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 A B S T R A C T

Disruptive events like the COVID-19 pandemic have exposed supply chain vulnerabilities. This study focuses 
on dual sourcing as a resilient strategy and examines a stochastic, single-item, multi-echelon, multi-period, 
dual sourcing inventory system under backorders. In each echelon, the decision-maker faces a dual-sourcing 
situation wherein the item can be replenished from a slow regular supplier or a more expensive and faster 
emergency supplier. We compare two inventory management policies: the Dual-Index Policy (DIP) and the 
Tailored Base-Surge (TBS) Policy, while also investigating how various factors influence policy effectiveness 
and the role of demand disruptions. Our findings indicate that the TBS policy generally relies more on upstream 
suppliers than the DIP. However, in scenarios of high demand uncertainty, upstream suppliers are seldom used. 
DIP is more effective for short networks facing sudden demand drops, whereas TBS excels when experiencing 
demand spikes.
1. Introduction

The growing need for resiliency in many industries has become 
especially clear after the COVID-19 pandemic, which revealed sig-
nificant vulnerabilities in supply chains [1]. As a result, numerous 
companies now employ a dual sourcing strategy that combines a cost-
effective offshore supplier with a local onshore supplier capable of 
providing shorter lead times [2]. This approach uses two suppliers (or 
different transportation modes) for the same product, which enhances 
resilience and customer responsiveness by combining the economic 
benefits of the regular supplier with the increased flexibility offered by 
the expedited onshore supplier [3–5]. This approach can reduce risks 
associated with supply chain disruptions, while maintaining high ser-
vice levels, thereby ensuring business continuity and competitiveness 
in an unpredictable market environment. A recent study conducted 
by McKinsey, which surveyed 113 global supply chain leaders across 
various industries, found that 81% had adopted dual-sourcing strategies 
in 2021, which is a significant rise from 55% in 2020 [6]. Another study 
revealed that 92% of manufacturing companies in the UAE use dual- or 
multi-sourcing strategies to secure their supply of critical products [7].

Furthermore, several studies in the literature have shown that dual 
sourcing practices are widespread in industry. Rao et al. [8] reported 
on Caterpillar’s dual sourcing strategy for compact work tools, Beyer 
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and Ward [9] on Hewlett–Packard’s dual sourcing strategy for its 
manufacturing plants, and Allon and Van Mieghem [10] on a US-based 
$10 billion manufacturer of wireless transmission components with two 
assembly plants: one in China and another in Mexico. This strategy 
ensures that production lines can continue operating even when disrup-
tions affect the primary supply chain, ultimately maintaining customer 
satisfaction and enhancing operational resilience. Another practical 
example is in the automotive industry [11]. Many car manufacturers 
rely on a primary supplier located in regions known for cost-effective 
production (often in Asia) for critical components like semiconductors 
or auto parts. However, during disruptions such as natural disasters 
or the COVID-19 pandemic, these manufacturers may face significant 
delays. To mitigate this risk, they establish relationships with local 
suppliers who, although more expensive, can deliver components more 
quickly. These local suppliers must maintain high service levels and 
often source their inputs both locally and from international markets. 
This approach creates an extended supply chain characterised by mul-
tiple layers of dual sourcing. Hence, not only do car manufacturers 
engage in dual sourcing by using both offshore and local suppliers, 
but the suppliers themselves often adopt dual sourcing strategies to 
secure their raw materials or intermediate goods. As a result, the 
overall network evolves into a complex, multi-tiered supply chain, 
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where dual sourcing is practised at various levels. Understanding these 
interconnected dual sourcing arrangements is critical for optimising 
supply chain performance and enhancing resilience, which is the cen-
tral focus of this study. More specifically, the goal is to gain insights 
into the use of different policies to guide procurement managers in 
decision-making.

Supply chain (SC) disruptions, like the COVID-19 pandemic, in-
crease vulnerabilities, necessitating flexible and redundant supply
strategies [1,12–14]. Multiple sourcing reduces dependency on a single 
supplier [15]. Considering multi-echelon SCs mitigates disruptions’ 
negative impact, with different impacts on high-demand and low-
demand products [1,16]. Thus, this paper presents a numerical study 
on stationary and disrupted demand cases.

The optimal policy for general dual sourcing systems remains un-
known. Therefore, several heuristics have been proposed in the litera-
ture [17]. In this paper, we focus on two well-studied heuristic policies: 
the dual-index policy (DIP) and the tailored base-surge (TBS) policy. 
The TBS policy integrates both push and pull mechanisms by placing a 
fixed order with the regular supplier each period (push) while relying 
on the expedited supplier only in critical situations (pull). One key 
advantage of this approach is that the regular supplier benefits from 
consistent order quantities, making it particularly practical and easy to 
implement in real-world scenarios. In contrast, the DIP policy follows 
a purely pull-based approach, utilising two base-stock levels as control 
parameters—one for each supplier—allowing for greater flexibility in 
inventory management. While TBS prioritises simplicity through its 
simple ordering structure, DIP offers flexibility by dynamically ad-
justing inventory levels based on the state of the system. These two 
represent opposite ends of the spectrum: in a single-echelon setting, the 
DIP policy is optimal when the lead time difference is one period [18], 
while the TBS policy becomes optimal as the lead time difference grows 
to infinity [19]. These insights lead to a critical question: do these 
optimality results persist in a multi-echelon environment, which more 
accurately reflects real-life supply chains? In practice, supply chains 
involve multiple echelons, each with its own lead times, uncertainties, 
and operational challenges. Such layered systems might exhibit differ-
ent dynamics, potentially affecting the performance and applicability of 
the DIP and TBS policies [20]. Therefore, in this study, we extend the 
analysis to multi-echelon dual sourcing systems to determine whether 
the insights drawn from single-echelon models can be generalised, 
especially when disruptions are taken into consideration. Our investi-
gation aims to provide a deeper understanding of the conditions under 
which each heuristic policy might be preferable in a multi-echelon dual 
sourcing supply chain under disruptions. Under DIP, two base-stock 
levels are defined, one for the emergency supplier and the other for 
the regular supplier. Whenever the inventory position falls below its 
associated base-stock level, an order is placed at the corresponding 
supplier(s). For the buyer, such a policy is optimal when the lead time 
difference is one period [21,22]. Under the TBS policy, a constant 
quantity is placed at the slow supplier. The demand uncertainty is 
covered using the emergency supplier based on the inventory position 
and the defined base-stock level. This policy is optimal when the lead 
time difference between the two suppliers goes to infinity (or grows 
large) [19,23]. Klosterhalfen et al. [22] showed that the buyer may 
prefer the TBS policy over the DIP. However, all these studies consider 
a single-echelon setting. It remains unclear how these policies would 
perform in a multi-echelon setting with different decision makers at 
each echelon. Such a setting is closer to a real-life setting, which is the 
perspective we take in this study.

Boulaksil et al. [20] examined the buyer’s decision impact on sup-
pliers with one period lead time difference, suggesting that while 
the buyer prefers the DIP, TBS policy performs better for emergency 
suppliers. The regular supplier’s preference, however, depends on both 
suppliers’ wholesale prices. This suggests the preferred policy from a 
SC perspective may differ even with a one period lead time differ-
ence. Boulaksil et al. [20] emphasised the need to consider perspectives 
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beyond just the buyer and prompted research into how the number of 
echelons affects policy preference in dual-sourcing, the focus of this 
research. Notably, there is a scarcity of literature on dual-sourcing in 
multi-echelon systems, with no studies comparing both policies in a 
multi-echelon environment, despite real-life SCs being complex multi-
echelon networks. In this research, we compare the DIP and TBS 
policy performance in a multi-echelon setting, assuming installation 
stock levels. We model demand backorder for insufficient inventory, 
with emergency suppliers committed to meet their demand. We give 
decision-makers the option to place costly ‘‘rush’’ orders, a tactic seen 
in industries like automotive [24]. These rush orders can be interpreted 
as emergency suppliers using faster transportation or as a penalty 
measure for ‘‘lost sales’’. The latter is commonly used in inventory 
system simulations [25].

In this paper, we will consider a multi-echelon system where at 
each echelon orders can be placed at different suppliers with different 
levels of responsiveness. This type of system can be found in elec-
tronic companies that purchase high-quality electronic components and 
rely on dual sourcing for SC resilience. Ignoring the upstream dual 
sourcing settings will simplify our setting to the single-echelon system 
studied in Janakiraman et al. [23] and Xin and Goldberg [19] where 
they consider the regular supplier to have a long lead time. Hence, 
this paper aims to address the following main question: Which dual 
sourcing policy is preferred in a multi-echelon system under differ-
ent parameter scenarios? Therefore, for the sake of comparison, we 
extend the one-echelon network of Boulaksil et al. [20] to multiple 
echelons. While Boulaksil et al. [20] provided analytical results for 
the one-echelon system, due to the model complexity caused by the 
complicated demand distributions at higher echelons, it is impossible to 
obtain analytical results for the multi-echelon setting. Therefore, we use 
simulation-based optimisation to address our research question. In this 
simulation-based optimisation approach, demand scenarios are simu-
lated, and inventory parameters are optimised using the interior point 
algorithm such that the long-run expected total profit is maximised. The 
study’s main contributions are threefold:

• First, we compare the DIP and TBS policy in a multi-echelon 
stochastic inventory system. In this regard, we present insights 
related to each policy’s behaviour in a multi-echelon setting and 
the factors that determine the preferred policy as the number 
of echelons increases. Through our numerical experiments, we 
show that the TBS policy is dominant in the size of the SC 
network, that is, as the number of echelons increases, more profit 
is secured under the TBS policy and the largest profit portion is 
achieved at the first echelon. Subsequently, the marginal profit 
decreases according to the number of echelons. This holds when 
the wholesale price difference between the suppliers is limited 
because as this difference grows, the DIP may outperform the 
TBS policy. This is an important insight given that most SCs are 
fragmented and consist of several echelons.

• Second, we show how the preferred policy changes for a multi-
echelon system under different parameter settings. For example, 
more orders are rushed when the level of demand uncertainty 
or the inventory holding cost increases because using the more 
expensive option of placing rush orders becomes a profitable 
alternative. However, at a certain level of demand uncertainty, 
this may no longer be profitable under the TBS policy, and the 
DIP becomes the better performing policy.

• Third, we compare the DIP and TBS policy under the demand 
disruption. We consider the demand disruption in products such 
as essential and healthcare items that showed a sudden demand 
spike during the COVID-19 crisis and products such as textile, oil, 
and automobile that showed a sudden demand drop during the 
COVID-19 crisis [26]. We study the impact of both disruption sce-
narios on the two policies’ performance under different demand 
variability conditions and demand recovery duration lengths. 
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We observe that when demand suddenly drops in short supply 
networks, the DIP becomes dominant, and in extended supply 
networks, the dependency on emergency suppliers increases with 
the recovery duration increase. If a product is subject to sudden 
demand drop, DIP becomes preferred in small networks even 
when the wholesale price difference between the supplier is small. 
We also notice that the TBS policy is preferred when a product is 
subject to a demand spike in both short and extended networks; 
however, with the increased demand variability, the preferred 
policy might change faster in short networks.

The remainder of this paper is organised as follows. Section 2 
reviews related works in the literature. Section 3 presents the studied 
problem. Section 4 presents the numerical results and shows the impact 
of increasing the number of echelons and varying parameters on the 
preferred policy. Section 5 shows the impact of demand disruption on 
the preferred policy. Section 6 highlights the impact of the wholesale 
price difference in the preferred policy. Section 7 summarises the 
extracted managerial insights. Finally, Section 8 concludes the paper 
and outlines future directions.

2. Literature review

This study examines two dual-sourcing policies in a multi-echelon 
environment where upstream suppliers commit to fulfilling their de-
mand. The customer’s demand may be subject to disruption due to for 
example epidemic outbreak. The suppliers have the option to expedite 
orders in the necessary cases, but this is an expensive option. Therefore, 
our work is related to four main streams in the literature: dual-sourcing 
inventory models, multi-echelon inventory systems, expediting orders, 
and SC disruption.

First, dual-sourcing or multi-sourcing inventory models have re-
ceived attention since the 1960s from several scholars such as Barankin 
[27], Fukuda [21], Rosenshine and Obee [28], Sculli and Shum [29] 
and Mohebbi and Posner [30]. More recently, Veeraraghavan and 
Scheller-Wolf [18] studied a capacitated single-stage dual-sourcing in-
ventory system under periodic review and stationary demand using 
the DIP and showed that the DIP is near optimal in most cases. 
Further, Sajadieh and Eshghi [31] considered a dual-sourcing model 
under the order-splitting policy; these authors showed that order-
dependent unit prices can reduce the percentage savings from dual 
sourcing compared to single sourcing. Chung et al. [32] examined 
a decentralised SC with two suppliers, where one supplier offers a 
quantity flexibility contract, and the other offers a cheaper price. In 
addition, Allon and Van Mieghem [10] explored the TBS policy in 
a single-stage inventory system; these authors provided an analytic 
expression of the asymptotically optimal TBS policy and the overshoot 
process. Wang et al. [33] extended dual sourcing models by allowing 
buying firms to influence supplier reliability, relaxing the common 
assumption of fixed supplier performance. Their findings reveal that 
the preference for improvement, dual sourcing, or a combined strategy 
depends on supplier cost, capacity, and reliability heterogeneity, with 
a combined approach adding value when both capacity and reliability 
are low. Glock [34] studied the impact of different delivery struc-
tures on the SC and reported that using unequal delivery frequencies 
leads to the highest total cost improvement. Sting and Huchzermeier 
[35] investigated the correlated supply and demand uncertainty in 
the dual sourcing problem. Glock [36] compared single- and dual-
sourcing strategies under learning conditions, where suppliers update 
their production costs and capacities. The author showed that it is not 
necessarily optimal to contract the supplier with the highest learning 
rate. Song et al. [37] focused on a multi-product dual-sourcing inven-
tory management system under demand forecast update. These authors 
developed a sequential approximate algorithm, which was found to be 
efficient and effective in solving instances with thousands of product 
types. Serel [38] studied the optimal production and pricing policy in 
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a dual-sourcing problem. Huang and Xu [39] studied mitigating supply 
risks using dual sourcing and backup production in a single period 
model.

Biçer [40] studied the demand tail heaviness impact (i.e., niche 
items demand) on dual-sourcing optimality. Boute and Van Mieghem 
[41] considered order-smoothing policy in single- and dual-sourcing 
problems; their model accounted for capacity costs and overtime. 
Meanwhile, Janakiraman et al. [23] provided a numerical investigation 
on the optimality of TBS policy as the lead time difference increased, 
which was followed by the work of Xin and Goldberg [19], who proved 
it analytically. Ray and Jenamani [42] developed risk-neutral and risk-
averse dual-sourcing newsvendor models for short lifecycle products 
under uncertain demand and supply. Chao et al. [43] investigated the 
impact of yield uncertainty in dual-sourcing and showed that high 
yield certainty can lower the selling price. Li and Li [44] studied the 
inventory management problem under disruption, where a loss-averse 
firm faced a stochastic demand and sources from two suppliers. These 
authors found that the reliable supplier was not used when its purchas-
ing cost was too high. Tan et al. [45] characterised the optimal policy 
for dual sourcing problem with uncertain capacities. Janakiraman and 
Seshadri [46] analysed a backordering dual sourcing system where 
items can be returned to the slow supplier (negative orders) and showed 
that in the long run, no cost advantages are achieved. Lücker and Seifert 
[47] studied the relationship between dual-sourcing, risk mitigation 
inventory and agility capacity in pharmaceutical industry. They showed 
that during disruption, the optional dual-sourcing production rate 
decreases. Furthermore, to compare single and dual sourcing, Ivanov 
[48] considered capacity disruption, different demand patterns, and 
big data in a simulation-based study; a distribution centre was used to 
fulfil the supplier’s demand in the single-sourcing problem, whereas a 
back-up distribution centre was considered in the dual-sourcing case. Li 
[49] studied a dual-sourcing problem with an unreliable supplier. Kouki 
et al. [50] considered a single-stage dual-sourcing perishable inventory 
system under fixed and exponential lifetimes. Huang et al. [51] inves-
tigated several auction formats accommodating wholesale price bids 
for dual sourcing with unreliable suppliers. In addition, Niu et al. [52] 
analysed an inventory system with non-competitive unreliable supplier 
and a competitive supplier. Dong et al. [53] showed that at a low 
fixed cost, the manufacturer prefers dual-sourcing in the absence of 
contract, while at a high yield rate, single-sourcing is preferred. Gheibi 
et al. [54] examined optimal capacity reservation policies for sourcing 
activities under exchange-rate and demand uncertainty, including two 
dual sourcing policies: a defencive approach and an opportunistic 
approach. It also shows how risk aversion increases the likelihood of 
dual sourcing and suggests financial hedging as a means to mitigate 
negative consequences of risk aversion in sourcing decisions. Xu et al. 
[55] considered a backordering dual sourcing system and showed that 
partial backordering in the case of one supplier might be as cost effi-
cient as dual sourcing. Ai and Xu [56] reported that dual sourcing might 
benefit the reliable supplier when its cost is sufficiently low or the 
unreliable supplier when its yield variability is small. Boulaksil et al. 
[20] compared the performance of the DIP and TBS policy in a single-
echelon system wherein the impact of the buyer’s decisions on the SC 
was studied with a lead time difference of one period. They presented 
conditions for the preferred policy from a SC perspective. Hamdouch 
et al. [7] compared the DIP and the TBS policy under nonconsecutive 
lead times and reported that TBS becomes optimal with the increase 
in the lead time difference from the total SC profit perspective. The 
present research extends that of Boulaksil et al. [20] by investigating 
the preferred policy when the number of echelons increases. Xie et al. 
[57] proved that the robust optimal policy is a combination of the 
base-stock policy and a gap-of-base-stock policy with capping effect 
on supply sources except the fastest source for multi-sourcing under 
some conditions. Zhou et al. [58] considered multi-stage games in 
coordinating dual-sourcing problems. They showed that combining 
technology licensing contracts and dual-sourcing improves technology 
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capability in the short term, while jointed contract yields more efficient 
supplier development in the long term. Yang et al. [5] studied a multi-
index base-stock policy for periodic-review inventory systems with 
multiple capacitated suppliers. This policy balances cost efficiency and 
responsiveness by tailoring inventory positions for each supplier and 
using a modified base-stock approach. They show that this policy per-
forms comparably to dynamic programming solutions, with the added 
advantage of computational efficiency through a proposed heuris-
tic. Mahmoudzadeh and Chaturvedi [59] examined how consumer 
reactions — either paying more for certified products (supporting) or 
boycotting firms with irresponsible sourcing — affect a firm’s incentives 
towards responsible dual sourcing. Using a stylised and behavioural 
model, the study finds that boycotting reliably increases responsible 
sourcing, while consumer support induces a dual-sourcing bias. The 
results suggest that for products with few substitutes, encouraging 
consumer support improves responsible sourcing, whereas for products 
with many substitutes, promoting boycotting reactions is more effective 
in driving firms towards ethical sourcing practises. Lou et al. [60] 
compared three resilience strategies — investment in a fixed supplier, 
dual sourcing, and a hybrid approach — to assess their impact on 
supply chain resilience under disruptions. The findings indicate that 
dual sourcing is the most effective for increasing manufacturer profits, 
while the hybrid strategy ensures supply stability at the cost of po-
tential profit reductions. Ghoudi et al. [61] studied the game-theoretic 
dynamics of a dual-sourcing supply chain where a buyer follows a 
TBS policy. They modelled two- and three-player game scenarios, 
analysing pricing strategies, equilibrium conditions, and coordination 
possibilities and found that while coordination between the buyer and 
regular supplier increases their combined profit, it negatively impacts 
the expedited supplier. Moreover, the expedited supplier adopts ag-
gressive pricing strategies to either eliminate competition or maximise 
revenue, highlighting the strategic complexities of dual sourcing under 
competitive conditions. Tang et al. [62] investigated a periodic-review 
dual-sourcing inventory system where the firm does not have prior 
knowledge of the demand distribution and must learn from past de-
mand realisations. They developed a non-parametric online learning 
algorithm that minimises regret relative to the optimal dual-index pol-
icy, achieving near-optimal performance.  Chen and Shi [63] examined 
a periodic-review dual-sourcing inventory system where the demand 
distribution is unknown, and the firm must make adaptive ordering de-
cisions based on past sales data. The authors develop a non-parametric 
learning algorithm that minimises regret relative to the best full-
information TBS policy. By integrating bisection search and stochastic 
gradient descent, the approach provides a provably efficient method 
for learning near-optimal inventory policies in uncertain demand envi-
ronments. Kim and Chung [64] proposed a data-driven distributionally 
robust optimisation model for dual-sourcing inventory management 
under uncertain demand. By leveraging partial distributional informa-
tion, the model provides a tractable solution with closed-form optimal 
policies, addressing challenges like dimensionality and conservative-
ness in traditional stochastic and robust approaches. Fang et al. [65] 
examined dual sourcing under supplier quality heterogeneity, where 
a manufacturer sources from both an incumbent high-quality supplier 
and an entrant supplier with lower initial quality that may improve 
through R&D. They found that dual sourcing generally benefits the 
manufacturer unless the entrant supplier is highly uncompetitive, and 
that R&D success may unexpectedly disadvantage the entrant supplier. 
The results highlight the strategic trade-offs in dual sourcing when 
supplier quality and market structure influence sourcing decisions. For 
detailed reviews of multiple-source inventory models, see Minner [66] 
and Svoboda et al. [67].

The second stream is the multi-echelon or serial inventory sys-
tems. Notably, only a few works have considered the dual-sourcing 
problem in a multi-echelon context [68]. For instance, Bertsimas and 
Thiele [69] introduced a robust optimisation approach for supply chain 
control under stochastic demand without assuming a specific demand 
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distribution. Unlike dynamic programming, which faces dimensionality 
challenges, the method remains computationally tractable and allows 
for adjustable robustness levels to balance performance and uncer-
tainty protection. The authors demonstrated that the resulting optimal 
policy retains a base-stock structure, similar to stochastic policies, 
making it applicable to various inventory systems, including dual sourc-
ing and multi-echelon supply chains. Wang and Yang [70] extended 
the work of Bertsimas and Thiele [69] to a periodic-review multi-
supplier series inventory system with demand uncertainty. The authors 
derive a closed-form robust optimal policy that integrates echelon 
base-stock policies and a gap-of-echelon-base-stock policy, ensuring 
computational efficiency and practical applicability. By reformulating 
the uppermost stage as a single-stage multiple-sourcing problem, the 
study demonstrates the robustness of the proposed policies, particularly 
in environments with high demand uncertainty and limited forecasting 
accuracy. Yu [71] studied a three-echelon dual-sourcing inventory 
problem for deteriorating items, where the replacement of corrupted 
items was forbidden. Their experiments revealed that when the de-
terioration cost increased, deliveries from the distributor increased; 
however, deliveries remained the same when the deterioration rate 
increased. In addition, Arts and Kiesmüller [72] extended the DIP into 
a three-index policy in a two-echelon environment. The first index 
represented the inventory position at the first stock point, which places 
orders to the upstream level that deals with two suppliers, resulting 
in another two inventory positions. The system was assumed to be 
centrally controlled, and all information concerning outstanding or-
ders and inventory was available during decision-making. The authors 
showed that dual sourcing led to substantial cost savings in longer 
lead times, higher backlog costs, and increased demand variability. 
Sajadieh and Thorstenson [73] analysed four sourcing models based 
on cooperative versus non-cooperative planning and sole versus dual 
sourcing in a two-stage supply chain. Using an (𝑟, 𝑄) inventory policy 
with stochastic lead times, they found that while dual sourcing is 
often considered beneficial, its advantages depend on the total system 
cost structure. The results highlighted the importance of detailed cost 
analysis in determining the most effective sourcing strategy, chal-
lenging the common assumption that order splitting always improves 
performance. Shen et al. [74] examined a two-echelon inventory system 
with periodic review and a minimum order quantity constraint at the 
warehouse level and proposed a refined base-stock policy that ensures 
compliance with minimum order quantity while minimising long-run 
system costs. Wu et al. [68] studied a serial inventory system with a 
batch-ordering structure in which each echelon replenished from two 
suppliers: a regular and an emergency one. They studied the dual-
index echelon (𝑅, 𝑛𝑄) policy. In this policy, if the emergency (regular) 
inventory position falls below the emergency (regular) reorder point 
𝑅, it places an integer multiple of quantity 𝑄 (i.e., batch size) from 
the supplier. Item shortage is allowed at the buyer and supplier levels. 
These authors showed that the dual-index echelon policy was optimal 
when the lead time difference was one period and that the order 
size satisfied an integer-ratio constraint. Further, using a scenario-
based distribution requirement-planning approach, Firoozi et al. [75] 
developed a two-stage stochastic inventory model in a multi-echelon 
SC network. The network faced a nonstationary demand, and the 
model considered lateral transshipments and multi-sourcing strategies. 
A substantial increase in the service level was when considering lateral 
transshipments and multiple-sourcing strategies. Zhu et al. [76] eval-
uated a modified echelon (𝑟,𝑄) policy for a two-echelon distribution 
system, demonstrating its asymptotic optimality as system parameters 
scale. They show that this heuristic balances cost efficiency and re-
sponsiveness, particularly as the number of retailers grows, offering 
a practical alternative to complex optimal policies in dual-sourcing 
settings. Recent research by Gijsbrechts et al. [77] explored the effec-
tiveness of deep reinforcement learning in solving complex inventory 
problems, including dual-sourcing and multi-echelon systems. By mod-
elling these problems as Markov Decision Processes, the study finds 
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that deep reinforcement learning can match state-of-the-art heuris-
tics and approximate dynamic programming methods. While initial 
hyperparameter tuning is computationally demanding, this approach 
demonstrates strong adaptability across different inventory settings, 
making it a promising general-purpose approach for supply chain op-
timisation. Drent and Arts [78] studied dual sourcing in a spare parts 
distribution two-echelon network with a central warehouse and multi-
ple local warehouses, incorporating both regular and expedited repair 
options. Using queueing theory and optimisation techniques, the study 
demonstrates that dynamic expediting policies can significantly reduce 
stock investments while maintaining asset availability. Khakbaz et al. 
[79] developed an EOQ-based cross-docking inventory model for a 
retail supply chain, considering a two-stage procurement process in-
volving multiple suppliers and retailers. The proposed model minimises 
total inventory costs by optimising ordering and holding costs at both 
the central warehouse and retail stores. The findings demonstrates the 
model’s efficiency in determining optimal inventory policies, providing 
valuable insights into cost drivers and decision-making in cross-docking 
systems. Li and Yang [80] examined a two-echelon distribution system 
with dual delivery modes, where expedited shipments offer shorter 
lead times at a higher cost. The authors proposed an echelon dual-
index policy, extending established dual-sourcing and multi-echelon 
inventory policies to this setting. Through numerical experiments, they 
demonstrate the efficiency of their heuristic optimisation algorithm 
and evaluate the impact of different rationing policies and demand 
characteristics, highlighting the strategic value of dual delivery modes 
in managing inventory costs and service levels.

The third stream is the use of order expediting (rush orders) to 
satisfy the demand, which can take several forms. One form is through 
a lead time reduction. Ben-Daya and Raouf [81] optimised the order 
quantity and lead time in an (𝑠,𝑄) inventory system, with the option 
of reducing the lead time at extra cost. Ouyang et al. [82] extended 
the aforementioned investigation by including shortage and stock-out 
cost. Moreover, Aggarwal and Moinzadeh [83] considered expedited 
orders when the number of outstanding regular orders exceeded a 
predetermined value in a multi-echelon production system. Lawson and 
Porteus [84] considered a multi-echelon serial SC network where orders 
flowing from one echelon to another can be expedited by reducing 
the lead time. Klosterhalfen [85] considered accelerating outstanding 
orders under the dual-sourcing order-splitting policy in a guaranteed 
service inventory model. For a comprehensive review of the guaranteed 
service inventory model, refer to Eruguz et al. [86]. Another form of 
order expediting is placing new orders after emergency ones. Smith 
[87] studied a model that expedited orders or considered them lost 
sales in the case of shortage under continuous review base-stock pol-
icy. The author provided an analytical expression for the base-stock 
calculation. Meanwhile, Huggins and Olsen [88] analysed the case 
wherein a supplier must fulfil the demand from an assembler using 
rush orders with an additional setup and variable costs. The third form 
of order expediting is the ability to skip some stages in the SC. Sapra 
[89] investigated the case where the regular supplier shipped orders 
to the most upstream stage and the expedited supplier rushed orders 
to the downstream stage in a serial inventory network with general 
lead times and finite horizon under periodic review. In addition, Song 
et al. [90] analysed a dual-sourcing system where orders from the 
regular supplier followed two processing stages, whereas orders from 
the emergency supplier could skip one stage. Moreover, Benbitour et al. 
[24] calculated the safety stock for multiple components and finished 
goods system under a periodic review base-stock, where rush orders 
were used in the case of stock-out. These authors tested the model on 
a real case and found a significant reduction in the average rush order 
probability compared to the company’s model. Finally, inspired by Song 
et al. [90], Drent and Arts [91] studied a repair configuration where 
normal repair passed through two queues and the expedited repair 
skipped one queue.
5 
The fourth stream is SC disruption. Disruption occurs due to natu-
ral disasters (e.g., earthquakes and tsunamis), human-made catastro-
phes (e.g., explosion), strikes, legal disputes, or epidemic outbreaks 
[11,92,93]. Disruption causes fluctuations in prices, supplies, and de-
mands Chowdhury et al. [1], Fransoo and Udenio [94] and Gupta 
et al. [95]. In price disruption, de Paulo Farias and de Araújo [96] 
studied the impact of COVID-19 on prices in food supply chains and 
found that affected regions by COVID-19 showed great price varia-
tions and that the stockpiling period had the highest prices. Several 
works discussed supply disruption in inventory management prob-
lems before the COVID-19 pandemic. Ang et al. [97] studied sourcing 
in multi-tier supply networks under supply disruption and different 
configurations. The results showed that the manufacturer prefers less 
configuration overlap that is V-shaped network, and tier 1 suppliers 
may prefer overlapped network, that is diamond-shaped network. Gaur 
et al. [98] developed a mixed-integer nonlinear mathematical program-
ming model for the closed-loop supply chain management problem 
under supply disruption. They showed that multi-sourcing generates 
higher supply chain profit than single sourcing. Gupta and Ivanov [99] 
coordinated a two-echelon supply chain network with one risk-neutral 
retailer and two risk-averse suppliers, who sell two substitute products. 
The demand for one product is stochastic and impacted by the price 
of the other product. They found that when a supplier increases the 
wholesale price for one product, the retailer reduces the price of the 
substitute product to achieve profit maximisation. Regarding demand 
disruption, Fransoo and Udenio [94] estimated the SC demand and 
inventory during the COVID-19 pandemic under different variation and 
lock-down scenarios. They revealed that inventory build-up will result 
in near-zero orders and that items with high lead time require placing 
orders ahead of the inventory decline. Singh et al. [100] simulated 
the food supply chain under demand disruption to help in developing 
resilient strategies. Zhao et al. [101] coordinated a make-to-order fash-
ion supply chain under demand disruption using revenue sharing and 
linear quantity discount contracts. The analysis revealed that a revenue-
sharing contract could not be used without demand disruption in the 
fashion supply chain, and a linear quantity discount contract cannot be 
used with demand disruption. Non-stationary demand was considered 
in some dual sourcing inventory management models. For instance, Yu 
et al. [102] compared single-sourcing and dual-sourcing under non-
stationary and price sensitive demand setting. Zhou et al. [103] studied 
the platelets inventory management in hospitals with two replenish-
ment modes and seasonal demand. In this system, regular orders are 
placed at the beginning of each cycle of two periods, and emergency 
orders can be placed in between two regular orders. They showed that 
placing one regular and three emergency orders can achieve significant 
cost savings, especially when demand variability is very high. Cheaitou 
and Van Delft [104] studied a network with two sourcing modes under 
three demand cases: stationary, decreasing and increasing. Su and Liu 
[105] discussed the impact of correlated operational and disruption 
risks on the optimal allocation strategy in dual sourcing and found 
that the unreliable regular supplier becomes less attractive during 
disruption. Hou et al. [106] studied the capacity reservation contracts 
during disruptions, where a backup supplier is used to help fulfil the 
demand. Their results revealed that a reliable supplier always induces 
the backup supplier to provide a low capacity reservation price to 
attract a larger quantity from the buyer. Schmitt et al. [107] studied 
the effect of disruption on orders during a disruption in a four-echelon 
system using simulation. They showed that the long-lasting impact 
of disruption occurs at echelons close to ultimate consumption. They 
also revealed that dynamic order-up-to levels rather than expediting 
orders lead to promising results. Jakšič and Fransoo [108] studied 
the relationship between lead time and uncertain capacity in a non-
stationary dual-sourcing model. The first supplier offers immediate 
delivery but has a limited stochastic capacity, and the second supplier 
is uncapacitated but with a longer lead time. They found that ordering 
from the fast supplier and a state-dependent base-stock give the optimal 
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policy. By contrast, Sun and Van Mieghem [17] studied the case where 
the slow supplier has a capacity limitation, and the fast supplier’s 
capacity is unlimited. They proved that a dual index, dual base-stock 
policy that limits the slow orders is optimal in the demand non-
stationary case. To reduce market risks, Boute et al. [109] considered 
a fast onshore supplier called ‘‘SpeedFactory’’ and an offshore sup-
plier. They highlighted the structural differences between stationary, 
correlated, and non-stationary demand environments. Yee et al. [110] 
examined dual sourcing under stochastic and non-stationary demand, 
where the underlying demand distribution changes over time and is 
only partially observable. The authors propose an adaptive dual base-
stock policy that combines stable pre-committed orders from a slow 
source with flexible short-term orders from both sources. By leveraging 
partial information from demand observations, the policy dynamically 
adjusts replenishment decisions, reducing reliance on costly expedited 
orders. Numerical validation highlights the benefits of incorporating 
flexible slow sourcing to improve supply chain resilience under demand 
uncertainty. For a review on the SC disruption and resilience, refer 
to Katsaliaki et al. [111]

Several other works also discussed the impact of epidemic outbreaks 
on the SC. Iyengar et al. [112] discussed the challenges in managing 
healthcare SC networks during the COVID-19 pandemic and reported 
that low-cost and just-in-time strategies before the pandemic left com-
panies with no buffer inventory and resulted in product shortages. 
Ivanov [11] used a simulation approach and reported that the timing of 
the opening and closing of the facilities at different echelons, lead time, 
the speed of epidemic propagation, and upstream disruption duration 
are key factors in determining the impact of epidemic outbreaks on 
the supply chain. Okafor et al. [113] conducted a systematic literature 
review and recommended increasing local production and resilience 
of healthcare supply chains to overcome the impact of the COVID-19 
pandemic. Ivanov and Dolgui [114] provided a systematic review on SC 
disruption propagation and categorised contributions and managerial 
insights into network, process, and control groups. They suggested 
simulating and articulating operation policies during the disruption and 
exploring reallocation of supply and demand among several recommen-
dations. For a comprehensive review on the COVID-19 impact on the 
SC, refer to Chowdhury et al. [1].

In the aforementioned streams in the literature and as shown in 
Table  1, the vast majority of the research on dual sourcing examined 
single-echelon systems rather than the total SC. Furthermore, works on 
placing new orders after regular ones to fulfil demand are substantially 
limited. In addition, most of the dual-sourcing inventory management 
models focused on stationary demand, and only a few models use non-
stationary demand. By contrast, this paper considers a multi-echelon 
setting for which the performance of two policies (the TBS policy and 
DIP) is analysed from a SC perspective and the impact of increasing 
the number of echelons on the preferred policy is investigated. We 
consider order expediting using rush orders after normal orders to 
allow emergency suppliers to fulfil consumer demands. In addition, 
with the current demand disruption due to the COVID-19 pandemic, 
we analyse the performance of both policies in demand sudden increase 
and sudden decrease cases.

3. Problem description

Here, a multi-echelon, multi-period, and single-product inventory 
management problem under stochastic customer demand and installa-
tion stock is studied. In installation stock, decisions are decentralised, 
and orders are placed based on the inventory position of each sup-
plier [116,117]. The starting echelon (𝑘 = 0) represents the buyer who 
must fulfil stochastic external demand (Fig.  1). This type of system can 
be found in electronic companies that purchase high-quality electronic 
components and rely on dual sourcing for SC resilience. The external 
demand during each period is a nonnegative random variable. For the 
stationary case, demand is assumed to be independent and identically 
6 
distributed. The SC network studied here consists of a series of suppliers 
in the same geographical region, called emergency suppliers. Each 
emergency supplier may place an order at an emergency upstream sup-
plier or a regular supplier. In this setting, the buyer and the emergency 
suppliers are assumed to make decisions on their inventory. Similar to 
all upstream emergency suppliers, the buyer can replenish its inventory 
from two suppliers: a regular supplier with a low purchasing cost and 
an emergency supplier with a higher purchasing cost. The former has 
a longer lead time than the latter (𝑙𝑟𝑘 > 𝑙𝑒𝑘). The buyer’s unfulfilled 
demand is backordered, except for the last period of the planning 
horizon, where demand is lost. Moreover, excess stock can be salvaged 
at the end of the planning horizon. Note that we deliberately did not 
model the scenario where the regular supplier can source from different 
suppliers, as this would be completely redundant when considering 
the TBS policy. Under the TBS policy, the regular supplier supplies a 
fixed constant quantity, which makes dual sourcing not needed for the 
regular supplier. Therefore, our network design choice, as presented 
in Section 4.1 enables a fair comparison between the two policies. By 
focusing on the dual sourcing problem of the buyer and local suppliers, 
we can more accurately evaluate the performance differences between 
DIP and TBS.

In echelon 𝑘, 𝑘 = 1,… , 𝐾 − 1, the emergency supplier replenishes 
its inventory from the regular and emergency suppliers in the next (up-
stream) echelon (𝑘 + 1). Regular suppliers do not manage inventories, 
and their decisions are straightforward. Further, the emergency sup-
plier must fulfil the demand that comes from the buyer or emergency 
supplier 𝑘 − 1. In the case of stock-out, rush orders are placed at a 
higher cost, which guarantees the reliability of the emergency supplier. 
In practice, the lead times of these rush orders are shorter than those 
of emergency orders. Here, rush orders are assumed to be delivered in 
the same (discrete) period. This reflects the practice of suppliers who 
use faster transportation modes to fulfil orders rapidly. Adopting this 
approach simplifies the analysis by allowing us to focus on the per-
formance of the policies under disruption without explicitly modelling 
safety stocks and delayed deliveries. This modelling approach (of zero 
lead time for rush orders) is common in the stochastic multi-echelon 
inventory management literature (e.g. [24,89]). It provides a tractable 
and realistic representation of emergency delivery scenarios, which is 
essential for evaluating and comparing different inventory policies.

We conduct experiments by varying several model parameters, in-
cluding the lead time difference experiments with a lead time difference 
between regular and emergency suppliers of one time period and also 
with larger lead time differences. The salvage value at the end of 
the planning horizon is assumed to be zero. The objective of this 
paper is to compare the DIP and TBS policy in a multi-echelon setting. 
Therefore, we will look at the individual profit of each party in the 
SC as well as the total SC profit under each policy. This allows us 
to compare the performance of the two policies in a multi-echelon 
setting. Subsequently, we present the notations used in describing the 
two policies studied — the DIP and TBS policy — and provide the 
sequence of events under each policy.

3.1. Notations

The parameters, stochastic variable, decision variables, state vari-
ables, and performance evaluation are as follows:

3.1.1. Parameters
• 𝑘 = echelon index, 𝑘 = 0,… , 𝐾, and 𝑘 = 0 represents the buyer’s 
echelon;

• 𝜇𝑡 = mean external demand faced by the buyer in period 𝑡;
• 𝜎𝑡 = standard deviation of the external demand in period 𝑡;
• 𝑝 = unit selling price to the external customer;
• ℎ𝑘 = unit inventory holding cost in echelon 𝑘, 𝑘 = 0,… , 𝐾;
• 𝑏 = unit backorder cost at echelon 0 (buyer);



S. Hamdan et al. Operations Research Perspectives 14 (2025) 100333 
Table 1
Literature summary.
 Paper Sourcing Model/Policy Non-stationary

demand
Rush order Number of 

echelons
Notes  

 Single

Dual

M
ulti

O
ne/tw

o

M
ore than tw

o

 

 Yu [71] ✓ Mathematical model ✓ Constant demand and 
deteriorating item

 

 Veeraraghavan 
and 
Scheller-Wolf 
[18]

✓ DIP ✓ Stationary demand  

 Sajadieh and 
Eshghi [31]

✓ ✓ Order splitting ✓ Constant demand and stochastic 
lead times

 

 Chung et al. 
[32]

✓ Quantity flexibility contract ✓  

 Allon and 
Van Mieghem 
[10]

✓ TBS ✓  

 Sting and 
Huchzermeier 
[35]

✓ ✓ – ✓ Uncertain supply and demand 
and unreliable offshore suppliers

 

 Cheaitou and 
Van Delft [104]

✓ Near-optimal myopic policy ✓ ✓  

 Arts and 
Kiesmüller [72]

✓ Three base-stock policy ✓  

 Song et al. [37] ✓ Newsvendor model ✓ Multiple products and demand 
forecast update

 

 Serel [38] ✓ Newsvendor model ✓ ✓ Local supplier is used after 
realisation of the demand

 

 Biçer [40] ✓ – ✓ Heavy-tailed demand  
 Boute and 
Van Mieghem 
[41]

✓ ✓ Lagrange inversion theorem ✓ Order smoothing  

 Janakiraman 
et al. [23]

✓ TBS ✓  

 Ray and 
Jenamani [42]

✓ Newsvendor model ✓ Uncertain supply and demand  

 Tan et al. [45] ✓ – ✓ Uncertain supply and demand  
 Chao et al. [43] ✓ Periodic-review model ✓ Random-yield suppliers and 

uncertain demand
 

 Ivanov [48] ✓ ✓ Simulation model ✓  
 Li [49] ✓ ✓ Optimal policy ✓ Deterministic demand and 

unreliable suppliers
 

 Janakiraman and 
Seshadri [46]

✓ Optimal policy ✓ Inventory system with return 
option

 

 Hou et al. [106] ✓ – ✓ ✓ Minimum order quantity, 
capacity reservation and 
uncertain supplier

 

 Schmitt et al. 
[107]

✓ Simulation model ✓ ✓  

 Sapra [89] ✓ Modified echelon-basestock 
policy

✓ ✓ Uncapacitated suppliers  

 Song et al. [90] ✓ Tandem queuing system and 
queue’s optimal policy

✓ Expedited orders skip a stage  

 Jakšič and 
Fransoo [108]

✓ Near-optimal myopic policy ✓ ✓ Stochastic capacity limitations 
and long lead times

 

 Xin and 
Goldberg [19]

✓ TBS ✓ Analytically proof  

 Kouki et al. [50] ✓ Base-stock policy ✓ Perishable items with a fixed or 
exponential lifetime

 

 Huang et al. 
[51]

✓ Newsvendor model ✓ Procurement auctions and 
supply risks

 

 Li and Li [44] ✓ Stochastic dynamic 
programming

✓ Unreliable supplier  

 Niu et al. [52] ✓ – ✓ Unreliable supplier  
 Sun and 
Van Mieghem 
[17]

✓ Capped dual index policy ✓ ✓  

 Benbitour et al. 
[24]

✓ Periodic-review base-stock ✓ ✓  

 Wu et al. [68] ✓ Dual-index echelon-(R,nQ) ✓ Batch orders  
 (continued on next page)
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Table 1 (continued).
 Paper Sourcing Model/Policy Non-stationary

demand
Rush order Number of 

echelons
Notes  

 Single

Dual

M
ulti

O
ne/tw

o

M
ore than tw

o

 

 Boulaksil et al. 
[20]

✓ DIP and TBS ✓ Comparative study between two 
policies

 

 Firoozi et al. 
[75]

✓ Mathematical model ✓ ✓ lateral transshipment strategy  

 Drent and Arts 
[91]

✓ Queuing theory ✓ ✓  

 Boute et al. 
[109]

✓ Celebrated order-up-to policy ✓ ✓ Order smoothing  

 Dong et al. [53] ✓ ✓ – ✓ Yield uncertainty, reliability 
improvement and supplier 
encroachment

 

 Gheibi et al. 
[54]

✓ Defencive action 
policy/opportunistic 
approach

✓ Exchange rate and uncertain 
demand

 

 Xu et al. [55] ✓ Base-stock and reservation 
quantity

✓  

 Zhou et al. 
[115]

✓ – ✓ Deterministic demand  

 Yee et al. [110] ✓ Adaptive dual base-stock 
policy

✓ ✓ Demand distribution changes 
over time and is only partially 
observable

 

 This work ✓ DIP and TBS ✓ ✓ ✓ Comparative study between 
policies under demand 
disruptions in a multi-echelon 
setting.

 

Fig. 1. The multi-echelon inventory system under investigation.
• 𝑤𝑟𝑘, 𝑤𝑒𝑘 = unit wholesale cost from the 𝑘th regular and the 𝑘th 
emergency suppliers;

• 𝛥𝑤𝑘 = wholesale cost difference between the 𝑘th emergency and 
the 𝑘th regular suppliers;

• 𝑐𝑟𝑘, 𝑐𝑒𝑘 = unit manufacturing or purchasing cost of the 𝑘th regular 
and the 𝑘th emergency suppliers 𝑘, 1 ≤ 𝑘 ≤ 𝐾, and the purchasing 
cost 𝑐𝑒𝑘 is {𝑤𝑒𝑘+1, 𝑤𝑟𝑘+1} for an emergency supplier who purchases 
from upstream suppliers (𝑘 ≤ 𝐾);

• 𝑐𝑟𝑢𝑠ℎ𝑘 = unit cost for placing a rush order by the 𝑘th emergency 
supplier (𝑘 ≥ 1);

• 𝑙𝑒𝑘, 𝑙𝑟𝑘 = lead time of the 𝑘th emergency and the 𝑘th regular 
suppliers.

3.1.2. Stochastic variable
• 𝐷𝑡 = external stochastic demand faced by the buyer in period 𝑡. 
It has a mean (𝜇𝑡) and a standard deviation (𝜎𝑡).

3.1.3. Decision variables
• 𝑆𝑟𝑘, 𝑆𝑒𝑘 = regular and emergency base-stock levels under the DIP;
• 𝑄𝑟𝑘,𝑡, 𝑄𝑒𝑘,𝑡 = quantities ordered from the 𝑘th regular and emergency 
suppliers in period 𝑡 under the DIP;

• 𝑆̃𝑒𝑘 = emergency base-stock level in echelon 𝑘 under TBS policy;
• 𝑄̃𝑒𝑘,𝑡 = quantity ordered from the 𝑘th emergency supplier in period 
𝑡 under the TBS policy.

• 𝑄̃𝑟𝑘 = fixed order quantity purchased from the 𝑘th regular supplier 
under the TBS policy;
8 
3.1.4. State variables
• 𝐼𝑃 𝑒𝑘,𝑡, 𝐼𝑃 𝑟𝑘,𝑡 = inventory positions at emergency and regular sup-
pliers in period 𝑡 and echelon 𝑘 under the DIP;

• ̃𝐼𝑃 𝑒𝑘,𝑡 = inventory position at an emergency supplier in period 𝑡
and echelon 𝑘 under the TBS policy;

• 𝑥𝑘𝑡 = starting inventory level in period 𝑡 and echelon 𝑘;
• 𝑦𝑘𝑡 = inventory level in period 𝑡 and echelon 𝑘 after receiving 
orders.

3.1.5. Performance evaluation
• 𝜋𝐵𝑡 , 𝜋̃𝐵𝑡 = buyer’s profit in period 𝑡 under the DIP and TBS policy, 
respectively;

• 𝜋𝑒𝑘,𝑡, 𝜋̃𝑒𝑘,𝑡 = profit of the 𝑘th emergency supplier in period 𝑡 under 
the DIP and TBS policy, respectively;

• 𝜋𝑟𝑘,𝑡, 𝜋̃𝑟𝑘,𝑡 = profit of the 𝑘th regular supplier in period 𝑡 under the 
DIP and TBS policy, respectively;

• 𝜋𝐷𝐼𝑃𝑡 , 𝜋𝑇𝐵𝑆𝑡 = total SC profit in period t under the DIP and TBS 
policy, respectively.

3.2. DIP

DIP policy keeps track of two inventory positions: regular and 
expedited inventory positions and employs two basestock levels, one for 
each of the two suppliers. If the expedited inventory position (on-hand 
inventory level plus outstanding orders delivered within the emergency 
lead time minus the backorders) is less than the lower basestock level 
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at a certain period, then the difference is ordered from the expedited 
supplier. Next, the regular inventory position is raised to the higher 
basestock level by ordering from the regular supplier. More specifically, 
the following sequence of events occurs in each period.

1. We start in period 𝑡 with the starting inventory level for the 
buyer (𝑘 = 0). The buyer reviews its inventory position at 
the emergency supplier, which is based on the starting inven-
tory level and all outstanding orders from both emergency and 
regular suppliers. 

𝐼𝑃 𝑒0,𝑡 = 𝑥0𝑡 +
𝑡−1
∑

𝑖=𝑡−𝑙𝑒1

𝑄𝑒1,𝑖 +
𝑡−(𝑙𝑟1−𝑙

𝑒
1)

∑

𝑖=𝑡−𝑙𝑟1

𝑄𝑟1,𝑖. (1)

2. The buyer (𝑘 = 0) then decides on the emergency quantities to 
be ordered (𝑄𝑒𝑘+1,𝑡) to reach the emergency base-stock level. 

𝑄𝑒1,𝑡 = (𝑆𝑒0 − 𝐼𝑃
𝑒
0,𝑡)

+. (2)

3. After considering the emergency order, the buyer updates its 
inventory position at the regular supplier (Eq. (3)) and decides 
on the regular order quantities to raise its inventory to the 
regular base-stock level (Eq.  (4)).
𝐼𝑃 𝑟0,𝑡 = 𝐼𝑃 𝑒0,𝑡 +𝑄

𝑒
1,𝑡, (3)

𝑄𝑟1,𝑡 = (𝑆𝑟0 − 𝐼𝑃
𝑟
0,𝑡)

+. (4)

4. The customer’s external demand (𝐷𝑡) is subsequently observed. 
The buyer updates its inventory considering the received quan-
tities from the emergency supplier that were ordered at 𝑡 − 𝑙𝑒𝑘+1
and from the regular supplier at 𝑡 − 𝑙𝑟𝑘+1 and uses the inventory 
to fulfil the demand in as much as possible. 
𝑦0𝑡 = 𝑥0𝑡 +𝑄

𝑒
1,𝑡−𝑙𝑒1

+𝑄𝑟1,𝑡−𝑙𝑟1
. (5)

5. The starting inventory level at the next period is the remaining 
stock or shortage after fulfilling the demand (𝑥0𝑡+1 = 𝑦0𝑡 −𝐷𝑡).

6. Finally, the expected profit is calculated as the difference be-
tween the total revenue and the total cost. The total cost includes 
the purchasing costs from the emergency and regular suppliers, 
the inventory holding, and backordering costs. 
𝜋𝐵𝑡 = E

(

𝑝𝐷𝑡 −𝑤𝑒1𝑄
𝑒
1,𝑡 −𝑤

𝑟
1𝑄

𝑟
1,𝑡 − ℎ

0(𝑦0𝑡 −𝐷𝑡)+ − 𝑏(𝐷𝑡 − 𝑦0𝑡 )
+). (6)

7. The emergency supplier in the 𝑘th echelon has the same se-
quence of event (Steps 1–6), but the demand to be fulfilled 
becomes 𝑄𝑒𝑘,𝑡 instead of the customer’s demand (𝐷𝑡). The emer-
gency suppliers must fulfil their demands; therefore, in the case 
of stock-out (after realising the demand in Step 4), a rush order 
is placed (𝑄𝑒𝑘,𝑡 − 𝑦𝑘𝑡 )

+, and the starting inventory level at the 
next period is calculated as (𝑦𝑘𝑡 −𝑄𝑒𝑘,𝑡)+. The total profit function 
becomes

𝜋𝑒𝑘,𝑡 =E
(

𝑤𝑒𝑘𝑄
𝑒
𝑘,𝑡 −𝑤

𝑒
𝑘+1𝑄

𝑒
𝑘+1,𝑡 −𝑤

𝑟
𝑘+1𝑄

𝑟
𝑘+1,𝑡 − ℎ

𝑘(𝑦𝑘𝑡 −𝑄
𝑒
𝑘,𝑡)

+

− 𝑐𝑟𝑢𝑠ℎ𝑘 (𝑄𝑒𝑘,𝑡 − 𝑦
𝑘
𝑡 )

+). (7)

8. The total profit of the 𝑘th regular supplier is calculated as 𝜋𝑟𝑘,𝑡 =
E
(

(𝑤𝑟𝑘 − 𝑐
𝑟
𝑘) 𝑄

𝑟
𝑘,𝑡
)

; the total profit of the 𝐾th emergency supplier 
is calculated similarly as 𝜋𝑒𝐾,𝑡 = E

(

(𝑤𝑒𝐾 − 𝑐𝑒𝐾 ) 𝑄
𝑒
𝐾,𝑡

)

.
9. The total SC profit under the DIP is: 

𝜋𝐷𝐼𝑃𝑡 = 𝜋𝐵𝑡 +
𝐾
∑

𝑘=1
(𝜋𝑒𝑘,𝑡 + 𝜋

𝑟
𝑘,𝑡). (8)

3.3. TBS policy

Under the TBS policy, the buyer places every period a fixed order 
quantity at the regular supplier and fulfils excess demand by ordering 
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a variable quantity via the expedited supplier. An order is placed at 
the expedited supplier whenever the inventory position (net inventory 
plus all outstanding orders from both suppliers minus the backorder 
quantities) is below the basestock level which depends on the regular 
supplier order. The sequence of events under the TBS policy is consid-
erably similar to that under the DIP. However, the following differences 
are present. 

1. The inventory position at the regular supplier is not used (in 
Step 3); instead, a constant regular quantity (𝑄̃𝑟𝑘) is placed. Con-
sequently, the buyer’s profit and the 𝑘th emergency supplier’s 
profit become
𝜋̃𝐵𝑡 = E

(

𝑝𝐷𝑡 −𝑤𝑒1𝑄̃
𝑒
1,𝑡 −𝑤

𝑟
1𝑄̃

𝑟
1 − ℎ

0(𝑦0𝑡 −𝐷𝑡)+ − 𝑏(𝐷𝑡 − 𝑦0𝑡 )
+). (9)

𝜋̃𝑒𝑘,𝑡 = E
(

𝑤𝑒𝑘𝑄̃
𝑒
𝑘,𝑡 −𝑤

𝑒
𝑘+1𝑄̃

𝑒
𝑘+1,𝑡 −𝑤

𝑟
𝑘+1𝑄̃

𝑟
𝑘+1 − ℎ

𝑘(𝑦𝑘𝑡 − 𝑄̃
𝑒
𝑘,𝑡)

+

− 𝑐𝑟𝑢𝑠ℎ𝑘 (𝑄̃𝑒𝑘,𝑡 − 𝑦
𝑘
𝑡 )

+). (10)

2. The total profit of the 𝑘th regular supplier (𝜋̃𝑟𝑘,𝑡) is no longer 
a function of the uncertain demand as 𝑄̃𝑟𝑘 is constant (𝜋̃𝑟𝑘,𝑡 =
(

(𝑤𝑟𝑘 − 𝑐
𝑟
𝑘) 𝑄̃

𝑟
𝑘
)

.).
3. The total SC profit under the TBS policy is 

𝜋𝑇𝐵𝑆𝑡 = 𝜋̃𝐵𝑡 +
𝐾
∑

𝑘=1
(𝜋̃𝑒𝑘,𝑡 + 𝜋̃

𝑟
𝑘,𝑡). (11)

4. Numerical study

Here, we evaluate the performance of the DIP and TBS policy over 
several instances. In this system, the buyer and emergency suppliers 
manage inventories and consequently make decisions by optimising 
their own objective functions. For the regular suppliers, we observe 
the impact of optimal decisions on their profits. Therefore, the buyer’s 
policy parameters are determined first, followed by the policy pa-
rameters of emergency supplier 1, and so on. The policy parameters 
were determined using the simulation-based optimisation approach. 
The approach utilises a static simulation to generate demand values 
from a known distribution and a non-linear solver to optimise the 
inventory parameters. It was implemented in MATLAB and solved by 
using the interior-point algorithm, which is a technique used to solve 
non-linear optimisation problem [118]. In the interior point algorithm, 
the feasibility region is constrained by 𝑆𝑟𝑘 ≥ 𝑆𝑒𝑘 for the DIP and 𝑄̃𝑟𝑘 ≤ 𝜇𝑡
for the TBS policy and inequality constraints are converted to equality 
by adding nonnegative slack variables. Then, these nonnegativity con-
straints are converted to a natural log barrier function (−𝜓 ln(𝑥)). As 𝜓
decreases in each iteration, it pushes the solution closer to the optimal 
one by searching the feasible interior region. The objective function 
with the barrier function is approximated using the Karush-Kuhn–
Tucker (KKT) conditions, and the approximated objective function is 
solved in an iterative process. The Newton–Raphson or the conjugate 
gradient method is used in each iteration until the KKT tolerance is 
met [119–121].

We develop a base case in which the wholesale price difference is 
set to 5. The parameter 𝛥𝑤1 will be varied in most experiments to 
illustrate the behaviour of the multi-echelon SC, where 𝛥𝑤1 plays a 
critical role in determining the preferred policy [20]. We vary all 𝛥𝑤𝑘
in one of the experiments, where we change the number of echelons, 
the choice of varying only 𝛥𝑤1 in the remaining experiments is due 
to the following two reasons. First, upstream suppliers contribute in 
insignificant quantities compared to the suppliers in echelon 1; thus, 
changing 𝛥𝑤1 will have the highest impact. Second, we would like to 
limit the number of parameters that changed simultaneously and thus 
reduce the factors affecting the behaviour of the system. We assume 
that the external demand follows a Gamma distribution with 𝜇𝑡 = 10. 
Unless otherwise mentioned, the standard deviation (𝜎𝑡) is set to 5. 
Initially, all regular suppliers and emergency suppliers have a lead 
time of two periods and one period, respectively. Cost parameters are 
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Fig. 2. System structure and cost parameters for the base case.
presented in Fig.  2, which we define as the base case, and the network 
design choice is explained in Section 4.1. In Section 4.2, we vary 
the number of echelons to study its impact on the preferred policy. 
We provide the analysis on different parameters in Appendix  A. In 
Appendix  A, we analyse the behaviour of the two policies while varying 
the level of demand uncertainty; the inventory holding, backorder, 
and rush costs; and the lead time, respectively. The experiments in 
Appendix  A are conducted using 𝐾 = 5 where the total number of 
echelons in the SC is 𝐾 + 1.

4.1. Network design choice

The multi-echelon network design used in this paper is inspired by 
the interview outcomes and extends the single-echelon network design 
used in [20]. This similarity helps to analyse and understand the impact 
of the number of echelons. Emergency suppliers are responsive, and 
to ensure their order fulfilment, they are given the option to place a 
second instant order (rush order) after the demand is realised. Since 
regular suppliers are located in less expensive geographical locations; 
their inventory costs are considered negligible compared to the emer-
gency suppliers. The configuration in this study is an extension to 
the network of Boulaksil et al. [20]. The cost parameters used in this 
work follow the same trend in [20] for comparison purposes. Other 
configurations and further generalisation on the network design can be 
considered in future research work.

Remark 1.  In our multi-echelon configuration, the buyer and emer-
gency suppliers adopt the same policy. This configuration represents 
the extreme case. We conducted numerical experiments with 𝐾 = 5
while varying the policy among different entities. We verified that 
adapting TBS only or DIP only represents an extreme case. Although 
each entity is independent and can choose any policy other than DIP 
and TBS policy, we limited the choice to be between TBS policy and 
DIP for the sake of comparison, (see Appendix  C.1).

Remark 2.  In our configuration and during demand disruption, the 
adapted policy remains unchanged. This setting represents an extreme 
case (all DIP or All TBS policy). We conducted experiments while 
changing the policy during disruption. The total profit boundaries 
are defined by the cases when DIP and TBS remain unchanged, (see 
Appendix  C.1).

Remark 3.  While Schmitt et al. [107] states that dynamic policy 
parameters during disruption can be beneficial, our analysis showed 
that it is applicable only for the buyer in the positive disruption case 
and for the regular upstream suppliers. However, the total SC profit in 
the positive and negative disruption scenario remains bounded by the 
cases where policy parameters are not updated, (see Appendix  C.2).

Remark 4.  Note that varying the selling price 𝑝 affects the profit 
magnitude of the buyer only and has no impact on suppliers since the 
demand is independent of the selling price (see Appendix  A.1).
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4.2. Effect of the number of echelons

We examined the impact of increasing the number of echelons on 
the performance of the two policies by considering the base case (Fig. 
3(a)). In addition, the cases of varying 𝛥𝑤 of all echelons
(Fig.  3(b)), high demand variability (𝜎𝑡 = 20) (Fig.  3(c)), and low 
backorder cost (𝑏 = 2) (Fig.  3(d)) were tested.

Boulaksil et al. [20] showed that for the case of two suppliers and 
a buyer with 𝑐𝑟1 < 𝑐𝑒1, the DIP outperforms the TBS policy for the entire 
𝛥𝑤1 domain. This result aligns with our finding for 𝐾 = 1. However, our 
results show that as 𝐾 increases, the TBS policy starts to outperform the 
DIP for a wider range of 𝛥𝑤1. The difference decreases for large 𝛥𝑤1. 
In particular, at 𝐾 = 5 in the base case, the TBS policy outperforms 
the DIP for the entire 𝛥𝑤1 domain (Fig.  3(a)). To better understand the 
factors that contribute to the preferred policy as the number of echelons 
increases, we show the profit difference between the TBS policy and 
DIP in Fig.  4 for the extreme cases 𝐾 = 1 and 𝐾 = 5. The buyer prefers 
the DIP regardless of the value of 𝛥𝑤1, whereas emergency supplier 1 
benefits more under the TBS policy. The regular supplier under the TBS 
policy receives constant orders that are practical and convenient, but 
the quantities ordered are less than those under the DIP. This reduction 
in the purchased quantities results in regular supplier 1 preferring 
the DIP. As the number of echelons increases, the profit difference in 
emergency supplier 1 increases. Moreover, the upstream and regular 
suppliers under the TBS policy contribute to the profit gain, thereby 
leading to a more profitable total SC under said policy. Note that the 
increase in the profit difference in emergency supplier 1 is justified by 
the sourcing options from the emergency and regular suppliers or order 
rushes that become available as the SC extends from 𝐾 = 1 to 𝐾 > 1.

A similar general behaviour (i.e., the increase in the total profit of 
the TBS policy compared to the DIP as 𝐾 increases) can be observed 
in the other cases, especially with a small wholesale price difference 
between the emergency and regular suppliers. Varying all wholesale 
prices increases the unit profit of upstream emergency suppliers (Fig. 
3(b)). Thus, a policy that depends on an emergency supplier will boost 
its total profit. However, as more quantities are placed from the regular 
suppliers with the increase in 𝛥𝑤𝑘, the total profit decreases rapidly. 
Under the TBS policy, upstream suppliers are more utilised; under the 
DIP, only downstream suppliers are used, mainly owing to the high 
usage of the flexible regular supplier 1.

In the case of a higher level of demand uncertainty, the TBS policy 
and DIP become insensitive to the increase in the number of echelons 
when 𝛥𝑤1 ≥ 9 (Fig.  3(c)). This insensitivity happens because emergency 
supplier 1 places more rush orders and relies more on regular quantities 
when under a high variability. Consequently, the SC relies on the down-
stream echelons, and adding extra echelon has hardly any impact on the 
total profit. Therefore, the DIP’s flexibility outperforms the TBS policy’s 
rigidity at high demand variability and large 𝛥𝑤1. The reduction in the 
total profit under high demand variability ($360 – $450) compared to 
the base case ($550 – $750) is due to the increased inventory holding 
and rush order costs, because the SC tends to build more stock and 
deliver orders instantaneously to account for variability.
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Fig. 3. Total SC profit difference between TBS and DIP (TBS - DIP) as a function of 𝛥 𝑤1 for (a) the base case, (b) the case of varying all 𝛥𝑤𝑘, (c) high demand variability 
𝜎𝑡 = 20, and (d) low backorder cost 𝑏 = 2.
Fig. 4. Difference in profit functions (𝛥𝜋𝑇 = 𝜋𝑇𝐵𝑆 − 𝜋𝐷𝐼𝑃 , 𝛥𝜋𝐵 = 𝜋̃𝐵 − 𝜋𝐵 , 𝛥𝜋𝑒 = 𝜋̃𝑒𝑘 − 𝜋
𝑒
𝑘, and 𝛥𝜋𝑟 = 𝜋̃𝑟𝑘 − 𝜋

𝑟
𝑘) for each party as function of 𝛥𝑤1.
In the case of low backorder cost as in Fig.  3(d), the SC moves to 
the less expensive option by relying more on the regular supplier as 
𝛥𝑤1 increases. The regular suppliers’ flexibility under the DIP allows for 
a better management of the demand variability than the regular sup-
pliers’ rigidity under the TBS, resulting in a better demand matching, 
fewer backorder quantities, and reduced inventory levels.

When extending the SC from 𝐾 = 1 to 𝐾 = 2, the profit gain 
under the TBS policy and that under the DIP differ within cases (Table 
2). This difference is mainly due to the change in the unit of profit 
emergency supplier 1. When 𝐾 = 1, the unit profit of emergency 
supplier 1 is (𝑤𝑒1 − 𝑐𝑒1); when 𝐾 = 2, the unit profit depends on the 
source of purchasing (emergency, regular, or rush). When 𝐾 increases 
11 
from 2 to 5, the profit per added echelon under the TBS policy is 
around 1.5% higher than that under the DIP. This gain per echelon 
is not sensitive to the parameter setting (Table  2). The maximum gain 
per echelon increases in the case of varying all 𝛥𝑤𝑘 compared to the 
other cases. Moreover, the change in all 𝛥𝑤𝑘 increases the total SC 
profit under the TBS policy substantially compared to the DIP at small 
wholesale price differences. This increase is because of the rise in the 
unit profit of the emergency suppliers when placing orders from the 
regular suppliers. However, it drops fast owing to the reduction in 
quantities placed by the buyer at emergency supplier 1, consequently 
lowering the utilisation of upstream suppliers. For the high level of 
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Table 2
Percentage gain per echelon from the TBS policy over the DIP (max/at 𝛥𝑤1 = 5) as the SC grows from 𝐾 = 1 to 𝐾 = 5.
 Case From 𝐾 = 1 to 𝐾 = 2

(%)
From 𝐾 = 2 to 𝐾 = 3
(%)

From 𝐾 = 3 to 𝐾 = 4
(%)

From 𝐾 = 4 to 𝐾 = 5
(%)

 

 Base case 1.95/1.33 1.54/1.51 1.60‘/1.57 1.63/1.60  
 Varying all 𝛥𝑤𝑘 1.98/1.33 3.50/1.51 3.99/1.57 4.25/1.60  
 𝜎𝑡 = 20 3.08/−2.45 1.53/1.53 1.63/1.63 1.70/1.70  
 𝑏 = 2 2.75/0.42 1.45/1.45 1.50/1.50 1.53/1.53  
Fig. 5. Demand behaviour under disruption.
demand uncertainty, the total profit drops as the number of echelons 
increases from 2 to 3 (Fig.  3(c)).

This profit drop is mainly due to the order rushing option that 
becomes available for emergency supplier 1, which is used to cope 
with the high uncertainty level. The profit drop under the TBS policy is 
greater than that under the DIP at 𝛥𝑤1 = 5. Thus, adding one echelon to 
expand the SC from 𝐾 = 1 to 𝐾 = 2 decreases the profit gain by 2.45% 
as emergency supplier 1 starts to manage inventory at 𝐾 = 2 (Table  2). 
Subsequently, the profit gain starts to increase with each added echelon 
from 𝐾 = 2 to 𝐾 = 5.

5. Impact of demand disruption

Here, the demand becomes subject to disruption, which is a sudden 
decrease or a sudden increase. The sudden decrease is referred to as 
‘‘Negative disruption (ND)’’ and the sudden increase is referred to as 
‘‘Positive disruption (PD)’’. The ND simulates the demand behaviour 
during the COVID-19 of general products and automobiles. The PD 
simulates the demand behaviour during the COVID-19 of most edible 
products and some non-edible products such as paper products and 
over-the-counter healthcare products. The planning horizon is assumed 
to be 100 periods (Fig.  5). The first 22 periods represent the pre-COVID-
19 situation of stationary demand. With the spread of the COVID-19 
virus, customers’ behaviours changed, and stockpiling of several prod-
ucts has begun. The stockpiling behaviour (𝜆1) that caused disruption is 
set to 10 periods. At the end of the stockpiling, customers’ panic ended, 
and the purchasing behaviour started slowly to return to its normal 
level (pre-COVID-19 levels). The demand recovery state (𝜆2) is set to 
17 periods. The remaining periods in the planning horizon represent 
stationary demand as the behaviour is back to its normal levels.

We study the impact of demand disruption on the base 𝐾 = 1
network reported in Boulaksil et al. [20], and the base 𝐾 = 5 network 
reported in Section 4 in this paper. In Appendix  B, we study the impact 
of demand uncertainty and the recovery duration.
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5.1. Effect of demand disruption

We compare the two policies under disrupted and stationary de-
mand cases for the 𝐾 = 1 and 𝐾 = 5 networks.

5.1.1. 𝐾 = 1
In the ND case, more emergency orders and less regular orders 

under the TBS policy are placed in the pre-COVID-19 and post COVID-
19 periods compared to the stationary demand case (Fig.  6(a)). By 
contrast, in the PD case, order levels before and after the disruption 
remain unchanged. The same happens in both cases under DIP.

During the pandemic and in the ND case, orders from the emergency 
supplier under the TBS policy are significantly reduced as demand 
drops, and quantities accumulate significantly due to the constant 
orders from the regular supplier (Fig.  6(a)). Consequently, during the 
recovery period, the inventory is used first to fulfil demand. The orders 
from the emergency supplier are resumed when the inventory level goes 
back to its normal levels pre-COVID-19. In the PD case, orders from 
the emergency supplier and the inventory are used to respond to the 
demand changes; emergency orders go back to normal as soon as the 
demand level goes back to its normal level. The flexible regular supplier 
under the DIP allows for a better response to demand changes without 
stocking up large inventories in the ND and PD cases; order quantities 
from both suppliers are adjusted. In the case of ND, the emergency base-
stock level is higher than that in the stationary demand case, and under 
TBS policy (Fig.  6(b)). The emergency base-stock level under DIP is 
insensitive to the demand sudden decrease except for large 𝛥𝑤1 values 
(𝜎𝑡 = 5 and 𝛥𝑤1 > 7). Regular base-stock levels under the DIP and TBS 
policy are lower than that of the stationary demand case. In the PD 
case, the emergency base-stock level increases significantly compared 
to the ND case under the TBS policy. The regular base-stock level under 
the TBS policy, the emergency and regular base-stock levels under the 
DIP are higher than that of stationary demand case. (Fig.  6(b)).

In the ND case, the total SC profit under DIP becomes much higher 
than that under the TBS policy for a wider 𝛥𝑤1 range (Fig.  7(a)). 
Although the emergency supplier secures a higher profit under the TBS 
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Fig. 6. Quantity and policy parameters under the TBS policy and DIP.
policy than under DIP, the additional profit secured by the buyer and 
regular supplier under DIP is more dominant. It leads to a significant 
increase in the total SC profit under the DIP. In the PD case, TBS policy 
outperforms for a wider 𝛥𝑤1 range. The profit of the buyer and the 
regular supplier under DIP increased slightly while the profit of the 
emergency supplier under TBS policy increased significantly; thus, the 
SC under the TBS policy outperforms that under the DIP for a wider 
𝛥𝑤1 range.

5.1.2. 𝐾 = 5
In both disruption cases, ordering behaviour by the upstream sup-

pliers follows the same behaviour as in the buyer’s behaviour described 
in 𝐾 = 1 network as the demand propagate through the network. 
The total SC profit increases under the TBS policy in the ND case 
compared to the stationary demand case, although the total demand 
13 
is less in the former case (Fig.  7(b)). The total SC profit quickly drops 
as 𝛥𝑤1 increases. The explanation for the profit increase is that more 
utilisation of the emergency orders increases the upstream suppliers’ 
contribution. The total supply profit chain under the DIP and the ND 
case is less than stationary demand but behaves the same as 𝛥𝑤1
changes. The difference in the profit between the two policies increased 
significantly under disruption compared to the stationary case. The PD 
case contributes to increasing the profit difference between the two 
policies due to the significant use of emergency suppliers.

6. Impact of wholesale price

Here, we summarise the impact of varying the wholesale price on 
the policy preference for the experiments conducted in Sections 4 and
5. Table  3 provides the maximum relative profit difference between 
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Fig. 7. Profit under the TBS policy and DIP for the different standard deviation cases.
the two policies ((DIP−TBS) and (TBS−DIP)) and 𝛥𝑤∗, indicating the 
wholesale price range where the preferred policy changes for the 
different number of echelons.

In all cases except for that of high demand variability and immense 
lead times of all suppliers, the difference between the two policies 
(DIP−TBS) is less than 2% when the DIP is the preferred policy. 
However, when the TBS policy is preferred, relative differences can 
reach 12% for 𝐾 = 5. In addition, as the number of echelons increases, 
the DIP is preferred only at a larger wholesale price difference between 
the emergency and regular suppliers.

Table  4 shows the relative profit difference between the two poli-
cies and the wholesale price difference at which the preferred policy 
changes (𝛥𝑤∗) under different conditions. Table  4 also clarifies the 
relationship between various conditions and the range of 𝛥𝑤1 where 
the preferred policy changes. For instance, increasing all holding costs 
14 
results in slight differences between the two policies (around 1%). 
Varying all holding costs from 10 to 25 results in almost the same 
relative profit difference, which indicates that both policies behave 
similarly for this range. Notably, the wholesale price at which the 
preferred policy changes decreases as the unit inventory holding cost 
increases. Increasing the holding cost of the buyer makes the TBS policy 
preferable with a difference of up to 11.6%. Varying rush cost, low de-
mand uncertainty, or high backorder cost does not change the preferred 
policy, whereas a high demand variability changes the preferred policy 
from the TBS policy to the DIP. Moreover, as demand variability or the 
lead time of all suppliers increases, the switch in the preferred policy 
occurs at a smaller wholesale price difference.

In the case of demand disruption, as the demand variability in-
creases from 𝜎𝑡 = 2 to 5 the maximum difference between both policies 
slightly increases in short networks with ND (Table  4). In the case of 
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Table 3
Maximum relative total SC profit difference between the two policies while varying the 
number of echelons.
 K DIP−TBS (%) TBS−DIP (%) 𝛥𝑤∗ DIP−TBS (%) TBS−DIP (%) 𝛥𝑤∗  
 Base case (𝑏 = 80 and 𝜎𝑡 = 5) Base case while varying all 𝛥𝑤𝑘

 1 0.58 0.12 6–7 0.58 0.12 6–7  
 2 1.04 1.98 9–10 1.18 2.05 8–9  
 3 0.70 3.42 11–12 1.09 5.51 10–11 
 4 0.34 4.95 13–14 1.00 8.94 11–12 
 5 N/A 6.50 N/A 0.93 12.24 12–13 
 Base case but with 𝜎𝑡 = 20 Base case but with 𝑏 = 2

 1 0.30 0.86 14–15 1.02 0.11 3–4  
 2 6.28 3.24 1–2&3–4 1.62 2.82 5–6  
 3 4.95 4.58 1–2&4–5 1.53 4.18 8–9  
 4 4.35 6.01 1–2&6–7 1.44 5.58 9–10  
 5 4.35 7.51 1–2&6–7 1.34 7.02 10–11 

PD, short networks move from preferring TBS policy independently 
from the 𝛥𝑤1 to preferring TBS when 𝛥𝑤1 < 5, where the maximum 
relative difference slightly changed. Changing the recovery duration 
has more impact in the ND case compared to the PD case. By contrast, 
in extended networks, the preferred policy (the TBS policy) remains 
unchanged. The maximum relative difference between the two policies 
only decreases as the demand variability increases in the ND case 
(Table  4).

7. Summary of results and managerial insights

The following points summarise the main observations from the 
conducted experiments on extending the number of echelons and study-
ing the multi-echelon SC behaviour under different parameter settings 
and stationary demand.

• As the number of echelons increases, the TBS policy becomes 
the preferred policy primarily because of the contribution of the 
emergency suppliers in the higher echelons to the total profit. The 
flexibility in the DIP allows the inventory system to rely on a few 
echelons (up to 𝐾 = 2), whereas upstream emergency suppliers 
are more often used under the TBS policy.

• Adding one more echelon increases the difference between the 
TBS policy and DIP by 1.5% when 𝛥𝑤1 is small and 0.5% when 
𝛥𝑤1 is large. However, when the variability increases, adding an 
extra echelon increases the relative difference by almost 0.5% 
when 𝛥𝑤1 is small but has no impact when 𝛥𝑤1 is large because 
the system relies only on downstream echelons (up to 𝐾 = 2).

• The flexibility of the DIP is preferred under the following condi-
tions: high inventory holding costs in all echelons, an extremely 
low backorder cost, a high level of demand uncertainty, or long 
suppliers’ lead times.

• The responsiveness of the TBS policy is preferred under the fol-
lowing conditions: a considerably low holding cost in all echelons, 
a high inventory holding cost at the buyer level, a high backorder 
cost, a low demand variability, and considerably slow regular 
suppliers. This policy is also preferable when rush costs de-
crease, which promotes more quantities from emergency supplier 
1, and increase, which encourages the involvement of upstream 
emergency suppliers.

• The SC becomes more profitable under the TBS policy as the 
lead time difference increases; in the case where all suppliers 
become slow, the SC secures more profit under the DIP. Moreover, 
upstream stages are hardly used under conditions such as a high 
demand variability or long suppliers’ lead times, where even the 
TBS policy avoids relying on upstream suppliers and the system 
is used up to 𝐾 = 2. This result leads the DIP to outperform the 
TBS policy.
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• In the case of higher echelons (e.g., 𝐾 = 5), the relative profit 
difference between the DIP and TBS policy is insignificant if the 
DIP outperforms the TBS policy (a maximum relative difference of 
less than 2% is observed). However, if the TBS policy outperforms 
the DIP, the relative difference may reach 12%. This indicates 
that the preferred policy should be set carefully to maximise the 
SC profits. The policy choice criticality depends highly on the 
cost settings. For example, the policy choice in the case of high 
inventory holding cost (e.g., ℎ𝑘 = 25 with a relative difference of 
0.68% and 0.71% towards the DIP and TBS policy, respectively) 
is less critical than the case of low backorder cost (e.g., 𝑏 = 20
with a relative difference of 0.08% and 6.63% towards the DIP 
and TBS policy, respectively).

• In most of the experiments and in a multi-echelon environment, 
the TBS policy is preferred when the wholesale price difference 
between the emergency supplier 1 and regular supplier 1 is small 
despite other parameter changes. The preferred policy might 
switch with the increase in the wholesale price difference.

The following points summarise the main findings from the con-
ducted experiments under demand disruption.

• In short SCs (i.e., 𝐾 = 1), the SC under DIP outperforms the SC 
under the TBS policy for a wider range of 𝛥𝑤1 in the ND case, 
and the SC under the TBS policy becomes the preferred one in 
industries that might face PD.

• When 𝐾 = 1, the SC under the TBS policy becomes the preferred 
policy as the demand recovery duration increases in the ND case 
for a wider 𝛥𝑤1 range. By contrast, in the PD case, the DIP 
outperforms the TBS policy for a wider 𝛥𝑤1.

• In a multi-echelon network, the SC under the TBS policy can 
secure higher total profit in the case of ND than the stationary 
demand because of the increased contribution of the upstream 
suppliers. In addition, disruption does not lead to a change in the 
preferred policy.

• In a multi-echelon network, the dependency on emergency sup-
pliers increases with the recovery duration and consequently the 
responsiveness of the TBS policy becomes significantly important 
compared to the flexibility of the DIP.

Managers are recommended to strategically choose between these 
policies based on several parameters, such as the inventory holding 
costs, backorder costs, level of demand uncertainty, and supplier lead 
times. For instance, if a company has high inventory holding costs and 
faces high demand uncertainty, it would be advantageous to opt for 
the DIP policy, as it offers more flexibility. On the other hand, if the 
backorder costs are high, or the regular suppliers are slow, choosing the 
TBS policy would be beneficial. In addition, managers need to consider 
the size of their SCs (number of echelons) and the extent of reliance 
on emergency suppliers when designing and operating their SCs. For 
instance, if demand variability is high or supplier lead times are long, 
relying heavily on higher echelons or upstream suppliers may not be 
the best strategy, even under the TBS policy. On the contrary, when 
dealing with slow regular suppliers or a low holding cost, involving 
upstream emergency suppliers can prove beneficial.

One key takeaway for SC managers is the need to assess cost settings 
closely when choosing their operational strategy, deciding between DIP 
and TBS policies in particular. Such decisions, when made correctly, 
can lead to substantial improvements in the SC performance. Hence, 
SC managers need to conduct thorough cost analyses prior to making 
policy decisions. This is a crucial step towards making informed choices 
that align with the organisation’s financial objectives. When inventory 
holding costs are high, the decision between DIP and TBS policies 
does not greatly impact the profit margins. In these circumstances, SC 
managers have a bit more flexibility in policy selection. Thus, other 
strategic factors might be prioritised in the decision-making process, 
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Table 4
Maximum relative total SC profit difference between the two policies under different conditions.
 Condition DIP−TBS (%) TBS−DIP (%) 𝛥𝑤∗ Condition DIP−TBS (%) TBS−DIP (%) 𝛥𝑤∗  
 ℎ𝑘 = 5 1.00 2.01 7–8 ℎ0 = 5 N/A 7.51 N/A  
 ℎ𝑘 = 10 0.83 1.01 4–5 ℎ0 = 10 N/A 8.89 N/A  
 ℎ𝑘 = 15 0.74 0.75 4–5 ℎ0 = 15 N/A 10.07 N/A  
 ℎ𝑘 = 20 0.68 0.71 4–5 ℎ0 = 20 N/A 11.06 N/A  
 ℎ𝑘 = 25 0.69 1.05 4–5 ℎ0 = 25 N/A 11.57 N/A  
 𝐶𝑟𝑢𝑠ℎ

𝑘 − 30 N/A 6.58 N/A 𝐶𝑟𝑢𝑠ℎ
𝑘 + 30 N/A 8.57 N/A  

 𝐶𝑟𝑢𝑠ℎ
𝑘 − 20 N/A 4.24 N/A 𝐶𝑟𝑢𝑠ℎ

1 = 75 N/A 3 N/A  
 𝐶𝑟𝑢𝑠ℎ

𝑘 − 10 N/A 2.08 N/A 𝐶𝑟𝑢𝑠ℎ
1 = 85 0.4 1.7 10–11  

 𝐶𝑟𝑢𝑠ℎ
𝑘 + 10 N/A 8.93 N/A 𝐶𝑟𝑢𝑠ℎ

1 = 95 N/A 7.17 N/A  
 𝐶𝑟𝑢𝑠ℎ

𝑘 + 20 N/A 8.98 N/A 𝐶𝑟𝑢𝑠ℎ
1 = 100 N/A 7.09 N/A  

 𝜎𝑡 = 1 N/A 1.59 N/A 𝜎𝑡 = 20 4.66 7.89 7–8  
 𝜎𝑡 = 2.5 N/A 3.99 N/A 𝜎𝑡 = 25 6.47 4.83 1–2&4–5 
 𝜎𝑡 = 7.5 2.43 8.74 1–2&14–15 𝜎𝑡 = 30 9.16 N/A N/A  
 𝜎𝑡 = 10 2.23 9.18 11–12 𝜎𝑡 = 35 15.51 2.41 1–2  
 𝜎𝑡 = 15 3.49 10.34 8–9  
 𝑏 = 2 1.34 7.02 10–11 𝑏 = 60 N/A 6.65 N/A  
 𝑏 = 20 0.08 6.63 14–15 𝑏 = 100 N/A 6.59 N/A  
 𝑏 = 40 N/A 6.55 N/A 𝑏 = 120 N/A 6.64 N/A  
 𝑙𝑟𝑘 = 3, 𝑙𝑒𝑘 = 1 N/A 7.97 N/A 𝑙𝑟1 = 3, 𝑙𝑒1 = 1 N/A 6.96 N/A  
 𝑙𝑟𝑘 = 4, 𝑙𝑒𝑘 = 1 N/A 9.41 N/A 𝑙𝑟1 = 4, 𝑙𝑒1 = 1 N/A 6.99 N/A  
 𝑙𝑟𝑘 = 5, 𝑙𝑒𝑘 = 1 N/A 13.37 N/A 𝑙𝑟1 = 5, 𝑙𝑒1 = 1 N/A 10.82 N/A  
 𝑙𝑟𝑘 = 3, 𝑙𝑒𝑘 = 2 1.49 3.65 10–11 𝑙𝑟𝑘 = 3, 𝑙𝑒𝑘 = 2 0.15 7.14 14–15  
 𝑙𝑟𝑘 = 4, 𝑙𝑒𝑘 = 3 1.68 2.04 5–6 𝑙𝑟𝑘 = 4, 𝑙𝑒𝑘 = 3 0.61 7.72 13–14  
 𝑙𝑟𝑘 = 5, 𝑙𝑒𝑘 = 4 1.81 1.90 4–5 𝑙𝑟𝑘 = 5, 𝑙𝑒𝑘 = 4 0.52 8.32 13–14  
 𝑙𝑟𝑘 = 6, 𝑙𝑒𝑘 = 5 2.12 1.73 4–5 𝑙𝑟𝑘 = 6, 𝑙𝑒𝑘 = 5 0.89 9.27 13–14  
 𝑙𝑟𝑘 = 7, 𝑙𝑒𝑘 = 6 2.45 1.59 3–4 𝑙𝑟𝑘 = 7, 𝑙𝑒𝑘 = 6 0.87 10.45 14–15  
 𝑙𝑟𝑘 = 8, 𝑙𝑒𝑘 = 7 3.11 4.25 3–4 𝑙𝑟𝑘 = 8, 𝑙𝑒𝑘 = 7 1.29 13.02 14–15  
 𝑙𝑟𝑘 = 9, 𝑙𝑒𝑘 = 8 4.49 4.37 3–4 𝑙𝑟𝑘 = 9, 𝑙𝑒𝑘 = 8 2.11 17.23 13–14  
 𝑙𝑟𝑘 = 10, 𝑙𝑒𝑘 = 9 8.05 9.35 2–3 𝑙𝑟𝑘 = 10, 𝑙𝑒𝑘 = 9 4.33 25.91 13–14  
 ND, 𝐾 = 1, 𝜎𝑡 = 2 21.1 1.29 2–3 PD, 𝐾 = 1, 𝜎𝑡 = 2 N/A 0.68 N/A  
 ND 𝐾 = 1, 𝜎𝑡 = 5 21.9 1.34 2–3 PD, 𝐾 = 1, 𝜎𝑡 = 5 3.50 0.62 4–5  
 ND, 𝐾 = 5, 𝜎𝑡 = 2 N/A 31.0 N/A PD, 𝐾 = 5, 𝜎𝑡 = 2 N/A 7.18 N/A  
 ND, 𝐾 = 5, 𝜎𝑡 = 5 N/A 25.2 N/A PD, 𝐾 = 5, 𝜎𝑡 = 5 N/A 11.5 N/A  
 ND, 𝐾 = 1, 𝜆 = 32 22.9 2.47 3–4 PD, 𝐾 = 1, 𝜆 = 32 4.52 0.71 4–5  
 ND, 𝐾 = 1, 𝜆 = 42 16.5 3.54 5–6 PD, 𝐾 = 1, 𝜆 = 42 5.56 0.71 4–5  
 ND, 𝐾 = 5, 𝜆 = 32 N/A 36.5 N/A PD, 𝐾 = 5, 𝜆 = 32 N/A 14.9 N/A  
 ND, 𝐾 = 5, 𝜆 = 42 N/A 40.0 N/A PD, 𝐾 = 5, 𝜆 = 42 N/A 16.3 N/A  
such as operational efficiency or customer service considerations. In 
contrast, when backorder costs are low, the chosen policy can signif-
icantly influence profit margins. The impact of policy choice is more 
profound in such scenarios, indicating that careful consideration should 
be given to policy selection. Managers should be aware that a strategic 
decision at this juncture could yield considerable financial benefits. 
The occurrence of demand disruptions and the duration of recovery 
significantly affect the performance of the SC under both TBS and DIP 
policies. Therefore, businesses need to be prepared for such disruptions 
and plan their policies accordingly. For shorter SCs (K = 1), DIP seems 
to perform better in decreasing demand cases, while TBS is preferable 
when demand spikes are expected. This trend changes with increasing 
demand recovery duration. For multi-echelon networks, increased de-
pendency on emergency suppliers with recovery duration makes the 
TBS policy more important compared to the flexibility of DIP.

Finally, managers are recommended to closely monitor and evaluate 
the wholesale price differences between regular and emergency sup-
pliers. Changes in these price differences can influence the preferred 
policy between DIP and TBS. Managers should dynamically evaluate 
and select their sourcing policies based on their specific cost structures, 
SC structure (number of echelons), and market conditions (such as 
demand variability and supplier lead times). They should also be pre-
pared to adapt their strategies in response to disruptions and changes 
in recovery duration.

8. Conclusions and future work

In this paper, a multi-echelon dual-sourcing setting was studied in 
which the performance of two policies, namely, the DIP and TBS policy, 
was compared. Through numerous experiments, the TBS policy was 
found to outperform the DIP when the SC was extended, namely, when 
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the number of echelons increased under normal setting. This is mainly 
due to the dependency of the TBS policy on upstream suppliers; such a 
dependency does not hold under the DIP. In addition, the following 
cases in which the DIP is preferred over the TBS policy in a multi-
echelon system were presented: a high level of demand uncertainty, 
long lead times of both emergency and regular suppliers, high inventory 
holding cost in all echelons, and extremely low backorder cost. In 
addition, several parameters were varied, such as the inventory holding 
cost, backorder cost, rush cost, level of demand uncertainty, and the 
lead times. Increasing the inventory holding cost in all echelons yielded 
conservative ordering behaviour to avoid building up inventories. The 
flexibility of regular suppliers under the DIP outperformed emergency 
suppliers’ responsiveness under the TBS policy because emergency 
suppliers tended to rush more orders. Further, high backorder cost 
increased the need for responsiveness and, consequently, dependency 
on upstream emergency suppliers. Reducing rush costs made respon-
siveness less expensive and, because the TBS policy is more responsive 
than the DIP, secured more profit. Conversely, increasing rush costs 
reduced rush orders but increased the profit contribution of upstream 
suppliers under the TBS policy compared to the DIP. In the case of 
a high level of demand uncertainty, the SC used its flexible regular 
suppliers under the DIP, whereas it placed more expensive rush orders 
under the TBS policy. Therefore, more profit was generated by SC 
systems under the DIP. As both suppliers became slow in delivering 
orders, upstream suppliers became unnecessary under both policies. 
Because there were fewer rush orders under the DIP than the TBS 
policy owing to the flexibility of regular suppliers, the DIP achieved 
a slightly higher total profit. In the case of demand disruption, the 
TBS policy becomes dominant when demand suddenly drops in short 
supply networks with the recovery duration increase. In addition, it is 
preferred when a product is subject to demand spike in short networks 
when demand variability is low, or demand recovery duration is short.
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The findings from this research provide managers with clear guid-
ance for strategically choosing between the two policies – DIP and 
TBS – in a multi-echelon dual-sourcing setting. Decisions regarding 
policy selection can be influenced by a variety of factors, such as 
inventory holding costs, backorder costs, level of demand uncertainty, 
and supplier lead times. For example, if a company experiences high 
inventory holding costs coupled with a high level of demand uncer-
tainty, it may benefit from opting for the DIP policy, due to its inherent 
flexibility. Conversely, in cases of high backorder costs or slow regular 
suppliers, the TBS policy could be a better choice. In addition to these 
parameters, managers need to take into account the size and structure 
of their SCs, especially the number of echelons and the extent of 
reliance on emergency suppliers. This is particularly important when 
dealing with high demand variability or long supplier lead times. Even 
under the TBS policy, overreliance on higher echelons or upstream 
suppliers might not be the most advantageous strategy. On the other 
hand, in situations where regular suppliers are slow or holding costs 
are low, engaging upstream emergency suppliers (i.e. the TBS policy) 
could provide substantial benefits. The ability to adapt to these varying 
conditions underlines the importance of cost analysis in policy decision-
making. With a thorough cost analysis, managers can make informed 
choices that align with their financial objectives, potentially leading 
to significant improvements in SC performance. Another critical point 
for managers to consider is the occurrence of demand disruptions and 
their recovery durations. Both TBS and DIP policies are significantly 
affected by these disruptions, thus necessitating proactive planning 
and adaptation. For shorter SCs, the DIP policy might be preferable 
in decreasing demand cases, while TBS could be better suited for 
handling demand spikes. However, this tendency changes with longer 
recovery durations. In multi-echelon networks, increased dependency 
on emergency suppliers during recovery makes the TBS policy more 
advantageous, compared to the flexibility offered by DIP. Managers 
must be prepared to adapt their strategies in response to disruptions, 
changes in recovery durations, and shifts in the marketplace. By doing 
so, they can maintain the resilience and effectiveness of their SCs, 
ensuring optimal performance under a variety of conditions.

This research offers guidance for managers on choosing between the 
DIP and TBS policies in multi-echelon dual-sourcing contexts. Policy 
choice can be shaped by factors such as inventory costs, backorder 
costs, demand uncertainty, and supplier lead times. High inventory 
costs and demand uncertainty may favour DIP for its flexibility. How-
ever, if backorder costs are high or regular suppliers are slow, TBS may 
be a better fit. Along with these parameters, SC size and structure, 
number of echelons, and reliance on emergency suppliers should be 
considered, especially with high demand variability or long lead times. 
Overreliance on higher echelons or upstream suppliers under TBS 
might not always be advantageous. But, when regular suppliers are 
slow or holding costs are low, upstream emergency suppliers under 
TBS can offer substantial benefits. Thus, cost analysis is crucial for 
informed policy decisions that enhance SC performance. Additionally, 
managers must account for demand disruptions and recovery dura-
tions. Both TBS and DIP are significantly impacted by disruptions, 
demanding proactive planning. In shorter SCs, DIP may be more suit-
able for decreasing demand, while TBS can handle demand spikes. 
This dynamic shifts with longer recovery durations. In multi-echelon 
networks, increased reliance on emergency suppliers during recovery 
makes TBS more beneficial, as compared to DIP’s flexibility. Thus, 
managers need to adapt to disruptions, recovery duration changes, and 
marketplace shifts, maintaining SC resilience and optimal performance 
under various conditions.

This research can be extended in various ways. In this study, we 
considered a serial multi-echelon SC configuration where each emer-
gency supplier can place orders from two suppliers. Future studies 
might consider different SC configurations, such as the possibility of 
having a distribution centre, a supplier who fulfils the demands of 
multiple customers, or skipping some echelons. Such analyses could 
17 
underscore the impact of the SC configuration on the preferred policy. 
One potential direction is to focus on the food and pharmaceutical 
industries, where products may be perishable, and industries have strict 
regulations. Alternatively, the fashion industry’s seasonality and trend 
sensitivity could present unique challenges worth exploring. Future 
research might also investigate the impact of sustainability in the SC 
on the choice and effectiveness of these policies. This could include 
exploring how the demand for sustainable sourcing or fair trade might 
impact SC structures and sourcing strategies. Another promising avenue 
for future research is to investigate the theoretical properties of the 
optimal policy in multi-echelon settings. While deriving formal results 
is challenging due to the complex nature of the demand function, 
future studies could formulate conjectures based on numerical exper-
iments obtained in this work and attempt to prove them rigorously. 
Additionally, developing new heuristic strategies grounded in the char-
acteristics of multi-echelon systems could enhance both the theoretical 
and practical understanding of such policies.
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Appendix A. Effect of varying parameters under stationary de-
mand

In this Appendix  A, we analyse the behaviour of the two policies 
while varying the selling price, the level of demand uncertainty; the 
inventory holding, backorder, and rush costs; and the lead time, re-
spectively. The experiments in Appendix  A are conducted using 𝐾 = 5
where the total number of echelons in the SC is 𝐾 + 1.

A.1. Varying selling price (𝑝)

We investigate the impact of the unit selling price to the external 
customer 𝑝 on the quantities ordered by the buyer and the total 
supply chain profit. We examine four scenarios with selling prices 𝑝 =
{110, 150, 200, 250}. The results are presented in Figs.  8 and 9.

Fig.  8 illustrates that the quantities ordered from the emergency 
and regular suppliers under both the DIP and TBS policies remain 
unaffected by variations in the selling price 𝑝. This result is consistent 
with the nature of the demand, which is independent of the selling 
price. The consistent ordering quantities confirm that the selling price 
influences only the buyer’s profit and not the supplier decisions or the 
inventory dynamics within the supply chain.

Fig.  9 demonstrates how the total supply chain profit difference 
between the TBS and DIP policies (TBS - DIP) changes as a function 
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Fig. 8. Quantities ordered under the DIP and TBS policy while varying 𝑝.
Fig. 9. Total SC profit difference between TBS and DIP (TBS - DIP) as a function of 𝛥𝑤1 for different selling prices.
of 𝛥𝑤1, under different selling prices. As the selling price 𝑝 increases, 
the profit gap between the TBS and DIP policies narrows. This trend 
indicates that higher profit margins for the buyer, who prefers DIP, 
diminish the relative performance advantage of the TBS policy over the 
DIP policy. The profit difference peaks at 𝛥𝑤1 values around 3 to 4, 
particularly for lower selling prices. For larger values of 𝛥𝑤1, the profit 
difference diminishes across all selling prices, reflecting a convergence 
in the performance of the TBS policy and DIP.

A.2. Varying holding costs (ℎ𝑘)

We also conduct experiments by varying the unit inventory holding 
cost (ℎ𝑘) to study its impact. In Case 1, we increase all holding costs 
simultaneously, which are multiplied by a factor 𝛿 = {1, 5, 10, 15, 20, 25}; 
in Case 2, we only increase the buyer’s holding cost using the same 𝛿. 
Fig.  10(a) and (b) show the relative difference between the TBS policy 
and DIP (calculated as 100 × 𝜋𝑇𝐵𝑆−𝜋𝐷𝐼𝑃

𝜋𝑇𝐵𝑆 ) in Cases 1 and 2, respectively, 
𝛥𝑤1 = 5.

In Case 1, as the unit inventory holding cost increases, the relative 
profit difference between the TBS policy and DIP decreases. At a high 
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unit holding cost, the DIP starts outperforming the TBS policy because 
the suppliers become more conservative in ordering when the inventory 
holding cost increases in all echelons. They prefer rushing orders, that 
is, placing orders after the demand is revealed to avoid building up 
expensive inventories. The result shows that the base-stock level from 
emergency supplier 1 under the TBS policy remains relatively high. 
Moreover, orders from emergency supplier 1 are fulfilled mostly as 
rush, and upstream emergency suppliers are hardly used. Consequently, 
the responsiveness of the emergency suppliers becomes costly, and with 
the rigidity of the regular suppliers, the DIP starts to outperform the 
TBS policy.

By contrast, the relative profit difference increases as the buyer’s 
inventory holding cost increases, and the SC continues to perform better 
under the TBS policy (Case 2). This result is due to the emergency 
suppliers’ high responsiveness in all echelons under the TBS policy. 
Meanwhile, the DIP relies more on its regular supplier’s flexibility. Only 
the buyer avoids building up inventories and the unaffected inventory 
holding cost at the emergency supplier level; hence, the involvement of 
upstream emergency suppliers remains profitable under the TBS policy 
and contributes to the increased total profit.
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Fig. 10. Relative profit difference between the TBS policy and DIP at 𝛥𝑤1 = 5 for varying (a) all holding costs ℎ𝑘 (‘‘Case 1’’); (b) the buyer’s holding cost ℎ0 (‘‘Case 2’’); (c) 
demand uncertainty 𝜎𝑡; (d) backorder cost 𝑏, (e) all rush costs 𝑐𝑟𝑢𝑠ℎ𝑘 ; and (f) rush cost of emergency supplier 1 𝑐𝑟𝑢𝑠ℎ1 .
A.3. Varying demand uncertainty (𝜎𝑡)

We conduct additional experiments with the two policies’ behaviour 
by varying demand uncertainty value 𝜎𝑡 = {1, 2.5, 5, 7.5, 10, 15, 20, 25, 
30, 35}; see Fig.  10(c) for the relative profit difference at 𝛥𝑤1 = 5. 
At 𝜎𝑡 = 1, the two policies behave similarly as the demand is almost 
deterministic. Placing constant orders at the less expensive supplier 
(regular supplier 1) is the most cost-efficient policy because the demand 
is almost constant.

As the variability (𝜎𝑡) increases from 1 to 10, more profit is secured 
under the TBS policy than the DIP because of the emergency suppliers’ 
involvement in compensating for the regular suppliers’ rigidity. In this 
situation, building inventories is more beneficial than rushing orders. 
Consequently, order levels from upstream emergency suppliers remain 
high, leading to more profit under the TBS policy.

As demand variability (𝜎𝑡) increases beyond 10, the relative dif-
ference between the TBS policy and DIP starts decreasing. Under the 
TBS policy, the emergency suppliers in higher echelons (𝐾 = 2,… , 5) 
are replaced by rush orders, which increases the flexibility and re-
sponsiveness cost. This increase leads the DIP to become the preferred 
policy. Because the emergency and regular suppliers deliver after the 
lead time, the SC absorbs uncertainty either by building inventories 
or rushing orders, which guarantees immediate availability. As the 
demand variability increases, more inventories become needed, thereby 
resulting in higher holding costs. Consequently, the SC switches from 
building inventories to rushing orders when the cost incurred from 
rushing orders becomes less than the cost from building inventories.

In general, the analysis for the different 𝛥𝑤1 values reveals that the 
high variability drives the increase in base-stock level from emergency 
supplier 1 under the DIP. However, the base-stock level decreases sig-
nificantly as 𝛥𝑤1 increases, and most of the demand is fulfilled through 
regular supplier 1 because of its flexibility. Orders from emergency 
supplier 1 are fulfilled mainly as rush orders. Under the TBS policy, the 
base-stock level of emergency supplier 1 is less sensitive to the change 
in 𝛥𝑤1. Orders from emergency supplier 1 are primarily fulfilled as rush 
orders and as orders from upstream emergency suppliers.

Remark 5.  The experiment was repeated, assuming that the demand 
follows a normal distribution. The standard deviation was varied from 
1 to 3. The same behaviour was observed in the SC system under both 
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policies, indicating that the observed impact was driven by demand 
variability and not by distribution shape.

A.4. Varying the backorder cost (𝑏)

We compare the DIP and TBS policy while varying backorder cost 
(𝑏 = {2,20,40,60,80,100,120}). Fig.  10(d) shows the relative profit dif-
ference between the two policies under the different backorder cost 
values at 𝛥𝑤1 = 5; it is slightly affected by varying the backorder 
cost. Under the TBS policy, a high backorder cost drives an increased 
dependency on upstream emergency suppliers, which generates more 
profit to the SC compared to the DIP. However, the difference between 
the TBS policy and DIP remains considerably limited. The increase in 
the backorder cost leads to more rush orders and higher inventory 
levels, which slightly reduce the total SC profit under both policies at 
an almost similar rate.

The analysis on the wholesale price difference shows that as the 
backorder cost (𝑏) increases, the TBS policy tends to depend more 
on upstream emergency suppliers for a larger 𝛥𝑤1 domain, which is 
not presented herein owing to space limitations. Therefore, emergency 
suppliers prefer to keep large stocks when the backorder cost is high. 
Moreover, the dependency on upstream emergency suppliers decreases 
with the increase in 𝛥𝑤1. Consequently, the profit difference becomes 
less and allows the DIP to outperform the TBS policy in certain cases 
such as 𝑏 = 2 and 𝛥𝑤1 > 10. In addition, emergency supplier 1 
increases the quantities rushed as the backorder cost increases. The 
regular suppliers remain insensitive to the backorder cost changes for 
the entire domain of 𝛥𝑤1. By contrast, under the DIP, regular quantities 
increase with the increase in backorder cost and 𝛥𝑤1. The base-stock 
levels from emergency supplier 1 increase significantly as the backorder 
cost increases but start to decline as 𝛥𝑤1 increases.

The SC aims to minimise backordering as its cost increases by 
building inventories and rushing orders. Under the TBS policy, the SC 
keeps relying on the emergency suppliers with the increase in wholesale 
price difference because of the regular suppliers’ inflexibility. Under 
the DIP, as the wholesale price difference increases, the system relies 
less on emergency supplier 1 and more on regular supplier 1. Thus, the 
quantities ordered from emergency supplier 1 tend to go to zero, and 
rush orders decrease.
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A.5. Varying rush costs (𝑐𝑟𝑢𝑠ℎ𝑘 )

The impact of varying rush is analysed using two cases. In the 
first case, we vary all rush costs using 𝑐𝑟𝑢𝑠ℎ𝑘 = 𝑐𝑟𝑢𝑠ℎ𝑘 + 𝜁 , where 𝜁 =
{−30,−20,−10,0,10,20,30}. Fig.  10(e) shows the relative profit difference 
between the TBS policy and DIP under Case 1 at 𝛥𝑤1 = 5. Two be-
haviours can be observed. The first corresponds to the case of reducing 
all rush costs. In this situation, emergency suppliers tend to rush more 
orders. Since the TBS policy relies more on emergency suppliers, it 
secures more profit than the DIP owing to the inexpensive cost of 
responsiveness. Consequently, the relative difference between the two 
policies increases as rush costs are reduced (i.e., as 𝜁 gets smaller). 
The second behaviour is observed when all rush costs are increased. 
In this situation and under the TBS policy, the rush orders placed by 
emergency supplier 1 start decreasing, and more quantities are ordered 
from upstream emergency suppliers. This move increases the total SC 
profit that comes from the upstream emergency suppliers’ contributions 
(see 𝜁 = 0 vs. 𝜁 = 10). However, as the dependency on upstream 
suppliers increases, the rush orders placed by upstream emergency 
suppliers increase. Consequently, the total profit starts to decrease 
slightly (see 𝜁 = 10 vs. 𝜁 = 30). Similarly, under the DIP, rush orders by 
emergency supplier 1 are replaced by orders from emergency supplier 
2, which increases the rush orders placed by emergency supplier 2. 
However, the DIP relies on its downstream suppliers and mainly on 
its regular supplier, the impact of varying rush costs is less than that 
under the TBS policy. Namely, more quantities are ordered from the 
flexible regular supplier under the DIP, which makes it less sensitive to 
rush cost changes than the TBS policy.

In the second case (Fig.  10(f)), we vary the rush cost of the first 
emergency supplier as follows: 𝑐𝑟𝑢𝑠ℎ1 = {75,85,90,95, 100}. Note that 
𝑐𝑟𝑢𝑠ℎ1 = 75 is the same as the unit wholesale price from regular supplier 
2 (𝑤𝑟2). Thus, at 𝑐𝑟𝑢𝑠ℎ1 = 75, no regular quantities are purchased from 
regular supplier 2; rather, emergency supplier 1 places rush orders. 
Since the TBS policy relies heavily on emergency suppliers, more 
profit is secured under TBS policy than under the DIP. At 𝑐𝑟𝑢𝑠ℎ1 = 85, 
emergency supplier 1 moves from rushing orders to purchasing them 
from its regular supplier, resulting in a profit reduction under the TBS 
policy. A further increase in 𝑐𝑟𝑢𝑠ℎ1  (from 85 to 100) reduces the rush 
orders by emergency supplier 1 but increases orders from upstream 
emergency suppliers and consequently the rush orders by upstream 
suppliers. The increased contribution of upstream emergency suppliers 
increases the total SC profit under the TBS policy and leads to a large 
profit gap.

In general, the impact of varying rush costs under the DIP is mini-
mal. This impact can be observed when the wholesale price difference 
𝛥𝑤1 is small because the quantity purchased from emergency supplier 
1 goes to zero with the increase in 𝛥𝑤1. Under the TBS policy, even at 
large 𝛥𝑤1, emergency suppliers are still used. In the case of inexpensive 
rush costs, the emergency suppliers benefit from the reduced cost of re-
sponsiveness and place more rush orders. In the case of expensive rush 
costs, upstream emergency suppliers are used more and consequently 
contribute to a higher profit.

A.6. Lead time analysis

We vary lead times in four ways. Cases 1 and 2 involve increasing 
the regular supplier’s lead time while keeping the lead time of the emer-
gency supplier unchanged. Thus, the lead time difference is increased. 
In Cases 3 and 4, we increase both lead times such that the difference 
is kept unchanged (𝑙𝑟𝑘 = 𝑙𝑒𝑘 + 1).

In Case 1, we vary the lead times of all the regular suppliers such 
that the difference ranges from 1 to 4; in Case 2, we limit the change 
to only the first regular supplier. Increasing the lead time difference 
increases the profit difference between the TBS policy and DIP in both 
cases, especially at large 𝛥𝑤  (Fig.  11(a)).
1
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As all the regular suppliers’ lead times increase (Case 1), these 
suppliers become less attractive and less preferable under both policies, 
particularly at a small wholesale price difference, and the emergency 
suppliers become more viable. The increase in lead time differences 
reduces the buyer and regular supplier 1’s profit and increases the 
emergency suppliers’ profit, resulting in a rise in the total SC profit 
(see the vertical rise in Fig.  11(a)). Moreover, the emergency suppliers’ 
base-stock levels start decreasing at larger 𝛥𝑤1. The dependency on 
upstream emergency suppliers under the TBS policy decreases with an 
increase of 𝛥𝑤1, and more orders are fulfilled as a rush. This behaviour 
results in a slight reduction in the profit under both policies as 𝛥𝑤1
increases (see the horizontal reduction in Fig.  11(a)).

As the DIP relies more on its flexible regular suppliers, at a large 
𝛥𝑤1, the reduction in regular quantities with the increase in the lead 
time difference reduces the total SC profit. By contrast, under the TBS 
policy, the SC becomes more dependent on upstream suppliers as the 
regular suppliers become slower, thereby resulting in an increased total 
profit. This behaviour increases the profit differences between the two 
policies as the lead time difference increases. Notably, although the 
buyer prefers the DIP over the TBS policy, the difference between them 
decreases as the regular suppliers become slower. Klosterhalfen et al. 
[22] report similar behaviours for the buyer problem. The findings for 
Case 1 also apply to Case 2 since regular upstream suppliers are either 
used slightly or not used.

The responsiveness of the TBS policy becomes more viable than 
the flexibility of the DIP as the lead time difference increases. More 
quantities are purchased from regular supplier 1 under the DIP, and 
more emergency quantities are purchased under the TBS policy. Con-
sequently, when regular suppliers become slower in fulfilling orders, 
the greater responsiveness of the TBS policy outperforms the flexibility 
of the DIP.

Remark 6.  The same behaviour can be observed while varying lead 
times as in Case 1 during disruption but with a greater difference 
between TBS policy and DIP. Results are available from the authors 
upon request.

In Case 3, as suppliers become slow in delivering orders, upstream 
emergency and regular suppliers become unnecessary under both poli-
cies, and emergency supplier 1 places more rush orders. Moreover, 
backorders and inventory holding levels increase significantly. Conse-
quently, the DIP outperforms TBS policy because of regular suppliers’ 
flexibility under the DIP (Fig.  11(b)). As all suppliers become slow, 
the SC relies on rush orders that are more expensive but instantaneous 
(responsive). Few echelons (up to 𝐾 = 2) are used under both policies. 
With more flexibility under the DIP, that is, more regular quantities, 
the SC secures more profit under the DIP than the TBS policy.

Remark 7.  The same behaviour can be observed while varying lead 
times as in Case 3 during disruption. Results are available from the 
authors upon request.

In Case 4, as the emergency and regular suppliers in the first echelon 
become slower, slightly more orders are placed from emergency sup-
plier 1 under both policies. Meanwhile, upstream emergency suppliers 
remain unaffected at early values of 𝛥𝑤1; therefore, the TBS policy 
continues to outperform the DIP. However, at large values of 𝛥𝑤1, 
quantities purchased from upstream emergency suppliers decrease as 
𝑙𝑒1 and 𝑙𝑟1 increase. In addition, the use of rush orders increases under 
both policies, where it is less sensitive to the change in 𝛥𝑤1 under the 
TBS policy than under the DIP; namely, rush orders decrease as 𝛥𝑤1
increases under the DIP. This behaviour decreases the total SC profit 
under the TBS policy; consequently, the DIP starts to outperform the 
TBS policy (Fig.  12).
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Fig. 11. Profit under the TBS policy (solid lines) and DIP (dashed lines) as a function of 𝛥𝑤1 for the lead time analysis.
Fig. 12. Relative profit difference between the TBS policy and DIP as a function of 𝛥𝑤1 for Case 4 of the lead time analysis.
21 
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Appendix B. Effect of varying parameters under demand disrup-
tion

B.1. Varying the standard deviation

We conduct experiments to understand the two policies’ behaviour 
under disruption by varying the standard deviation 𝜎𝑡 = {2, 5} for the 
𝐾 = 1 and 𝐾 = 5 networks.

B.1.1. 𝐾 = 1
In the ND case, regular and emergency orders are almost insensi-

tive to the change in the standard deviation. By contrast, in the PD 
case, emergency and regular orders under TBS policy change with 
the standard deviation change (Fig.  6(a)). Emergency responsive or-
ders increase with the increases in the standard deviation while reg-
ular rigid orders decrease. emergency and regular orders under the 
DIP react to the standard deviation changes in the disruption period 
(sudden increase and recovery periods), where emergency responsive 
orders decrease, and regular flexible orders increase with the standard 
deviation.

In the case of ND, the emergency base-stock level increases with 
the increase in the standard deviation and the regular base-stock level 
remains insensitive under the TBS policy (Fig.  6(b)). The emergency 
base-stock level under DIP decreases with 𝛥𝑤1 at a faster rate as 
the standard deviation increases. Consequently, although the emer-
gency base-stock level increases with the standard deviation, for some 
𝛥𝑤1 values the opposite occurs (for instance, 𝛥𝑤1 > 7). The regular 
base-stock level increases with the increase in the standard deviation.

In the PD case, the emergency base-stock level increases signifi-
cantly compared to the ND case under the TBS policy and increases 
with the standard deviation. The regular base-stock level decreases with 
the demand variability (Fig.  6(b)). The emergency and regular base-
stock levels under the DIP increases with the increase in the standard 
deviation. However the emergency base-stock level starts to decrease 
with the increase in the demand variability after a certain 𝛥𝑤1 value 
(𝛥𝑤1 > 4).

In the ND case, the preferred policy is insensitive to the demand 
variability, where the SC network under DIP outperforms that under 
the TBS policy for a wider 𝛥𝑤1 range (Fig.  7(a)). This insensitivity in 
the preferred policy is due to the order levels insensitivity under the 
TBS policy with the change in the standard deviation.

Although the TBS policy outperforms in the PD case for a wider 𝛥𝑤1
range due to its responsiveness, the preferred policy changes with the 
increase in the demand variability, especially when 𝛥𝑤1 is large where 
purchasing from the regular supplier becomes more viable.

B.1.2. 𝐾 = 5
Emergency and regular orders under the TBS policy placed by up-

stream suppliers decrease with the increase in the standard deviation, 
except for regular orders placed by emergency supplier 1, where orders 
increase with the increase in standard deviation. No emergency orders 
are placed by emergency supplier 1 under the DIP, while regular orders 
represent a small fraction and insensitive to the standard deviation 
changes. By contrast, in the PD case, regular orders placed by the buyer 
under the TBS policy and placed by emergency supplier 1 under the DIP 
decrease with the increase in the standard deviation. All other orders — 
emergency orders placed by the buyer and all emergency and regular 
orders placed by all emergency suppliers under the TBS policy, and 
regular orders placed by the buyer under the DIP — increase with the 
increase in the standard deviation.

In the ND case and under the TBS policy, the emergency base-stock 
at the buyer level increases while it decreases at the emergency suppli-
ers’ levels with the increase in the standard deviation. The emergency 
and regular base-stock levels at the buyer under the DIP increase with 
the increase in the standard deviation. In the PD case, emergency and 
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regular base-stock levels increase with the increase in the standard 
deviation at all levels under both policies, except for the regular base-
stock level at the buyer level under the TBS policy. The increase in 
standard deviation from 2 to 5, does not change the preferred policy in 
both disruption cases. The difference between the total profit slightly 
decreases as the demand variability increases (Fig.  7(b)).

B.2. Varying recovery duration (𝜆2)

We conduct experiments to understand the two policies’ behaviour 
under disruption by varying the recovery duration 𝜆2 = {17, 32, 42} for 
the 𝐾 = 1 and 𝐾 = 5 networks.

B.2.1. 𝐾 = 1
In the ND case, emergency orders increase, and regular orders 

decrease with the recovery duration increase under the TBS policy. 
The reduction in the regular orders reduces the inventory level since 
emergency supplier becomes more involved in fulfilling the demand. 
The opposite occurs in the PD case. The flexible regular orders under 
the DIP match the demand behaviour in the ND and PD cases. The 
increased contribution of the emergency supplier with the increase in 
the recovery duration results in less inventory cost and higher total SC 
profit. Thus, the SC under the TBS policy outperforms that under DIP 
for a wider 𝛥𝑤1 range (Fig.  13).

In the ND case, TBS becomes the preferred policy as the recovery du-
ration increases. In the PD case and as the recovery duration increases, 
although the SC under the TBS policy remains dominant at small 𝛥𝑤1
values, this 𝛥𝑤1 range reduces slowly (Fig.  13).

B.2.2. 𝐾 = 5
In the ND case at 𝛥𝑤1 = 5, emergency orders placed by all entities 

increase, and regular orders placed by the buyer decrease under the TBS 
policy with the rise in the recovery duration, while in the PD case, the 
changes are insensitive to the recovery duration change. The emergency 
base-stock level at the buyer in the ND case is less than that in the 
stationary demand case and less sensitive to the change in the recovery 
duration than the PD case, where the base-stock level is higher and 
more sensitive to the recovery duration. Emergency base-stock levels 
at emergency suppliers in the ND case under the TBS policy are higher 
than that in the PD case but decrease faster with the increase in 𝛥𝑤1.

Regular orders placed by the buyer under the DIP act to absorb the 
disruption effect. In the ND case, emergency and regular base-stock 
levels at the buyer are less than that in the stationary demand case 
and decrease with the recovery duration increase. The opposite occurs 
in the PD case.

Fig.  14 shows the relative profit between the two policies calculated 
as 100 × 𝜋𝑇𝐵𝑆−𝜋𝐷𝐼𝑃

𝜋𝑇𝐵𝑆 . Although the recovery duration has not changed 
the preferred policy, the total SC profit difference between the TBS 
policy and the DIP increases with the recovery duration (Fig.  14). For 
instance at 𝛥𝑤1 = 10, the relative profit increased from 6% to 20% and 
28%. In the PD case, the rate of increase in the relative profit is slower 
(8.5% to 11.5% to 12.8% at 𝛥𝑤1 = 10). This profit increase under TBS 
policy is because of the increased contribution of emergency suppliers 
as mentioned previously.

Appendix C. Effect of varying the inventory policy

C.1. Varying the policy between SC players

In the paper, we assumed that all supply chain players adopt the 
same policy, either the DIP or the TBS policy. Here, we relax this 
assumption and conduct numerical experiments to explore scenarios 
where different entities adopt distinct policies. For the analysis, we 
focus on the buyer (B) and emergency supplier 1 (e1), as these entities 
are the primary contributors to supply chain quantities. We run the 
experiments for the cases of stationary and non-stationary demands.

We develop the following four scenarios for this investigation:
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Fig. 13. The total SC profit when varying the recovery duration for the 𝐾 = 1 network.
Fig. 14. Relative profit when varying the recovery duration for the 𝐾 = 5 network.
• Scenario 1: The buyer adopts the DIP, while emergency supplier 
1 and the other suppliers use the TBS policy.

• Scenario 2: The buyer adopts the TBS policy, while emergency 
supplier 1 and the other suppliers use the DIP.

• Scenario 3: Emergency supplier 1 adopts the DIP, while the buyer 
and other suppliers use the TBS policy.

• Scenario 4: Emergency supplier 1 adopts the TBS policy, while 
the buyer and other suppliers use the DIP.

Fig.  15 presents the total supply chain profit for each scenario under 
the stationary demand case, along with the two extreme cases where 
all supply chain entities uniformly adopt either the DIP or TBS policy. 
The results indicate that the scenarios where all supply chain players 
use the same policy serve as boundary cases. Specifically, the scenario 
where all entities adopt the DIP policy represents the lower bound for 
total profit, while the scenario where all entities adopt the TBS policy 
represents the upper bound.
23 
Fig.  16 presents the total supply chain profit for each scenario under 
non-stationary demand conditions (ND and PD), along with the two 
extreme cases where all supply chain entities uniformly adopt either 
the DIP or TBS policy. The results show that the extreme cases of 
‘‘all DIP’’ and ‘‘all TBS’’ policies define the profit boundaries during 
demand disruptions. Specifically, the ‘‘all DIP’’ case represents the 
lower bound of total profit, while the ‘‘all TBS’’ case represents the 
upper bound, consistent with the findings under stationary demand 
conditions. However, the observed profit trends are influenced by the 
nature of demand disruptions (ND vs. PD), underscoring the importance 
of adapting policies in response to demand variability.

C.2. Varying the policy during disruption

Schmitt et al. [107] suggested that dynamic policy parameter ad-
justments during disruptions can yield beneficial outcomes for supply 
chain performance. To test this in multi-echelon setting, we conduct 
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Fig. 15. Total supply chain profit under stationary demand while varying inventory policies for the buyer and emergency supplier 1.
Fig. 16. Total supply chain profit under non-stationary demand (ND and PD) while varying inventory policies for the buyer and emergency supplier 1.
experiments where policy were changed during disruption periods and 
compared the results to scenarios where policy parameters remained 
unchanged. Specially, we run experiments the following scenarios:

• Scenario 1: DIP is used all the time with a new DIP is introduced 
during disruption.

• Scenario 2: DIP is used all the time and all SC parties switch to 
TBS during disruption.

• Scenario 3: TBS policy is used all the time and all SC parties 
switch to DIP during disruption.

• Scenario 4: TBS policy is used all the time with a new TBS policy 
is introduced during disruption.

Our analysis considers both positive demand (PD) and negative 
demand (ND) disruptions, focusing on their impact on individual supply 
chain entities (buyer, emergency supplier 1, and regular supplier 1) and 
on the total supply chain profit. The results are summarised in Figs.  17
and 18.

The results are compared to scenarios where policy parameters 
remained consistent throughout the disruption. In the PD case, we show 
that dynamic policy adjustments yield high profit for the buyer and 
regular supplier under DIP (Fig.  17). However, the total supply chain 
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profit remained bounded by the consistent-policy scenarios, as shown 
in Fig.  18. While in the ND case, dynamic policy adjustments offer 
limited or no benefit, with profits for all entities remaining within the 
boundaries defined by the consistent-policy scenarios (Fig.  17). This 
is also reflected in the total supply chain profit results (Fig.  18). In 
addition, the scenarios where policy parameters remained unchanged 
(e.g., all DIP or all TBS) define the upper and lower bounds for 
total supply chain profit. Dynamic adjustments could not surpass these 
boundaries for the entire supply chain, indicating that their benefit is 
constrained by the underlying policy framework.

These findings suggest that while dynamic policy adjustments may 
provide localised benefits (e.g., for the buyer or regular upstream sup-
plier during PD disruptions), their overall impact on total supply chain 
profit is limited. This highlights the importance of policy consistency, 
especially under ND disruptions, where dynamic adjustments do not 
lead to significant performance gains.

Data availability

Numerical data used in this paper is available upon reasonable 
request from the authors.
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Fig. 17. Individual profit comparison for the buyer, emergency supplier, and regular supplier under dynamic and consistent policy settings during disruptions (ND and PD).
Fig. 18. Total supply chain profit comparison under dynamic and consistent policy settings during disruptions (ND and PD).
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