
Babu, Sona; Girish, B. S.

Article
Neighbourhood search-based metaheuristics for the bi-objective
Pareto optimization of total weighted earliness-tardiness and
makespan in a JIT single machine scheduling problem

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Babu, Sona; Girish, B. S. (2025) : Neighbourhood search-based metaheuristics
for the bi-objective Pareto optimization of total weighted earliness-tardiness and makespan in a JIT
single machine scheduling problem, Operations Research Perspectives, ISSN 2214-7160, Elsevier,
Amsterdam, Vol. 14, pp. 1-30,
https://doi.org/10.1016/j.orp.2025.100335

This Version is available at:
https://hdl.handle.net/10419/325812

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2025.100335%0A
https://hdl.handle.net/10419/325812
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Neighbourhood search-based metaheuristics for the bi-objective Pareto
optimization of total weighted earliness-tardiness and makespan in a JIT
single machine scheduling problem

Sona Babu , B.S. Girish *

Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695547, India

A R T I C L E I N F O

Keywords:
Pareto front generation
Variable neighbourhood descent
Total weighted earliness and tardiness
Makespan
Just-in-time manufacturing
Single machine scheduling

A B S T R A C T

This paper studies the simultaneous minimization of total weighted earliness-tardiness (TWET) and makespan in
a just-in-time single-machine scheduling problem (JIT-SMSP) with sequence-dependent setup times and distinct
due windows, allowing idle times in the schedules. Multiple variants of variable neighbourhood descent (VND)
based metaheuristic algorithms are proposed to generate Pareto-optimal solutions for this NP-hard problem. An
optimal timing algorithm (OTA) is presented that generates a piecewise linear convex trade-off curve between
the two objectives for a given sequence of jobs. The trade-off curves corresponding to the sequences of jobs
generated in the proposed metaheuristics are trimmed and merged using a Pareto front generation procedure to
generate the Pareto-optimal front comprising line segments and points. The computational performance of the
proposed VND-based metaheuristic algorithms is compared with state-of-the-art metaheuristic algorithms from
the literature on test instances of varying sizes using four performance metrics devised to compare Pareto fronts
comprising line segments and points. The performance comparisons reveal that a proposed variant of backtrack-
based iterated VND with multiple neighbourhood structures outperforms the other algorithms in most perfor
mance metrics.

1. Introduction

Single-machine scheduling problem (SMSP) is one of the most
extensively researched scheduling problems in the literature [1]. The
problem has widespread applications in the field of manufacturing and
computer science in optimizing resource utilization [1]. The problem is
also considered a building block in understanding the basic scheduling
concepts because it provides a simplified model to investigate various
performance measures and solution techniques that can be further
extended to other more complex scheduling problems [2,3]. Several
problem environments relating to single-machine scheduling have been
studied in the literature [4], and several of its variants and extensions
have been investigated that consider additional parameters and con
straints, viz. sequence-dependent setup times (SDST), machine avail
ability constraints, dynamic job arrivals, stochastic processing times,
preemptive jobs, etc. [2,5]. Sequence-dependent setup time, i.e., the
time required to switch between jobs on a machine, is one of the most
widely considered problem characteristics in machine scheduling
problems in the literature [1]. This paper focuses on the basic SMSP with

SDST, which involves scheduling n jobs on a single machine where each
job requires a non-preemptive single operation to be performed on the
continuously available machine. All the jobs are available for processing
at time zero, and the job processing times are deterministic.

Several flow-time and due-date-based performance measures have
been explored in the SMSP, viz., makespan, total weighted flow time,
total weighted tardiness, maximum tardiness, total weighted earliness-
tardiness, and total number of tardy jobs [1,4]. These performance
measures are formulated as either a single objective function or a
multi-objective function to simultaneously optimize a set of objectives.
Multi-objective optimization problems can be tackled either by
combining the multiple objective functions into a single weighted
objective function, assigning weights to the objectives based on their
priorities, or by using Pareto-based optimization methods to generate a
non-dominated solution set considering all potential trade-offs between
the objectives. This paper considers the Pareto-based bi-objective opti
mization of total weighted earliness-tardiness (TWET) and makespan in
the SMSP with SDST.

Minimization of TWET emerged as an important objective with the

* Corresponding author.
E-mail address: girish@iist.ac.in (B.S. Girish).

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

https://doi.org/10.1016/j.orp.2025.100335
Received 5 December 2024; Received in revised form 24 February 2025; Accepted 20 March 2025

Operations Research Perspectives 14 (2025) 100335

Available online 22 March 2025
2214-7160/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

mailto:girish@iist.ac.in
www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2025.100335
https://doi.org/10.1016/j.orp.2025.100335
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2025.100335&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

advent of just-in-time (JIT) production systems, whereas traditional
manufacturing systems focused mainly on the minimization of tardiness
[6]. The JIT philosophy strives to achieve zero inventory while satis
fying customer demands on time [7]. The expected delivery times for
each job in a JIT scheduling problem can either be a due date or a
timespan, known as a due window. Several works addressing the
bi-objective optimization of earliness and tardiness penalties and other
objectives in machine scheduling environments exist in the literature
that focus on assigning due windows to the jobs [8–12]. The problem
considered in this paper, namely JIT-SMSP, considers due windows for
each job, comprising an earliest and a latest due date, beyond which a
penalty is imposed [13]. If a job is completed before its earliest due date,
it is termed an early job and the losses in the form of inventory holding
costs, penalties for early delivery to customers, etc., contribute to the
earliness penalty. If the job is completed after its latest due date, it is
termed a tardy job, and the loss of customer reputation, the opportunity
cost of lost sales, etc., contribute to the tardiness penalty. The total
earliness and tardiness due to each factor are, in most cases, quantified
as weights and hence are termed weighted earliness and tardiness
penalties. Generation of the optimal TWET schedule requires completing
the jobs within their respective due windows or as close as possible to
their due windows, which may result in idle times in the schedule,
particularly when the jobs have distinct due windows [14]. Several
real-world JIT scheduling scenarios demanding the minimization of
TWET exist in the literature such as in the workload control studies in
make-to-stock manufacturing applications, semiconductor wafer fabri
cation scheduling, steelmaking scheduling, aircraft landing problem,
etc. [15–19].

Makespan is another objective intended to be minimized in
conjunction with TWET in this paper. Makespan refers to the completion
time of the last job in the sequence. Minimizing makespan helps to
utilize time and resources efficiently as it generates tighter schedules.
The makespan objective does not apply to the basic SMSP, as the
completion time of the last job is independent of the sequence and is
equal to the sum of the processing times of all the jobs in the problem
instance [4]. The makespan objective is relevant only when additional
parameters and constraints are considered, such as the
sequence-dependent setup times [5], the machine availability con
straints [20–22], etc. Since the minimization of TWET results in sched
uling the jobs closer to their due windows with inserted idle times [14],
the best schedule with respect to the TWET objective need not be the
best with respect to the makespan objective and vice versa. This ne
cessitates a trade-off between the two objectives, which is the impetus
for this paper. A compromised TWET schedule with a reduced makespan
would result in a relatively shortened scheduling window, freeing up the
resources to begin the subsequent scheduling window early. This helps
ease congestion in successive scheduling windows and improve the
overall TWET when increased customer demands are anticipated. The
simultaneous minimization of TWET and makespan is significant in
real-world JIT scheduling scenarios such as in steelmaking and contin
uous casting scheduling, surgery scheduling, etc. [23–25]. In such sce
narios, a Pareto set of non-dominated solutions considering the two
objectives would aid the decision-maker in choosing a suitably
compromised schedule.

The SMSP with the minimization of TWET and makespan as single
objectives is well known to be strongly NP-hard [26,27]. Simultaneously
optimizing the two objectives would make the problem even more
complex to solve. Much of the research on these objectives has focused
on developing heuristic and metaheuristic algorithms. Therefore, this
paper proposes Pareto-based metaheuristic algorithms for the
bi-objective optimization of TWET and makespan in the SMSP with
SDST and distinct due windows.

The remaining sections of the paper are organized as follows. Section
2 presents the literature review, Section 3 presents the problem
formulation, Section 4 presents the solution methodologies, Section 5
presents the computational study of the solution methodologies, and

Section 6 concludes with the scope for future work.

2. Literature review

Single objective optimization of TWET and makespan has been
extensively researched in different scheduling environments in the
literature [1,5,28]. Numerous works also exist that consider the opti
mization of each of these objectives in conjunction with other objectives,
viz. total flow time, total earliness, total tardiness, number of tardy jobs,
maximum earliness, maximum tardiness, compression and expansion
cost of processing times, work-in-process inventory costs, etc. [13,
29–32]. However, relatively little research exists on the simultaneous
minimization of the TWET and makespan objectives.

Some of the existing works on the multi-objective optimization of
TWET and makespan have considered simplifying the concurrent bi-
objective optimization problem into a weighted single objective opti
mization problem by assigning weights to the objectives based on their
corresponding priorities [33–35]. Very few works exist on the simulta
neous minimization of the bi-objectives using Pareto-based optimization
approaches, particularly in the SMSP environment. Table 1 presents a
summary of the literature review on the Pareto-based optimization of
TWET and makespan in the SMSP and several other machine scheduling
environments. Since this paper studies the basic SMSP with
sequence-dependent setup times (SDST), the review of literature has
been restricted to static scheduling environments with deterministic
processing times.

Gao et al. [36] proposed a parallel genetic algorithm based on a
vector group encoding method and an immune method for the
Pareto-based optimization of TWET and makespan in a non-identical
parallel machine scheduling problem (PMSP) subjected to a special
process constraint. Gao [37] presented a vector artificial immune system
algorithm for the Pareto-based minimization of the two objectives in a
non-identical PMSP subjected to a special process constraint. Fakhrzad
et al. [38] proposed a hybrid genetic algorithm to minimize TWET and
makespan simultaneously in a job shop scheduling problem considering
SDST. Tajbakhsh et al. [39] proposed a hybrid particle swarm
optimization-genetic algorithm for the Pareto-based bi-objective opti
mization of TWET and makespan in a three-stage manufacturing system,
including the machining, assembly and batch processing stages. Abedi
et al. [40] considered the simultaneous minimization of the two objec
tives in identical parallel batch processing machines operating in a JIT
environment with arbitrary job sizes, unequal job release times and
capacity limits. They presented a non-dominated sorting genetic algo
rithm II (NSGA-II) and a multi-objective imperialist competitive algo
rithm to solve the problem. Zade et al. [41] proposed a Pareto-based
multi-objective particle swarm optimization algorithm for the
bi-objective optimization of TWET and makespan in the SMSP with
periodic preventive maintenance. Zarandi and Kayvanfar [42] consid
ered the simultaneous minimization of TWET and makespan, along with
the compression and expansion costs of processing times in an identical
PMSP. They implemented two multi-objective evolutionary algorithms,
namely non-dominated sorting genetic algorithm II (NSGA-II) and
non-dominated ranking genetic algorithm (NRGA), to generate the
Pareto-optimal front. Rad et al. [43] applied an ε-constraint method to
validate their proposed model for the simultaneous minimization of
TWET and makespan in a two-stage assembly flow shop scheduling
problem. Shahidi-Zadeh et al. [44] considered the simultaneous mini
mization of makespan, TWET and job incompatibility in a batch PMSP
and presented a mathematical model that was solved using the
ε-constraint method. Shahriari et al. [45] considered the simultaneous
minimization of the two objectives, TWET and Makespan, in the SMSP,
considering periodic preventive maintenance and restricting the
maximum number of jobs allowed in a certain period. They proposed a
bi-objective mixed integer model and implemented multi-objective
particle swarm optimization to solve the problem. Xu et al. [46] pro
posed a multi-objective artificial bee colony algorithm for the

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

2

Pareto-based optimization of makespan, TWET and total waiting time in
a hybrid flow shop scheduling problem containing unrelated parallel
machines. Shahvari and Logendran [47] proposed particle swarm
optimization-based search algorithms for the simultaneous minimiza
tion of makespan in conjunction with the production cost, including
TWET in a batch processing problem with dual resources on unrelated
parallel machines. Shahidi-Zadeh et al. [48] proposed a multi-objective
harmony search algorithm to simultaneously minimize the makespan,
TWET and the purchasing cost of machines in an unrelated parallel
batch processing scheduling problem considering job release times and
batch capacity constraints. Shen [49] considered an uncertain uniform
PMSP with job deterioration and a learning effect with uncertainties in
job processing times, due dates, deterioration rates and learning rates.
They proposed a hybrid algorithm based on dispatching rules for the
Pareto-based bi-objective minimization of TWET and makespan. Jia

et al. [50] proposed an evolutionary algorithm based on decomposition
to simultaneously minimize the makespan, TWET and total energy
consumption in a parallel batch scheduling problem. Shao et al. [51]
proposed an evolutionary algorithm employing local search with mul
tiple neighbourhoods to minimize TWET, makespan and total workload
in a distributed hybrid flow shop scheduling problem. Wei et al. [52]
proposed a multi-objective genetic algorithm for the simultaneous
minimization of TWET, makespan and non-processing energy con
sumption in an energy-efficient job shop scheduling problem. Ampry
et al. [53] presented a multi-objective harmony search algorithm to
simultaneously minimize the makespan, TWET and the cost of pur
chasing machines in an unrelated parallel batch processing scheduling
problem.

From the above literature review, it is evident that not much research
exists in the literature on the Pareto-based optimization of the two

Table 1
Summary of works on the Pareto optimization involving TWET and makespan objectives in SMSP and other scheduling environments.

Author Problem characteristics Objectives used Methodology Due Date
(DD)/ Due
Window (DW)

SDST

Gao et al.
(2009)

Non-identical PMSP subjected to special process
constraint

Makespan vs. TWET Parallel genetic algorithm (PIGA) based
on the vector group encoding and the
immune method

DW ​

Gao (2010) Non-identical PMSP subjected to special process
constraint

Makespan vs. TWET Vector artificial immune system (VAIS)
algorithm

DW ​

Fakhrzad et al.
(2013)

Job shop scheduling with SDST Makespan vs. TWET Hybrid genetic algorithm (GA) DW √

Tajbakhsh et al.
(2014)

Three-stage manufacturing system with
machining, assembly and batch processing stages

Makespan vs. TWET Hybrid particle swarm optimization –
genetic algorithm (PSO-GA)

DD ​

Abedi et al.
(2015)

Identical parallel batch processing machines with
arbitrary job sizes, unequal job release times and
capacity limits

Makespan vs. TWET Non-dominated sorting genetic
algorithm II (NSGA-II) and multi-
objective imperialist competitive
algorithm (MOICA)

DD ​

Zade et al.
(2015)

SMSP with periodic preventive maintenance Makespan vs. TWET Multi-objective particle swarm
optimization (MOPSO) algorithm

DD ​

Zarandi and
Kayvanfar
(2015)

Identical PMSP with controllable processing times Makespan vs. Sum of TWET and
compression and expansion costs
of processing times

Non-dominated sorting genetic
algorithm II (NSGA-II) and non-
dominated ranking genetic algorithm
(NRGA)

DD ​

Rad et al.
(2015)

Two-stage assembly flow shop scheduling
problem

Makespan vs. TWET ε-constraint method DD ​

Shahidi-Zadeh
et al. (2015)

Batch PMSP with maximum allowable job
incompatibility

Tri-objective optimization of
Makespan, TWET and
Incompatibility of jobs in batches

ε-constraint method DD ​

Shahriari et al.
(2016)

SMSP considering periodic preventive
maintenance and restricting the maximum
number of jobs allowed in a certain period

Makespan vs. TWET MOPSO DD ​

Xu et al. (2016) Hybrid flow shop scheduling problem with
unrelated parallel machines

Tri-objective optimization of
Makespan, TWET and Total
waiting time

Multi-objective artificial bee colony
(ABC) algorithm

DD √

Shahvari and
Logendran
(2017)

Batch processing problem with dual resources on
unrelated parallel machines

Makespan vs. Production cost
including TWET

Particle swarm optimization (PSO) -
based search algorithms

DD √

Shahidi-Zadeh
et al. (2017)

Unrelated parallel batch processing scheduling
problem with job release times and batch capacity
constraints

Makespan vs. Sum of TWET and
machine purchasing costs

Multi-objective harmony search (MOHS)
algorithm

DD ​

Shen (2019) Uncertain uniform PMSP with job deterioration
and learning effect with uncertainties in job
processing times, due dates, deterioration rates
and learning rates

Makespan vs. TWET Hybrid algorithm with mixed
dispatching rules

DD ​

Jia et al. (2020) Parallel batch scheduling problem Tri-objective optimization of
Makespan, TWET and total
energy consumption

History-guided multi-objective
evolutionary algorithm based on
decomposition

DD ​

Shao et al.
(2021)

Distributed hybrid flow shop scheduling problem Tri-objective optimization of
Makespan, TWET and Total
workload

Multi-objective evolutionary algorithm
based on multiple neighbourhood local
search (MOEA-LS)

DD ​

Wei et al.
(2021)

Energy-efficient job shop scheduling problem Tri-objective optimization of
Makespan, TWET and Non-
processing energy consumption

Unified non-dominated sorting genetic
algorithm-III (U-NSGA-III)

DD ​

Ampry et al.
(2022)

Unrelated parallel batch scheduling problem Makespan vs. Sum of TWET and
Machine purchasing costs

Multi-objective harmony search
algorithm

DD ​

This paper SMSP Makespan vs. TWET Variable neighbourhood descent (VND)-
based algorithms

DW √

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

3

objectives, TWET and makespan, in the SMSP, though Pareto-based
optimization on other combinations of objectives in the SMSP has
been actively researched [13,54–61]. The extent of research on different
machine scheduling problems reveals the importance of generating the
trade-off between the two objectives, which is evident from the above
literature review. The above literature review also reveals that the
sequence-dependent setup times and due windows have not been
considered in most of the works and heuristic and metaheuristic ap
proaches have been the most studied solution methodologies, particu
larly for solving larger-sized instances with 100 or more jobs. Though
most of the existing works on multi-objective optimization considering
TWET as one of the objectives considered the TWET objective from a JIT
perspective, they did not account for idle times on the machines while
generating schedules, i.e., all the jobs are scheduled at their earliest
possible start times rather than closer to their respective due dates.
Therefore, the schedule generated for a given sequence of jobs will al
ways result in a single point on the Pareto chart. In other words, for a
given sequence of jobs, only one optimal schedule exists with its optimal
TWET and the corresponding makespan value. Arroyo et al. [13]
considered Pareto-based multi-objective optimization of TWET and total
flow time (TFT) in the SMSP, allowing idle times to be inserted into the
schedule. However, they considered the two objectives as a lexico
graphic function with TWET as the primary objective and TFT as the
secondary objective, which results in a single trade-off point on the
Pareto chart corresponding to a given sequence of jobs.

Jacquin et al. [62] considered the problem of simultaneously mini
mizing total earliness (TE) and total tardiness (TT) in the SMSP, allowing
idle times to be inserted into the schedules. They showed that each
sequence of jobs results in a piecewise linear convex trade-off curve
between the two objectives. Babu and Girish [63] considered the
problem of Pareto-based bi-objective optimization of TWET and total
flowtime (TFT) in the SMSP with idle times allowed to be inserted in the
schedules. They presented an optimal timing algorithm to generate
optimal schedules corresponding to a given sequence of jobs and showed
that the trade-off relationship between the two objectives is a piecewise
linear convex trade-off curve when idle times exist in the schedules. The
bi-objective optimization of TWET and makespan in the SMSP consid
ered in this paper also allows idle times to be inserted in the schedules to
determine the Pareto-optimal solutions. Therefore, each sequence of
jobs may result in a piecewise linear trade-off curve, as in the
above-mentioned cases involving the bi-objectives of TE-TT and
TWET-TFT in the SMSP. This will require devising an optimal timing
algorithm (OTA) or utilising an optimization solver to generate sched
ules corresponding to a given sequence of jobs. We adopt an OTA pre
sented in the literature [64,65] and extend it to generate optimal
schedules corresponding to the job sequences generated by the proposed
Pareto-based metaheuristic algorithms. We also adopt an exact method
of Pareto front generation proposed by Babu and Girish [63] to generate
the Pareto-optimal front from multiple sequences of jobs, where each
sequence of jobs has an associated piecewise linear trade-off curve
comprising line segments on the Pareto chart. Babu and Girish [63], in
their work, employed a greedy local search heuristic with a pairwise
interchange neighbourhood generation mechanism and showed that
their proposed method of Pareto-optimal front generation is computa
tionally efficient than an upper envelop algorithm adopted from the
literature and is suitable for implementation within metaheuristic al
gorithms. We adopted their Pareto-optimal front generation method and
devised computationally efficient Pareto-based metaheuristic algo
rithms to solve the NP-hard problem under consideration. The
Pareto-based metaheuristic algorithms presented in this paper are based
on the variable neighbourhood descent (VND) approach, which is a
well-known neighbourhood search-based metaheuristic algorithm for
solving single objective and multi-objective combinatorial optimization
problems. The proposed VND-based approaches have been derived by
improving the VND-based methods existing in the literature, in terms of
computational efficiency, by applying various improvement

mechanisms of neighbourhood generation and perturbation. This paper
also suitably adapts the existing bi-objective-based performance metrics
to compare the proposed metaheuristic algorithms since the
Pareto-optimal front comprises both points and line segments, while
most of the existing performance metrics are designed only for points on
the Pareto chart. The performance of the proposed VND-based meta
heuristics have been compared with other state-of-the-art neighbour
hood search-based metaheuristic algorithms and a population-based
metaheuristic adopted from the literature.

3. Problem formulation

The bi-objective SMSP discussed in this paper is as follows. Let n
denote the number of jobs that are to be processed on a single machine.
Let i denote the job index, and j denote the position index of the jobs in
the sequence. Let Pi denote the processing time of job i and Si, i denote the
setup time to switch from job í to job i. Let [dei, dti] denote the due
window of job i, where dei and dti denote the earliest and the latest
allowable due dates of job i, respectively. Let Ci denote the completion
time scheduled for job i. Then, the earliness is defined as Ei = max(0,
dei − Ci), and the tardiness is defined as Ti = max(0, Ci − dti). Let αi

and βi, respectively, be the weights associated with the early and tardy
completion of a job i. The assumptions and notations used in the prob
lem formulation are listed below.

Assumptions:

• The single machine is continuously available.
• All the jobs are available at time zero.
• Each job i requires a single operation to be performed on the

machine.
• The machine can process only one job at a time.
• The job descriptors are deterministic and known beforehand.
• No setup time is required for the job assigned to the first position in

the sequence.
• Job preemptions are not allowed.

List of notations used in the proposed model:
n : Number of jobs
i : Job index (i=1,2,…,n)
j : Position index of jobs (j=1,2,…,n)
Pi : Processing time of job i
Si, i : Setup time to switch from job í to job i
dei : Earliest allowable due date of job i
dti : Latest allowable due date of job i
αi : Earliness penalty of job i
βi : Tardiness penalty of job i

The mathematical formulation [13] is as follows.
Decision Variables:

xij =

{
1 : if job i is assigned to position j in the sequence

0 : otherwise

Ci = completion time of job i

Ei = earliness of job i

Ti = tardiness of job i

Objective:

Minimize
∑n

i=1
(αiEi + βiTi) (1)

Minimize maxi(Ci) (2)

Subject to:

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

4

∑n

i=1
xij = 1 ∀j (3)

∑n

j=1
xij = 1 ∀i (4)

Ci ≥ Pi ∀i (5)

Ci ≥Ci’ +Pi +Si’ i − H
(
1 − xi’ j

)
− H

(
1 − xi,j+1

)
∀i, i’, j : i ∕= i’ & j=1,2, ...,n − 1

(6)

Ti ≥ Ci − dti ∀i (7)

Ei ≥ dei − Ci ∀i (8)

xij ∈ {0,1} ∀i, j (9)

Ci ≥ 0, Ei ≥ 0, Ti ≥ 0 ∀i (10)

In the mathematical formulation, xij, Ci, Ei and Ti are the decision
variables, and solving the problem aims to obtain the optimal values of
these variables. The objective functions (1) and (2) express the weighted
sum of earliness and tardiness costs and the makespan, respectively.
Constraints (3) and (4) ensure that each position in the sequence is
allocated to only one job, and each job is allocated to only one position
in the sequence. Constraint (5) ensures that the completion time of the
first job in the sequence is not less than its processing time. Constraint
(6) is a disjunctive constraint that is active for all consecutive pairs of
jobs in the sequence and non-active for all non-consecutive pairs of jobs.
H denotes a large positive integer. Constraints (5) and (6) together
ensure the generation of a feasible completion time for each job based on
its position in the sequence. Constraints (7) and (8) associate the
tardiness and earliness of each job with its completion time and its latest
and earliest due dates, respectively. Constraints (9) and (10) define the
variable bounds.

Algorithm 1
Generation of TWET-Makespan trade-off curve.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

5

4. Solution methodologies

This section first presents the solution representation for the SMSP
with SDST considered in this paper and the procedure for the generation
of the TWET-makespan trade-off curve for a given solution. Further, the
procedure adopted from the literature for the generation of a Pareto-
optimal front from multiple TWET-makespan trade-off curves is
described. Subsequently, the procedure for the generation of initial so
lutions and the neighbourhood search-based multi-objective meta
heuristic optimization algorithms are presented.

4.1. Solution representation and generation of the TWET-makespan
trade-off curve

The solution representation used in the proposed metaheuristics is a
permutation of the job indexes representing the order in which the jobs
are sequenced for processing on the machine. In the SMSP, the jobs can
be sequenced in n! possible ways. Let σ represent an ordered set
comprising a sequence of n jobs to be processed on a single machine. The
TWET-makespan trade-off curve for a given sequence of jobs is gener
ated using the optimal timing algorithm (OTA) presented in Algorithms
1 and 2. The procedure first generates the optimal TWET schedule and
its corresponding optimal makespan. Subsequently, it iteratively re
duces the makespan and generates the breakpoints to obtain the optimal
piecewise linear TWET-makespan trade-off curve. The procedure to
generate the optimal TWET schedule corresponding to a given sequence
of jobs shown in Algorithms 1 and 2 is based on the timing algorithms
proposed in the literature [14,64,65]. However, the timing algorithms
presented in the literature for the SMSP consider a single due date
corresponding to each job. The procedure shown in Algorithms 1 and 2
to generate the TWET-makespan trade-off curve is described as follows.

In Algorithm 1, a and b represent two consecutive jobs in σ, Ca and Cb
are the respective completion times of jobs a and b, Sab is the setup time
to switch to job b from job a on the machine, and Pa and Pb are the
processing times of jobs a and b, respectively. Let σi represent an ordered
set comprising the partial sequence of the first i number of jobs in σ ∀i ∈
{1,2,…, n} i.e., σi ⊆ σ, and σ[j] represent the job identifier at the jth

position in the sequence. The first job a in σ is initially scheduled to be
completed at its earliest due date (i.e. dea), as shown in step 4 of Algo
rithm 1. The TWET associated with this assignment in the partial
sequence σ1 will be 0. The subsequent jobs in σ are scheduled succes
sively as close as possible to their earliest due dates, and the TWET
associated with the jobs in the respective partial sequence is optimized
following the addition of each job. Scheduling the jobs close to their
earliest due dates implies that the completion times of the jobs are as
close as possible to their respective earliest due dates. If the earliest due
date of job b (i.e. deb) is less than Ca + Pb + Sab, then job b is scheduled to
be completed exactly at deb, as shown in step 10 of Algorithm 1. This
implies that there will be an idle time between the jobs a and b, and the
TWET associated with this partial sequence and its corresponding
schedule will be optimal. On the other hand, if Ca + Pb + Sab exceeds deb,
then the job is assigned its completion time (i.e. Cb) as equal to Ca + Pb +

Sab, as shown in step 19 of Algorithm 1. This implies that no idle time
exists between the completion times of jobs a and b, i.e. the jobs are
contiguous with each other. In other words, the completion times of jobs
a and b are clustered around their earliest due dates. The TWET asso
ciated with this partial schedule need not be optimal, which needs to be
further optimized by left shifting the last job assigned to the partial
sequence by invoking the function LEFT SHIFT in step 25 of Algorithm
1.

Algorithm 2 presents the left shifting procedure (LEFT SHIFT),
which left shifts the last job assigned at position k in σk (i.e. the job σ[k])
along with the set of preceding contiguously scheduled jobs to optimize
the partial schedule without violating the separation constraints be
tween the completion times of consecutive jobs. This set of contiguously
scheduled jobs is also called a block and is generated as follows.

Let B represent the block that contains the position identifier k of the
last job b in the partial sequence σk and the position identifiers of all its
preceding contiguous jobs that will allow for a feasible left shifting of the
last job b. A feasible left shifting indicates that the last job b in the partial
sequence can be left shifted by at least one unit of time without violating
the separation constraints between the completion times of jobs given by
Eqs. (5) and (6), discussed in Section 3. B is initially assigned the posi
tion identifier k = 1 of the job in the first position in σk, as shown in step
5 of Algorithm 1. Subsequently, if any job b at position k is found to be
contiguous with its immediately preceding job at position k − 1 in σk,
then the position identifier of job b is added to B, as shown in step 24 of
Algorithm 1. However, if a job b at position k in σk is non-contiguous
with its immediately preceding job at position k − 1, then the block B
is reset to include only the position identifier k, as shown in steps 11 and
12 of Algorithm 1. The TWET cost function corresponding to the jobs
with its position identifiers in B, represented by TWET(B), will always be
a piecewise linear convex cost function with a minimum point, and left
shifting the jobs with position identifiers in B to this minimum point
optimizes the TWET cost function corresponding to the partial sequence
σk (i.e. TWET(σk)) [64,65]. The following theorem explains the opti
mality of the procedure described in Algorithms 1 and 2 to obtain the
minimum TWET(σ).

Theorem 1. The set of jobs with position identifiers in B, which contains
the job at the last position k in the partial sequence σk as well as all its pre
ceding contiguous set of jobs, when simultaneously left shifted to the minimum
point of its cost function TWET(B), optimizes TWET(σk).

Proof. For a given partial sequence σk, the TWET cost function of the
jobs with position identifiers belonging to B for a given partial schedule
Sk = {Cσ[1],Cσ[2], ..,Cσ[k]} can be expressed as

TWET(B) =
∑

j∈B

(
ασ[j] max

(
0, deσ[j] − Cσ[j]

)
+ βσ[j] max

(
0, Cσ[j] − dtσ[j]

))

(11)

For a specific Sk, a few jobs with position identifiers in B will be early
from their respective earliest due dates (i.e. Cσ[j] ≤ deσ[j]), and a few other
jobs will be tardy from their respective latest due dates (i.e. Cσ[j] ≥ dtσ[j]).
The remaining jobs with position identifiers in B will be scheduled
within their respective due windows (i.e. deσ[j] ≤ Cσ[j] ≤ dtσ[j]) and do not
contribute to TWET(B). Let EY ∈B be the set of position identifiers
corresponding to the early jobs, TY ∈B be the set of position identifiers
corresponding to the tardy jobs, and DW ∈B be the set of position
identifiers of jobs which are scheduled within their respective due
windows in B. Then, the TWET cost function for a given Sk can be
rewritten as [63]

TWET(B) =
∑

j∈EY
ασ[j]
(
deσ[j] − Cσ[j]

)
+
∑

j∈TY
βσ[j]
(
Cσ[j] − dtσ[j]

)
(12)

For a specific value of Cσ[k], where σ[k] is the job at the last position in
σk, the TWET cost function can be rewritten as

TWET(B) =

(
∑

j∈TY
βσ[j] −

∑

j∈EY
ασ[j]

)

Cσ[k] +
∑

j∈EY
ασ[j]
(
deσ[j] +Tσ[j]

)

−
∑

j∈TY
βσ[j]
(
dtσ[j] +Tσ[j]

)
(13)

where Tσ[j] denotes the time gap between the completion times of jobs
σ[k] and σ[j], i.e. Tσ[j]=Cσ[k] − Cσ[j], which remains constant for all the jobs
in B, when σ[k] is varied by left shifting all the jobs with their position
identifiers in B by the same amount of time. Therefore, Eq. (13) will be a
straight-line equation with a slope

SL =
∑

j∈TY
βσ[j] −

∑

j∈EY
ασ[j] (14)

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

6

Algorithm 2
Left shifting procedure.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

7

When the set of jobs with position identifiers in B are simultaneously
left shifted, the tardy jobs in the set TY get shifted to DW at their
respective latest due dates, and the jobs in the set DW get shifted to EY at
their respective earliest due dates. This results in the slope SL of the cost
function TWET(B) to monotonically decrease, forming a piecewise
linear convex curve with breakpoints on the TWET-Cσ[k] plot with a
minimum point, as shown in Fig. 1. Each breakpoint on the TWET-Cσ[k]

plot indicates a job shifting from set TY to DW or from set DW to EY,
resulting in a decrease in slope SL. At the minimum point of the cost
function TWET(B), its slope SL changes from a non-negative value to a
negative value. Shifting the jobs with position identifiers in B to the
minimum point on the TWET-Cσ[k] plot minimizes TWET(B) as well as
TWET(σk), since the jobs belonging to σk whose position identifiers are
not in B remain unchanged during the left shifting of B.

Since each job in σk was successively assigned completion times and
their partial schedules optimized by shifting the jobs with position
identifiers in B to the minimum point of its TWET cost function as
described in Algorithm 1, any job or a set of jobs in σk, which is non-
contiguous with the jobs with position identifiers in B, will not
improve TWET if left shifted along with B. This is because the jobs or the
set of contiguous jobs preceding the jobs with position identifiers in B
were already optimized to the minimum point of their respective cost
functions successively, i.e. in the order TWET(σ1), TWET(σ2), …, TWET
(σk− 1). Hence, the partial schedule Sk, which is optimized by left shifting
B to the minimum point of its cost function, optimizes TWET(σk).

However, in the process of left shifting of jobs with position identi
fiers in B to the minimum point of TWET(B) as described above, a job
with its position identifier in B can become contiguous with a preceding
job whose position identifier is not included in B. In that case, the set B
adds to it the position identifiers of the preceding contiguous jobs for a
feasible left shifting and left shifts the jobs to the minimum point of the
cost function TWET(B) corresponding to the updated set B. Every time
set B is updated with position identifiers of the preceding contiguous
jobs during left shifting, the slope SL decreases, resulting in a breakpoint
on the TWET-Cσ[k] plot.

From the above theorem, it can be inferred that for a positive value of
SL, left shifting of the jobs with position identifiers included in B results
in the minimization of TWET(σk) of the partial sequence σk. Therefore,
the jobs with position identifiers belonging to B in the partial sequence
σk are left shifted until the corresponding SL becomes negative or until
there is no idle time preceding the job in the first position in σk,
whichever is encountered first.

In Algorithm 2, δ represents the maximum time units by which the
jobs with position identifiers in B can be left shifted without encoun
tering any slope changes due to a job’s completion time crossing its
latest due date or the earliest due date or the set of jobs whose position
identifiers belonging to B becoming contiguous to a preceding job, or no
gap is left preceding the first job in σk for further left shifting. If the
position identifier of the job in the first position in σk (i.e. σ[1]) belongs
to B, then δ is updated as the maximum time units by which the first job
can be left shifted, as shown in step 4 of Algorithm 2. If the position
identifier of the job σ[1] does not belong to B, then the maximum time
units by which the jobs in block B can be left shifted until it becomes
contiguous with its preceding job is determined and assigned to t1, as
shown in step 19 of Algorithm 2. t2 is the time units by which the block
can be left shifted, such that the completion time of a job with its po
sition identifier in B is the first to reach its latest due date, as shown in
step 22 of Algorithm 2. t3 is the time units by which the block can be left
shifted, such that a job with its position identifier in B is the first to reach
its earliest due date, as shown in step 23 of Algorithm 2. δ is the mini
mum of t1, t2 and t3 and is chosen as the time units for left shifting the
jobs whose position identifiers in σk belong to B, as shown in steps 20–24
of Algorithm 2. Due to left shifting, if the jobs with position identifiers
belonging to B become contiguous with its preceding job, the position
identifiers of the preceding job or the set of preceding contiguous jobs in
σk are added to the block B, as shown in steps 33–43 of Algorithm 2. The
left shifting of the jobs with position identifiers in B proceeds until the
corresponding SL becomes negative or no further left shifting is possible.
Once all the jobs in σ are successively scheduled in this manner, the
optimized TWET Gt and the corresponding makespan Mt for the iden
tified optimal TWET schedule are evaluated. This is implemented in the
SAVE BREAK POINT function as shown in steps 15, 22 and 29–32 of
Algorithm 1 and steps 26–28 of Algorithm 2.

The solution generated using the above procedure is a single optimal
trade-off point representing the optimal TWET and its corresponding
makespan on the Pareto chart representing the objectives space. To
generate all possible trade-offs between TWET and makespan on the
Pareto chart, the jobs in the optimal TWET schedule are further left
shifted to reduce the makespan. The last job in the sequence σ and all its
preceding contiguous jobs are continued to be left shifted even though
the corresponding SL is negative, as shown by the conditions in step 16
of Algorithm 2. Makespan is hence minimized to the maximum possible
extent, resulting in the elimination of idle time from the schedule. The
trade-off points corresponding to each value of makespan and the cor
responding TWET are stored whenever a change in SL is encountered, as

Fig. 1. A typical TWET-Cσ[k] trade-off plot.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

8

shown in steps 26–32 of Algorithm 2. The breakpoints generated are
then connected by line segments, which constitute the optimal TWET-
makespan trade-off curve for that particular sequence of jobs. Since
the SL value monotonically reduces with the left shifting of jobs in the
sequence σ, the TWET-makespan relationship will be a piecewise linear
convex trade-off curve [14,63–65]. Each point on the TWET-makespan
trade-off curve represents a non-dominated solution for the given
sequence of jobs. However, if no idle time exists in the optimal TWET
schedule, the trade-off relationship between the bi-objectives will be a
single point. A numerical illustration of the TWET-makespan trade-off
curve generation procedure shown in Algorithms 1 and 2 is presented in
Appendix A. The following theorem explains the optimality of the pro
cedure described above to obtain the optimal TWET-makespan trade-off
curve.

Theorem 2. The set of jobs with its position identifiers in B in the optimal
TWET schedule, when simultaneously left shifted until the idle time is
completely eliminated from the schedule, generates the optimal
TWET-makespan trade-off curve.

Proof. In a typical optimal TWET-makespan trade-off curve, one end
of the curve will correspond to the optimal TWET schedule and the other
end to the optimal makespan schedule, as shown in Fig. 2. Every point
lying on the TWET-Makespan trade-off curve relates to an optimal
schedule for the corresponding TWET and makespan values. The
makespan corresponding to a schedule in the SMSP is the completion
time of the last job in the sequence (i.e. Cσ[n]). Therefore, any decrease in
makespan from the optimal TWET schedule requires the last job in the
sequence to be left shifted. Since the optimal TWET schedule is the
minimum point on the TWET-Cσ[n] plot, the left shifting of any job or set
of jobs will increase the TWET value with the slope SL of the resulting
TWET-makespan plot becoming a negative value. When the makespan is
improved by left shifting the last job in σ, each unit of improvement in
makespan must result in the optimum value (i.e. smallest possible in
crease in value) of TWET. The block B, which contains the position
identifier of the job at the last position in σ as well as all its preceding set
of contiguous jobs, when left shifted, results in the smallest possible
increase in the value of TWET per unit decrease in makespan. This is
because a job or a set of jobs preceding the jobs whose position identi
fiers are in B are already at the minimum point of their respective
TWET(σk) cost function as described in Theorem 1, and if left shifted
along with jobs with position identifiers in B, it will lead to a higher rate
of increase in TWET per unit decrease in makespan. Therefore, the last
job and all its preceding contiguously scheduled jobs whose position
identifiers are in B, when left shifted, results in the minimum increase in
the value of TWET per unit decrease in makespan. In the process of left
shifting, the position identifiers of jobs in B may become contiguous with
a preceding job not belonging to B, then block B is updated to include the
position identifiers of the job or the set of contiguous preceding jobs,
resulting in a breakpoint in the TWET-Cσ[n] plot with slope SL of the cost

function becoming more negative. The slope SL of the TWET-Cσ[n] plot
also changes and becomes more negative when the jobs in the process of
left shifting shift from the set TY to DW and from DW to EY. Eventually,
the procedure of updating block B and left shifting of jobs leads to the
complete removal of idle time from the schedule, resulting in the point
of optimal makespan in the TWET-Cσ[n] plot. Since the SL value decreases
monotonously at each breakpoint, the optimal TWET-Cσ[n] trade-off plot
will always be a piecewise linear convex trade-off curve if idle time
exists in the optimal TWET schedule.

4.2. Pareto-optimal front generation procedure

The Pareto-based bi-objective metaheuristic algorithms presented in
this paper use specific mechanisms to generate, perturb and improve
sequences of jobs to find the Pareto-optimal solutions. Since the optimal
timing algorithm (OTA) generates either a single trade-off point or a
piecewise linear convex trade-off curve with infinite trade-off points on
a Pareto chart corresponding to each sequence of jobs, the Pareto-
optimal front generated from a given set of solutions will eventually
comprise line segments and points. We adopted the Pareto-optimal front
generation procedure proposed in [63] that trims and merges multiple
TWET-makespan trade-off curves and trade-off points to generate the
Pareto-optimal front, where each trade-off curve or point corresponds to
either a single sequence of jobs or is a Pareto front comprising line
segments and points generated from multiple sequences of jobs. Each
line segment or point in the resulting Pareto-optimal front will be
associated with a sequence of jobs, and the Pareto front generation
procedure ensures that the sequences of jobs in the set related to a
Pareto-optimal front are not repeated. Unlike the other scheduling
problems, where each sequence of jobs results in a single trade-off point,
the Pareto-optimal front generated in this paper may have a single point
or one or more line segments associated with a single sequence of jobs.
Fig. 3(a) shows typical TWET-makespan trade-off curves generated
corresponding to multiple sequences of jobs. Some sequences of jobs
may result in trade-off plots comprising a single trade-off point similar to
the one corresponding to the sequence σ4 in the figure. Fig. 3(b) shows
the Pareto-optimal front generated with the non-dominated solutions
from multiple sequences of jobs, as shown in Fig. 3(a). In the figure, no
line segment corresponding to the sequence σ2 lies on the Pareto-optimal
front since all the line segments lying on the trade-off plot corresponding
to it have been dominated by the other line segments as shown in Fig. 3
(a). Further, the job sequences σ1 and σ3 have resulted in multiple line
segments belonging to their trade-off plots lying on the Pareto-optimal
front. Readers may refer to the procedure proposed in [63] to gain a
detailed understanding of the methodology. The Pareto-optimal front
generation procedure generates the Pareto front such that the line seg
ments and points on the Pareto front are arranged in the increasing order
of their makespan values and also place their respective sequences of
jobs in that order. The final Pareto-optimal front generated between the
makespan and TWET using the metaheuristic algorithms will provide
the end users with the cost proportions of compromising either of the
objectives, thereby allowing them to make the best decision regarding
the minimization of both objectives.

4.3. Initial solution generation

The initial solutions for the metaheuristic algorithms presented in
this paper for the simultaneous minimization of the TWET and make
span objectives were generated using a heuristic methodology based on
the apparent tardiness cost with setups (ACTS) rule [66–68]. The
sequence generation begins with an empty set σ to which n unscheduled
jobs are successively appended using a probabilistic rule based on
heuristic desirability. The dispatching rule of ACTS is used as the heu
ristic desirability. The heuristic desirability ηkb of assigning a job b to
position k in σ is defined as [69] Fig. 2. A typical optimal TWET-makespan trade-off curve.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

9

ηkb = exp
[

−
deb ∗ k1

davg

]

∗ exp
[

−
(Pb + sab) ∗ k2

savg

]

(15)

where deb is the earliest due date of job b, davg is the average of the
earliest due dates of all the jobs unassigned to σ, k1 and k2 are the scaling
parameters related to the due dates and the sum of processing times and
setup times (sab + Pb) between the jobs, respectively. sab is the setup time
between job b and the job at position k − 1 in σ denoted by a, and savg is
the average of the processing times inclusive of the setup times between
the jobs unassigned to σ. The job j to be assigned at each position in the
sequence is determined probabilistically based on the value of the
random variable S selected according to a probability μkb defined cor
responding to each unassigned job b ∈ U, as shown in Eq. (16).

μkb =
ηkb∑

u∈U(ηku)
(16)

where U denotes the set of jobs not assigned to σ. The cumulative value
of μkb ∀b ∈ U corresponding to each position k is calculated, and the job
b that corresponds to the range of the random variable S will be assigned
to k. This ensures fair allocation of jobs even when more than one job in
U has the same value of μkb, as a job with a larger range has a higher
probability of being selected. This process is performed iteratively until
all the n jobs are assigned to σ. The sequences generated are further used
as the initial population in the metaheuristic optimization algorithms
presented in this paper.

4.4. Multi-objective neighbourhood search-based metaheuristic algorithms

Neighbourhood search-based metaheuristic algorithms applied to
scheduling problems employ various neighbourhood structures that
explore the feasible solution space by generating and evaluating the
sequences in the neighbourhood of a given sequence of jobs to be
improved. These algorithms can also be parallelized, allowing the use of
parallel computing systems, thereby enabling them to handle complex
problems within a reasonable computation time. Some of the basic
neighbourhood search-based metaheuristic algorithms existing in the
literature include variable neighbourhood search (VNS), variable
neighbourhood descent (VND), iterated local search (ILS), Tabu search
(TS), Simulated Annealing (SA), etc. These algorithms have been
extensively used in both single objective and multi-objective machine
scheduling problems [70–73]. Several variants of these algorithms have
also been presented in the literature for the Pareto-based multi-objective

optimization problems in machine scheduling, such as VNS with inten
sification, Pareto iterated local search, Pareto archived simulated
annealing, etc. [74,75].

These algorithms, in general, begin with a single or a set of initial
solutions that are generated either randomly or using heuristics. One or
more neighbourhood generation mechanisms are then employed to
generate solutions in the neighbourhoods of the initial solution set. Each
of the neighbourhood solutions generated is then evaluated for the ob
jectives considered in the problem. The solutions that meet the pre
defined acceptance criteria are selected for further exploration.
Sometimes, these algorithms also accept inferior solutions with a certain
probability of escaping out of the local minima in the solution space. The
process of neighbourhood generation, objective evaluation and selection
of solutions for further exploration is repeated iteratively until specific
predefined termination criteria are met. The commonly used termina
tion criteria include reaching a maximum number of iterations, reaching
the limit on computational resources or achieving a certain level of
improvement.

Apart from the neighbourhood search-based approaches, several
population-based methods known to perform well for multi-objective
Pareto-based optimization problems exist in the literature viz. multi-
objective particle swarm optimization (MOPSO), multi-objective ge
netic algorithm (MOGA), multi-objective genetic local search
(MOGALS), Pareto envelope-based selection algorithms (PESA and
PESA-II), non-dominated sorting genetic algorithm II (NSGA-II), non-
dominated ranking genetic algorithm (NRGA), etc. [76]. However,
most of these methodologies use crowding distance operators [77] or
region-based selection techniques [78] to evaluate solutions for domi
nance while generating the Pareto front. As shown in Fig. 3(b), the line
segments on the Pareto front belonging to different sequences of jobs
need not necessarily have a gap between them and a solution on a Pareto
front consisting of line segments may span over the entire Pareto front as
represented by the line segments corresponding to the sequence σ1.
Therefore, it may not be possible to determine the crowding distance of
solutions or confine a solution within a region in the objective space.
Hence, the existing technique of fitness evaluation from the literature
cannot be implemented in this scenario. Consequently, the
population-based methodologies from the literature cannot be easily
adapted to solve the scheduling problem considered in this paper. This
has encouraged us to experiment with neighbourhood search-based
heuristic methodologies that are easily adaptable over the
population-based heuristic methods in the literature.

This paper presents six Pareto-based neighbourhood search

Fig. 3. (a) Typical TWET-makespan trade-off curves generated with multiple sequences of jobs, (b) Pareto-optimal front generated with the non-dominated solutions
from multiple sequences of jobs.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

10

algorithms to solve the bi-objective SMSP, which are listed below.

(1) Multi-objective variable neighbourhood descent (MOVND)
(2) Multi-objective iterated variable neighbourhood descent

(MOIVND)
(3) Hybrid multi-objective variable neighbourhood descent - path

relinking (MOVND_PR)
(4) Multi-objective variable neighbourhood search (MOVNS)
(5) Multi-objective variable neighbourhood search with intensifica

tion (MOVNS_I)
(6) Multi-objective iterated local search (MOILS)

The performance of the proposed VND-based algorithms is then
compared with that of the VNS and ILS algorithms adopted from the
literature to validate their computational efficiency. The subsequent
sections of this paper first present the various neighbourhood structures
used in the above algorithms. Further, the implementation of the
neighbourhood search-based metaheuristic algorithms to the considered
problem is presented.

4.4.1. Neighbourhood structures used in the metaheuristic algorithms
The metaheuristic algorithms presented in this paper utilise one or

more of six different neighbourhood generation schemes to generate a
set of neighbourhoods corresponding to a given sequence of jobs. The
various neighbourhood generation mechanisms for generating neigh
bourhoods of a given sequence of jobs are described as follows.

(1) Swap neighbourhood (N1): Two jobs within a fixed range of job
positions in the sequence denoted by swap limit, are randomly
selected, and their positions in the sequence are interchanged.

(2) Insertion neighbourhood (N2): A job is removed from the
sequence and inserted back at every position in a fixed range of
job positions, denoted by shift limit. The shift limit equally
spreads over the succeeding and preceding job positions of the
initial position of the removed job.

(3) 2-job insertion neighbourhood (N3): This neighbourhood gener
ation scheme is similar to N2, with the exception that the jobs at
two consecutive positions selected from the sequence are
removed and inserted back at all positions within the range of job
positions in the sequence denoted by dshift limit.

(4) 3-job insertion neighbourhood (N4): This neighbourhood gener
ation scheme is similar to N2, with the exception that the jobs at
three consecutive positions selected from the sequence are
removed and inserted back at all positions within the range of job
positions in the sequence denoted by tshift limit.

(5) Enumeration neighbourhood (N5): In this neighbourhood gener
ation mechanism, all possible combinations of job positions
within a fixed range of positions in the sequence denoted by
enum limit, are generated, each of which contributes to one
neighbourhood. The number of neighbourhoods thus generated
within a fixed enum limit will be m!, where m represents the
number of jobs within the enum limit. Once all possible neigh
bourhoods within a specific job window defined by the enum limit
are generated, the job window slides forward by one job position
along the job sequence, and the process repeats.

(6) Compound insertion move neighbourhood (N6): This neigh
bourhood generation structure uses a parameter known as search
depth, denoted by d, which can either be fixed or varied during
the search process to maintain a balance between exploring and
exploiting the feasible solution space. This paper proposes an
improved variant of the compound insertion move neighbour
hood structure presented in [73]. In their paper, Xu et al. [73]
randomly selected a job position r in the sequence from which d
number of consecutive jobs are removed from the sequence. Let
σR represent the set of removed jobs and σP represent the partial
sequence comprising the jobs remaining in the sequence. The

neighbourhoods are generated by iteratively inserting each
removed job in σP at all job positions in the partial sequence σR. In
this paper, we have proposed an improved neighbourhood
structure in which d number of jobs to be removed from the
sequence are selected randomly, rather than removing a set of
consecutive jobs from a randomly selected position in the
sequence.

The multi-objective metaheuristic algorithms presented in this paper
employ one or more of the above neighbourhood generation
mechanisms.

4.4.2. The proposed MOVND algorithm
The multi-objective variable neighbourhood descent (MOVND) al

gorithm proposed in this paper is inspired by the sequential variable
neighbourhood descent algorithm presented in [79]. We have suitably
adapted the methodology presented originally for a single objective
optimization problem to extend it to the multi-objective optimization
problem considered in this paper. According to the methodology pre
sented in [79], whenever an improved solution is obtained with a
neighbourhood generation mechanism, the neighbourhood generation
mechanism is reset to the first one. Whenever there is no improvement in
solutions with any of the neighbourhood generation mechanisms, the
neighbourhood generation mechanism is sequentially switched to the
next in a pre-defined order.

Algorithm 3 shows the procedure for the proposed MOVND algo
rithm that begins by generating a Pareto-optimal front of the solutions in
the initial population P, denoted by A, as shown in steps 1–2. Step 2
involves generating a piecewise linear convex trade-off curve between
the two objectives corresponding to each sequence of jobs in P using the
proposed optimal timing algorithm (OTA) described in Section 4.1 and
further generating the Pareto-optimal front of the trade-off curves
generated corresponding to all the sequences in P using the procedure
described in Section 4.2. The sequences corresponding to the line seg
ments belonging to the Pareto-optimal front A are then subjected to one
or more neighbourhood generation mechanisms described in Section
4.4.1.

The proposed MOVND algorithm utilizes kmax number of neigh
bourhood generation mechanisms represented by the ordered set
NVND ⊆{N1, N2, N3, N4, N5} to generate the neighbourhood solutions in
the procedure, such that kmax=|NVND|. The binary variable
visited flag(σ, k

)
∈ {0,1

}
denotes whether each sequence σ ∈ A has

been subjected to neighbourhood generation using the neighbourhood
structure k, where k=1,2,…,kmax. visited flag(σ, k

)
∀σ ∈ A are marked as

unexplored initially ∀k, as shown in step 3. Each solution σ ∈ A is then
improved iteratively by generating all possible neighbourhoods using
the neighbourhood structures one after the other, as shown in steps
4–21. M denotes the set of neighbourhood solutions generated for the
sequences of jobs σ ∈ A using the chosen neighbourhood structure in the
set NVND, as shown in step 7. The neighbourhoods are generated only for
those sequences of jobs in A that were previously unexplored by the
chosen neighbourhood structure k. visited flag(σ, k

)
∀σ ∈ A generated

using the neighbourhood structure NVND(k) is marked as visited, as
shown in step 8. The Pareto-optimal front of the solutions in M is then
generated, denoted by Aʹ, and the visited flag(σ, k

)
∀σ ∈ Aʹ is set as un

visited ∀k, as shown in steps 9 and 10, respectively. Similar to Step 2,
Step 9 involves the generation of trade-off curves between the objectives
corresponding to each sequence of jobs in M using the OTA and the
subsequent generation of the Pareto-optimal front of the trade-off curves
generated corresponding to all the sequences in M. The non-dominated
solutions from Aʹ update the Pareto-optimal front A, as shown in step 15.
If the Pareto-optimal front A has improved in this process, then the
neighbourhood structure is reset to NVND(1) as shown in step 17, and
steps 6–15 are repeated. On the other hand, if the Pareto-optimal front A
has not improved by the generation of neighbourhoods of sequences σ ∈

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

11

A generated using a particular NVND(k), then, the following neighbour
hood structure is chosen to further explore the neighbourhoods of the
sequences in A, as shown in step 19. If all the neighbourhood structures
in the ordered set NVND have been explored, and no further improved
solution is found in A, then set A is subjected to intensification (N6), as
shown in steps 12 and 13. Intensification is an improvement mechanism

proposed in [13], which involves randomly selecting a sequence σ ∈ A
and exploring the solution space for an improved solution in its neigh
bourhood. Algorithm 4 shows the procedure of intensification.

Intensification uses the neighbourhood structure N6 described in
Section 4.4.1, which begins with removing d number of jobs from σ ∈ A.
σR denotes the set of removed jobs and σP denotes the partial sequence

Algorithm 3
The MOVND algorithm.

Algorithm 4
Intensification.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

12

obtained with the remaining n − d jobs, as shown in step 2 of Algorithm
4. The TWET-makespan trade-off curve corresponding to the partial
sequence σP is then generated and subjected to the Pareto front gener
ation procedure to generate the Pareto-optimal front, which is denoted
by Bʹ as shown in step 3. In each iteration of steps 4–14, the kth

{k= 1,2…d} job in σR is inserted at each position p {p= 1,2…, j − d+k}
of each partial sequence σq ∈ Bʹ. Let SPσq denote the set of partial se
quences obtained with the kth job added at each position p of a particular
sequence σq ∈ Bʹ, as shown in steps 8–10. A Pareto-optimal front cor
responding to the TWET-makespan trade-off curves of the partial se
quences belonging to SPσq is then generated, which is denoted by Bʹ́ , as
shown in step 11. After the kth job is inserted into every position p of
every sequence σq ∈ Bʹ, the Pareto-optimal front Bʹ́ replaces the Pareto-
optimal front Bʹ, as shown in step 13. Steps 5–13 repeat until every job
belonging to set σR has been inserted into every position p of every
sequence σq ∈ Bʹ. On intensification, if an improved solution is found,
the neighbourhood structure is reset to NVND(1) and steps 6–15 of Al
gorithm 3 are repeated. If an improved solution is not found, then
another sequence σ ∈ A is chosen at random and subjected to intensifi
cation. To allow for a fair performance comparison between the MOVND
and the other algorithms, a predefined maximum computation time
(CPU TimeLimit) allowed to run a specific problem instance is set as the
termination criterion for all the algorithms.

4.4.3. The proposed MOIVND algorithm
The proposed multi-objective iterated variable neighbourhood

descent (MOIVND) algorithm is similar to the proposed MOVND, except
that in the MOIVND we have used a perturbation phase instead of the
intensification used in the MOVND. Algorithms 5 and 6 show the
pseudocode of the proposed MOIVND algorithm.

The MOIVND algorithm utilizes kmax number of neighbourhood
generation mechanisms represented by the ordered set NIVND ⊆{N1, N2,
N3, N4, N5} to generate the neighbourhood solutions in the procedure,
where kmax=|NIVND|. Similar to the MOVND algorithm, the MOIVND
algorithm begins by generating a Pareto-optimal front of the solutions in
the initial population P, denoted by A, as shown in steps 1–2. visited_flag
(σ, k) ∀σ ∈ A are marked as unexplored initially ∀k : k = 1,2,…,kmax,
as shown in step 3. A is assigned to Aʹ, and each solution σ ∈ Aʹ is then
improved iteratively by generating all possible neighbourhoods using
the neighbourhood structures in the ordered set NIVND one after the
other, as shown in steps 4–22. Every time an improved solution is found
in Aʹ, the neighbourhood structure is reset to NIVND(1), and if an
improved solution is not found, the next neighbourhood structure in the
set NIVND is chosen to improve the solutions, as shown in steps 12–15.
visited_flag(σ, k) is marked as explored if a sequence of jobs σ ∈ Aʹ has
already been improved with a neighbourhood structure k, and only the
sequences of jobs unexplored with certain neighbourhood structures are
considered for the generation of neighbourhoods. After a set of neigh
bourhoods represented by M are generated and the corresponding
Pareto-optimal front Aʹ is updated, the Pareto-optimal front A is updated
with Aʹ, as shown in steps 10–11. If no improved solution is found in Aʹ

after implementing all four neighbourhood structures, then the solutions
in set A are perturbed by invoking the PERTURB function, as shown in
step 17 of Algorithm 6, which generates a new Pareto front Aʹ. The
Pareto front A is updated with Aʹ as shown in step 19, and the solutions
in Aʹ are further subjected to improvement using the four neighbour
hood structures as shown in steps 6–10. The above procedure is per
formed until the termination criterion of a pre-specified computation
time limit (CPU TimeLimit) is reached.

The perturbation mechanism used in the MOIVND algorithm uses a
neighbourhood generation scheme to escape the local minima and
backtrack the solutions rather than relying on random perturbation
moves. The procedure for the perturbation of solutions in A is shown in
Algorithm 6. Initially, the solutions in A are assigned to set B, as shown
in step 2. Each sequence σ ∈ B is then perturbed, which involves

randomly selecting a position q in the sequence and the job in that po
sition is inserted at all other possible positions in the sequence using the
neighbourhood structure N2 to generate n − 1 neighbourhood solu
tions, which is denoted by M. The Pareto-optimal front Bʹ is then
generated with the solutions in M, and the Pareto front Bʹ́ is subse
quently updated with Bʹ. After all the sequences in B are subjected to the
above procedure, the solutions in Bʹ́ are assigned to B as shown in step
11. The perturbation and Pareto front update procedure, as shown in
steps 6–9, is then repeated with the solutions in B, and this process
continues for perturb iter number of iterations. The perturbation phase
allows the solutions in A to escape local minima, and the procedure of
generation of the neighbourhoods followed by the generation of the
Pareto-optimal front, as shown in steps 7–9, ensures that the perturbed
solutions do not deviate too much from their original solutions in terms
of the objective values.

4.4.4. The proposed hybrid MOVND_PR algorithm
The proposed multi-objective hybrid variable neighbourhood

descent – path relinking (MOVND_PR) algorithm is similar to the pro
posed MOIVND algorithm, except that the MOVND_PR algorithm uses a
path relinking-based strategy to explore the neighbourhoods of the so
lutions in the Pareto archive instead of the backtrack-based perturbation
used in the MOIVND. Therefore, the procedure shown in Algorithm 5
also applies to the MOVND_PR algorithm, except that step 17 of Algo
rithm 5 invokes Aʹ←PATH RELINKING(A). Path relinking is typically
used as an intensification strategy to explore paths connecting elite so
lutions obtained by other metaheuristic methods, such as scatter search,
GRASP, tabu search, etc. [80–83]. In this paper, the path relinking
strategy is hybridized with the VND algorithm to generate new solutions
in the neighbourhoods of the elite solutions on the Pareto archive, which
is further improved using the local search procedure within the VND
framework.

Algorithm 7 shows the path relinking phase of the MOVND_PR al
gorithm, which obtains the Pareto front A from Algorithm 5 and returns
the Pareto front B generated using the path relinking procedure. As
shown in steps 3–13 of Algorithm 7, the procedure selects each solution
(i.e. the sequence of jobs) in the Pareto front A as an initial solution (so)
and iteratively identifies the job insertions required to sequentially
move it towards a randomly chosen guiding solution (sg) belonging to A.
At first, the difference in the position of each job in the two job se
quences so and sg is determined. As shown in steps 6–9, the job i with the
highest positional difference (PD) in so is identified and shifted to a
position number in its sequence, which is the same as the position
number (PS) of this job in sg. A job’s positional difference is the absolute
value of the difference of its position number in so with its position
number in sg. The new sequence snew thus generated along with its cor
responding TWET-makespan trade-off curve is assigned to (or used to
update) the Pareto front B, as shown in step 10 of Algorithm 7. The new
sequence snew is then assigned to so (i.e. so← snew), as shown in step 11 of
Algorithm 7. Subsequently, the job with the highest positional difference
in so with respect to sg is again identified and shifted to a position in so,
which is the same as the position of this job in sg. The new sequence snew
generated, along with its TWET-makespan trade-off curve, updates B as
described above. The above procedure is repeated until the maximum
positional difference of a job in so with respect to sg is equal to or greater
than Dmax, where Dmax>0. A value of Dmax closer to zero indicates that
towards the end of the above procedure of generating the sequence of
neighbourhoods while moving from so to sg, the solutions generated will
be closer to sg, leading to faster convergence in the subsequent local
search phase shown in Algorithm 5. On the other hand, a higher value of
Dmax may lead to a higher exploration.

4.4.5. The MOVNS algorithm
We have adopted the multi-objective variable neighbourhood search

(MOVNS) algorithm presented in [74], as shown in Algorithm 8.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

13

The methodology begins with an initial population of sequences
denoted by P, as shown in step 1 of Algorithm 8. Each individual in the
population is a sequence of n number of jobs to be scheduled, denoted by
σ, as described in Section 4.1, which is generated using the procedure
described in Section 4.3. A Pareto-optimal front of the TWET-makespan
trade-off curves corresponding to the sequences of jobs in P is first
generated, which is denoted by A, as shown in step 2. A variable
neighbourhood search is then performed on each of the non-dominated
solutions in A in search of better solutions in the objective space, as

shown in steps 3–18. In the algorithm, the binary variable
visited flag(σ) ∈ {0,1} denotes whether each sequence σ ∈ A has been
subjected to the neighbourhood search or not. visited flag(σ), ∀σ ∈ A are
marked as unvisited initially, as shown in step 3.

Each iteration of the MOVNS algorithm begins with the random se
lection of an unvisited solution σ ∈ A as shown in step 5. Every time a
solution σ ∈ A is selected, visited flag(σ) is marked as visited. A set of
neighbourhood generation structures represented by NVNS ⊆ {N1, N2,

N3, N4, N5}, described in Section 4.4.1, have been employed in this

Algorithm 5
The MOIVND algorithm.

Algorithm 6
Perturbation phase in the MOIVND algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

14

algorithm, from which one structure is randomly selected in every
iteration of the search, denoted by Nk, as shown in step 7. All possible
neighbourhoods of σ ∈ A are then generated using Nk, and one of the
neighbourhood solutions generated is randomly selected for further
exploration, as shown in steps 8–9. Let M represent the set of all
neighbourhoods of σ ∈ A generated using Nk. A sequence σ ∈ M is
randomly selected, and all possible neighbourhoods of σ ∈ M are
generated using Nk. Let Mʹ denote the set of all neighbourhood solutions
hence generated. A Pareto-optimal front of all the sequences in Mʹ is
further generated, which is denoted by Aʹ, as shown in steps 10–12.

visited_flag(σ), ∀σ ∈ Aʹ is initialized as unvisited, as shown in step 13. The
Pareto-optimal front A is then updated with the non-dominated solu
tions in the Pareto-optimal front Aʹ, as shown in step 14. Once every σ ∈

A is visited, visited flag(σ) is marked as unvisited, as shown in steps
15–17. Steps 5–17 are repeated until the CPU TimeLimit is reached.

4.4.6. The MOVNS_I algorithm
We have adopted the multi-objective variable neighbourhood search

algorithm with intensification (MOVNS_I) presented in [74], as shown in
Algorithm 9. This method is an improvement over the basic MOVNS

Algorithm 7
Path relinking phase in the MOVND_PR algorithm.

Algorithm 8
The MOVNS algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

15

algorithm described in Section 4.4.5. Steps 1–12 and 17–19 of Algorithm
9 are similar to steps 1–12 and 15–17 of Algorithm 8. NIVNS ⊆ {N1, N2,

N3, N4,N5} represents the set of neighbourhood structures employed
for generating neighbourhoods in the MOVNS_I algorithm. In step 13 of
Algorithm 9, a job sequence σ ∈ Aʹ is randomly selected and subjected to
the intensification procedure as shown in Algorithm 4 of Section 4.4.2.

At the end of the intensification procedure, the sequences of jobs in Bʹ

replaces Aʹ́ as shown in step 14 of Algorithm 9. Further, the Pareto
optimal front A is updated with the non-dominated solutions from the
Pareto optimal fronts Aʹ and Aʹ́ as shown in step 16 of Algorithm 9.

4.4.7. The MOILS algorithm
We have adopted the multi-objective iterated local search (MOILS)

algorithm proposed in [73]. They implemented a Pareto-based local
search method to improve the solutions, which is essentially the same as
the intensification procedure proposed in [13] as described in Algorithm
4. However, the search depth d used in the intensification is varied
throughout the search process in the MOILS algorithm, unlike the
MOVNS algorithm described in the previous section, which uses a con
stant search depth. Further, the neighbourhood structure N6, which is an
improvement over the neighbourhood generation mechanism presented
in [73], as described in Section 4.4.1, is employed to generate the
neighbourhoods during intensification.

Algorithm 10 shows the MOILS procedure. It begins with the gen
eration of the Pareto-optimal front of the initial set of sequences of jobs
in P, which is denoted by A, as shown in step 2. A sequence σ ∈ A is then
randomly selected for exploration and subjected to the intensification
procedure with an initial search depth d0, as shown in steps 3–4. Let L
denote the set of improved solutions obtained as a result of intensifi
cation using d0, the non-dominated solutions of which update the
Pareto-optimal front A as shown in step 5. The binary variable
update flag ∈ {0,1

}
in the algorithm denotes whether the Pareto-

optimal front A has improved or not after each iteration of the local
search. Each iteration of the MOILS algorithm consists of a perturbation
and an intensification procedure, as shown in steps 7–25. A sequence σ ∈

A is randomly selected and perturbed using one random iteration of the
insertion neighbourhood generation N2 described in Section 4.4.1, as
shown in steps 8 and 11, respectively, in Algorithm 10. update flag is
initialized to true at the beginning of the iterated local search, as shown
in step 9. The search depth d is varied within the range 1–5 in consec
utive iterations of the local search, as shown in steps 12–16. The per
turbed sequence σʹ obtained at step 11 is subjected to an intensification
procedure with the updated search depth d, as shown in step 17. The
non-dominated solutions from the set L of improved solutions, hence
obtained, update the Pareto-optimal front A as shown in step 18.
Whenever an improved sequence σʹ is added to the Pareto-optimal front
A, σʹ replaces the current best solution σ as shown in step 20. The steps
11–23 are repeated until the Pareto-optimal front A has no improve
ment. Otherwise, the update flag is set as false, as shown in steps 21–23.
The procedure shown in steps 8–24 is repeated until the predefined limit
on the computation time (CPU TimeLimit) is reached.

5. Computational study

This section presents the computational study of the neighbourhood
search-based metaheuristic algorithms presented in this paper, using a
set of 24 problem instances with the number of jobs varying from 20 to
100. The algorithms were programmed in C language and run using the
Intel C++ Compiler version 2022.2.1 on a 2.6 GHz Intel Xeon Gold 6132
dual processor workstation with 28 cores, 128 GB RAM, and Linux OS.
The correctness of the C program of the proposed optimal timing algo
rithm (OTA) embedded within the metaheuristics was verified by
modelling and solving the mathematical formulation presented in Sec
tion 3, using IBM ILOG CPLEX ver 12.7.1 callable libraries [84]. The
decision variable relating to a fixed sequence of jobs

(
xij
)

was input into
the mixed integer linear programming (MILP) model and the solution
obtained using CPLEX (i.e., Ci, Ei, Ti) and their objective values were
compared with those obtained using the proposed OTA to verify the
results. The makespan values obtained at every breakpoint on the
TWET-makespan trade-off curve were input to the MILP model that

Algorithm 9
The MOVNS_I algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

16

calculates the corresponding optimal TWET to verify the correctness.
The neighbourhood generation procedure in the metaheuristic algo
rithms was parallelized for multi-core processing using OpenMP [85].
Since the arithmetic operations involving floating point variables in the
Pareto-optimal front generation method are prone to errors [63,86], the
related flag (-fp-model) was set to “strict” while compiling the code to
ensure the highest floating point precision. The flag relating to the
optimization level was set to 0 (i.e. -O0), which disables all forms of
optimization during the execution of the code.

This section first presents the procedure adopted from the literature
for the generation of test instances and the parameter settings used in
implementing the metaheuristic algorithms. Further, the performance
evaluation metrics used to compare the performance of the proposed
metaheuristic algorithms are presented. Subsequently, the performance
comparison of the metaheuristic algorithms using different performance
evaluation metrics is presented. Finally, a few insights from the
parameter settings using multiple trials of the best-performing algorithm
have been presented.

5.1. Generation of test instances

To the best of our knowledge, there exists no known benchmark data
in the literature for the multi-objective single machine scheduling
problem considered in this paper. Therefore, the problem instances were
generated using the procedure presented in [13]. Let n denote the
number of jobs selected from the set {20, 30, 40, 50, 75, 100}. The
processing time and the tardiness penalty for each job were uniformly

generated in the intervals [1, 100] and [20, 100], respectively and the
earliness penalty for each job was generated as k times the tardiness
penalty of the job, where k denotes a random number generated in the
interval [0,1]. The centre of the due window [dei, dti] corresponding to a
job i was uniformly generated in the interval [(1− T − RDD∕2) TP, (1− T
+RDD∕2)TP], where TP denotes the total processing time for all the jobs
in the sequence, T denotes the tardiness factor, and RDD denotes the
relative range of the due windows. The values of T and RDD are selected
respectively from the sets {0.1, 0.3} and {0.8, 1.2} and the sizes of the
due windows were distributed uniformly in the interval [1, TP∕n]. The
setup time Sii’ between each pair of jobs (i, i’): i ∕= i’, were uniformly
generated in the range [0,50]. For each n, 4 test instances were gener
ated with each pair of (T, RDD), thereby generating 4×6=24 problem
instances. The test instances follow the naming convention Pn_Tp_Rq,
where p and q denote the T and RDD values, respectively.

5.2. Parameter settings

The parameters in the metaheuristic algorithms were fine-tuned
through trials. The algorithms were run ten times for a selected set of
problem instances to find the best settings for each parameter. Subse
quently, to compare the performance of the algorithms, the parameter
values that delivered the best solution quality and computational effi
ciency on the selected set of instances were further used for the per
formance study, in which the algorithms were run ten times for each
problem instance. The best settings found for various parameters are
listed below.

Algorithm 10
The MOILS algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

17

• Parameters in the initial solution generation: The scaling parameters
k1 and k2 used in the heuristic methodology were randomly gener
ated in the range [1,10] to generate the initial solutions.

• Search depth in the MOVNS_I and MOVND algorithms: The search
depth d was set to 4 based on the settings used in the literature [74].

• Search depth in the MOILS algorithm: The initial search depth d = d0
was set to 5, and further, the search depth d varied between 1 and 5
cyclically with each iteration of the search [73].

• Perturbation parameter (perturb_iter) in the MOIVND algorithm: The
perturbation factor was set as perturb_iter=10.

• Dmax in the MOVND_PR algorithm: Dmax = 3
• Termination criterion: For all the algorithms, the termination crite

rion was set to CPU_TimeLimit = 50 x n seconds for n ∈{20,30} and
CPU_TimeLimit = 100 x n seconds for n ∈{40,50,75,100}, where n
denotes the number of jobs in the problem instance.

• Parameters in the neighbourhood generation: The best combination
of neighbourhood structures for NVND, NIVND,NVNS, NIVNS were
found to be NVND = {N1, N2, N3,N4,N5}, NIVND = NVNS = NIVNS =

{N1,N2,N3,N4}. For the neighbourhood generation in the MOVND,
MOIVND, MOVND_PR, MOVNS, MOVNS_I and MOILS algorithms,
the parameters set were: swap_limit = 30, shift_limit = 15, dshift_limit
= 15, tshift_limit = 15, enum_limit = 6. However, these limits, except
enum_limit, were not imposed on the neighbourhood generation of
the first seq_wl number of sequences of jobs in the Pareto-optimal
front, the reason for which is explained below.

The optimization of the TWET objective causes the jobs in the
schedule to be clustered around their corresponding earliest due dates to
minimize the earliness or tardiness penalties. This implies that the
optimization of TWET necessitates the generation of neighbourhoods
only within a range of job positions so that the job completion times are
in proximity to their respective earliest due dates. Therefore, during the
neighbourhood generation, swap_limit, shift_limit, dshift_limit, tshift_limit
and enum_limit are imposed on the corresponding neighbourhood gen
eration mechanisms that restrict the range of job positions in the se
quences within which the jobs can be repositioned. This limit on the
neighbourhood generation helps to minimize the computation time
required to generate neighbourhood solutions, their respective TWET-
makespan trade-off curves, and their Pareto-optimal front. However,
optimising the makespan necessitates more exploration of the solution
space, requiring the jobs to be repositioned to any position in the
sequence. As discussed in Section 4.2, the sequences of jobs corre
sponding to the non-dominated solutions on the Pareto-optimal front are
arranged in the increasing order of makespan values or the decreasing
order of TWET values. Therefore, the metaheuristic algorithms were
allowed to generate all possible neighbourhoods corresponding to the
first seq_wl sequences of jobs on the respective Pareto-optimal fronts
with no restrictions on the range of job positions in the sequence be
tween which the jobs can be repositioned, except the enum_limit. The
remaining sequences of jobs were subjected to the neighbourhood
generation using the limits (swap_limit, shift_limit, dshift_limit, tshift_limit
and enum_limit) to minimize the computational effort. The best value of
seq_wl was found to be 30 based on fine-tuning a selected set of test
instances.

5.3. Performance metrics

The literature discusses several performance metrics to compare the
solution sets generated by multi-objective optimization algorithms [87,
88]. Most of the metrics in the literature are proposed to compare
Pareto-optimal fronts, which are comprised of only points. However, the
Pareto-optimal fronts generated by the metaheuristic algorithms pre
sented in this paper comprise line segments and points. Therefore, we
have suitably adapted four performance metrics from the literature to
compare the Pareto-optimal fronts generated by the metaheuristic

algorithms, which are described as follows.

5.3.1. Hypervolume
Hypervolume is a performance metric that measures the area

enclosed between the non-dominated solution set, obtained by an
optimization algorithm whose efficiency is to be measured, and the
boundaries set on the objective values corresponding to a reference
point in the objective space. The calculation of hypervolume for a
Pareto-optimal front comprising points is described in [89]. We have
adapted their methodology to calculate the hypervolume for a
Pareto-optimal front comprising line segments and points.

Fig. 4(a) shows a Pareto-optimal front between two objectives
comprising line segments and points. In the figure, the solid line seg
ments and points represent the non-dominated solutions in the Pareto-
optimal front. Pref denotes the reference point, the intercepts from
which generate the boundaries on the axes corresponding to the bi-
objectives, as shown by the dotted lines in Fig. 4(a). The hatched area
enclosed by these boundaries and the Pareto-optimal front represents
the hypervolume achieved by the Pareto-optimal front. To calculate the
hypervolume, the area enclosed is obtained by dividing the hatched area
into rectangles and triangles, as shown in Fig. 4(b), and then adding up
their areas. For each problem instance, the metaheuristic algorithm
achieving the highest value of hypervolume is the best in terms of
convergence [90].

5.3.2. Averaged hausdorff distance
While evaluating the effectiveness of optimization algorithms, in

addition to Pareto-optimality, several other aspects determine the
quality of the approximation, such as convergence, spread and distri
bution [91]. Averaged Hausdorff distance is a widely used performance
metric that measures these three aspects concurrently. It is an averaged
measure of two other performance metrics, namely generational dis
tance and inverted generational distance, originally proposed for
comparing Pareto-optimal fronts comprising points [92]. In this paper,
the Pareto-optimal fronts comprising line segments and points have
been discretized into points to adopt this metric.

Generational distance (GD) was first proposed in [93] to determine
the efficiency of multi-objective evolutionary algorithms. It measures
the closeness of a Pareto-optimal front comprising points to a known
true Pareto-optimal front. Let P denote the Pareto optimal front obtained
by a metaheuristic algorithm whose efficiency is to be evaluated, and Q
denote the known true Pareto-optimal front. Then, the generational
distance is calculated as [92]

GDp(P,Q) =

(∑|P|
i=1dist(pi,Q)

p
)1

p

|P|
(17)

where |P| denotes the number of non-dominated solutions on P, and
dist(pi,Q) denotes the Euclidean distance between each solution point pi
on P and the nearest point to pi on Q. In this paper, the known true Pareto
front Q termed the reference Pareto, is the Pareto-optimal front of the
Pareto fronts generated by all the runs of all the employed metaheuristic
algorithms. The GD is then calculated between the discretized Q and the
discretized Pareto-optimal front generated in each run of the meta
heuristic algorithms. The gaps between the line segments and points in Q
are interpolated with points while discretizing them.

A minimum value of GD implies that the algorithm has a better
convergence to Q [91,94]. However, this metric is largely influenced by
outliers as it measures only the convergence of the solutions and not the
coverage [89,91]. This means that a few outliers on P will increase GD,
making the algorithm appear inferior even if it has found a substantial
number of optimal solutions. To overcome the limitations of GD,
inverted generational distance (IGD) was proposed in [95]. IGD is a
metric similar to GD, except that P and Q are interchanged in Eq. (17) as
[92]

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

18

IGDp(Q,P) =

(∑|Q|

i=1dist(qi, P)p
)1

p

|Q|
(18)

where |Q| denotes the number of non-dominated solutions on Q, and
dist(qi,P) denotes the Euclidean distance between each solution point qi
on Q and the nearest point to qi on P. This metric ensures that the spread
and distribution aspects are accounted for, apart from the convergence
of the Pareto fronts, while comparing them for parity [91]. Moreover,
IGD is not affected by outliers as much as it affects GD because it av
erages the distance between all the points on the reference Pareto front
to their corresponding nearest points on the Pareto fronts generated by
the metaheuristic algorithms, hence reducing the effect of a single
outlier [92,96]. However, both GD and IGD consider only a unidirec
tional perspective and, are influenced by outliers on P and Q, respec
tively, to some extent that neither of them can address the worst-case
scenario [91]. To address this limitation, Schutze et al. [92] proposed
the averaged Hausdorff distance metric that combines the GD and IGD
metrics to incorporate a bidirectional perspective. Averaged Hausdorff
distance (HD) is calculated as [92]

HD(P,Q) = max
(
GDp(P,Q), IGDp(Q,P)

)
(19)

where larger p values indicate larger penalties for outliers [91]. In this
paper, we have chosen the value of p as 1 [91,96]. The algorithm that
results in the least value of HD, corresponding to each problem instance,
is the one that is capable of finding the nearest optimal solutions to the
reference Pareto-optimal front.

5.3.3. Diversity metric
The diversity metric determines the maximum spread of the non-

dominated solutions on the Pareto-optimal front. The diversity metric
(DM) or Zitzler’s M∗

3 metric for Pareto fronts comprising only points is
calculated as [87,89]

M∗
3(KP) =

̅̅̅
∑m

i=1
max

j∈{1,2,…,|KP |}
max

k∈KP\{kj}

⃒
⃒
⃒
⃒kj − k

⃒
⃒
⃒
⃒

√
√
√
√ (20)

where m denotes the number of objectives, KP denotes the set of points
on a Pareto front and ||kj − k|| is the distance between two solutions
(points) kj and k on the Pareto-optimal front. We have suitably adapted
this metric to calculate the maximum spread of non-dominated solutions
on a Pareto-optimal front comprising line segments and points, as shown
in Eq. (21).

M∗
3(KL) =

̅̅
∑m

i=1
max

j∈{1,2,…,|KL |}
max

kl∈KL\{kj}

{
Kjl
}

√
√
√
√ (21)

where Kjl =

⎧
⎨

⎩

⃒
⃒
⃒

⃒
⃒
⃒kj

1i − kl
2i

⃒
⃒
⃒

⃒
⃒
⃒; l > j

⃒
⃒
⃒

⃒
⃒
⃒kl

1i − kj
2i

⃒
⃒
⃒

⃒
⃒
⃒; l < j

In Eq. (21), KL denotes the set of line segments and points on a Pareto
front, kj and kl represents two non-dominated line segments on KL, the

coordinates of which are represented as
(

kj
11, k

j
12

)
,
(

kj
21, k

j
22

)
and

(
kl

11,

kl
12

)
,
(

kl
21,kl

22

)
, respectively. A point is considered as a line segment with

the same end points. The distance Kjl between the line segments kj and kl

is measured as the distance between the first endpoint of one of the line
segments and the second endpoint of the other. The M∗

3 metric in effect
measures the difference in the objective values of the extremal solutions
on KL, and hence the maximum spread [87]. A higher value of DM in
dicates that the non-dominated solutions on the Pareto-optimal front are
more diverse. Therefore, the metaheuristic algorithm that achieves the

Fig. 4. Calculation of hypervolume for a Pareto-optimal front comprising line segments and points.

Fig. 5. Calculation of Δ metric for a Pareto-optimal front comprising line
segments and points.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

19

highest value of DM is considered the best concerning solution diversity.

5.3.4. Distribution (Δ) metric
The Δ metric measures how uniformly the non-dominated solutions

are spread on the Pareto-optimal fronts [97]. The Δ metric is calculated
as [87]

Δ = max
j∈{1,…,m}

(
δj,0 + δj,|P| +

∑|P|− 1
i=1

⃒
⃒δj,i − δj

⃒
⃒
)

(
δj,0 + δj,|P| + (|P| − 1)δj

) (22)

where m denotes the number of objectives, |P| denotes the number of
non-dominated solutions on the Pareto optimal front, δj ∀j = 1,…,m
denotes the average of all the deviations in the jth objective δj,i ∀i = 1,…,

|P| − 1 between consecutive points on the Pareto-optimal front and δj,0

and δj,|P| denote the deviations in the jth objective between the reference
points and the solution points at the corresponding extreme ends of the
Pareto optimal front, as shown in Fig. 5. We have suitably adapted this
metric to measure uniformity in the distribution of non-dominated so
lutions on Pareto-optimal fronts comprising line segments and points. In
Fig. 5, δ1,i and δ2,i ∀i = 1,…, |P| − 1 denotes the deviations in the
makespan and TWET objectives, respectively, between consecutive line
segments or points on the Pareto-optimal front. The Δ metric for the
Pareto-optimal front comprising line segments and points is then
calculated by substituting the values of these deviations in Eq. (22).

A smaller value of Δ indicates that the non-dominated solutions are
uniformly distributed on the Pareto-optimal front [87]. Hence, the al
gorithm that achieves the lowest value of Δ provides the most uniformly
distributed solutions on the Pareto-optimal front.

5.4. Performance comparison

Tables 2 and 3 show the average values of the metrics obtained for
the Pareto-optimal fronts generated in ten runs for each of the 24
problem instances using the metaheuristic algorithms. Since the per
formance metrics obtained with each metaheuristic algorithm are large,
we have reported the percentage deviations of the average metric values
from the best average metric value obtained with all the employed al
gorithms for each problem instance. The percentage deviation of a
metric M, denoted by M(%) for ten runs of a problem instance using an
algorithm k is calculated as

M(%) =

(
Mbest

avg − Mk
avg

Mbest
avg

)

x100 (23)

where Mk
avg denotes the average value of the metric M obtained for ten

runs of the algorithm k, and Mbest
avg denotes the best average value of the

metric M achieved among all the algorithms. A percentage deviation of
metric M close to 0 obtained by algorithm k indicates that algorithm k is
the most efficient among all the employed metaheuristic algorithms
corresponding to the metric M. The more the positive or negative per
centage deviations in metric M from 0, the inferior is the algorithm k
corresponding to metric M.

The performance of the neighbourhood search-based methodologies
presented in this paper has also been compared with that of a hybrid
multi-objective particle swarm optimization and Genetic algorithm
(MOPSO-GA) adopted from the literature [39]. The MOPSO-GA algo
rithm, which is a population-based metaheuristic algorithm, does not
require a crowding distance or a region-based selection technique as
part of its procedure. The methodology begins with an initial population
subjected to a fitness evaluation. A global best archive, g-best stores the
solutions with the best fitness, eliminating the dominated solutions in
the archive. In the process, whenever the size of the archive exceeds its
limit, the ε-dominated solutions are eliminated from the archive. Each
solution also has a personal best archive p-best updated by a similar
procedure. Each solution in the population is updated with a randomly Ta

bl
e

2
Co

m
pa

ri
so

n
of

 h
yp

er
vo

lu
m

e
an

d
av

er
ag

ed
 H

au
sd

or
ff

di
st

an
ce

 o
bt

ai
ne

d
w

ith
 th

e
m

et
ah

eu
ri

st
ic

 a
lg

or
ith

m
s.

M
et

ri
cs

H
yp

er
vo

lu
m

e
(%

 d
ev

ia
tio

n
fr

om
 th

e
be

st
 a

ve
ra

ge
 v

al
ue

)
A

ve
ra

ge
d

H
au

sd
or

ff
D

is
ta

nc
e(

%
 d

ev
ia

tio
n

fr
om

 th
e

be
st

 a
ve

ra
ge

 v
al

ue
)

Sl
.N

o.
N

o.
of

 jo
bs

Pr
ob

le
m

 in
st

an
ce

M
O

VN
D

M
O

IV
N

D
M

O
VN

D
_P

R
M

O
VN

S
M

O
VN

S_
I

M
O

IL
S

M
O

PS
O

-G
A

M
O

VN
D

M
O

IV
N

D
M

O
VN

D
_P

R
M

O
VN

S
M

O
VN

S_
I

M
O

IL
S

M
O

PS
O

-G
A

1
20

P2
0_

T0
.1

_R
0.

8
1.

31
5

0
0.

16
8

1.
58

6
0.

94
3

1.
04

3
4.

94
7

−
86

2.
6

0
−

23
.7

−
77

1.
8

−
67

2.
0

−
72

4.
4

−
55

3.
5

2
20

P2
0_

T0
.1

_R
1.

2
1.

65
9

0
0.

01
3

1.
62

4
1.

07
4

1.
80

7
5.

41
7

−
44

6.
5

0
−

0.
6

−
39

4.
1

−
21

2.
5

−
39

0.
1

−
65

1.
9

3
20

P2
0_

T0
.3

_R
0.

8
4.

38
5

0
0.

01
1

4.
76

9
3.

54
6

3.
26

0
12

.2
20

−
10

05
.9

0
−

7.
6

−
89

7.
6

−
78

0.
2

−
52

2.
5

−
87

1.
9

4
20

P2
0_

T0
.3

_R
1.

2
2.

68
7

0
0.

12
7

3.
30

9
2.

61
4

2.
35

4
12

.2
47

−
10

8.
8

0
−

12
.5

−
45

.7
−

10
8.

0
−

77
.8

−
33

0.
2

5
30

P3
0_

T0
.1

_R
0.

8
1.

81
1

0
0.

21
3

1.
85

0
1.

97
9

4.
72

8
8.

88
0

−
12

2.
8

0
−

30
.6

−
99

.2
−

25
4.

8
−

31
3.

5
−

51
2.

8
6

30
P3

0_
T0

.1
_R

1.
2

1.
89

4
0

0.
02

8
1.

15
1

1.
58

5
3.

67
8

5.
48

3
−

21
8.

6
0

−
11

.9
−

91
.3

−
19

9.
0

−
58

4.
8

−
45

4.
6

7
30

P3
0_

T0
.3

_R
0.

8
3.

32
6

0
0.

74
2

4.
40

3
4.

00
8

6.
57

6
19

.7
65

−
19

0.
8

0
−

70
.2

−
17

7.
5

−
91

.6
−

12
9.

2
−

25
8.

9
8

30
P3

0_
T0

.3
_R

1.
2

2.
69

9
0

0.
31

7
2.

11
0

1.
51

6
5.

51
8

10
.3

66
−

11
5.

5
−

10
.8

0
−

14
5.

3
−

64
.3

−
23

8.
9

−
21

9.
7

9
40

P4
0_

T0
.1

_R
0.

8
1.

93
4

0
0.

27
7

1.
72

7
1.

56
9

5.
60

6
9.

07
3

−
14

0.
5

−
21

.8
0

−
25

2.
7

−
22

9.
8

−
69

4.
0

−
30

5.
1

10
40

P4
0_

T0
.1

_R
1.

2
1.

87
5

0
0.

17
6

1.
51

5
1.

92
9

6.
61

1
8.

28
4

−
18

2.
1

0
−

10
.9

−
12

4.
6

−
24

3.
8

−
35

7.
7

−
19

1.
6

11
40

P4
0_

T0
.3

_R
0.

8
3.

66
4

0
0.

71
0

5.
31

1
4.

46
5

10
.2

56
17

.4
88

−
45

6.
2

0
−

25
.9

−
28

8.
5

−
20

0.
5

−
66

8.
1

−
39

2.
9

12
40

P4
0_

T0
.3

_R
1.

2
4.

24
2

0
0.

36
1

3.
76

1
6.

73
4

10
.7

88
18

.6
53

−
22

3.
1

0
−

2.
7

−
15

8.
9

−
24

4.
3

−
33

1.
2

−
39

2.
4

13
50

P5
0_

T0
.1

_R
0.

8
4.

01
1

0
0.

10
7

3.
54

6
3.

91
1

12
.7

68
14

.5
68

−
32

4.
3

−
24

.6
0

−
29

0.
7

−
17

3.
0

−
68

6.
2

−
30

7.
3

14
50

P5
0_

T0
.1

_R
1.

2
1.

76
1

0
0.

19
2

1.
68

6
0.

00
0

8.
47

2
9.

85
2

−
21

2.
2

0
−

72
.3

−
45

2.
0

−
31

3.
5

−
93

9.
9

−
60

5.
8

15
50

P5
0_

T0
.3

_R
0.

8
7.

97
8

0
0.

76
8

8.
43

7
7.

99
0

18
.6

75
34

.7
15

−
52

0.
2

0
−

70
.1

−
31

4.
2

−
35

2.
9

−
64

0.
7

−
40

5.
3

16
50

P5
0_

T0
.3

_R
1.

2
4.

12
7

0
0.

09
5

3.
58

4
4.

12
3

12
.6

68
17

.5
07

−
28

4.
1

−
61

.8
0

−
12

0.
1

−
26

5.
5

−
89

4.
6

−
84

6.
0

17
75

P7
5_

T0
.1

_R
0.

8
1.

86
1

0
0.

11
0

2.
34

1
1.

99
5

9.
56

2
11

.7
97

−
10

5.
3

0
−

9.
9

−
21

3.
4

−
20

4.
2

−
62

0.
9

−
61

2.
8

18
75

P7
5_

T0
.1

_R
1.

2
1.

98
6

0
0.

08
9

1.
94

5
2.

07
5

10
.8

56
10

.8
70

−
46

.9
0

−
32

.1
−

21
7.

6
−

19
3.

3
−

11
97

.5
−

70
7.

3
19

75
P7

5_
T0

.3
_R

0.
8

4.
40

8
0

0.
28

3
4.

09
6

4.
12

2
14

.2
93

19
.8

95
−

22
0.

7
0

−
23

.0
−

19
3.

4
−

36
2.

4
−

10
29

.1
−

47
9.

2
20

75
P7

5_
T0

.3
_R

1.
2

4.
56

2
0.

09
2

0
4.

16
3

4.
21

7
16

.0
85

20
.4

56
−

29
9.

8
−

32
.3

0
−

29
8.

3
−

32
9.

0
−

12
31

.4
−

11
41

.3
21

10
0

P1
00

_T
0.

1_
R0

.8
1.

85
7

0
0.

02
9

2.
93

8
2.

83
3

14
.4

45
14

.5
78

−
17

4.
6

0
−

8.
9

−
14

5.
1

−
17

9.
7

−
71

1.
1

−
69

0.
9

22
10

0
P1

00
_T

0.
1_

R1
.2

1.
44

9
0.

03
8

0
2.

03
2

2.
50

5
12

.9
56

12
.4

20
−

21
.5

0
−

41
.0

−
11

0.
2

−
21

2.
5

−
72

4.
0

−
34

1.
5

23
10

0
P1

00
_T

0.
3_

R0
.8

4.
26

8
0

0.
07

2
5.

14
0

4.
57

6
21

.4
37

26
.4

18
−

14
3.

6
0

−
40

.1
−

13
6.

5
−

22
9.

8
−

42
2.

7
−

21
4.

7
24

10
0

P1
00

_T
0.

3_
R1

.2
3.

60
7

0.
05

8
0

4.
06

1
4.

25
5

17
.5

45
21

.8
09

−
85

.9
−

16
.2

0
−

17
0.

7
−

20
9.

9
−

95
0.

2
−

88
5.

1
A

ve
ra

ge
3.

05
7

0.
00

8
0.

20
4

3.
21

2
3.

10
7

9.
66

6
14

.4
88

−
27

1.
3

−
7.

0
−

20
.6

−
25

4.
6

−
26

3.
6

−
62

8.
4

−
51

5.
5

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

20

selected solution from its p-best archive and the g-best archive using the
crossover and mutation operations. The new solutions generated are
used to update the g-best and p-best archives. This process of randomly
selecting solutions from the g-best and p-best archives, subjecting them to
crossover and mutation, and using the new solutions to update the ar
chives is repeated until the stopping criterion (CPU_TimeLimit) is met.
Tables 2 and 3 show the results obtained with the MOPSO-GA algorithm
alongside the neighbourhood search metaheuristics presented in this
paper.

Table 2 shows the percentage deviation of the hypervolume and the
averaged Hausdorff distance values obtained with the metaheuristic
algorithms. For all the problem instances with up to 50 jobs and most of
the problem instances with 75 and 100 jobs, the MOIVND algorithm has
the lowest percentage deviation from the best average hypervolume
achieved among all the algorithms. This indicates that the MOIVND
algorithm has the best convergence compared to the other metaheuristic
algorithms presented in this paper. Table 2 also shows that for most
problem instances, the MOIVND algorithm has the least percentage
deviation from the best averaged Hausdorff distance achieved among all
the algorithms. Hence, among the employed metaheuristic algorithms,
MOIVND is the algorithm capable of finding the Pareto-optimal solu
tions closest to the non-dominated solutions on the reference Pareto-
optimal front.

Table 3 shows the percentage deviations of the diversity metric and
the distribution metric values obtained with the metaheuristic algo
rithms. The values obtained by the algorithms for the diversity metric for
most problem instances indicate that the MOIVND algorithm has the
least percentage deviation from the best average diversity metric value
achieved among all the algorithms. This reveals that the MOIVND al
gorithm performs better than all the other metaheuristic algorithms
presented in providing the most diverse solutions. Table 3 also shows the
percentage deviations of the distribution metric obtained with the
employed metaheuristic algorithms. It can be observed that the
MOIVND algorithm has a large percentage deviation from the best
average value of the distribution metric obtained among all the algo
rithms. This indicates that the solutions provided by the MOIVND al
gorithm are not uniformly spaced on the Pareto-optimal front. However,
the percentage deviations in the hypervolume, the averaged Hausdorff
distance and the diversity metric achieved by the MOIVND algorithm
indicate that the MOIVND algorithm is superior to the other algorithms.

Fig. 6 shows the Pareto-optimal fronts comprising non-dominated
line segments and points obtained by each of the metaheuristic algo
rithms with different problem instances of 40, 50, 75 and 100 jobs. The
graphs reveal that the MOPSO-GA algorithm performs far inferior to the
other algorithms. The graphs also reveal that the distribution and
spacing of the non-dominated solutions obtained with all the algorithms
are uniform and smaller in the lower part of the Pareto-optimal front
with better TWET values. The spacing and distribution become larger
and coarser in the upper part of the Pareto-optimal front with better
makespan values. The graphs also reveal that all the algorithms show a
similar level of convergence in the lower part of the Pareto-optimal
front. The upper part of the Pareto-optimal fronts shows that the
MOIVND and MOVND_PR algorithms perform relatively better in solu
tion quality. Since optimizing the makespan objective requires higher
exploration in the sequences of jobs compared to the TWET objective,
which was discussed in Section 5.2, the perturbation phase in the
MOIVND algorithm can be attributed to its better performance in the
upper part of the Pareto-optimal front, which allows it to escape the
local minima and subsequently find improved solutions in the suc
ceeding improvement phase. The influence of the parameters, pertur
b_iter and seq_wl, used in the MOIVND algorithm is presented in Section
5.6.

5.5. Non-parametric statistical analysis

Non-parametric statistical tests are statistical methods used to Ta
bl

e
3

Co
m

pa
ri

so
n

of
 d

iv
er

si
ty

 m
et

ri
c

an
d

di
st

ri
bu

tio
n

m
et

ri
c

ob
ta

in
ed

 w
ith

 th
e

m
et

ah
eu

ri
st

ic
 a

lg
or

ith
m

s.

M
et

ri
cs

D
iv

er
si

ty
 m

et
ri

c
(%

 d
ev

ia
tio

n
fr

om
 th

e
be

st
 a

ve
ra

ge
 v

al
ue

)
D

is
tr

ib
ut

io
n

m
et

ri
c

(%
 d

ev
ia

tio
n

fr
om

 th
e

be
st

 a
ve

ra
ge

 v
al

ue
)

Sl
.N

o.
N

o.
of

 jo
bs

Pr
ob

le
m

 in
st

an
ce

M
O

VN
D

M
O

IV
N

D
M

O
VN

D
_P

R
M

O
VN

S
M

O
VN

S_
I

M
O

IL
S

M
O

PS
O

-G
A

M
O

VN
D

M
O

IV
N

D
M

O
VN

D
_P

R
M

O
VN

S
M

O
VN

S_
I

M
O

IL
S

M
O

PS
O

-G
A

1
20

P2
0_

T0
.1

_R
0.

8
27

.4
63

0
2.

02
7

26
.0

47
23

.9
28

25
.0

02
21

.3
77

−
0.

05
9

−
2.

77
6

−
3.

08
4

0
−

0.
43

4
−

0.
30

7
−

1.
29

2
2

20
P2

0_
T0

.1
_R

1.
2

20
.5

03
0

0.
00

0
19

.5
47

12
.9

06
19

.0
66

24
.8

83
0

−
1.

57
4

−
1.

49
3

−
0.

33
6

−
0.

90
1

−
0.

34
5

−
0.

30
4

3
20

P2
0_

T0
.3

_R
0.

8
23

.3
91

0
0.

61
1

21
.0

72
19

.0
84

13
.3

06
20

.5
95

−
0.

30
5

0
−

0.
00

1
−

0.
27

2
−

0.
30

5
−

0.
27

9
−

1.
12

3
4

20
P2

0_
T0

.3
_R

1.
2

29
.6

86
0

2.
50

5
20

.5
76

34
.7

24
24

.0
40

36
.7

99
−

1.
36

9
0

−
0.

24
3

−
0.

95
4

−
0.

56
8

−
0.

44
3

−
2.

35
9

5
30

P3
0_

T0
.1

_R
0.

8
15

.0
90

0
3.

48
6

14
.6

29
18

.5
41

20
.0

37
25

.5
92

−
1.

31
8

−
4.

32
1

−
2.

88
5

−
1.

52
6

−
0.

36
2

−
1.

55
4

0
6

30
P3

0_
T0

.1
_R

1.
2

4.
46

7
3.

91
1

3.
91

1
0.

66
5

1.
01

7
7.

37
1

0
−

1.
55

0
0

−
0.

33
4

−
2.

88
8

−
3.

26
5

−
1.

11
8

−
5.

01
3

7
30

P3
0_

T0
.3

_R
0.

8
26

.2
17

1.
37

6
0

27
.3

80
21

.3
09

24
.6

78
28

.3
07

−
0.

25
4

−
4.

41
9

−
6.

59
7

−
0.

05
5

−
0.

10
2

0
−

0.
55

7
8

30
P3

0_
T0

.3
_R

1.
2

6.
02

1
1.

33
6

0
8.

66
1

4.
51

2
13

.3
28

12
.2

85
−

2.
08

6
−

0.
93

0
−

1.
08

2
0

−
1.

46
4

−
0.

66
7

−
0.

10
5

9
40

P4
0_

T0
.1

_R
0.

8
5.

41
8

0
1.

10
4

5.
82

6
6.

29
7

11
.7

70
7.

95
6

−
1.

67
3

−
2.

82
1

−
2.

33
5

−
1.

15
0

−
1.

27
3

0
−

1.
88

5
10

40
P4

0_
T0

.1
_R

1.
2

11
.5

54
1.

50
7

0
7.

75
3

11
.4

22
13

.8
17

8.
31

0
0

−
4.

59
4

−
4.

94
4

−
1.

51
5

−
0.

21
5

−
0.

32
3

−
4.

85
3

11
40

P4
0_

T0
.3

_R
0.

8
20

.7
04

5.
89

4
0

15
.0

16
16

.1
39

26
.4

06
18

.6
19

−
0.

98
5

−
3.

48
4

−
5.

49
7

−
3.

76
5

−
1.

71
1

0
−

3.
22

5
12

40
P4

0_
T0

.3
_R

1.
2

13
.0

39
0

0.
26

3
9.

36
3

13
.8

99
17

.2
26

21
.3

73
−

0.
57

0
−

3.
38

0
−

3.
58

4
−

1.
12

2
−

0.
40

1
−

1.
49

4
0

13
50

P5
0_

T0
.1

_R
0.

8
10

.3
07

0
2.

45
3

9.
49

4
6.

40
5

14
.2

84
12

.8
38

−
0.

61
1

−
3.

97
5

−
2.

30
1

−
0.

80
0

−
2.

90
1

0
−

0.
72

1
14

50
P5

0_
T0

.1
_R

1.
2

4.
46

7
0

0.
53

7
8.

62
6

4.
05

7
14

.0
94

12
.1

68
−

4.
17

5
−

5.
75

2
−

5.
24

1
−

1.
10

9
−

5.
70

8
−

0.
67

1
0

15
50

P5
0_

T0
.3

_R
0.

8
32

.1
26

0
9.

53
5

23
.8

85
25

.1
18

37
.0

89
33

.3
61

0
−

6.
82

0
−

3.
96

6
−

1.
81

9
−

1.
48

2
−

2.
46

2
−

4.
34

4
16

50
P5

0_
T0

.3
_R

1.
2

13
.2

50
0

4.
33

1
7.

82
1

10
.8

47
23

.0
54

25
.4

46
−

1.
85

7
−

3.
95

9
0

−
2.

18
5

−
3.

25
4

−
1.

44
7

−
0.

75
9

17
75

P7
5_

T0
.1

_R
0.

8
4.

34
9

0
2.

52
6

6.
93

9
6.

91
6

14
.0

10
16

.7
12

−
5.

25
7

−
6.

38
6

−
5.

35
7

−
3.

25
7

−
4.

58
2

−
3.

59
3

0
18

75
P7

5_
T0

.1
_R

1.
2

1.
53

1
0

0.
71

8
7.

02
2

6.
17

1
14

.7
03

14
.0

73
−

3.
54

8
−

4.
23

2
−

3.
39

0
−

1.
64

5
−

1.
89

0
−

0.
15

5
0

19
75

P7
5_

T0
.3

_R
0.

8
10

.2
13

0
2.

37
5

13
.4

71
15

.1
59

23
.9

08
20

.1
61

−
4.

83
6

−
5.

66
1

−
3.

44
7

−
0.

57
8

−
3.

59
8

−
3.

85
1

0
20

75
P7

5_
T0

.3
_R

1.
2

10
.6

78
0.

81
0

0
7.

51
4

9.
52

6
27

.7
94

29
.6

55
−

2.
46

7
−

2.
21

2
−

1.
20

9
−

1.
87

5
−

2.
09

6
−

3.
18

6
0

21
10

0
P1

00
_T

0.
1_

R0
.8

4.
93

7
0

0.
44

6
8.

00
5

6.
40

7
13

.2
62

18
.6

38
−

5.
31

7
−

7.
07

4
−

6.
42

9
−

3.
36

2
−

4.
42

0
−

4.
22

1
0

22
10

0
P1

00
_T

0.
1_

R1
.2

29
.7

15
29

.4
79

30
.1

14
32

.8
28

34
.9

41
0

37
.4

83
−

5.
06

0
−

4.
70

2
−

3.
87

8
−

3.
04

5
−

2.
58

9
0

−
0.

45
4

23
10

0
P1

00
_T

0.
3_

R0
.8

13
.0

19
0

5.
08

0
15

.3
43

19
.4

57
31

.4
12

24
.7

89
−

6.
91

3
−

9.
59

3
−

6.
99

2
−

3.
42

1
−

3.
98

1
−

5.
81

1
0

24
10

0
P1

00
_T

0.
3_

R1
.2

3.
01

4
2.

85
4

0
8.

73
6

6.
88

3
25

.5
88

27
.6

19
−

6.
10

6
−

5.
51

6
−

4.
87

9
−

5.
36

9
−

5.
36

2
−

7.
76

9
0

A
ve

ra
ge

14
.2

15
1.

96
5

3.
00

1
13

.5
93

13
.9

86
18

.9
69

20
.7

93
−

2.
34

6
−

3.
92

4
−

3.
29

9
−

1.
75

2
−

2.
20

3
−

1.
65

4
−

1.
12

5

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

21

analyze data that do not have a specific distribution [98]. To enhance
the interpretability of the performance metrics obtained for the meta
heuristic algorithms presented in this paper, we have subjected the
metric data to a widely used non-parametric statistical test known as the
Friedman test. The test has been performed on the hypervolume and the
averaged Hausdorff distance metrics to analyze whether the perfor
mance of the metaheuristic algorithms differs significantly from each
other in terms of the two metrics [99]. The Friedman test evaluates the
null hypothesis (H0) that there are no significant differences between
the performance of the algorithms. The alternate hypothesis (Ha) is that
at least one of the algorithms performs significantly differently from the
others. A statistical measure p-value, calculated based on the ranks ob
tained by the algorithms in the tests, is used to interpret whether sig
nificant differences exist in the performance of the algorithms [98]. A
p-value less than the significance level α (typically 0.05) rejects the null
hypothesis, implying that significant differences exist between the per
formance of the algorithms. A significance level of 0.05 implies a 5 %
risk of concluding that there are significant differences between the
performance of the algorithms when there are none [100].

Table 4 shows the average ranks of the metaheuristic algorithms
obtained for multiple problem instances corresponding to the hyper
volume and the averaged Hausdorff distance metrics and the statistics
and p-values obtained by the Friedman test, computed with 5 degrees of
freedom, using the CONTROLTEST package available for download at
https://sci2s.ugr.es/sicidm [98]. Table 4 shows that the MOIVND al
gorithm has obtained the lowest rank among all the metaheuristic al
gorithms in terms of both the hypervolume and averaged Hausdorff
distance metrics, indicating that the MOIVND algorithm is the
best-performing algorithm followed by the MOVND_PR algorithm.
Further, the p-values obtained corresponding to both metrics are less
than 0.05, indicating strong evidence against the null hypothesis. This
implies that at least one of the metaheuristic algorithms presented in this
paper has performed significantly better than the others. Further, to
control the risk of obtaining significant results due to random odds, we
performed several post-hoc tests, namely the Holm, Hommel, Rom,
Finner and Li tests, to adjust the p-values obtained by the initial Fried
man test, considering the MOIVND algorithm as the control method
[98]. The best-performing algorithm identified by the Friedman test is
known as the control method. The unadjusted p-values obtained by the
Friedman test and the corresponding adjusted p-values obtained with
the post-hoc test procedures, corresponding to the hypervolume and
averaged Hausdorff distance metrics, are shown in Tables 5 and 6,
respectively.

Tables 5 and 6 show that the unadjusted p-value obtained corre
sponding to the hypervolume and averaged Hausdorff distance metric
for all the algorithms except the MOVND_PR algorithm is less than 0.05.
This indicates that the MOIVND algorithm performs significantly better
than all the algorithms presented in this paper except the MOVND_PR
algorithm. The adjusted p-values obtained by the post-hoc procedures
denoted by pHolm, pHomm, pRom, pFinn, and pLi, respectively, in Tables 5 and
6 also imply that the performance of the MOIVND algorithm is not
significantly different from the MOVND_PR algorithm but is signifi
cantly better than the remaining algorithms. Therefore, the statistical
analysis performed on the metric data obtained for the algorithms

Fig. 6. Pareto-optimal fronts generated by the presented metaheuristic algorithms for four problem instances of different sizes.

Table 4
Ranks, statistics and related p-values achieved by the Friedman test in terms of
the hypervolume and averaged Hausdorff distance metrics.

Metaheuristic
algorithms

Average Friedman test rankings for the algorithms

Hypervolume
metric

Averaged Hausdorff distance
metric

MOVND 4.0833 4.5416
MOIVND 1.1249 1.2500
MOVND_PR 1.8749 1.7916
MOVNS 4.1250 4.0000
MOVNS_I 4.1249 4.2916
MOILS 5.7083 6.2916
MOPSO-GA 6.9583 5.8333
Statistic 125.9464 110.2142
p-value 5.62E-11 9.94E-11

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

22

https://sci2s.ugr.es/sicidm

undoubtedly indicates that the MOIVND algorithm is the best-
performing algorithm, followed by the MOVND_PR algorithm with a
significance level of 0.05. Further, the p-values obtained for the MOILS
and MOPSO-GA algorithms corresponding to both the performance
metrics are relatively very much below the significance level, which
implies that the MOILS and MOPSO-GA algorithms are the worst-
performing algorithms among the metaheuristic algorithms presented
in this paper.

5.6. Influence of the parameters used in MOIVND

Fig. 7 shows the influence of the parameters k1 and k2 in the initial
solution generation on the performance of the MOIVND algorithm for
the problem instances P50_T0.1_R0.8 and P75_T0.1_R0.8 with 50 and 75
jobs, respectively. Various fixed pairs of values for k1 and k2, as well as
random values of k1 and k2 generated within different value ranges,
were experimented with, as represented on the x-axis of the graphs in
the figure. For instance, F1,5 on the x-axis denotes that the constant
values 1 and 5 were assigned to k1 and k2, respectively. Similarly, (R1,
R2) on the x-axis denotes that k1 and k2 were randomly generated over
the value ranges denoted by R1 and R2, representing the ranges 1 to 5
and 1 to 10, respectively. The best (BEST) and average (AVG) values of
the ten runs obtained for the hypervolume metric for each pair of k1 and
k2 are shown in the graphs. The graphs reveal that the BEST and AVG
values of hypervolume are relatively higher when both k1 and k2 are
randomly generated in the range R2, for both problem instances. Rela
tively closer values of hypervolume are also obtained when k1 and k2 are

assigned fixed values of 10 and 5, respectively, as shown in the graphs.
Generating k1 and k2 over a range of values is preferred over fixed values
since a multi-objective optimization problem requires experimenting
with all possible combinations of input sequences. Therefore, selecting a
suitable range of values in which the two parameters of the initial
population generation are randomly generated is significant in the
performance of the MOIVND algorithm.

Fig. 8 shows the influence of the perturbation parameter, perturb_iter,
on the performance of the MOIVND algorithm for the problem instances
P50_T0.1_R0.8 and P75_T0.1_R0.8 with 50 and 75 jobs, respectively. The
parameter perturb_iter is varied from 0–40 in steps of 5, as shown in the
figure. For perturb_iter=0, the perturbation stage was not performed, and
the Pareto-optimal front was generated using only one iteration of the
improvement phase. The graphs reveal that the BEST and AVG values of
the HV metric are relatively higher in the range 5–10 of perturb_iter. This
indicates that as the value of perturb_iter is increased from 0, the higher
perturbation rate allows the algorithm to explore the solution space
more and find better solutions. However, as the value of perturb_iter is
increased beyond 10, the higher perturbation rate does not yield good
results as higher exploration leads to significant deviations from the
previous best solutions, thus requiring a large number of iterations to
converge further in the subsequent improvement phase. This eventually
reduces the number of times the solutions are perturbed and improved
within the set CPU_TimeLimit. Therefore, the influence of the parameter
perturb_iter is reasonably significant in the performance of the MOIVND
algorithm.

Fig. 9 shows the influence of the parameter seq_wl on the

Table 5
Adjusted p-values for 1xN comparisons among all the algorithms in terms of hypervolume (MOIVND is the control method).

Algorithms Unadjusted p pHolm pHomm pRom pFinn pLi

MOVND 2.096E-6 6.016E-6 4.193E-6 4.193E-6 3.008E-6 2.719E-6
MOVND_PR 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291
MOVNS 1.504E-6 6.016E-6 3.144E-6 4.193E-6 3.008E-6 1.950E-6
MOVNS_I 1.504E-6 6.016E-6 3.144E-6 4.193E-6 3.008E-6 1.950E-6
MOILS 1.986E-13 9.9337E-13 9.933E-13 9.446E-13 5.961E-13 2.577E-13
MOPSO - GA 8.427E-21 5.056E-20 5.056E-20 4.8080 0.0000 1.093E-20

Table 6
Adjusted p-values for 1xN comparisons among all the algorithms in terms of averaged Hausdorff distance (MOIVND is the control method).

Algorithms Unadjusted p pHolm pHomm pRom pFinn pLi

MOVND 1.303E-7 5.2123E-7 5.212E-7 4.970E-7 2.606E-7 2.119E-7
MOVND_PR 0.3850 0.3850 0.3850 0.3850 0.3850 0.3850
MOVNS 1.034E-5 2.069E-5 2.069E-5 2.069E-5 1.241E-5 1.682E-5
MOVNS_I 1.074E-6 3.222E-6 3.222E-6 3.222E-6 1.611E-6 1.747E-6
MOILS 6.234E-16 3.740E-15 3.740E-15 3.556E-15 3.996E-15 1.013E-15
MOPSO - GA 1.986E-13 19.933E-13 9.933E-13 9.4469E-13 5.9618E-13 3.230E-13

Fig. 7. Influence of the parameters k1 and k2 in the initial solution generation of the MOIVND algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

23

performance of MOIVND for the problem instances P50_T0.1_R0.8 and
P75_T0.1_R0.8 with 50 and 75 jobs, respectively. As discussed in Section
5.2, each time the neighbourhoods were generated using a neighbour
hood structure in the MOIVND algorithm, the first seq_wl number of
sequences of jobs with the best makespan values in the Pareto-optimal

front were subjected to neighbourhood generation without imposing
the limits, swap_limit, shift_limit, dshift_limit and tshift_limit. The parameter
seq_wl is varied in the range 10–80 in steps of 10, as shown in the figure.
The graph corresponding to the instance P50_T0.1_R0.8 reveals that the
AVG and BEST values of the HV metric corresponding to seq_wl=30 are

Fig. 8. Influence of the perturbation parameter on the performance of the MOIVND algorithm.

Fig. 9. Influence of the neighbourhood generation parameter seq_wl on the performance of the MOIVND algorithm.

Fig. 10. Influence of 3-job insertion neighbourhood on the performance of the MOIVND algorithm.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

24

the best among all the other values of seq_wl, while the graph corre
sponding to the instance P75_T0.1_R0.8 shows an increasing trend in the
AVG value of HV metric up to seq_wl=30 and random fluctuations
beyond it. The graphs also reveal that the performance deteriorates
relatively as seq_wl is increased beyond 30. This indicates that the gen
eration of neighbourhoods beyond the limits for 30 or more sequences of
jobs in a Pareto-optimal front does not improve the solutions consider
ably, as generating a large number of neighbourhoods increases the
computation time required to generate the TWET-makespan trade-off
curves and their Pareto-optimal fronts. This eventually leads to a
decrease in the number of times the perturbations are performed within
the set CPU_TimeLimit. Therefore, the influence of the parameter seq_wl is
also significant in the performance of the MOIVND algorithm.

Fig. 10 shows the influence of the 3-job insertion neighbourhood
generation mechanism on the performance of the MOIVND algorithm
for problem instances of varying sizes. The percentage deviations in the
hypervolume and averaged Hausdorff distance metrics, obtained by the
MOIVND algorithms utilising the four neighbourhood structures
{N1,N2,N3,N4} and excluding the 3-job insertion neighbourhood struc
ture (i.e., utilising {N1,N2,N3}) respectively for each problem instance,
calculated using Eq. (23) are shown as two separate graphs. The graph
on the left shows the percentage deviations from the best hypervolume
(HV) values, and the graph on the right shows the percentage deviations
from the best averaged Hausdorff distance (HD) values obtained by the
MOIVND algorithms utilising up to 2-job and up to 3-job insertion
neighbourhoods depicted using the dashed and solid lines respectively.
As mentioned in Section 5.4, any positive or negative deviations from
zero indicate that the corresponding algorithm performs inferior to the
best-performing algorithm. The graphs reveal that the MOIVND algo
rithm utilising up to 3-job insertion neighbourhoods has no deviation
from zero in the hypervolume value for all the problem instances and no
deviation from zero in the averaged Hausdorff distance metric for all
except two smaller problem instances. This indicates that the 3-job
insertion neighbourhood generation mechanism significantly improves
the performance of the MOIVND algorithm. The reason can be attributed
to the sequence-dependent setup times considered in the problem,
which leads to the clustering of jobs with minimum setup times between
them, and multiple jobs insertion neighbourhood structures such as 2-
job and 3-job insertions can improve solutions by shifting consecutive
jobs in clusters in the sequence. However, experiments with adding a 4-
job insertion neighbourhood structure did not yield better results due to
increased computation times required in the improvement phase, which
reduced the number of iterations of the perturbation phase within the
CPU_TimeLimit.

5.7. Managerial implications

The rising demand for customer-centric and cost-effective produc
tion in industrial systems has enunciated the need for optimization in
manufacturing operations. Manufacturers often find it challenging to
meet production deadlines while maintaining lower production costs,
particularly in just-in-time (JIT) manufacturing environments. The JIT
manufacturing systems primarily focus on ensuring the timely delivery
of the exact quantities of products while minimizing inventory levels. In
several real-world JIT manufacturing systems, a single machine or a
single processor often becomes a bottleneck when the demand placed on
it exceeds its handling capacity. Such a situation may arise either when a
production facility runs on a single machine or when a particular ma
chine in a multi-machine facility is overloaded. Realizing JIT goals in
these scenarios entails the simultaneous optimization of several opera
tional performance metrics, which necessitates devising optimal
scheduling techniques. The scheduling techniques proposed in this
research best suit such scheduling environments with a single machine.

The just-in-time single machine scheduling problem (JIT-SMSP)
considered in this paper, which includes the bi-objective optimization of
total weighted earliness-tardiness (TWET) and makespan in a scheduling

environment with distinct due windows and sequence-dependent setup
times (SDST), allowing idle times in the schedule, reflects numerous
realistic make-to-order manufacturing environments [101]. Reducing
makespan in these applications results in tighter schedules, facilitating
the efficient utilization of resources, while the reduction of TWET fo
cuses on meeting deadlines, improving customer satisfaction, and
minimizing inventories. The efforts to optimize the two objectives are
conflicting in nature since optimizing TWET results in the jobs in the
schedule being clustered around their earliest due dates, inserting idle
times in the schedule, while optimizing makespan focuses on completing
all the jobs in the sequence as early as possible with no idle times in the
schedule. This conflicting nature necessitates devising a method of
trade-off plot generation between the two objectives for a given
sequence of jobs, which is now addressed by the optimal timing algo
rithm (OTA) proposed in this paper. Though the problem is practically
relevant from an industrial application perspective, to the best of our
knowledge, no research has been reported in the literature to solve
practical size instances due to the nonexistence of suitable methodolo
gies for generating trade-off plots and Pareto fronts comprising line
segments and points between the considered objectives. The problem is
well-known to be NP-hard, and Pareto-based metaheuristics have been
proven to be the most efficient method in the literature for solving such
complex problems. The Pareto-based metaheuristic solution approaches
proposed in this paper are computationally efficient to generate the
Pareto-optimal front in a reasonable computation time. The solutions on
the Pareto-optimal front, comprising line segments and points, will
allow decision-makers and practitioners to make informed decisions
when choosing the optimal sequences and schedules based on their
priorities for the two objectives considered in this paper.

Though this research considered scheduling environment with a
single machine, JIT manufacturing facilities with several machine en
vironments exist in industries, most of which have been modelled in the
literature, viz. parallel machine scheduling, flow shop scheduling, job
shop scheduling, assembly shop scheduling, etc. However, each machine
scheduling environment will require devising an optimal timing algo
rithm specific to the problem, and problem-specific operators and
mechanisms will need to be developed within the Pareto-based meta
heuristic algorithms to solve the problem efficiently. This serves as a
motivation to pursue future research in different machine scheduling
environments, thereby contributing towards the operational excellence
of JIT manufacturing systems.

6. Conclusions

In this paper, three neighbourhood search-based metaheuristic al
gorithms, namely the multi-objective variable neighbourhood descent
(MOVND), multi-objective iterated variable neighbourhood descent
(MOIVND) and hybrid multi-objective variable neighbourhood descent -
path relinking (MOVND_PR), were proposed to solve the Pareto-based
bi-objective optimization of total weighted earliness-tardiness (TWET)
and makespan in a single-machine scheduling problem (SMSP) oper
ating in the just-in-time (JIT) environment. The problem environment
encompassed scenarios such as distinct job due windows, sequence-
dependent setup times between jobs, and idle times allowed to be
inserted in the schedules. We proposed an optimal timing algorithm to
generate the TWET-makespan piecewise linear trade-off curve for a
given sequence of jobs. A Pareto-optimal front generation procedure was
adopted from the literature to generate the Pareto-optimal fronts by
trimming and merging multiple Pareto fronts comprising line segments
and points, where each Pareto front is associated with a single or mul
tiple sequences of jobs. The resulting Pareto-optimal front also
comprised line segments and points. The performance of the proposed
neighbourhood search-based metaheuristic algorithms was compared
with that of three neighbourhood search-based metaheuristic algorithms
adopted from the literature, namely multi-objective variable neigh
bourhood search (MOVNS) algorithm, multi-objective variable

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

25

neighbourhood search with intensification (MOVNS_I) algorithm, and
multi-objective iterated local search (MOILS) algorithm. The perfor
mance of the algorithms was evaluated using a set of 24 problem in
stances generated using a procedure adopted from the literature with the
number of jobs varying from 20 to 100. The metaheuristic algorithms,
MOVND, MOIVND, MOVND_PR, MOVNS, MOVNS_I, and MOILS, were
run ten times for each problem instance. The Pareto-optimal fronts
generated were further analyzed to determine the performance of the
algorithms. Since the Pareto-optimal fronts generated by the meta
heuristic algorithms comprised line segments and points, we devised
four performance measures by suitably adapting similar ones from the
literature. The performance evaluation of the metaheuristic algorithms
using the performance metrics, namely, hypervolume, averaged Haus
dorff distance, and diversity, revealed that the proposed MOIVND al
gorithm performed better than all the other algorithms, followed by the
MOVND_PR algorithm. Considering the overall performance across all
the problem instances, the MOIVND algorithm was found to be the best-
performing algorithm for generating the best non-dominated solutions
on the Pareto-optimal front. The superior performance of the MOIVND
algorithm can be attributed to the backtrack perturbation phase, which
allows the search to escape from the local optima, and the 3-job insertion
neighbourhood structure, which significantly improves its performance
compared to that using up to 2-job insertion mechanism. The perfor
mance of the neighbourhood search-based methodologies presented in
this paper was also compared with that of the population-based hybrid
MOPSO-GA algorithm adopted from the literature, and the computa
tional results showed that the proposed MOIVND algorithm, as well as
all the other neighbourhood search-based metaheuristic algorithms,
performed exceptionally better than the MOPSO-GA algorithm. Further,
a statistical analysis performed on the hypervolume and averaged
Hausdorff distance metric data confirmed the correctness of the con
clusions drawn from the metric data.

To the best of our knowledge, this is the first study that reports
metaheuristics to solve a bi-objective JIT machine scheduling problem
that generates a Pareto-optimal front comprising line segments and

points. A future research direction would be to suitably adapt
population-based metaheuristics and compare their performance with
the algorithms proposed in this paper. To the best of our knowledge, this
is also the first study that reports performance metrics for Pareto-
optimal fronts comprising line segments and points in Pareto-based bi-
objective scheduling problems. A future research direction would be to
devise or adapt other performance metrics to comprehensively analyze
the Pareto-optimal fronts generated with different approaches. Another
future research direction would be to study the performance of the
proposed algorithms for other combinations of bi-objectives in JIT-
SMSP, viz., the simultaneous minimization of TWET-total flow time,
total earliness-total tardiness, total earliness-makespan, etc. Another
future research direction would be to extend the proposed algorithms to
other JIT machine scheduling problems, viz. parallel machine sched
uling, flow shop scheduling, job shop scheduling, etc., and performing
computational studies for the Pareto-based bi-objective optimization of
TWET-makespan and other combinations of objectives.

CRediT authorship contribution statement

Sona Babu: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Data curation, Conceptualiza
tion. B.S. Girish: Writing – review & editing, Supervision, Software,
Resources, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors thank the Editor and the four Anonymous Reviewers for
the insightful comments and suggestions that helped improve this paper.

Appendix A

An illustration of the TWET-makespan trade-off curve generation procedure

A problem instance with n = 5 jobs, as shown in Table A.1, is used to illustrate the TWET-makespan trade-off curve generation procedure.

Table A.1
Test instance data for the illustration problem.

Jobs
(i)

Processing time (Pi) Setup Time (Sií) : í = 1,2,…n Earliest due date (dei) Latest due date (dti) Earliness penalty (αi) Tardiness penalty (βi)

1 6 {0,4,3,5,2} 75 80 3 4
2 8 {4,0,5,3,6} 82 85 5 7
3 7 {3,5,0,4,3} 39 45 4 3
4 9 {5,3,4,0,4} 50 59 6 5
5 5 {2,6,3,4,0} 40 44 3 6

Let the given job sequence be σ = {3,5,4,1,2}. The first job σ[1]=3 is assigned to the machine exactly at its earliest due date (i.e. Cσ[1] = 39) as
described in steps 2–5 of Algorithm 1. The position identifier of σ[1] is added to the block B as B = {1}. The corresponding partial schedule S1 =

{39} and TWET(σ1) = 0. The second job σ[2]=5 is then assigned contiguously to σ[1]=3 at Cσ[2] = Cσ[1] + Pσ[2] + Sσ[1],σ[2] = 39 + 5 + 3 = 47 since
deσ[2] = 40, as shown in the Gantt chart in Fig. A.1. This corresponds to steps 18–19 of Algorithm 1. The partial schedule S2 = {39,47} hence obtained
has its corresponding TWET(σ2) = (Cσ[2] − dtσ[2])βσ[2] = (47 − 44) ∗ 6 = 18. The position identifiers of the two jobs form a block B = {1,2}, as shown
in step 24 of Algorithm 1, with its cost function slope SL = βσ[2] − ασ[1] = 6 − 4 = 2 calculated, as shown in steps 10–14 of Algorithm 2. Since the slope
is positive, the jobs with their position identifiers in B are simultaneously left shifted until one of the following cases is encountered, as shown in steps
17–25 of Algorithm 2.

Case 1: The newly scheduled job σ[2] is no longer tardy (i.e. at Cσ[2] = 44)
Case 2: A job with its position identifier in B becomes early (i.e. at Cσ[2] = 40)
Case 3: No idle time exists before the job σ[1] (i.e. at Cσ[1] = Pσ[1] = 7)

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

26

In this scenario, Case 1 is first encountered on left shifting the jobs with position identifiers in B by 3 units. The job σ[2] then becomes no longer
tardy with the cost function slope SL = − ασ[1] = − 4, implying that no further left shifting is required. The optimal partial schedule S2 = {36,44}
hence obtained has its corresponding TWET(σ2) = (deσ[1] − Cσ[1])ασ[1] = (39 − 36) ∗ 4 = 12. Fig. A.1 shows the partial schedule S2 before and after left
shifting.

Fig. A.1. Generation of the optimal partial schedule S2.

The partial schedules S3 is subsequently generated by assigning the job σ[3]=4 at Cσ[3] = Cσ[2] + Pσ[3] + Sσ[2],σ[3] = 44+ 9+ 4 = 57, which is within
its due window [50,59]. This is as shown in steps 18–19 of Algorithm 1. Since the job σ[3] is contiguous with σ[2], the block B is updated as B = {1,2,
3}. The slope of the cost function corresponding to B remains as SL = − 4, and no left shifting is done. The optimal partial schedule S3 = {36,44,57}
and its corresponding TWET(σ3) = 12.

Subsequently, the partial schedule S4 is generated by assigning the job σ[4]=1 at Cσ[4] = deσ[4] = 75 since Cσ[3] + Pσ[4] + Sσ[3],σ[4] = 57 + 6 + 5 = 68,
which is less than deσ[4]. Since the jobs σ[3] and σ[4] are non-contiguous with each other, the block B is reset as B = {4}. This is as shown in steps 9–12
of Algorithm 1. The resulting partial schedule S4 = {36,44,57,75} is optimal with TWET(σ4) = 12. The job σ[5]=2 is then assigned to the machine at
Cσ[5] = Cσ[4] + Pσ[5] + Sσ[4],σ[5] = 75 + 8 + 4 = 87 contiguously to σ[4] since deσ[5] = 82. The partial schedule S5 = {36,44, 57, 75,87} has its corre
sponding TWET(σ5) = (deσ[1] − Cσ[1])ασ[1] + (Cσ[5] − dtσ[5])βσ[5] = (39 − 36) ∗ 4 + (87 − 85) ∗ 7 = 26, and the two contiguous jobs form the block B =
{4,5} with its cost function slope SL = βσ[5] − ασ[4] = 7 − 3 = 4. Since the slope is positive, the jobs with their position identifiers in B are simul
taneously left shifted until one of the following cases is encountered.

Case 1: σ[5] is no longer tardy (i.e. at Cσ[5] = 85)
Case 2: A job with its position identifier in B becomes early (i.e. at Cσ[5] = 82)
Case 3: σ[4] becomes contiguous with σ[3] (i.e. at Cσ[4] = Cσ[3] + Pσ[4] + Sσ[3],σ[4] = 68)

In this scenario, Case 1 is first encountered on left shifting the jobs with position identifiers in B by 2 units, generating the optimal partial schedule
S5 = {36,44,57,73,85} with TWET(σ5) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] = (39 − 36) ∗ 4+ (75 − 73) ∗ 3 = 18. Fig. A.2 shows the partial
schedule S5 before and after left shifting.

Fig. A.2. Generation of the optimal partial schedule S5.

Since the cost function slope SL = − ασ[4] = − 3 corresponding to the block B = {4, 5}, the partial schedule S5 = {36,44, 57,73,85} with
TWET(σ5) = 18 is optimal. Since all the jobs in σ have been assigned completion times, the partial schedule S5 will be the optimal TWET schedule S for
the given σ. At this stage, the makespan and TWET objective values are stored as the first trade-off point (M1, G1) = (85,18) in the TWET-makespan
trade-off plot, as shown in steps 29–32 of Algorithm 1 and 26–28 of Algorithm 2.

Subsequently, to optimize makespan, the last job σ[5] in the TWET-optimal schedule and its preceding contiguous job σ[4] that form the block B
= {4,5} are left shifted by the smallest unit of left shift that leads to encountering one of the following cases as shown in steps 16 and 25 of Algorithm
1.

Case 1: A job with its position identifier in B becomes early (i.e. at Cσ[5] = 82)
Case 2: σ[4] becomes contiguous with σ[3] (i.e. at Cσ[4] = 68)

In this scenario, Case 1 is the condition encountered by the smallest unit of left shifting, and therefore, the jobs with position identifiers in B are left
shifted by 3 units. The schedule thus obtained S = {36,44,57,70,82} with TWET(σ) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] = (39 − 36) ∗4
+(75 − 70) ∗ 3 = 27 corresponds to the subsequent breakpoint (M2, G2) = (82,27) on the TWET-makespan trade-off plot, as shown in steps 29–31 of
Algorithm 2. Block B = {4,5} is further left shifted by 2 units, encountering Case 2, where σ[4] becomes contiguous with σ[3], to obtain the schedule S
= {36,44, 57,68,80} with TWET(σ) = (deσ[1] − Cσ[1])ασ[1] + (deσ[4] − Cσ[4])ασ[4] + (deσ[5] − Cσ[5])ασ[5] = (39 − 36) ∗ 4+ (75 − 68) ∗ 3+ (82 − 80) ∗5 =
43. This corresponds to the subsequent breakpoint (M3, G3) = (80,43) on the trade-off plot. At this point, all the jobs are contiguously scheduled and
the block is updated, as shown in steps 33–43 of Algorithm 2. The jobs corresponding to the updated block B = {1,2, 3,4, 5} are left shifted by the
smallest unit of left shift that leads to encountering one of the following cases as shown in steps 17–24 of Algorithm 2.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

27

Case 1: A job with its position identifier in B becomes early (i.e.at Cσ[2] = 40 and Cσ[3] = 50)
Case 2: No idle time exists before the first job σ[1] in B (i.e. at Cσ[1] = 7)

In this scenario, Case 1 (i.e. Cσ[2]= 40) is encountered first, and the jobs with position identifiers in B are left shifted by 4 units to obtain the schedule
S = {32,40,53,64,76} that corresponds to the subsequent breakpoint (M4, G4) = (76,91) on the trade-off plot. Case 1 (i.e. Cσ[3]= 50) is encountered
next, and the jobs with position identifiers in B are left shifted by 3 units to obtain the schedule S = {29,37,50,61,73} that corresponds to the
subsequent breakpoint (M5, G5) = (73,136) on the trade-off plot. Case 2 is encountered next, and the jobs with position identifiers in B are shifted by
22 units to obtain the schedule S = {7,15, 28,39,51} that corresponds to the makespan-optimal trade-off point (M6, G6) = (51,598), beyond which
no left shifting is possible. These breakpoints are saved as shown in steps 29–31 of Algorithm 2. Fig. A.3 shows the piecewise linear convex TWET-
makespan trade-off curve generated in the illustration problem for the given σ.

Fig. A.3. TWET-Makespan trade-off curve generated for the illustration problem.

Data availability

Data will be made available on request.

References

[1] Yazdani M, Haghani M. Exploring the evolution of machine scheduling through a
computational approach. Eng Appl Artif Intell 2024;133:108572. https://doi.
org/10.1016/j.engappai.2024.108572.

[2] Baker KR, Trietsch D. Principles of sequencing and scheduling. 2nd ed. Wiley;
2018.

[3] Morais R, Bulhões T, Subramanian A. Exact and heuristic algorithms for
minimizing the makespan on a single machine scheduling problem with
sequence-dependent setup times and release dates. Eur J Oper Res 2024;315:
442–53. https://doi.org/10.1016/j.ejor.2023.11.024.

[4] Pinedo ML. Scheduling - Theory, algorithms, and systems. 5th ed. Cham:
Springer; 2016. https://doi.org/10.1007/978-3-319-26580-3.

[5] Allahverdi A. The third comprehensive survey on scheduling problems with setup
times/costs. Eur J Oper Res 2015;246:345–78. https://doi.org/10.1016/j.
ejor.2015.04.004.

[6] Baker KR, Scudder GD. Sequencing with earliness and tardiness penalties: a
review. Oper Res 1990;38:22–36.

[7] Józefowska J. In: Józefowska J, editor. Just-in-time concept in manufacturing
and computer systems. Boston, MA: Springer US; 2007. p. 1–23. https://doi.org/
10.1007/978-0-387-71718-0_1. editorJust-In-Time Sched. Model. Algorithms
Comput. Manuf. Syst.

[8] Bai B, Wei CM, He HY, Wang JB. Study on single-machine common/slack due-
window assignment scheduling with delivery times, variable processing times
and outsourcing. Mathematics 2024;12.

[9] Qiu XY, Wang JB. Single-machine scheduling with mixed due-windows and
deterioration effects. J Appl Math Comput 2024:1–16.

[10] Wang JB, Lv DY, Wan C. Proportionate flow shop scheduling with job-dependent
due windows and position-dependent weights. Asia Pac J Oper Res 2024.

[11] Wang JB, Wang YC, Wan C, Lv DY, Zhang L. Controllable processing time
scheduling with total weighted completion time objective and deteriorating jobs.
Asia Pac J Oper Res 2024;41:2350026. https://doi.org/10.1142/
S0217595923500264.

[12] Lv DY, Wang JB. Single-machine group technology scheduling with resource
allocation and slack due window assignment including minmax criterion. J Oper
Res Soc 2024:1–17.

[13] Arroyo JEC, dos Santos Ottoni R, dos Santos A. Multi-objective variable
neighborhood search algorithms for a just-in-time single machine scheduling
problem. In: Proceedings of the 2011 11th international conference on intelligent
systems design and applications. IEEE; 2011. p. 1116–21. https://doi.org/
10.1109/ISDA.2011.6121808.

[14] Girish BS, Habibullah DJ. Minimizing the total weighted earliness and tardiness
for a sequence of operations in job shops. RAIRO Oper Res 2022;56:2621–49.
https://doi.org/10.1051/ro/2022124.

[15] Haeussler S, Neuner P, Thürer M. Balancing earliness and tardiness within
workload control order release: an assessment by simulation. Flex Serv Manuf J
2023;35:487–508. https://doi.org/10.1007/s10696-021-09440-9.

[16] Pan QK, Wang L, Mao K, Zhao JH, Zhang M. An effective artificial bee colony
algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE
Trans Autom Sci Eng 2013;10:307–22. https://doi.org/10.1109/
TASE.2012.2204874.

[17] Xu Z, Zheng Z, Gao X. Energy-efficient steelmaking-continuous casting scheduling
problem with temperature constraints and its solution using a multi-objective
hybrid genetic algorithm with local search. Appl Soft Comput 2020;95:106554.
https://doi.org/10.1016/j.asoc.2020.106554.

[18] Rocholl J, Mönch L. Hybrid algorithms for the earliness–tardiness single-machine
multiple orders per job scheduling problem with a common due date. RAIRO
Oper Res 2018;52:1329–50. https://doi.org/10.1051/ro/2018029. http://www.
numdam.org/articles/10.1051/ro/2018029/.

[19] Girish BS. An efficient hybrid particle swarm optimization algorithm in a rolling
horizon framework for the aircraft landing problem. Appl Soft Comput 2016;44:
200–21. https://doi.org/10.1016/j.asoc.2016.04.011.

[20] Ji M, He Y, Cheng TCE. Single-machine scheduling with periodic maintenance to
minimize makespan. Comput Oper Res 2007;34:1764–70. https://doi.org/
10.1016/j.cor.2005.05.034.

[21] Lee WC, Wu CC, Liu HC. A note on single-machine makespan problem with
general deteriorating function. Int J Adv Manuf Technol 2009;40:1053–6.
https://doi.org/10.1007/s00170-008-1421-9.

[22] Low C, Ji M, Hsu CJ, Su CT. Minimizing the makespan in a single machine
scheduling problems with flexible and periodic maintenance. Appl Math Model
2010;34:334–42. https://doi.org/10.1016/j.apm.2009.04.014.

[23] Li J, Pan Q, Mao K, Suganthan PN. Solving the steelmaking casting problem using
an effective fruit fly optimisation algorithm. Knowl Based Syst 2014;72:28–36.
https://doi.org/10.1016/j.knosys.2014.08.022.

[24] Otten M, Braaksma A, Boucherie RJ. Minimizing earliness/tardiness costs on
multiple machines with an application to surgery scheduling. Oper Res Heal Care
2019;22:100194. https://doi.org/10.1016/j.orhc.2019.100194.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

28

https://doi.org/10.1016/j.engappai.2024.108572
https://doi.org/10.1016/j.engappai.2024.108572
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0002
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0002
https://doi.org/10.1016/j.ejor.2023.11.024
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/j.ejor.2015.04.004
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0006
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0006
https://doi.org/10.1007/978-0-387-71718-0_1
https://doi.org/10.1007/978-0-387-71718-0_1
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0008
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0008
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0008
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0009
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0009
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0010
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0010
https://doi.org/10.1142/S0217595923500264
https://doi.org/10.1142/S0217595923500264
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0012
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0012
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0012
https://doi.org/10.1109/ISDA.2011.6121808
https://doi.org/10.1109/ISDA.2011.6121808
https://doi.org/10.1051/ro/2022124
https://doi.org/10.1007/s10696-021-09440-9
https://doi.org/10.1109/TASE.2012.2204874
https://doi.org/10.1109/TASE.2012.2204874
https://doi.org/10.1016/j.asoc.2020.106554
https://doi.org/10.1051/ro/2018029
http://www.numdam.org/articles/10.1051/ro/2018029/
http://www.numdam.org/articles/10.1051/ro/2018029/
https://doi.org/10.1016/j.asoc.2016.04.011
https://doi.org/10.1016/j.cor.2005.05.034
https://doi.org/10.1016/j.cor.2005.05.034
https://doi.org/10.1007/s00170-008-1421-9
https://doi.org/10.1016/j.apm.2009.04.014
https://doi.org/10.1016/j.knosys.2014.08.022
https://doi.org/10.1016/j.orhc.2019.100194

[25] Yang G, Yu Y, Wang Y, Yin Y, Deng R, Zhang Y. An improved discrete artificial
bee colony algorithm for steelmaking and continuous casting scheduling problem.
In: Proceedings of the 2023 35th Chinese control and decision conference; 2023.
p. 1114–9.

[26] Wan L, Yuan J. Single-machine scheduling to minimize the total earliness and
tardiness is strongly NP-hard. Oper Res Lett 2013;41:363–5. https://doi.org/
10.1016/j.orl.2013.04.007.

[27] Zhang A, Chen Y, Chen L, Chen G. On the NP-hardness of scheduling with time
restrictions. Discret Optim 2018;28:54–62. https://doi.org/10.1016/j.
disopt.2017.12.001.

[28] Sterna M. Late and early work scheduling: a survey. Omega 2021;104:102453.
https://doi.org/10.1016/j.omega.2021.102453.

[29] Bülbül K, Kaminsky P, Yano C. Flow shop scheduling with earliness, tardiness,
and intermediate inventory holding costs. Nav Res Logist 2004;51:407–45.
https://doi.org/10.1002/nav.20000.

[30] Kayvanfar V, Mahdavi I, Komaki GM. Single machine scheduling with
controllable processing times to minimize total tardiness and earliness. Comput
Ind Eng 2013;65:166–75. https://doi.org/10.1016/j.cie.2011.08.019.

[31] Nikabadi SM, Naderi R. A hybrid algorithm for unrelated parallel machines
scheduling. Int J Ind Eng Comput 2016;7:681–702. https://doi.org/10.5267/j.
ijiec.2016.2.004.

[32] Sadati A, Tavakkoli-Moghaddam R, Naderi B, Mohammadi M. Solving a new
multi-objective unrelated parallel machines scheduling problem by hybrid
teaching-learning based optimization. Int J Eng Trans B Appl 2017;30:224–33.
https://doi.org/10.5829/idosi.ije.2017.30.02b09.

[33] Dhingra A, Chandna P. Multi-objective flow shop scheduling using hybrid
simulated annealing. Meas Bus Excell 2010;14:30–41. https://doi.org/10.1108/
13683041011074191.

[34] Kayvanfar V, Aalaei A, Hosseininia M, Rajabi M. Unrelated parallel machines
scheduling problem with sequence dependent setup times. In: Proceedings of the
2014 international conference on industrial engineering and operations
management; 2014. p. 1794–803.

[35] Khanh Van B, Van Hop N. Genetic algorithm with initial sequence for parallel
machines scheduling with sequence dependent setup times based on earliness-
tardiness. J Ind Prod Eng 2021;38:18–28. https://doi.org/10.1080/
21681015.2020.1829111.

[36] Gao J, He G, Wang Y. A new parallel genetic algorithm for solving multiobjective
scheduling problems subjected to special process constraint. Int J Adv Manuf
Technol 2009;43:151–60. https://doi.org/10.1007/s00170-008-1683-2.

[37] Gao J. A novel artificial immune system for solving multiobjective scheduling
problems subject to special process constraint. Comput Ind Eng 2010;58:602–9.
https://doi.org/10.1016/j.cie.2009.12.009.

[38] Fakhrzad MB, Sadeghieh A, Emami L. A new multi-objective job shop scheduling
with setup times using a hybrid genetic algorithm. Int J Eng Trans B Appl 2013;
26:207–18. https://doi.org/10.5829/idosi.ije.2013.26.02b11.

[39] Tajbakhsh Z, Fattahi P, Behnamian J. Multi-objective assembly permutation flow
shop scheduling problem: a mathematical model and a meta-heuristic algorithm.
J Oper Res Soc 2014;65:1580–92. https://doi.org/10.1057/jors.2013.105.

[40] Abedi M, Seidgar H, Fazlollahtabar H, Bijani R. Bi-objective optimisation for
scheduling the identical parallel batch-processing machines with arbitrary job
sizes, unequal job release times and capacity limits. Int J Prod Res 2015;53:
1680–711. https://doi.org/10.1080/00207543.2014.952795.

[41] Zade AE, Barak S, Maghsoudlou H, Toloo M. Multi-objective optimization for
periodic preventive maintenance. In: Proceedings of the 2015 international
conference on industrial engineering and systems management. IEEE; 2015.
p. 173–82. https://doi.org/10.1109/IESM.2015.7380154.

[42] Zarandi MHF, Kayvanfar V. A bi-objective identical parallel machine scheduling
problem with controllable processing times: a just-in-time approach. Int J Adv
Manuf Technol 2015;77:545–63. https://doi.org/10.1007/s00170-014-6461-8.

[43] Rad ST, Gholami S, Shafaei R, Seidgar H. Bi-objective optimization for just in time
scheduling : application to the two-stage assembly flow shop problem. Qual Eng
Prod Optim 2015;1:21–32.

[44] Shahidi-Zadeh B, Evazabadian F, Tavakkoli-Moghaddam R. A new multi-
objective scheduling problem on batch parallel machines with maximum
allowable incompatibility for jobs. In: Proceedings of the 2015 IEEE international
conference on industrial engineering and engineering management. IEEE; 2015.
p. 1815–9. https://doi.org/10.1109/IEEM.2015.7385961.

[45] Shahriari M, Shoja N, Zade AE, Barak S, Sharifi M. JIT single machine scheduling
problem with periodic preventive maintenance. J Ind Eng Int 2016;12:299–310.
https://doi.org/10.1007/s40092-016-0147-9.

[46] Liang X, Ji Y, Huang M. Solving hybrid flow-shop scheduling based on improved
multi-objective artificial bee colony algorithm. In: Proceedings of the 2016 2nd
international conference on cloud computing and Internet of Things. IEEE; 2016.
p. 43–7. https://doi.org/10.1109/CCIOT.2016.7868300.

[47] Shahvari O, Logendran R. A bi-objective batch processing problem with dual-
resources on unrelated-parallel machines. Appl Soft Comput 2017;61:174–92.
https://doi.org/10.1016/j.asoc.2017.08.014.

[48] Shahidi-Zadeh B, Tavakkoli-Moghaddam R, Taheri-Moghadam A, Rastgar I.
Solving a bi-objective unrelated parallel batch processing machines scheduling
problem: a comparison study. Comput Oper Res 2017;88:71–90. https://doi.org/
10.1016/j.cor.2017.06.019.

[49] Shen J. An uncertain parallel machine problem with deterioration and learning
effect. Comput Appl Math 2019;38. https://doi.org/10.1007/s40314-019-0789-
5.

[50] Jia Z, Gao L, Zhang X. A new history-guided multi-objective evolutionary
algorithm based on decomposition for batching scheduling. Expert Syst Appl
2020;141:112920. https://doi.org/10.1016/j.eswa.2019.112920.

[51] Shao W, Shao Z, Pi D. Multi-objective evolutionary algorithm based on multiple
neighborhoods local search for multi-objective distributed hybrid flow shop
scheduling problem. Expert Syst Appl 2021;183:115453. https://doi.org/
10.1016/j.eswa.2021.115453.

[52] Wei H, Li S, Quan H, Liu D, Rao S, Li C, et al. Unified multi-objective genetic
algorithm for energy efficient job shop scheduling. IEEE Access 2021;9:
54542–57. https://doi.org/10.1109/ACCESS.2021.3070981.

[53] Ampry E, Komariah A, Kurniady DA, Rafiq M, Priatna A, Ali MH, et al. Multi-
objective mathematical modeling for scheduling machines in parallel with batch
processors. Ind Eng Manag Syst 2022;21:366–80. https://doi.org/10.7232/
iems.2022.21.2.366.

[54] Yue L, Guan Z, Saif U, Zhang F, Wang H. Hybrid Pareto artificial bee colony
algorithm for multi-objective single machine group scheduling problem with
sequence-dependent setup times and learning effects. Springerplus 2016;5:1593.
https://doi.org/10.1186/s40064-016-3265-3.

[55] Duenas A, Petrovic D. Multi-objective genetic algorithm for single machine
scheduling problem under fuzziness. Fuzzy Optim Decis Mak 2008;7:87–104.
https://doi.org/10.1007/s10700-007-9026-6.

[56] Chen SH, Chen YH. A new two-objective single machine scheduling problem
considers a past-sequence-dependent setup time and learning effect. In:
Proceedings of the 2018 1st IEEE international conference on knowledge
innovation and invention; 2018. p. 309–12. https://doi.org/10.1109/
ICKII.2018.8569129.

[57] Jia J, Lu C, Yin L. Energy saving in single-machine scheduling management: an
improved multi-objective model based on discrete artificial bee colony algorithm.
Symmetry 2022;14. https://doi.org/10.3390/sym14030561 (Basel).

[58] Wang S. Bi-objective optimisation for integrated scheduling of single machine
with setup times and preventive maintenance planning. Int J Prod Res 2013;51:
3719–33. https://doi.org/10.1080/00207543.2013.765070.

[59] Salmasnia A, Khatami M, Kazemzadeh RB, Zegordi SH. Bi-objective single
machine scheduling problem with stochastic processing times. TOP 2015;23:
275–97. https://doi.org/10.1007/s11750-014-0337-9.

[60] Molaee E, Moslehi G, Reisi M. Minimizing maximum earliness and number of
tardy jobs in the single machine scheduling problem. Comput Math with Appl
2010;60:2909–19. https://doi.org/10.1016/j.camwa.2010.09.046.

[61] Rahmani K, Mahdavi I, Moradi H, Khorshidian H, Solimanpur M.
A nondominated ranked genetic algorithm for bi-objective single machine
preemptive scheduling in just-in-time environment. Int J Adv Manuf Technol
2011;55:1135–47. https://doi.org/10.1007/s00170-010-3126-0.

[62] Jacquin S, Dufossé F, Jourdan L. An exact algorithm for the bi-objective timing
problem. Optim Lett 2018;12:903–14. https://doi.org/10.1007/s11590-018-
1237-y.

[63] Babu S, Girish BS. Pareto-optimal front generation for the bi-objective JIT
scheduling problems with a piecewise linear trade-off between objectives. Oper
Res Perspect 2024;12. https://doi.org/10.1016/j.orp.2024.100299.

[64] Lee CY, Choi JY. A genetic algorithm for job sequencing problems with distinct
due dates and general early-tardy penalty weights. Comput Oper Res 1995;22:
857–69. https://doi.org/10.1016/0305-0548(94)00073-H.

[65] Wan G, Yen BPC. Tabu search for single machine scheduling with distinct due
windows and weighted earliness/tardiness penalties. Eur J Oper Res 2002;142:
271–81. https://doi.org/10.1016/S0377-2217(01)00302-2.

[66] Heger J, Voss T. Dynamically adjusting the k-values of the ATCS rule in a flexible
flow shop scenario with reinforcement learning. Int J Prod Res 2023;61:147–61.
https://doi.org/10.1080/00207543.2021.1943762.

[67] Li Y., Yang Q., Zhou G., Zhao X. Comparison between ATC and ATCS in parallel
machine scheduling. ICLEM 2010, 2010, p. 1332–8. 10.1061/41139(387)183.

[68] Pinedo M, Hadavi K. Scheduling: theory, algorithms and systems development.
Gaul W, Bachem A, Habenicht W, Runge W, Stahl WW, editors. Operations
research proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg; 1992.
p. 35–42. 1991.

[69] Liao CJ, Juan HC. An ant colony optimization for single-machine tardiness
scheduling with sequence-dependent setups. Comput Oper Res 2007;34:
1899–909. https://doi.org/10.1016/j.cor.2005.07.020.

[70] Lee JH, Yu JM, Lee DH. A tabu search algorithm for unrelated parallel machine
scheduling with sequence- and machine-dependent setups: minimizing total
tardiness. Int J Adv Manuf Technol 2013;69:2081–9. https://doi.org/10.1007/
s00170-013-5192-6.

[71] de QTA, Mundim LR. Multiobjective pseudo-variable neighborhood descent for a
bicriteria parallel machine scheduling problem with setup time. Int Trans Oper
Res 2020;27:1478–500. https://doi.org/10.1111/itor.12738.

[72] Sekkal N, Belkaid F. A multi-objective simulated annealing to solve an identical
parallel machine scheduling problem with deterioration effect and resources
consumption constraints. J Comb Optim 2020;40:660–96. https://doi.org/
10.1007/s10878-020-00607-y.

[73] Xu J, Wu CC, Yin Y, Lin WC. An iterated local search for the multi-objective
permutation flowshop scheduling problem with sequence-dependent setup times.
Appl Soft Comput 2017;52:39–47. https://doi.org/10.1016/j.asoc.2016.11.031.

[74] Gomes HC, de Assis das Neves F, Souza MJF. Multi-objective metaheuristic
algorithms for the resource-constrained project scheduling problem with
precedence relations. Comput Oper Res 2014;44:92–104. https://doi.org/
10.1016/j.cor.2013.11.002.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

29

http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0025
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0025
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0025
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0025
https://doi.org/10.1016/j.orl.2013.04.007
https://doi.org/10.1016/j.orl.2013.04.007
https://doi.org/10.1016/j.disopt.2017.12.001
https://doi.org/10.1016/j.disopt.2017.12.001
https://doi.org/10.1016/j.omega.2021.102453
https://doi.org/10.1002/nav.20000
https://doi.org/10.1016/j.cie.2011.08.019
https://doi.org/10.5267/j.ijiec.2016.2.004
https://doi.org/10.5267/j.ijiec.2016.2.004
https://doi.org/10.5829/idosi.ije.2017.30.02b09
https://doi.org/10.1108/13683041011074191
https://doi.org/10.1108/13683041011074191
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0034
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0034
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0034
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0034
https://doi.org/10.1080/21681015.2020.1829111
https://doi.org/10.1080/21681015.2020.1829111
https://doi.org/10.1007/s00170-008-1683-2
https://doi.org/10.1016/j.cie.2009.12.009
https://doi.org/10.5829/idosi.ije.2013.26.02b11
https://doi.org/10.1057/jors.2013.105
https://doi.org/10.1080/00207543.2014.952795
https://doi.org/10.1109/IESM.2015.7380154
https://doi.org/10.1007/s00170-014-6461-8
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0043
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0043
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0043
https://doi.org/10.1109/IEEM.2015.7385961
https://doi.org/10.1007/s40092-016-0147-9
https://doi.org/10.1109/CCIOT.2016.7868300
https://doi.org/10.1016/j.asoc.2017.08.014
https://doi.org/10.1016/j.cor.2017.06.019
https://doi.org/10.1016/j.cor.2017.06.019
https://doi.org/10.1007/s40314-019-0789-5
https://doi.org/10.1007/s40314-019-0789-5
https://doi.org/10.1016/j.eswa.2019.112920
https://doi.org/10.1016/j.eswa.2021.115453
https://doi.org/10.1016/j.eswa.2021.115453
https://doi.org/10.1109/ACCESS.2021.3070981
https://doi.org/10.7232/iems.2022.21.2.366
https://doi.org/10.7232/iems.2022.21.2.366
https://doi.org/10.1186/s40064-016-3265-3
https://doi.org/10.1007/s10700-007-9026-6
https://doi.org/10.1109/ICKII.2018.8569129
https://doi.org/10.1109/ICKII.2018.8569129
https://doi.org/10.3390/sym14030561
https://doi.org/10.1080/00207543.2013.765070
https://doi.org/10.1007/s11750-014-0337-9
https://doi.org/10.1016/j.camwa.2010.09.046
https://doi.org/10.1007/s00170-010-3126-0
https://doi.org/10.1007/s11590-018-1237-y
https://doi.org/10.1007/s11590-018-1237-y
https://doi.org/10.1016/j.orp.2024.100299
https://doi.org/10.1016/0305-0548(94)00073-H
https://doi.org/10.1016/S0377-2217(01)00302-2
https://doi.org/10.1080/00207543.2021.1943762
http://10.1061/41139(387)183
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0068
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0068
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0068
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0068
https://doi.org/10.1016/j.cor.2005.07.020
https://doi.org/10.1007/s00170-013-5192-6
https://doi.org/10.1007/s00170-013-5192-6
https://doi.org/10.1111/itor.12738
https://doi.org/10.1007/s10878-020-00607-y
https://doi.org/10.1007/s10878-020-00607-y
https://doi.org/10.1016/j.asoc.2016.11.031
https://doi.org/10.1016/j.cor.2013.11.002
https://doi.org/10.1016/j.cor.2013.11.002

[75] Suresh RK, Mohanasundaram KM. Pareto archived simulated annealing for job
shop scheduling with multiple objectives. Int J Adv Manuf Technol 2006;29:
184–96. https://doi.org/10.1007/s00170-004-2492-x.

[76] Minella G, Ruiz R, Ciavotta M. A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS J Comput 2008;20:
451–71. https://doi.org/10.1287/ijoc.1070.0258.

[77] Kalyanmoy D. Multi-objective optimization using evolutionary algorithms. John
Wiley & Sons; 2001.

[78] Corne DW, Jerram NR, Knowles JD, Oates MJ. PESA-II: region-based selection in
evolutionary multiobjective optimization. In: Proceedings of the 3rd annual
conference on genetic and evolutionary computation. Morgan Kaufmann
Publishers Inc.; 2001. p. 283–90.

[79] Hansen P, Mladenović N, Todosijević R, Hanafi S. Variable neighborhood search:
basics and variants. EURO J Comput Optim 2017;5:423–54. https://doi.org/
10.1007/s13675-016-0075-x.

[80] Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking.
Control Cybern 2000;29:653–84.

[81] Resende MGC, Ribeiro CC, Glover F, Martí R. Scatter search and path-relinking:
fundamentals, advances, and applications. editors. In: Gendreau M, Potvin JY,
editors. Handbook of metaheuristics. Boston, MA: Springer US; 2010. p. 87–107.
https://doi.org/10.1007/978-1-4419-1665-5_4.

[82] Resende MGC, Ribeiro CC. GRASP with path-relinking. editors. In: Resende MGC,
Ribeiro CC, editors. Optimization by GRASP. New York, NY: Springer New York;
2016. p. 189–204. https://doi.org/10.1007/978-1-4939-6530-4_9. greedy
randomized adapt. search proced..

[83] Ho SC, Gendreau M. Path relinking for the vehicle routing problem. J Heuristics
2006;12:55–72. https://doi.org/10.1007/s10732-006-4192-1.

[84] IBM-software. CPLEX callable Library (C API) reference manual. IBM Doc 2021.
n.d.

[85] Quinn MJ. Parallel programming in C with MPI and openmp. 1st ed. McGraw Hill
Higher Education.; 2003.

[86] Goldberg D. What every computer scientist should know about floating-point
arithmetic. ACM Comput Surv 1991;23:5–48. https://doi.org/10.1145/
103162.103163.

[87] Audet C, Bigeon J, Cartier D, Le Digabel S, Salomon L. Performance indicators in
multiobjective optimization. Eur J Oper Res 2021;292:397–422. https://doi.org/
10.1016/j.ejor.2020.11.016.

[88] Riquelme N, Von Lücken C, Baran B. Performance metrics in multi-objective
optimization. In: Proceedings of the 2015 latin American computing conference;
2015. p. 1–11. https://doi.org/10.1109/CLEI.2015.7360024.

[89] Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol
Comput 2003;7:117–32. https://doi.org/10.1109/TEVC.2003.810758.

[90] Mirjalili S, Lewis A. Novel performance metrics for robust multi-objective
optimization algorithms. Swarm Evol Comput 2015;21:1–23. https://doi.org/
10.1016/j.swevo.2014.10.005.

[91] Bezerra LCT, López-Ibáñez M, Stützle T. An empirical assessment of the properties
of inverted generational distance on multi- and many-objective optimization.
Trautmann H, Rudolph G, Klamroth K, Schütze O, Wiecek M, Jin Y, et al., editors.
Evolutionary multi-criterion optimization. Cham: Springer International
Publishing; 2017. p. 31–45.

[92] Schutze O, Esquivel X, Lara A, Coello CAC. Using the averaged Hausdorff distance
as a performance measure in evolutionary multiobjective optimization. IEEE
Trans Evol Comput 2012;16:504–22. https://doi.org/10.1109/
TEVC.2011.2161872.

[93] Van VDA. Multiobjective evolutionary algorithms: classifications, analyses, and
new innovations. Air Force Institute of Technology; 1999.

[94] Rizk-Allah RM, Hassanien AE, Slowik A. Multi-objective orthogonal opposition-
based crow search algorithm for large-scale multi-objective optimization. Neural
Comput Appl 2020;32:13715–46. https://doi.org/10.1007/s00521-020-04779-
w.

[95] Coello CAC, Sierra MR. A study of the parallelization of a coevolutionary multi-
objective evolutionary algorithm. editors. In: Raúl M, Arroyo-Figueroa G,
Sucar LE, Sossa H, editors. MICAI 2004 advances in artificial intelligence. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2004. p. 688–97.

[96] Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y. Modified distance calculation in
generational distance and inverted generational distance. Lect Notes Comput Sci
2015;9019:110–25. https://doi.org/10.1007/978-3-319-15892-1_8 (Including
Subser Lect Notes Artif Intell Lect Notes Bioinformatics).

[97] Jiang S, Ong YS, Zhang J, Feng L. Consistencies and contradictions of
performance metrics in multiobjective optimization. IEEE Trans Cybern 2014;44:
2391–404. https://doi.org/10.1109/TCYB.2014.2307319.

[98] Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol Comput 2011;1:3–18. https://doi.
org/10.1016/j.swevo.2011.02.002.

[99] Zeng GQ, Chen J, Li LM, Chen MR, Wu L, Dai YX, et al. An improved multi-
objective population-based extremal optimization algorithm with polynomial
mutation. Inf Sci 2016;330:49–73. https://doi.org/10.1016/j.ins.2015.10.010
(Ny).

[100] Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach
Learn Res 2006;7:1–30.

[101] Martinelli R, Cristina Martins Queiroz Mariano F, Bertini Martins C. Single
machine scheduling in make to order environments: a systematic review. Comput
Ind Eng 2022;169:108190. https://doi.org/10.1016/j.cie.2022.108190.

S. Babu and B.S. Girish Operations Research Perspectives 14 (2025) 100335

30

https://doi.org/10.1007/s00170-004-2492-x
https://doi.org/10.1287/ijoc.1070.0258
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0077
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0077
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0078
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0078
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0078
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0078
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/s13675-016-0075-x
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0080
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0080
https://doi.org/10.1007/978-1-4419-1665-5_4
https://doi.org/10.1007/978-1-4939-6530-4_9
https://doi.org/10.1007/s10732-006-4192-1
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0084
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0084
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0085
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0085
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1016/j.swevo.2014.10.005
https://doi.org/10.1016/j.swevo.2014.10.005
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0091
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0091
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0091
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0091
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0091
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1109/TEVC.2011.2161872
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0093
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0093
https://doi.org/10.1007/s00521-020-04779-w
https://doi.org/10.1007/s00521-020-04779-w
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0095
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0095
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0095
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0095
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1109/TCYB.2014.2307319
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.ins.2015.10.010
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0100
http://refhub.elsevier.com/S2214-7160(25)00011-9/sbref0100
https://doi.org/10.1016/j.cie.2022.108190

	Neighbourhood search-based metaheuristics for the bi-objective Pareto optimization of total weighted earliness-tardiness an ...
	1 Introduction
	2 Literature review
	3 Problem formulation
	4 Solution methodologies
	4.1 Solution representation and generation of the TWET-makespan trade-off curve
	4.2 Pareto-optimal front generation procedure
	4.3 Initial solution generation
	4.4 Multi-objective neighbourhood search-based metaheuristic algorithms
	4.4.1 Neighbourhood structures used in the metaheuristic algorithms
	4.4.2 The proposed MOVND algorithm
	4.4.3 The proposed MOIVND algorithm
	4.4.4 The proposed hybrid MOVND_PR algorithm
	4.4.5 The MOVNS algorithm
	4.4.6 The MOVNS_I algorithm
	4.4.7 The MOILS algorithm

	5 Computational study
	5.1 Generation of test instances
	5.2 Parameter settings
	5.3 Performance metrics
	5.3.1 Hypervolume
	5.3.2 Averaged hausdorff distance
	5.3.3 Diversity metric
	5.3.4 Distribution (Δ) metric

	5.4 Performance comparison
	5.5 Non-parametric statistical analysis
	5.6 Influence of the parameters used in MOIVND
	5.7 Managerial implications

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A
	An illustration of the TWET-makespan trade-off curve generation procedure

	Data availability
	References

