
Yang, Lu; Yang, Zhouwang

Article

An advanced Successive Derivative Shortest Path
algorithm for concave cost network flow problems

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Yang, Lu; Yang, Zhouwang (2025) : An advanced Successive Derivative Shortest
Path algorithm for concave cost network flow problems, Operations Research Perspectives, ISSN
2214-7160, Elsevier, Amsterdam, Vol. 14, pp. 1-13,
https://doi.org/10.1016/j.orp.2025.100331

This Version is available at:
https://hdl.handle.net/10419/325808

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2025.100331%0A
https://hdl.handle.net/10419/325808
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 14 (2025) 100331

A
2
n

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

An advanced Successive Derivative Shortest Path algorithm for concave cost
network flow problems✩

Lu Yang , Zhouwang Yang ∗

University of Science and Technology of China, Hefei, PR China

A R T I C L E I N F O

Dataset link: https://github.com/lufizyang/Dat
a-and-Code-for-CCNFP

Keywords:
Network flow
Non-convex problem
Approximation algorithm
Regional first-order information
Interval reduction

A B S T R A C T

As production scales up, transportation networks increasingly involve nonlinear costs, leading to the concave
cost network flow problem (CCNFP), which is notably challenging due to its nonlinearity. Existing nonlinear
programming methods addressing the CCNFP often suffer from low efficiency and high computational cost,
limiting their practical application. To overcome these limitations, this paper proposes the Successive Deriva-
tive Shortest Path (SDSP) algorithm, an efficient approach that combines a sequential linear approximation
framework with regional first-order information of the objective function. By integrating regional first-order
information and employing an interval reduction mechanism, the SDSP algorithm effectively avoids premature
convergence to suboptimal solutions, thereby achieving higher-quality solutions. Numerical experiments,
including parameter selection, validation, and comparative analysis, demonstrate that the SDSP algorithm
outperforms existing methods in terms of both solution quality and convergence speed. This research offers a
robust and efficient solution for the CCNFP, with potential applications in various fields, including logistics
and supply chain networks, where concave cost network flow issues are common.
1. Introduction

As societal demands evolve and production processes grow in
complexity, the need for optimizing resource allocation to maximize
economic efficiency has become increasingly critical. The minimum-
cost flow problem [1], a foundational model in optimization and
resource allocation, has seen broad applications across diverse practical
fields [2–4]. However, endogenous factors in real-world applications
often introduce nonlinear cost structures, such as economies of scale [5]
and risk-related costs [6], making these problems challenging for
traditional minimum-cost flow algorithms [7–10] to address effectively.
Consequently, concave cost network flow problems have emerged as a
central focus within the optimization research community [11–13].

The Concave Cost Network Flow Problem (CCNFP) is a specialized
variant of the minimum-cost flow problem1 characterized by concave
objective functions. Solving the CCNFP aims to identify feasible flows
in a network that minimize the overall objective value. The inclu-
sion of concave objectives enhances the CCNFP’s modeling flexibility,
making it applicable to a wide range of scenarios in transportation
[14–16] and warehousing [17,18]. For instance, the most reliable path

✩ Funding: The work is supported by the NSF of China (Nos. 92270205, 12301659, 12171453), the National Key R&D Program of China (Nos.
2022YFA1005201, 2022YFA1005202, 2022YFA1005203), and the Major Project of Science and Technology Innovation Tackling Plan of Anhui Province (No.
202423e09050003).
∗ Corresponding author.
E-mail addresses: yl0501@mail.ustc.edu.cn (L. Yang), yangzw@ustc.edu.cn (Z. Yang).

1 In this article, the term ‘‘minimum-cost flow problem’’ refers specifically to its form with linear objective functions.

problem [19] is essential for determining optimal travel routes and
departure times, with reliability quantified by the standard deviation
of travel time—a nonlinear component in the objective function. In
warehousing, the joint location-inventory problem [6] addresses de-
mand fluctuation risks by minimizing the standard deviation of product
demand to reduce reliability costs. While concave costs provide richer
modeling capabilities, they also introduce significant computational
challenges, especially given the increasing complexity and scale of
network topologies. The CCNFP is known to be NP-hard [18], with
complexity stemming from the fact that minimizing a concave cost
over a convex feasible region does not guarantee finding a global
optimum [20]. This NP-hard nature presents challenges in developing
efficient algorithms, particularly when attempting to find optimal or
near-optimal solutions within a reasonable time frame. Consequently,
research into high-quality, efficient algorithms for solving the CCNFP is
essential for both theoretical advancements and practical applications.

Existing research has yet to develop direct algorithms specifically
for solving the CCNFP. Current approaches often simplify the network
structure or treat it as a general nonlinear programming problem. The
https://doi.org/10.1016/j.orp.2025.100331
Received 23 November 2024; Received in revised form 19 January 2025; Accepted
vailable online 19 February 2025
214-7160/© 2025 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
 11 February 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/orp
https://www.elsevier.com/locate/orp
https://orcid.org/0000-0002-7124-3187
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
mailto:yl0501@mail.ustc.edu.cn
mailto:yangzw@ustc.edu.cn
https://doi.org/10.1016/j.orp.2025.100331
https://doi.org/10.1016/j.orp.2025.100331
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2025.100331&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Yang and Z. Yang

t
s
c

m
s
p

p

t
b
i
r
a

t
a
s
m
i
e

p
o

w
a
t

f

i
p

Operations Research Perspectives 14 (2025) 100331
Nomenclature

𝛼 Lower bound of sampling interval
𝛽 Upper bound of sampling interval
𝑤 Average derivative value
𝜅 Unbalanced state of node
𝜋 Potential function
𝑥 Flow on edge
Acronyms

CCNFP Concave cost network flow problem
AugLag Augmented Lagrange function algorithm
Penalty Penalty function algorithm
SDSP Successive derivative shortest path
SGSP Successive gradient shortest path
SLSQP Sequential least square programming
SSP Successive shortest path
ARE Average relative error
MRE Maximum relative error
Parameters

𝐺 Graph/network structure
𝐺̄ Residual graph
𝑉 , 𝑆 , 𝐷 Node set
𝐸 , 𝐸̄ Edge set
𝑣, 𝑙 , 𝑘 Node
𝑒 Edge
𝑢 Finite capacity on edge
𝑟 Residual capacity on 𝐺̄
𝑏 Supply on node
𝑐 Cost function on edge
𝑃 Path
𝑎 Interval reduction coefficient
𝑀 Maximum iteration count
𝑛𝑠 Number of sampling points

concave cost transportation problem, for instance, is a special case of
he CCNFP formulated on a bipartite graph [11]. Additionally, some
tudies have focused on variants of the CCNFP with single-source, un-
apacitated edges [20,21]. However, these simplified graph structures

overlook the complexities inherent in real-world networks, limiting
the practical applicability of such algorithms. For example, bipartite
graphs assume a structure consisting solely of sources and sinks, an
assumption that rarely holds in realistic settings. Even with these
simplifications, solutions to such cases typically rely on metaheuristic
methods [21–24], which often require substantial time to find subopti-

al solutions without guarantees of convergence, even for moderately
ized problems. Furthermore, since the CCNFP is inherently a nonlinear
rogramming problem, established nonlinear programming algorithms,

such as augmented Lagrangian methods and sequential least squares
rogramming [12,25], can be applied. However, these methods face

challenges due to the lack of theoretical guarantees for finding exact
solutions and their typically prolonged solving times, making them less
suitable for large-scale or time-sensitive applications.

In this paper, we propose a novel sequential reduction algorithm,
he Successive Derivative Shortest Path (SDSP) algorithm, which com-
ines the Successive Shortest Path (SSP) algorithm [10] with first-order
nformation of concave objective functions. While SSP is an exact algo-
ithm for solving minimum-cost flow problems, it cannot be directly
pplied to the CCNFP. To address this, we approximate the concave
2
cost function in the CCNFP by utilizing regional first-order informa-
ion, thereby enabling an approximate solution to the problem. This
pproach allows us to establish a sequential process that generates a
eries of minimum-cost flow subproblems, each step incrementally opti-
izing the CCNFP solution. Additionally, by progressively reducing the

nterval size for calculating first-order information, the SDSP algorithm
nsures convergence and mitigates the risk of premature convergence

to suboptimal solutions. Theoretical analysis and validation experi-
ments confirm that the sequential reduction process effectively directs
the algorithm toward higher-quality solutions. Comparisons with other
algorithms demonstrate the superior solution quality and convergence
rate achieved by the SDSP algorithm.

The remainder of this paper is organized as follows. Section 2
formally defines the concave cost network flow problem (CCNFP). Sec-
tion 3 presents the proposed algorithm in detail, followed by Section 4,
which describes and discusses the simulation results. Finally, Section 5
concludes the paper with a summary of the findings and implications.

2. Formulation of problems

The Concave Cost Network Flow Problem (CCNFP) is a nonlinear
rogramming problem formulated on a graph structure with a concave
bjective function and subject to linear constraints.

Let 𝐺(𝑉 , 𝐸) be a directed graph with a set of 𝑛 nodes 𝑉 = {𝑣𝑖}𝑛𝑖=1
and a set of 𝑚 directed edges 𝐸. Each node 𝑣𝑖 has an associated supply
𝑏𝑖, which is used to partition the node set 𝑉 into the three subsets:
the source node set 𝑆 = {𝑣𝑖 ∈ 𝑉 ∣ 𝑏𝑖 > 0}, the intermediate node set
𝑉𝑖𝑛 = {𝑣𝑖 ∈ 𝑉 ∣ 𝑏𝑖 = 0}, and the sink node set 𝐷 = {𝑣𝑖 ∈ 𝑉 ∣ 𝑏𝑖 < 0}.
Each edge 𝑒𝑖𝑗 represents a directed connection from node 𝑣𝑖 to node
𝑣𝑗 . 𝑥𝑖𝑗 is a non-negative real number that denotes the amount of flow
through the edge 𝑒𝑖𝑗 , typically subject to a finite capacity 𝑢𝑖𝑗 . In the
CCNFP, each edge 𝑒𝑖𝑗 has an associated concave cost function 𝑐𝑖𝑗 (𝑥𝑖𝑗),
which depends on the flow 𝑥𝑖𝑗 .

Similar to the minimum-cost flow problem, the Concave Cost Net-
ork Flow Problem (CCNFP) also enforces that the sum of the net flow
nd supply at each node equals zero, ensuring flow conservation across
he network. This constraint can be written as
∑

𝑗∈𝑉 −
𝑖

𝑥𝑗 𝑖 −
∑

𝑗∈𝑉 +
𝑖

𝑥𝑖𝑗 + 𝑏𝑖 = 0,∀𝑖 ∈ 𝑉 (1)

where 𝑉 −
𝑖 = {𝑗 ∈ 𝑉 ∶ 𝑒𝑗 𝑖 ∈ 𝐸} and 𝑉 +

𝑖 = {𝑗 ∈ 𝑉 ∶ 𝑒𝑖𝑗 ∈ 𝐸}.
Additionally, the flow value on each edge is constrained within the
range from zero to its capacity, i.e., 0 ⩽ 𝑥𝑖𝑗 ⩽ 𝑢𝑖𝑗 . A solution that
satisfies both of these constraints is a feasible solution to the CCNFP.
Thus, the concave cost network flow problem can be formulated as

min
𝑥

𝐶(𝑥) =
∑

𝑒𝑖𝑗∈𝐸
𝑐𝑖𝑗 (𝑥𝑖𝑗)

s.t.
∑

𝑗∈𝑉 −
𝑖

𝑥𝑗 𝑖 −
∑

𝑗∈𝑉 +
𝑖

𝑥𝑖𝑗 = 𝑏𝑖,∀𝑖 ∈ 𝑉

0 ⩽ 𝑥𝑖𝑗 ⩽ 𝑢𝑖𝑗 ,∀𝑒𝑖𝑗 ∈ 𝐸

(2)

The formulation of CCNFP is a generalized definition of the network
low problems when Model (2) does not restrict its objective function

type. The minimum-cost flow problem arises as a special case when the
objective function simplifies to a linear function passing through the
origin. In cases where the linear objective exhibits jump discontinuities
at the origin, the problem transforms into a fixed-charge network flow
problem [26]. The constraints are identical, establishing an equivalence
n the feasible domains between the CCNFP and the minimum-cost flow
roblem on the same graph structure. This forms the basis for con-

structing a sequence of minimum-cost flow problems to approximate
the CCNFP.

The concepts outlined in the definition of CCNFP have direct cor-
respondences with real-world scenarios. In logistics and transportation,
the storage points of goods correspond to the source nodes in the graph,
the demand points for goods correspond to the sink nodes, and the

L. Yang and Z. Yang

r
t
p

d
e
w

c
b

v

e
b
t
A

N
o

a
p

t
f
T
∑

s

Operations Research Perspectives 14 (2025) 100331
transit points correspond to the intermediate nodes. The transportation
outes naturally establish connections between these nodes. Goods
ransportation involves moving goods from storage points to demand
oints, often characterized by multi-sourcing and multi-tier transporta-

tion tasks. Additionally, large-scale or long-term transportation tasks,
ue to decreasing marginal costs [27], result in objective functions
xhibiting concave characteristics. Therefore, CCNFP is particularly
ell-suited for application in such scenarios.

3. Sequential reduction algorithm

In this section, we detail the SDSP algorithm, covering the foun-
dational principles of the SSP algorithm and the sequential reduction
mechanism that distinguishes SDSP.

3.1. Successive shortest path

The SSP algorithm finds the optimal solution for the minimum-
ost flow problem by iteratively searching for the shortest path that
alances supply and demand nodes between source and sink nodes in

the residual graph. The residual graph 𝐺̄(𝑉 , 𝐸̄) is constructed based
on 𝐺(𝑉 , 𝐸) by adding the reverse edges corresponding to each original
edge in 𝐸. The set of reverse edges is denoted as 𝐸′ = {𝑒′𝑗 𝑖 ∶ 𝑒𝑖𝑗 ∈ 𝐸},
where the edges 𝑒′𝑗 𝑖 and 𝑒𝑗 𝑖 are not the same. Therefore, the edge set
𝐸̄ can be represented as 𝐸̄ = 𝐸 ∪ 𝐸′. During the solving process, flows
on reverse edges {𝑥𝑒}𝑒∈𝐸′ represent the algorithm’s ability to backtrack
previously allocated flows. The unit cost of the reverse edge is the
opposite number of the unit cost of the original edge, and the capacity
of the reverse edge is the allocated flow on the original edge. Thus, the
residual capacity in 𝐺̄(𝑉 , 𝐸̄) can be written as
{

𝑟𝑒 = 𝑢𝑒 − 𝑥𝑒 , 𝑒 ∈ 𝐸
𝑟𝑒′ = 𝑥𝑒 , 𝑒′ ∈ 𝐸′ (3)

where the residual capacity of reverse edges 𝑒′ is the allocated flow 𝑥𝑒
on the original edge. SSP identifies the shortest path between a pair
of source and sink nodes within the current residual graph, assigns the
maximum feasible flow in each iteration, and repeats the above opera-
tion until all nodes satisfy the conservation condition. The unbalanced
state 𝜅(𝑖), which characterizes the change of node supply in iterations,
is defined as
𝜅(𝑖) = 𝑏(𝑖) +

∑

𝑒∈𝐸−
𝑖

𝑥𝑒 −
∑

𝑒∈𝐸+
𝑖

𝑥𝑒, for all 𝑖 ∈ 𝑉 (4)

where 𝐸−
𝑖 = {𝑒𝑗 𝑖 ∈ 𝐸 ∶ 𝑣𝑗 ∈ 𝑉 } ∪ {𝑒′𝑗 𝑖 ∈ 𝐸′ ∶ 𝑣𝑗 ∈ 𝑉 }, 𝐸+

𝑖 = {𝑒𝑖𝑗 ∈ 𝐸 ∶
𝑣𝑗 ∈ 𝑉 } ∪ {𝑒′𝑖𝑗 ∈ 𝐸′ ∶ 𝑣𝑗 ∈ 𝑉 }. SSP introduces the potential function 𝜋(⋅)
to eliminate the impact of negative costs in solving SSP and establishes
a transformation from the edge cost 𝑐𝑒 to the equivalent cost 𝑐𝜋𝑒 as

𝑐𝜋𝑒𝑖𝑗 = 𝑐𝑒𝑖𝑗 − 𝜋(𝑖) + 𝜋(𝑗) (5)

where 𝑐𝑒𝑖𝑗 is the unit cost of edge 𝑒𝑖𝑗 ∈ 𝐸̄.
In the SSP algorithm, the initial conditions are set as 𝑥𝑒 = 0,∀𝑒 ∈ 𝐸̄

and 𝜋(𝑖) = 0,∀𝑣𝑖 ∈ 𝑉 . Each node’s imbalance 𝜅(𝑖) is initialized to 𝑏(𝑖)
for all 𝑣𝑖 ∈ 𝑉 , forming the unbalanced node sets 𝑆 = 𝑣𝑖 ∶ 𝜅(𝑖) > 0
and 𝐷 = 𝑣𝑖 ∶ 𝜅(𝑖) < 0. SSP then selects a source 𝑘 from set 𝑆 and a
sink 𝑙 from set 𝐷, identifies all shortest paths from 𝑘 to other nodes
𝑣𝑗 ∈ 𝑉 , and calculates the path cost 𝑃𝑘𝑗 as 𝑑(𝑗) = ∑

𝑒∈𝑃𝑘𝑗 𝑐𝑒. Each node’s

potential function 𝜋(𝑖) is updated based on the value 𝑑(𝑖) as

𝜋(𝑖) = 𝜋(𝑖) − 𝑑(𝑖),∀𝑣𝑖 ∈ 𝑉 (6)

Using the maximum feasible flow 𝛿 on the shortest path 𝑃𝑘𝑙, the flow
alues for all edges on 𝑃𝑘𝑙 are updated by

𝑥𝑒 =
{

𝑥𝑒 + 𝛿 𝑒 ∈ 𝑃𝑘𝑙
𝑥𝑒 𝑒 ∈ 𝐸̄∖𝑃𝑘𝑙

(7)

where 𝛿 = min[𝜅(𝑘),−𝜅(𝑙),min{𝑟𝑒 ∶ 𝑒 ∈ 𝑃𝑘𝑙}]. The residual capacity
𝑟 , source set 𝑆, sink set 𝐷, and equivalent costs 𝑐𝜋 are then updated
𝑒 𝑒

3
accordingly. Throughout the solving process, the positive value of 𝛿
nsures that SSP terminates after a finite number of steps, achieving a
alanced state for all nodes. At the end, SSP yields the optimal solution
o the minimum-cost flow problem. The full SSP process is outlined in
lgorithm 1.
Algorithm 1 Successive Shortest Path Algorithm

Input: Residual graph 𝐺̄(𝑉 , 𝐸̄), vector 𝐛
Output: Optimal solution 𝐱∗
1: Initialization: 𝑥𝑒 = 0,∀𝑒 ∈ 𝐸̄; 𝜋(𝑖) = 0, 𝜅(𝑖) = 𝑏(𝑖),∀𝑣𝑖 ∈ 𝑉 .
2: 𝑆 = {𝑣𝑖 ∶ 𝜅(𝑖) > 0}, 𝐷 = {𝑣𝑖 ∶ 𝜅(𝑖) < 0}
3: while 𝑆 ≠ ∅ do
4: Select nodes 𝑘 ∈ 𝑆 and 𝑙 ∈ 𝐷

5: Calculate 𝑑(𝑗) = min
𝑃𝑘𝑗

{

∑

𝑒∈𝑃𝑘𝑗
𝑐𝑒 ∶ 𝑃𝑘𝑗 ⊂ 𝐸̄

}

,∀𝑣𝑗 ∈ 𝑉

6: Update 𝜋(𝑖) = 𝜋(𝑖) − 𝑑(𝑖),∀𝑣𝑖 ∈ 𝑉
7: Compute 𝛿 = min[𝜅(𝑘),−𝜅(𝑙),min{𝑟𝑒 ∶ 𝑒 ∈ 𝑃𝑘𝑙}]
8: Update flows: 𝑥𝑒 = 𝑥𝑒 + 𝛿 ,∀𝑒 ∈ 𝑃𝑘𝑙

9: Update 𝑟𝑒: 𝑟𝑒 =
{

𝑟𝑒 − 𝛿 ∀𝑒 ∈ 𝑃𝑘𝑙
𝑟𝑒 + 𝛿 ∀𝑒 ∈ 𝑃 ′

𝑘𝑙
⊳ 𝑃 ′

𝑙 𝑘 is the reverse path

of 𝑃𝑘𝑙.
10: Update 𝜅(𝑘) = 𝜅(𝑘) − 𝛿, 𝜅(𝑙) = 𝜅(𝑙) − 𝛿
11: if 𝜅(𝑘) = 0 then
12: Remove node 𝑘 from 𝑆
13: end if
14: if 𝜅(𝑙) = 0 then
15: Remove node 𝑙 from 𝐷
16: end if
17: Update 𝑐𝜋𝑒 : 𝑐𝜋𝑒𝑖𝑗 = 𝑐𝑒𝑖𝑗 − 𝜋(𝑖) + 𝜋(𝑗),∀𝑒𝑖𝑗 ∈ 𝐸̄
18: end while
19: return 𝐱∗ = {𝑥𝑒 − 𝑥𝑒′}𝑒∈𝐸

3.2. Successive derivative shortest path

The SSP algorithm is unsuitable for solving CCNFP because the flow
allocation in each iteration disrupts the order of edge costs, leading to
inconsistencies in the shortest paths before and after allocation. Rec-
ognizing these limitations of SSP for CCNFP, this subsection describes
the SDSP algorithm, which approximates the solution to CCNFP by
iteratively solving a series of minimum-cost flow models.

SDSP constructs an approximate minimum-cost flow model for CC-
FP in each iteration, using the first-order information of the concave
bjective function to create a linear approximation cost. Proposition 1

provides theoretical support, showing that the optimal solution of the
pproximate model is consistently superior in objective value to the
revious feasible solution when the first-order information is set to the

gradients at the previous solution. However, the linear approximation
based on the gradients leads the algorithm to converge to a suboptimal
solution, with the objective value highly dependent on the initial
feasible solution chosen. To address this, SDSP constructs regional
first-order information by averaging derivative values of sample points
within a given interval and gradually reduces the sampling interval to
approach the gradient, allowing SDSP to converge to an approximate
solution closer to the optimal solution of the original problem.

Proposition 1. Given a feasible solution 𝑥0 of the original problem (2),
he approximate cost is generated by the gradients of the original objective
unction at 𝑥0. The gradients are denoted as ∇𝐶(𝑥0) = (… , 𝑐′𝑒(𝑥0𝑒),…).
he objective of the approximate minimum-cost flow model is 𝐶̃(𝑥) =
𝑒∈𝐸 𝑐′𝑒(𝑥

0
𝑒) ⋅ 𝑥𝑒. Then, the optimal solution of the approximate model 𝑥1

atisfies that
𝐶(𝑥1) ⩽ 𝐶(𝑥0)

In other words, solution 𝑥1 improves upon 𝑥0 in objective value when 𝑥1 ≠
𝑥0.

L. Yang and Z. Yang

m

m

𝑥
i
a

t
m

1
1

t

t
a
l
s

i
o
a

b

t
t
o

p
T
D
S
D
t

Operations Research Perspectives 14 (2025) 100331
Proof. Since the feasible domains of CCNFP and the minimum-cost
flow problem are the same, 𝑥1 is the feasible solution of CCNFP. By
the first-order condition of the concave function, the original objective
𝐶(𝑥) satisfies that

𝐶(𝑦) ⩽ 𝐶(𝑥) + ∇𝐶(𝑥)𝑇 (𝑦 − 𝑥)

Thus, the difference between objectives at solutions 𝑥1 and 𝑥0 satisfies
𝐶(𝑥1) − 𝐶(𝑥0) ⩽∇𝐶(𝑥0)𝑇 (𝑥1 − 𝑥0)

=𝐶̃(𝑥1) − 𝐶̃(𝑥0)

⩽0

Equality holds if and only if 𝑥0 is the optimal solution of the approxi-
ate model, that is, 𝑥1 = 𝑥0. □

In the graph 𝐺(𝑉 , 𝐸), let [𝛼𝑒, 𝛽𝑒] represent the sampling interval for
edge 𝑒, and let 𝑛𝑠 denote the number of sampling points. The follow-
ing formula yields the average derivative value 𝑤𝑒 under equidistant
sampling:

𝑤𝑒 =
1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
𝑐′𝑒(𝛼𝑒 + (𝑖 − 1) ⋅ 𝛥𝑒),where 𝛥𝑒 =

𝛽𝑒 − 𝛼𝑒
𝑛𝑠 − 1 (8)

Considering 𝑤𝑒 as the unit cost on edge 𝑒, the constructed approxi-
ation model can be solved using SSP. In each iteration of SDSP, the

algorithm solves the approximate model to obtain a feasible solution
(𝑘)
𝑒 and then updates the lower and upper bounds of the sampling
ntervals for the next iteration. The updates for the interval’s bounds
re as follows:

𝛼(𝑘+1)𝑒 = max
{

𝑥(𝑘)𝑒 − 1
2
⋅ 𝑎 ⋅

(

𝛽(𝑘)𝑒 − 𝛼(𝑘)𝑒
)

, 0
}

,

𝛽(𝑘+1)𝑒 = min
{

𝑥(𝑘)𝑒 + 1
2
⋅ 𝑎 ⋅

(

𝛽(𝑘)𝑒 − 𝛼(𝑘)𝑒
)

, 𝑢𝑒
}

,
(9)

where 𝑎 ∈ (0, 1) is the interval reduction coefficient, controlling the
extent of reduction in each iteration. The algorithm iteratively performs
his process until the optimal solution of the approximate model re-
ains unchanged from the previous iteration. The details of SDSP are

presented in Algorithm 2.

Algorithm 2 Successive Derivative Shortest Path
Input: Graph 𝐺(𝑉 , 𝐸); Objective and derivative functions 𝑐𝑒(𝑥𝑒), 𝑐′𝑒(𝑥𝑒);

Number of sampling points 𝑛𝑠
Output: Flows {𝑥𝑒}𝑒∈𝐸
1: Initialize {𝑤(1)

𝑒 }𝑒∈𝐸 and let [𝛼(1)𝑒 , 𝛽(1)𝑒] = [0, 𝑢𝑒]
2: for 𝑘 = 1 to 𝑀 do
3: 𝑥(𝑘)𝑒 = SSP(𝐺, {𝑤(𝑘)

𝑒 })
4: if |𝑐𝑒(𝑥

(𝑘)
𝑒) − 𝑐𝑒(𝑥

(𝑘−1)
𝑒)| < 𝜖 ,∀𝑒 ∈ 𝐸 then

5: break
6: end if
7: 𝛼(𝑘+1)𝑒 = max

{

𝑥(𝑘)𝑒 − 𝑎 ⋅
(

𝛽(𝑘)𝑒 − 𝛼(𝑘)𝑒

)

, 0
}

8: 𝛽(𝑘+1)𝑒 = min
{

𝑥(𝑘)𝑒 + 𝑎 ⋅
(

𝛽(𝑘)𝑒 − 𝛼(𝑘)𝑒

)

, 𝑢𝑒
}

9: 𝛥(𝑘+1)
𝑒 = 𝛽(𝑘+1)𝑒 −𝛼(𝑘+1)𝑒

𝑛𝑠−1

10: 𝑤(𝑘+1)
𝑒 = 1

𝑛𝑠

∑𝑛𝑠
𝑖=1 𝑐

′
𝑒

(

𝛼(𝑘+1)𝑒 + (𝑖 − 1) ⋅ 𝛥(𝑘+1)
𝑒

)

1: end for
2: return {𝑥∗𝑒}𝑒∈𝐸

In SDSP, the initial values of regional first-order information 𝑤𝑒 and
he parameters 𝑛𝑠, 𝑎 cannot be directly determined through theoretical

analysis, nor can they be automatically optimized by the algorithm. To
address this, we design a series of numerical experiments to evaluate
he impact of various initializations and parameter settings on the
lgorithm’s performance. These experiments serve as a reference for se-
ecting initial values for regional first-order information and parameter
ettings, facilitating the practical application of SDSP.
4
3.3. Time and space complexity analysis

This section analyzes the time and space complexity of the SSP and
SDSP. The analysis of the SSP algorithm is based on the conclusions
in the book Network Flows. The analysis of the SDSP is derived and
analyzed based on the proposed algorithm in this paper.

3.3.1. Time complexity analysis
In the SSP, each iteration solves a shortest path problem with

nonnegative weights and strictly decreases the unbalanced state of
some node. Consequently, if 𝑛 is the number of nodes in Graph, 𝑚
is the number of edges in Graph, and 𝑈 is an upper bound on the
largest supply of any node, the SSP terminates in at most 𝑛𝑈 iter-
ations. Let 𝑆(𝑛, 𝑚, 𝐶) denote the time taken to solve a shortest path
problem with nonnegative weights, the time complexity of the SSP
is 𝑂(𝑛𝑈 𝑆(𝑛, 𝑚, 𝑛𝐶)). In this paper, we apply Dijkstra’s algorithm to
solve the shortest path problem, using a special data structure, the
heap, to accelerate the Dijkstra’s algorithm. Lemma 1 provides the time
complexity of Dijkstra’s algorithm with binary heap implementation.

Lemma 1. A binary heap data structure requires 𝑂(log 𝑛) time to perform
nsert, decrease-key, and delete-min, and it requires 𝑂(1) time for the
ther heap operations. Consequently, the binary heap version of Dijkstra’s
lgorithm runs in 𝑂(𝑚 log 𝑛) time.

Proof. The details of this lemma are provided in Section 4.7 of the
ook Network Flows. □

Lemma 1 states that 𝑆(𝑛, 𝑚, 𝐶) = 𝑂(𝑚 log 𝑛), therefore establishing
the time complexity of the SSP algorithm as presented in Theorem 1.

Theorem 1. When the time complexity taken to solve a shortest path
problem with nonnegative weights is 𝑂(𝑚 log 𝑛), the time complexity of the
SSP algorithm is 𝑂(𝑛𝑚𝑈 log 𝑛).

In the SDSP algorithm, Proposition 1 proves that the algorithm’s
mechanism ensures the descent of the objective function, but the theo-
retical property of finite-step convergence remains unclear. To address
his, a maximum iteration count 𝑀 is introduced to guarantee the
ermination of the SDSP algorithm. Building on the time complexity
f the SSP algorithm, Corollary 1 provides the time complexity of the

SDSP algorithm.

Corollary 1. Let 𝑀 be the maximum iteration count of the SDSP
algorithm, the time complexity is 𝑂(𝑀 𝑛𝑚𝑈 log 𝑛).

Although the finite-step convergence of the interval reduction mech-
anism in the SDSP algorithm lacks theoretical proof, numerical exper-
iments show that the algorithm effectively achieves finite-step conver-
gence in practice, requiring only a few iterations.

3.3.2. Space complexity analysis
In the analysis of space complexity, it is necessary to consider

the storage of the graph structure as well as the storage of variables
involved in the solution process of the related algorithms. To determine
the space complexity of the SDSP algorithm, we first calculate the space
complexities of the Dijkstra and SSP algorithms as a foundation.

In Dijkstra’s algorithm, the space complexity includes graph storage,
riority queue, distance array, visited array, and auxiliary structures.
he SSP algorithm computes the shortest path problem by invoking
ijkstra’s algorithm. Although the worst-case iteration count for the
SP algorithm is 𝑉 × 𝑈 , since the space occupied by the variables in
ijkstra’s algorithm can be released after each invocation. Therefore,

he SSP algorithm does not increase the space complexity order. Simi-
larly, when the SDSP algorithm iterates over the SSP algorithm, it stores
only the numerical results from the previous iteration. As a result, the
overall space complexity remains unchanged in terms of order, with a
slight increase in the constant factor coefficient. Table 1 provides the
detailed space complexity calculations for the three algorithms.

L. Yang and Z. Yang

i
t

h

a

a
C

c
o

s
u

A

o
f
t
f

r

a
t
u
[

r
m
i
w

Operations Research Perspectives 14 (2025) 100331
Table 1
Space complexity of variables in different algorithms.

Variable Dijkstra SSP SDSP

Graph storage 𝑂(𝑉 + 𝐸) 𝑂(𝑉 + 𝐸) 𝑂(𝑉 + 𝐸)
Priority queue (Binary heap) 𝑂(𝑉)
Distance & Visited array 𝑂(𝑉)

Residual graph 𝑂(𝑉 + 𝐸)
𝑆 , 𝐷 , 𝜋 , 𝑑 , 𝜅 𝑂(𝑉)
Flows 𝑥 𝑂(𝐸) 𝑂(𝐸)
𝛼 , 𝛽 , 𝛥, 𝜔 𝑂(𝐸)
Auxiliary structures 𝑂(1) 𝑂(1) 𝑂(1)

Total 𝑂(𝑉 + 𝐸) 𝑂(𝑉 + 𝐸) 𝑂(𝑉 + 𝐸)

4. Numerical experiments

This section demonstrates the effectiveness and advantages of SDSP
n solving CCNFP through a series of numerical experiments. Sec-
ion 4.1 introduces the problem instances and their construction meth-

ods. Section 4.2 presents experiments that identify the most effective
initialization method for regional first-order information and optimal
parameter settings. Section 4.3 examines the impact of the sequen-
tial process and interval reduction mechanisms in SDSP. Finally, Sec-
tion 4.4 compares the performance of SDSP with that of nonlinear pro-
gramming algorithms and a sequential linear approximation algorithm,
ighlighting its superiority.

The algorithms used in the numerical experiments are compiled
nd executed in a C++17 environment, except for the Sequential Least

Squares Programming, which is implemented in Fortran and invoked
through a Python interface. All program codes presented in this paper
re executed on the same desktop computer, equipped with an Intel
ore i7-11700 2.50 GHz processor and 32 GB of RAM.

4.1. Instruction of instances

Since the related work does not provide available instances, we
onstruct the graph structure of CCNFP based on the instance scales
utlined in the literature. Additionally, we apply various categories of

concave functions as the objective of CCNFP.
The instance scale typically refers to the number of nodes and edges

in the graph structure. In this paper, we construct seven groups of
instances with different scales: (10, 40), (20, 100), (40, 300), (60, 400),
(100, 1000), (150, 2500), and (250, 7500).2 We randomly generate a
pecified number of nodes within a two-dimensional rectangular region
sing a uniform distribution. The connections between these nodes

are determined by comparing their Euclidean distance to a threshold.
 flexible threshold controls the number of connected node pairs,

ensuring that the number of edges matches the specified scale for the
graph. Next, we randomly select 10%, 20%, and 40% of the nodes to
serve as the source and sink nodes in each instance, respectively. The
node supply for each source follows the uniform distributions U(3, 30),
while the node supply for each sink follows U(−30,−3). Additionally,
we constructed instances with various sampling distributions to assess
their impacts the algorithm’s performance. Adjustments are applied to
ensure the total supply equals zero. Excluding source and sink nodes,
all other nodes are designated as intermediate nodes with a supply
f zero. We assume that the cost function of each edge is a concave
unction passing the point (0, 0). These cost functions are divided into
hree categories: Logarithmic, Power, and Sigmoid, and are defined as
ollows:

𝐶𝐿𝑜𝑔(𝑥) = log𝜃(𝑥 + 1), 𝐶𝑃 𝑜𝑤(𝑥) = (𝑥 + 1) 1𝜃 − 1,
𝐶𝑆 𝑖𝑔(𝑥) = 1

1 + 𝜃−𝑥
− 1

2

(10)

2 The first number represents the number of nodes, while the second
epresents the number of edges.
 i

5
Table 2
Information about instances.

Instance characteristics Parameter values

Node number 10, 20, 40, 60, 100, 150, 250
Edge number 40, 100, 300, 400, 1000, 2500, 7500
Source node radio 10%, 20%, 40%
Sink node radio 10%, 20%, 40%
Samp. Dist. for Source U(3, 30),U(1, 5) to U(26, 30)
Samp. Dist. for Sink U(−30,−3),U(−30,−26) to U(−5,−1)
Objective function 𝐶𝐿𝑜𝑔 (𝑥), 𝐶𝑃 𝑜𝑤(𝑥), 𝐶𝑆 𝑖𝑔 (𝑥), 𝐶𝑀 𝑖𝑥(𝑥)

Table 3
The formula for initializing 𝑤𝑒 at specific points.

Formula 𝑥𝑒 = 0 𝑥𝑒 = 𝑢𝑒∕2 𝑥𝑒 = 𝑢𝑒
Derivative value 𝑐′𝑒(0) 𝑐′𝑒(𝑢𝑒∕2) 𝑐′𝑒(𝑢𝑒)

Interpolation slope – 2
𝑢𝑒
𝑐𝑒(𝑢𝑒∕2)

1
𝑢𝑒
𝑐𝑒(𝑢𝑒)

where 𝜃 ∼ U(2, 12). Additionally, we define a mixed-cost function that
combines the three concave functions. By partitioning the edge set 𝐸
into three disjoint subsets 𝐸1, 𝐸2, 𝐸3, we define the mixed objective
function as follows:

𝐶𝑀 𝑖𝑥(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log𝜃(𝑥 + 1) for 𝑒 ∈ 𝐸1

(𝑥 + 1) 1𝜃 − 1 for 𝑒 ∈ 𝐸2
1

1+𝜃−𝑥 − 1
2 for 𝑒 ∈ 𝐸3

(11)

The all information for generating instances are listed in Table 2,
where Samp. Dist. stands for the sampling distribution.

4.2. Initialization and parameter selection

In this subsection, we provide guidance on initialization methods,
the number of sampling points, and the interval reduction coefficients
based on numerical experiments.

The initialization of regional first-order information significantly
affects the solution. Numerical experiments help identify the most suit-
able initialization method by comparing the algorithm’s performance
cross different strategies. These strategies can be categorized into
wo groups. One group computes the regional first-order information
sing the update formula for 𝑤(𝑘)

𝑒 over the initial sampling interval
0, 𝑢𝑒], denoted as 𝑐′𝑒. The other group uses the derivative values or

linear interpolation slopes at specific points as the regional first-order
information. In the experiments, we calculate the derivative value and
the linear interpolation slope at the points 𝑥𝑒 = 0, 𝑥𝑒 = 𝑢𝑒∕2, and 𝑥𝑒 =
𝑢𝑒, as summarized in Table 3.

Table 4 presents the objective values obtained by SDSP under six
different initialization methods for the constructed instances. In the
experiment, 30 sampling points are used, and the interval reduction
coefficient is set to 0.5. The Min column displays the minimum objec-
tive value for each instance. The relative error between the objective
values for different initializations and the minimal value is then cal-
culated for direct comparison. Two indicators are used to compare the
results for different methods: ARE and MRE. ARE stands for Average
Relative Error, which serves as an overall metric for evaluating algo-
rithm performance. MRE stands to Maximum Relative Error, which is
used to assess the algorithm’s performance in the worst-case scenario.
Both ARE and MRE are provided in the table. The results indicate
that SDSP performs best with the following initialization methods:
𝑤𝑒 = 2

𝑢𝑒
𝑐𝑒(

𝑢𝑒
2),

𝑐𝑒(𝑢𝑒)
𝑢𝑒

, and 𝑐′𝑒. For these three initializations, the ARE
emains consistently below 2.5%. In contrast, the ARE for the other
ethods exceeds 10%. However, the difference between these three

nitialization methods is insufficient to determine a clear winner. Next,
e combine the results from Table 4 with experiments on the number

of samples and the interval reduction coefficient to identify the optimal
nitialization method, sampling number, and coefficient.

L. Yang and Z. Yang

w
u

t

I
c
a

a

Operations Research Perspectives 14 (2025) 100331
Table 4
The objective values of SDSP under six types of initialization.

Objective Scale Objective values (𝑛𝑠 = 30, 𝑎 = 0.5) Min

𝑐′𝑒(0) 𝑐′𝑒(
𝑢𝑒
2
) 2

𝑢𝑒
𝑐𝑒(

𝑢𝑒
2
) 𝑐′𝑒(𝑢𝑒)

𝑐𝑒 (𝑢𝑒)
𝑢𝑒

𝑐′𝑒(𝑥𝑒)

𝐶𝐿𝑜𝑔 (𝑥)

(20, 100) 16.110 15.966 15.928 15.966 15.966 15.928 15.928
(60, 400) 14.535 14.316 14.339 14.764 14.339 14.339 14.316
(150, 2500) 48.754 49.478 51.536 49.497 49.617 49.617 48.754
(250, 7500) 119.695 107.613 108.444 107.960 107.814 106.965 106.965

𝐶𝑃 𝑜𝑤(𝑥)
(20, 100) 4.582 4.617 4.617 4.617 4.617 4.617 4.582
(60, 400) 1.040 1.083 1.050 1.110 1.083 1.029 1.029
(150, 2500) 13.362 14.107 13.791 13.620 13.838 13.529 13.362
(250, 7500) 33.160 32.196 31.351 31.898 30.995 31.351 30.995

𝐶𝑆 𝑖𝑔 (𝑥)
(20, 100) 6.495 6.753 5.749 6.753 5.749 6.249 5.749
(60, 400) 14.990 18.499 14.467 17.980 14.467 14.467 14.467
(150, 2500) 28.140 32.946 21.737 32.187 21.737 23.618 21.737
(250, 7500) 50.981 80.461 36.201 80.050 36.201 35.444 35.444

𝐶𝑀 𝑖𝑥(𝑥)
(20, 100) 7.694 7.584 6.793 7.133 7.021 6.793 6.793
(60, 400) 7.946 12.666 8.037 12.666 7.917 8.725 7.917
(150, 2500) 28.148 37.207 18.596 38.605 18.799 19.149 18.596
(250, 7500) 55.973 96.011 39.558 96.758 39.787 38.972 38.972

ARE (%) 13.82 34.99 1.22 34.74 1.33 2.23
MRE (%) 51.37 146.36 5.71 148.28 5.25 10.21
Fig. 1. The trend of average relative error corresponds to the number of sampling points. The interval reduction coefficient is set to 0.5.
u
u
f

r

a
c
g
o
a
s
s

Two experiments are designed to compare the performance of SDSP
ith varying sampling numbers and interval reduction coefficients
nder three selected initialization methods. Fig. 1 illustrates the trend

of the relative error in objective values as a function of the sampling
number, while Fig. 2 shows the trend of relative error with respect to
he interval reduction coefficient. The results demonstrate that the lin-

ear interpolation slope initialization methods outperform the derivative
mean method. However, no significant difference is observed between
the two linear interpolation slope methods. Based on these findings,
we adopt 𝑐𝑒(𝑢𝑒)

𝑢𝑒
as the initial regional first-order information, set the

number of sampling points to one, and choose an interval reduction
coefficient of 0.65.

These two figures show more information about the effect of the
regional first-order information and the interval reduction mechanism.
n Fig. 1, fewer sampling points implies that the averaged derivative
omputed within the interval effectively approximates the gradient at
 point closer to the upper part of the region. As the number of sampling

points increases, the averaged derivative shifts to reflect the gradient of
 point closer to the interval’s midpoint. When the initialization method

uses the linear interpolation slope, fewer sampling points demonstrate a
distinct advantage. From an optimization perspective, this phenomenon

arises because the gradient of a concave function in the upper region of v

6
the interval is inherently steeper than at the midpoint. This steepness
results in a lower effective cost for the reverse edge in the residual
graph during the algorithm’s iterations, increasing the likelihood of its
selection in subsequent iterations. This mechanism introduces natural
reversibility to the flow assignments, allowing the algorithm to explore
the solution space more effectively and avoid premature convergence.
As a result, the algorithm can overcome the limitations of the successive
shortest path algorithm, which struggles with concave cost structures,
ltimately achieving higher-quality solutions and better objective val-
es. This behavior highlights the practical utility of leveraging regional
irst-order information in the SDSP framework.

In Fig. 2, the average relative error exhibits a distinct ‘‘U-shaped’’
elationship with the interval reduction coefficient. When the coeffi-

cient approaches zero, the algorithm relies only on the gradient value
t the solution from the previous iteration to approximate the concave
ost function. Conversely, when the coefficient approaches one, the al-
orithm uses a fixed-length interval for sampling to construct the linear
bjective. The experimental results show that both extreme approaches
re suboptimal for solving the problem. An iterative framework based
olely on single-point gradient values often converges to suboptimal
olutions due to the challenge of revisiting previously assigned flow
alues. Conversely, using fixed-length interval sampling throughout the

L. Yang and Z. Yang

h

p

i
p

a
d

Operations Research Perspectives 14 (2025) 100331
Fig. 2. The trend of average relative error corresponds to the interval reduction coefficient. The number of sampling points is set to 30.
Table 5
Validation on sequential process and regional first-order information.

Objective Scale Objective values

LPo LPu SGSP SDSP(𝑎 = 1) SDSP

𝐶𝐿𝑜𝑔 (𝑥)

(20, 100) 16.248 15.966 15.966 15.844 15.760
(60, 400) 14.689 15.233 15.233 14.556 14.222
(150, 2500) 53.033 55.037 55.037 45.689 44.772
(250, 7500) 89.473 80.368 78.816 75.795 71.763

𝐶𝑃 𝑜𝑤(𝑥)
(20, 100) 4.820 4.617 4.617 4.617 4.617
(60, 400) 1.069 1.116 1.116 1.015 1.006
(150, 2500) 13.734 14.053 13.891 13.198 12.830
(250, 7500) 23.483 21.327 20.553 20.444 19.793

𝐶𝑆 𝑖𝑔 (𝑥)
(20, 100) 6.495 5.749 5.749 5.749 5.749
(60, 400) 15.999 14.500 14.000 14.500 12.956
(150, 2500) 34.614 22.834 22.834 22.834 19.244
(250, 7500) 57.630 38.026 38.206 38.026 37.525

𝐶𝑀 𝑖𝑥(𝑥)
(20, 100) 8.914 7.442 7.442 7.076 7.021
(60, 400) 9.033 8.578 7.912 7.728 7.604
(150, 2500) 29.050 22.317 20.887 19.900 17.788
(250, 7500) 33.166 30.333 26.717 27.913 25.166

ARE (%) 24.79 10.52 7.90 4.67 –
1
m

w
r

a

process risks assigning reverse flow to edges that should receive flow,
indering the algorithm’s ability to converge to high-quality solutions.

The interval reduction mechanism effectively navigates the trade-offs
between these opposing factors, enabling the algorithm to find a Pareto-
optimal balance. This mechanism is analogous to step-size adjustment
in optimization algorithms: larger step sizes help escape local minima,
while reductions ensure convergence to a local minimum in a more
romising neighborhood.

4.3. Effectiveness

This section aims to validate the effectiveness of SDSP by showcas-
ng the improved performance achieved through both the sequential
rocess and the incorporation of regional first-order information.

In comparison, we construct two minimum-cost flow models to
pproximate the CCNFP in a single step. The linear unit cost on edges is
efined as 𝑐𝑒(𝑥) = 𝑐′𝑒(0)⋅𝑥 or 𝑐𝑒(𝑥) = 𝑐𝑒(𝑢𝑒)

𝑢𝑒
⋅𝑥, with these two approximate

models denoted as LPo and LPu respectively. Additionally, we simplify
the SDSP by updating 𝑤(𝑘+1)

𝑒 based solely on the gradients at point 𝑥(𝑘)𝑒 ,
that is, 𝑤(𝑘+1)

𝑒 = 𝑐′𝑒(𝑥
(𝑘)
𝑒) which is denoted as SGSP. In the experiments,

we ensure that the initialization and parameter settings of SGSP are
consistent with those of SDSP.
7
Table 5 presents the objective values of these four approaches across
6 instances. The objective values obtained by SDSP are consistently
inimal compared to the others for all instances. We calculate the

average relative error between SDSP’s objective values and those of
the other methods. The results show that the objective values achieved
by SGSP are always less than or equal to those obtained by LPu,
confirming the descent property outlined in Proposition 1. However,

hen updating 𝑤(𝑘+1)
𝑒 using gradients, the sequential process only

esults in a modest 2.62% decrease in the objective value. Introducing
regional first-order information into the sequential process leads to a
substantial improvement, with the average relative error between SGSP
nd SDSP reaching 7.9%. The descending trend in ARE from LPu to

SDSP highlights the crucial role that the sequential process and the
integration of regional first-order information play in optimizing the
objective values of CCNFP. Also, the results of SDSP with the parameter
𝑎 = 1 have been listed in the table for comparison. The SDSP algorithm
without interval reduction explores a wider solution space than SGSP,
resulting in a generally superior solution. However, the algorithm still
shows a 4.67% potential for improvement when the interval reduction
mechanism is incorporated.

Fig. 3 shows the decrease in the objective function across four
cases with distinct target functions, comparing the performance of
three iterative strategies. Both SDSP(𝑎 = 0.65) and SGSP show a

L. Yang and Z. Yang Operations Research Perspectives 14 (2025) 100331
Fig. 3. The decreasing process of SGSP and SDSP.
steady decrease in the objective value over iterations, but SGSP often
converges prematurely to suboptimal local minima. Conversely, SDSP
without interval reduction (when 𝑎 = 1) achieves better results than
SGSP in several cases, but it lacks guaranteed monotonic decrease and
quickly stagnates after a few iterations. The proposed interval reduction
mechanism in SDSP effectively integrates the advantages of the other
two strategies, enabling it to identify higher-quality solutions. Further-
more, even without a predefined maximum iteration limit, the interval
reduction mechanism exhibits finite-step convergence in numerical
experiments, reliably meeting the stopping criteria within a limited
number of iterations. These findings highlight how SDSP balances ex-
ploration and exploitation, leading to robust and efficient optimization
performance.

4.4. Comparison

To evaluate the performance of SDSP, we conducted comparison ex-
periments with existing algorithms for solving the concave cost network
flow problem on different graph structure instances.

We compare SDSP with two categories of algorithms. The first
category includes three nonlinear programming algorithms:

• Sequential Least Square Programming (SLSQP) [28]
• Augmented Lagrange Function algorithm (AugLag) [29–33]
• Penalty Function algorithm (Penalty) [29,30,34,35]

SLSQP is a gradient-based optimization method that solves constrained
nonlinear optimization problems by iteratively approximating the ob-
jective function and constraints with quadratic models, efficiently han-
dling both equality and inequality constraints. The AugLag algorithm
combines Lagrangian relaxation of constraints with an augmented
penalty term, improving convergence and stability in solving con-
strained optimization problems. The Penalty method incorporates a
penalty term into the objective function to penalize constraint vio-
lations, solving the problem as an unconstrained optimization while
8
progressively tightening the penalty. The second category includes
the sequential linear approximate algorithm, Dynamic Slope Scaling
Procedure (DSSP) [36], which is also applicable to CCNFP. All base-
line algorithm parameter settings are available in the shared GitHub
repository, ensuring consistency by using the same set of parameters
for all experimental cases. First, we conduct experiments on instances
with graph structures that include seven different scales and three
source node ratios, resulting in a total of 84 instances. The source node
supply follows a sampling distribution of U(3,30). Next, we explore
the performance of five algorithms on instances with different supply
sampling distributions.

Tables 6 and 7 present the average and maximum relative errors
between the objective values obtained by the five algorithms and the
minimum across 84 instances. The minimum for each instance is the
smallest objective value among the five algorithms. The details of
the results for all instances are listed in Appendix. Table 6 shows
the performance differences of the algorithms across instances with
varying scales. Table 7 shows the performance of the algorithms under
different source node ratios. In Table 6, we observe that the average
relative error of the proposed algorithm decreases as the instance scale
increases: the larger the scale, the smaller the relative error. This
suggests that as the problem scale increases, the SDSP algorithm can
find the optimal solution in most cases. In contrast, both the SLSQP
and DSSP algorithms show an increase in average relative error as the
problem scale grows, while the average relative error of the AugLag
algorithm remains around 10%. This further highlights the significant
advantage of the SDSP algorithm in solving large-scale concave cost
network flow problems. With an average relative error of 0.71% and a
maximum relative error of 8.69%, the SDSP algorithm demonstrates
both effectiveness and stability in solving this problem. Even in the
worst-case scenario, the algorithm’s relative error remains within 10%,
a level unattainable by the other compared algorithms.

In Table 7, the performance of all five algorithms generally shows
that the average relative error decreases as the ratio of source nodes

L. Yang and Z. Yang

s

f

i
u
c
r
s
e
m

Operations Research Perspectives 14 (2025) 100331
Table 6
The performance of SDSP and comparison algorithms.

Scale SLSQP AugLag Penalty DSSP SDSP

ARE MRE ARE MRE ARE MRE ARE MRE ARE MRE

(10, 40) 170.57 417.58 14.58 66.26 51.37 169.61 16.86 141.8 2.37 8.69
(20, 100) 152.07 276.91 5.49 15.98 36.18 143.30 3.92 15.68 0.99 4.50
(40, 300) 252.92 421.02 11.02 48.77 65.14 192.75 6.98 16.14 0.64 4.05
(60, 400) 267.55 533.55 17.81 72.42 142.67 485.69 7.46 27.29 0.48 2.60
(100, 1000) 274.19 395.98 7.76 27.86 72.75 184.67 8.12 17.74 0.49 5.85
(150, 2500) 489.89 1160.9 16.65 45.24 119.83 223.76 22.24 79.88 0.00 0.05
(250, 7500) 952.04 2105.8 14.19 39.94 171.06 375.67 45.80 96.54 0.00 0.00

Mean (%) 365.60 12.50 94.14 15.91 0.71
Std. 280.968 4.589 50.692 14.662 0.812
Max. (%) 2105.8 72.42 485.69 141.8 8.69
Table 7
The performance of SDSP and comparison algorithms.

Source radio SLSQP AugLag Penalty DSSP SDSP

ARE MRE ARE MRE ARE MRE ARE MRE ARE MRE

10% 497.63 2105.79 15.61 72.42 120.34 485.69 24.65 141.75 0.72 5.85
20% 312.46 1471.19 12.64 65.92 81.07 213.28 13.78 66.85 0.93 8.67
40% 286.72 1115.52 9.00 45.24 81.20 223.76 9.30 44.49 0.48 7.26
Table 8
The memory usage of SDSP and comparison algorithms.

Scale I/O Average memory usage (KB)

SLSQP AugLag Penalty DSSP SDSP

(10, 40) 3477 451 104 473 100 10
(20, 100) 3489 1 140 260 1 021 146 14
(40, 300) 3518 1 450 615 3 015 294 43
(60, 400) 3549 2 432 682 4 417 351 60
(100, 1000) 3640 5 916 13 032 10 672 1129 58
(150, 2500) 3877 18 873 14 757 9 770 1143 335
(250, 7500) 4645 75 373 680 440 42 575 2001 995
t
f
i
i
p
s
a

increases. This is because, as the ratio of source and sink nodes in-
creases, the proportion of intermediate nodes decreases, causing the
graph structure to gradually approach a bipartite graph. Simple graph
tructures reduce the performance gap between the algorithms, result-

ing in a decrease in the average relative error for all five algorithms. A
notable difference from the baseline is that the SDSP algorithm shows
improvement even when only 10% of the nodes are sources. This is
because the problem tends to resemble a single-source network flow
problem, where the SDSP algorithm, which is based on minimum-cost
flow optimization, has advantages over other nonlinear programming
algorithms when handling such problems.

Table 8 presents the memory consumption of the five algorithms
or solving various instances, as well as the memory used for I/O oper-

ations by Visual Studio. Since the space complexity of most algorithms
s related to the problem scale, Table 8 reports the average memory
sage for each algorithm across different problem scales. The memory
onsumption of Visual Studio for I/O operations is relatively constant,
anging from 3000 KB to 5000 KB, with a slow increase as the data
ize grows. Comparing the memory usage of the five algorithms, it is
vident that the SDSP algorithm has a significant advantage in terms of
emory consumption compared to the baselines. Even for the largest

case, its average memory usage remains below 1 MB. Clearly, in terms
of memory usage, the SDSP algorithm has an advantage that is difficult
for other algorithms to match, making it highly feasible for large-scale
problem-solving or scenarios involving integrated calls.

Efficiency is a key criterion for evaluating the practicality of an
algorithm. Table 9 presents the solving time of each algorithm across
the instances. SDSP demonstrates significantly superior solving effi-
ciency compared to nonlinear programming algorithms. This advantage
enables SDSP to tackle large-scale problems that nonlinear program-
ming algorithms struggle with, making it more suitable for practical
applications. In comparison to DSSP, SDSP also shows a slight efficiency
9
Table 9
The solving time of SDSP and comparison algorithms.

Scale Average solving time (s) Iter.a

SLSQP AugLag Penalty DSSP SDSP

(10, 40) 0.013 0.129 0.163 0.001 <0.001 2.5
(20, 100) 0.054 1.746 0.634 0.006 0.002 3.2
(40, 300) 0.675 8.164 3.051 0.074 0.012 4.1
(60, 400) 1.937 21.946 6.336 0.188 0.051 4.6
(100, 1000) 27.543 510.061 56.963 1.343 0.233 5.7
(150, 2500) 748.825 4362.6 454.676 4.243 0.681 5.3
(250, 7500) 9.37 h 37.45 h 3.65 h 20.283 4.269 6.9

a Iter. stands for the average iteration count of SDSP.

advantage. This discrepancy can be attributed to the lack of a mono-
tonic descent guarantee in the iterative framework of DSSP, and it is
expected to become more pronounced as problem scales increase.

To explore whether the sampling distribution of supply values at
source nodes impacts the algorithm’s performance, we divided the in-
erval [1, 30] into six subintervals and randomly sampled supply values
rom a uniform distribution within each subinterval to construct the
nstances. Table A.13 presents the results of the five algorithms on
nstances with five different graph structures, under these six sam-
ling distributions. From the data, it is evident that the different
ampling distributions do not significantly impact on the performance
nd efficiency of the SDSP algorithm.

In Table A.13, we can observe that across all the distributions
(from U(1, 5) to U(26, 30)), the SDSP algorithm consistently performs
well, with minimal fluctuations in the objective values and solution
times. For example, in most cases, the objective values for SDSP are
either equal to or very close to the best possible values, demonstrating
stability across all supply distributions. Additionally, the algorithm’s

L. Yang and Z. Yang

o
v

k

s

m
t

n
m
a
t

i
c
i
a
p
s
m
r
r

Operations Research Perspectives 14 (2025) 100331
Table A.10
The performance of SDSP and comparison algorithms (source radio = 10%).

Objective Scale S.N.a Objective value Min

SLSQP AugLag Penalty DSSP SDSP

𝐶𝐿𝑜𝑔 (𝑥)

(10, 40) 1 9.424 4.953 5.940 4.953 4.953 4.953
(20, 100) 2 33.386 15.319 17.514 16.248 15.760 15.319
(40, 300) 4 53.306 20.549 23.558 23.718 21.098 20.549
(60, 400) 7 40.743 13.968 16.608 15.440 14.222 13.968
(100, 1000) 10 156.394 52.453 52.414 52.837 46.970 46.970
(150, 2500) 11 272.358 45.824 53.787 52.592 44.772 44.772
(250, 7500) 25 665.361 78.236 102.791 108.983 71.763 71.763

𝐶𝑃 𝑜𝑤(𝑥)

(10, 40) 1 3.536 1.673 1.698 1.659 1.728 1.659
(20, 100) 2 12.342 4.582 5.222 4.527 4.617 4.527
(40, 300) 4 24.454 7.064 9.192 7.073 6.832 6.832
(60, 400) 7 4.057 1.081 5.892 1.051 1.006 1.006
(100, 1000) 10 52.419 14.629 21.567 14.532 13.440 13.440
(150, 2500) 11 60.879 13.410 26.640 14.399 12.830 12.830
(250, 7500) 25 242.382 21.624 78.630 26.159 19.792 19.792

𝐶𝑆 𝑖𝑔 (𝑥)

(10, 40) 1 8.364 1.985 3.476 1.985 1.968 1.968
(20, 100) 2 21.665 6.500 13.985 6.649 5.749 5.749
(40, 300) 4 39.269 8.977 14.966 8.448 7.537 7.537
(60, 400) 7 82.076 22.001 75.424 16.490 12.956 12.956
(100, 1000) 10 99.034 22.635 51.045 26.650 23.960 22.635
(150, 2500) 11 242.649 25.311 59.777 34.616 19.244 19.244
(250, 7500) 25 625.530 39.964 178.491 73.751 37.524 37.524

𝐶𝑀 𝑖𝑥(𝑥)

(10, 40) 1 7.686 2.469 2.485 3.590 1.485 1.485
(20, 100) 2 23.400 7.297 8.690 7.012 7.021 7.012
(40, 300) 4 40.870 9.920 10.856 8.939 8.991 8.939
(60, 400) 7 43.242 13.111 26.926 8.011 7.604 7.064
(100, 1000) 10 109.278 22.823 30.708 26.256 22.655 22.655
(150, 2500) 11 121.382 25.475 37.259 25.434 17.788 17.788
(250, 7500) 25 555.087 35.217 75.282 40.215 25.165 25.165

ARE (%) 497.63 15.61 120.34 24.65 0.72 –
MRE (%) 2105.79 72.42 485.69 141.75 5.85 –

a S.N. stands for the number of sources.
V
Y

computational time shows no significant variation as the supply dis-
tribution changes, further supporting the claim that the sampling dis-
tribution of supply values does not affect the algorithm’s efficiency
r effectiveness. This suggests that the SDSP algorithm is robust to
ariations in the supply distribution, which is a desirable property when

solving real-world problems where supply distributions may not be
nown in advance.

The superior objective values, less memory usage, and extremely
hort solving times demonstrate that SDSP can effectively and rapidly

solve the CCNFP. By integrating the SSP with regional first-order infor-
ation, SDSP emerges as a versatile and efficient algorithm for solving

he CCNFP.

5. Conclusion

This paper presents a universal algorithm for the concave cost
etwork flow problem (CCNFP), combining the successive shortest path
ethod with regional first-order information to enhance efficiency

nd solution quality. Experiments on initialization and parameter set-
ings provide practical guidance for real-world applications. While the

successive derivative shortest path (SDSP) algorithm contributes signif-
cantly to CCNFP research and industrial applications, future research
ould focus on improving scalability for large-scale networks, integrat-
ng machine learning for dynamic parameter tuning, extending the
lgorithm to stochastic or dynamic network problems, and conducting
ractical case studies to validate its utility. Additionally, future re-
earch could explore adaptive interval reduction strategies, alternative
echanisms for leveraging first-order information, and exploring more

igorous approximation bounds to further strengthen the algorithm’s
obustness and theoretical foundation.
10
CRediT authorship contribution statement

Lu Yang: Writing – review & editing, Writing – original draft,
isualization, Validation, Methodology, Conceptualization. Zhouwang
ang: Writing – review & editing, Supervision.

Ethical approval

This study does not involve human or animal subjects and, there-
fore, does not require ethical approval.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work is supported by the NSF of China (Nos. 92270205,
12301659, 12171453), the National Key R&D Program of China (Nos.
2022YFA1005201, 2022YFA1005202, 2022YFA1005203), and the Ma-
jor Project of Science and Technology Innovation Tackling Plan of
Anhui Province (No. 202423e09050003).

Appendix. The detail of results in comparison

Tables A.10, A.11, and A.12 show the objective values of SDSP
and baselines on all instances with sampling distribution U(3, 30).
Table A.13 presents the results of five algorithms on instances using
six different supply sampling distributions.

L. Yang and Z. Yang Operations Research Perspectives 14 (2025) 100331
Table A.11
The performance of SDSP and comparison algorithms (source radio = 20%).

Objective Scale S.N. Objective value Min

SLSQP AugLag Penalty DSSP SDSP

𝐶𝐿𝑜𝑔 (𝑥)

(10, 40) 2 12.233 6.852 7.137 6.359 6.817 6.359
(20, 100) 4 31.043 14.429 15.213 14.648 14.641 14.429
(40, 300) 8 79.667 37.438 40.974 37.364 33.862 33.862
(60, 400) 12 125.229 55.867 60.465 56.722 57.318 55.867
(100, 1000) 20 180.192 66.711 81.398 68.125 66.520 66.520
(150, 2500) 30 246.597 71.621 81.842 78.679 70.261 70.261
(250, 7500) 50 628.204 126.212 156.388 156.816 120.735 120.735

𝐶𝑃 𝑜𝑤(𝑥)

(10, 40) 2 4.067 1.927 2.218 2.187 2.094 1.927
(20, 100) 4 10.695 4.625 5.462 4.809 4.833 4.625
(40, 300) 8 31.517 10.948 17.320 11.828 10.991 10.948
(60, 400) 12 52.718 17.899 24.176 17.549 17.475 17.475
(100, 1000) 20 71.233 19.472 32.521 19.819 19.298 19.298
(150, 2500) 30 89.989 21.037 49.901 22.031 19.375 19.375
(250, 7500) 50 194.859 35.513 97.613 41.199 33.426 33.426

𝐶𝑆 𝑖𝑔 (𝑥)

(10, 40) 2 8.892 3.997 6.495 2.881 2.409 2.409
(20, 100) 4 18.572 7.930 12.467 7.376 7.075 7.075
(40, 300) 8 48.366 17.687 34.805 13.808 11.889 11.889
(60, 400) 12 75.675 25.767 50.759 22.225 22.517 22.225
(100, 1000) 20 138.305 35.654 70.943 32.124 27.885 27.885
(150, 2500) 30 160.998 35.874 103.043 39.036 32.892 32.892
(250, 7500) 50 550.960 -a 156.605 92.784 55.608 55.608

𝐶𝑀 𝑖𝑥(𝑥)

(10, 40) 2 9.434 4.364 4.477 3.987 3.597 3.597
(20, 100) 4 21.409 9.340 11.229 9.239 9.175 9.175
(40, 300) 8 49.441 18.894 24.626 16.831 15.974 15.974
(60, 400) 12 94.826 30.305 37.676 30.801 27.011 27.011
(100, 1000) 20 134.053 36.667 55.024 35.456 32.269 32.269
(150, 2500) 30 167.05 34.419 62.201 33.089 28.157 28.157
(250, 7500) 50 688.008 56.490 113.206 71.632 43.789 43.789

ARE (%) 312.46 12.64 81.07 13.78 0.93 –
MRE (%) 1471.19 65.92 213.28 66.85 8.67 –

a The case was excluded due to a runtime exceeding 100 h.
Table A.12
The performance of SDSP and comparison algorithms (source radio = 40%).

Objective Scale S.N. Objective value Min

SLSQP AugLag Penalty DSSP SDSP

𝐶𝐿𝑜𝑔 (𝑥)

(10, 40) 4 21.899 12.098 12.098 13.040 12.098 12.098
(20, 100) 8 50.016 28.848 31.456 29.820 29.136 28.848
(40, 300) 16 90.048 32.743 33.051 31.578 31.536 31.536
(60, 400) 24 134.844 54.683 60.982 55.515 53.662 53.662
(100, 1000) 40 265.986 112.562 121.834 112.51 109.64 109.64
(150, 2500) 60 571.204 137.229 158.675 145.319 136.279 136.279
(250, 7500) 100 667.077 191.432 239.798 225.117 183.717 183.717

𝐶𝑃 𝑜𝑤(𝑥)

(10, 40) 4 9.335 3.639 5.070 3.639 3.682 3.639
(20, 100) 8 23.617 11.430 13.059 11.566 11.245 11.245
(40, 300) 16 33.850 8.744 13.058 8.842 8.689 8.689
(60, 400) 24 51.909 17.352 24.385 18.141 17.029 17.029
(100, 1000) 40 103.238 34.698 54.264 34.129 33.847 33.847
(150, 2500) 60 166.401 39.115 78.062 37.626 37.646 37.626
(250, 7500) 100 351.553 51.094 135.612 55.435 48.326 48.326

𝐶𝑆 𝑖𝑔 (𝑥)

(10, 40) 4 9.818 4.990 11.951 4.753 4.457 4.457
(20, 100) 8 21.385 10.254 15.882 9.608 8.843 8.843
(40, 300) 16 55.959 17.881 44.38 15.740 16.378 15.740
(60, 400) 24 76.183 28.943 56.894 23.667 22.866 22.866
(100, 1000) 40 182.580 51.267 127.699 48.013 44.858 44.858
(150, 2500) 60 387.752 85.658 190.943 73.743 58.977 58.977
(250, 7500) 100 548.775 -a 259.373 126.161 87.312 87.312

𝐶𝑀 𝑖𝑥(𝑥)

(10, 40) 4 14.576 6.999 8.495 7.090 7.507 6.999
(20, 100) 8 35.952 16.278 15.490 14.035 14.035 14.035
(40, 300) 16 67.424 18.818 27.261 20.249 18.255 18.255
(60, 400) 24 92.275 23.376 34.273 25.509 22.690 22.690
(100, 1000) 40 166.795 53.625 82.058 50.107 48.864 48.864
(150, 2500) 60 323.589 64.378 119.289 61.524 50.927 50.927
(250, 7500) 100 798.803 83.781 175.731 94.553 65.717 65.717

ARE (%) 286.72 9.00 81.02 9.30 0.48 –
MRE (%) 1115.52 45.24 223.76 44.49 7.26 –

a The case was excluded due to a runtime exceeding 100 h.
11

L. Yang and Z. Yang

a

Operations Research Perspectives 14 (2025) 100331
Table A.13
The performance of algorithms on different distributions.

Dist. Scale SLSQP AugLag Penalty DSSP SDSP

Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

U(1, 5)

(10, 40) 1.233 0.027 0.490 0.012 0.490 0.007 2.7439 0 0.490 0
(20, 100) 5.782 0.064 0.544 0.520 0.544 0.842 0.544 0 0.544 0
(40, 300) 19.600 0.454 3.037 6.393 2.875 3.835 2.912 0.022 2.746 0.003
(60, 400) 9.505 2.597 4.721 38.861 4.159 8.993 4.637 0.028 4.581 0.004
(100, 1000) 11.728 34.397 6.463 168.171 6.828 40.463 6.791 0.178 7.093 0.016

U(6, 10)

(10, 40) 5.686 0.011 1.378 0.048 1.378 0.021 1.378 0.001 1.378 0
(20, 100) 7.295 0.065 2.994 0.094 2.994 0.065 2.994 0.001 2.994 0.001
(40, 300) 16.900 1.531 6.289 8.870 5.864 2.732 6.929 0.026 5.295 0.002
(60, 400) 30.033 2.475 9.386 26.222 10.97 5.505 10.273 0.053 9.741 0.015
(100, 1000) 92.566 52.944 12.354 191.858 14.077 40.431 11.015 0.211 10.575 0.038

U(11, 15)

(10, 40) 7.736 0.029 2.999 0.376 3.089 0.212 2.999 0 2.999 0
(20, 100) 15.710 0.044 2.666 0.557 5.678 0.280 3.165 0.003 2.666 0
(40, 300) 30.678 0.732 5.088 13.900 7.895 3.608 4.842 0.018 4.658 0.003
(60, 400) 49.007 2.491 10.822 24.504 13.184 4.167 11.040 0.030 9.428 0.004
(100, 1000) 105.015 10.885 13.696 195.967 20.725 58.975 16.006 0.303 13.802 0.048

U(16, 20)

(10, 40) 8.919 0.015 1.546 0.093 2.879 0.380 2.008 0.001 1.546 0
(20, 100) 16.480 0.010 2.000 0.098 2.666 0.210 0.790 0.001 0.790 0
(40, 300) 28.831 1.600 6.588 4.903 10.729 2.095 7.166 0.025 5.419 0.003
(60, 400) 58.931 1.173 15.686 62.042 17.553 12.306 12.002 0.051 10.893 0.011
(100, 1000) 108.513 24.762 19.412 279.809 31.521 53.620 18.924 0.301 14.794 0.026

U(21, 25)

(10, 40) 11.294 0.020 3.031 0.232 5.517 0.551 4.297 0.001 3.031 0.001
(20, 100) 17.965 0.177 7.257 1.027 7.705 0.900 7.198 0.003 5.178 0
(40, 300) 49.990 0.506 8.796 7.756 23.956 5.889 10.873 0.029 7.747 0.004
(60, 400) 47.212 2.968 11.723 17.649 20.677 8.747 13.822 0.085 10.786 0.008
(100, 1000) 120.061 35.225 18.720 435.540 38.801 68.195 23.184 0.623 17.877 0.049

U(26, 30)

(10, 40) 13.085 0.008 4.166 0.192 4.996 0.182 4.363 0.001 4.166 0.001
(20, 100) 23.087 0.119 9.071 0.423 12.675 1.635 9.413 0.004 9.416 0.001
(40, 300) 66.460 0.849 16.811 10.953 27.407 4.917 19.164 0.067 14.655 0.013
(60, 400) 77.165 1.411 21.391 26.999 32.316 7.841 20.406 0.097 20.854 0.011
(100, 1000) 99.401 28.575 20.825 196.434 39.568 57.889 22.338 0.934 15.598 0.100
Data availability

The data generated and analyzed during this study are publicly
available at the following link: https://github.com/lufizyang/Data-
nd-Code-for-CCNFP.

References

[1] Klein M. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Manag Sci 1967;14:205–20. http://dx.
doi.org/10.1287/mnsc.14.3.205.

[2] Bassetti F, Gualandi S, Veneroni M. On the computation of kantorovich–
wasserstein distances between two-dimensional histograms by uncapacitated
minimum cost flows. SIAM J Optim 2020;30:2441–69. http://dx.doi.org/10.
1137/19M1261195.

[3] Sarkar S, Chakrabarti A, Prasad Mukherjee D. Generation of ball possession statis-
tics in soccer using minimum-cost flow network. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR) workshops. 2019.

[4] Jenne M. Minimum-cost flow algorithms for the wind farm cabling
problem (Bachelor thesis), Karlsruhe Institute of Technology; 2020.

[5] Farsi M, Fetz A, Filippini M. Economies of scale and scope in local public
transportation. J Transp Econ Policy (JTEP) 2007;41:345–61.

[6] Shen Z-JM, Coullard C, Daskin MS. A joint location inventory model. Transp Sci
2003;37:40–55. http://dx.doi.org/10.1287/trsc.37.1.40.12823.

[7] Orlin J. A faster strongly polynomial minimum cost flow algorithm. In: Proceed-
ings of the twentieth annual ACM symposium on theory of computing. 1988, p.
377–87.

[8] Sifaleras A. Minimum cost network flows: Problems, algorithms, and software.
Yugosl J Oper Res 2016;23(1).

[9] Kovács P. Minimum-cost flow algorithms: an experimental evaluation. Optim
Methods Softw 2015;30(1):94–127.

[10] Ahuja RK, Magnanti TL, Orlin JB. Network flows. 1988.
[11] Wu Z, Karimi HR, Dang C. A deterministic annealing neural network algorithm

for the minimum concave cost transportation problem. IEEE Trans Neural Netw
Learn Syst 2019;31:4354–66. http://dx.doi.org/10.1109/TNNLS.2019.2955137.

[12] Lin Y, Schrage L. The global solver in the lindo api. Optim Methods Softw
2009;24:657–68. http://dx.doi.org/10.1080/10556780902753221.
12
[13] Balakrishnan A, Graves SC. A composite algorithm for a concave-cost net-
work flow problem. Networks 1989;19:175–202. http://dx.doi.org/10.1002/net.
3230190202.

[14] Konno H, Egawa T. Computational studies on large scale concave cost
transportation problems. Pac J Optim 2006;2:327–40.

[15] Altiparmak F, Karaoglan I. An adaptive tabu-simulated annealing for concave
cost transportation problems. J Oper Res Soc 2008;59(3):331–41.

[16] Pegon P, Piazzoli D, Santambrogio F. Full characterization of optimal transport
plans for concave costs. 2013, arXiv preprint arXiv:1311.3406.

[17] Kelly DL, Khumawala BM. Capacitated warehouse location with concave costs.
J Oper Res Soc 1982;33(9):817–26.

[18] Guisewite GM, Pardalos PM. Minimum concave-cost network flow problems:
Applications, complexity, and algorithms. Ann Oper Res 1990;25:75–99. http:
//dx.doi.org/10.1007/BF02283688.

[19] Xing T, Zhou X. Finding the most reliable path with and without link travel time
correlation: A lagrangian substitution based approach. Transp Res B: Methodol
2011;45:1660–79. http://dx.doi.org/10.1016/j.trb.2011.06.004.

[20] Monteiro MS, Fontes DB, Fontes FA. Concave minimum cost network flow
problems solved with a colony of ants. J Heuristics 2013;19:1–33. http://dx.
doi.org/10.1007/s10732-012-9214-6.

[21] Ghasemishabankareh B, Ozlen M, Li X, Deb K. A genetic algorithm with
local search for solving single-source single-sink nonlinear non-convex minimum
cost flow problems. Soft Comput 2020;24:1153–69. http://dx.doi.org/10.1007/
s00500-019-03951-2.

[22] Monteiro MS, Fontes DB, Fontes FA. An ant colony optimization algorithm to
solve the minimum cost network flow problem with concave cost functions.
In: Proceedings of the 13th annual conference on genetic and evolutionary
computation. 2011, p. 139–46. http://dx.doi.org/10.1145/2001576.2001596.

[23] Yan S, Shih Y, Wang C. An ant colony system-based hybrid algorithm for
square root concave cost transhipment problems. Eng Optim 2010;42:983–1001.
http://dx.doi.org/10.1080/03052150903563751.

[24] Fontes DB, Gonçalves JF. Heuristic solutions for general concave minimum cost
network flow problems. Netw: Int J 2007;50:67–76. http://dx.doi.org/10.1002/
net.20167.

[25] Larsson T, Migdalas A, Rönnqvist M. A lagrangean heuristic for the capac-
itated concave minimum cost network flow problem. European J Oper Res
1994;78:116–29. http://dx.doi.org/10.1016/0377-2217(94)90126-0.

[26] Yang L, Yang Z. A sequential reduction algorithm for the large-scale fixed-
charge network flow problems. Optim Lett 2023;1–19. http://dx.doi.org/10.
1007/s11590-023-02040-6.

[27] Button K. Transport economics. Aldershot: Edward Elgar Publishing; 2010.

https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
https://github.com/lufizyang/Data-and-Code-for-CCNFP
http://dx.doi.org/10.1287/mnsc.14.3.205
http://dx.doi.org/10.1287/mnsc.14.3.205
http://dx.doi.org/10.1287/mnsc.14.3.205
http://dx.doi.org/10.1137/19M1261195
http://dx.doi.org/10.1137/19M1261195
http://dx.doi.org/10.1137/19M1261195
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb3
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb3
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb3
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb3
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb3
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb4
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb4
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb4
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb5
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb5
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb5
http://dx.doi.org/10.1287/trsc.37.1.40.12823
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb7
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb7
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb7
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb7
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb7
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb8
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb8
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb8
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb9
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb9
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb9
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb10
http://dx.doi.org/10.1109/TNNLS.2019.2955137
http://dx.doi.org/10.1080/10556780902753221
http://dx.doi.org/10.1002/net.3230190202
http://dx.doi.org/10.1002/net.3230190202
http://dx.doi.org/10.1002/net.3230190202
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb14
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb14
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb14
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb15
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb15
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb15
http://arxiv.org/abs/1311.3406
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb17
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb17
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb17
http://dx.doi.org/10.1007/BF02283688
http://dx.doi.org/10.1007/BF02283688
http://dx.doi.org/10.1007/BF02283688
http://dx.doi.org/10.1016/j.trb.2011.06.004
http://dx.doi.org/10.1007/s10732-012-9214-6
http://dx.doi.org/10.1007/s10732-012-9214-6
http://dx.doi.org/10.1007/s10732-012-9214-6
http://dx.doi.org/10.1007/s00500-019-03951-2
http://dx.doi.org/10.1007/s00500-019-03951-2
http://dx.doi.org/10.1007/s00500-019-03951-2
http://dx.doi.org/10.1145/2001576.2001596
http://dx.doi.org/10.1080/03052150903563751
http://dx.doi.org/10.1002/net.20167
http://dx.doi.org/10.1002/net.20167
http://dx.doi.org/10.1002/net.20167
http://dx.doi.org/10.1016/0377-2217(94)90126-0
http://dx.doi.org/10.1007/s11590-023-02040-6
http://dx.doi.org/10.1007/s11590-023-02040-6
http://dx.doi.org/10.1007/s11590-023-02040-6
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb27

L. Yang and Z. Yang Operations Research Perspectives 14 (2025) 100331
[28] Kraft D. A software package for sequential quadratic programming. Tech. rep.
DFVLR-FB 88-28, Koln, Germany: DLR German Aerospace Center — Institute for
Flight Mechanics; 1988.

[29] Powell MJD. A method for nonlinear constraints in minimization problems.
Optimization 1969;283–98.

[30] Hestenes MR. Multiplier and gradient methods. J Optim Theory Appl
1969;4(5):303–20.

[31] Rockafellar RT. A dual approach to solving nonlinear programming problems by
unconstrained optimization. Math Program 1973;5(1):354–73.
13
[32] Nocedal J, Wright SJ. Numerical optimization. Springer; 1999.
[33] Bertsekas DP. Constrained optimization and Lagrange multiplier methods.

Academic Press; 2014.
[34] Fletcher R. A class of methods for nonlinear programming with termination and

convergence properties. J Inst Math Appl 1970;6(1):76–90.
[35] Zangwill WI. Nonlinear programming via penalty functions. Manag Sci

1967;13(5):344–58.
[36] Kim D, Pardalos PM. A solution approach to the fixed charge network flow prob-

lem using a dynamic slope scaling procedure. Oper Res Lett 1999;24:195–203.
http://dx.doi.org/10.1016/S0167-6377(99)00004-8.

http://refhub.elsevier.com/S2214-7160(25)00007-7/sb28
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb28
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb28
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb28
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb28
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb29
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb29
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb29
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb30
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb30
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb30
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb31
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb31
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb31
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb32
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb33
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb33
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb33
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb34
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb34
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb34
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb35
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb35
http://refhub.elsevier.com/S2214-7160(25)00007-7/sb35
http://dx.doi.org/10.1016/S0167-6377(99)00004-8

	An advanced Successive Derivative Shortest Path algorithm for concave cost network flow problems
	Introduction
	Formulation of Problems
	Sequential Reduction Algorithm
	Successive shortest path
	Successive derivative shortest path
	Time and space complexity analysis
	Time complexity analysis
	Space complexity analysis

	Numerical Experiments
	Instruction of instances
	Initialization and parameter selection
	Effectiveness
	Comparison

	Conclusion
	CRediT authorship contribution statement
	Ethical Approval
	Declaration of competing interest
	Acknowledgments
	Appendix. The Detail of Results in Comparison
	Appendix . Data availability
	References

