mitigate 
human error risks. Real-world examples from different maintenance 
domains illustrate these challenges: 

• Aircraft Maintenance: Time pressure and fatigue may lead to 
rushed inspections, increasing the risk of undetected failures.

• Industrial Equipment Maintenance: Poorly designed HMIs can 
cause misinterpretations, leading to incorrect troubleshooting and 
potential system malfunctions.

• Nuclear Plant Maintenance: Well-structured training programs 
and clear operational procedures enhance decision-making and 
situational awareness, significantly reducing human errors.

On the other hand, while reducing HEP improves system reliability 
and safety, it requires continuous investment in training, improved 
procedures, and better workplace conditions. Organizations must 
determine the optimal HEP level—a balance where error-related costs 
are minimized without incurring excessive expenses in error reduction 
efforts. Attempting to lower HEP beyond a certain threshold can lead to 

diminishing returns, where additional investments in safety measures or 
training no longer justify the cost. Therefore, strategic error manage
ment is essential to identifying a cost-effective level of error probability.

Fig. 6 illustrates the relationship between HEP and its associated 
costs, emphasizing the need for an optimized approach to error man
agement. The figure highlights how initial investments in error pre
vention significantly reduce overall costs, but beyond a certain point, 
further reductions in HEP become economically impractical. By care
fully assessing the trade-offs between HEP reduction and cost feasibility, 
organizations can develop data-driven strategies to enhance mainte
nance efficiency without overextending resources.

To achieve this goal, maintenance costs associated with various types 
of human errors over a 12-month period were collected using historical 
data and expert opinions. Additionally, this study establishes a rela
tionship between the effective rate of the equipment’s virtual age and 
HEP. Consequently, the effective rate is influenced by human error. As a 
result, functions related to the costs associated with HEP and the coef
ficient of reduction in virtual age, both of which depend on HEP, were 
estimated using regression analysis. As shown in Table 3, among the 
known functions, the cubic function provides the most accurate esti
mation. This conclusion is based on the Root Mean Square Error (RMSE) 
values, which serve as a metric for evaluating the alignment of estimated 
values with actual values. Fig. 7 illustrates the relationship between HEP 
and its associated maintenance costs using the cubic function. Table 3
evaluates various known functions (e.g., quadratic, exponential, 

Fig. 6. The relationship between the HEP and the associated costs.

Table 3 
Evaluating different known functions.

Distribution type Maintenance cost function

Total

R-square MSE

Exponential 0.9988 1.365
Gaussian 0.9992 1.08
Power 0.9978 1.799
Fourier 0.9842 4.847
Quadratic 0.9953 2.636
Cubic 0.9943 2.919

Fig. 7. The relationship between HEP and its cost (cubic function).

Table 4 
The coefficients and intercept values for the fitted cubic function.

Function Coefficient value

P3
k P2

k P1
k intercept

Cost function − 1.022 128.9 − 55.41 69.83
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Fourier) for estimating the maintenance cost function.
Table 4 provides the coefficients and intercept values for the cubic 

function.
Therefore, the function of the human error cost is estimated in Eqs. 

(32) as follows: 

f(p) =
(
± φ3p3 ± φ2p2 ± φ1p ± φ0

)

= − 1.022p3 + 128.9p2 − 55.41p + 69.83 (32) 

Therefore, the objective function is presented in Eq. (33) as follows:  

3.4.2. Constraints
The initial constraint represents one of the capacity constraints 

within the model. Specifically, the inventory level for spare parts must 
not exceed the warehouse’s storage capacity. Given that demand is 
random—due to the unpredictable rate of machine failures—the first 
constraint is expressed by the following equations, denoted as Eqs. (34) 
and (35): 

E(Qit + Ii(t− 1) − Bi(t− 1) − dcit − dpikt)
+
≤ Warit (34) 

Qit + Ii(t− 1) − Bi(t− 1) − dpikt − E(dcit) ≤ Warit (35) 

where 

E[dcit ] =
∑

j∈J
Nscijt

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

(36) 

Eq. (37) demonstrates that the sum of the inventory level from the 
previous period and the current period’s order rate for spare parts must 
exceed the estimated demand level. This is implemented to minimize 
potential shortages within the organization. Shortages of spare parts 
lead to not only direct financial losses, such as increased machine 
downtime and opportunity costs, but also significant hidden costs for the 
company. These hidden costs include reduced company credibility, 
decreased customer satisfaction due to production downtime, disrup
tions in the production line, and more. Therefore, it is crucial to mini
mize the shortage level as much as possible to avoid these adverse 
consequences. The equation is expressed as: 

Qit + Ii(t− 1) − Bi(t− 1) ≥ dpikt + E(dcit), ∀t (37) 

Eq. (38) specifies the duration of production for each period tt. This is 

calculated by subtracting the time intervals corresponding to production 
line stoppages—caused by system breakdowns, PM, and CM oper
ations—from the total duration of each period l. The equation is 
expressed as: 

t[p]jt = l −
∑

k∈K
zkjt t[m]

kjt − MTTRjt

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

− LT[Etotal]
t bBit

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

(38) 

where 

max
{
LT[E]

t bBit
}
= LT[Etotal]

t ⇒ LT[E]
t bBit ≤ LT[Etotal]

t (39) 

Eq. (40) stipulates that within each period, only a single level of PM 
operation can be performed on the machine. This is expressed mathe
matically as: 
∑

k∈K
zkjt = 1 (40) 

Eq. (41) specifies that if a particular level of PM operation is not 
conducted during the designated period, the required spare parts and 
components for that level of PM operation will be equal to zero. This 
condition is represented as: 

− Q[max]
it

∑

j∈J
zkjt ≤

∑

k∈K
dpikt ≤ − Q[max]

it

∑

j∈J
zkjt (41) 

Eq. (42) describes the requisite condition for machine availability, 
stating that it must consistently exceed the minimum accessibility 
threshold required for servicing during each period. This is formulated 
as: 
∑

t∈M
t[p]jt ≥ AEj (42) 

Eq. (43) emphasizes the critical requirement that the total organi
zational costs remain within the available budget. This is expressed as: 

Total cost ≤ TB (43) 

Eq. (44) defines the specific range of certain model variables. Based 
on their nature, these variables are constrained to a particular range of 
values. This is represented as: 

min
∑

i∈I

∑

t∈M
hitbIit

(

Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K

dpikt − E[dcit]

)

+
∑

i∈I

∑

t∈M
ShitbBit

(
∑

k∈K

dpikt − E[dcit ] − Qit − Ii(t− 1) + Bi(t− 1)

)

+
∑

i∈I

∑

t∈M
VOit.COit +

∑

i∈I

∑

t∈M
CuitQitVOit +

∑

i∈I

∑

j∈J

∑

t∈M

(
CljtLT[Etotal]

i + EOit
)
bBi(t− 1)

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

+
∑

i∈I

∑

kʹ,k∈K

kʹ<k

∑

j∈J

∑

t∈M

(
CljtLT[E]

i + EOit
)
bBi(t− 1)zkʹjt + f(p)

+
∑

k∈K

∑

j∈J

∑

t∈M

( (
CLjt + HmkjtNmkjt

)
t[m]

kjt + Csetjt
)

zkjt

+
∑

j∈J

∑

t∈M

( (
Cljt + HrjtNrjt

)
MTTRjt + Csetjt

)
[((

ajt + l
)β

− aβ
jt

)

ηβ

]

(33) 
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Table 5 
The values obtained from solving the model (the variables of PM operations).
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zkt,VOit, bIit, bBit , y[1]
it , y

[2]
it , y

[3]
it ∈ {0,1}

0.00005 ≤ pk, pCM, pins, p[total] ≤ pcurrent

ψ [total]
t ,ψct ∈ Int

(44) 

As a result, the research model is formulated as follows:  

subject to 

Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K
dpikt − E[dcit ] ≤ Iit ∀i, t (46) 

∑

k∈K
dpikt + E[dcit] − Qit − Ii(t− 1) + Bi(t− 1) ≤ Bit ∀i, t (47) 

bIit + bBit ≤ 1 ∀i, t (48) 

Qit ≤ Q[max]
it VOit ∀i, t (49) 

Qit =
(
Q[max]

it − Ii(t− 1)
)
VOit ∀i, t (50) 

t[m]

kjt = γkjzkjt

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1+
∑

l∈M

l≤M− 1

ʹ
zkjl

⎞

⎟
⎟
⎟
⎟
⎟
⎠

lnr
ln2 ∀k, j, t (51) 

ajt =
(
aj(t− 1) + l

)
(

1 −
∑

k∈K
zkjtαk(1 − pk)

)

∀j, t (52) 

ξʹ
cj −

ξʹ
cj − ξcj

μ − 2
(
ψcjt − 1

)
≤ ϑcjt ≤ ξʹ

cj −
ξʹ

cj − ξcj

μ − 2
(
ψcjt − 2

)
, μ>2 ∀c, j, t

(53) 
∑

k∈K
zkjt = 1 ∀j, t (54) 

ψ [total]
jt =

∑

k∈K
kkzkjt ∀j, t (55) 

ψ [total]
jt ≤ ψcjt ∀c, j, t (56) 

Qit + Ii(t− 1) − Bi(t− 1) − dpikt − E(dcit) ≤ Warit ∀i, t (57) 

Qit + Ii(t− 1) − Bi(t− 1) ≤ dpikt + E(dcit) ∀i, t (58) 

t[p]jt = l −
∑

k∈K

zkjt t[m]

kjt − MTTRjt

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

− LT[Etotal]
t bBi(t− 1)

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

∀j, t (59) 

LT[E]
i bBit ≤ LT[Etotal]

t ∀i, t (60) 

∑

k∈K
dpikt =

∑

k∈K
Nspiktzkt ∀i, t (61) 

− Q[max]
it

∑

j∈J
zkjt ≤

∑

k∈K
dpikt ≤ − Q[max]

it

∑

j∈J
zkjt ∀k, j, t (62) 

∑

t∈M
t[p]jt ≥ AEj ∀j (63) 

VOit ≥ 1 − y[3]
it ∀i, t (64) 

(ROPit +1) − My[1]
it ≤ Iit ≤ Q[max]

i ∀i, t (65) 

SSit − My[2]
it ≤ Iit ≤ ROPit + My[2]

it ∀i, t (66) 

Iit ≤ (SSit − 1) + My[3]
it ∀i, t (67) 

y[1]
it + y[2]

it + y[3]
it = 2 ∀i, t (68) 

EOit
(
1 − y[3]

it
)
+ NOit

(
1 − y[2]

it
)
= COit ∀i, t (69) 

− Q[max]
i (bBit) ≤ Iit ≤ (1 − bBit)Q[max]

i ∀i, t (70) 

− Q[max]
i (bIit) ≤ Bit ≤ (1 − bIit)Q[max]

i ∀i, t (71) 

min
∑

i∈I

∑

t∈M
hitbIit

(

Qit + Ii(t− 1) − Bi(t− 1) −
∑

k∈K

dpikt − E[dcit]

)

+
∑

i∈I

∑

t∈M
ShitbBit

(
∑

k∈K

dpikt − E[dcit ] − Qit − Ii(t− 1) + Bi(t− 1)

)

+
∑

i∈I

∑

t∈M
VOit.COit +

∑

i∈I

∑

t∈M
CuitQitVOit +

∑

i∈I

∑

j∈J

∑

t∈M

(
CljtLT[Etotal]

i + EOit
)
bBi(t− 1)

[((
ajt + l

)β
− aβ

jt

)

ηβ

]

+
∑

i∈I

∑

kʹ,k∈K

kʹ<k

∑

j∈J

∑

t∈M

(
CljtLT[E]

i + EOit
)
bBi(t− 1)zkʹjt + f(p)

+
∑

k∈K

∑

j∈J

∑

t∈M

( (
CLjt + HmkjtNmkjt

)
t[m]

kjt + Csetjt
)

zkjt

+
∑

j∈J

∑

t∈M

( (
Cljt + HrjtNrjt

)
MTTRjt + Csetjt

)
[((

ajt + l
)β

− aβ
jt

)

ηβ

]

(45) 
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p[total] = 1 −

(
∏

k∈K
(1 − pk)

)
(
1 − pcorrective)( 1 − pins) (72) 

Total cost ≤ TB (73) 

zkjt,VOit, bIit, bBit , y[1]
it , y

[2]
it , y

[3]
it ∈ {0,1} (74) 

0.00005 ≤ pk, pcorrective, pins, p[total] ≤ pcurrent (75) 

ψ [total]
jt ,ψcjt ∈ Int (76) 

Qit , Iit,Bit , dpikt , dcit, at ,COit , t[p]jt , t
[m]

kjt ≥ 0 (77) 

4. Findings

The model is formulated as a mixed-integer nonlinear programming 
(MINLP) problem and solved using GAMS software. The computations 
are carried out on a system equipped with an AMD Ryzen 32200U 
processor running at 2.5 GHz, 8 GB of RAM, and a 64-bit operating 
system. The results obtained from solving the model, which utilizes data 
from a case study involving multiple machines, spare parts, conditions, 
and three different levels of PM operations across various periods, are 
presented in Table 5. In this model, the PM approach is designed such 
that different levels of maintenance operations, each with varying 
effectiveness rates, influence the equipment’s lifespan. Based on the 
overall results, the most effective level of PM operations is selected. 
Since one of the primary objectives of PM is to prevent system failures 
and unexpected production line shutdowns, the model incorporates 
costs related to production line disruptions that may occur due to the 
implementation of specific levels of PM and CM operations, as well as 
shortages of certain spare parts.

The results obtained from solving the model indicate the optimal 
levels of PM operations for different periods, taking into account both 
costs and the effective rate of the equipment. Implementing PM opera
tions at the lowest level (Level 3) requires less cost, time, and resources, 
such as manpower and spare parts, compared to higher levels of PM 
operations. Conversely, executing PM operations at the highest level 
(Level 1) demands the most time, cost, and resources. Based on data 
from the case study company, performing Level 1 PM operations to 
restore equipment to an “as good as new” condition involves significant 
expenses. Therefore, as observed in the model results, Level 2 or Level 3 
PM operations have been selected for various periods. As the number of 
periods increases, it becomes evident that maintenance operations begin 
to follow a specific and predictable cycle. This cyclic pattern allows for 
more efficient planning and allocation of resources, ultimately 
enhancing the overall maintenance strategy. The results of solving the 

problem for the variables of PM operations are presented in Table 5.
Furthermore, the types of spare parts required for each level of PM 

operations are detailed in Table 5. As evident from the results, no spare 
parts are needed for unselected levels of PM operations. For the selected 
levels in each period, the appropriate spare parts are determined based 
on the chosen level of maintenance. The time required for executing PM 
operations is influenced by the learning curve effect, leading to a 
reduction in time for each subsequent execution of the same PM level. 
Consequently, as illustrated in Table 5, the duration for performing 
Level 2 and Level 3 PM operations decreases over time. Specifically, the 
time for Level 2 PM operations decreases from 0.083 h to 0.031 h, while 
the time for Level 3 PM operations decreases from 0.025 h to 0.011 h. 
This reduction reflects the efficiency gained through experience, 
improved techniques, and the cumulative impact of the learning curve. 
These findings highlight the importance of considering learning effects 
in maintenance planning to optimize resource utilization and enhance 

Table 6 
The results of sensitivity analysis (η).

No. Δzcost η Δη

1 − 0.10285 36 0.285714
2 − 0.10296 35 0.25
3 − 0.001206 34 0.232143
4 − 0.000980 33 0.178571
5 − 0.000815 32 0.142857
6 − 0.000727 31.5 0.125
7 − 0.000540 30.5 0.089286
8 − 0.000421 30 0.071429
9 − 0.000338 29.5 0.053571
10 − 0.000230 29 0.035714
11 − 0.000118 28.5 0.017857
12 0 28 0
13 0.000123 27.5 − 0.01786
14 0.000252 27 − 0.03571
15 0.224561 26 − 0.07143
16 0.653825 24 − 0.14286

Fig. 8. The impact of changes in η parameters on the objective function.

Fig. 9. The ratio of changes in total maintenance costs to changes in the scale 
parameter (η).
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operational efficiency.
The results obtained from solving the first model for binary variables 

related to spare parts indicate that inventory is consistently available 
across all examined periods, with no shortages recorded. This outcome is 
logical, as the cost of maintaining spare parts is typically lower than the 
cost associated with shortages, which is notably higher in the context of 
the cement factory case study.

Although PM operations are pre-scheduled, and auxiliary lines and 
side motors are utilized to prevent production stoppages and kiln 
shutdowns, significant costs can still arise if spare parts are not available 
in the required quantities and the lead time for procurement exceeds the 
availability of these auxiliary resources. Furthermore, the total cost of 
maintenance operations over the 36-month period amounts to 
3501,281,000 units of currency. Additionally, the optimal HEP for 

minimizing human error-related costs is determined to be 0.02. These 
findings underscore the importance of maintaining adequate spare parts 
inventory and optimizing maintenance strategies to mitigate costs and 
ensure operational efficiency.

5. Sensitive analysis

Sensitivity analysis is a widely used technique to evaluate the impact 
of variations in one or more input parameters on one or more desired 
outputs. It plays a crucial role in enhancing the understanding of a 
model’s behavior and results, providing insights into its precision and 
effectiveness. In this section, a sensitivity analysis method is employed 
to assess the robustness of the designed model. This is accomplished by 
systematically varying key parameters to create a range of scenarios, 
including both reductions and increases in their values. Specifically, a 
comprehensive sensitivity analysis was conducted on two critical model 
parameters: 

1. The parameter η of the Weibull distribution: The scale parameter 
(η) is often referred to as the characteristic life or lifetime charac
teristic of the equipment.

2. The effective rate of equipment

By analyzing these parameters under different scenarios, the sensi
tivity analysis provides valuable insights into how changes in these in
puts affect the model’s outputs, such as maintenance costs, optimal PM 

Table 7 
The changes in total maintenance operation costs for various effective rates of 
equipment.

Effective rate αk Δαk Δzcost

K ¼ 1 (0.825, 0.5, 0) − 0.175 0.0721044
(0.85, 0.5, 0) − 0.150 0.0613767
(0.875, 0.5, 0) − 0.125 0.057943
(0.9, 0.5, 0) − 0.100 0.0403553
(0.925, 0.5, 0) − 0.075 0.0300581
(0.95, 0.5, 0) − 0.050 0.01999009
(0.975, 0.5, 0) − 0.025 0.009882
(1, 0.5, 0) 0 0

K ¼ 2 (1, 0.25, 0) − 0.500 0.033876
(1, 0.3, 0) − 0.400 0.027060
(1, 0.35, 0) − 0.300 0.020264
(1, 0.4, 0) − 0.200 0.013488
(1, 0.45, 0) − 0.100 0.006734
(1, 0.5, 0) 0 0
(1, 0.55, 0) 0.100 − 0.006713
(1, 0.6, 0) 0.200 − 0.111557
(1, 0.65, 0) 0.300 − 0.115236
(1, 0.7, 0) 0.400 − 0.118907
(1, 0.75, 0) 0.500 − 0.122570

K ¼ 3 (1, 0.5, 0) 0 0
(1, 0.5, 0.05) 0.050 − 0.00427
(1, 0.5, 0.1) 0.100 − 0.00852
(1, 0.5, 0.15) 0.150 − 0.012777
(1, 0.5, 0.2) 0.200 − 0.01701
(1, 0.5, 0.25) 0.250 − 0.02125
(1, 0.5, 0.3) 0.300 − 0.02547
(1, 0.5, 0.35) 0.350 − 0.02969
(1, 0.5, 0.4) 0.400 − 0.03389
(1, 0.5, 0.45) 0.450 − 0.03809
(1, 0.5, 0.5) 0.500 − 0.04228
(1, 0.5, 0.55) 0.550 − 0.04647

Fig. 10. The changes in costs relative to the effective equipment rate for Level 
1 PM.

Fig. 11. The changes in costs relative to the effective equipment rate for Level 
2 PM.

Fig. 12. The changes in costs relative to the effective equipment rate for Level 
3 PM.
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levels, and inventory management strategies. This process helps validate 
the model’s reliability and adaptability to varying operational 
conditions.

5.1. Sensitivity analysis with respect to the scale parameter (η)

The scale parameter η, often referred to as the lifetime characteristic, 
is directly associated with the mean time to failure (MTTF), which is 
calculated as MTTF=ηΓ(1 + 1/β). An increase in the scale parameter η 
leads to a longer MTTF, meaning the equipment can remain operational 
for a more extended period, thereby delaying the occurrence of failures. 
As a result, both CM and PM costs decrease with a higher η, as the need 
for maintenance interventions is reduced. Table 6 provides detailed 
information on the variations of the scale parameter η and its impact on 
maintenance costs. Additionally, Fig. 8 illustrates these variations and 
their influence on maintenance costs, offering a visual representation of 
how changes in η affect the overall maintenance strategy. This analysis 
highlights the importance of the scale parameter in determining 
equipment reliability and maintenance planning, demonstrating that 
higher values of η contribute to reduced maintenance frequency and 
costs.

Fig. 9 illustrates not only the inverse relationship between the scale 
parameter η and total maintenance costs but also emphasizes a more 
significant reduction in costs as the values of η increase. The figure 
clearly depicts cost variations within the range 27.5<η<32.5, encom
passing all observed cost values. Additionally, the figure reveals that 
cost changes are less pronounced for higher values of η compared to 
lower values, indicating a diminishing marginal effect as η increases.

The circles in Fig. 9 highlight shifts in the optimal solution for spe
cific values of the scale parameter η. These shifts demonstrate how 
changes in η influence the model’s outcomes, particularly in terms of 
cost optimization and maintenance strategy adjustments. This visuali
zation underscores the importance of the scale parameter in determining 
maintenance costs and provides valuable insights into the sensitivity of 
the model to variations in η.

5.2. Sensitivity analysis with respect to the effective rate of equipment

As described, various levels of PM operations have varying effects on 
the lifespan of equipment. Specifically, each PM level impacts the virtual 
lifespan of the system differently, reflecting their distinct influences on 
equipment durability. This study investigates how the effectiveness of 
PM operations ranges from minimal to perfect. Each PM level affects the 
effective rate of the equipment in a unique way, thereby altering the 
system’s virtual lifespan accordingly. The changes in total maintenance 
operation costs for various effective equipment rates are illustrated in 
Table 7.

Based on the results obtained from solving the model, as shown in 
Table 7, increasing the effective equipment rate leads to a reduction in 
costs. This outcome aligns with the assumptions of the problem and is 
entirely logical. An increase in the effective equipment rate typically 
results in a decrease in the equipment’s virtual age, which in turn re
duces the equipment’s failure rate and, consequently, the associated 
maintenance costs. Figs. 10–12 illustrate this relationship: as the effec
tive equipment rate increases, the virtual lifespan of the equipment 
decreases, and vice versa. In other words, a longer effective lifespan of 
the equipment shifts PM from a minimal to a more comprehensive level 
of implementation. This transition enhances the equipment’s lifespan 
and reduces its failure rate, further contributing to lower maintenance 
costs. These findings highlight the importance of optimizing the 

effective equipment rate to achieve cost-efficient and reliable mainte
nance strategies.

It is crucial to note that variations in the effective rate for any 
maintenance level can influence the optimal solution. For example, if 
the effective rate for Level 2 PM increases from 0.5 (imperfect) to 1 
(perfect), the optimal solution may change. Instead of performing Level 
2 maintenance in just one period, it might become optimal to apply this 
level of maintenance across multiple periods. This is because the cost- 
effectiveness of Level 2 maintenance, given its cost and effectiveness, 
could be more beneficial compared to other maintenance levels when 
extended over a greater number of periods.

As shown in contour Figs. 10–12, regions with uneven boundary 
curvature indicate where the optimal solution values change. Specif
ically, the optimal solutions for PM operations vary within the following 
effective equipment rate ranges: 

• First level of PM: Changes occur when α1 < 0.85.
• Second level of PM: Adjustments are observed within 0.5<α2≤0.6.
• Third level of PM: Variations are evident within 0.3<α3≤0.5.

Even if the optimal solutions remain stable in other ranges, varia
tions in the effective equipment rate can still impact the optimal value of 
the objective function (cost). This is because the equipment’s lifespan 
affects the failure rate, which consequently influences the overall 
maintenance costs.

6. Managerial insights

The results of this study provide valuable insights into determining 
the most appropriate timing and intensity of PM operations, considering 
their impact on equipment lifespan, conditions, and associated expen
ditures. Overall, this paper presents a cost-reduction strategy for in
dustries, aimed at improving equipment availability and reducing the 
HEP. The findings of this study assist managers in making informed 
decisions regarding the optimal level of HEP, taking into account the 
costs associated with human error, resource allocation for human error 
reduction, and the organization’s overall budget. Managers can plan 
organizational and personnel conditions in a way that maintains the 
level of error at a desired and optimal threshold.

In other words, they can establish desirable thresholds for each of the 
Common Performance Conditions (CPCs) corresponding to human er
rors. Furthermore, the results of the proposed model significantly 
contribute to enhancing maintenance operations planning by incorpo
rating human error into the decision-making process. This, in turn, leads 
to optimal decision-making regarding various levels of PM operations 
and improved management of spare part inventory. As a result, the costs 
associated with CM operations and overall organizational expenses can 
be managed in a cost-effective manner.

The presented model offers significant benefits to organizations 
where PM plays a crucial role, and the costs associated with human error 
and equipment failure are substantial. Additionally, this model provides 
considerable advantages for organizations that prefer to perform PM 
operations based on both equipment age and conditions. The simulta
neous execution of PM operations based on both conditions and time can 
greatly enhance decision-making outcomes. This approach proves to be 
a reliable strategy for organizations that must conduct PM operations 
while considering time constraints and equipment conditions, ensuring 
a balance between cost efficiency and operational reliability.
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7. Conclusions and suggestions

This paper is notable for its innovative approach in estimating the 
cost function related to human errors in maintenance tasks by leveraging 
regression analysis and historical data. The study highlights the signif
icant effect of HEP on the efficiency and effectiveness of maintenance 
operations. For the first time, it demonstrates how human error can 
influence the effective rate of equipment lifespan, providing a novel 
perspective on the interplay between human factors and equipment 
reliability. In this study, a limited selection of spare parts has been 
analyzed based on the equipment under consideration. The research 
focuses exclusively on evaluating the spare parts typically utilized for 
both PM and CM operations for two specific machines. Establishing 
prioritized rankings and selecting the most essential spare parts—guided 
by factors such as required quantity, significance for operational ob
jectives, lead time, supplier accessibility, repairability, pricing, and 
other relevant considerations—can significantly enhance the efficiency 
and effectiveness of spare parts inventory management.

Furthermore, future investigations could delve into exploring how 
personnel training impacts not only PM but also CM operations, as 
improved training may reduce human errors and enhance maintenance 
outcomes. Additionally, the study assumes a constant cost for CM and 
PM operations across all time periods. It is suggested that future research 
endeavors should account for real-world dynamics by incorporating 
factors such as inflation rates, fluctuations in spare parts inventory 
levels, and other economic variables to better reflect actual conditions. 
Such refinements would further improve the model’s applicability and 
accuracy in real-world industrial settings. This study focuses primarily 
on determining the optimal value for HEP, without proposing specific 
strategies for enhancing and mitigating human errors across various 
CPCs. To address this limitation, it is advisable to develop a novel 
mathematical model that dynamically adjusts based on the optimal HEP. 
Such a model would provide a more comprehensive and impactful 
approach to reducing human errors and their associated costs.

In practical terms, this would involve implementing enhancements 
in the CPCs, taking into account the current organizational context, 
financial limitations, and the influence of these factors on human errors. 
This approach should facilitate the identification of optimal in
terventions for modifying each sub-condition and overall performance 
criteria, ensuring a more targeted and effective reduction in human er
rors. Furthermore, for future research endeavors, it is recommended to 
incorporate the consideration of variable variance in random factors 
during problem-solving processes. By establishing threshold limits for 
these variances, researchers can offer more practical and actionable 
insights for addressing human errors in real-world scenarios. This would 
not only enhance the robustness of the model but also provide decision- 
makers with clearer guidelines for implementing error-reduction stra
tegies in dynamic and uncertain environments.

A valuable direction for future research would be to develop a more 
comprehensive model that integrates both learning and forgetting pro
cesses in the context of PM operations. This framework would quantify 

the rate at which skills are acquired and lost over multiple maintenance 
cycles, considering factors such as task complexity, frequency of prac
tice, and workforce experience. By exploring how learning-forgetting 
dynamics influence maintenance scheduling, HEP, and associated 
costs, this research could provide actionable insights into optimizing 
workforce training programs and operational efficiency.

To further advance the understanding of human error in mainte
nance operations and its economic implications, a future study could 
focus on developing a dynamic cost-benefit optimization model for HEP 
reduction across diverse maintenance domains. This model would 
integrate a detailed classification of human errors (e.g., slips, lapses, 
mistakes, violations) and evaluate the impact of specific contextual 
factors—such as training programs, procedural improvements, human- 
machine interface (HMI) design, and environmental conditions—on 
HEP and associated costs.

The study could also explore domain-specific HEP thresholds, iden
tifying the point at which further investments in error reduction yield 
diminishing returns. By incorporating real-world case studies and 
simulation-based scenarios, the research would provide a decision- 
support framework to help organizations prioritize cost-effective stra
tegies for minimizing human errors in inspection, PM, and CM activities.

Furthermore, the study could investigate the role of emerging tech
nologies, such as AI-driven predictive maintenance systems and 
augmented reality (AR) tools, in reducing human errors and optimizing 
maintenance efficiency. These technologies could enhance decision- 
making, improve task execution, and reduce the cognitive load on 
maintenance personnel. By integrating these tools into the model, or
ganizations could align their maintenance operations with predefined 
targets while balancing the trade-offs between error reduction costs and 
system reliability.

Such a framework would offer practical, data-driven insights for 
enhancing maintenance performance across industries, enabling orga
nizations to achieve higher reliability, lower costs, and improved safety 
standards. By addressing the interplay between human factors, techno
logical advancements, and economic considerations, this research 
would contribute significantly to the field of maintenance optimization 
and human error management.
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Appendix

The data related to this paper, derived from the case study, is presented in Tables 1A to 2A.

Table 1 
A. Data related to case study.

(continued on next page)
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Table 1 (continued )
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Table 2 
A. Data related to case study.

(continued on next page)
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Data availability
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