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A B S T R A C T

This paper studies the simultaneous minimization of total weighted earliness-tardiness (TWET) and makespan in 
a just-in-time single-machine scheduling problem (JIT-SMSP) with sequence-dependent setup times and distinct 
due windows, allowing idle times in the schedules. Multiple variants of variable neighbourhood descent (VND) 
based metaheuristic algorithms are proposed to generate Pareto-optimal solutions for this NP-hard problem. An 
optimal timing algorithm (OTA) is presented that generates a piecewise linear convex trade-off curve between 
the two objectives for a given sequence of jobs. The trade-off curves corresponding to the sequences of jobs 
generated in the proposed metaheuristics are trimmed and merged using a Pareto front generation procedure to 
generate the Pareto-optimal front comprising line segments and points. The computational performance of the 
proposed VND-based metaheuristic algorithms is compared with state-of-the-art metaheuristic algorithms from 
the literature on test instances of varying sizes using four performance metrics devised to compare Pareto fronts 
comprising line segments and points. The performance comparisons reveal that a proposed variant of backtrack- 
based iterated VND with multiple neighbourhood structures outperforms the other algorithms in most perfor
mance metrics.

1. Introduction

Single-machine scheduling problem (SMSP) is one of the most 
extensively researched scheduling problems in the literature [1]. The 
problem has widespread applications in the field of manufacturing and 
computer science in optimizing resource utilization [1]. The problem is 
also considered a building block in understanding the basic scheduling 
concepts because it provides a simplified model to investigate various 
performance measures and solution techniques that can be further 
extended to other more complex scheduling problems [2,3]. Several 
problem environments relating to single-machine scheduling have been 
studied in the literature [4], and several of its variants and extensions 
have been investigated that consider additional parameters and con
straints, viz. sequence-dependent setup times (SDST), machine avail
ability constraints, dynamic job arrivals, stochastic processing times, 
preemptive jobs, etc. [2,5]. Sequence-dependent setup time, i.e., the 
time required to switch between jobs on a machine, is one of the most 
widely considered problem characteristics in machine scheduling 
problems in the literature [1]. This paper focuses on the basic SMSP with 

SDST, which involves scheduling n jobs on a single machine where each 
job requires a non-preemptive single operation to be performed on the 
continuously available machine. All the jobs are available for processing 
at time zero, and the job processing times are deterministic.

Several flow-time and due-date-based performance measures have 
been explored in the SMSP, viz., makespan, total weighted flow time, 
total weighted tardiness, maximum tardiness, total weighted earliness- 
tardiness, and total number of tardy jobs [1,4]. These performance 
measures are formulated as either a single objective function or a 
multi-objective function to simultaneously optimize a set of objectives. 
Multi-objective optimization problems can be tackled either by 
combining the multiple objective functions into a single weighted 
objective function, assigning weights to the objectives based on their 
priorities, or by using Pareto-based optimization methods to generate a 
non-dominated solution set considering all potential trade-offs between 
the objectives. This paper considers the Pareto-based bi-objective opti
mization of total weighted earliness-tardiness (TWET) and makespan in 
the SMSP with SDST.

Minimization of TWET emerged as an important objective with the 
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advent of just-in-time (JIT) production systems, whereas traditional 
manufacturing systems focused mainly on the minimization of tardiness 
[6]. The JIT philosophy strives to achieve zero inventory while satis
fying customer demands on time [7]. The expected delivery times for 
each job in a JIT scheduling problem can either be a due date or a 
timespan, known as a due window. Several works addressing the 
bi-objective optimization of earliness and tardiness penalties and other 
objectives in machine scheduling environments exist in the literature 
that focus on assigning due windows to the jobs [8–12]. The problem 
considered in this paper, namely JIT-SMSP, considers due windows for 
each job, comprising an earliest and a latest due date, beyond which a 
penalty is imposed [13]. If a job is completed before its earliest due date, 
it is termed an early job and the losses in the form of inventory holding 
costs, penalties for early delivery to customers, etc., contribute to the 
earliness penalty. If the job is completed after its latest due date, it is 
termed a tardy job, and the loss of customer reputation, the opportunity 
cost of lost sales, etc., contribute to the tardiness penalty. The total 
earliness and tardiness due to each factor are, in most cases, quantified 
as weights and hence are termed weighted earliness and tardiness 
penalties. Generation of the optimal TWET schedule requires completing 
the jobs within their respective due windows or as close as possible to 
their due windows, which may result in idle times in the schedule, 
particularly when the jobs have distinct due windows [14]. Several 
real-world JIT scheduling scenarios demanding the minimization of 
TWET exist in the literature such as in the workload control studies in 
make-to-stock manufacturing applications, semiconductor wafer fabri
cation scheduling, steelmaking scheduling, aircraft landing problem, 
etc. [15–19].

Makespan is another objective intended to be minimized in 
conjunction with TWET in this paper. Makespan refers to the completion 
time of the last job in the sequence. Minimizing makespan helps to 
utilize time and resources efficiently as it generates tighter schedules. 
The makespan objective does not apply to the basic SMSP, as the 
completion time of the last job is independent of the sequence and is 
equal to the sum of the processing times of all the jobs in the problem 
instance [4]. The makespan objective is relevant only when additional 
parameters and constraints are considered, such as the 
sequence-dependent setup times [5], the machine availability con
straints [20–22], etc. Since the minimization of TWET results in sched
uling the jobs closer to their due windows with inserted idle times [14], 
the best schedule with respect to the TWET objective need not be the 
best with respect to the makespan objective and vice versa. This ne
cessitates a trade-off between the two objectives, which is the impetus 
for this paper. A compromised TWET schedule with a reduced makespan 
would result in a relatively shortened scheduling window, freeing up the 
resources to begin the subsequent scheduling window early. This helps 
ease congestion in successive scheduling windows and improve the 
overall TWET when increased customer demands are anticipated. The 
simultaneous minimization of TWET and makespan is significant in 
real-world JIT scheduling scenarios such as in steelmaking and contin
uous casting scheduling, surgery scheduling, etc. [23–25]. In such sce
narios, a Pareto set of non-dominated solutions considering the two 
objectives would aid the decision-maker in choosing a suitably 
compromised schedule.

The SMSP with the minimization of TWET and makespan as single 
objectives is well known to be strongly NP-hard [26,27]. Simultaneously 
optimizing the two objectives would make the problem even more 
complex to solve. Much of the research on these objectives has focused 
on developing heuristic and metaheuristic algorithms. Therefore, this 
paper proposes Pareto-based metaheuristic algorithms for the 
bi-objective optimization of TWET and makespan in the SMSP with 
SDST and distinct due windows.

The remaining sections of the paper are organized as follows. Section 
2 presents the literature review, Section 3 presents the problem 
formulation, Section 4 presents the solution methodologies, Section 5
presents the computational study of the solution methodologies, and 

Section 6 concludes with the scope for future work.

2. Literature review

Single objective optimization of TWET and makespan has been 
extensively researched in different scheduling environments in the 
literature [1,5,28]. Numerous works also exist that consider the opti
mization of each of these objectives in conjunction with other objectives, 
viz. total flow time, total earliness, total tardiness, number of tardy jobs, 
maximum earliness, maximum tardiness, compression and expansion 
cost of processing times, work-in-process inventory costs, etc. [13,
29–32]. However, relatively little research exists on the simultaneous 
minimization of the TWET and makespan objectives.

Some of the existing works on the multi-objective optimization of 
TWET and makespan have considered simplifying the concurrent bi- 
objective optimization problem into a weighted single objective opti
mization problem by assigning weights to the objectives based on their 
corresponding priorities [33–35]. Very few works exist on the simulta
neous minimization of the bi-objectives using Pareto-based optimization 
approaches, particularly in the SMSP environment. Table 1 presents a 
summary of the literature review on the Pareto-based optimization of 
TWET and makespan in the SMSP and several other machine scheduling 
environments. Since this paper studies the basic SMSP with 
sequence-dependent setup times (SDST), the review of literature has 
been restricted to static scheduling environments with deterministic 
processing times.

Gao et al. [36] proposed a parallel genetic algorithm based on a 
vector group encoding method and an immune method for the 
Pareto-based optimization of TWET and makespan in a non-identical 
parallel machine scheduling problem (PMSP) subjected to a special 
process constraint. Gao [37] presented a vector artificial immune system 
algorithm for the Pareto-based minimization of the two objectives in a 
non-identical PMSP subjected to a special process constraint. Fakhrzad 
et al. [38] proposed a hybrid genetic algorithm to minimize TWET and 
makespan simultaneously in a job shop scheduling problem considering 
SDST. Tajbakhsh et al. [39] proposed a hybrid particle swarm 
optimization-genetic algorithm for the Pareto-based bi-objective opti
mization of TWET and makespan in a three-stage manufacturing system, 
including the machining, assembly and batch processing stages. Abedi 
et al. [40] considered the simultaneous minimization of the two objec
tives in identical parallel batch processing machines operating in a JIT 
environment with arbitrary job sizes, unequal job release times and 
capacity limits. They presented a non-dominated sorting genetic algo
rithm II (NSGA-II) and a multi-objective imperialist competitive algo
rithm to solve the problem. Zade et al. [41] proposed a Pareto-based 
multi-objective particle swarm optimization algorithm for the 
bi-objective optimization of TWET and makespan in the SMSP with 
periodic preventive maintenance. Zarandi and Kayvanfar [42] consid
ered the simultaneous minimization of TWET and makespan, along with 
the compression and expansion costs of processing times in an identical 
PMSP. They implemented two multi-objective evolutionary algorithms, 
namely non-dominated sorting genetic algorithm II (NSGA-II) and 
non-dominated ranking genetic algorithm (NRGA), to generate the 
Pareto-optimal front. Rad et al. [43] applied an ε-constraint method to 
validate their proposed model for the simultaneous minimization of 
TWET and makespan in a two-stage assembly flow shop scheduling 
problem. Shahidi-Zadeh et al. [44] considered the simultaneous mini
mization of makespan, TWET and job incompatibility in a batch PMSP 
and presented a mathematical model that was solved using the 
ε-constraint method. Shahriari et al. [45] considered the simultaneous 
minimization of the two objectives, TWET and Makespan, in the SMSP, 
considering periodic preventive maintenance and restricting the 
maximum number of jobs allowed in a certain period. They proposed a 
bi-objective mixed integer model and implemented multi-objective 
particle swarm optimization to solve the problem. Xu et al. [46] pro
posed a multi-objective artificial bee colony algorithm for the 
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Pareto-based optimization of makespan, TWET and total waiting time in 
a hybrid flow shop scheduling problem containing unrelated parallel 
machines. Shahvari and Logendran [47] proposed particle swarm 
optimization-based search algorithms for the simultaneous minimiza
tion of makespan in conjunction with the production cost, including 
TWET in a batch processing problem with dual resources on unrelated 
parallel machines. Shahidi-Zadeh et al. [48] proposed a multi-objective 
harmony search algorithm to simultaneously minimize the makespan, 
TWET and the purchasing cost of machines in an unrelated parallel 
batch processing scheduling problem considering job release times and 
batch capacity constraints. Shen [49] considered an uncertain uniform 
PMSP with job deterioration and a learning effect with uncertainties in 
job processing times, due dates, deterioration rates and learning rates. 
They proposed a hybrid algorithm based on dispatching rules for the 
Pareto-based bi-objective minimization of TWET and makespan. Jia 

et al. [50] proposed an evolutionary algorithm based on decomposition 
to simultaneously minimize the makespan, TWET and total energy 
consumption in a parallel batch scheduling problem. Shao et al. [51] 
proposed an evolutionary algorithm employing local search with mul
tiple neighbourhoods to minimize TWET, makespan and total workload 
in a distributed hybrid flow shop scheduling problem. Wei et al. [52] 
proposed a multi-objective genetic algorithm for the simultaneous 
minimization of TWET, makespan and non-processing energy con
sumption in an energy-efficient job shop scheduling problem. Ampry 
et al. [53] presented a multi-objective harmony search algorithm to 
simultaneously minimize the makespan, TWET and the cost of pur
chasing machines in an unrelated parallel batch processing scheduling 
problem.

From the above literature review, it is evident that not much research 
exists in the literature on the Pareto-based optimization of the two 

Table 1 
Summary of works on the Pareto optimization involving TWET and makespan objectives in SMSP and other scheduling environments.

Author Problem characteristics Objectives used Methodology Due Date 
(DD)/ Due 
Window (DW)

SDST

Gao et al. 
(2009)

Non-identical PMSP subjected to special process 
constraint

Makespan vs. TWET Parallel genetic algorithm (PIGA) based 
on the vector group encoding and the 
immune method

DW ​

Gao (2010) Non-identical PMSP subjected to special process 
constraint

Makespan vs. TWET Vector artificial immune system (VAIS) 
algorithm

DW ​

Fakhrzad et al. 
(2013)

Job shop scheduling with SDST Makespan vs. TWET Hybrid genetic algorithm (GA) DW √

Tajbakhsh et al. 
(2014)

Three-stage manufacturing system with 
machining, assembly and batch processing stages

Makespan vs. TWET Hybrid particle swarm optimization – 
genetic algorithm (PSO-GA)

DD ​

Abedi et al. 
(2015)

Identical parallel batch processing machines with 
arbitrary job sizes, unequal job release times and 
capacity limits

Makespan vs. TWET Non-dominated sorting genetic 
algorithm II (NSGA-II) and multi- 
objective imperialist competitive 
algorithm (MOICA)

DD ​

Zade et al. 
(2015)

SMSP with periodic preventive maintenance Makespan vs. TWET Multi-objective particle swarm 
optimization (MOPSO) algorithm

DD ​

Zarandi and 
Kayvanfar 
(2015)

Identical PMSP with controllable processing times Makespan vs. Sum of TWET and 
compression and expansion costs 
of processing times

Non-dominated sorting genetic 
algorithm II (NSGA-II) and non- 
dominated ranking genetic algorithm 
(NRGA)

DD ​

Rad et al. 
(2015)

Two-stage assembly flow shop scheduling 
problem

Makespan vs. TWET ε-constraint method DD ​

Shahidi-Zadeh 
et al. (2015)

Batch PMSP with maximum allowable job 
incompatibility

Tri-objective optimization of 
Makespan, TWET and 
Incompatibility of jobs in batches

ε-constraint method DD ​

Shahriari et al. 
(2016)

SMSP considering periodic preventive 
maintenance and restricting the maximum 
number of jobs allowed in a certain period

Makespan vs. TWET MOPSO DD ​

Xu et al. (2016) Hybrid flow shop scheduling problem with 
unrelated parallel machines

Tri-objective optimization of 
Makespan, TWET and Total 
waiting time

Multi-objective artificial bee colony 
(ABC) algorithm

DD √

Shahvari and 
Logendran 
(2017)

Batch processing problem with dual resources on 
unrelated parallel machines

Makespan vs. Production cost 
including TWET

Particle swarm optimization (PSO) - 
based search algorithms

DD √

Shahidi-Zadeh 
et al. (2017)

Unrelated parallel batch processing scheduling 
problem with job release times and batch capacity 
constraints

Makespan vs. Sum of TWET and 
machine purchasing costs

Multi-objective harmony search (MOHS) 
algorithm

DD ​

Shen (2019) Uncertain uniform PMSP with job deterioration 
and learning effect with uncertainties in job 
processing times, due dates, deterioration rates 
and learning rates

Makespan vs. TWET Hybrid algorithm with mixed 
dispatching rules

DD ​

Jia et al. (2020) Parallel batch scheduling problem Tri-objective optimization of 
Makespan, TWET and total 
energy consumption

History-guided multi-objective 
evolutionary algorithm based on 
decomposition

DD ​

Shao et al. 
(2021)

Distributed hybrid flow shop scheduling problem Tri-objective optimization of 
Makespan, TWET and Total 
workload

Multi-objective evolutionary algorithm 
based on multiple neighbourhood local 
search (MOEA-LS)

DD ​

Wei et al. 
(2021)

Energy-efficient job shop scheduling problem Tri-objective optimization of 
Makespan, TWET and Non- 
processing energy consumption

Unified non-dominated sorting genetic 
algorithm-III (U-NSGA-III)

DD ​

Ampry et al. 
(2022)

Unrelated parallel batch scheduling problem Makespan vs. Sum of TWET and 
Machine purchasing costs

Multi-objective harmony search 
algorithm

DD ​

This paper SMSP Makespan vs. TWET Variable neighbourhood descent (VND)- 
based algorithms

DW √
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objectives, TWET and makespan, in the SMSP, though Pareto-based 
optimization on other combinations of objectives in the SMSP has 
been actively researched [13,54–61]. The extent of research on different 
machine scheduling problems reveals the importance of generating the 
trade-off between the two objectives, which is evident from the above 
literature review. The above literature review also reveals that the 
sequence-dependent setup times and due windows have not been 
considered in most of the works and heuristic and metaheuristic ap
proaches have been the most studied solution methodologies, particu
larly for solving larger-sized instances with 100 or more jobs. Though 
most of the existing works on multi-objective optimization considering 
TWET as one of the objectives considered the TWET objective from a JIT 
perspective, they did not account for idle times on the machines while 
generating schedules, i.e., all the jobs are scheduled at their earliest 
possible start times rather than closer to their respective due dates. 
Therefore, the schedule generated for a given sequence of jobs will al
ways result in a single point on the Pareto chart. In other words, for a 
given sequence of jobs, only one optimal schedule exists with its optimal 
TWET and the corresponding makespan value. Arroyo et al. [13] 
considered Pareto-based multi-objective optimization of TWET and total 
flow time (TFT) in the SMSP, allowing idle times to be inserted into the 
schedule. However, they considered the two objectives as a lexico
graphic function with TWET as the primary objective and TFT as the 
secondary objective, which results in a single trade-off point on the 
Pareto chart corresponding to a given sequence of jobs.

Jacquin et al. [62] considered the problem of simultaneously mini
mizing total earliness (TE) and total tardiness (TT) in the SMSP, allowing 
idle times to be inserted into the schedules. They showed that each 
sequence of jobs results in a piecewise linear convex trade-off curve 
between the two objectives. Babu and Girish [63] considered the 
problem of Pareto-based bi-objective optimization of TWET and total 
flowtime (TFT) in the SMSP with idle times allowed to be inserted in the 
schedules. They presented an optimal timing algorithm to generate 
optimal schedules corresponding to a given sequence of jobs and showed 
that the trade-off relationship between the two objectives is a piecewise 
linear convex trade-off curve when idle times exist in the schedules. The 
bi-objective optimization of TWET and makespan in the SMSP consid
ered in this paper also allows idle times to be inserted in the schedules to 
determine the Pareto-optimal solutions. Therefore, each sequence of 
jobs may result in a piecewise linear trade-off curve, as in the 
above-mentioned cases involving the bi-objectives of TE-TT and 
TWET-TFT in the SMSP. This will require devising an optimal timing 
algorithm (OTA) or utilising an optimization solver to generate sched
ules corresponding to a given sequence of jobs. We adopt an OTA pre
sented in the literature [64,65] and extend it to generate optimal 
schedules corresponding to the job sequences generated by the proposed 
Pareto-based metaheuristic algorithms. We also adopt an exact method 
of Pareto front generation proposed by Babu and Girish [63] to generate 
the Pareto-optimal front from multiple sequences of jobs, where each 
sequence of jobs has an associated piecewise linear trade-off curve 
comprising line segments on the Pareto chart. Babu and Girish [63], in 
their work, employed a greedy local search heuristic with a pairwise 
interchange neighbourhood generation mechanism and showed that 
their proposed method of Pareto-optimal front generation is computa
tionally efficient than an upper envelop algorithm adopted from the 
literature and is suitable for implementation within metaheuristic al
gorithms. We adopted their Pareto-optimal front generation method and 
devised computationally efficient Pareto-based metaheuristic algo
rithms to solve the NP-hard problem under consideration. The 
Pareto-based metaheuristic algorithms presented in this paper are based 
on the variable neighbourhood descent (VND) approach, which is a 
well-known neighbourhood search-based metaheuristic algorithm for 
solving single objective and multi-objective combinatorial optimization 
problems. The proposed VND-based approaches have been derived by 
improving the VND-based methods existing in the literature, in terms of 
computational efficiency, by applying various improvement 

mechanisms of neighbourhood generation and perturbation. This paper 
also suitably adapts the existing bi-objective-based performance metrics 
to compare the proposed metaheuristic algorithms since the 
Pareto-optimal front comprises both points and line segments, while 
most of the existing performance metrics are designed only for points on 
the Pareto chart. The performance of the proposed VND-based meta
heuristics have been compared with other state-of-the-art neighbour
hood search-based metaheuristic algorithms and a population-based 
metaheuristic adopted from the literature.

3. Problem formulation

The bi-objective SMSP discussed in this paper is as follows. Let n 
denote the number of jobs that are to be processed on a single machine. 
Let i denote the job index, and j denote the position index of the jobs in 
the sequence. Let Pi denote the processing time of job i and Si, i denote the 
setup time to switch from job í  to job i. Let [dei, dti] denote the due 
window of job i, where dei and dti denote the earliest and the latest 
allowable due dates of job i, respectively. Let Ci denote the completion 
time scheduled for job i. Then, the earliness is defined as Ei = max(0,
dei − Ci), and the tardiness is defined as Ti = max(0, Ci − dti). Let αi 

and βi, respectively, be the weights associated with the early and tardy 
completion of a job i. The assumptions and notations used in the prob
lem formulation are listed below.

Assumptions: 

• The single machine is continuously available.
• All the jobs are available at time zero.
• Each job i requires a single operation to be performed on the 

machine.
• The machine can process only one job at a time.
• The job descriptors are deterministic and known beforehand.
• No setup time is required for the job assigned to the first position in 

the sequence.
• Job preemptions are not allowed.

List of notations used in the proposed model:
n : Number of jobs
i : Job index (i=1,2,…,n)
j : Position index of jobs (j=1,2,…,n)
Pi : Processing time of job i
Si, i : Setup time to switch from job í  to job i
dei : Earliest allowable due date of job i
dti : Latest allowable due date of job i
αi : Earliness penalty of job i
βi : Tardiness penalty of job i

The mathematical formulation [13] is as follows.
Decision Variables: 

xij =

{
1 : if job i is assigned to position j in the sequence

0 : otherwise 

Ci = completion time of job i 

Ei = earliness of job i 

Ti = tardiness of job i 

Objective: 

Minimize
∑n

i=1
(αiEi + βiTi) (1) 

Minimize maxi(Ci) (2) 

Subject to: 
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∑n

i=1
xij = 1 ∀j (3) 

∑n

j=1
xij = 1 ∀i (4) 

Ci ≥ Pi ∀i (5) 

Ci ≥Ci’ +Pi +Si’ i − H
(
1 − xi’ j

)
− H

(
1 − xi,j+1

)
∀i, i’, j : i ∕= i’ & j=1,2, ...,n − 1

(6) 

Ti ≥ Ci − dti ∀i (7) 

Ei ≥ dei − Ci ∀i (8) 

xij ∈ {0,1} ∀i, j (9) 

Ci ≥ 0, Ei ≥ 0, Ti ≥ 0 ∀i (10) 

In the mathematical formulation, xij, Ci, Ei and Ti are the decision 
variables, and solving the problem aims to obtain the optimal values of 
these variables. The objective functions (1) and (2) express the weighted 
sum of earliness and tardiness costs and the makespan, respectively. 
Constraints (3) and (4) ensure that each position in the sequence is 
allocated to only one job, and each job is allocated to only one position 
in the sequence. Constraint (5) ensures that the completion time of the 
first job in the sequence is not less than its processing time. Constraint 
(6) is a disjunctive constraint that is active for all consecutive pairs of 
jobs in the sequence and non-active for all non-consecutive pairs of jobs. 
H denotes a large positive integer. Constraints (5) and (6) together 
ensure the generation of a feasible completion time for each job based on 
its position in the sequence. Constraints (7) and (8) associate the 
tardiness and earliness of each job with its completion time and its latest 
and earliest due dates, respectively. Constraints (9) and (10) define the 
variable bounds.

Algorithm 1 
Generation of TWET-Makespan trade-off curve.
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4. Solution methodologies

This section first presents the solution representation for the SMSP 
with SDST considered in this paper and the procedure for the generation 
of the TWET-makespan trade-off curve for a given solution. Further, the 
procedure adopted from the literature for the generation of a Pareto- 
optimal front from multiple TWET-makespan trade-off curves is 
described. Subsequently, the procedure for the generation of initial so
lutions and the neighbourhood search-based multi-objective meta
heuristic optimization algorithms are presented.

4.1. Solution representation and generation of the TWET-makespan 
trade-off curve

The solution representation used in the proposed metaheuristics is a 
permutation of the job indexes representing the order in which the jobs 
are sequenced for processing on the machine. In the SMSP, the jobs can 
be sequenced in n! possible ways. Let σ represent an ordered set 
comprising a sequence of n jobs to be processed on a single machine. The 
TWET-makespan trade-off curve for a given sequence of jobs is gener
ated using the optimal timing algorithm (OTA) presented in Algorithms 
1 and 2. The procedure first generates the optimal TWET schedule and 
its corresponding optimal makespan. Subsequently, it iteratively re
duces the makespan and generates the breakpoints to obtain the optimal 
piecewise linear TWET-makespan trade-off curve. The procedure to 
generate the optimal TWET schedule corresponding to a given sequence 
of jobs shown in Algorithms 1 and 2 is based on the timing algorithms 
proposed in the literature [14,64,65]. However, the timing algorithms 
presented in the literature for the SMSP consider a single due date 
corresponding to each job. The procedure shown in Algorithms 1 and 2
to generate the TWET-makespan trade-off curve is described as follows.

In Algorithm 1, a and b represent two consecutive jobs in σ, Ca and Cb 
are the respective completion times of jobs a and b, Sab is the setup time 
to switch to job b from job a on the machine, and Pa and Pb are the 
processing times of jobs a and b, respectively. Let σi represent an ordered 
set comprising the partial sequence of the first i number of jobs in σ ∀i ∈
{1,2,…, n} i.e., σi ⊆ σ, and σ[j] represent the job identifier at the jth 

position in the sequence. The first job a in σ is initially scheduled to be 
completed at its earliest due date (i.e. dea), as shown in step 4 of Algo
rithm 1. The TWET associated with this assignment in the partial 
sequence σ1 will be 0. The subsequent jobs in σ are scheduled succes
sively as close as possible to their earliest due dates, and the TWET 
associated with the jobs in the respective partial sequence is optimized 
following the addition of each job. Scheduling the jobs close to their 
earliest due dates implies that the completion times of the jobs are as 
close as possible to their respective earliest due dates. If the earliest due 
date of job b (i.e. deb) is less than Ca + Pb + Sab, then job b is scheduled to 
be completed exactly at deb, as shown in step 10 of Algorithm 1. This 
implies that there will be an idle time between the jobs a and b, and the 
TWET associated with this partial sequence and its corresponding 
schedule will be optimal. On the other hand, if Ca + Pb + Sab exceeds deb, 
then the job is assigned its completion time (i.e. Cb) as equal to Ca + Pb +

Sab, as shown in step 19 of Algorithm 1. This implies that no idle time 
exists between the completion times of jobs a and b, i.e. the jobs are 
contiguous with each other. In other words, the completion times of jobs 
a and b are clustered around their earliest due dates. The TWET asso
ciated with this partial schedule need not be optimal, which needs to be 
further optimized by left shifting the last job assigned to the partial 
sequence by invoking the function LEFT SHIFT in step 25 of Algorithm 
1.

Algorithm 2 presents the left shifting procedure (LEFT SHIFT), 
which left shifts the last job assigned at position k in σk (i.e. the job σ[k]) 
along with the set of preceding contiguously scheduled jobs to optimize 
the partial schedule without violating the separation constraints be
tween the completion times of consecutive jobs. This set of contiguously 
scheduled jobs is also called a block and is generated as follows.

Let B represent the block that contains the position identifier k of the 
last job b in the partial sequence σk and the position identifiers of all its 
preceding contiguous jobs that will allow for a feasible left shifting of the 
last job b. A feasible left shifting indicates that the last job b in the partial 
sequence can be left shifted by at least one unit of time without violating 
the separation constraints between the completion times of jobs given by 
Eqs. (5) and (6), discussed in Section 3. B is initially assigned the posi
tion identifier k = 1 of the job in the first position in σk, as shown in step 
5 of Algorithm 1. Subsequently, if any job b at position k is found to be 
contiguous with its immediately preceding job at position k − 1 in σk, 
then the position identifier of job b is added to B, as shown in step 24 of 
Algorithm 1. However, if a job b at position k in σk is non-contiguous 
with its immediately preceding job at position k − 1, then the block B 
is reset to include only the position identifier k, as shown in steps 11 and 
12 of Algorithm 1. The TWET cost function corresponding to the jobs 
with its position identifiers in B, represented by TWET(B), will always be 
a piecewise linear convex cost function with a minimum point, and left 
shifting the jobs with position identifiers in B to this minimum point 
optimizes the TWET cost function corresponding to the partial sequence 
σk (i.e. TWET(σk)) [64,65]. The following theorem explains the opti
mality of the procedure described in Algorithms 1 and 2 to obtain the 
minimum TWET(σ).

Theorem 1. The set of jobs with position identifiers in B, which contains 
the job at the last position k in the partial sequence σk as well as all its pre
ceding contiguous set of jobs, when simultaneously left shifted to the minimum 
point of its cost function TWET(B), optimizes TWET(σk).

Proof. For a given partial sequence σk, the TWET cost function of the 
jobs with position identifiers belonging to B for a given partial schedule 
Sk = {Cσ[1],Cσ[2], ..,Cσ[k]} can be expressed as 

TWET(B) =
∑

j∈B

(
ασ[j] max

(
0, deσ[j] − Cσ[j]

)
+ βσ[j] max

(
0, Cσ[j] − dtσ[j]

))

(11) 

For a specific Sk, a few jobs with position identifiers in B will be early 
from their respective earliest due dates (i.e. Cσ[j] ≤ deσ[j]), and a few other 
jobs will be tardy from their respective latest due dates (i.e. Cσ[j] ≥ dtσ[j]). 
The remaining jobs with position identifiers in B will be scheduled 
within their respective due windows (i.e. deσ[j] ≤ Cσ[j] ≤ dtσ[j]) and do not 
contribute to TWET(B). Let EY ∈B be the set of position identifiers 
corresponding to the early jobs, TY ∈B be the set of position identifiers 
corresponding to the tardy jobs, and DW ∈B be the set of position 
identifiers of jobs which are scheduled within their respective due 
windows in B. Then, the TWET cost function for a given Sk can be 
rewritten as [63] 

TWET(B) =
∑

j∈EY
ασ[j]
(
deσ[j] − Cσ[j]

)
+
∑

j∈TY
βσ[j]
(
Cσ[j] − dtσ[j]

)
(12) 

For a specific value of Cσ[k], where σ[k] is the job at the last position in 
σk, the TWET cost function can be rewritten as 

TWET(B) =

(
∑

j∈TY
βσ[j] −

∑

j∈EY
ασ[j]

)

Cσ[k] +
∑

j∈EY
ασ[j]
(
deσ[j] +Tσ[j]

)

−
∑

j∈TY
βσ[j]
(
dtσ[j] +Tσ[j]

)
(13) 

where Tσ[j] denotes the time gap between the completion times of jobs 
σ[k] and σ[j], i.e. Tσ[j]=Cσ[k] − Cσ[j], which remains constant for all the jobs 
in B, when σ[k] is varied by left shifting all the jobs with their position 
identifiers in B by the same amount of time. Therefore, Eq. (13) will be a 
straight-line equation with a slope 

SL =
∑

j∈TY
βσ[j] −

∑

j∈EY
ασ[j] (14) 
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Algorithm 2 
Left shifting procedure.
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When the set of jobs with position identifiers in B are simultaneously 
left shifted, the tardy jobs in the set TY get shifted to DW at their 
respective latest due dates, and the jobs in the set DW get shifted to EY at 
their respective earliest due dates. This results in the slope SL of the cost 
function TWET(B) to monotonically decrease, forming a piecewise 
linear convex curve with breakpoints on the TWET-Cσ[k] plot with a 
minimum point, as shown in Fig. 1. Each breakpoint on the TWET-Cσ[k]

plot indicates a job shifting from set TY to DW or from set DW to EY, 
resulting in a decrease in slope SL. At the minimum point of the cost 
function TWET(B), its slope SL changes from a non-negative value to a 
negative value. Shifting the jobs with position identifiers in B to the 
minimum point on the TWET-Cσ[k] plot minimizes TWET(B) as well as 
TWET(σk), since the jobs belonging to σk whose position identifiers are 
not in B remain unchanged during the left shifting of B.

Since each job in σk was successively assigned completion times and 
their partial schedules optimized by shifting the jobs with position 
identifiers in B to the minimum point of its TWET cost function as 
described in Algorithm 1, any job or a set of jobs in σk, which is non- 
contiguous with the jobs with position identifiers in B, will not 
improve TWET if left shifted along with B. This is because the jobs or the 
set of contiguous jobs preceding the jobs with position identifiers in B 
were already optimized to the minimum point of their respective cost 
functions successively, i.e. in the order TWET(σ1), TWET(σ2), …, TWET 
(σk− 1). Hence, the partial schedule Sk, which is optimized by left shifting 
B to the minimum point of its cost function, optimizes TWET(σk).

However, in the process of left shifting of jobs with position identi
fiers in B to the minimum point of TWET(B) as described above, a job 
with its position identifier in B can become contiguous with a preceding 
job whose position identifier is not included in B. In that case, the set B 
adds to it the position identifiers of the preceding contiguous jobs for a 
feasible left shifting and left shifts the jobs to the minimum point of the 
cost function TWET(B) corresponding to the updated set B. Every time 
set B is updated with position identifiers of the preceding contiguous 
jobs during left shifting, the slope SL decreases, resulting in a breakpoint 
on the TWET-Cσ[k] plot.

From the above theorem, it can be inferred that for a positive value of 
SL, left shifting of the jobs with position identifiers included in B results 
in the minimization of TWET(σk) of the partial sequence σk. Therefore, 
the jobs with position identifiers belonging to B in the partial sequence 
σk are left shifted until the corresponding SL becomes negative or until 
there is no idle time preceding the job in the first position in σk, 
whichever is encountered first.

In Algorithm 2, δ represents the maximum time units by which the 
jobs with position identifiers in B can be left shifted without encoun
tering any slope changes due to a job’s completion time crossing its 
latest due date or the earliest due date or the set of jobs whose position 
identifiers belonging to B becoming contiguous to a preceding job, or no 
gap is left preceding the first job in σk for further left shifting. If the 
position identifier of the job in the first position in σk (i.e. σ[1]) belongs 
to B, then δ is updated as the maximum time units by which the first job 
can be left shifted, as shown in step 4 of Algorithm 2. If the position 
identifier of the job σ[1] does not belong to B, then the maximum time 
units by which the jobs in block B can be left shifted until it becomes 
contiguous with its preceding job is determined and assigned to t1, as 
shown in step 19 of Algorithm 2. t2 is the time units by which the block 
can be left shifted, such that the completion time of a job with its po
sition identifier in B is the first to reach its latest due date, as shown in 
step 22 of Algorithm 2. t3 is the time units by which the block can be left 
shifted, such that a job with its position identifier in B is the first to reach 
its earliest due date, as shown in step 23 of Algorithm 2. δ is the mini
mum of t1, t2 and t3 and is chosen as the time units for left shifting the 
jobs whose position identifiers in σk belong to B, as shown in steps 20–24 
of Algorithm 2. Due to left shifting, if the jobs with position identifiers 
belonging to B become contiguous with its preceding job, the position 
identifiers of the preceding job or the set of preceding contiguous jobs in 
σk are added to the block B, as shown in steps 33–43 of Algorithm 2. The 
left shifting of the jobs with position identifiers in B proceeds until the 
corresponding SL becomes negative or no further left shifting is possible. 
Once all the jobs in σ are successively scheduled in this manner, the 
optimized TWET Gt and the corresponding makespan Mt for the iden
tified optimal TWET schedule are evaluated. This is implemented in the 
SAVE BREAK POINT function as shown in steps 15, 22 and 29–32 of 
Algorithm 1 and steps 26–28 of Algorithm 2.

The solution generated using the above procedure is a single optimal 
trade-off point representing the optimal TWET and its corresponding 
makespan on the Pareto chart representing the objectives space. To 
generate all possible trade-offs between TWET and makespan on the 
Pareto chart, the jobs in the optimal TWET schedule are further left 
shifted to reduce the makespan. The last job in the sequence σ and all its 
preceding contiguous jobs are continued to be left shifted even though 
the corresponding SL is negative, as shown by the conditions in step 16 
of Algorithm 2. Makespan is hence minimized to the maximum possible 
extent, resulting in the elimination of idle time from the schedule. The 
trade-off points corresponding to each value of makespan and the cor
responding TWET are stored whenever a change in SL is encountered, as 

Fig. 1. A typical TWET-Cσ[k] trade-off plot.
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shown in steps 26–32 of Algorithm 2. The breakpoints generated are 
then connected by line segments, which constitute the optimal TWET- 
makespan trade-off curve for that particular sequence of jobs. Since 
the SL value monotonically reduces with the left shifting of jobs in the 
sequence σ, the TWET-makespan relationship will be a piecewise linear 
convex trade-off curve [14,63–65]. Each point on the TWET-makespan 
trade-off curve represents a non-dominated solution for the given 
sequence of jobs. However, if no idle time exists in the optimal TWET 
schedule, the trade-off relationship between the bi-objectives will be a 
single point. A numerical illustration of the TWET-makespan trade-off 
curve generation procedure shown in Algorithms 1 and 2 is presented in 
Appendix A. The following theorem explains the optimality of the pro
cedure described above to obtain the optimal TWET-makespan trade-off 
curve.

Theorem 2. The set of jobs with its position identifiers in B in the optimal 
TWET schedule, when simultaneously left shifted until the idle time is 
completely eliminated from the schedule, generates the optimal 
TWET-makespan trade-off curve.

Proof. In a typical optimal TWET-makespan trade-off curve, one end 
of the curve will correspond to the optimal TWET schedule and the other 
end to the optimal makespan schedule, as shown in Fig. 2. Every point 
lying on the TWET-Makespan trade-off curve relates to an optimal 
schedule for the corresponding TWET and makespan values. The 
makespan corresponding to a schedule in the SMSP is the completion 
time of the last job in the sequence (i.e. Cσ[n]). Therefore, any decrease in 
makespan from the optimal TWET schedule requires the last job in the 
sequence to be left shifted. Since the optimal TWET schedule is the 
minimum point on the TWET-Cσ[n] plot, the left shifting of any job or set 
of jobs will increase the TWET value with the slope SL of the resulting 
TWET-makespan plot becoming a negative value. When the makespan is 
improved by left shifting the last job in σ, each unit of improvement in 
makespan must result in the optimum value (i.e. smallest possible in
crease in value) of TWET. The block B, which contains the position 
identifier of the job at the last position in σ as well as all its preceding set 
of contiguous jobs, when left shifted, results in the smallest possible 
increase in the value of TWET per unit decrease in makespan. This is 
because a job or a set of jobs preceding the jobs whose position identi
fiers are in B are already at the minimum point of their respective 
TWET(σk) cost function as described in Theorem 1, and if left shifted 
along with jobs with position identifiers in B, it will lead to a higher rate 
of increase in TWET per unit decrease in makespan. Therefore, the last 
job and all its preceding contiguously scheduled jobs whose position 
identifiers are in B, when left shifted, results in the minimum increase in 
the value of TWET per unit decrease in makespan. In the process of left 
shifting, the position identifiers of jobs in B may become contiguous with 
a preceding job not belonging to B, then block B is updated to include the 
position identifiers of the job or the set of contiguous preceding jobs, 
resulting in a breakpoint in the TWET-Cσ[n] plot with slope SL of the cost 

function becoming more negative. The slope SL of the TWET-Cσ[n] plot 
also changes and becomes more negative when the jobs in the process of 
left shifting shift from the set TY to DW and from DW to EY. Eventually, 
the procedure of updating block B and left shifting of jobs leads to the 
complete removal of idle time from the schedule, resulting in the point 
of optimal makespan in the TWET-Cσ[n] plot. Since the SL value decreases 
monotonously at each breakpoint, the optimal TWET-Cσ[n] trade-off plot 
will always be a piecewise linear convex trade-off curve if idle time 
exists in the optimal TWET schedule.

4.2. Pareto-optimal front generation procedure

The Pareto-based bi-objective metaheuristic algorithms presented in 
this paper use specific mechanisms to generate, perturb and improve 
sequences of jobs to find the Pareto-optimal solutions. Since the optimal 
timing algorithm (OTA) generates either a single trade-off point or a 
piecewise linear convex trade-off curve with infinite trade-off points on 
a Pareto chart corresponding to each sequence of jobs, the Pareto- 
optimal front generated from a given set of solutions will eventually 
comprise line segments and points. We adopted the Pareto-optimal front 
generation procedure proposed in [63] that trims and merges multiple 
TWET-makespan trade-off curves and trade-off points to generate the 
Pareto-optimal front, where each trade-off curve or point corresponds to 
either a single sequence of jobs or is a Pareto front comprising line 
segments and points generated from multiple sequences of jobs. Each 
line segment or point in the resulting Pareto-optimal front will be 
associated with a sequence of jobs, and the Pareto front generation 
procedure ensures that the sequences of jobs in the set related to a 
Pareto-optimal front are not repeated. Unlike the other scheduling 
problems, where each sequence of jobs results in a single trade-off point, 
the Pareto-optimal front generated in this paper may have a single point 
or one or more line segments associated with a single sequence of jobs. 
Fig. 3(a) shows typical TWET-makespan trade-off curves generated 
corresponding to multiple sequences of jobs. Some sequences of jobs 
may result in trade-off plots comprising a single trade-off point similar to 
the one corresponding to the sequence σ4 in the figure. Fig. 3(b) shows 
the Pareto-optimal front generated with the non-dominated solutions 
from multiple sequences of jobs, as shown in Fig. 3(a). In the figure, no 
line segment corresponding to the sequence σ2 lies on the Pareto-optimal 
front since all the line segments lying on the trade-off plot corresponding 
to it have been dominated by the other line segments as shown in Fig. 3 
(a). Further, the job sequences σ1 and σ3 have resulted in multiple line 
segments belonging to their trade-off plots lying on the Pareto-optimal 
front. Readers may refer to the procedure proposed in [63] to gain a 
detailed understanding of the methodology. The Pareto-optimal front 
generation procedure generates the Pareto front such that the line seg
ments and points on the Pareto front are arranged in the increasing order 
of their makespan values and also place their respective sequences of 
jobs in that order. The final Pareto-optimal front generated between the 
makespan and TWET using the metaheuristic algorithms will provide 
the end users with the cost proportions of compromising either of the 
objectives, thereby allowing them to make the best decision regarding 
the minimization of both objectives.

4.3. Initial solution generation

The initial solutions for the metaheuristic algorithms presented in 
this paper for the simultaneous minimization of the TWET and make
span objectives were generated using a heuristic methodology based on 
the apparent tardiness cost with setups (ACTS) rule [66–68]. The 
sequence generation begins with an empty set σ to which n unscheduled 
jobs are successively appended using a probabilistic rule based on 
heuristic desirability. The dispatching rule of ACTS is used as the heu
ristic desirability. The heuristic desirability ηkb of assigning a job b to 
position k in σ is defined as [69] Fig. 2. A typical optimal TWET-makespan trade-off curve.
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ηkb = exp
[

−
deb ∗ k1

davg

]

∗ exp
[

−
(Pb + sab) ∗ k2

savg

]

(15) 

where deb is the earliest due date of job b, davg is the average of the 
earliest due dates of all the jobs unassigned to σ, k1 and k2 are the scaling 
parameters related to the due dates and the sum of processing times and 
setup times (sab + Pb) between the jobs, respectively. sab is the setup time 
between job b and the job at position k − 1 in σ denoted by a, and savg is 
the average of the processing times inclusive of the setup times between 
the jobs unassigned to σ. The job j to be assigned at each position in the 
sequence is determined probabilistically based on the value of the 
random variable S selected according to a probability μkb defined cor
responding to each unassigned job b ∈ U, as shown in Eq. (16). 

μkb =
ηkb∑

u∈U(ηku)
(16) 

where U denotes the set of jobs not assigned to σ. The cumulative value 
of μkb ∀b ∈ U corresponding to each position k is calculated, and the job 
b that corresponds to the range of the random variable S will be assigned 
to k. This ensures fair allocation of jobs even when more than one job in 
U has the same value of μkb, as a job with a larger range has a higher 
probability of being selected. This process is performed iteratively until 
all the n jobs are assigned to σ. The sequences generated are further used 
as the initial population in the metaheuristic optimization algorithms 
presented in this paper.

4.4. Multi-objective neighbourhood search-based metaheuristic algorithms

Neighbourhood search-based metaheuristic algorithms applied to 
scheduling problems employ various neighbourhood structures that 
explore the feasible solution space by generating and evaluating the 
sequences in the neighbourhood of a given sequence of jobs to be 
improved. These algorithms can also be parallelized, allowing the use of 
parallel computing systems, thereby enabling them to handle complex 
problems within a reasonable computation time. Some of the basic 
neighbourhood search-based metaheuristic algorithms existing in the 
literature include variable neighbourhood search (VNS), variable 
neighbourhood descent (VND), iterated local search (ILS), Tabu search 
(TS), Simulated Annealing (SA), etc. These algorithms have been 
extensively used in both single objective and multi-objective machine 
scheduling problems [70–73]. Several variants of these algorithms have 
also been presented in the literature for the Pareto-based multi-objective 

optimization problems in machine scheduling, such as VNS with inten
sification, Pareto iterated local search, Pareto archived simulated 
annealing, etc. [74,75].

These algorithms, in general, begin with a single or a set of initial 
solutions that are generated either randomly or using heuristics. One or 
more neighbourhood generation mechanisms are then employed to 
generate solutions in the neighbourhoods of the initial solution set. Each 
of the neighbourhood solutions generated is then evaluated for the ob
jectives considered in the problem. The solutions that meet the pre
defined acceptance criteria are selected for further exploration. 
Sometimes, these algorithms also accept inferior solutions with a certain 
probability of escaping out of the local minima in the solution space. The 
process of neighbourhood generation, objective evaluation and selection 
of solutions for further exploration is repeated iteratively until specific 
predefined termination criteria are met. The commonly used termina
tion criteria include reaching a maximum number of iterations, reaching 
the limit on computational resources or achieving a certain level of 
improvement.

Apart from the neighbourhood search-based approaches, several 
population-based methods known to perform well for multi-objective 
Pareto-based optimization problems exist in the literature viz. multi- 
objective particle swarm optimization (MOPSO), multi-objective ge
netic algorithm (MOGA), multi-objective genetic local search 
(MOGALS), Pareto envelope-based selection algorithms (PESA and 
PESA-II), non-dominated sorting genetic algorithm II (NSGA-II), non- 
dominated ranking genetic algorithm (NRGA), etc. [76]. However, 
most of these methodologies use crowding distance operators [77] or 
region-based selection techniques [78] to evaluate solutions for domi
nance while generating the Pareto front. As shown in Fig. 3(b), the line 
segments on the Pareto front belonging to different sequences of jobs 
need not necessarily have a gap between them and a solution on a Pareto 
front consisting of line segments may span over the entire Pareto front as 
represented by the line segments corresponding to the sequence σ1. 
Therefore, it may not be possible to determine the crowding distance of 
solutions or confine a solution within a region in the objective space. 
Hence, the existing technique of fitness evaluation from the literature 
cannot be implemented in this scenario. Consequently, the 
population-based methodologies from the literature cannot be easily 
adapted to solve the scheduling problem considered in this paper. This 
has encouraged us to experiment with neighbourhood search-based 
heuristic methodologies that are easily adaptable over the 
population-based heuristic methods in the literature.

This paper presents six Pareto-based neighbourhood search 

Fig. 3. (a) Typical TWET-makespan trade-off curves generated with multiple sequences of jobs, (b) Pareto-optimal front generated with the non-dominated solutions 
from multiple sequences of jobs.
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algorithms to solve the bi-objective SMSP, which are listed below. 

(1) Multi-objective variable neighbourhood descent (MOVND)
(2) Multi-objective iterated variable neighbourhood descent 

(MOIVND)
(3) Hybrid multi-objective variable neighbourhood descent - path 

relinking (MOVND_PR)
(4) Multi-objective variable neighbourhood search (MOVNS)
(5) Multi-objective variable neighbourhood search with intensifica

tion (MOVNS_I)
(6) Multi-objective iterated local search (MOILS)

The performance of the proposed VND-based algorithms is then 
compared with that of the VNS and ILS algorithms adopted from the 
literature to validate their computational efficiency. The subsequent 
sections of this paper first present the various neighbourhood structures 
used in the above algorithms. Further, the implementation of the 
neighbourhood search-based metaheuristic algorithms to the considered 
problem is presented.

4.4.1. Neighbourhood structures used in the metaheuristic algorithms
The metaheuristic algorithms presented in this paper utilise one or 

more of six different neighbourhood generation schemes to generate a 
set of neighbourhoods corresponding to a given sequence of jobs. The 
various neighbourhood generation mechanisms for generating neigh
bourhoods of a given sequence of jobs are described as follows. 

(1) Swap neighbourhood (N1): Two jobs within a fixed range of job 
positions in the sequence denoted by swap limit, are randomly 
selected, and their positions in the sequence are interchanged.

(2) Insertion neighbourhood (N2): A job is removed from the 
sequence and inserted back at every position in a fixed range of 
job positions, denoted by shift limit. The shift limit equally 
spreads over the succeeding and preceding job positions of the 
initial position of the removed job.

(3) 2-job insertion neighbourhood (N3): This neighbourhood gener
ation scheme is similar to N2, with the exception that the jobs at 
two consecutive positions selected from the sequence are 
removed and inserted back at all positions within the range of job 
positions in the sequence denoted by dshift limit.

(4) 3-job insertion neighbourhood (N4): This neighbourhood gener
ation scheme is similar to N2, with the exception that the jobs at 
three consecutive positions selected from the sequence are 
removed and inserted back at all positions within the range of job 
positions in the sequence denoted by tshift limit.

(5) Enumeration neighbourhood (N5): In this neighbourhood gener
ation mechanism, all possible combinations of job positions 
within a fixed range of positions in the sequence denoted by 
enum limit, are generated, each of which contributes to one 
neighbourhood. The number of neighbourhoods thus generated 
within a fixed enum limit will be m!, where m represents the 
number of jobs within the enum limit. Once all possible neigh
bourhoods within a specific job window defined by the enum limit 
are generated, the job window slides forward by one job position 
along the job sequence, and the process repeats.

(6) Compound insertion move neighbourhood (N6): This neigh
bourhood generation structure uses a parameter known as search 
depth, denoted by d, which can either be fixed or varied during 
the search process to maintain a balance between exploring and 
exploiting the feasible solution space. This paper proposes an 
improved variant of the compound insertion move neighbour
hood structure presented in [73]. In their paper, Xu et al. [73] 
randomly selected a job position r in the sequence from which d 
number of consecutive jobs are removed from the sequence. Let 
σR represent the set of removed jobs and σP represent the partial 
sequence comprising the jobs remaining in the sequence. The 

neighbourhoods are generated by iteratively inserting each 
removed job in σP at all job positions in the partial sequence σR. In 
this paper, we have proposed an improved neighbourhood 
structure in which d number of jobs to be removed from the 
sequence are selected randomly, rather than removing a set of 
consecutive jobs from a randomly selected position in the 
sequence.

The multi-objective metaheuristic algorithms presented in this paper 
employ one or more of the above neighbourhood generation 
mechanisms.

4.4.2. The proposed MOVND algorithm
The multi-objective variable neighbourhood descent (MOVND) al

gorithm proposed in this paper is inspired by the sequential variable 
neighbourhood descent algorithm presented in [79]. We have suitably 
adapted the methodology presented originally for a single objective 
optimization problem to extend it to the multi-objective optimization 
problem considered in this paper. According to the methodology pre
sented in [79], whenever an improved solution is obtained with a 
neighbourhood generation mechanism, the neighbourhood generation 
mechanism is reset to the first one. Whenever there is no improvement in 
solutions with any of the neighbourhood generation mechanisms, the 
neighbourhood generation mechanism is sequentially switched to the 
next in a pre-defined order.

Algorithm 3 shows the procedure for the proposed MOVND algo
rithm that begins by generating a Pareto-optimal front of the solutions in 
the initial population P, denoted by A, as shown in steps 1–2. Step 2 
involves generating a piecewise linear convex trade-off curve between 
the two objectives corresponding to each sequence of jobs in P using the 
proposed optimal timing algorithm (OTA) described in Section 4.1 and 
further generating the Pareto-optimal front of the trade-off curves 
generated corresponding to all the sequences in P using the procedure 
described in Section 4.2. The sequences corresponding to the line seg
ments belonging to the Pareto-optimal front A are then subjected to one 
or more neighbourhood generation mechanisms described in Section 
4.4.1.

The proposed MOVND algorithm utilizes kmax number of neigh
bourhood generation mechanisms represented by the ordered set 
NVND ⊆{N1, N2, N3, N4, N5} to generate the neighbourhood solutions in 
the procedure, such that kmax=|NVND|. The binary variable 
visited flag(σ, k

)
∈ {0,1

}
denotes whether each sequence σ ∈ A has 

been subjected to neighbourhood generation using the neighbourhood 
structure k, where k=1,2,…,kmax. visited flag(σ, k

)
∀σ ∈ A are marked as 

unexplored initially ∀k, as shown in step 3. Each solution σ ∈ A is then 
improved iteratively by generating all possible neighbourhoods using 
the neighbourhood structures one after the other, as shown in steps 
4–21. M denotes the set of neighbourhood solutions generated for the 
sequences of jobs σ ∈ A using the chosen neighbourhood structure in the 
set NVND, as shown in step 7. The neighbourhoods are generated only for 
those sequences of jobs in A that were previously unexplored by the 
chosen neighbourhood structure k. visited flag(σ, k

)
∀σ ∈ A generated 

using the neighbourhood structure NVND(k) is marked as visited, as 
shown in step 8. The Pareto-optimal front of the solutions in M is then 
generated, denoted by Aʹ, and the visited flag(σ, k

)
∀σ ∈ Aʹ is set as un

visited ∀k, as shown in steps 9 and 10, respectively. Similar to Step 2, 
Step 9 involves the generation of trade-off curves between the objectives 
corresponding to each sequence of jobs in M using the OTA and the 
subsequent generation of the Pareto-optimal front of the trade-off curves 
generated corresponding to all the sequences in M. The non-dominated 
solutions from Aʹ update the Pareto-optimal front A, as shown in step 15. 
If the Pareto-optimal front A has improved in this process, then the 
neighbourhood structure is reset to NVND(1) as shown in step 17, and 
steps 6–15 are repeated. On the other hand, if the Pareto-optimal front A 
has not improved by the generation of neighbourhoods of sequences σ ∈
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A generated using a particular NVND(k), then, the following neighbour
hood structure is chosen to further explore the neighbourhoods of the 
sequences in A, as shown in step 19. If all the neighbourhood structures 
in the ordered set NVND have been explored, and no further improved 
solution is found in A, then set A is subjected to intensification (N6), as 
shown in steps 12 and 13. Intensification is an improvement mechanism 

proposed in [13], which involves randomly selecting a sequence σ ∈ A 
and exploring the solution space for an improved solution in its neigh
bourhood. Algorithm 4 shows the procedure of intensification.

Intensification uses the neighbourhood structure N6 described in 
Section 4.4.1, which begins with removing d number of jobs from σ ∈ A. 
σR denotes the set of removed jobs and σP denotes the partial sequence 

Algorithm 3 
The MOVND algorithm.

Algorithm 4 
Intensification.
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obtained with the remaining n − d jobs, as shown in step 2 of Algorithm 
4. The TWET-makespan trade-off curve corresponding to the partial 
sequence σP is then generated and subjected to the Pareto front gener
ation procedure to generate the Pareto-optimal front, which is denoted 
by Bʹ as shown in step 3. In each iteration of steps 4–14, the kth 

{k= 1,2…d} job in σR is inserted at each position p {p= 1,2…, j − d+k}
of each partial sequence σq ∈ Bʹ. Let SPσq denote the set of partial se
quences obtained with the kth job added at each position p of a particular 
sequence σq ∈ Bʹ, as shown in steps 8–10. A Pareto-optimal front cor
responding to the TWET-makespan trade-off curves of the partial se
quences belonging to SPσq is then generated, which is denoted by Bʹ́ , as 
shown in step 11. After the kth job is inserted into every position p of 
every sequence σq ∈ Bʹ, the Pareto-optimal front Bʹ́  replaces the Pareto- 
optimal front Bʹ, as shown in step 13. Steps 5–13 repeat until every job 
belonging to set σR has been inserted into every position p of every 
sequence σq ∈ Bʹ. On intensification, if an improved solution is found, 
the neighbourhood structure is reset to NVND(1) and steps 6–15 of Al
gorithm 3 are repeated. If an improved solution is not found, then 
another sequence σ ∈ A is chosen at random and subjected to intensifi
cation. To allow for a fair performance comparison between the MOVND 
and the other algorithms, a predefined maximum computation time 
(CPU TimeLimit) allowed to run a specific problem instance is set as the 
termination criterion for all the algorithms.

4.4.3. The proposed MOIVND algorithm
The proposed multi-objective iterated variable neighbourhood 

descent (MOIVND) algorithm is similar to the proposed MOVND, except 
that in the MOIVND we have used a perturbation phase instead of the 
intensification used in the MOVND. Algorithms 5 and 6 show the 
pseudocode of the proposed MOIVND algorithm.

The MOIVND algorithm utilizes kmax number of neighbourhood 
generation mechanisms represented by the ordered set NIVND ⊆{N1, N2, 
N3, N4, N5} to generate the neighbourhood solutions in the procedure, 
where kmax=|NIVND|. Similar to the MOVND algorithm, the MOIVND 
algorithm begins by generating a Pareto-optimal front of the solutions in 
the initial population P, denoted by A, as shown in steps 1–2. visited_flag 
(σ, k) ∀σ ∈ A are marked as unexplored initially ∀k : k = 1,2,…,kmax, 
as shown in step 3. A is assigned to Aʹ, and each solution σ ∈ Aʹ is then 
improved iteratively by generating all possible neighbourhoods using 
the neighbourhood structures in the ordered set NIVND one after the 
other, as shown in steps 4–22. Every time an improved solution is found 
in Aʹ, the neighbourhood structure is reset to NIVND(1), and if an 
improved solution is not found, the next neighbourhood structure in the 
set NIVND is chosen to improve the solutions, as shown in steps 12–15. 
visited_flag(σ, k) is marked as explored if a sequence of jobs σ ∈ Aʹ has 
already been improved with a neighbourhood structure k, and only the 
sequences of jobs unexplored with certain neighbourhood structures are 
considered for the generation of neighbourhoods. After a set of neigh
bourhoods represented by M are generated and the corresponding 
Pareto-optimal front Aʹ is updated, the Pareto-optimal front A is updated 
with Aʹ, as shown in steps 10–11. If no improved solution is found in Aʹ 

after implementing all four neighbourhood structures, then the solutions 
in set A are perturbed by invoking the PERTURB function, as shown in 
step 17 of Algorithm 6, which generates a new Pareto front Aʹ. The 
Pareto front A is updated with Aʹ as shown in step 19, and the solutions 
in Aʹ are further subjected to improvement using the four neighbour
hood structures as shown in steps 6–10. The above procedure is per
formed until the termination criterion of a pre-specified computation 
time limit (CPU TimeLimit) is reached.

The perturbation mechanism used in the MOIVND algorithm uses a 
neighbourhood generation scheme to escape the local minima and 
backtrack the solutions rather than relying on random perturbation 
moves. The procedure for the perturbation of solutions in A is shown in 
Algorithm 6. Initially, the solutions in A are assigned to set B, as shown 
in step 2. Each sequence σ ∈ B is then perturbed, which involves 

randomly selecting a position q in the sequence and the job in that po
sition is inserted at all other possible positions in the sequence using the 
neighbourhood structure N2 to generate n − 1 neighbourhood solu
tions, which is denoted by M. The Pareto-optimal front Bʹ is then 
generated with the solutions in M, and the Pareto front Bʹ́  is subse
quently updated with Bʹ. After all the sequences in B are subjected to the 
above procedure, the solutions in Bʹ́  are assigned to B as shown in step 
11. The perturbation and Pareto front update procedure, as shown in 
steps 6–9, is then repeated with the solutions in B, and this process 
continues for perturb iter number of iterations. The perturbation phase 
allows the solutions in A to escape local minima, and the procedure of 
generation of the neighbourhoods followed by the generation of the 
Pareto-optimal front, as shown in steps 7–9, ensures that the perturbed 
solutions do not deviate too much from their original solutions in terms 
of the objective values.

4.4.4. The proposed hybrid MOVND_PR algorithm
The proposed multi-objective hybrid variable neighbourhood 

descent – path relinking (MOVND_PR) algorithm is similar to the pro
posed MOIVND algorithm, except that the MOVND_PR algorithm uses a 
path relinking-based strategy to explore the neighbourhoods of the so
lutions in the Pareto archive instead of the backtrack-based perturbation 
used in the MOIVND. Therefore, the procedure shown in Algorithm 5
also applies to the MOVND_PR algorithm, except that step 17 of Algo
rithm 5 invokes Aʹ←PATH RELINKING(A). Path relinking is typically 
used as an intensification strategy to explore paths connecting elite so
lutions obtained by other metaheuristic methods, such as scatter search, 
GRASP, tabu search, etc. [80–83]. In this paper, the path relinking 
strategy is hybridized with the VND algorithm to generate new solutions 
in the neighbourhoods of the elite solutions on the Pareto archive, which 
is further improved using the local search procedure within the VND 
framework.

Algorithm 7 shows the path relinking phase of the MOVND_PR al
gorithm, which obtains the Pareto front A from Algorithm 5 and returns 
the Pareto front B generated using the path relinking procedure. As 
shown in steps 3–13 of Algorithm 7, the procedure selects each solution 
(i.e. the sequence of jobs) in the Pareto front A as an initial solution (so) 
and iteratively identifies the job insertions required to sequentially 
move it towards a randomly chosen guiding solution (sg) belonging to A. 
At first, the difference in the position of each job in the two job se
quences so and sg is determined. As shown in steps 6–9, the job i with the 
highest positional difference (PD) in so is identified and shifted to a 
position number in its sequence, which is the same as the position 
number (PS) of this job in sg. A job’s positional difference is the absolute 
value of the difference of its position number in so with its position 
number in sg. The new sequence snew thus generated along with its cor
responding TWET-makespan trade-off curve is assigned to (or used to 
update) the Pareto front B, as shown in step 10 of Algorithm 7. The new 
sequence snew is then assigned to so (i.e. so← snew), as shown in step 11 of 
Algorithm 7. Subsequently, the job with the highest positional difference 
in so with respect to sg is again identified and shifted to a position in so, 
which is the same as the position of this job in sg. The new sequence snew 
generated, along with its TWET-makespan trade-off curve, updates B as 
described above. The above procedure is repeated until the maximum 
positional difference of a job in so with respect to sg is equal to or greater 
than Dmax, where Dmax>0. A value of Dmax closer to zero indicates that 
towards the end of the above procedure of generating the sequence of 
neighbourhoods while moving from so to sg, the solutions generated will 
be closer to sg, leading to faster convergence in the subsequent local 
search phase shown in Algorithm 5. On the other hand, a higher value of 
Dmax may lead to a higher exploration.

4.4.5. The MOVNS algorithm
We have adopted the multi-objective variable neighbourhood search 

(MOVNS) algorithm presented in [74], as shown in Algorithm 8.
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The methodology begins with an initial population of sequences 
denoted by P, as shown in step 1 of Algorithm 8. Each individual in the 
population is a sequence of n number of jobs to be scheduled, denoted by 
σ, as described in Section 4.1, which is generated using the procedure 
described in Section 4.3. A Pareto-optimal front of the TWET-makespan 
trade-off curves corresponding to the sequences of jobs in P is first 
generated, which is denoted by A, as shown in step 2. A variable 
neighbourhood search is then performed on each of the non-dominated 
solutions in A in search of better solutions in the objective space, as 

shown in steps 3–18. In the algorithm, the binary variable 
visited flag(σ) ∈ {0,1} denotes whether each sequence σ ∈ A has been 
subjected to the neighbourhood search or not. visited flag(σ), ∀σ ∈ A are 
marked as unvisited initially, as shown in step 3.

Each iteration of the MOVNS algorithm begins with the random se
lection of an unvisited solution σ ∈ A as shown in step 5. Every time a 
solution σ ∈ A is selected, visited flag(σ) is marked as visited. A set of 
neighbourhood generation structures represented by NVNS ⊆ {N1, N2,

N3, N4, N5}, described in Section 4.4.1, have been employed in this 

Algorithm 5 
The MOIVND algorithm.

Algorithm 6 
Perturbation phase in the MOIVND algorithm.
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algorithm, from which one structure is randomly selected in every 
iteration of the search, denoted by Nk, as shown in step 7. All possible 
neighbourhoods of σ ∈ A are then generated using Nk, and one of the 
neighbourhood solutions generated is randomly selected for further 
exploration, as shown in steps 8–9. Let M represent the set of all 
neighbourhoods of σ ∈ A generated using Nk. A sequence σ ∈ M is 
randomly selected, and all possible neighbourhoods of σ ∈ M are 
generated using Nk. Let Mʹ denote the set of all neighbourhood solutions 
hence generated. A Pareto-optimal front of all the sequences in Mʹ is 
further generated, which is denoted by Aʹ, as shown in steps 10–12. 

visited_flag(σ), ∀σ ∈ Aʹ is initialized as unvisited, as shown in step 13. The 
Pareto-optimal front A is then updated with the non-dominated solu
tions in the Pareto-optimal front Aʹ, as shown in step 14. Once every σ ∈

A is visited, visited flag(σ) is marked as unvisited, as shown in steps 
15–17. Steps 5–17 are repeated until the CPU TimeLimit is reached.

4.4.6. The MOVNS_I algorithm
We have adopted the multi-objective variable neighbourhood search 

algorithm with intensification (MOVNS_I) presented in [74], as shown in 
Algorithm 9. This method is an improvement over the basic MOVNS 

Algorithm 7 
Path relinking phase in the MOVND_PR algorithm.

Algorithm 8 
The MOVNS algorithm.
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algorithm described in Section 4.4.5. Steps 1–12 and 17–19 of Algorithm 
9 are similar to steps 1–12 and 15–17 of Algorithm 8. NIVNS ⊆ {N1, N2,

N3, N4,N5} represents the set of neighbourhood structures employed 
for generating neighbourhoods in the MOVNS_I algorithm. In step 13 of 
Algorithm 9, a job sequence σ ∈ Aʹ is randomly selected and subjected to 
the intensification procedure as shown in Algorithm 4 of Section 4.4.2.

At the end of the intensification procedure, the sequences of jobs in Bʹ 

replaces Aʹ́  as shown in step 14 of Algorithm 9. Further, the Pareto 
optimal front A is updated with the non-dominated solutions from the 
Pareto optimal fronts Aʹ and Aʹ́  as shown in step 16 of Algorithm 9.

4.4.7. The MOILS algorithm
We have adopted the multi-objective iterated local search (MOILS) 

algorithm proposed in [73]. They implemented a Pareto-based local 
search method to improve the solutions, which is essentially the same as 
the intensification procedure proposed in [13] as described in Algorithm 
4. However, the search depth d used in the intensification is varied 
throughout the search process in the MOILS algorithm, unlike the 
MOVNS algorithm described in the previous section, which uses a con
stant search depth. Further, the neighbourhood structure N6, which is an 
improvement over the neighbourhood generation mechanism presented 
in [73], as described in Section 4.4.1, is employed to generate the 
neighbourhoods during intensification.

Algorithm 10 shows the MOILS procedure. It begins with the gen
eration of the Pareto-optimal front of the initial set of sequences of jobs 
in P, which is denoted by A, as shown in step 2. A sequence σ ∈ A is then 
randomly selected for exploration and subjected to the intensification 
procedure with an initial search depth d0, as shown in steps 3–4. Let L 
denote the set of improved solutions obtained as a result of intensifi
cation using d0, the non-dominated solutions of which update the 
Pareto-optimal front A as shown in step 5. The binary variable 
update flag ∈ {0,1

}
in the algorithm denotes whether the Pareto- 

optimal front A has improved or not after each iteration of the local 
search. Each iteration of the MOILS algorithm consists of a perturbation 
and an intensification procedure, as shown in steps 7–25. A sequence σ ∈

A is randomly selected and perturbed using one random iteration of the 
insertion neighbourhood generation N2 described in Section 4.4.1, as 
shown in steps 8 and 11, respectively, in Algorithm 10. update flag is 
initialized to true at the beginning of the iterated local search, as shown 
in step 9. The search depth d is varied within the range 1–5 in consec
utive iterations of the local search, as shown in steps 12–16. The per
turbed sequence σʹ obtained at step 11 is subjected to an intensification 
procedure with the updated search depth d, as shown in step 17. The 
non-dominated solutions from the set L of improved solutions, hence 
obtained, update the Pareto-optimal front A as shown in step 18. 
Whenever an improved sequence σʹ is added to the Pareto-optimal front 
A, σʹ replaces the current best solution σ as shown in step 20. The steps 
11–23 are repeated until the Pareto-optimal front A has no improve
ment. Otherwise, the update flag is set as false, as shown in steps 21–23. 
The procedure shown in steps 8–24 is repeated until the predefined limit 
on the computation time (CPU TimeLimit) is reached.

5. Computational study

This section presents the computational study of the neighbourhood 
search-based metaheuristic algorithms presented in this paper, using a 
set of 24 problem instances with the number of jobs varying from 20 to 
100. The algorithms were programmed in C language and run using the 
Intel C++ Compiler version 2022.2.1 on a 2.6 GHz Intel Xeon Gold 6132 
dual processor workstation with 28 cores, 128 GB RAM, and Linux OS. 
The correctness of the C program of the proposed optimal timing algo
rithm (OTA) embedded within the metaheuristics was verified by 
modelling and solving the mathematical formulation presented in Sec
tion 3, using IBM ILOG CPLEX ver 12.7.1 callable libraries [84]. The 
decision variable relating to a fixed sequence of jobs 

(
xij
)

was input into 
the mixed integer linear programming (MILP) model and the solution 
obtained using CPLEX (i.e., Ci, Ei, Ti) and their objective values were 
compared with those obtained using the proposed OTA to verify the 
results. The makespan values obtained at every breakpoint on the 
TWET-makespan trade-off curve were input to the MILP model that 

Algorithm 9 
The MOVNS_I algorithm.
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calculates the corresponding optimal TWET to verify the correctness. 
The neighbourhood generation procedure in the metaheuristic algo
rithms was parallelized for multi-core processing using OpenMP [85]. 
Since the arithmetic operations involving floating point variables in the 
Pareto-optimal front generation method are prone to errors [63,86], the 
related flag (-fp-model) was set to “strict” while compiling the code to 
ensure the highest floating point precision. The flag relating to the 
optimization level was set to 0 (i.e. -O0), which disables all forms of 
optimization during the execution of the code.

This section first presents the procedure adopted from the literature 
for the generation of test instances and the parameter settings used in 
implementing the metaheuristic algorithms. Further, the performance 
evaluation metrics used to compare the performance of the proposed 
metaheuristic algorithms are presented. Subsequently, the performance 
comparison of the metaheuristic algorithms using different performance 
evaluation metrics is presented. Finally, a few insights from the 
parameter settings using multiple trials of the best-performing algorithm 
have been presented.

5.1. Generation of test instances

To the best of our knowledge, there exists no known benchmark data 
in the literature for the multi-objective single machine scheduling 
problem considered in this paper. Therefore, the problem instances were 
generated using the procedure presented in [13]. Let n denote the 
number of jobs selected from the set {20, 30, 40, 50, 75, 100}. The 
processing time and the tardiness penalty for each job were uniformly 

generated in the intervals [1, 100] and [20, 100], respectively and the 
earliness penalty for each job was generated as k times the tardiness 
penalty of the job, where k denotes a random number generated in the 
interval [0,1]. The centre of the due window [dei, dti] corresponding to a 
job i was uniformly generated in the interval [(1− T − RDD∕2) TP, (1− T 
+RDD∕2)TP], where TP denotes the total processing time for all the jobs 
in the sequence, T denotes the tardiness factor, and RDD denotes the 
relative range of the due windows. The values of T and RDD are selected 
respectively from the sets {0.1, 0.3} and {0.8, 1.2} and the sizes of the 
due windows were distributed uniformly in the interval [1, TP∕n]. The 
setup time Sii’ between each pair of jobs (i, i’): i ∕= i’, were uniformly 
generated in the range [0,50]. For each n, 4 test instances were gener
ated with each pair of (T, RDD), thereby generating 4×6=24 problem 
instances. The test instances follow the naming convention Pn_Tp_Rq, 
where p and q denote the T and RDD values, respectively.

5.2. Parameter settings

The parameters in the metaheuristic algorithms were fine-tuned 
through trials. The algorithms were run ten times for a selected set of 
problem instances to find the best settings for each parameter. Subse
quently, to compare the performance of the algorithms, the parameter 
values that delivered the best solution quality and computational effi
ciency on the selected set of instances were further used for the per
formance study, in which the algorithms were run ten times for each 
problem instance. The best settings found for various parameters are 
listed below. 

Algorithm 10 
The MOILS algorithm.
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• Parameters in the initial solution generation: The scaling parameters 
k1 and k2 used in the heuristic methodology were randomly gener
ated in the range [1,10] to generate the initial solutions.

• Search depth in the MOVNS_I and MOVND algorithms: The search 
depth d was set to 4 based on the settings used in the literature [74].

• Search depth in the MOILS algorithm: The initial search depth d = d0 
was set to 5, and further, the search depth d varied between 1 and 5 
cyclically with each iteration of the search [73].

• Perturbation parameter (perturb_iter) in the MOIVND algorithm: The 
perturbation factor was set as perturb_iter=10.

• Dmax in the MOVND_PR algorithm: Dmax = 3
• Termination criterion: For all the algorithms, the termination crite

rion was set to CPU_TimeLimit = 50 x n seconds for n ∈{20,30} and 
CPU_TimeLimit = 100 x n seconds for n ∈{40,50,75,100}, where n 
denotes the number of jobs in the problem instance.

• Parameters in the neighbourhood generation: The best combination 
of neighbourhood structures for NVND, NIVND,NVNS, NIVNS were 
found to be NVND = {N1, N2, N3,N4,N5}, NIVND = NVNS = NIVNS =

{N1,N2,N3,N4}. For the neighbourhood generation in the MOVND, 
MOIVND, MOVND_PR, MOVNS, MOVNS_I and MOILS algorithms, 
the parameters set were: swap_limit = 30, shift_limit = 15, dshift_limit 
= 15, tshift_limit = 15, enum_limit = 6. However, these limits, except 
enum_limit, were not imposed on the neighbourhood generation of 
the first seq_wl number of sequences of jobs in the Pareto-optimal 
front, the reason for which is explained below.

The optimization of the TWET objective causes the jobs in the 
schedule to be clustered around their corresponding earliest due dates to 
minimize the earliness or tardiness penalties. This implies that the 
optimization of TWET necessitates the generation of neighbourhoods 
only within a range of job positions so that the job completion times are 
in proximity to their respective earliest due dates. Therefore, during the 
neighbourhood generation, swap_limit, shift_limit, dshift_limit, tshift_limit 
and enum_limit are imposed on the corresponding neighbourhood gen
eration mechanisms that restrict the range of job positions in the se
quences within which the jobs can be repositioned. This limit on the 
neighbourhood generation helps to minimize the computation time 
required to generate neighbourhood solutions, their respective TWET- 
makespan trade-off curves, and their Pareto-optimal front. However, 
optimising the makespan necessitates more exploration of the solution 
space, requiring the jobs to be repositioned to any position in the 
sequence. As discussed in Section 4.2, the sequences of jobs corre
sponding to the non-dominated solutions on the Pareto-optimal front are 
arranged in the increasing order of makespan values or the decreasing 
order of TWET values. Therefore, the metaheuristic algorithms were 
allowed to generate all possible neighbourhoods corresponding to the 
first seq_wl sequences of jobs on the respective Pareto-optimal fronts 
with no restrictions on the range of job positions in the sequence be
tween which the jobs can be repositioned, except the enum_limit. The 
remaining sequences of jobs were subjected to the neighbourhood 
generation using the limits (swap_limit, shift_limit, dshift_limit, tshift_limit 
and enum_limit) to minimize the computational effort. The best value of 
seq_wl was found to be 30 based on fine-tuning a selected set of test 
instances.

5.3. Performance metrics

The literature discusses several performance metrics to compare the 
solution sets generated by multi-objective optimization algorithms [87,
88]. Most of the metrics in the literature are proposed to compare 
Pareto-optimal fronts, which are comprised of only points. However, the 
Pareto-optimal fronts generated by the metaheuristic algorithms pre
sented in this paper comprise line segments and points. Therefore, we 
have suitably adapted four performance metrics from the literature to 
compare the Pareto-optimal fronts generated by the metaheuristic 

algorithms, which are described as follows.

5.3.1. Hypervolume
Hypervolume is a performance metric that measures the area 

enclosed between the non-dominated solution set, obtained by an 
optimization algorithm whose efficiency is to be measured, and the 
boundaries set on the objective values corresponding to a reference 
point in the objective space. The calculation of hypervolume for a 
Pareto-optimal front comprising points is described in [89]. We have 
adapted their methodology to calculate the hypervolume for a 
Pareto-optimal front comprising line segments and points.

Fig. 4(a) shows a Pareto-optimal front between two objectives 
comprising line segments and points. In the figure, the solid line seg
ments and points represent the non-dominated solutions in the Pareto- 
optimal front. Pref denotes the reference point, the intercepts from 
which generate the boundaries on the axes corresponding to the bi- 
objectives, as shown by the dotted lines in Fig. 4(a). The hatched area 
enclosed by these boundaries and the Pareto-optimal front represents 
the hypervolume achieved by the Pareto-optimal front. To calculate the 
hypervolume, the area enclosed is obtained by dividing the hatched area 
into rectangles and triangles, as shown in Fig. 4(b), and then adding up 
their areas. For each problem instance, the metaheuristic algorithm 
achieving the highest value of hypervolume is the best in terms of 
convergence [90].

5.3.2. Averaged hausdorff distance
While evaluating the effectiveness of optimization algorithms, in 

addition to Pareto-optimality, several other aspects determine the 
quality of the approximation, such as convergence, spread and distri
bution [91]. Averaged Hausdorff distance is a widely used performance 
metric that measures these three aspects concurrently. It is an averaged 
measure of two other performance metrics, namely generational dis
tance and inverted generational distance, originally proposed for 
comparing Pareto-optimal fronts comprising points [92]. In this paper, 
the Pareto-optimal fronts comprising line segments and points have 
been discretized into points to adopt this metric.

Generational distance (GD) was first proposed in [93] to determine 
the efficiency of multi-objective evolutionary algorithms. It measures 
the closeness of a Pareto-optimal front comprising points to a known 
true Pareto-optimal front. Let P denote the Pareto optimal front obtained 
by a metaheuristic algorithm whose efficiency is to be evaluated, and Q 
denote the known true Pareto-optimal front. Then, the generational 
distance is calculated as [92] 

GDp(P,Q) =

(∑|P|
i=1dist(pi,Q)

p
)1

p

|P|
(17) 

where |P| denotes the number of non-dominated solutions on P, and 
dist(pi,Q) denotes the Euclidean distance between each solution point pi 
on P and the nearest point to pi on Q. In this paper, the known true Pareto 
front Q termed the reference Pareto, is the Pareto-optimal front of the 
Pareto fronts generated by all the runs of all the employed metaheuristic 
algorithms. The GD is then calculated between the discretized Q and the 
discretized Pareto-optimal front generated in each run of the meta
heuristic algorithms. The gaps between the line segments and points in Q 
are interpolated with points while discretizing them.

A minimum value of GD implies that the algorithm has a better 
convergence to Q [91,94]. However, this metric is largely influenced by 
outliers as it measures only the convergence of the solutions and not the 
coverage [89,91]. This means that a few outliers on P will increase GD, 
making the algorithm appear inferior even if it has found a substantial 
number of optimal solutions. To overcome the limitations of GD, 
inverted generational distance (IGD) was proposed in [95]. IGD is a 
metric similar to GD, except that P and Q are interchanged in Eq. (17) as 
[92] 
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IGDp(Q,P) =

(∑|Q|

i=1dist(qi, P)p
)1

p

|Q|
(18) 

where |Q| denotes the number of non-dominated solutions on Q, and 
dist(qi,P) denotes the Euclidean distance between each solution point qi 
on Q and the nearest point to qi on P. This metric ensures that the spread 
and distribution aspects are accounted for, apart from the convergence 
of the Pareto fronts, while comparing them for parity [91]. Moreover, 
IGD is not affected by outliers as much as it affects GD because it av
erages the distance between all the points on the reference Pareto front 
to their corresponding nearest points on the Pareto fronts generated by 
the metaheuristic algorithms, hence reducing the effect of a single 
outlier [92,96]. However, both GD and IGD consider only a unidirec
tional perspective and, are influenced by outliers on P and Q, respec
tively, to some extent that neither of them can address the worst-case 
scenario [91]. To address this limitation, Schutze et al. [92] proposed 
the averaged Hausdorff distance metric that combines the GD and IGD 
metrics to incorporate a bidirectional perspective. Averaged Hausdorff 
distance (HD) is calculated as [92] 

HD(P,Q) = max
(
GDp(P,Q), IGDp(Q,P)

)
(19) 

where larger p values indicate larger penalties for outliers [91]. In this 
paper, we have chosen the value of p as 1 [91,96]. The algorithm that 
results in the least value of HD, corresponding to each problem instance, 
is the one that is capable of finding the nearest optimal solutions to the 
reference Pareto-optimal front.

5.3.3. Diversity metric
The diversity metric determines the maximum spread of the non- 

dominated solutions on the Pareto-optimal front. The diversity metric 
(DM) or Zitzler’s M∗

3 metric for Pareto fronts comprising only points is 
calculated as [87,89] 

M∗
3(KP) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
max

j∈{1,2,…,|KP |}
max

k∈KP\{kj}

⃒
⃒
⃒
⃒kj − k

⃒
⃒
⃒
⃒

√
√
√
√ (20) 

where m denotes the number of objectives, KP denotes the set of points 
on a Pareto front and ||kj − k|| is the distance between two solutions 
(points) kj and k on the Pareto-optimal front. We have suitably adapted 
this metric to calculate the maximum spread of non-dominated solutions 
on a Pareto-optimal front comprising line segments and points, as shown 
in Eq. (21). 

M∗
3(KL) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
max

j∈{1,2,…,|KL |}
max

kl∈KL\{kj}

{
Kjl
}

√
√
√
√ (21) 

where Kjl =

⎧
⎨

⎩

⃒
⃒
⃒

⃒
⃒
⃒kj

1i − kl
2i

⃒
⃒
⃒

⃒
⃒
⃒; l > j

⃒
⃒
⃒

⃒
⃒
⃒kl

1i − kj
2i

⃒
⃒
⃒

⃒
⃒
⃒; l < j 

In Eq. (21), KL denotes the set of line segments and points on a Pareto 
front, kj and kl represents two non-dominated line segments on KL, the 

coordinates of which are represented as 
(

kj
11, k

j
12

)
, 
(

kj
21, k

j
22

)
and 

(
kl

11,

kl
12

)
,
(

kl
21,kl

22

)
, respectively. A point is considered as a line segment with 

the same end points. The distance Kjl between the line segments kj and kl 

is measured as the distance between the first endpoint of one of the line 
segments and the second endpoint of the other. The M∗

3 metric in effect 
measures the difference in the objective values of the extremal solutions 
on KL, and hence the maximum spread [87]. A higher value of DM in
dicates that the non-dominated solutions on the Pareto-optimal front are 
more diverse. Therefore, the metaheuristic algorithm that achieves the 

Fig. 4. Calculation of hypervolume for a Pareto-optimal front comprising line segments and points.

Fig. 5. Calculation of Δ metric for a Pareto-optimal front comprising line 
segments and points.
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highest value of DM is considered the best concerning solution diversity.

5.3.4. Distribution (Δ) metric
The Δ metric measures how uniformly the non-dominated solutions 

are spread on the Pareto-optimal fronts [97]. The Δ metric is calculated 
as [87] 

Δ = max
j∈{1,…,m}

(
δj,0 + δj,|P| +

∑|P|− 1
i=1

⃒
⃒δj,i − δj

⃒
⃒
)

(
δj,0 + δj,|P| + (|P| − 1)δj

) (22) 

where m denotes the number of objectives, |P| denotes the number of 
non-dominated solutions on the Pareto optimal front, δj ∀j = 1,…,m 
denotes the average of all the deviations in the jth objective δj,i ∀i = 1,…,

|P| − 1 between consecutive points on the Pareto-optimal front and δj,0 

and δj,|P| denote the deviations in the jth objective between the reference 
points and the solution points at the corresponding extreme ends of the 
Pareto optimal front, as shown in Fig. 5. We have suitably adapted this 
metric to measure uniformity in the distribution of non-dominated so
lutions on Pareto-optimal fronts comprising line segments and points. In 
Fig. 5, δ1,i and δ2,i ∀i = 1,…, |P| − 1 denotes the deviations in the 
makespan and TWET objectives, respectively, between consecutive line 
segments or points on the Pareto-optimal front. The Δ metric for the 
Pareto-optimal front comprising line segments and points is then 
calculated by substituting the values of these deviations in Eq. (22).

A smaller value of Δ indicates that the non-dominated solutions are 
uniformly distributed on the Pareto-optimal front [87]. Hence, the al
gorithm that achieves the lowest value of Δ provides the most uniformly 
distributed solutions on the Pareto-optimal front.

5.4. Performance comparison

Tables 2 and 3 show the average values of the metrics obtained for 
the Pareto-optimal fronts generated in ten runs for each of the 24 
problem instances using the metaheuristic algorithms. Since the per
formance metrics obtained with each metaheuristic algorithm are large, 
we have reported the percentage deviations of the average metric values 
from the best average metric value obtained with all the employed al
gorithms for each problem instance. The percentage deviation of a 
metric M, denoted by M(%) for ten runs of a problem instance using an 
algorithm k is calculated as 

M(%) =

(
Mbest

avg − Mk
avg

Mbest
avg

)

x100 (23) 

where Mk
avg denotes the average value of the metric M obtained for ten 

runs of the algorithm k, and Mbest
avg denotes the best average value of the 

metric M achieved among all the algorithms. A percentage deviation of 
metric M close to 0 obtained by algorithm k indicates that algorithm k is 
the most efficient among all the employed metaheuristic algorithms 
corresponding to the metric M. The more the positive or negative per
centage deviations in metric M from 0, the inferior is the algorithm k 
corresponding to metric M.

The performance of the neighbourhood search-based methodologies 
presented in this paper has also been compared with that of a hybrid 
multi-objective particle swarm optimization and Genetic algorithm 
(MOPSO-GA) adopted from the literature [39]. The MOPSO-GA algo
rithm, which is a population-based metaheuristic algorithm, does not 
require a crowding distance or a region-based selection technique as 
part of its procedure. The methodology begins with an initial population 
subjected to a fitness evaluation. A global best archive, g-best stores the 
solutions with the best fitness, eliminating the dominated solutions in 
the archive. In the process, whenever the size of the archive exceeds its 
limit, the ε-dominated solutions are eliminated from the archive. Each 
solution also has a personal best archive p-best updated by a similar 
procedure. Each solution in the population is updated with a randomly Ta
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selected solution from its p-best archive and the g-best archive using the 
crossover and mutation operations. The new solutions generated are 
used to update the g-best and p-best archives. This process of randomly 
selecting solutions from the g-best and p-best archives, subjecting them to 
crossover and mutation, and using the new solutions to update the ar
chives is repeated until the stopping criterion (CPU_TimeLimit) is met. 
Tables 2 and 3 show the results obtained with the MOPSO-GA algorithm 
alongside the neighbourhood search metaheuristics presented in this 
paper.

Table 2 shows the percentage deviation of the hypervolume and the 
averaged Hausdorff distance values obtained with the metaheuristic 
algorithms. For all the problem instances with up to 50 jobs and most of 
the problem instances with 75 and 100 jobs, the MOIVND algorithm has 
the lowest percentage deviation from the best average hypervolume 
achieved among all the algorithms. This indicates that the MOIVND 
algorithm has the best convergence compared to the other metaheuristic 
algorithms presented in this paper. Table 2 also shows that for most 
problem instances, the MOIVND algorithm has the least percentage 
deviation from the best averaged Hausdorff distance achieved among all 
the algorithms. Hence, among the employed metaheuristic algorithms, 
MOIVND is the algorithm capable of finding the Pareto-optimal solu
tions closest to the non-dominated solutions on the reference Pareto- 
optimal front.

Table 3 shows the percentage deviations of the diversity metric and 
the distribution metric values obtained with the metaheuristic algo
rithms. The values obtained by the algorithms for the diversity metric for 
most problem instances indicate that the MOIVND algorithm has the 
least percentage deviation from the best average diversity metric value 
achieved among all the algorithms. This reveals that the MOIVND al
gorithm performs better than all the other metaheuristic algorithms 
presented in providing the most diverse solutions. Table 3 also shows the 
percentage deviations of the distribution metric obtained with the 
employed metaheuristic algorithms. It can be observed that the 
MOIVND algorithm has a large percentage deviation from the best 
average value of the distribution metric obtained among all the algo
rithms. This indicates that the solutions provided by the MOIVND al
gorithm are not uniformly spaced on the Pareto-optimal front. However, 
the percentage deviations in the hypervolume, the averaged Hausdorff 
distance and the diversity metric achieved by the MOIVND algorithm 
indicate that the MOIVND algorithm is superior to the other algorithms.

Fig. 6 shows the Pareto-optimal fronts comprising non-dominated 
line segments and points obtained by each of the metaheuristic algo
rithms with different problem instances of 40, 50, 75 and 100 jobs. The 
graphs reveal that the MOPSO-GA algorithm performs far inferior to the 
other algorithms. The graphs also reveal that the distribution and 
spacing of the non-dominated solutions obtained with all the algorithms 
are uniform and smaller in the lower part of the Pareto-optimal front 
with better TWET values. The spacing and distribution become larger 
and coarser in the upper part of the Pareto-optimal front with better 
makespan values. The graphs also reveal that all the algorithms show a 
similar level of convergence in the lower part of the Pareto-optimal 
front. The upper part of the Pareto-optimal fronts shows that the 
MOIVND and MOVND_PR algorithms perform relatively better in solu
tion quality. Since optimizing the makespan objective requires higher 
exploration in the sequences of jobs compared to the TWET objective, 
which was discussed in Section 5.2, the perturbation phase in the 
MOIVND algorithm can be attributed to its better performance in the 
upper part of the Pareto-optimal front, which allows it to escape the 
local minima and subsequently find improved solutions in the suc
ceeding improvement phase. The influence of the parameters, pertur
b_iter and seq_wl, used in the MOIVND algorithm is presented in Section 
5.6.

5.5. Non-parametric statistical analysis

Non-parametric statistical tests are statistical methods used to Ta
bl
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analyze data that do not have a specific distribution [98]. To enhance 
the interpretability of the performance metrics obtained for the meta
heuristic algorithms presented in this paper, we have subjected the 
metric data to a widely used non-parametric statistical test known as the 
Friedman test. The test has been performed on the hypervolume and the 
averaged Hausdorff distance metrics to analyze whether the perfor
mance of the metaheuristic algorithms differs significantly from each 
other in terms of the two metrics [99]. The Friedman test evaluates the 
null hypothesis (H0) that there are no significant differences between 
the performance of the algorithms. The alternate hypothesis (Ha) is that 
at least one of the algorithms performs significantly differently from the 
others. A statistical measure p-value, calculated based on the ranks ob
tained by the algorithms in the tests, is used to interpret whether sig
nificant differences exist in the performance of the algorithms [98]. A 
p-value less than the significance level α (typically 0.05) rejects the null 
hypothesis, implying that significant differences exist between the per
formance of the algorithms. A significance level of 0.05 implies a 5 % 
risk of concluding that there are significant differences between the 
performance of the algorithms when there are none [100].

Table 4 shows the average ranks of the metaheuristic algorithms 
obtained for multiple problem instances corresponding to the hyper
volume and the averaged Hausdorff distance metrics and the statistics 
and p-values obtained by the Friedman test, computed with 5 degrees of 
freedom, using the CONTROLTEST package available for download at 
https://sci2s.ugr.es/sicidm [98]. Table 4 shows that the MOIVND al
gorithm has obtained the lowest rank among all the metaheuristic al
gorithms in terms of both the hypervolume and averaged Hausdorff 
distance metrics, indicating that the MOIVND algorithm is the 
best-performing algorithm followed by the MOVND_PR algorithm. 
Further, the p-values obtained corresponding to both metrics are less 
than 0.05, indicating strong evidence against the null hypothesis. This 
implies that at least one of the metaheuristic algorithms presented in this 
paper has performed significantly better than the others. Further, to 
control the risk of obtaining significant results due to random odds, we 
performed several post-hoc tests, namely the Holm, Hommel, Rom, 
Finner and Li tests, to adjust the p-values obtained by the initial Fried
man test, considering the MOIVND algorithm as the control method 
[98]. The best-performing algorithm identified by the Friedman test is 
known as the control method. The unadjusted p-values obtained by the 
Friedman test and the corresponding adjusted p-values obtained with 
the post-hoc test procedures, corresponding to the hypervolume and 
averaged Hausdorff distance metrics, are shown in Tables 5 and 6, 
respectively.

Tables 5 and 6 show that the unadjusted p-value obtained corre
sponding to the hypervolume and averaged Hausdorff distance metric 
for all the algorithms except the MOVND_PR algorithm is less than 0.05. 
This indicates that the MOIVND algorithm performs significantly better 
than all the algorithms presented in this paper except the MOVND_PR 
algorithm. The adjusted p-values obtained by the post-hoc procedures 
denoted by pHolm, pHomm, pRom, pFinn, and pLi, respectively, in Tables 5 and 
6 also imply that the performance of the MOIVND algorithm is not 
significantly different from the MOVND_PR algorithm but is signifi
cantly better than the remaining algorithms. Therefore, the statistical 
analysis performed on the metric data obtained for the algorithms 

Fig. 6. Pareto-optimal fronts generated by the presented metaheuristic algorithms for four problem instances of different sizes.

Table 4 
Ranks, statistics and related p-values achieved by the Friedman test in terms of 
the hypervolume and averaged Hausdorff distance metrics.

Metaheuristic 
algorithms

Average Friedman test rankings for the algorithms

Hypervolume 
metric

Averaged Hausdorff distance 
metric

MOVND 4.0833 4.5416
MOIVND 1.1249 1.2500
MOVND_PR 1.8749 1.7916
MOVNS 4.1250 4.0000
MOVNS_I 4.1249 4.2916
MOILS 5.7083 6.2916
MOPSO-GA 6.9583 5.8333
Statistic 125.9464 110.2142
p-value 5.62E-11 9.94E-11
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undoubtedly indicates that the MOIVND algorithm is the best- 
performing algorithm, followed by the MOVND_PR algorithm with a 
significance level of 0.05. Further, the p-values obtained for the MOILS 
and MOPSO-GA algorithms corresponding to both the performance 
metrics are relatively very much below the significance level, which 
implies that the MOILS and MOPSO-GA algorithms are the worst- 
performing algorithms among the metaheuristic algorithms presented 
in this paper.

5.6. Influence of the parameters used in MOIVND

Fig. 7 shows the influence of the parameters k1 and k2 in the initial 
solution generation on the performance of the MOIVND algorithm for 
the problem instances P50_T0.1_R0.8 and P75_T0.1_R0.8 with 50 and 75 
jobs, respectively. Various fixed pairs of values for k1 and k2, as well as 
random values of k1 and k2 generated within different value ranges, 
were experimented with, as represented on the x-axis of the graphs in 
the figure. For instance, F1,5 on the x-axis denotes that the constant 
values 1 and 5 were assigned to k1 and k2, respectively. Similarly, (R1, 
R2) on the x-axis denotes that k1 and k2 were randomly generated over 
the value ranges denoted by R1 and R2, representing the ranges 1 to 5 
and 1 to 10, respectively. The best (BEST) and average (AVG) values of 
the ten runs obtained for the hypervolume metric for each pair of k1 and 
k2 are shown in the graphs. The graphs reveal that the BEST and AVG 
values of hypervolume are relatively higher when both k1 and k2 are 
randomly generated in the range R2, for both problem instances. Rela
tively closer values of hypervolume are also obtained when k1 and k2 are 

assigned fixed values of 10 and 5, respectively, as shown in the graphs. 
Generating k1 and k2 over a range of values is preferred over fixed values 
since a multi-objective optimization problem requires experimenting 
with all possible combinations of input sequences. Therefore, selecting a 
suitable range of values in which the two parameters of the initial 
population generation are randomly generated is significant in the 
performance of the MOIVND algorithm.

Fig. 8 shows the influence of the perturbation parameter, perturb_iter, 
on the performance of the MOIVND algorithm for the problem instances 
P50_T0.1_R0.8 and P75_T0.1_R0.8 with 50 and 75 jobs, respectively. The 
parameter perturb_iter is varied from 0–40 in steps of 5, as shown in the 
figure. For perturb_iter=0, the perturbation stage was not performed, and 
the Pareto-optimal front was generated using only one iteration of the 
improvement phase. The graphs reveal that the BEST and AVG values of 
the HV metric are relatively higher in the range 5–10 of perturb_iter. This 
indicates that as the value of perturb_iter is increased from 0, the higher 
perturbation rate allows the algorithm to explore the solution space 
more and find better solutions. However, as the value of perturb_iter is 
increased beyond 10, the higher perturbation rate does not yield good 
results as higher exploration leads to significant deviations from the 
previous best solutions, thus requiring a large number of iterations to 
converge further in the subsequent improvement phase. This eventually 
reduces the number of times the solutions are perturbed and improved 
within the set CPU_TimeLimit. Therefore, the influence of the parameter 
perturb_iter is reasonably significant in the performance of the MOIVND 
algorithm.

Fig. 9 shows the influence of the parameter seq_wl on the 

Table 5 
Adjusted p-values for 1xN comparisons among all the algorithms in terms of hypervolume (MOIVND is the control method).

Algorithms Unadjusted p pHolm pHomm pRom pFinn pLi

MOVND 2.096E-6 6.016E-6 4.193E-6 4.193E-6 3.008E-6 2.719E-6
MOVND_PR 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291
MOVNS 1.504E-6 6.016E-6 3.144E-6 4.193E-6 3.008E-6 1.950E-6
MOVNS_I 1.504E-6 6.016E-6 3.144E-6 4.193E-6 3.008E-6 1.950E-6
MOILS 1.986E-13 9.9337E-13 9.933E-13 9.446E-13 5.961E-13 2.577E-13
MOPSO - GA 8.427E-21 5.056E-20 5.056E-20 4.8080 0.0000 1.093E-20

Table 6 
Adjusted p-values for 1xN comparisons among all the algorithms in terms of averaged Hausdorff distance (MOIVND is the control method).

Algorithms Unadjusted p pHolm pHomm pRom pFinn pLi

MOVND 1.303E-7 5.2123E-7 5.212E-7 4.970E-7 2.606E-7 2.119E-7
MOVND_PR 0.3850 0.3850 0.3850 0.3850 0.3850 0.3850
MOVNS 1.034E-5 2.069E-5 2.069E-5 2.069E-5 1.241E-5 1.682E-5
MOVNS_I 1.074E-6 3.222E-6 3.222E-6 3.222E-6 1.611E-6 1.747E-6
MOILS 6.234E-16 3.740E-15 3.740E-15 3.556E-15 3.996E-15 1.013E-15
MOPSO - GA 1.986E-13 19.933E-13 9.933E-13 9.4469E-13 5.9618E-13 3.230E-13

Fig. 7. Influence of the parameters k1 and k2 in the initial solution generation of the MOIVND algorithm.
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performance of MOIVND for the problem instances P50_T0.1_R0.8 and 
P75_T0.1_R0.8 with 50 and 75 jobs, respectively. As discussed in Section 
5.2, each time the neighbourhoods were generated using a neighbour
hood structure in the MOIVND algorithm, the first seq_wl number of 
sequences of jobs with the best makespan values in the Pareto-optimal 

front were subjected to neighbourhood generation without imposing 
the limits, swap_limit, shift_limit, dshift_limit and tshift_limit. The parameter 
seq_wl is varied in the range 10–80 in steps of 10, as shown in the figure. 
The graph corresponding to the instance P50_T0.1_R0.8 reveals that the 
AVG and BEST values of the HV metric corresponding to seq_wl=30 are 

Fig. 8. Influence of the perturbation parameter on the performance of the MOIVND algorithm.

Fig. 9. Influence of the neighbourhood generation parameter seq_wl on the performance of the MOIVND algorithm.

Fig. 10. Influence of 3-job insertion neighbourhood on the performance of the MOIVND algorithm.
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the best among all the other values of seq_wl, while the graph corre
sponding to the instance P75_T0.1_R0.8 shows an increasing trend in the 
AVG value of HV metric up to seq_wl=30 and random fluctuations 
beyond it. The graphs also reveal that the performance deteriorates 
relatively as seq_wl is increased beyond 30. This indicates that the gen
eration of neighbourhoods beyond the limits for 30 or more sequences of 
jobs in a Pareto-optimal front does not improve the solutions consider
ably, as generating a large number of neighbourhoods increases the 
computation time required to generate the TWET-makespan trade-off 
curves and their Pareto-optimal fronts. This eventually leads to a 
decrease in the number of times the perturbations are performed within 
the set CPU_TimeLimit. Therefore, the influence of the parameter seq_wl is 
also significant in the performance of the MOIVND algorithm.

Fig. 10 shows the influence of the 3-job insertion neighbourhood 
generation mechanism on the performance of the MOIVND algorithm 
for problem instances of varying sizes. The percentage deviations in the 
hypervolume and averaged Hausdorff distance metrics, obtained by the 
MOIVND algorithms utilising the four neighbourhood structures 
{N1,N2,N3,N4} and excluding the 3-job insertion neighbourhood struc
ture (i.e., utilising {N1,N2,N3}) respectively for each problem instance, 
calculated using Eq. (23) are shown as two separate graphs. The graph 
on the left shows the percentage deviations from the best hypervolume 
(HV) values, and the graph on the right shows the percentage deviations 
from the best averaged Hausdorff distance (HD) values obtained by the 
MOIVND algorithms utilising up to 2-job and up to 3-job insertion 
neighbourhoods depicted using the dashed and solid lines respectively. 
As mentioned in Section 5.4, any positive or negative deviations from 
zero indicate that the corresponding algorithm performs inferior to the 
best-performing algorithm. The graphs reveal that the MOIVND algo
rithm utilising up to 3-job insertion neighbourhoods has no deviation 
from zero in the hypervolume value for all the problem instances and no 
deviation from zero in the averaged Hausdorff distance metric for all 
except two smaller problem instances. This indicates that the 3-job 
insertion neighbourhood generation mechanism significantly improves 
the performance of the MOIVND algorithm. The reason can be attributed 
to the sequence-dependent setup times considered in the problem, 
which leads to the clustering of jobs with minimum setup times between 
them, and multiple jobs insertion neighbourhood structures such as 2- 
job and 3-job insertions can improve solutions by shifting consecutive 
jobs in clusters in the sequence. However, experiments with adding a 4- 
job insertion neighbourhood structure did not yield better results due to 
increased computation times required in the improvement phase, which 
reduced the number of iterations of the perturbation phase within the 
CPU_TimeLimit.

5.7. Managerial implications

The rising demand for customer-centric and cost-effective produc
tion in industrial systems has enunciated the need for optimization in 
manufacturing operations. Manufacturers often find it challenging to 
meet production deadlines while maintaining lower production costs, 
particularly in just-in-time (JIT) manufacturing environments. The JIT 
manufacturing systems primarily focus on ensuring the timely delivery 
of the exact quantities of products while minimizing inventory levels. In 
several real-world JIT manufacturing systems, a single machine or a 
single processor often becomes a bottleneck when the demand placed on 
it exceeds its handling capacity. Such a situation may arise either when a 
production facility runs on a single machine or when a particular ma
chine in a multi-machine facility is overloaded. Realizing JIT goals in 
these scenarios entails the simultaneous optimization of several opera
tional performance metrics, which necessitates devising optimal 
scheduling techniques. The scheduling techniques proposed in this 
research best suit such scheduling environments with a single machine.

The just-in-time single machine scheduling problem (JIT-SMSP) 
considered in this paper, which includes the bi-objective optimization of 
total weighted earliness-tardiness (TWET) and makespan in a scheduling 

environment with distinct due windows and sequence-dependent setup 
times (SDST), allowing idle times in the schedule, reflects numerous 
realistic make-to-order manufacturing environments [101]. Reducing 
makespan in these applications results in tighter schedules, facilitating 
the efficient utilization of resources, while the reduction of TWET fo
cuses on meeting deadlines, improving customer satisfaction, and 
minimizing inventories. The efforts to optimize the two objectives are 
conflicting in nature since optimizing TWET results in the jobs in the 
schedule being clustered around their earliest due dates, inserting idle 
times in the schedule, while optimizing makespan focuses on completing 
all the jobs in the sequence as early as possible with no idle times in the 
schedule. This conflicting nature necessitates devising a method of 
trade-off plot generation between the two objectives for a given 
sequence of jobs, which is now addressed by the optimal timing algo
rithm (OTA) proposed in this paper. Though the problem is practically 
relevant from an industrial application perspective, to the best of our 
knowledge, no research has been reported in the literature to solve 
practical size instances due to the nonexistence of suitable methodolo
gies for generating trade-off plots and Pareto fronts comprising line 
segments and points between the considered objectives. The problem is 
well-known to be NP-hard, and Pareto-based metaheuristics have been 
proven to be the most efficient method in the literature for solving such 
complex problems. The Pareto-based metaheuristic solution approaches 
proposed in this paper are computationally efficient to generate the 
Pareto-optimal front in a reasonable computation time. The solutions on 
the Pareto-optimal front, comprising line segments and points, will 
allow decision-makers and practitioners to make informed decisions 
when choosing the optimal sequences and schedules based on their 
priorities for the two objectives considered in this paper.

Though this research considered scheduling environment with a 
single machine, JIT manufacturing facilities with several machine en
vironments exist in industries, most of which have been modelled in the 
literature, viz. parallel machine scheduling, flow shop scheduling, job 
shop scheduling, assembly shop scheduling, etc. However, each machine 
scheduling environment will require devising an optimal timing algo
rithm specific to the problem, and problem-specific operators and 
mechanisms will need to be developed within the Pareto-based meta
heuristic algorithms to solve the problem efficiently. This serves as a 
motivation to pursue future research in different machine scheduling 
environments, thereby contributing towards the operational excellence 
of JIT manufacturing systems.

6. Conclusions

In this paper, three neighbourhood search-based metaheuristic al
gorithms, namely the multi-objective variable neighbourhood descent 
(MOVND), multi-objective iterated variable neighbourhood descent 
(MOIVND) and hybrid multi-objective variable neighbourhood descent - 
path relinking (MOVND_PR), were proposed to solve the Pareto-based 
bi-objective optimization of total weighted earliness-tardiness (TWET) 
and makespan in a single-machine scheduling problem (SMSP) oper
ating in the just-in-time (JIT) environment. The problem environment 
encompassed scenarios such as distinct job due windows, sequence- 
dependent setup times between jobs, and idle times allowed to be 
inserted in the schedules. We proposed an optimal timing algorithm to 
generate the TWET-makespan piecewise linear trade-off curve for a 
given sequence of jobs. A Pareto-optimal front generation procedure was 
adopted from the literature to generate the Pareto-optimal fronts by 
trimming and merging multiple Pareto fronts comprising line segments 
and points, where each Pareto front is associated with a single or mul
tiple sequences of jobs. The resulting Pareto-optimal front also 
comprised line segments and points. The performance of the proposed 
neighbourhood search-based metaheuristic algorithms was compared 
with that of three neighbourhood search-based metaheuristic algorithms 
adopted from the literature, namely multi-objective variable neigh
bourhood search (MOVNS) algorithm, multi-objective variable 
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neighbourhood search with intensification (MOVNS_I) algorithm, and 
multi-objective iterated local search (MOILS) algorithm. The perfor
mance of the algorithms was evaluated using a set of 24 problem in
stances generated using a procedure adopted from the literature with the 
number of jobs varying from 20 to 100. The metaheuristic algorithms, 
MOVND, MOIVND, MOVND_PR, MOVNS, MOVNS_I, and MOILS, were 
run ten times for each problem instance. The Pareto-optimal fronts 
generated were further analyzed to determine the performance of the 
algorithms. Since the Pareto-optimal fronts generated by the meta
heuristic algorithms comprised line segments and points, we devised 
four performance measures by suitably adapting similar ones from the 
literature. The performance evaluation of the metaheuristic algorithms 
using the performance metrics, namely, hypervolume, averaged Haus
dorff distance, and diversity, revealed that the proposed MOIVND al
gorithm performed better than all the other algorithms, followed by the 
MOVND_PR algorithm. Considering the overall performance across all 
the problem instances, the MOIVND algorithm was found to be the best- 
performing algorithm for generating the best non-dominated solutions 
on the Pareto-optimal front. The superior performance of the MOIVND 
algorithm can be attributed to the backtrack perturbation phase, which 
allows the search to escape from the local optima, and the 3-job insertion 
neighbourhood structure, which significantly improves its performance 
compared to that using up to 2-job insertion mechanism. The perfor
mance of the neighbourhood search-based methodologies presented in 
this paper was also compared with that of the population-based hybrid 
MOPSO-GA algorithm adopted from the literature, and the computa
tional results showed that the proposed MOIVND algorithm, as well as 
all the other neighbourhood search-based metaheuristic algorithms, 
performed exceptionally better than the MOPSO-GA algorithm. Further, 
a statistical analysis performed on the hypervolume and averaged 
Hausdorff distance metric data confirmed the correctness of the con
clusions drawn from the metric data.

To the best of our knowledge, this is the first study that reports 
metaheuristics to solve a bi-objective JIT machine scheduling problem 
that generates a Pareto-optimal front comprising line segments and 

points. A future research direction would be to suitably adapt 
population-based metaheuristics and compare their performance with 
the algorithms proposed in this paper. To the best of our knowledge, this 
is also the first study that reports performance metrics for Pareto- 
optimal fronts comprising line segments and points in Pareto-based bi- 
objective scheduling problems. A future research direction would be to 
devise or adapt other performance metrics to comprehensively analyze 
the Pareto-optimal fronts generated with different approaches. Another 
future research direction would be to study the performance of the 
proposed algorithms for other combinations of bi-objectives in JIT- 
SMSP, viz., the simultaneous minimization of TWET-total flow time, 
total earliness-total tardiness, total earliness-makespan, etc. Another 
future research direction would be to extend the proposed algorithms to 
other JIT machine scheduling problems, viz. parallel machine sched
uling, flow shop scheduling, job shop scheduling, etc., and performing 
computational studies for the Pareto-based bi-objective optimization of 
TWET-makespan and other combinations of objectives.
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Appendix A

An illustration of the TWET-makespan trade-off curve generation procedure

A problem instance with n = 5 jobs, as shown in Table A.1, is used to illustrate the TWET-makespan trade-off curve generation procedure.

Table A.1 
Test instance data for the illustration problem.

Jobs 
(i)

Processing time (Pi) Setup Time (Sií ) : í = 1,2,…n Earliest due date (dei) Latest due date (dti) Earliness penalty (αi) Tardiness penalty (βi)

1 6 {0,4,3,5,2} 75 80 3 4
2 8 {4,0,5,3,6} 82 85 5 7
3 7 {3,5,0,4,3} 39 45 4 3
4 9 {5,3,4,0,4} 50 59 6 5
5 5 {2,6,3,4,0} 40 44 3 6

Let the given job sequence be σ = {3,5,4,1,2}. The first job σ[1]=3 is assigned to the machine exactly at its earliest due date (i.e. Cσ[1] = 39) as 
described in steps 2–5 of Algorithm 1. The position identifier of σ[1] is added to the block B as B = {1}. The corresponding partial schedule S1 =

{39} and TWET(σ1) = 0. The second job σ[2]=5 is then assigned contiguously to σ[1]=3 at Cσ[2] = Cσ[1] + Pσ[2] + Sσ[1],σ[2] = 39 + 5 + 3 = 47 since 
deσ[2] = 40, as shown in the Gantt chart in Fig. A.1. This corresponds to steps 18–19 of Algorithm 1. The partial schedule S2 = {39,47} hence obtained 
has its corresponding TWET(σ2) = (Cσ[2] − dtσ[2])βσ[2] = (47 − 44) ∗ 6 = 18. The position identifiers of the two jobs form a block B = {1,2}, as shown 
in step 24 of Algorithm 1, with its cost function slope SL = βσ[2] − ασ[1] = 6 − 4 = 2 calculated, as shown in steps 10–14 of Algorithm 2. Since the slope 
is positive, the jobs with their position identifiers in B are simultaneously left shifted until one of the following cases is encountered, as shown in steps 
17–25 of Algorithm 2. 

Case 1: The newly scheduled job σ[2] is no longer tardy (i.e. at Cσ[2] = 44)
Case 2: A job with its position identifier in B becomes early (i.e. at Cσ[2] = 40)
Case 3: No idle time exists before the job σ[1] (i.e. at Cσ[1] = Pσ[1] = 7)
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In this scenario, Case 1 is first encountered on left shifting the jobs with position identifiers in B by 3 units. The job σ[2] then becomes no longer 
tardy with the cost function slope SL = − ασ[1] = − 4, implying that no further left shifting is required. The optimal partial schedule S2 = {36,44}
hence obtained has its corresponding TWET(σ2) = (deσ[1] − Cσ[1])ασ[1] = (39 − 36) ∗ 4 = 12. Fig. A.1 shows the partial schedule S2 before and after left 
shifting.

Fig. A.1. Generation of the optimal partial schedule S2.

The partial schedules S3 is subsequently generated by assigning the job σ[3]=4 at Cσ[3] = Cσ[2] + Pσ[3] + Sσ[2],σ[3] = 44+ 9+ 4 = 57, which is within 
its due window [50,59]. This is as shown in steps 18–19 of Algorithm 1. Since the job σ[3] is contiguous with σ[2], the block B is updated as B = {1,2,
3}. The slope of the cost function corresponding to B remains as SL = − 4, and no left shifting is done. The optimal partial schedule S3 = {36,44,57}
and its corresponding TWET(σ3) = 12.

Subsequently, the partial schedule S4 is generated by assigning the job σ[4]=1 at Cσ[4] = deσ[4] = 75 since Cσ[3] + Pσ[4] + Sσ[3],σ[4] = 57 + 6 + 5 = 68,
which is less than deσ[4]. Since the jobs σ[3] and σ[4] are non-contiguous with each other, the block B is reset as B = {4}. This is as shown in steps 9–12 
of Algorithm 1. The resulting partial schedule S4 = {36,44,57,75} is optimal with TWET(σ4) = 12. The job σ[5]=2 is then assigned to the machine at 
Cσ[5] = Cσ[4] + Pσ[5] + Sσ[4],σ[5] = 75 + 8 + 4 = 87 contiguously to σ[4] since deσ[5] = 82. The partial schedule S5 = {36,44, 57, 75,87} has its corre
sponding TWET(σ5) = (deσ[1] − Cσ[1])ασ[1] + (Cσ[5] − dtσ[5])βσ[5] = (39 − 36) ∗ 4 + (87 − 85) ∗ 7 = 26, and the two contiguous jobs form the block B =
{4,5} with its cost function slope SL = βσ[5] − ασ[4] = 7 − 3 = 4. Since the slope is positive, the jobs with their position identifiers in B are simul
taneously left shifted until one of the following cases is encountered. 

Case 1: σ[5] is no longer tardy (i.e. at Cσ[5] = 85)
Case 2: A job with its position identifier in B becomes early (i.e. at Cσ[5] = 82)
Case 3: σ[4] becomes contiguous with σ[3] (i.e. at Cσ[4] = Cσ[3] + Pσ[4] + Sσ[3],σ[4] = 68)

In this scenario, Case 1 is first encountered on left shifting the jobs with position identifiers in B by 2 units, generating the optimal partial schedule 
S5 = {36,44,57,73,85} with TWET(σ5) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] = (39 − 36) ∗ 4+ (75 − 73) ∗ 3 = 18. Fig. A.2 shows the partial 
schedule S5 before and after left shifting.

Fig. A.2. Generation of the optimal partial schedule S5.

Since the cost function slope SL = − ασ[4] = − 3 corresponding to the block B = {4, 5}, the partial schedule S5 = {36,44, 57,73,85} with 
TWET(σ5) = 18 is optimal. Since all the jobs in σ have been assigned completion times, the partial schedule S5 will be the optimal TWET schedule S for 
the given σ. At this stage, the makespan and TWET objective values are stored as the first trade-off point (M1, G1) = (85,18) in the TWET-makespan 
trade-off plot, as shown in steps 29–32 of Algorithm 1 and 26–28 of Algorithm 2.

Subsequently, to optimize makespan, the last job σ[5] in the TWET-optimal schedule and its preceding contiguous job σ[4] that form the block B 
= {4,5} are left shifted by the smallest unit of left shift that leads to encountering one of the following cases as shown in steps 16 and 25 of Algorithm 
1. 

Case 1: A job with its position identifier in B becomes early (i.e. at Cσ[5] = 82)
Case 2: σ[4] becomes contiguous with σ[3] (i.e. at Cσ[4] = 68)

In this scenario, Case 1 is the condition encountered by the smallest unit of left shifting, and therefore, the jobs with position identifiers in B are left 
shifted by 3 units. The schedule thus obtained S = {36,44,57,70,82} with TWET(σ) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] = (39 − 36) ∗4 
+(75 − 70) ∗ 3 = 27 corresponds to the subsequent breakpoint (M2, G2) = (82,27) on the TWET-makespan trade-off plot, as shown in steps 29–31 of 
Algorithm 2. Block B = {4,5} is further left shifted by 2 units, encountering Case 2, where σ[4] becomes contiguous with σ[3], to obtain the schedule S 
= {36,44, 57,68,80} with TWET(σ) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] + (deσ[5] − Cσ[5])ασ[5] = (39 − 36) ∗ 4+ (75 − 68) ∗ 3+ (82 − 80) ∗5 =
43. This corresponds to the subsequent breakpoint (M3, G3) = (80,43) on the trade-off plot. At this point, all the jobs are contiguously scheduled and 
the block is updated, as shown in steps 33–43 of Algorithm 2. The jobs corresponding to the updated block B = {1,2, 3,4, 5} are left shifted by the 
smallest unit of left shift that leads to encountering one of the following cases as shown in steps 17–24 of Algorithm 2. 
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Case 1: A job with its position identifier in B becomes early (i.e.at Cσ[2] = 40 and Cσ[3] = 50)
Case 2: No idle time exists before the first job σ[1] in B (i.e. at Cσ[1] = 7)

In this scenario, Case 1 (i.e. Cσ[2]= 40) is encountered first, and the jobs with position identifiers in B are left shifted by 4 units to obtain the schedule 
S = {32,40,53,64,76} that corresponds to the subsequent breakpoint (M4, G4) = (76,91) on the trade-off plot. Case 1 (i.e. Cσ[3]= 50) is encountered 
next, and the jobs with position identifiers in B are left shifted by 3 units to obtain the schedule S = {29,37,50,61,73} that corresponds to the 
subsequent breakpoint (M5, G5) = (73,136) on the trade-off plot. Case 2 is encountered next, and the jobs with position identifiers in B are shifted by 
22 units to obtain the schedule S = {7,15, 28,39,51} that corresponds to the makespan-optimal trade-off point (M6, G6) = (51,598), beyond which 
no left shifting is possible. These breakpoints are saved as shown in steps 29–31 of Algorithm 2. Fig. A.3 shows the piecewise linear convex TWET- 
makespan trade-off curve generated in the illustration problem for the given σ.

Fig. A.3. TWET-Makespan trade-off curve generated for the illustration problem.

Data availability

Data will be made available on request.
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[79] Hansen P, Mladenović N, Todosijević R, Hanafi S. Variable neighborhood search: 
basics and variants. EURO J Comput Optim 2017;5:423–54. https://doi.org/ 
10.1007/s13675-016-0075-x.

[80] Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking. 
Control Cybern 2000;29:653–84.

[81] Resende MGC, Ribeiro CC, Glover F, Martí R. Scatter search and path-relinking: 
fundamentals, advances, and applications. editors. In: Gendreau M, Potvin JY, 
editors. Handbook of metaheuristics. Boston, MA: Springer US; 2010. p. 87–107. 
https://doi.org/10.1007/978-1-4419-1665-5_4.

[82] Resende MGC, Ribeiro CC. GRASP with path-relinking. editors. In: Resende MGC, 
Ribeiro CC, editors. Optimization by GRASP. New York, NY: Springer New York; 
2016. p. 189–204. https://doi.org/10.1007/978-1-4939-6530-4_9. greedy 
randomized adapt. search proced..

[83] Ho SC, Gendreau M. Path relinking for the vehicle routing problem. J Heuristics 
2006;12:55–72. https://doi.org/10.1007/s10732-006-4192-1.

[84] IBM-software. CPLEX callable Library (C API) reference manual. IBM Doc 2021. 
n.d.

[85] Quinn MJ. Parallel programming in C with MPI and openmp. 1st ed. McGraw Hill 
Higher Education.; 2003.

[86] Goldberg D. What every computer scientist should know about floating-point 
arithmetic. ACM Comput Surv 1991;23:5–48. https://doi.org/10.1145/ 
103162.103163.

[87] Audet C, Bigeon J, Cartier D, Le Digabel S, Salomon L. Performance indicators in 
multiobjective optimization. Eur J Oper Res 2021;292:397–422. https://doi.org/ 
10.1016/j.ejor.2020.11.016.

[88] Riquelme N, Von Lücken C, Baran B. Performance metrics in multi-objective 
optimization. In: Proceedings of the 2015 latin American computing conference; 
2015. p. 1–11. https://doi.org/10.1109/CLEI.2015.7360024.

[89] Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG. Performance 
assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol 
Comput 2003;7:117–32. https://doi.org/10.1109/TEVC.2003.810758.

[90] Mirjalili S, Lewis A. Novel performance metrics for robust multi-objective 
optimization algorithms. Swarm Evol Comput 2015;21:1–23. https://doi.org/ 
10.1016/j.swevo.2014.10.005.
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