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 A B S T R A C T

We study a vehicle routing problem that originates from a Nordic distribution company and includes the 
essential decision-making components of the company’s logistics operations. The problem considers customer 
deliveries from a depot using heavy depot vehicles, swap bodies, optional switch points, and lighter local 
vehicles; a feature is that deliveries are made by both depot and local vehicles. The problem has earlier been 
solved by a fast metaheuristic, which does however not give any quality guarantee. To assess the solution 
quality, two strong formulations of the problem based on the column generation approach are developed. In 
both of these the computational complexity is mitigated through an enumeration of the switch point options. 
The formulations are evaluated with respect to the quality of the linear programming lower bounds in relation 
to the bounds obtained from a compact formulation. The strong lower bounding quality enables a significant 
reduction of the optimality gap compared to the compact formulation. Further, the bounds verify the high 
quality of the metaheuristic solutions, and for several problem instances the optimality gap is even closed.
1. Introduction

The Nordic countries are sparsely populated, especially in the north-
ern parts, and the need for cost-effective and environmentally friendly 
goods transportation has necessitated the adaptation of longer and 
heavier vehicles.

Such vehicles consume more energy than conventional vehicles, but 
fewer vehicles are needed to deliver the same amount of goods, and 
the cost and emission caused are lower per transported unit. Finland 
was the first European country to allow vehicles up to 34.5 meters 
long, carrying a load of 74 tonnes. In Sweden vehicles carrying up to 
74 tonnes have been allowed since 2018. From December 2023 vehicles 
up to 34.5 meters long are allowed on parts of the road transportation 
network.

The new vehicle routing problem considered in this work, the Hier-
archical Multi-Switch Multi-Echelon Vehicle Routing Problem (HMSME-
VRP), involves high-capacity vehicles (HCV) which are up to 34.5 me-
ters long and can carry a load of up to 74 tonnes. The problem is 
derived from the real-world logistics operations of a Nordic distri-
bution company, and it condenses the essential components of its 
decision-making into a manageable framework. All important structural 
decisions, restrictions, and goals are included, while some non-essential 
elements are disregarded.

∗ Corresponding author.
E-mail address: marduch.tadaros@liu.se (M. Tadaros).

The HMSME-VRP takes into consideration the fact that distribution 
companies are interested in covering large geographical areas without 
significant infrastructure investments. This is possible since some roads 
allow up to three conventional distribution vehicles to be replaced 
with one heavy vehicle, thereby enabling an environmentally friendlier 
and more efficient distribution of goods. This problem has been little 
studied. It was introduced by Tadaros et al. [1] and has shown to be 
computationally hard to solve to optimality by using a commercial 
solver, even for instances of small sizes. In order to solve instances 
of realistic sizes approximately, Tadaros et al. [2] developed Gen-
eral Variable Neighborhood Search procedures. Subsequently, Tadaros 
and Kyriakakis [3] extended the problem by introducing service and 
maximum route times, and developed a mixed-integer formulation 
for the extended model, called HMSME-VRP-ST. Given the additional 
complexity that the service and route times entail, they devised a Hy-
brid Clustered Ant Colony Optimization approach for the approximate 
solution of the problem.

The metaheuristic presented in Tadaros and Kyriakakis [3] can 
in short computation times find feasible solutions, and corresponding 
upper bounds for the optimal values, that are better than what can 
be obtained from an off-the-shelf branch-and-cut algorithm after long 
computation times, and this holds even for smaller instances. It is 
https://doi.org/10.1016/j.orp.2025.100332
Received 12 November 2024; Received in revised form 4 March 2025; Accepted 5 
vailable online 15 March 2025 
214-7160/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
March 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/orp
https://www.elsevier.com/locate/orp
https://orcid.org/0000-0002-8108-6998
https://orcid.org/0000-0001-8473-3663
https://orcid.org/0000-0002-9881-4170
https://orcid.org/0000-0003-2094-7376
mailto:marduch.tadaros@liu.se
https://doi.org/10.1016/j.orp.2025.100332
https://doi.org/10.1016/j.orp.2025.100332
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2025.100332&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M. Tadaros et al. Operations Research Perspectives 14 (2025) 100332 
however unknown how much the metaheuristically found solutions 
deviate from exact optimality.

The objective of this work is to further assess the performance 
of this metaheuristic. We specifically aim at evaluating the quality 
of the previously reported metaheuristic solutions by computing tight 
lower bounds for the optimal values. To this end we propose two 
strong problem formulations based on the general column generation 
principle, but heavily adapted to the problem at hand.

The first formulation employs rich columns, which include choices 
of both vehicles and routes, and a master problem with a simple 
structure. In contrast, the second formulation employs columns that 
correspond to routes, while the master problem is more complex and 
includes the choices of vehicles. The foundation for both approaches 
is an explicit enumeration of certain key decisions, which enables us 
to construct a number of different column categories and column gen-
eration problems. The latter are capacitated prize-collecting traveling 
salesperson problems, or generalizations thereof.

1.1. Problem description

This paper deals with the problem HMSME-VRP-ST [3], henceforth 
simply called HME-VRP, where heavy distribution vehicles carry up to 
three interchangeable containers, called swap bodies, through a non-
predetermined distribution network hierarchy. The swap bodies can be 
detached from the vehicle and stand on fold-out support legs, and be 
attached to lighter distribution vehicles. Customers are geographically 
distributed with known demands which must be met. Customer deliv-
eries are managed by routing vehicles directly from a central depot or 
from given, optional intermediate facilities called switch points. These 
are given locations with enough space for temporarily storing swap 
bodies that are detached from one vehicle in order to be attached to 
another.

The problem includes two types of vehicles, which are heavy depot 
vehicles (DV) and lighter local vehicles (LV). Both types of vehicles make 
deliveries to customers along routes. Depot vehicles start at the central 
depot and carry up to three swap bodies. Local vehicles start at switch 
points and carry single swap bodies. If a depot vehicle carry two or 
three swap bodies, then one or two of these, respectively, are first 
detached at switch points before it makes customer deliveries from the 
remaining swap body. If two swap bodies are detached from a depot 
vehicle, then it can be at the same switch point or at a first and a second 
switch point. Any detached swap body at a switch point is picked up by 
a local vehicle, which makes customer deliveries from the swap body. 
The local vehicle returns the emptied swap body to the switch point, 
and it is then picked up by the same depot vehicles as carried the swap 
body to the switch point. A depot vehicle hence revisits switch points to 
re-attach earlier detached swap bodies before returning to the central 
depot, within a given time limit.

Problem HME-VRP takes into consideration the flexibility for depot 
vehicles to visit customers directly from the depot, with one swap 
body attached, or to transfer swap bodies at optional switch points 
to local vehicles that perform customer deliveries. Each customers 
is served from the depot or from a first-level or second-level switch 
point, and each vehicle, depot as local, can perform only one customer 
route, which is constrained by swap body capacity and a time limit for 
transportation and activities at switch points. The goal is to minimize 
total routing cost, comprising fixed costs for the vehicle fleet and the 
swap bodies, and variable transportation costs. A solution encompasses 
a set of depot and local vehicle routes, the number of utilized swap 
bodies, and the allocation of customers to vehicle tours from either the 
depot or a switch point. Notice that the hierarchy of the switch points, 
into first- or second-level points, holds for a particular depot vehicle 
and that it is not determined a priori, but given by an actual solution.

Fig.  1 depicts a feasible solution for an instance with 16 customers 
and three switch points. Here, three depot vehicles, three local vehicles, 
and six swap bodies are used to serve the customers. The first depot 
2 
Fig. 1. A feasible solution to the HME-VRP for an instance with 16 customers and 
three switch points.

vehicle (DV1) leaves the depot with three swap bodies, first visits switch 
point 𝑠1 to detach one swap body, and then continues to switch point 𝑠2
to detach a second swap body. As soon as the swap bodies have been 
detached from DV1, local vehicles attach them and perform customer 
tours independently, with LV1 starting from 𝑠1 and LV2 starting from 𝑠2. 
At the same time, DV1 continues with a tour that serves three cus-
tomers, after which it returns first to 𝑠2 and then to 𝑠1 to re-attach 
the swap bodies before returning to the depot. Depot vehicle DV2 only 
visits 𝑠3 where it detaches a swap body, which is assigned to local 
vehicles LV3. Lastly, DV3 serves customers directly from the depot with 
only one swap body attached.

The remainder of this paper is organized as follows. In Section 1.2 
we review related problems in the literature and some central contribu-
tions with regard to exact methods, in particular decomposition based 
approaches. Section 2 provides a formal description of our problem 
and two alternative column generation formulations. (The reader is as-
sumed to be familiar with the column generation principle.) Numerical 
results based on existing and newly generated instances are reported 
in Section 4. The results are discussed in Section 5 before we conclude 
the paper in Section 6.

1.2. Related problems

The HME-VRP is little studied but related to and shares some 
common characteristics with other extensions of the classical Vehicle 
Routing Problem (VRP), namely the Two-Echelon VRP (2E-VRP), the 
Truck and Trailer Routing Problem (TTRP), and its extension the 
Swap-Body VRP (SB-VRP). In the 2E-VRP, two fleets of vehicles are 
considered. Goods are delivered to intermediate facilities, where they 
are stored, consolidated, and transferred to other vehicles before being 
shipped to their final destinations. The two vehicle fleets handle specific 
echelons of the network and are referred to as first- and second-echelon 
vehicles. In contrast to HME-VRP, first-echelon vehicles in the 2E-VRP 
are not allowed to continue from an intermediate facility to serve 
customers, and customers cannot be reached directly from the central 
depot. In the HME-VRP the depot vehicles may serve customers and can 
visit up to two switch points, thus imposing a distribution hierarchy 
between them. Moreover, the nature of the intermediate facilities is 
different. In the 2E-VRP goods are stored, consolidated, and transferred 
between vehicles, while in HME-VRP complete carriers are transferred 
between vehicles.

Table  1, adapted from Tadaros and Kyriakakis [3], provides an 
overview of the characteristics of the different problems.
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Table 1
Comparison of the characteristics between the HME-VRP and related problems.
 HME-VRP 2E-VRP TTRP SB-VRP  
 Network Non-

predetermined 
hierarchy

Predetermined 
hierarchy

Non-hierarchical Non-hierarchical  

 Customers No differentiation No differentiation Truck customers, Truck customers,  
 Vehicle Customers Train Customers,  
 Mandatory Train 

Customers
 

 Vehicle fleet(s) Heterogeneous Heterogeneous Homogeneous Homogeneous  
 Use of loading 
carriers

Swap bodies - Trailers Swap bodies  

 Operations at Swap body 
transfer

Unloading/loading Park, Pick-up Park, Pick-up,  

 intermediate facilities Exchange, Re-order  
 See for example Tadaros and 

Kyriakakis [3]
Sluijk et al. [4] Drexl [5] Toffolo et al. [6]  
Due to the computational complexity of the abovementioned prob-
lems, many contributions in the field are concerned with the design of 
(meta-)heuristics for solving instances of larger size, see for e.g.[6–11]. 
Some exact methods, especially decomposition-based approaches, have 
also been proposed, see e.g.[5,12–18], as outlined below. For a com-
prehensive discussion about the mentioned problems, their properties, 
extensions and proposed solution methods, the interested reader is 
referred to Sluijk et al. [4] and Cuda et al. [19] and references therein.

1.2.1. TTRP and SB-VRP
The TTRP does not consider multiple echelons and involves a fleet 

of trucks and trailers. A truck can be used alone or it can pull an 
additional trailer, which is then referred to as a complete vehicle. 
Further, customers are grouped into two categories: those that either 
vehicle configuration can serve and those that can only be served by a 
truck alone. A feature of the TTRP is that a complete vehicle can detach 
its trailer at specific customer locations and then continue to serve truck 
customers before returning to the trailer and re-attach it. The SB-VRP is 
an extension of the TTRP. Here the trucks and trailers carry swap bodies 
that can be coupled and decoupled at intermediate facilities, called 
swap locations. Furthermore, a third group of customers are introduced, 
which has to be served by a complete vehicle. In contrast to HME-VRP, 
the swap bodies cannot change vehicle assignments during service.

A generalized TTRP was studied by Drexl [5]. Compared to the 
basic version of the TTRP the essential difference is that the loca-
tions at which trailers can be parked and load transferred are inde-
pendent of customer locations. The author presents a mixed-integer 
programming formulation and proposes a branch-and-price algorithm 
to solve the problem. The algorithm incorporates both exact and heuris-
tic elements. The pricing problem is a shortest-path problem with 
resource constraints which is solved heuristically as long as it yields 
negative reduced cost, and otherwise it is solved exactly. Based on 
the computational experiments conducted, the author concludes that 
with a heuristic column generation approach, high-quality solution to 
instances of real-world size can be found in short time.

1.2.2. 2E-VRP
The 2E-VRP has received more attention in the literature con-

cerning exact methods. In order to find lower bounds for the prob-
lem, Gonzalez-Feliu [12] proposed a column generation method. Con-
tardo et al. [13] derived both upper and lower bounds by combin-
ing a branch-and-cut algorithm based on a new two-indexed formu-
lation with an Adaptive Large Neighborhood Search algorithm pro-
posed by Hemmelmayr et al. [9]. Baldacci et al. [14] proposed a 
new mathematical formulation of the problem with the aim to derive 
lower bounds. They further propose a decomposition-based algorithm 
in which all feasible first-echelon routes are enumerated, lower and 
3 
upper bounds are computed, and a set of first-echelon solutions are 
generated. For each promising first-echelon solution, an upper bound 
to the problem is obtained by solving a resulting multi-depot VRP with 
side constraints. A branch-and-cut-and-price algorithm for the 2E-VRP 
was proposed by Marques et al. [15], based on a new route-based 
formulation of the problem. Further, they proposed a new family of 
valid inequalities and a new branching strategy, which is able to reduce 
the size of the branch-and-bound tree. The authors were able to solve 
instances including as many as 200 customers and 10 intermediate 
facilities to optimality.

Li et al. [20] study the 2E-VRP with grouping constraints and 
simultaneous pickup and delivery. The authors developed a path-based 
model, which is solved by a branch-and-cut-and-price algorithm. Fur-
thermore, the pricing problem was solved using a labeling algorithm 
that incorporates a dominance rule. Along with several valid inequal-
ities, the solution process could be improved by leveraging specific 
characteristics of the problem.

For the 2E-VRP with hard time windows, Dellaert et al. [18] pro-
posed an arc-based and two path-based formulations of the problem. 
The two path-formulations differ in the definitions of the paths; one 
defines the paths over both first- and second-echelon tours, and in 
the other the first- and second-echelon tours are decomposed. The 
formulations are solved by branch-and-price procedures, with the one 
based on decomposed first- and second-echelon routes performing best. 
For this formulation, the procedure first enumerates the first-echelon 
routes and then the second-echelon part of the problem is solved by 
column generation with respect to second-echelon routes. In addition to 
time windows, Dellaert et al. [16] consider customer-specific demands, 
that is, non-substitutable demands, and propose multi-commodity for-
mulations which are both arc- and path-based. The authors extend 
the solution method proposed by Dellaert et al. [18] by introducing 
new types of capacity constraints and better lower bound estimates 
regarding the first echelon of the two-path formulation.

More recently, Sluijk et al. [17] considered stochastic demands in 
the 2E-VRP and modeled the problem as a chance-constrained stochas-
tic optimization problem. The authors proposed two solution proce-
dures based on column generation to compute lower bounds. Further, 
multi-labeling algorithms are used, one where second-echelon routes 
are constructed simultaneously and one where they are constructed 
sequentially.

2. Column generation based formulations

In this section a formal statement of the problem is provided fol-
lowed by the formulation of two alternative models, which are both 
based on the column generation concept. The models differ with respect 
to how a column is defined.
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2.1. Basic notations

The distribution network is represented mathematically by a di-
rected graph 𝐺 = (𝑁,𝐴). The node set 𝑁 = {0} ∪ 𝑃 ∪ 𝐼 , where node 0
represents the depot, node set 𝑃  represents the switch points, and node 
set 𝐼 represents the customers. The arc set 𝐴 represents the possible 
ways to travel between the depot, the switch points, and the customers.

The depot vehicles, local vehicles, and the swap bodies have fixed 
costs of FDV, FLV, and FSB, respectively. For each arc (𝑖, 𝑗) ∈ 𝐴 there is 
variable travel cost 𝑐𝑖𝑗 , for both a depot vehicle and a local vehicle. The 
capacity of a swap body is 𝐶. The demand of a customer is 𝑑𝑖 ≤ 𝐶 and 
it must be satisfied entirely from a single vehicle and swap body. For 
each arc (𝑖, 𝑗) ∈ 𝐴 there is a travel time 𝑇𝑖𝑗 , for both types of vehicles. 
The transfer of swap bodies between vehicles at switch points and the 
unloading at customers are subject to service times 𝑠𝑖, 𝑖 ∈ 𝑃 ∪ 𝐼 .

A depot vehicle must return to the depot with the same swap bodies 
as it left with, and within the time limit Tmax. We assume that the 
triangle inequality holds for both travel costs and travel times.

A compact mixed-integer formulation of the problem is given in
Tadaros and Kyriakakis [3], as well as in Appendix. This formulation 
has a linear programming (LP) relaxation that is in general very weak 
and it is therefore intractable for standard mixed-integer solvers based 
on branch-and-bound. We here suggest two stronger formulations based 
on column generation.

2.2. Decomposition of the HME-VRP

A solution to HME-VRP is composed of a number of customer tours, 
each of which comprises a single swap body on a vehicle. The reader 
should note that there will therefore be a one-to-one-to-one relationship 
between customer tours, swap bodies, and vehicles.

A customer tour originates from the central depot or from a switch 
point, it serves a number of customers before it returns to its starting 
point, and the total demand of the customers along the tour can of 
course not exceed the swap body capacity. It is assumed that these tours 
are always routed in an optimal way. (The proposed column generation 
approaches guarantee optimal routing.)

If the customer tour originates from the depot, then it is performed 
by a depot vehicle. If the tour starts at a switch point, then the swap 
body has first been carried to the switch point by a depot vehicle and 
then the tour is performed by the depot vehicle itself or by a local 
vehicle.

The foundation for the proposed column generation approaches is 
the observation that there are four distinct configurations for routing 
swap bodies from the central depot to customers and back to the depot, 
by using depot vehicles and local vehicles, as illustrated in Fig.  2. 
Here loops depict customer tours and thicker arcs correspond to depot 
vehicles. The maximal allowed time for a customer tour depends on the 
configuration considered.

Configuration 1 comprises a depot vehicle with a single swap body 
which performs a customer tour. The maximal available tour time is 
Tmax.

Configuration 2 comprises a depot vehicle with two swap bodies 
which travels from the depot to a first-level switch point 𝑝 ∈ 𝑃 , at 
which the depot vehicle and a local vehicle perform customer tours, 
with one swap body each. Configuration 3 is similar, but here the 
depot vehicle carries three swap bodies from the depot and two local 
vehicles are used. For these two configurations the available tour time 
is Tmax − 2(𝑇0𝑝 + 𝑠𝑝).

Configuration 4 comprises one depot vehicle with three swap bod-
ies. It first delivers one swap body to a first-level switch point 𝑝 ∈ 𝑃
and then continues to a second-level switch point 𝑞. We denote by 𝑄𝑝 =
𝑃 ⧵ {𝑝} the switch points that can be visited after switch point 𝑝. The 
depot vehicle makes a tour from point 𝑞 and local vehicles make tours 
from each of the points 𝑝 and 𝑞. The available tour times from switch 
4 
points 𝑝 and 𝑞 ∈ 𝑄𝑝 are Tmax−2(𝑇0𝑝+𝑠𝑝) and Tmax−2(𝑇0𝑝+𝑠𝑝)−2(𝑇𝑝𝑞+𝑠𝑞), 
respectively.

Whenever a depot vehicle has detached a swap body at a switch 
point, this swap body is also re-attached to the depot vehicle on it route 
back to the depot.

The four configurations cover all possible distribution structures 
included in an optimal solution. If travel costs and times fulfill the 
triangle inequality, then it is never better to distribute a swap body 
via a switch point unless this is needed for transferring the swap 
body, or another swap body, to a local vehicle. Hence, if there is 
an empty customer tour from switch point 𝑝 in Configuration 4 then 
it can be reduced to Configuration 2. Likewise, if there is an empty 
tour from switch point 𝑝 in Configuration 2 then it can be reduced to 
Configuration 1.

All possible customer tours in accordance with Configuration 1 
start at the depot. There is however one Configuration 2 and one 
Configuration 3 for each of the |𝑃 | switch points. Further, there is 
one Configuration 4 for each ordered pair of distinct switch points. 
Hence there is in total 1 + 2|𝑃 | + |𝑃 |(|𝑃 | − 1) sub-configurations for 
depot vehicles and local vehicles, and within each sub-configuration 
the customer tours can differ. A specific sub-configuration with a 
choice of customer tours is called a distribution pattern. The above 
made explicit enumeration of configurations and sub-configurations 
is a key component in our approach. In practice the number |𝑃 | of 
optional switch points is quite limited, and the enumeration is therefore 
computationally feasible.

We give two column-oriented formulations of the HME-VRP that are 
based the configurations. In the first formulation, each sub-configuration
gives rise to a subset of columns and each column in the subset 
corresponds to a distribution pattern for the sub-configuration. In the 
second, each column instead corresponds to a single customer tour.

2.3. A lower bound on customer tours

A trivial lower bound for the number of swap bodies needed for the 
deliveries to the customers is given by ⌈∑𝑖∈𝐼 𝑑𝑖∕𝐶

⌉

.
A lower bound that is at least as strong can be found by solving a 

bin packing problem. Given a set 𝐽 of swap bodies that can be used, 
this bin packing problem is stated as

[𝖡𝖨𝖭 ] SBmin = min
∑

𝑗∈𝐽
𝑦𝑗 (1)

s.t.
∑

𝑖∈𝐼
𝑑𝑖𝑥𝑖𝑗 ≤ 𝐶𝑦𝑗 ,𝑗 ∈ 𝐽 (2)

∑

𝑗∈𝐽
𝑥𝑖𝑗 = 1,𝑖 ∈ 𝐼 (3)

𝑥𝑖𝑗 ∈ {0, 1},𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (4)

𝑦𝑗 ∈ {0, 1},𝑗 ∈ 𝐽 , (5)

where 𝑦𝑗 is 1 if swap body 𝑗 is used and 0 otherwise, and 𝑥𝑖𝑗 is 1 if 
customer 𝑖 is served from swap body 𝑗 and 0 otherwise. The objective 
function (1) minimizes the number of swap bodies used, constraint (2) 
prevents violation of swap body capacity and enforces the correct 
logical relationship between any 𝑦𝑗 and any 𝑥𝑖𝑗 , and constraint (3) 
ensures that each customer is served from a single swap body. (Clearly, 
|𝐽 | must be large enough to admit a feasible solution.)

Notice that no routing aspects of the HME-VRP are included in the 
bin packing problem. Since each swap body is used for deliveries on 
one customer tour made by one vehicle (depot or local), the number 
SBmin is also a lower bound for the number of customer tours and the 
number of vehicles used.

The lower bound SBmin is used to construct a valid inequality that 
is included in the two formulations of HME-VRP presented below; this 
inequality mostly strengthens their LP relaxations.
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Fig. 2. The four possible configurations for a depot vehicle, local vehicles, and their swap bodies.
 

2.4. Column generation based on configurations

In the first formulation each column corresponds to a distribution 
pattern for one of the sub-configurations described in Section 2.2. 
The master problem is a set partitioning problem with a single side 
constraint on the minimal number of swap bodies to be used. With 𝖢𝖦𝟣

denoting the set of all feasible distribution patterns, the master problem 
is

[𝖬𝖯 1 ] min 𝑧 =
∑

𝑘∈𝖢𝖦𝟣

𝑐𝑘𝑢𝑘 (6)

s.t.
∑

𝑘∈𝖢𝖦𝟣

𝑎𝑖𝑘𝑢𝑘 = 1, 𝑖 ∈ 𝐼 (7)

∑

𝑘∈𝖢𝖦𝟣

𝑛𝑘𝑢𝑘 ≥ SBmin, (8)

𝑢𝑘 ∈ {0, 1}, 𝑘 ∈ 𝖢𝖦𝟣. (9)

The variable 𝑢𝑘 indicates whether distribution pattern 𝑘 is used. Its cost 
is 

𝑐𝑘 = 𝑓𝑘 +
∑

(𝑖,𝑗)∈𝐴𝑘

𝑐𝑖𝑗 , (10)

where 𝑓𝑘 is the total fixed cost for the vehicles and swap bodies that 
are used in the distribution pattern (as described below), and the set 𝐴𝑘
contains the arcs traversed in the customer tours of the pattern. The 
parameter 𝑎𝑖𝑘 ∈ {0, 1} indicates whether customer 𝑖 is included in some 
customer tour in distribution pattern 𝑘, and the integer parameter 𝑛𝑘
specifies the number of swap bodies used in the pattern.

The total fixed costs depend on the configuration for the distribution 
pattern. Contributions come from (i) the cost of one depot vehicle 
(FOV), (ii) the cost of swap bodies (FSB), (iii) the cost of local vehicles 
(FLV), and (iv) the cost of going back and forth between the depot and 
a switch point (𝑐0𝑝), and the cost of going back and forth between two 
switch point (𝑐𝑝𝑞). For the four configurations, the total fixed costs are 
as follows. 

𝑓𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓10 = FDV + 1FSB
𝑓2𝑝 = FDV + 2FSB + 1FLV + 2𝑐0𝑝
𝑓3𝑝 = FDV + 3FSB + 2FLV + 2𝑐0𝑝
𝑓4𝑝𝑞 = FDV + 3FSB + 2FLV + 2𝑐0𝑝 + 2𝑐𝑝𝑞

(11)

Moving forward, we assume that a subset 𝐾𝖢𝖦𝟣 ⊂ 𝖢𝖦𝟣 of columns 
is available, and that an optimal solution to the LP relaxation of the 
resulting restricted master problem, called RMP1, has been found. Let 
the dual variables for constraints (7) and (8) be denoted by 𝜆𝑖, 𝑖 ∈ 𝐼 , 
and 𝜋, respectively.

There is a column generation problem for each of the 1 + 2|𝑃 | +
|𝑃 |(|𝑃 | − 1) sub-configurations for depot vehicles and local vehicles. 
For each of these the column generation finds one to three customer 
tours for the vehicles used, depending on the configuration considered. 
For Configuration 1 the column generation problem is a capacitated 
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prize-collecting traveling salesperson problem for a depot vehicle; for 
the other three configurations the column generation is a generalization 
of that problem, since it then involves routing two or three vehicles on 
non-overlapping customer tours from one or two switch points.

Let 𝑅 be the set of customer tours to be constructed for a certain sub-
configuration, and let 𝑖𝑟 denote the starting node for tour 𝑟 ∈ 𝑅. Each 
tour 𝑟 has a maximal possible time, which is denoted 𝛤𝑟; it is described 
in Section 2.2 how it is derived for each of the configurations. Let the 
binary variable 𝑥𝑟𝑖𝑗 be 1 if tour 𝑟 follows arc (𝑖, 𝑗) and 0 otherwise, and 
let the binary variable 𝑦𝑟𝑖  be 1 if tour 𝑟 visits customer 𝑖 and 0 otherwise. 
The continuous variable 𝑡𝑟𝑖  is the visiting time of tour 𝑟 at customer 𝑖, 
and 𝜏𝑟 is the total time for tour 𝑟. Both these variables count the time 
relative to the starting time for tour 𝑟. A generic column generation 
problem for all sub-configurations can then be formulated as follows.

[𝖢𝖦 1 ] min RC = 𝑓 +
∑

𝑟∈𝑅

[

∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥

𝑟
𝑖𝑗 −

∑

𝑖∈𝐼
𝜆𝑖𝑦

𝑟
𝑖

]

− |𝑅|𝜋 (12)

s.t.
∑

(𝑖𝑟 ,𝑗)∈𝐴
𝑥𝑟𝑖𝑟𝑗 = 1, 𝑟 ∈ 𝑅 (13)

∑

(𝑖,𝑗)∈𝐴
𝑥𝑟𝑖𝑗 = 𝑦𝑟𝑖 , 𝑖 ∈ 𝐼 ⧵ {𝑖𝑟}, 𝑟 ∈ 𝑅, (14)

∑

(𝑖,𝑗)∈𝐴
𝑥𝑟𝑖𝑗 = 𝑦𝑟𝑗 , 𝑗 ∈ 𝐼 ⧵ {𝑖𝑟}, 𝑟 ∈ 𝑅, (15)

∑

𝑖∈𝐼
𝑑𝑖𝑦

𝑟
𝑖 ≤ 𝐶, 𝑟 ∈ 𝑅 (16)

𝑡𝑟𝑖 + (𝑠𝑖 + 𝑇𝑖𝑗 )𝑥𝑟𝑖𝑗 ≤ 𝑡𝑟𝑗 + 𝛤𝑟(1 − 𝑥𝑟𝑖𝑗 ), (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑗 ≠ 𝑖𝑟, 𝑟 ∈ 𝑅,

(17)

𝑡𝑟𝑖 + (𝑠𝑖 + 𝑇𝑖𝑖𝑟 )𝑥
𝑟
𝑖𝑖𝑟

≤ 𝜏𝑟 + 𝛤𝑟(1 − 𝑥𝑟𝑖𝑖𝑟 ), 𝑖 ∈ 𝐼 ⧵ {𝑖𝑟}, 𝑟 ∈ 𝑅 (18)
∑

𝑟∈𝑅
𝑦𝑟𝑖 ≤ 1, 𝑖 ∈ 𝐼 (19)

0 ≤ 𝑡𝑟𝑖 ≤ 𝛤𝑟, 𝑖 ∈ 𝐼 (20)

0 ≤ 𝜏𝑟 ≤ 𝛤𝑟, 𝑟 ∈ 𝑅 (21)

𝑥𝑟𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅, (22)

𝑦𝑟𝑖 ∈ {0, 1}, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅 (23)

Here RC is the reduced cost of a column in MP1, which corresponds 
to a distribution pattern. Constraint (13) states that customer tour 𝑟
should leave its starting node, while constraints (14) and (15) state 
that if the tour visits customer 𝑖 then it must arrive to and leave the 
customer, respectively. Constraint (16) states that the total demand of 
the customers along a tour may not exceed the swap body capacity. 
Constraints (17), (18), (20), and (21) eliminate subtours, by using 
the Miller–Tucker–Zemlin principle, and ensure that the maximal tour 
time 𝛤𝑟 is respected. Constraint (19) states that each customer is visited 
by at most one tour.

The parameters in the model depend on the sub-configuration con-
sidered, as stated below. Here the enumeration of the sub-configurations
is again used.
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Configuration 1:
 𝑅 = {1}, 𝑖1 = 0, 𝛤1 = Tmax, and 𝑓 = 𝑓10 .  
Configuration 2, for each 𝑝 ∈ 𝑃 :
 𝑅 = {1, 2}, 𝑖𝑟 = 𝑝 and 𝛤𝑟 = Tmax − 2(𝑇0𝑝 + 𝑠𝑝), 𝑟 ∈ 𝑅, and 𝑓 = 𝑓2𝑝 .  
Configuration 3, for each 𝑝 ∈ 𝑃 :
 𝑅 = {1, 2, 3}, 𝑖𝑟 = 𝑝 and 𝛤𝑟 = Tmax − 2(𝑇0𝑝 + 𝑠𝑝), 𝑟 ∈ 𝑅, and 𝑓 = 𝑓3𝑝 . 
Configuration 4, for each 𝑝 ∈ 𝑃  and each 𝑞 ∈ 𝑄𝑝:
 𝑅 = {1, 2, 3}, 𝑖1 = 𝑝 and 𝛤1 = Tmax − 2(𝑇0𝑝 + 𝑠𝑝), 𝑖2 = 𝑖3 = 𝑞  
 and 𝛤2 = 𝛤3 = Tmax − 2(𝑇0𝑝 + 𝑠𝑝) − 2(𝑇𝑝𝑞 + 𝑠𝑞), and 𝑓 = 𝑓4𝑝𝑞 .

We note that all customer tours obtained will always be optimally 
routed, given that the column generation problem CG1 is solved to 
optimality. This column generation scheme, which is based on the four 
configurations and comprises the restricted master problem RMP1 and 
column generation CG1 is henceforth referred to as CGconf.

The scheme CGconf terminates when CG1 does not find a negative 
reduced cost for any sub-configuration. Then the restricted problem 
RMP1 contains columns that gives an optimum to the LP relaxation 
of MP1. The optimal value of RMP1 is therefore a lower bound for the 
optimal value of MP1, and for HME-VRP. The generated columns are 
typically not sufficient to find an optimum to the integer problem MP1, 
but by solving the integer version of the final RMP1 one can however 
find an integer feasible solution to MP1, which gives a feasible solution 
and an upper bound for the HME-VRP.

2.5. Column generation based on customer tours

In the second formulation each column corresponds to a customer 
tour from the depot or from a switch point. The master problem is 
a set partitioning problem with additional variables and constraints 
which ensure that the customer tours used can be realized as sub-
configurations for depot vehicles and local vehicles, as defined in 
Section 2.2. Let 0, 𝑝, 𝑝 ∈ 𝑃 , and 𝑝𝑞 , 𝑞 ∈ 𝑄𝑝, 𝑝 ∈ 𝑃 , be the sets all 
feasible customer tours from the depot, from first-level switch points, 
and from second-level switch points, respectively. The available times 
for these tours are Tmax, Tmax−2(𝑇0𝑝+𝑠𝑝), and Tmax−2(𝑇0𝑝+𝑠𝑝)−2(𝑇𝑝𝑞+𝑠𝑞), 
respectively. The set of all feasible tours is
𝖢𝖦𝟤 = 0 ∪

(

∪𝑝∈𝑃𝑝
)

∪
(

∪𝑝∈𝑃 ∪𝑞∈𝑄𝑝
𝑝𝑞

)

,

and the master problem is

[𝖬𝖯 2 ] min 𝑧 =
∑

𝑘∈𝖢𝖦𝟤

𝑐𝑘𝑣𝑘 + 𝑓 1
0𝑤

1 +
∑

𝑝∈𝑃

⎡

⎢

⎢

⎣

𝑓 2
𝑝𝑤

2
𝑝 + 𝑓 3

𝑝𝑤
3
𝑝 +

∑

𝑞∈𝑄𝑝

𝑓 4
𝑝𝑞𝑤

4
𝑝𝑞

⎤

⎥

⎥

⎦

(24)

s.t.
∑

𝑘∈𝖢𝖦𝟤

𝑎𝑖𝑘𝑣𝑘 = 1, 𝑖 ∈ 𝐼 (25)

∑

𝑘∈0

𝑣𝑘 = 𝑤1, (26)

∑

𝑘∈𝑝

𝑣𝑘 = 2𝑤2
𝑝 + 3𝑤3

𝑝 +
∑

𝑞∈𝑄𝑝

𝑤4
𝑝𝑞 , 𝑝 ∈ 𝑃 (27)

∑

𝑘∈𝑝𝑞

𝑣𝑘 = 2𝑤4
𝑝𝑞 , 𝑞 ∈ 𝑄𝑝, 𝑝 ∈ 𝑃 (28)

∑

𝑘∈𝖢𝖦𝟤

𝑣𝑘 ≥ SBmin, (29)

𝑣𝑘 ∈ {0, 1}, 𝑘 ∈ 𝖢𝖦𝟤 (30)

𝑤1 ∈ N, (31)

𝑤2
𝑝, 𝑤3

𝑝 ∈ N, 𝑝 ∈ 𝑃 (32)

𝑤4
𝑝𝑞 ∈ N, 𝑞 ∈ 𝑄𝑝, 𝑝 ∈ 𝑃 . (33)

The variable 𝑣𝑘 indicates whether customer tour 𝑘 is used. The integer 
variables 𝑤1, 𝑤2

𝑝 , 𝑤3
𝑝 , and 𝑤4

𝑝𝑞 , describe how many of each of the 
1 + 2|𝑃 | + |𝑃 |(|𝑃 | − 1) sub-configurations for depot vehicles and local 
vehicles that should be used. The parameter 𝑎 ∈ {0, 1} indicates 
𝑖𝑘
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whether customer 𝑖 is included in tour 𝑘, and 𝑐𝑘 is the cost of an optimal 
routing of the tour. The fixed costs for vehicles and swap bodies in the 
sub-configurations are as defined in (11).

Assume that a subset 𝐾𝖢𝖦𝟤 ⊂ 𝖢𝖦𝟤 of columns is available, and 
that an optimal solution to the LP relaxation of the resulting restricted 
master problem, called RMP2, has been found. Let the dual variables 
for constraints (25)–(29) be denoted by 𝜆𝑖, 𝑖 ∈ 𝐼 , 𝛼0, 𝛼𝑝, 𝑝 ∈ 𝑃 , 𝛽𝑝𝑞 , 
𝑝 ∈ 𝑃 , 𝑞 ∈ 𝑄𝑝, and 𝜋, respectively.

The column generation problem is to find a single customer tour, 
which can begin at the depot, a first-level switch point, or a second-
level switch point. Hence, there are 1 + |𝑃 | + |𝑃 |(|𝑃 | − 1) column 
generation problems.

Let 𝑘 be the starting node for the tour to be found. The tour has 
a maximal possible time, which is denoted 𝛤 . It depends on if 𝑘 is 
the depot, a first-level switch point, or a second-level switch point, 
see above and Section 2.2. Let the binary variable 𝑥𝑖𝑗 be 1 if the tour 
includes arc (𝑖, 𝑗) and 0 otherwise, and let the binary variable 𝑦𝑖 be 1
if the tour visits customer 𝑖 and 0 otherwise. The continuous variable 
𝑡𝑖 is the visiting time of the tour at customer 𝑖, and 𝜏 is the time when 
the tour returns to the starting point. The column generation problem 
can for any starting point for the tour be stated as follows.
[𝖢𝖦 2 ] min RC =

∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 −

∑

𝑖∈𝐼
𝜆𝑖𝑦𝑖 − 𝛺 − 𝜋 (34)

s.t.
∑

𝑗∈𝐼
𝑥𝑘𝑗 = 1, (35)

∑

(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 𝑦𝑖, 𝑖 ∈ 𝐼 ⧵ {𝑘} (36)

∑

(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 𝑦𝑗 , 𝑗 ∈ 𝐼 ⧵ {𝑘} (37)

∑

𝑖∈𝐼
𝑑𝑖𝑦𝑖 ≤ 𝐶, (38)

𝑡𝑖 + (𝑠𝑖 + 𝑇𝑖𝑗 )𝑥𝑖𝑗 ≤ 𝑡𝑗 + 𝛤 (1 − 𝑥𝑖𝑗 ), (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑗 ≠ 𝑘 (39)

𝑡𝑖 + (𝑠𝑖 + 𝑇𝑖𝑘)𝑥𝑖𝑘 ≤ 𝜏 + 𝛤 (1 − 𝑥𝑖𝑘), 𝑖 ∈ 𝐼 ⧵ {𝑘} (40)

0 ≤ 𝑡𝑖 ≤ 𝛤 , 𝑖 ∈ 𝐼 (41)

0 ≤ 𝜏 ≤ 𝛤 , (42)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐴 (43)

𝑦𝑖 ∈ {0, 1}, 𝑖 ∈ 𝐼 (44)

Here RC is the reduced cost of a column in MP2, which corresponds 
to a customer tour. Further, 𝛺 is the contribution to the reduced cost 
from the dual variables for the constraints (26)–(28), which depends 
on the starting point of the tour. If 𝑘 is the depot then 𝛺 = 𝛼0, and if 𝑘
is a first-level switch point 𝑝 ∈ 𝑃  then 𝛺 = 𝛼𝑝, and if 𝑘 is a second-level 
switch point, that is 𝑞 ∈ 𝑄𝑝 with 𝑝 ∈ 𝑃 , then 𝛺 = 𝛽𝑝𝑞 .

The tour found by CG2 will of course be optimally routed, if the 
problem is solved to optimality. This column generation scheme, which 
is based on customer tours and comprises the restricted master problem 
RMP2 and column generation CG2 is henceforth be referred to as
CGtour.

The scheme CGtour terminates when CG2 cannot find any customer 
tour with negative reduced cost, and the restricted problem RMP2 then 
gives an optimum to the LP relaxation of MP2. The optimal value 
of RMP2 is a hence a lower bound for MP2 and for HME-VRP. The 
columns in the final problem RMP2 are typically not enough to find an 
optimum to the integer problem MP2, but by solving the integer version 
of the final RMP2 one can find an integer feasible solution to MP2, 
which gives a feasible solution and an upper bound for the HME-VRP.

A difference between the two column models is that MP1 includes 
more columns than MP2. Further, comparing the LP relaxation of 
MP1 and MP2, the former might provide a stronger lower bound for 
the HME-VRP. Assume, for example, that we have a complete set of 
columns from both models. Then any linear programming feasible solu-
tion to MP1, which considers complete configurations, can be mapped 
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Fig. 3. To the left, the column generation scheme CGconf, which is based on configurations. To the right, the column generation scheme CGtour, which is based on customer tours.
into a linear programming feasible solution of MP2. Feasible solutions 
to MP2, which are based on customer tours, can however generally not 
be mapped into feasible solutions to MP1. The advantage of CGtour is 
that the problem is decomposed further than in CGconf, and therefore
CGtour is able to tackle and provide lower bounds for larger instances, 
although with a lower bounding quality.

3. Overview of the column generation schemes

This section gives an outline of how the two column generation 
approaches have been implemented. In both schemes the restricted 
master problem is resolved whenever any new column has been gen-
erated, from CG1 and CG2, respectively. The dual information used 
in the column generation problems is therefore updated as frequently 
as possible, which improves the convergence behavior. This strategy 
is computationally feasible since the restricted master problems are 
computationally very cheap and solved almost instantly.

A non-standard implementation detail is the use of a time limit 
when solving the column generation problems, defined by the param-
eter max_time which is initially set to 2 seconds. When no further 
progress is made within the time limit and it is active for some column 
generation problem, then the time limit parameter is multiplied by 5
and the column generation progresses. When no progress is made and 
the time limit is never active, then LP optimality has been reached and 
verified. To further save computations, if a certain column generation 
problem does not find a negative reduced cost, then this column 
generation problem is put on hold until all column generation problems 
have failed to find a negative reduced cost within the current time limit. 
When the time limit is increased, all column generation problems are 
again considered.

Fig.  3 gives overviews of the computations made in CGconf and
CGtour. Both column generation schemes have the same general struc-
ture, given in Algorithm 1.

In order to accelerate the convergence of CGtour toward an LP 
optimum of MP2, we convert every generated column into several 
similar, eligible columns. The conversion is based on the observation 
that the set of customers included in a tour can be re-routed from 
another starting point than the original, that is, from another switch 
point or from the depot. This is done by, for each possible starting point 
for the tour, solving a small traveling salesperson problem (TSP) and 
checking if the time required by the TSP tour found is feasible. This 
procedure is described in Algorithm 2, where 𝐾𝑝 ⊂ 𝑝 and 𝐾𝑝𝑞 ⊂ 𝑝𝑞
are subsets of generated columns.

The primary goal of using the schemes CGconf or CGtour is to find 
strong lower bounds for the HME-VRP. The final problems RMP1 and 
RMP2 give optima to the LP relaxations of MP1 and MP2, respectively, 
and thus lower bounds for HME-VRP. Even though LP optima are 
obtained, the columns included in the final RMP1 and RMP2 are usually 
not sufficient to provide optima to the HME-VRP, but by solving their 
integer versions one can at least find integer feasible solutions and 
upper bounds for HME-VRP.
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Algorithm 1 Computational scheme with 𝑘 column generation 
problems 
Input: Set of column generation problems, 𝑆𝑃
Initialize: 𝐴 ∶= 𝑆𝑃 , progress := true
while  progress do

progress := false
for 𝑘 ∈ 𝐴 do

Solve column generation problem 𝑘 with time limit max_time
if column with reduced cost < 0 found then

progress := true
Update column set
Solve master problem

else
Let 𝐴 ∶= 𝐴 ⧵ {𝑘}

if 𝐴 = ∅ then
if all 𝑆𝑃  problems were solved within current time limit then

break
else

increase max_time
Let 𝐴 ∶= 𝑆𝑃
progress := true

Result: An LP optimum

Algorithm 2 TSP re-routing procedure 
Input: Subset of customers, 𝑆
for 𝑝 ∈ {0} ∪ 𝑃  do

Solve a TSP for the set 𝑆 ∪ {𝑝}
if feasible TSP tour and its route time is less than Tmax - 2(𝑇0𝑝 + 𝑠𝑝)
then
Add tour to column set 𝐾𝑝
for 𝑞 ∈ 𝑄𝑝 do

Solve a TSP for the set 𝑆 ∪ {𝑞}
if feasible TSP tour and its route time is less than Tmax - 
2(𝑇0𝑝 + 𝑠𝑝) − 2(𝑇𝑝𝑞 + 𝑠𝑞) then
Add tour to column set 𝐾𝑝𝑞

Result: Updated column sets 𝐾𝑝 and 𝐾𝑝𝑞

We improve upon these upper bounding capabilities by using all 
the customer tours found in the course of CGconf to build an additional 
integer problem. This problem has the same structure as RMP2 and 
it is henceforth referred to as IP. The rationale for disaggregating 
distribution patterns from CGconf into customer tours and using them 
in IP is that this makes it possible to combine the tours from CGconf
into new, and possibly better, distribution patterns. Further, in order to 
provide even more columns and options to IP, every customer tour is re-
routed by using Algorithm 2. The upper bound for HME-VRP obtained 
from the resulting problem IP is clearly always at least as good as that 
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Fig. 4. To the left, the enhanced column generation scheme for CGconf. To the right, the enhanced column generation scheme for CGtour.
obtained from RMP1. Note that problem IP is solved only once, when
CGconf has reached LP optimality.

Fig.  4 gives overviews of the computations made in the enhanced 
versions of CGconf and CGtour.

4. Numerical experiments

This section begins with a description of the studied problem in-
stances and their properties. Then the performance of the two column 
generation approaches on the instances, compared to both a commer-
cial solver and metaheuristic algorithms, is presented and discussed.

4.1. Problem instances

The problem HME-VRP was introduced by Tadaros and Kyriakakis 
[3], but there referred to as HMSME-VRP-ST. Further, 36 instances 
with diverse sizes and characteristics were given. There are three 
subsets of instances based on the method used to generate customer 
locations: clustered (C), random (R), and a combination of clustered and 
random (CR). Notably, the smallest instances, including 25 customers 
and up to 4 switch points, were the only ones for which the mixed-
integer solver Gurobi v10.0 could provide a feasible solution within a 
time limit of eight hours.

We here use 18 instances from Tadaros and Kyriakakis [3]. They 
have 25 or 50 customers and 2 − 4 switch points. We also use 18 new 
instances, generated with the same methodology as outlined in Tadaros 
and Kyriakakis [3]. The new instances vary in size, and have 10, 15 or 
20 customers and 2 or 3 switch points. Each instance is denoted by a 
name in the format X -Y - Z, where X indicates the customer locations 
(C, R, CR), Y is the number of customers, and Z is the number of switch 
points. The complete set of instances is available upon request.

4.2. Performance of the compact formulation and metaheuristic algorithms

Table  2 presents the performance of the compact formulation of 
HME-VRP (see Appendix) using Gurobi v10.0 and of the metaheuristic 
scheme proposed in Tadaros and Kyriakakis [3]. Here a time limit of 
eight hours of CPU time was imposed on Gurobi. The metaheuristic 
scheme is randomized and is run 10 times, each time for 300 seconds. 
The first column in the table states the instance, whereas the following 
columns report the results obtained by the Gurobi solver; these are the 
lower bound (LBDg) and the upper bound (UBDg), while time is the 
wall time (in seconds). A dash (–) indicates that Gurobi could not solve 
the instance to verified optimality within the time limit. The column
UBDh is the objective value of the best feasible solution found by 
the metaheuristic in the 10 runs. The column Average is the average 
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deviation in objective value versus the best found objective value, over 
the 10 runs. In the last two columns, gap and mean, the relative gap (in 
percent) between the best found feasible solution (the best of UBDg and
UBDh) and LBDg are reported, together with the mean gap for each set 
of problem instances with the same number of customers.

As seen in Table  2, Gurobi solved only three of the instances to 
verified optimality within the time limit, and all of these are among 
the smallest. Further, Gurobi fails to report any feasible solutions for the 
instances with 50 customers. For all instances but one the upper bounds 
from Gurobi are matched or outperformed by the upper bounds found 
by the metaheuristic. However, given that the gaps are large and that 
the lower bounds from Gurobi are most likely poor, it is hard to draw 
any definitive conclusion on the performance of the metaheuristic.

4.3. Performance of column generation based on configurations

In Table  3 we report the results for instances including up to 
20 customers for CGconf. (Beyond that instance size the computation 
times become exceedingly long.) The lower bound from Gurobi (LBDg), 
the upper bound from the metaheuristic (UBDh), and the relative gap 
from Table  2 are repeated, to simplify comparison. The results for
CGconf are the final LP objective value (LBD1), the objective value of an 
optimal integer solution to the final RMP1 (UBD1), the objective value 
of the optimal integer solution to problem IP (UBDIP), the relative gap 
(gap) between UBDIP and LBD1, and the wall time (time) in seconds 
for CGconf. (The time needed for solving IP once is negligible.) In the 
gap columns, an ‘‘*’’ indicates verified optimality. The values for UBD1
are given relative to UBDIP, since the latter are always at least as good 
as the former.

In Table  3 it can be observed that the lower bounding capability 
of CGconf is strong and that computation times needed to reach LP 
optimality in MP1 are relatively short. Further, CGconf can find verified 
optimal solutions to nine instances of the HME-VRP. When verified 
optimality was not reached, the remaining gap is only between 1 and 
8 percent.

The upper bounds UBDIP all match the solutions found by the 
metaheuristic, except for instance C-15-2 where UBDIP finds a bet-
ter solutions than the metaheuristic, and instance C-15-3 where the 
metaheuristic finds a better.

Despite the good bounding performance of CGconf, it encounters 
difficulties when used on larger instances, and it is not computationally 
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Table 2
Results obtained by Gurobi on compact formulation and metaheuristic algorithm.
Instance Full model (Gurobi) Metaheuristic (Python) gap mean 

LBDg UBDg time UBDh Average  
C-10-2 456.681 621.220 – 621.220 +0 36  
C-10-3 332.489 463.611 – 463.611 +0 39  
CR-10-2 407.114 407.114 1299 407.114 +0 *  
CR-10-3 493.595 493.595 15393 493.595 +0 *  
R-10-2 746.644 838.355 – 838.356 +0 12  
R-10-3 668.554 668.554 7881 668.554 +0 * 14.5  
C-15-2 278.347 751.903 – 762.027 +0 174  
C-15-3 217.366 625.168 – 621.278 +4.841 186  
CR-15-2 322.050 610.094 – 610.094 +0 89  
CR-15-3 305.497 745.045 – 745.045 +0 144  
R-15-2 527.944 780.826 – 780.826 +0 48  
R-15-3 536.039 1021.923 – 1021.923 +0 91 122  
C-20-2 201.211 719.966 – 719.966 +0 258  
C-20-3 242.995 971.807 – 971.808 +0 300  
CR-20-2 275.615 720.794 – 720.794 +0 162  
CR-20-3 264.541 912.267 – 895.715 +23.936 239  
R-20-2 453.663 1203.586 – 1203.586 +0 165  
R-20-3 444.405 1235.596 – 1235.596 +8.099 178 217  
C-25-2 206.030 829.680 – 826.345 +0.51 301  
C-25-3 231.780 738.590 – 737.319 +0 218  
C-25-4 272.880 795.630 – 792.982 +0 191  
CR-25-2 243.500 967.190 – 950.380 +0.06 290  
CR-25-3 229.730 777.880 – 774.870 +1.86 237  
CR-25-4 233.860 862.780 – 844.495 +0.02 261  
R-25-2 429.090 1287.360 – 1254.520 +0 192  
R-25-3 413.250 1346.560 – 1288.570 +0.01 212  
R-25-4 426.360 1193.640 – 1170.570 +0 175 230.8 
C-50-2 . . . 867.010 +5.820 .  
C-50-3 . . . 911.410 +42.16 .  
C-50-4 . . . 1015.600 +15 .  
CR-50-2 . . . 1262.480 +6.16 .  
CR-50-3 . . . 1139.470 +10.84 .  
CR-50-4 . . . 1248.380 +12.72 .  
R-50-2 . . . 1355.370 +40.050 .  
R-50-3 . . . 1543.740 +40.680 .  
R-50-4 . . . 1274.020 +25.570 .  
Table 3
Results for column generation based on configurations.
Instance Gurobi Heuristic Column Generation (CGconf )

LBDg UBDh gap LBD1 UBD1 UBDIP gap time

C-10-2 456.681 621.220 36 602.184 +0 621.220 3 38
C-10-3 332.489 463.611 39 463.611 +0 463.611 * 63
CR-10-2 407.114 407.114 * 407.114 +0 407.114 * 27
CR-10-3 493.595 493.595 * 493.595 +0 493.595 * 71
R-10-2 746.644 838.356 12 838.356 +0 838.356 * 29
R-10-3 668.554 668.554 * 668.554 +0 668.554 * 70

C-15-2 278.347 762.027 174 702.316 +13.797 751.903 7 208
C-15-3 217.366 621.278 186 578.431 +316.633 622.338 8 371
CR-15-2 322.050 610.094 89 610.094 +0 610.094 * 615
CR-15-3 305.497 745.045 144 745.045 +0 745.045 * 481
R-15-2 527.944 780.826 48 776.784 +134.221 780.826 2 202
R-15-3 536.039 1021.923 91 1021.923 +0 1021.923 * 257

C-20-2 201.211 719.966 258 677.043 +432.452 719.966 6 15613
C-20-3 242.995 971.808 300 955.644 +125.905 971.808 2 14453
CR-20-2 275.615 720.794 162 706.411 +134.034 720.794 2 1847
CR-20-3 264.541 895.715 239 889.005 +0 895.715 1 1072
R-20-2 453.663 1203.586 165 1185.429 +12.073 1203.586 2 515
R-20-3 444.405 1235.596 178 1235.596 +0 1235.596 * 585
viable for instances with more than 20 customers. This is due to the 
complexity of its column generation problem CG1.

4.4. Performance of column generation based on customer tours

The results of the performance of CGtour are reported in Table  4. 
Here columns LBD  and UBD  are the final LP objective value and 
2 2
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the objective value of an optimal integer solution of the final problem 
RMP2, respectively. The other notations are as introduced above.

As seen in Table  4, CGtour converges to LP optimality in MP2 
much faster than CGconf finds an optimum to MP1, although this 
is at the expense of somewhat weaker lower bounds obtained. For 
instances with more that 15 customers the lower bounds are however 
still significantly stronger than those from Gurobi. Interestingly, when 
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Table 4
Results for column generation based on customer tours. 
Instance Gurobi Heuristic Column Generation (CGtour )

LBDg UBDh gap LBD2 UBD2 gap time

C-10-2 456.681 621.220 36 571.220 662.939 16 6
C-10-3 332.489 463.611 39 459.893 463.611 1 16
CR-10-2 407.114 407.114 * 367.189 407.114 11 14
CR-10-3 493.595 493.595 * 482.583 493.595 2 17
R-10-2 746.644 838.356 12 760.873 838.356 10 7
R-10-3 668.554 668.554 * 608.181 668.554 10 16

C-15-2 278.347 762.027 174 653.751 755.157 16 17
C-15-3 217.366 621.278 186 530.652 639.396 20 24
CR-15-2 322.050 610.094 89 554.682 642.776 16 38
CR-15-3 305.497 745.045 144 704.424 745.045 6 38
R-15-2 527.944 780.826 48 741.645 803.203 8 26
R-15-3 536.039 1021.923 91 985.478 1226.966 25 31

C-20-2 201.211 719.966 258 643.018 1003.271 56 59
C-20-3 242.995 971.808 300 860.255 990.484 15 53
CR-20-2 275.615 720.794 162 665.083 722.969 9 58
CR-20-3 264.541 895.715 239 836.805 1012.820 21 39
R-20-2 453.663 1203.586 165 1156.716 1234.063 7 34
R-20-3 444.405 1235.596 178 1184.155 1246.959 5 35

C-25-2 206.030 826.345 301 748.786 1204.146 61 144
C-25-3 231.780 737.319 218 636.941 931.872 46 230
C-25-4 272.880 792.982 191 759.333 799.892 5 181
CR-25-2 243.500 950.380 290 886.999 1294.919 46 154
CR-25-3 229.730 774.870 237 726.556 886.000 22 267
CR-25-4 233.860 844.495 261 791.301 1066.550 35 252
R-25-2 429.090 1254.520 192 1183.624 1383.192 17 68
R-25-3 413.250 1288.570 212 1269.528 1317.552 4 111
R-25-4 426.360 1170.570 175 1144.033 1222.732 7 122

C-50-2 . 867.010 . 813.548 948.102 17 6578
C-50-3 . 911.410 . 861.904 909.033 5 13228
C-50-4 . 1015.600 . 966.377 1514.249 57 23221
CR-50-2 . 1262.480 . 1128.833 2271.496 101 27356
CR-50-3 . 1139.470 . 1055.669 2021.827 92 31032
CR-50-4 . 1248.380 . 1211.815 1444.912 19 3760
R-50-2 . 1355.370 . 1166.211 1659.133 42 3743
R-50-3 . 1543.740 . 1430.339 1603.431 12 50968
R-50-4 . 1274.020 . 1169.333 1330.110 14 80325
comparing the results of CGtour and Gurobi, there is no consistency 
in the results for the smallest instances of 10 customers. In three out 
of six the instances, Gurobi is able to find a higher lower bound than
CGtour, and Gurobi also finds optimal solutions to these three instances. 
Further, CGtour finds optimal integer solution to four instances, but 
cannot verify it because its lower bound is not strong enough.

As described above Algorithm 2 is used in CGtour to accelerate the 
column generation to find the LP optimum of MP2 faster. The inclusion 
of this acceleration decreased the computation time needed to find an 
LP optimum by 36% on average.

4.5. Comparison of the column generation approaches

Table  5 gives a summary of bounds found for the studied instances 
of the HME-VRP. Column Str. gives the relative strength of LBD2
compared to LBD1 (in percent). Column LBD shows the highest lower 
bound found, and column UBD shows the best known upper bound, 
from any solution approach considered. The relative gap between LBD 
and UBD is given in the column gap, while the column mean is the 
mean gap for each set of problem instances with the same number of 
customers.

We have found verified optimal solutions to nine of the instances, 
and for the other instances the gap between the bounds is below 
10 percent for all but four instances. Worth noticing is that the lower 
bound provided by CGtour is, on average, just above 94% compared to 
the lower bound found by CGconf. Further, the relative strength of the 
two lower bounds does not seem to change with the size of the instance. 
10 
The advantage of CGtour is that it can provide good lower bounds for 
larger instances within a reasonable time frame. It can even run on 
instances with 50 customers, but with run times of several hours on a 
computer cluster with one compute node and 32 threads.

5. Discussion

We have studied HME-VRP, which is a hierarchical multi-switch 
multi-echelon vehicle routing problem with service and maximum 
route times. The problem is a newly introduced variant of a multi-
echelon VRP which has been shown to be very challenging to solve 
using a compact mixed-integer formulation and state-of-the-art exact 
solvers. Solvers can often produce good upper bounds, at least for 
smaller instances. For realistic-sized instances the lower bounds are 
however weak even after extensive computation times. A metaheuris-
tic has therefore been proposed Tadaros and Kyriakakis [3] to solve 
realistic-sized instances. This metaheuristic showed promise, but be-
cause of the lack of strong lower bounds, its performance in terms of 
deviations from optimality was unknown.

We have proposed two strong formulations of the HME-VRP which 
are based on column generation, primarily to generate good lower 
bounds and evaluate the performance of a previously proposed meta-
heuristic. The difference between the two formulations is how the 
problem is decomposed, that is, the interpretation of a column and how 
the column generation is made. The first column generation approach,
CGconf, is based on distribution patterns that include one to three swap 
bodies and customer tours for each of them, together with vehicles 
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Table 5
Summary of bounds for the HME-VRP.

 

Instance Lower bounds Best found bounds
LBDg LBD1 LBD2 Str. LBD UBD gap mean

C-10-2 456.681 602.184 571.220 94.9 602.184 621.220 3
C-10-3 332.489 463.611 459.893 99.2 463.611 463.611 *
CR-10-2 407.114 407.114 367.189 90.2 407.114 407.114 *
CR-10-3 493.595 493.595 482.583 97.8 493.595 493.595 *
R-10-2 746.644 838.356 760.873 90.8 838.356 838.355 *
R-10-3 668.554 668.554 608.181 91.0 668.554 668.554 * 0.5

C-15-2 278.347 702.316 653.751 93.1 702.316 751.903 7
C-15-3 217.366 578.431 530.652 91.7 578.431 622.338 8
CR-15-2 322.050 610.094 554.682 90.9 610.094 610.094 *
CR-15-3 305.497 745.045 704.424 94.5 745.045 745.045 *
R-15-2 527.944 776.784 741.645 95.5 776.784 780.826 1
R-15-3 536.039 1021.923 985.478 96.4 1021.923 1021.923 * 2.7

C-20-2 201.211 677.043 643.018 95.0 677.043 719.966 6
C-20-3 242.995 955.645 860.255 90.0 955.645 971.807 2
CR-20-2 275.615 706.411 665.083 94.1 706.411 720.794 2
CR-20-3 264.541 889.005 836.805 94.1 889.005 895.715 1
R-20-2 453.663 1185.429 1156.716 97.6 1185.429 1203.586 2
R-20-3 444.405 1235.596 1184.155 95.8 1235.596 1235.596 * 2.2

C-25-2 206.030 . 748.786 . 748.786 826.345 10
C-25-3 231.780 . 636.941 . 636.941 737.319 16
C-25-4 272.880 . 759.333 . 759.333 792.982 4
CR-25-2 243.500 . 886.999 . 886.999 950.378 7
CR-25-3 229.730 . 726.556 . 726.556 774.870 7
CR-25-4 233.860 . 791.301 . 791.301 844.495 7
R-25-2 429.090 . 1183.624 . 1183.624 1254.520 6
R-25-3 413.250 . 1269.528 . 1269.528 1288.568 1
R-25-4 426.360 . 1144.033 . 1144.033 1170.570 2 6.7

C-50-2 . . 813.548 . 813.548 867.010 7
C-50-3 . . 861.904 . 861.904 909.033 5
C-50-4 . . 966.377 . 966.377 1015.600 5
CR-50-2 . . 1128.833 . 1128.833 1262.480 12
CR-50-3 . . 1055.669 . 1055.669 1139.470 8
CR-50-4 . . 1211.815 . 1211.815 1248.380 3
R-50-2 . . 1166.211 . 1166.211 1355.370 16
R-50-3 . . 1430.339 . 1430.339 1543.740 8
R-50-4 . . 1169.333 . 1169.333 1274.020 9 8.1
that transport the swap bodies and switch points where they change 
vehicles. The column generation problems are prize-collecting routing 
problems, which constructs one to three customer tours. In the second 
column generation approach, CGtour, the allocation of customer tours 
for swap bodies to vehicles and switch point reloading is instead made 
in the master problem. The column generation problems here be-
come prize-collecting routing problems which each constructs a single 
customer tour.

The clear weakness of both column generation approaches is the 
computational difficulty of the column generation problems, which 
are capacitated prize-collecting traveling salesperson problems or gen-
eralizations thereof, when they are solved as general mixed-integer 
problems. This was somewhat unexpected, considering that the num-
bers of customers are not large and that the vehicle capacities allow 
each vehicle to visit only relatively few customers. The column gen-
eration problems therefore demand for more research; the column 
generation problem CG2 appears most promising in this respect, since 
prize-collecting routing problems are quite well-studied.

A particular weakness of using compact mixed-integer formulations 
of vehicle routing problems is that they typically include much symme-
try, because vehicles are interchangeable. This can severely deteriorate 
the performance of a solver that is based on branch-and-bound, even 
though symmetry-breaking constraints can sometimes improve the per-
formance. Similarly to column-oriented for vehicle routing problems 
in general, the proposed models for HME-VRP do not suffer from any 
symmetry issues.

Computational tests show that both column generation approaches 
have great lower bounding qualities. Even for moderately sized in-
stances they can produce significantly stronger lower bounds than the 
solver Gurobi, and in less time.
11 
In an attempt to accelerate the convergence of CGtour, we intro-
duced re-routing of customer tours to alternative starting points. This 
re-routing can also be used in CGconf to find improved upper bounds. 
These upper bounds are however still not as strong as those obtained 
by the metaheuristic.

A primary goal with this work was to assess the performance of 
the fast metaheuristic proposed in the earlier work by Tadaros and 
Kyriakakis [3], by benchmarking the feasible solutions found against 
strong lower bounds for the optimal values. A comparison of the 
column UBDh in Table  4, which contains the upper bounds obtained by 
the metaheuristic in Tadaros and Kyriakakis [3], and the column LBD in 
Table  5, which contains the best known lower bounds from the column 
generation approaches, shows that the objective values found by the 
metaheuristics are close to, or even coincide with, exact optimality. 
Hence, the solutions found by the metaheuristic are indeed of high 
quality. This conclusion warrants that a decision-maker can in a real-
life planning situation rely on this metaheuristic, or close relatives, 
for finding high-quality solutions to the HME-VRP within moderate 
computation times.

6. Future work

The column generation based on configurations produces strong 
lower bounds, but the method scales very poorly with respect to 
problem size. The column generation based on customer tours yields 
somewhat weaker lower bounds, but the method scales much better. 
Further, the customer tour problem CG2 should be amenable to ef-
ficient tailored algorithms, while this is far from obvious for CG2. 
Finally, the very special and favorable structure of MP2 makes CG
tour
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the most promising topic for continued research, and there are sev-
eral interesting ideas to explore for improving the lower and upper 
bounding quality of CGtour.

The integer variables in MP2, that is, 𝑤1, 𝑤2
𝑝 , 𝑤3

𝑝 , and 𝑤4
𝑝𝑞 , are quite 

few, only 1+2|𝑃 |+|𝑃 |(|𝑃 |−1), and they typically take only small values. 
For improving the lower bound it is therefore reasonable to optimize 
exactly with respect to these variables. This can be made through 
a standard branch-and-bound scheme. An interesting alternative is 
to use Benders decomposition, with the integer variables considered 
to be complicating. These approaches would both include continued 
column generation within the optimizing method, in the branch-and-
bound nodes and in the Benders subproblem, respectively. This would 
produce a diversity of customer tours, which should be favorable when 
searching for an upper bound.

A simpler alternative is to use a metaheuristic search or a diving 
heuristic with respect to the integer variables; this would also involve 
continued column generation within the overall method. These alter-
natives could also yield improved upper bounds, but they do not affect 
the lower bound.

A bottleneck in the current implementation of CGtour is the column 
generation problem CG2, and implementing a tailored solution method 
seems necessary in order to take on larger problem instances. One 
possibility is to construct customer tours by a metaheuristic method, 
which can be used as long as negative reduced costs are obtained, such 
that the column generation method progresses. A more advanced and 
challenging possibility is to design an optimizing tour-generation based 
on multi-labeling path search.
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Appendix. Compact formulation of the HME-VRP

Sets
 𝑁 : Set of nodes  
 𝐴: Set of arcs  
 𝑃 : Set of switch points  
 𝐼 : Set of customers  
 𝑊 : {0} ∪ 𝑃  
 𝐿: 𝑃 ∪ 𝐼  
 𝑉𝑜: Set of depot vehicles  
 𝑉𝑠 Set of local vehicles  
 𝑉 : 𝑉𝑜 ∪ 𝑉𝑠  

 𝑇 : Set of swap bodies

12 
Variables

𝑥𝑡𝑖𝑗 =
{

1, if swap body 𝑡 ∈ 𝑇  traverses arc (𝑖, 𝑗) ∈ 𝐴
0, otherwise

𝑦𝑣𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1, if depot vehicle 𝑣 ∈ 𝑉𝑜 with swap body 𝑡 ∈ 𝑇
traverses arc (𝑖, 𝑗) ∈ 𝐴

0, otherwise

𝑧𝑣𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1, if local vehicle 𝑣 ∈ 𝑉𝑠 with swap body 𝑡 ∈ 𝑇
traverses arc (𝑖, 𝑗) ∈ 𝐿

0, otherwise

𝑟𝑣𝑖𝑗 =
{

1 if vehicle 𝑣 ∈ 𝑉  traverses arc (𝑖, 𝑗) ∈ 𝐴
0 otherwise

𝑓𝑣 =
{

1 if vehicle 𝑣 ∈ 𝑉  is used
0 otherwise

𝑏𝑡 =
{

1 if swap body 𝑡 ∈ 𝑇  is used
0 otherwise

𝑛𝑖 = auxiliary variable representing the rank-order in which 
customer 𝑖 ∈ 𝐼 is visited

𝑑𝑠𝑝 = auxiliary variable representing the number of customer 
tours originating from switch point 𝑝 ∈ 𝑃

Parameters
 𝐶 Swap body capacity  
 𝑐𝑖𝑗 Cost of traversing arc (𝑖, 𝑗) ∈ 𝐴  
 𝑇𝑖𝑗 Travel time of arc (𝑖, 𝑗) ∈ 𝐴  
 𝑑𝑖 Demand of customer 𝑖 ∈ 𝐼  
 𝑠𝑖 Service time at node 𝑖 ∈ 𝑁  
 𝑇MAX Maximum route time  
 𝐹DV Fixed cost of using a depot vehicle  
 𝐹LV Fixed cost of using a local vehicle  
 𝐹SB Fixed cost of using a swap body

Mathematical model

[ 𝖥𝖴𝖫𝖫 ] min Cost =
∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑣∈𝑉𝑜

𝑐𝑗𝑖𝑟
𝑣
𝑖𝑗 +

∑

𝑖∈𝐿

∑

𝑗∈𝐿

∑

𝑣′∈𝑉𝑠

∑

𝑡∈𝑇
𝑐𝑗𝑖𝑧

𝑣′𝑡
𝑖𝑗

+
∑

𝑣∈𝑉𝑜

𝑓𝑣𝐹DV +
∑

𝑣∈𝑉𝑠

𝑓𝑣𝐹LV +
∑

𝑡∈𝑇
𝑏𝑡𝐹SB (A.1)

 s.t. 
∑

𝑖∈𝑁∖{𝑗}

∑

𝑡∈𝑇
𝑥𝑡𝑖𝑗 = 1 ∀𝑗 ∈ 𝐼 (A.2)

∑

𝑗∈𝑁∖{𝑖}

∑

𝑡∈𝑇
𝑥𝑡𝑖𝑗 = 1 ∀𝑖 ∈ 𝐼 (A.3)

∑

𝑖∈𝑁∖{𝑝}
𝑥𝑡𝑖𝑝 −

∑

𝑗∈𝑁∖{𝑝}
𝑥𝑡𝑝𝑗 = 0 ∀𝑡 ∈ 𝑇 , ∀𝑝 ∈ 𝑁 (A.4)

∑

𝑖∈𝐼

∑

𝑗∈𝑁
𝑑𝑖 ⋅ 𝑥

𝑡
𝑖𝑗 ≤ 𝐶 ⋅ 𝑏𝑡 ∀𝑡 ∈ 𝑇 (A.5)

∑

𝑖∈𝑊

∑

𝑗∈𝐼
𝑥𝑡𝑖𝑗 ≤ 1 ∀𝑡 ∈ 𝑇 (A.6)

∑

𝑖∈𝐼
𝑥𝑡𝑗𝑖 −

∑

𝑖∈𝐼
𝑥𝑡𝑗𝑖 = 0 ∀𝑗 ∈ 𝑊 , ∀𝑡 ∈ 𝑇 (A.7)

∑

𝑖∈𝐿
𝑥𝑡𝑜 ≤ 1 ∀𝑡 ∈ 𝑇 (A.8)

∑

𝑖∈𝑃

∑

𝑗∈𝐼
𝑥𝑡𝑖𝑗 ≤

∑

𝑖∈𝑃
𝑥𝑡𝑜𝑖 ∀𝑡 ∈ 𝑇 (A.9)

∑

𝑖∈𝐼
𝑥𝑡𝑝𝑖 −

∑

𝑗∈𝑊
𝑥𝑡𝑗𝑝 = 0 ∀𝑝 ∈ 𝑃 , ∀𝑡 ∈ 𝑇 (A.10)

∑ ∑

𝑥𝑡𝑖𝑗 ≥ 𝑑𝑠𝑗 ∀𝑗 ∈ 𝑃 (A.11)

𝑖∈𝑊 ∖{𝑗} 𝑡∈𝑇
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𝑥𝑡𝑝𝑝′ ≤ 𝑥𝑡𝑜𝑝 +
∑

𝑖∈𝐼
𝑥𝑡𝑖𝑝 ∀𝑝, 𝑝′ ∈ 𝑃 ∶ 𝑝 ≠ 𝑝′, ∀𝑡 ∈ 𝑇 (A.12)

2 − (𝑟𝑣𝑜𝑝 + 𝑟𝑣𝑝𝑝′ ) ≥
∑

𝑖∈𝐼
𝑟𝑣𝑝𝑖 𝑝, 𝑝′ ∈ 𝑃 , 𝑝 ≠ 𝑝′ ∀𝑣 ∈ 𝑉𝑜 (A.13)

𝑥𝑡𝑖𝑗 −
∑

𝑣∈𝑉𝑜

𝑦𝑣𝑡𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑊 , 𝑖 ≠ 𝑗, ∀𝑡 ∈ 𝑇 (A.14)

𝑥𝑡𝑜𝑖 −
∑

𝑣∈𝑉𝑜

𝑦𝑣𝑡𝑜𝑖 = 0 ∀𝑖 ∈ 𝐼,∀𝑡 ∈ 𝑇 (A.15)

𝑥𝑡𝑖𝑗 −
∑

𝑣∈𝑉𝑜

𝑦𝑣𝑡𝑖𝑗 =
∑

𝑣′∈𝑉𝑠

𝑧𝑣
′𝑡

𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗,∀𝑡 ∈ 𝑇 (A.16)

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑖𝑗 ≤ 3 ⋅ 𝑟𝑣𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑊 , 𝑖 ≠ 𝑗, ∀𝑣 ∈ 𝑉𝑜 (A.17)

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑖𝑗 ≤ 𝑟𝑣𝑖𝑗 ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗,∀𝑣 ∈ 𝑉𝑜 (A.18)

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑖𝑗 ≤ 𝑟𝑣𝑖𝑗 ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,∀𝑣 ∈ 𝑉𝑜 (A.19)

∑

𝑖∈𝐿∖{𝑐}
𝑦𝑣𝑡𝑖𝑐 −

∑

𝑗∈𝐿∖{𝑐}
𝑦𝑣𝑡𝑐𝑗 = 0 ∀𝑣 ∈ 𝑉𝑜,∀𝑐 ∈ 𝐼,∀𝑡 ∈ 𝑇 (A.20)

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑜𝑝 −

∑

𝑖∈𝐼

∑

𝑣′∈𝑉𝑠

∑

𝑡∈𝑇
𝑧𝑣

′𝑡
𝑝𝑖 ≤

∑

𝑗∈𝐿∖{𝑝}

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑝𝑗 ∀𝑝 ∈ 𝑃 ∀𝑣 ∈ 𝑉𝑜 (A.21)

∑

𝑖∈𝐿⧵{𝑐}
𝑧𝑣𝑡𝑖𝑐 −

∑

𝑗∈𝑙∖{𝑐}
𝑧𝑣𝑡𝑐𝑗 = 0 ∀𝑣 ∈ 𝑉𝑠,∀𝑐 ∈ 𝐼,∀𝑡 ∈ 𝑇 (A.22)

∑

𝑖∈𝑊

∑

𝑗∈𝑃

∑

𝑡∈𝑇
𝑦𝑣𝑡𝑖𝑗 ≤ 1 ⋅ 𝑓𝑣 ∀𝑣 ∈ 𝑉𝑜 (A.23)

∑

𝑖∈𝑃

∑

𝑗∈𝐼

∑

𝑡∈𝑇
𝑧𝑣𝑡𝑖𝑗 ≤ 1 ⋅ 𝑓𝑣 ∀𝑣 ∈ 𝑉𝑠 (A.24)

∑

𝑖∈𝐿
𝑟𝑣𝑜𝑖 ≤ 1 ⋅ 𝑓𝑣 ∀𝑣 ∈ 𝑉𝑜 (A.25)

𝑟𝑣𝑖𝑗 = 𝑟𝑣𝑗𝑖 ∀𝑖, 𝑗 ∈ 𝑊 , ∀𝑣 ∈ 𝑉𝑜 (A.26)

∑

𝑖∈𝐼

∑

𝑡∈𝑇
𝑥𝑡𝑝𝑖 = 𝑑𝑠𝑝 ∀𝑝 ∈ 𝑃 (A.27)

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑥𝑡𝑖𝑗 ⋅ 𝑇𝑖𝑗 +

∑

𝑝∈𝑁

∑

𝑞∈𝐿
𝑥𝑡𝑝𝑞 ⋅ 𝑠𝑞 ≤ 𝑇MAX ∀𝑡 ∈ 𝑇 (A.28)

𝑛𝑗 − 𝑛𝑖 ≥ 𝑑𝑗 − 𝑢 ⋅ (1 − 𝑥𝑡𝑖𝑗 ) ∀(𝑖𝑗) ∈ 𝐴 ∀𝑡 ∈ 𝑇 (A.29)

𝑑𝑖 ≤ 𝑛𝑖 ≤ 𝑢 ∀𝑖 ∈ 𝐼 (A.30)

𝑥𝑡𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ 𝑇 ; (A.31)

𝑦𝑣𝑡𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑣 ∈ 𝑉𝑜, ∀𝑡 ∈ 𝑇 ; (A.32)

𝑧𝑣𝑡𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐿, ∀𝑣 ∈ 𝑉𝑠, ∀𝑡 ∈ 𝑇 ; (A.33)

𝑟𝑣𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑣 ∈ 𝑉𝑜; (A.34)

𝑓𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 ; (A.35)

𝑏𝑡 ∈ {0, 1}, ∀𝑡 ∈ 𝑇 . (A.36)

𝑛𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (A.37)

𝑑𝑠𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 (A.38)

 The objective function (A.1) minimizes the total distances traveled 
and the two vehicle fleets. Constraints (A.2) and (A.3) makes sure that 
a customer is only visited by one swap body. Constraint (A.4) is route 
continuity constraint, while constraint (A.5) is the capacity constraint 
13 
for the swap bodies. Constraint (A.6) states that a swab body can only 
perform one customer tour, and constraint (A.7) states that the swap 
body has to return to the origin of the customer tour. Constraints (A.8) 
and (A.9) state that a swap body can only leave the depot once and 
that if a swap body performs a customer tour, the same swap body 
must have left the depot, respectively. Constraint (A.10) states that if 
a swap body leaves a switch toward a customer, the same swap body 
must have arrived at the same switch point, directly from the depot or 
from another switch point. Constraint (A.11) states that the number of 
incoming swap bodies to a switch point must be larger or equal to the 
number of customer tours originating from that switch point, whereas 
constraint (A.12) prohibits swap bodies to go from a switch point to an-
other if it has not arrived to the first one directly from the depot or any 
customer. Constraint (A.13) prohibits original vehicles from performing 
customer tours from a switch point if it continues toward another. 
Constraint (A.14) states that an original vehicle has to accompany a 
swap body between the depot and switch points, while (A.15) considers 
the same for swap bodies going directly to customers from the depot. 
Constraint (A.16) states that there has to be either an original vehicle 
or local vehicle following each swap body on arcs between switch 
points and customers, i.e., (𝑖, 𝑗) ∈ 𝐾. Constraints (A.17)–(A.19) are 
capacity constraints for original vehicles, constraint (A.17) considers 
arcs between the depot and switch points while constraints (A.18) 
and (A.19) considers from the depot toward customers and between 
customers, respectively. Constraints (A.20)–(A.22) are continuity con-
straints for the different vehicles. While (A.20) and (A.21) considers 
original vehicles for arcs between customers and switch points respec-
tively, constraint (A.22) considers local vehicles. The fact that any 
vehicle, regardless of type, can only perform one customer tour is con-
sidered by (A.23) for original vehicles and by (A.24) for local vehicles. 
An original vehicle can only leave the depot once and is considered by 
constraint (A.25). Constraint (A.26) states that an original vehicle has 
to revisit any switch points it had visited before its customer tour. The 
number of individual customer tours originating from a specific switch 
point is given by (A.27), while constraint (A.28) limits the total route 
time for a single swap body. Constraints (A.29) and (A.30) are sub-
tour elimination constraints. Lastly, constraints (A.31)–(A.38) specify 
the domains of the variables.

Data availability

Data will be made available on request.
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