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 A B S T R A C T

Uncertainty is critical in bulk terminals because it is inherent to many operations. In particular, the berth 
allocation problem (BAP) is greatly affected by the uncertain arrival times of the vessels. In this paper, we 
propose the first distributionally robust optimization (DRO) model for the BAP in bulk terminals, where the 
probability distribution of the arrival times is assumed to be unknown but belongs to an ambiguity set. To solve 
the model, we use an exact decomposition algorithm (DA) in which the probability distribution information 
is iteratively included in the master problem through optimal dual cuts. The DA is then enhanced with two 
improvement strategies to reduce the associated computational time; however, with these strategies, the DA 
may no longer be exact and is still inefficient for solving large-scale instances. To overcome these issues, we 
propose a modified exact DA where the dual cuts used in the original DA are replaced by powerful primal 
cuts that drastically reduce the time required to solve the DRO model, making it possible to handle large-scale 
instances. The reported computational experiments also show clear benefits of using DRO to tackle uncertainty 
compared to stochastic programming and robust optimization.
1. Introduction

Port terminals are essential in the global trade market because they 
are the main structures responsible for connecting maritime and land 
transportation. Due to recourse limitations, it is crucial to optimize port 
activities to make ports competitive in the market. For surveys on port 
activities and related optimization problems, we refer to [1–4]. The 
berth allocation problem (BAP) is one of the most important problems 
in port terminals and has been studied for decades. According to Xu 
et al. [5], the berth plan is the very first level of terminal planning 
and is used as a key input to yard storage and personnel/equipment 
deployment planning. This means that poor berth allocation decisions 
may also lead to poor decisions in subsequent stages. Hence, it is 
crucial to consider uncertainty when the berthing plan is made to 
obtain solutions with some protection against unpredictable events and 
thus avoid readjustment actions that are usually costly and cause a 
lot of disturbance in the port. As indicated in the recent survey [6], 
the amount of research on berth allocation problems under uncertainty 
has increased significantly in recent years; however, almost all the 
papers covered in that survey focus on container terminals and not bulk 
terminals.

Bulk terminals differ from container terminals because they usually 
handle multiple cargo types requiring different equipment facilities, 
such as mobile cranes, conveyors, and pipelines. This equipment may 
not exist in all berthing sections of the wharf, which blocks the allo-
cation of some vessels in some sections. Additionally, each cargo type 
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is stored in a specific area of the yard, so it is necessary to model the 
interaction between the storage area of specific cargo types in the yard 
and the berthing position of the vessels in the wharf. This means that 
the handling time of a vessel depends on both the time taken to move 
the cargo between its storage area and the quayside and the time taken 
to move the cargo between the quayside and the vessel.

Umang et al. [7,8] were the first to clearly distinguish the BAP in 
bulk terminals from the BAP in container terminals. Since then, many 
researchers have studied the BAP in bulk terminals under deterministic 
assumptions. For a recent review on BAPs in bulk terminals, see [9]. 
However, to the best of our knowledge, only [10–13] study BAPs under 
uncertainty in the context of bulk terminals.

This paper proposes the first distributionally robust optimization 
(DRO) approach to handle uncertainty in the BAP in bulk terminals. Un-
like stochastic programming, where uncertain parameters are assumed 
to be governed by a known probability distribution, in DRO such a dis-
tribution is unknown but belongs to a given ambiguity set [14]. Hence, 
DRO does not require exact knowledge of the distribution of uncertain 
parameters, which is the main drawback of stochastic programming. 
In addition, DRO makes it possible to reduce the overconservatism of 
robust optimization.

In our DRO model, we consider that the arrival times of the vessels 
are uncertain parameters following an unknown probability distribu-
tion. An empirical distribution of the arrival times can usually be 
https://doi.org/10.1016/j.orp.2025.100334
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estimated from historical data, as often happens in stochastic pro-
gramming; however, this empirical distribution may not be a reliable 
approximation of the true probability distribution. Hence, in our DRO 
model, we consider an ambiguity set composed of all probability dis-
tributions whose distance to that empirical distribution is lower than 
a given value 𝜖. This set is the well-known  Kantorovich/Wasserstein 
ambiguity set [15].

To solve the resulting DRO model, we start by using the decompo-
sition algorithm (DA) proposed in [16], where the information on the 
probability distributions covered by the ambiguity set is included in the 
master problem through optimal dual cuts. Those cuts were revealed 
to be very weak for the BAP in bulk terminals, resulting in a slow 
convergence of the algorithm. Thus, two improvement strategies are 
proposed to strengthen the dual cuts. These strategies speed up the 
algorithm’s convergence a lot; however, even with them, the algorithm 
is still incapable of solving large-scale instances. Hence, we propose 
a new exact DA that replaces the original dual cuts with powerful 
primal cuts. Using primal cuts instead of dual ones requires increasing 
the number of variables and constraints of the master problem, but it 
clearly pays off. The new DA can solve DRO models in seconds that the 
original decomposition algorithm solved in hours, even when the latter 
was combined with the proposed improvement strategies.

Our contributions can be summarized as follows.

(i) We propose the first DRO approach for handling uncertainty in 
BAPs in bulk terminals;

(ii) We use a DA based on dual cuts to solve the DRO model and 
propose two improvement heuristic strategies to make it more 
efficient;

(iii) We propose a  new modified exact DA for solving the DRO model 
where the dual cuts in the original DA are replaced by new 
powerful primal cuts that drastically reduce the computational 
time;

(iv) We report computational experiments that clearly show the ben-
efits of DRO in the BAP in bulk terminals compared to stochastic 
programming and robust optimization.

The rest of this paper is organized as follows. The relevant literature 
related to our work is reviewed in Section 2. The deterministic and 
DRO formulations for the BAP in bulk terminals are introduced in 
Section 3. The original and modified DAs used to solve the DRO model 
are presented in Section 4. The improvement strategies used to enhance 
the original DA are also presented in this section. Section 5 reports 
the computational experiments carried out to understand the benefits 
of using DRO optimization in the BAP and evaluate the performance 
of both DAs and improvement strategies proposed.  This section also 
extends the proposed DRO model and DAs to handle uncertain cargo 
quantities. Conclusions,  limitations, and future research direction are 
drawn in Section 6.

2. Literature review

In this section, we review the relevant literature related to our 
work. The focus of our paper is the BAP in bulk terminals under 
uncertainty, so this section  is restricted to that subject. For interested 
readers, a recent survey on (deterministic) BAPs in bulk terminals 
can be found in [9], while reviews on berth allocation problems in 
container terminals are provided in [6,17].

The literature on BAPs in container terminals is extensive and the 
study of these problems started decades ago. This is not the case for 
bulk terminals whose first studies date from 2011 [7,18]. The first 
studies on BAPs in bulk and container terminals rely on deterministic 
assumptions, that is, they assume that all relevant parameters of the 
problem are exactly known. Since 2006, with the work of Moorthy 
and Teo [19], the research community has also started to focus on the 
uncertainty surrounding BAPs, and many important contributions have 
appeared in the last ten years [6].
2 
The uncertainty in BAPs is mainly related to port congestion, me-
chanical failures, weather conditions, human behavior, etc. According 
to [6], the approaches used to deal with uncertainty can be divided 
into three main categories: proactive, reactive, and proactive–reactive. 
In proactive approaches [5,19–21], the full berthing plan is made in ad-
vance, that is, before the beginning of the planning horizon, and it takes 
uncertainty into account. In reactive approaches [22,23], a baseline 
plan is given and then recourse actions are applied to deal with the ob-
served uncertainty. Finally, in proactive–reactive approaches [24–28], 
a complete or partial baseline plan is derived taking into account some 
uncertain information, and then recourse actions are applied when the 
real uncertainty is observed.

All the papers mentioned in the previous paragraph refer to con-
tainer terminals since the literature on BAPs in bulk terminals under 
uncertainty is scarce. To the best of our knowledge, only [10–13] 
studied BAPs under uncertainty in the context of bulk terminals. Umang 
et al. [13] followed a reactive approach to deal with the uncertain 
arrival and handling times of vessels in the BAP in bulk terminals. The 
goal was to minimize the total cost of the updated berthing schedule 
when the data was revealed in real time. Given a baseline schedule, 
the authors used an optimization-based recovery algorithm and a smart 
greedy recovery algorithm on a rolling horizon to reschedule the vessels 
when disruptions occur.

León et al. [12] studied the BAP in bulk terminals considering 
stochastic arrival and handling times from a proactive perspective. The 
authors proposed a simheuristic framework to obtain a Pareto front 
estimation of the proposed multi-objective model, aiming to minimize 
the total completion time of the vessels and the estimated penalty 
cost resulting from delays in the vessel’s departure. In that framework, 
new solutions were obtained by a multi-objective NSGA-II and eval-
uated through simulation. The proposed framework also included a 
data-driven heuristic that made it possible to define buffers for each 
vessel to mitigate the impact of uncertainty. The same problem was 
studied in [11] from a proactive–reactive perspective to reduce the 
cost of changes in the baseline berthing plan resulting from uncertain 
events. In the proactive phase, a baseline solution is obtained using the 
approach proposed in [12], while in the reactive phase, readjustment 
actions are applied to deal with the observed uncertainty to minimize 
deviations from the baseline schedule.

Dai et al. [10] studied the BAP in bulk terminals with quay crane 
setup times in both offline and online settings. The offline setting 
assumes that all relevant information is known, while in the online 
setting the arrival times, types of cargo, and handling times of the 
vessels are unavailable until they arrive at the port. The online case 
follows a reactive strategy where the BAP is formulated as a Markov 
decision process and then, a reinforcement learning algorithm is used 
to quickly readjust the berthing plan in real time.

The approach followed in this paper is proactive–reactive, and the 
uncertainty is handled by using DRO. Since its appearance, DRO has 
become one of the main approaches for handling optimization prob-
lems under uncertainty due to its flexibility [14]. That is, it does not 
require full knowledge of the probability distribution of the uncertain 
parameters as in stochastic programming. Instead, it assumes that the 
probability distribution belongs to an ambiguity set. For a detailed 
description of the different ambiguity sets, see [29].

When deciding on the ambiguity set to use, it is important to con-
sider its tractability and practical application, namely, its adjustment 
to historical data [30]. Two classical approaches for constructing the 
ambiguity set are the moment-based and distance-based approaches. 
In moment-based approaches, the ambiguity set is defined through 
conditions on the distribution’s moments such as mean and covariance. 
Distance-based approaches consider probability distributions within 
a given distance of a reference distribution. According to Gao and 
Kleywegt [15], moment-based ambiguity sets have the drawback of 
assuming that only information on the moments can be extracted from 
the data. Keeping this in mind, we use a Wasserstein ambiguity set 
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to represent the uncertainty. This set depends on a risk parameter 
that controls its size, and by varying such a parameter, it may be 
possible to obtain solutions with different degrees of protection against 
uncertainty. In addition, this ambiguity set is defined through a set of 
scenarios that can easily be estimated in practice from historical data. 
It is important to note that scenarios are the most common way to 
represent uncertainty in BAPs [6], which supports our choice.

DRO has been used to solve different complex optimization prob-
lems such as production planning [31], healthcare supply chain [32], 
surgery planning [33], hub location [34],  group decision-making [35], 
quay crane scheduling [36], among others.  However, the application 
of DRO to berth allocation-related problems is still scarce. Applications 
of DRO to integrated berth allocation and quay crane assignment 
problems can be found in [37] and [38]. In both works, the authors 
consider a mean–variance ambiguity set. The former explores a distri-
butionally robust chance-constrained optimization approach where a 
chance constraint is used to impose that the service time of the vessels 
must start after their uncertain arrival time with a given probability to 
avoid rescheduling actions. The latter explores a two-stage DRO model 
that aims to minimize the worst-case expectation of the adjustment cost 
when disruptions occur. A DRO approach was also followed in [39] 
to solve a two-stage BAP with uncertain handling times in container 
terminals.

2.1. Positioning this work in the literature

This paper differs from the existing literature by providing the first 
DRO model for the BAP in bulk terminals. The proposed model is solved 
using two DAs: one based on dual cuts and the other based on primal 
cuts. The former was originally proposed in [16] and later used in [39] 
to solve a DRO model for the BAP with uncertain handling times in 
container terminals, while the latter is new and clearly exhibits better 
performance. Probably, [39] is the closest paper to this research, but 
significant differences still exist. First, this paper studies the BAP in 
bulk terminals, while [39] considers the traditional BAP in container 
terminals. Since these problems are very different, as clearly explained 
in [7], applying the DA used in [39] to the BAP addressed in this paper 
is not straightforward. Second, the uncertain parameters in [39] are 
the handling times, while here the main uncertain parameters are the 
arrival times. Third, the problem studied in [39] assumes the existence 
of a hard deadline to complete the vessel’s operations, which made it 
possible to design an exact improvement strategy to speed up the DA 
used. Here, it is assumed that such a hard deadline is not provided, 
which leads to the need to design an alternative improvement strategy. 
Fourth, the DA used in [39] uses dual cuts to include the information 
of probability distributions in the master problem, while the new DA 
proposed here uses more powerful primal cuts. It is important to note 
that the DA with dual cuts is just used here as a baseline and the new 
proposed DA with primal cuts drastically reduces the computational 
time needed to obtain optimal solutions. 

3. The berth allocation problem in bulk terminals

A bulk terminal handles several cargo types requiring different 
equipment facilities such as harbor cranes, pipelines, and conveyors. 
This equipment is not installed in all berthing sections of the wharf, 
and each cargo type has a specific storage location in the yard. Fig.  1 
illustrates a bulk terminal with five berthing sections having different 
equipment installed. In particular, conveyors are installed in the first 
two sections, harbor cranes are mounted in sections 2, 3, and 4, and 
pipelines are accessible in the last two sections. We can also see storage 
locations for different cargo types.

The BAP in bulk terminals consists of determining the arrival time 
and berthing section for each vessel arriving at the port in a given 
time horizon. The goal is to minimize the total completion time of the 
vessels, that is, the total time they spend in the port.
3 
After this brief overview, we formally introduce the deterministic 
model for the BAP in bulk terminals where it is assumed that the arrival 
times of the vessels are known. This model is the basis for the DRO 
model, also presented in this section, where the vessel arrival times are 
assumed to be uncertain.

3.1. Deterministic formulation

The deterministic model presented here is the same as that intro-
duced in [8]. Consider a bulk terminal where a set 𝑊 = {1,… , |𝑊 |} of 
different types of cargo are loaded/unloaded by a set 𝑁 = {1,… |𝑁|}
of vessels arriving at the terminal over a time horizon 𝑇 𝑚𝑎𝑥. Each 
vessel 𝑖 ∈ 𝑁 has an expected arrival time 𝑎𝑖 and a fixed length 𝑙𝑖. We 
assume that each vessel 𝑖 ∈ 𝑁 can carry a single cargo type 𝑤𝑖 and 
the cargo quantity to handle is 𝑞𝑖. The bulk terminal has a hybrid quay 
with length 𝐿𝑚𝑎𝑥 discretized into a set 𝑀 = {1,… , |𝑀|} of berthing 
sections. Each section 𝑘 ∈ 𝑀 has a length 𝐿𝑘 and a starting coordinate 
𝑏𝑘. The handling time of a vessel depends on two factors: i) the time 
taken to transfer one unit of cargo between the cargo location in the 
yard and the quay section in which the vessel berths and ii) the time 
taken to load/unload one unit of cargo from the quayside to the vessel. 
Therefore, the time required for loading/unloading one unit of cargo 
type 𝑤𝑖 in vessel 𝑖 ∈ 𝑁 at section 𝑘 ∈ 𝑀 is denoted by ℎ𝑤𝑖

𝑘 . As explained 
in [8], it is assumed that all quay sections occupied by a vessel are 
operated simultaneously and that each section handles an amount of 
cargo proportional to its length. The percentage of cargo handled in 
section 𝑗 ∈ 𝑀 if the vessel 𝑖 ∈ 𝑁 berths in section 𝑘 ∈ 𝑀 is denoted by 
𝑝𝑖𝑘𝑗 and can be calculated considering the parameters defined before.

The main decision variables of the problem are defined as follows.

𝑚𝑖 - the starting handling time for vessel 𝑖 ∈ 𝑁 ;
𝑐𝑖 - the total handling time of vessel 𝑖 ∈ 𝑁 ;
𝑠𝑖𝑘 - 1 if section 𝑘 ∈ 𝑀 is the starting section of vessel 𝑖 ∈ 𝑁 ; 0 
otherwise;
𝑦𝑖𝑗 - 1 if vessel 𝑖 ∈ 𝑁 berths to the left of vessel 𝑗 ∈ 𝑁 ; 0 
otherwise;
𝑧𝑖𝑗 - 1 if vessel 𝑖 ∈ 𝑁 finishes its operations before the handling 
of vessel 𝑗 ∈ 𝑁 starts; 0 otherwise.

The deterministic berth allocation problem in bulk terminals can 
then be formulated as follows.
min

∑

𝑖∈𝑁
(𝑚𝑖 + 𝑐𝑖 − 𝑎𝑖) (1)

𝑠.𝑡.
∑

𝑘∈𝑀
𝑠𝑗𝑘𝑏𝑘 + 𝐿𝑚𝑎𝑥(1 − 𝑦𝑖𝑗 ) ≥

∑

𝑘∈𝑀
𝑠𝑖𝑘𝑏𝑘 + 𝑙𝑖, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (2)

𝑦𝑖𝑗 + 𝑦𝑗𝑖 + 𝑧𝑖𝑗 + 𝑧𝑗𝑖 ≥ 1, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (3)
∑

𝑘∈𝑀
𝑠𝑖𝑘 = 1, 𝑖 ∈ 𝑁, (4)

∑

𝑘∈𝑀
𝑠𝑖𝑘𝑏𝑘 + 𝑙𝑖 ≤ 𝐿𝑚𝑎𝑥, 𝑖 ∈ 𝑁, (5)

𝑐𝑖 ≥ ℎ𝑤𝑖
𝑗 𝑝𝑖𝑘𝑗𝑞𝑖𝑠𝑖𝑘, 𝑖 ∈ 𝑁, 𝑘, 𝑗 ∈ 𝑀, (6)

𝑚𝑖 ≥ 𝑎𝑖, 𝑖 ∈ 𝑁, (7)

𝑚𝑗 + 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 ) ≥ 𝑚𝑖 + 𝑐𝑖, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (8)

𝑚𝑖 ≥ 0, 𝑖 ∈ 𝑁, (9)

𝑐𝑖 ≥ 0, 𝑖 ∈ 𝑁, (10)

𝑠𝑖𝑘 ∈ {0, 1}, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀, (11)

𝑦𝑖𝑗 , 𝑧𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 ∈ 𝑁. (12)

The objective function (1) minimizes the total completion time of 
the vessels, corresponding to the difference between their finishing time 
and arrival time. Constraints (2) and (8) establish spatial and temporal 
relations between vessels, while constraints (3) ensure no overlaps be-
tween vessels neither in time nor in space. Constraints (4) impose that 
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Fig. 1. Illustration of a bulk terminal.
each vessel has exactly a single starting berthing section. Constraints 
(5) guarantee that the allocation of a vessel does not exceed the length 
of the quay. Since it is assumed that the amount of cargo handled at 
a given quay section is proportional to its length, the total handling 
time of a vessel corresponds to the time taken for loading/unloading 
the vessel in the section whose operation finishes last, as stated by 
constraints (6). Constraints (7) ensure that each vessel does not start 
to be served before its arrival. Constraints (9)–(12) define the domain 
of the decision variables.

3.2. Distributionally robust formulation

The deterministic model presented in the previous section assumes 
that the arrival times of the vessels are exactly known when the 
planning is made. However, this is an unrealistic assumption because 
these parameters are greatly affected by several  uncertain factors like 
mechanical failures, weather conditions, and delays in other ports [6]. 
Recognizing the existence of uncertainty, this section presents a DRO 
model for the BAP in bulk terminals where the arrival time of each ves-
sel 𝑖 ∈ 𝑁 is a random variable governed by a probability distribution P𝑖. 
Let us denote by P = (P1,… ,P

|𝑁|

) the joint probability distribution of 
the arrival times of the set of vessels considered. Contrary to stochastic 
programming where it is assumed that distribution P is known, in the 
DRO, such a distribution is uncertain and belongs to an ambiguity set A. 
Our DRO model assumes that the probability distribution of the arrival 
times has finite support given by a set of scenarios 𝛺 = {𝑎1,… , 𝑎|𝛺|}, 
where 𝑎𝜔 = (𝑎𝜔1 ,… , 𝑎𝜔

|𝑁|

) and 𝑎𝜔𝑖  represents the arrival time of vessel 
𝑖 ∈ 𝑁 in scenario 𝜔 ∈ 𝛺.  We note that discrete supports may be 
used not only to represent discrete probability distributions but also 
to approximate continuous distributions by discrete distributions, see 
for instance, [40,41]. Additionally, as highlighted in [6], scenarios are 
the most common way to represent uncertainty in BAPs because they 
can be easily obtained from historical data.

The proposed DRO model is a two-stage model in which most of 
the berthing decisions (𝑠, 𝑦, 𝑧) - and consequently the handling times 
of the vessels (𝑐) - are first-stage decisions and the berthing times of the 
vessels (𝑚) are second-stage decisions adjusted to uncertainty. It aims 
to optimize the expected value of the sum of the completion times of 
the vessels for the worst probability distribution in the ambiguity set 
A, that is, 

min

{

max
∑

𝜋𝜔
P
𝑅(𝑠, 𝑦, 𝑧, 𝑐, 𝜔) | (2) − (6), (10) − (12)

}

, (13)

P∈A 𝜔∈𝛺

4 
where 𝜋𝜔
P
 is the probability of scenario 𝜔 according to the probability 

distribution P and 𝑅(𝑠, 𝑦, 𝑧, 𝑐, 𝜔) provides the minimum sum of comple-
tion times for first-stage decisions 𝑠, 𝑦, 𝑧, and 𝑐 in scenario 𝜔 ∈ 𝛺. 
Computing the completion times for a given first-stage solution only 
requires knowledge of the value of the variables 𝑧 and 𝑐, thus, for each 
scenario 𝜔 ∈ 𝛺, 𝑅(𝑠, 𝑦, 𝑧, 𝑐, 𝜔) = 𝑅(𝑧, 𝑐, 𝜔). Denoting by 𝑚𝜔

𝑖  the starting 
time of handling vessel 𝑖 in scenario 𝜔, we have
𝑅(𝑧, 𝑐, 𝜔) = min

𝑚𝜔

∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝑖 − 𝑎𝜔𝑖 ) (14)

𝑠.𝑡. 𝑚𝜔
𝑗 + 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 ) ≥ 𝑚𝜔

𝑖 + 𝑐𝑖, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (15)

𝑚𝜔
𝑖 ≥ 𝑎𝜔𝑖 , 𝑖 ∈ 𝑁, (16)

𝑚𝜔
𝑖 ≥ 0, 𝑖 ∈ 𝑁. (17)

The DRO model (13) is a minimization problem containing an inner 
maximization problem based on an infinite ambiguity set, which makes 
it impossible to solve it as a single model. Therefore, in the next section, 
we introduce an exact decomposition algorithm to solve it.

4. Solution methods

The DRO model presented in the previous section can be solved 
using the exact DA proposed in [16]. However, as we shall see in 
the computational experience, the algorithm’s convergence is slow, 
which makes it impractical for large-scale instances. Thus, we propose 
several (heuristic) improvement strategies for enhancing it. Although 
drastically reducing the computational time, the DA combined with 
the improvement strategies is still incapable of solving large instances 
efficiently. To overcome this issue, we finish this section by presenting 
a new DA based on new optimality cuts that clearly outperform the 
original ones.

4.1. An exact decomposition algorithm

In this section, we introduce the exact DA proposed in [16]. To do 
this, we start by rewriting the DRO model (13) by using the epigraph 
reformulation as follows:
min 𝜃 (18)

𝑠.𝑡. 𝜃 ≥
∑

𝜔∈𝛺
𝜋𝜔
P
𝑅(𝑧, 𝑐, 𝜔), ∀𝜋P ∈ A, (19)

(2) − (6), (10) − (12). (20)
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When the ambiguity set A is not finite, the resulting DRO model is 
intractable. Hence, the idea of the DA is to replace constraints (19) by a 
finite number of optimality cuts. To determine those cuts, we start by 
writing the dual 𝑅𝑑𝑢𝑎𝑙(𝑧, 𝑐, 𝜔) of the recourse problem (14)–(17), that 
is,

𝑅𝑑𝑢𝑎𝑙(𝑧, 𝑐, 𝜔) = max
𝑢𝜔 , 𝑣𝜔

∑

𝑖∈𝑁
(𝑐𝑖 − 𝑎𝜔𝑖 ) +

∑

𝑖,𝑗∈𝑁∶𝑖≠𝑗
𝑢𝜔𝑖𝑗 (𝑐𝑖 − 𝑇 𝑚𝑎𝑥(1− 𝑧𝑖𝑗 )) +

∑

𝑖∈𝑁
𝑎𝜔𝑖 𝑣

𝜔
𝑖 (21)

𝑠.𝑡.
∑

𝑗∈𝑁∶𝑗≠𝑖
(𝑢𝜔𝑗𝑖 − 𝑢𝜔𝑖𝑗 ) + 𝑣𝜔𝑖 ≤ 1, 𝑖 ∈ 𝑁, (22)

𝑢𝜔𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ 𝑁 ∶ 𝑖 ≠ 𝑗, (23)

𝑣𝜔𝑖 ≥ 0, 𝑖 ∈ 𝑁. (24)

If the recourse problem 𝑅(𝑧, 𝑐, 𝜔) has an optimal solution, then, by 
the strong duality theory, 𝑅𝑑𝑢𝑎𝑙(𝑧, 𝑐, 𝜔) also has an optimal solution, and 
the optimal values coincide. Hence, denoting by (𝑢𝜔𝑖𝑗 , 𝑣𝜔𝑖 ) the optimal 
dual solution and using the asterisk symbol to denote optimal values, 
the following equalities hold
𝑅∗(𝑧, 𝑐, 𝜔) = 𝑅𝑑𝑢𝑎𝑙∗(𝑧, 𝑐, 𝜔) =

∑

𝑖∈𝑁
(𝑐𝑖−𝑎𝜔𝑖 )+

∑

𝑖,𝑗∈𝑁∶𝑖≠𝑗
𝑢𝜔𝑖𝑗 (𝑐𝑖−𝑇

𝑚𝑎𝑥(1−𝑧𝑖𝑗 ))+
∑

𝑖∈𝑁
𝑎𝜔𝑖 𝑣

𝜔
𝑖

leading to the following optimality cut 

𝜃 ≥
∑

𝜔∈𝛺
𝜋𝜔
P

(

∑

𝑖∈𝑁
(𝑐𝑖 − 𝑎𝜔𝑖 ) +

∑

𝑖,𝑗∈𝑁∶𝑖≠𝑗
𝑢𝜔𝑖𝑗 (𝑐𝑖 − 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 )) +

∑

𝑖∈𝑁
𝑎𝜔𝑖 𝑣

𝜔
𝑖

)

(25)

where the probabilities 𝜋𝜔
P
 are obtained by solving the distribution 

separation problem (DSP): 
𝐷𝑆𝑃 = max

𝜋P∈A

∑

𝜔∈𝛺
𝜋𝜔
P
𝑅∗(𝑧, 𝑐, 𝜔). (26)

The DSP determines the probability distribution in the ambiguity 
set leading to the worst expected sum of the completion times. This 
distribution is determined taking into account the total completion 
times of all scenarios 𝜔 ∈ 𝛺, that is, the values of the recourse function 
𝑅∗(𝑧, 𝑐, 𝜔) for all 𝜔 ∈ 𝛺. The way of solving the DSP depends on 
the ambiguity set considered. In this paper, we use the well-known 
Kantorovich ambiguity set because it has several advantages (see [15]) 
and has been widely used in the literature, see, for instance, [39,42,
43]. Additionally, the  Kantorovich ambiguity set depends on a risk 
parameter 𝜖 that controls its size. Roughly speaking, given a reference 
probability distribution 𝜋P, the  Kantorovich ambiguity set K𝜖 defines 
the space of probability distributions whose distance to that reference 
distribution is at most 𝜖. That is, 
K𝜖 =

{

𝜋P ∈ R|𝛺| ∶ 𝑑(𝜋P, 𝜋P) ≤ 𝜖
}

. (27)

Using this ambiguity set makes it possible to write the DSP as a 
linear model easy to solve. If the distance 𝑑(𝜋P, 𝜋P) is measured by a 
Wasserstein metric of order 1, then the DSP can be written as follows.
𝐷𝑆𝑃 = max

𝜋P

∑

𝜔∈𝛺
𝜋𝜔
P
𝑅∗(𝑧, 𝑐, 𝜔) (28)

𝑠.𝑡.
∑

𝜔,𝜔′∈𝛺
∥ 𝜔 − 𝜔′ ∥1 𝑡𝜔𝜔′ ≤ 𝜖, (29)

∑

𝜔′∈𝛺
𝑡𝜔𝜔′ = 𝜋𝜔

P
, 𝜔 ∈ 𝛺, (30)

∑

𝜔∈𝛺
𝑡𝜔𝜔′ = 𝜋𝜔′

P
, 𝜔′ ∈ 𝛺, (31)

∑

𝜔∈𝛺
𝜋𝜔
P
= 1, (32)

𝜋𝜔
P
≥ 0, 𝜔 ∈ 𝛺, (33)

𝑡𝜔𝜔′ ≥ 0, 𝜔, 𝜔′ ∈ 𝛺. (34)
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Note that 𝑅∗(𝑧, 𝑐, 𝜔) corresponds to the optimal value of the re-
course problem associated with scenarios 𝜔, so it is a fixed value. The 
Wasserstein metric of order 1 appears in constraint (29).

The exact DA proposed in [16] iterates between a master prob-
lem (MP), an adversarial problem (AP), and a distribution separation 
problem (DSP). At each iteration 𝑘, the MP determines a first-stage 
solution (𝑠𝑘, 𝑦𝑘, 𝑧𝑘, 𝑐𝑘). Then, the partial first-stage solution (𝑧𝑘, 𝑐𝑘) is 
used in the AP to determine the second-stage solution for each scenario. 
The optimal value associated with each scenario determined in the AP 
(𝑅∗(𝑧𝑘, 𝑐𝑘, 𝜔)) is then used in the DSP to determine the probability 
distribution 𝜋P in the ambiguity set leading to the worst expected 
sum of the completion times. The optimal value of the master problem 
(𝑀𝑃 ∗) provides a lower bound for the problem, while the upper bound 
is given by the optimal value of the DSP (𝐷𝑆𝑃 ∗). The algorithm runs 
while the current lower bound is lower than the current upper bound. 
At each iteration, a new cut is generated considering the optimal dual 
solutions from the AP and the probability distribution determined by 
the DSP. The complete algorithm is illustrated in Fig.  2.

4.2. Improvement strategies

As we shall see in the computational experience, the convergence 
of the DA introduced in the previous section is slow in the BAP, which 
makes it impractical for real-size instances. Hence, in this section, we 
propose two improvement strategies, inspired by [39], to speed up the 
algorithm; however, it is important to highlight that they may eliminate 
some optimal solutions, which makes them heuristic improvements.

To understand why the convergence of the DA is slow, we need to 
look at the structure of the generated cuts (25) carefully and focus on 
the term 

∑

𝑖,𝑗∈𝑁∶𝑖≠𝑗
𝑢𝜔𝑖𝑗 (𝑐𝑖 − 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 )). (35)

The value 𝑇 𝑚𝑎𝑥 represents the time horizon and is used here as an 
upper bound for the completion time of the operations on each vessel 
𝑖 ∈ 𝑁 . When 𝑧𝑖𝑗 = 0 and 𝑢𝜔𝑖𝑗 is not zero, the term (35) is a negative 
value, usually large. Since this term appears on the right-hand side 
of the cut (25), which is a }} ≥ ε constraint, it will slow down the 
increase of 𝜃 and consequently the increase of the lower bound of the 
DRO model. A similar situation was identified for the BAP in container 
terminals studied in [39]. In that problem, it was assumed the existence 
of a hard deadline for the completion time of each vessel, which is not 
the case for the problem studied in this paper. The existence of such 
a deadline allowed to decrease the value of 𝑇 𝑚𝑎𝑥 in each constraint, 
leading to better results and keeping the optimality of the DA.

In this problem, such a deadline does not exist, which makes using 
the same strategy forbidden. Hence, the first improvement strategy 
proposed in this paper consists of producing a reliable estimation of an 
upper bound on the completion time of each vessel to reduce the value 
of 𝑇 𝑚𝑎𝑥 used in (35). To that end, we start by solving the deterministic 
BAP using the formulation (1)–(12) to determine the completion time 
of each vessel in the deterministic scenario, that is, 𝑚𝑑𝑒𝑡

𝑖 + 𝑐𝑑𝑒𝑡𝑖 , 𝑖 ∈ 𝑁 . 
Then, we define the value 𝑇 𝑚𝑎𝑥

𝑖  for each vessel 𝑖 ∈ 𝑁 as 

𝑇 𝑚𝑎𝑥
𝑖 = min{𝑇 𝑚𝑎𝑥, 𝑚𝑑𝑒𝑡

𝑖 + 𝑐𝑑𝑒𝑡𝑖 + 𝛿1}, (36)

where 𝛿1 is a predefined value, and replace 𝑇 𝑚𝑎𝑥 by 𝑇 𝑚𝑎𝑥
𝑖  in (35). With 

Eq. (36) we are imposing that the completion time of each vessel cannot 
be higher than its completion time in the deterministic scenario plus a 
given tolerance 𝛿1.

The second improvement strategy aims to reduce the number of 
alternative solutions by fixing some variables to zero that are likely
to be zero in the optimal solution. In particular, we impose that if in 
the set of scenarios considered the latest arrival of vessel 𝑖 ∈ 𝑁 plus 
a predefined tolerance 𝛿2 is lower than the earliest possible arrival 
of vessel 𝑗 ∈ 𝑁 , then vessel 𝑖 cannot begin to be served after the 
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Fig. 2. Decomposition algorithm of Bansal et al. [16].
completion time of vessel 𝑗, that is,
If max

𝜔∈𝛺
{𝑎𝜔𝑖 } + 𝛿2 < min

𝜔∈𝛺
{𝑎𝜔𝑗 } then 𝑧𝑗𝑖 = 0

This improvement is expected to reduce the number of cuts added to 
the master problem, that is, the number of iterations of the algorithm, 
and therefore to reduce the total computational time. Once again, it 
is important to highlight that both improvement strategies introduced 
here may cut some optimal solutions, which means that the DA acts as 
a heuristic when combined with them.

4.3. The modified decomposition algorithm

The DA presented in Section 4.1 successively generates cuts based 
on the dual solutions provided by the adversarial problem. This avoids 
using the second-stage variables 𝑚𝜔 and corresponding constraints in 
the master problem, reducing its dimension. However, as explained in 
the previous section and observed from the computational experience, 
the optimality cuts (25) are weak, indicating that a large number of it-
erations may be required until the lower and upper bounds determined 
by the algorithm coincide.

In an attempt to strengthen the cuts added to the master problem 
and reduce the global number of iterations performed, we propose a 
new DA where the master problem contains all the second-stage vari-
ables and constraints (15)–(17) associated with each of the scenarios 
and the optimality cuts are defined in terms of those variables. If all 
second-stage variables and corresponding constraints are included in 
the master problem, the following constraint is an optimality cut for 
the problem: 

𝜃 ≥
∑

𝜔∈𝛺
𝜋𝜔
P

(

∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝑖 − 𝑎𝜔𝑖 )

)

(37)

where the probabilities 𝜋𝜔
P
 are obtained by solving the distribution 

separation problem (26), as before. The modified master problem 
solved at iteration 𝑘 can then be written as follows:
min 𝜃 (38)

𝑠.𝑡. 𝐶𝑢𝑡𝓁 , 𝓁 = 0,… , 𝑘 − 1, (39)

(2) − (6), (10) − (12), (40)

𝑚𝜔 + 𝑇 𝑚𝑎𝑥(1 − 𝑧 ) ≥ 𝑚𝜔 + 𝑐 , 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝜔 ∈ 𝛺, (41)
𝑗 𝑖𝑗 𝑖 𝑖

6 
𝑚𝜔
𝑖 ≥ 𝑎𝜔𝑖 , 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺, (42)

𝑚𝜔
𝑖 ≥ 0, 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺. (43)

where 𝐶𝑢𝑡𝓁 is the cut (37) generated in iteration 𝓁. Since the 
second-stage variables and corresponding constraints are included in 
the master problem for all scenarios considered, the value of the 
recourse function 𝑅(𝑧, 𝑐, 𝜔) for scenario 𝜔 ∈ 𝛺 – used in the DSP – 
can be directly obtained from the master problem, avoiding to solve 
the adversarial problem. The proposed modified DA used to solve the 
DRO BAP in bulk terminals is presented in Fig.  3.

Including all second-stage variables and corresponding constraints 
in the master problem increases its size; however, as we shall see in the 
next section, this increase is completely compensated by the strength 
of the new cuts added. It is also important to note that the modified 
DA is an exact algorithm for the DRO BAP.

5. Computational results

In this section, we report the computational experiments carried out 
to test the proposed DRO model and algorithms. The experiments were 
run on a computer with a  CPU Intel(R) Core i9 with 32 GB RAM by 
using the Xpress Optimizer Version 9.5.2 with the default options.

5.1. Instances used

All computational experiments were conducted on instances based 
on those used in [8], which correspond to real data gathered from the 
SAQR port in Ras Al Khaimah, United Arab Emirates. In particular, 
we consider a bulk terminal that handles six cargo types needing 
different specialized equipment facilities. Four cargo types need to 
be handled by quay cranes, one cargo requires pipelines, and the 
other requires a conveyor. The port has a quay area of 𝐿𝑚𝑎𝑥 =
1600 m divided into 10 berthing sections with lengths {150, 50, 200, 150,
125, 250, 250, 75, 150, 200}. There is a conveyor in sections 1, 2, 4, and 
5 and a pipeline in sections 3, 4, 5, 8, and 9. The number of cranes in 
each berthing section is proportional to its length because it is assumed 
the existence of a quay crane by each 50 m.

The storage location for each cargo type in the port is shown in 
Fig.  6 presented in [8]. It is assumed that all sections occupied by a 
berthed vessel are operated simultaneously, with each section handling 
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Fig. 3. Modified exact decomposition algorithm.
the amount of cargo proportionally to its length.  As in [8], the unit 
handling time of a vessel with cargo type 𝑤 ∈ 𝑊  in section 𝑘 ∈ 𝑀 is 
given by ℎ𝑤𝑘 = 𝛼𝑤𝑘 + 𝛽𝑤𝑘 , where 𝛽𝑤𝑘  is the time taken to transfer one unit 
of cargo 𝑤 between its storage location on the yard and the berthing 
section 𝑘, and 𝛼𝑤𝑘  is the time taken to load/unload one unit of cargo 
𝑤 from section 𝑘 to the vessel. Denoting by 𝑅 the time taken by a 
single crane to load/unload a unit of cargo and by 𝑛𝑤𝑘  the number of 
cranes operating in section 𝑘 for cargo type 𝑤, we have 𝛼𝑤𝑘 = 𝑅∕𝑛𝑤𝑘 . 
Additionally, denoting by 𝑑𝑤𝑘  the distance between the storage area of 
cargo 𝑤 and section 𝑘 and by 𝑣𝑤 the speed at which the cargo type 𝑤
is transferred, we have 𝛽𝑤𝑘 = 𝑣𝑤𝑑𝑤𝑘 .

Parameter 𝑑𝑤𝑘  is the Euclidean distance between the midpoint of 
section 𝑘 and the storage location of cargo 𝑤.  According to [8], the 
parameter 𝑣𝑤 is defined as 𝑣1 = 1∕1200 h/m (conveyor), 𝑣6 = 1∕3600
h/m (pipeline), and 𝑣2 = 𝑣3 = 𝑣4 = 𝑣5 = 1∕600 h/m (other cargo types). 
Furthermore, 𝑅 = 1000 tons per hour and 𝑛𝑤𝑘  depends on the length of 
section 𝑘, as explained before.

We consider two sets of instances, S1 and S2. Set S1 is composed of 
40 instances with |𝑁| = 6, 8, 10, 12 vessels, having 10 instances for each 
value of |𝑁|. Set S2 is composed of 40 instances with |𝑁| = 15, 20, 25, 30
vessels. In both sets, the length of the vessels (𝑙𝑖) ranges between 80 
and 260 m, and the total cargo (𝑞𝑖) ranges between 1 and 15 for the 
instances with more than eight vessels and between 1 and 25 for the 
instances with six and eight vessels. The arrival times (𝑎𝑖) follow a Pois-
son process with parameter 𝑇 𝑚𝑎𝑥∕|𝑁|, where 𝑇 𝑚𝑎𝑥 = 120 h is the time 
horizon considered. The instances used are available at https://github.
com/frodriguesISEG/Instances-BAP-bulk-terminals-under-uncertainty.

5.2. Parameters for the DRO model

The DRO model considered is defined in terms of the  Kantorovich 
ambiguity set. This ambiguity set depends on a risk parameter 𝜖 and 
is based on a set of scenarios of a reference probability distribution. 
Here, we consider a set 𝛺 with 100 scenarios. In each scenario, each 
vessel has the probability of 30% of being delayed, that is, for each 
scenario 𝜔 ∈ 𝛺, and vessel 𝑖 ∈ 𝑁 , P(𝑎𝜔𝑖 > 𝑎𝑖) = 0.3, where 
𝑎𝑖 is the nominal/expected arrival time. If a vessel is delayed in a 
certain scenario, then its delay is randomly generated between 1 and 
10 h. The reference probability distribution considered is the empirical 
probability distribution where each scenario has the same probability 
of occurrence.
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To determine the value of the risk parameter 𝜖 to use, we start by 
computing the  highest theoretical value worth considering. It is well 
known that the DRO model coincides with the stochastic model for 
𝜖 = 0 and with the robust optimization model for values 𝜖 greater 
than a certain threshold 𝜖𝑚𝑎𝑥 value, see [16,39]. Therefore, we can 
use 𝜖 ∈ [0, 𝜖𝑚𝑎𝑥]. Indeed, for a sufficiently large value 𝜖, the DRO 
model coincides with the robust optimization model because the worst 
probability distribution in the ambiguity  set becomes a degenerated 
probability distribution in which one of the scenarios has probability 
one and the others have probability zero. There are |𝛺| possible de-
generated probability distributions. Each of them is associated with a 
specific scenario 𝜔̄ and is only included in the  Kantorovich ambiguity 
set for a value of 𝜖 greater than a specific value 𝜖𝜔̄. The value 𝜖𝜔̄ can 
be determined by solving the modified distribution separation problem

𝜖𝜔̄ = min{𝜖 | (29) − (34)}

with 𝑡𝜔𝜔′ = 𝜋̄𝜔′

P
= 1∕|𝛺| for all 𝜔′ ∈ 𝛺 and 𝑡𝜔𝜔′ = 0 for all 𝜔,𝜔′ ∈ 𝛺 ∶

𝜔 ≠ 𝜔. However, since all variables 𝑡𝜔𝜔′  are fixed, the value of 𝜖𝜔̄ can 
be determined by the expression

𝜖𝜔̄ =
∑

𝜔,𝜔′∈𝛺
∥ 𝜔−𝜔′ ∥1 𝑡𝜔𝜔′ =

∑

𝜔′∈𝛺
∥ 𝜔̄−𝜔′ ∥1 𝜋̄𝜔′

P
=

∑

𝜔′∈𝛺
∥ 𝜔̄−𝜔′ ∥1

1
|𝛺|

.

The value 𝜖𝜔 is the minimum value ensuring that the degenerated 
probability distribution associated with scenario 𝜔 belongs to the am-
biguity set K𝜖 . Therefore, to guarantee that the  Kantorovich ambiguity 
set covers all degenerated probability distributions it is enough to 
consider 𝜖𝑚𝑎𝑥 = max

𝜔∈𝛺
{𝜖𝜔}.

The value of 𝜖𝑚𝑎𝑥 depends on the instance considered. Hence, rather 
than considering a fixed value 𝜖, we define it as a given percentage 
of 𝜖𝑚𝑎𝑥, that is, 𝜖 = 𝜎𝜖𝑚𝑎𝑥, with 𝜎 ∈ ]0, 1[. The value 𝜖𝑚𝑎𝑥 is the 
smallest theoretical value for the risk parameter ensuring that the DRO 
model coincides with the robust optimization model; however, it has 
been observed that the DRO solution often coincides with the robust 
optimization solution for values of 𝜖 significantly lower than 𝜖𝑚𝑎𝑥. 
This means that it is not worth considering values of 𝜖 closer to 𝜖𝑚𝑎𝑥. 
Additionally, as we will see later, the computational time of the DA 
tends to be lower for smaller values of 𝜖 Thus, in what follows, we 
consider only two smaller values of 𝜖, corresponding to 𝜎 = 0.15 and 
𝜎 = 0.3.

https://github.com/frodriguesISEG/Instances-BAP-bulk-terminals-under-uncertainty
https://github.com/frodriguesISEG/Instances-BAP-bulk-terminals-under-uncertainty
https://github.com/frodriguesISEG/Instances-BAP-bulk-terminals-under-uncertainty
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5.3. Results for the instances of set S1

This section reports the computational results for the instances in 
set S1, the smallest ones considered. The main goal is to test the im-
provement strategies and the proposed modified DA. All the instances 
considered were solved to optimality by all versions of the DA, thus 
only computational times and the number of iterations are analyzed. 
Table  1 presents the results obtained by:

i. the exact DA presented in Section 4.1 (𝐷𝐴);
ii. the DA combined with the first improvement strategy introduced 

in Section 4.2 that consists of replacing the value of 𝑇 𝑚𝑎𝑥 by a 
smaller value (𝐷𝐴_𝑇 ). We consider 𝛿1 = 20;

iii. the DA combined with the second improvement strategy intro-
duced in Section 4.2 that consists of fixing some variables 𝑧 equal 
to zero (𝐷𝐴_𝑧). We consider 𝛿2 = 10;

iv. the DA combined with the first and second improvement strate-
gies (𝐷𝐴_𝑇 _𝑧);

v. the modified exact DA introduced in Section 4.3 (𝐷𝐴_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑);

We also tested the combination of the improvement strategies with 
the modified DA; however, no significant differences were observed, 
thus those results are omitted. We note that the new cuts used in the 
modified DA do not involve either parameter 𝑇 𝑚𝑎𝑥 or variables 𝑧, which 
may explain why no differences were observed by using or not these 
strategies.

The first column of Table  1 indicates the number of vessels con-
sidered, while the second indicates the value of 𝜎 that determines 
the value of the risk parameter 𝜖 in the DRO model, that is, 𝜖 =
𝜎𝜖𝑚𝑎𝑥, where 𝜖𝑚𝑎𝑥 vary from instance to instance and is determined 
as explained in Section 5.2. Columns 𝑇 _𝐴𝑃 , 𝑇 _𝐷𝑆𝑃 , and 𝑇 _𝑇  report 
the average total computational time (in seconds) associated with the 
adversarial problem, DSP, and full algorithm, respectively, for the cor-
responding set of 10 instances used. Columns #𝑖𝑡 indicate the average 
total number of iterations performed by the algorithm, while columns 
#𝑖𝑡𝑖𝑚𝑝 display the average total number of iterations leading to an 
improvement of the current upper bound of the model. All values in 
Table  1 were rounded to the nearest integer to facilitate reading, and 
the best results were marked in bold.

The results reported in  column 𝐷𝐴 show the weak performance of 
the original DA when solving the DRO BAP under uncertainty because 
the total computational time increases drastically as the number of 
vessels increases. Moreover, as reported in column #𝑖𝑡, the average total 
number of iterations performed is huge, which empirically shows the 
weakness of the optimality cuts (25).

The efficiency of the DA is strongly improved with any of the 
improvement strategies, and the best results – total time and iterations 
required – are obtained when both of them are used together (column 
𝐷𝐴_𝑇 _𝑧). It is important to recall that both improvement strategies 
may eliminate some optimal solutions; however, this is not the case 
for this set of instances. Indeed, the heuristic algorithms 𝐷𝐴_𝑧, 𝐷𝐴_𝑇 , 
and 𝐷𝐴_𝑇 _𝑧 obtained optimal solutions for all 40 instances considered. 
For this reason, the objective function values of the obtained solutions 
are not reported in Table  1.

The final – and maybe the most important conclusion from Table 
1 – is the impressive performance of the proposed modified DA. The 
average total computational time for all subsets of instances in S1 is 
less than 10 s, and the maximum computational time registered is 
20 s. It is important to note that the maximum observed computational 
time associated with the original DA for the instances of set S1 is 
almost two hours. The master problem in the modified DA includes 
all the second-stage variables and corresponding constraints for all 
the scenarios considered, which makes each master problem harder to 
solve; however, the presence of such variables and constraints makes it 
possible to work with optimality cuts based on second-stage variables 
(primal cuts). These primal cuts are  stronger than the dual ones for the 
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BAP in bulk terminals, and they drastically accelerate the convergence 
of the algorithm, as demonstrated by the lower number of iterations 
required.

After analyzing the performance of the proposed modified DA and 
improvement strategies, we analyze the DRO solutions and compare 
them with the deterministic ones (where the uncertainty is not con-
sidered) and with those obtained by stochastic programming (SP) and 
robust optimization (RO). As mentioned before, the stochastic and 
robust solutions can be obtained through the DRO model by considering 
𝜖 = 0 and 𝜖 ≥ 𝜖𝑚𝑎𝑥, respectively. However, these solutions can also be 
directly obtained by solving, respectively, the models 

𝑆𝑃 = {min 1
|𝛺|

∑

𝜔∈𝛺

∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝑖 − 𝑎𝜔𝑖 ) | (55) − (43)} (44)

𝑅𝑂 = {min 𝜏 | 𝜏 ≥
∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝑖 − 𝑎𝜔𝑖 ), 𝜔 ∈ 𝛺, (55) − (43)}. (45)

For all instances in set S1, the maximum time required for solving 
each one of the models (44) and (45) was 3 s. To compare the different 
approaches, we i) solve the DA with 𝜖 = 0.15𝜖max and 𝜖 = 0.3𝜖max to 
obtain two DRO solutions for each instance, ii) solve model (44) to 
obtain the SP solution, iii) solve model (45) to obtain the RO solution, 
and (iv) solve the deterministic model presented in Section 3.1 to 
obtain the deterministic solution. Then, we evaluate all the obtained 
solutions in all the  Kantorovich ambiguity sets K𝜖 with 𝜖 ∈ [0, 50] and 
compute the worst expected total completion time. The obtained results 
were grouped for each set of instances and shown in Fig.  4. These 
experiments aim to understand how the different solutions behave 
when different degrees of uncertainty are considered. The horizontal 
axis indicates the values of 𝜖, while the vertical axis indicates the worst 
expected completion time in the ambiguity set K𝜖 . For |𝑁| = 6 and 8
the DRO solution with 𝜖 = 0.3𝜖max coincides with the RO solution for 
all instances, and therefore, the corresponding lines overlap in the first 
two plots.

Fig.  4 clearly shows the importance of considering uncertainty in 
the BAP in bulk terminals because the quality of the deterministic 
solutions drastically deteriorates as the uncertainty increases. When the 
uncertainty is low (𝜖 < 1.5), SP leads to the best results; however, the 
quality of the solutions obtained by this approach deteriorates a lot 
when the uncertainty increases, as also observed for the deterministic 
approach. There are no significant differences between the 𝐷𝑅𝑂30% and 
RO solutions. Contrary to SP, the solutions of these two approaches 
perform well when the uncertainty is high and badly when it is low. 
The DRO model makes it possible to obtain solutions more protected 
against uncertainty than those obtained by SP and less conservative 
than those obtained by RO. This is clearly shown by the 𝐷𝑅𝑂15%
solutions. These solutions are very competitive with those obtained by 
SP when the uncertainty is very low and are better than them when 
the uncertainty increases. Additionally, the 𝐷𝑅𝑂15% solutions perform 
much better than the RO solutions when the uncertainty is low and the 
performance of these approaches does not deviate too much when the 
uncertainty increases.

To better analyze the behavior of the approaches, we start by com-
puting, for each 𝜖 ∈ [0, 50], the minimum worst expected value among 
all the five approaches considered. Let us call the line associated with 
that set of values the artificial best line. Table  2 represents the highest 
difference between the line associated with each approach presented 
in Fig.  4 and the artificial best line. That is, the difference between 
the worst average total completion time in the solutions obtained by a 
certain approach and the lowest worst average total completion time 
observed.

To analyze the results obtained, let us recall that we are considering 
a time horizon of 120 h (5 days), and therefore, the values reported 
in Table  2 are measured in hours. Table  2 indicates that ignoring the 
uncertainty (deterministic approach) can lead to very poor solutions 
with a worst average total completion time up to 10 h higher than 
the one in the best approach. The worst performance for SP is 4.3 h 
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Table 1
Results for the instances of set S1.
 |𝑁| 𝜎 𝐷𝐴 𝐷𝐴_𝑧

 𝑇 _𝐴𝑃 𝑇 _𝐷𝑆𝑃 𝑇 _𝑇 #𝑖𝑡 #𝑖𝑡𝑖𝑚𝑝 𝑇 _𝐴𝑃 𝑇 _𝐷𝑆𝑃 𝑇 _𝑇 #𝑖𝑡 #𝑖𝑡𝑖𝑚𝑝 
 6 0.15 0 0 2 24 2 0 0 2 18 2  
 0.3 0 0 4 33 2 0 0 1 16 2  
 8 0.15 5 3 67 196 3 4 3 45 151 3  
 0.3 4 3 50 173 3 2 2 22 100 3  
 10 0.15 20 6 267 370 3 4 2 49 145 3  
 0.3 9 5 129 257 3 10 4 165 201 3  
 12 0.15 26 22 2972 1099 4 22 5 230 299 4  
 0.3 25 24 2461 1183 5 24 6 285 316 5  

 |𝑁| 𝜎 𝐷𝐴_𝑇 𝐷𝐴_𝑇 _𝑧

 𝑇 _𝐴𝑃 𝑇 _𝐷𝑆𝑃 𝑇 _𝑇 #𝑖𝑡 #𝑖𝑡𝑖𝑚𝑝 𝑇 _𝐴𝑃 𝑇 _𝐷𝑆𝑃 𝑇 _𝑇 #𝑖𝑡 #𝑖𝑡𝑖𝑚𝑝 
 6 0.15 0 0 2 17 2 0 0 1 14 2  
 0.3 0 0 2 17 2 0 0 1 12 2  
 8 0.15 2 1 20 92 3 1 1 12 72 3  
 0.3 2 2 22 91 3 1 1 9 59 3  
 10 0.15 6 3 93 181 3 2 2 30 98 3  
 0.3 6 4 177 204 3 2 2 36 99 3  
 12 0.15 30 6 392 366 4 9 3 100 171 4  
 0.3 20 5 273 300 4 14 4 158 209 5  

 |𝑁| 𝜎 𝐷𝐴_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

 𝑇 _𝐴𝑃 𝑇 _𝐷𝑆𝑃 𝑇 _𝑇 #𝑖𝑡 #𝑖𝑡𝑖𝑚𝑝 
 6 0.15 0 0 1 2 2  
 0.3 0 0 1 2 2  
 8 0.15 0 0 2 3 2  
 0.3 0 0 2 3 2  
 10 0.15 0 0 3 3 2  
 0.3 0 0 4 3 2  
 12 0.15 0 0 4 3 3  
 0.3 0 0 5 4 3  
Fig. 4. Comparison of the solutions obtained for instances of set S1 for 𝜖 ∈ [0, 50].
more than the best approach, while for RO is 1.6 h. In the four sets 
of instances, the best results were obtained by the 𝐷𝑅𝑂15% approach. 
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The results indicate that when the 𝐷𝑅𝑂15% approach does not lead to 
the best solution, the maximum deviation from it is not higher than 
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Table 2
Worst observed performance in set S1.
 Appr. |𝑁|

 6 8 10 12  
 𝐷𝑒𝑡 2.2 6.7 5.5 10.0 
 𝑆𝑃 1.6 4.3 3.4 4.3 
 𝐷𝑅𝑂15% 0.3 1.1 0.9 0.9 
 𝐷𝑅𝑂30% 0.6 1.6 1.3 1.0 
 𝑅𝑂 0.6 1.6 1.5 1.4 

Table 3
Results for the instances of set S2.
 |𝑁| 𝐴𝑝𝑝𝑟. 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝑜𝑝𝑡 #𝑖𝑡 #𝑖𝑡𝑜𝑝𝑡 
 

15

𝐷𝑒𝑡 1 – – –  
 𝑆𝑃 4 – – –  
 𝐷𝑅𝑂15% 12 7 3 3  
 𝐷𝑅𝑂30% 17 8 4 4  
 𝑅𝑂 5 – – –  
 

20

𝐷𝑒𝑡 2 – – –  
 𝑆𝑃 15 – – –  
 𝐷𝑅𝑂15% 154 36 5 3  
 𝐷𝑅𝑂30% 381 168 7 5  
 𝑅𝑂 98 – – –  
 

25

𝐷𝑒𝑡 3 – – –  
 𝑆𝑃 121 – – –  
 𝐷𝑅𝑂15% 2881 1308 6 4  
 𝐷𝑅𝑂30% 4058 1563 8 4  
 𝑅𝑂 632 – – –  
 

30

𝐷𝑒𝑡 4 – – –  
 𝑆𝑃 285 – – –  
 𝐷𝑅𝑂15% 1649 897 6 4  
 𝐷𝑅𝑂30% 4931 2415 10 5  
 𝑅𝑂 709 – – –  

1.1 h. It is also important to note that none of the approaches 𝐷𝑒𝑡, 𝑆𝑃 , 
and 𝑅𝑂 outperform the 𝐷𝑅𝑂15% and 𝐷𝑅𝑂30% approaches regarding this 
indicator. This clearly shows the advantage of using DRO to deal with 
uncertainty in BAPs in bulk terminals.

5.4. Results for the instances of set S2

This section reports the computational results for the instances in 
set S2, the largest ones considered. From the results reported in the 
previous section, we concluded that the modified DA – based on the 
primal cuts – clearly outperforms the original one, even when the latter 
is combined with the proposed improvement strategies. Therefore, in 
this section, we only consider the modified decomposition algorithm 
proposed in Section 4.3.

Table  3 reports the average results obtained for each group of 10 
instances with 15, 20, 25, and 30 vessels. The third column indicates 
the average total computational time required to obtain the solution 
of each approach, while the fifth column reports the average number 
of iterations performed. All instances were solved to optimality by all 
the approaches, and in most of the instances, the last iterations of 
the modified DA are just used to prove the optimality of the current 
solution. Hence, in the fourth and sixth columns, we display the average 
total time and the average number of iterations required to find the 
optimal solution. It is important to note that the solutions of 𝑆𝑃  and 𝑅𝑂
were determined using the models (44) and (45), respectively. For that 
reason, no information on these approaches is reported in the fourth, 
fifth, and sixth columns.

These results clearly show how powerful are the new cuts used in 
the modified DA, since optimal solutions are obtained with a small 
number of iterations. The modified DA solves instances with 20 vessels 
in less than 10 min and instances with 30 in less than 2 h, which are 
acceptable times.
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Table 4
Worst observed performance in set S2.
 |𝑁|

 Appr. 15 20 25 30  
 𝐷𝑒𝑡 9.0 16.9 19.9 25.0 
 𝑆𝑃 4.0 5.6 5.8 6.8 
 𝐷𝑅𝑂15% 1.4 2.4 1.8 1.9 
 𝐷𝑅𝑂30% 1.1 1.0 1.0 1.0 
 𝑅𝑂 2.3 2.9 1.5 3.2 

Next, we compare the performance of the solutions obtained by the 
different approaches for the instances of set S2, as done for those of set 
S1. Since the number of vessels in the instances of set S2 is higher than 
in S1, the Wasserstein distance between any two scenarios in S2 tends 
to be higher than in S1. This means that the threshold value 𝜖𝑚𝑎𝑥 after 
which DRO coincides with RO in S2 is also higher than in S1. Hence, 
we consider now 𝜖 ∈ [0, 100] instead of 𝜖 ∈ [0, 50].

The results reported in Fig.  5 and Table  4 are aligned with those 
reported in the previous section; however, the poor performance of 
the deterministic approach is even more pronounced here. Again, the 
best results in terms of the worst performance (Table  4) correspond 
to both DRO approaches. In particular, when the solutions of 𝐷𝑅𝑂15%
and 𝐷𝑅𝑂30% approaches are not the best, the maximum deviation to 
the best ones is not higher than 2.4 and 1.1 h, respectively.

In summary, the results reported in this section reveal that the 
proposed modified decomposition algorithm can solve real-size in-
stances in an acceptable time and that compared to the deterministic, 
stochastic, and robust solutions, the DRO solutions are either the best 
ones or do not deviate too much from them.

The results reported in Table  3 suggest that the computational 
times of the DA can vary a lot for different values of 𝜎. To analyze 
that, we started by using the modified DA to solve the DRO model 
with all values of 𝜎 in {0.1, 0.2, 0.3,… , 0.8, 0.9} for the instances with 
15, 20, and 25 vessels. Then, the computational time of the DRO 
model associated with each value of 𝜎 for each instance was divided 
by the computational time of the corresponding 𝐷𝑅𝑂0.1% model. Fig. 
6 shows the average of those normalized values. The vertical axis 
indicates the ratio between the computational time of the 𝐷𝑅𝑂𝜎% and 
𝐷𝑅𝑂0.1% models. It indicates that the computational time of the DRO 
model tends to increase with the value of 𝜎 until a certain point, and 
then starts to decrease. This behavior is explained by the number of 
iterations performed by the DA, which increases in the first moment 
and then starts to decrease.

5.5. A DRO model considering uncertain cargo quantities

The DRO model presented before only assumes the arrival times 
of the vessels as uncertain. In this section, we extend that model to 
incorporate both uncertain arrival times and cargo quantities. First, we 
explain how to modify the model and algorithms to accommodate such 
uncertainty, and then we present new computational results.

Let us assume that the arrival time and cargo quantity of each vessel 
𝑖 ∈ 𝑁 are random variables governed by probability distributions P𝑖
and P

|𝑁|+𝑖, respectively. Let us denote by P = (P1,… ,P
|𝑁|

,… ,P2|𝑁|

)
the joint probability distribution of the arrival times and cargo quan-
tities of the set of vessels considered. As before, we assume that 
such a distribution has finite support given by a set of scenarios 
𝛺 = {𝜉1,… , 𝜉|𝛺|}. However, in this case, each scenario 𝜉𝜔 is a vector 
(𝑎𝜔1 ,… , 𝑎𝜔

|𝑁|

, 𝑞𝜔1 ,… , 𝑞𝜔
|𝑁|

) where 𝑎𝜔𝑖  and 𝑞𝜔𝑖  represent, respectively, the 
arrival time and cargo quantity of vessel 𝑖 ∈ 𝑁 in scenario 𝜔 ∈ 𝛺.

When the cargo quantities are uncertain, the handling time of the 
vessels also becomes uncertain. Thus, the decision variable 𝑐  becomes 
𝑖
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Fig. 5. Comparison of the solutions obtained for the instances of set S2 for 𝜖 ∈ [0, 100].
Fig. 6. Comparison of computational times for different values of 𝜎.
a second-stage variable and the resulting DRO model (13) is written as: 

min

{

max
P∈A

∑

𝜔∈𝛺
𝜋𝜔
P
𝑅(𝑠, 𝑦, 𝑧, 𝜔) | (2) − (5), (11) − (12)

}

, (46)

where the recourse function 𝑅(𝑠, 𝑦, 𝑧, 𝜔) = 𝑅(𝑠, 𝑧, 𝜔) is given by

𝑅(𝑠, 𝑧, 𝜔) = min
𝑚𝜔 , 𝑐𝜔

∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝜔𝑖 − 𝑎𝜔𝑖 ) (47)

𝑠.𝑡. 𝑚𝜔
𝑗 + 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 ) ≥ 𝑚𝜔

𝑖 + 𝑐𝜔𝑖 , 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (48)

𝑐𝜔𝑖 ≥ ℎ𝑤𝑖
𝑘 𝑝𝑖𝑗𝑘𝑞

𝜔
𝑖 𝑠𝑖𝑗 , 𝑖 ∈ 𝑁, 𝑘, 𝑗 ∈ 𝑀, (49)

𝑚𝜔
𝑖 ≥ 𝑎𝜔𝑖 , 𝑖 ∈ 𝑁, (50)

𝑚𝜔
𝑖 , 𝑐

𝜔
𝑖 ≥ 0, 𝑖 ∈ 𝑁. (51)
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By following the dualization process explained before, we end up 
with the following optimality dual cut:

𝜃 ≥
∑

𝜔∈𝛺
𝜋𝜔
P

(

∑

𝑖,𝑗∈𝑁∶𝑖≠𝑗
𝑢𝜔𝑖𝑗 (𝑇

𝑚𝑎𝑥(𝑧𝑖𝑗 − 1))

+
∑

𝑖∈𝑁, 𝑗,𝑘∈𝑀
𝑟𝜔𝑖𝑗𝑘(ℎ

𝑤𝑖
𝑘 𝑝𝑖𝑗𝑘𝑞

𝜔
𝑖 𝑠𝑖𝑗 ) +

∑

𝑖∈𝑁
(𝑣𝜔𝑖 − 1)𝑎𝜔𝑖

)

(52)

The DSP stays the same, and by denoting by 𝐶𝑢𝑡𝓁𝐷 the dual cut (52) 
generated in iteration 𝓁, the master problem of the DA with dual cuts 
at iteration 𝑘 becomes

min 𝜃 (53)

𝑠.𝑡. 𝐶𝑢𝑡𝓁 , 𝓁 = 0,… , 𝑘 − 1, (54)
𝐷
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(2) − (5), (11) − (12). (55)

The primal cut is simply given by 

𝜃 ≥
∑

𝜔∈𝛺
𝜋𝜔
P

(

∑

𝑖∈𝑁
(𝑚𝜔

𝑖 + 𝑐𝜔𝑖 − 𝑎𝜔𝑖 )

)

(56)

and therefore, if 𝐶𝑢𝑡𝓁𝑃  is the primal cut (56) generated in iteration 𝓁, 
the modified master problem of the DA with primal cuts at iteration 𝑘
is as follows:
min 𝜃 (57)

𝑠.𝑡. 𝐶𝑢𝑡𝓁𝑃 , 𝓁 = 0,… , 𝑘 − 1, (58)

(2) − (5), (11) − (12), (59)

𝑐𝜔𝑖 ≥ ℎ𝑤𝑖
𝑘 𝑝𝑖𝑗𝑘𝑞

𝜔
𝑖 𝑠𝑖𝑗 , 𝑖 ∈ 𝑁, 𝑘, 𝑗 ∈ 𝑀,𝜔 ∈ 𝛺, (60)

𝑚𝜔
𝑗 + 𝑇 𝑚𝑎𝑥(1 − 𝑧𝑖𝑗 ) ≥ 𝑚𝜔

𝑖 + 𝑐𝑖, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝜔 ∈ 𝛺, (61)

𝑚𝜔
𝑖 ≥ 𝑎𝜔𝑖 , 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺, (62)

𝑚𝜔
𝑖 , 𝑐

𝜔
𝑖 ≥ 0, 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺. (63)

5.5.1. Computational results
This section reports the computational results for the instances of 

set S2 considering both uncertain arrival times and cargo quantities. 
We also consider a set 𝛺 with 100 scenarios; however, each scenario 
in this set is now a vector with dimension 2|𝑁| where the first |𝑁|

components correspond to the arrival times of vessels and the second 
|𝑁| components correspond to the cargo quantities. In each scenario, 
each vessel has the probability 30% of being delayed and of requiring a 
cargo quantity different than the nominal one. That is, for each scenario 
𝜔 ∈ 𝛺, and vessel 𝑖 ∈ 𝑁 , P(𝑎𝜔𝑖 > 𝑎𝑖) = 0.3 and P(𝑞𝜔𝑖 ≠ 𝑞𝑖) = 0.3. As 
before, if a vessel is delayed in a certain scenario, its delay is randomly 
generated between 1 and 10 h. If the cargo quantity required by a 
vessel in a certain scenario is not the nominal one, then it is randomly 
generated between −2 and 2.

The obtained results revealed that the original DA with dual cuts 
performs even worse in the DRO model with uncertain arrival times and 
cargo quantities than when only uncertain arrival times are considered. 
For example, the first instance with 6 vessels was solved by that 
algorithm in 26415 s after 3295 iterations. Thus, in this section, we only 
present the results for the new DA with primal cuts. Table  5 reports the 
computational times for the instances of set S2. Table  6 indicates the 
worst average performance of each approach for all possible values of 
𝜖 ∈ [0, 100]. The layout of Tables  5 and 6 is the same as that of Tables 
3 and 4, respectively.

The results reported in Tables  5 and 6 are not very different from 
those presented for the DRO considering only uncertain arrival times. 
On average, the new DA proposed can solve instances with 30 ves-
sels in less than 1.5 h. It is also important to note that the average 
time required for finding an optimal solution for the instances with 
30 vessels is, on average, lower than half an hour, as reported in 
column 𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝑜𝑝𝑡. Additionally, the DRO approaches are still the ones 
performing better regarding the worst performance indicator reported in 
Table  6. 

6. Conclusion, limitations, and research direction

In this paper, we follow a DRO approach where the arrival times 
of the vessels are governed by an unknown probability distribution 
belonging to an ambiguity set. After introducing the full DRO model 
for the BAP in bulk terminals under uncertainty, we used an existing 
DA to solve it; however, this procedure was revealed to be very time-
consuming, even for small-scale instances. To overcome this issue, 
we proposed two heuristic improvement strategies that decreased the 
running time of the DA. However, despite the positive impact of these 
strategies in the DA, it was not possible yet to solve instances with at 
12 
Table 5
Results for the instances of set S2 considering uncertain arrival times and cargo 
quantities. 
 |𝑁| 𝐴𝑝𝑝𝑟. 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝑜𝑝𝑡 #𝑖𝑡 #𝑖𝑡𝑜𝑝𝑡 
 

15

𝐷𝑒𝑡 7 – – –  
 𝑆𝑃 5 – – –  
 𝐷𝑅𝑂15% 11 8 3 3  
 𝐷𝑅𝑂30% 13 8 3 3  
 𝑅𝑂 6 – – –  
 

20

𝐷𝑒𝑡 16 – – –  
 𝑆𝑃 18 – – –  
 𝐷𝑅𝑂15% 99 40 4 3  
 𝐷𝑅𝑂30% 171 93 6 4  
 𝑅𝑂 46 – – –  
 

25

𝐷𝑒𝑡 23 – – –  
 𝑆𝑃 175 – – –  
 𝐷𝑅𝑂15% 2405 1359 6 4  
 𝐷𝑅𝑂30% 2932 1274 5 3  
 𝑅𝑂 779 – – –  
 

30

𝐷𝑒𝑡 39 – – –  
 SP 128 – – –  
 DRO15% 1926 1067 6 4  
 DRO30% 4587 1799 7 4  
 RO 598 – – –  

Table 6
Worst performance in set S2 considering uncertain arrival times and cargo quantities. 
 |𝑁|

 Appr. 15 20 25 30

 𝐷𝑒𝑡 8.3 13.7 23.2 27.6 
 𝑆𝑃 1.9 4.8 7.7 5.1 
 𝐷𝑅𝑂15% 1.4 3.1 2.5 2.4 
 𝐷𝑅𝑂30% 1.0 2.0 3.0 1.6 
 𝑅𝑂 2.6 3.7 4.9 2.6 

least 15 vessels in less than 2 h. Thus, we developed an exact modified 
DA that clearly outperformed the original one and made it possible to 
solve large-scale instances efficiently. The new DA solves instances with 
20 vessels in less than 10 min  and instances with 30 vessels in less than 
1.5 h.

To show the benefits of using DRO, we compare the DRO solutions 
with the deterministic ones and with those obtained by two of the 
most popular approaches to deal with uncertainty: stochastic program-
ming and robust optimization. The comparison was done in different 
uncertain environments, leading to very interesting conclusions. First, 
it became clear how bad it can be not to consider uncertainty when 
the berth allocation plan is made. Second, the results showed that 
DRO leads to solutions more protected against uncertainty than those 
provided by stochastic programming and less conservative than those 
obtained with robust optimization. In fact, when the DRO solutions 
are not the best ones – compared to the deterministic, stochastic, and 
robust ones – the maximum observed deviation regarding the best 
solution was at most 3 h. This value is significantly lower than those 
obtained for the deterministic, stochastic, and robust approaches  (27.6, 
7.7, and 4.9, respectively). This is a clear indicator of the benefits of 
using DRO in BAPs in bulk terminals.

The proposed approach can be directly applied in practice because 
it only requires a sample of scenarios of uncertainty that can easily 
be obtained from historical data available at the ports. The proposed 
DRO model depends on a risk parameter 𝜖 that controls the size of 
the ambiguity set. By varying this parameter, it becomes possible to 
obtain structurally different and good-quality solutions. Hence, the 
proposed approach can be used by port managers as a tool to generate 
a set of good quality solutions with different degrees of protection 
against uncertainty. Such solutions can then be easily evaluated by 
simulation techniques or out-of-sample approaches to choose the best 
one according to the port manager’s preference. 
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This paper represents the first step on DRO in BAPs in bulk terminals 
and despite its significant contributions, the proposed approach also has 
some limitations that can lead to promising future research directions. 
The new DA proposed makes it possible to solve instances with up to 
30 vessels in a reasonable time; however, the computational time tends 
to increase a lot when more vessels are considered. We tried to use our 
algorithm to solve instances with 40 vessels, but only one of the 10 
instances considered was solved in less than two hours. All the other 
instances were not solved in one day. This is mainly related to the 
hardness of solving the resulting master problems to optimality, which 
is required to ensure the algorithm’s convergence. This means that the 
proposed DA cannot be applied directly to instances with more than 
30 vessels; however, it can be embedded in a rolling horizon heuristic 
(RHH) as usually done in other complex optimization problems [44]. 
RHHs can be applied to the BAP in bulk terminals by partitioning the 
set of vessels into 𝑘 groups according to their expected arrivals and 
defining an ambiguity set for each of those groups. The proposed DA 
can then be used to solve the resulting DRO subproblems independently 
and sequentially, taking into account the solutions of the previous 
subproblems. Notice that our DA can solve instances with 15 vessels 
in less than 20 s, which makes it possible to embed it in the RRH to 
(heuristically) solve very large instances efficiently.

The number of scenarios considered in the ambiguity set can impact 
the computational time of the DA because the number of second-
stage variables and constraints in each master problem depends on 
the number of scenarios considered. Thus, large scenario samples may 
be an obstacle to the efficiency of the DA. In this case, scenario 
reduction/aggregation strategies may be applied to reduce the size of 
the resulting sample. This is a promising future research direction. 
Another possible path to follow when large samples are available is to 
use them to estimate the moments of the true probability distribution 
of the uncertain parameters and then use moment-based ambiguity sets 
instead of discrepancy-based sets.
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