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Copositivity is a property of symmetric matrices which is NP-hard to check. Nevertheless, it plays a crucial role
in tight bounds for conic approaches of several hard optimization problems. In this paper, we present novel
promising shortcut strategies to exploit favorable instances in a systematic way, using decomposition strategies
based upon the idea to allow for overlapping, smaller blocks, profiting from a beneficial sign structure of the

entries of the given matrix. The working hypothesis of this approach is the common empirical observation
in the community that for detection of copositivity, a negative certificate is easier to obtain than a positive
one. First empirical results on carefully orchestrated randomly generated instances seem to corroborate our

approach.

1. Introduction
1.1. Motivation

Copositivity lies at the core of modern cone-based optimization
methods to obtain tractable bounds of hard problems in both contin-
uous (polynomial) and discrete domains (e.g., the maximum clique
problem). Overviews of the various application fields can be found,
e.g., in [1-3].

The property of copositivity of a symmetric matrix is well-studied,
dating back to 1952 when it came up in [4]. From then on, nu-
merous results have been achieved in this field [5], from general
structural results in Linear Algebra to concrete algorithms in numerical
implementations.

It has been shown that testing a matrix for copositivity is a co-NP-
complete problem [6]. To find good algorithms for specific types of
matrices (like for tridiagonal [7] or acyclic matrices [8]) is an active
field of Operations Research.

Another branch of research is concerned with trying to find faster
methods for the general case, exploiting favorable constellations of the
problem data in an automated way. A most likely incomplete list of
recent algorithmic attempts (either for solving the problem directly or
else using approximation results on the cone of copositive matrices)
is [9-14] and references therein; cf. [15].

For solving the decision problem whether or not a given matrix is
copositive, i.e. whether or not the quadratic form it generates takes

* Corresponding author.

no negative values over the positive orthant, we need two types of
certificates:

a negative certificate, i.e., a violating vector x € R} such that
xTAx < 0 (here and in the sequel we denote transposition by T), or else
a positive certificate, e.g. in form of a rigorous lower bound # to the
problem parameter

y(A) = min {XTAX IXE A"}

where 4" = {x€R" : Y, x; =1} is the standard simplex. We can
be sure that A is copositive if # > 0 due to £ < y(A), by positive
homogeneity of the quadratic form in x. For the same reason, the search
for a violating vector can also be restricted to 4”, or any intersection
of a norm ball with the positive orthant.

Interestingly enough, it has been observed independently by many
researchers (in almost all of above cited references) that empirically it
seems to be easier to obtain negative certificates rather than positive
ones; one reason might be that this can be achieved also by local
descent search (and moderate multistart) for y(A). In practice, it seems
that a violating vector (with negative feasible value) is more easily
found than a non-negative rigorous lower bound ¢ for y(A), very much
in line with adverse instances for branch-and-bound algorithms. In
our case, there are of course exceptions: e.g., if A = la;;1;; has no
negative entries, then we can use obviously £ = min;; a; > 0 as a
positive certificate. Likewise, if A is positive-semidefinite, we can use
£= % Jin(A) 2 0.
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1.2. Our contribution; organization of the paper and notation

Here we propose an innovative approach for decomposing a given
matrix in a way that several but smaller matrices have to be checked
on their copositivity. This way, we generate a hierarchy of smaller
instances. Our aim here is to provide a powerful preprocessing tool
which automatically detects easy cases at an early stage.

After introducing the principle of decomposition with overlaps for
general matrices, we will focus on more benign scenarios when working
with k-diagonal matrices. This matrix class allows a straightforward use
of the proposed method, reducing computational effort tremendously
and enabling insights into the procedure of proving copositivity. The
special case of pentadiagonal matrices will be analyzed in more detail,
along with a carefully designed experiment assessing the quality of
this approach. A concluding section then summarizes and provides an
outlook for potential future work.

Some notation:

S, = {A€R™" : AT = A} the set of symmetric matrices of order n.
P, :={A€S, : A,n(A) >0} the set of positive-semidefinite matrices.
N, = {A € S, : min;q; > 0} the set of symmetric nonnegative
matrices.

The symbol O stands for a generic, possibly rectangular, matrix
of zeroes of suitable size. In a similar fashion, e generically denotes
the all-ones vector of suitable size. Finally, for A € S, we denote by
Ddiag(A) € S, a diagonal matrix with the same diagonal entries as A.

1.3. Some useful results on copositivity

Let us start by some helpful elementary properties of copositive
matrices. First we observe that there is nothing special about the
standard simplex (apart from being the simplest polytope), in that it can
be replaced with any positive portion of a unit sphere: let ||.|| denote
any norm on R”" and define, for a symmetric n X n matrix A,

u(A) :=min {xTAx : ||x||=1,x€R"}. 1

Then A is copositive if and only if u(A) > 0.

The choice of #'-norm ||x||;, := Y. Ix;| would yield u(A) = y(A)
discussed above.

One of the essential properties is that copositivity is inherited by
any principal submatrix (PSM) of a symmetric copositive matrix A.
This result will be used repeatedly in later chapters and is, therefore,
especially important.

Theorem 1.1 ([5]). If A is a copositive, symmetric matrix, then also every
PSM of A and every permutation similar matrix PT AP (with P a permutation
matrix) is again copositive.

Another useful result for simplification of later steps is concerned
with rescaling of main diagonal elements.

Theorem 1.2 ([16]). Let A € S,, have only positive diagonal elements and
define D = [Ddiag(A)]~'/2. Then A is a copositive matrix if and only if the
rescaled matrix DAD, where all diagonal elements are 1, is copositive.

While establishing copositivity of a matrix indeed becomes very
hard for larger orders, there are closed-form solutions for matrices of
small order [17-20].

Theorem 1.3. A symmetric matrix A € S, of order two is copositive if
and only if

a;; 20 and ay >0

and

ap + m >0.

A symmetric matrix A € S; of order three is copositive if and only if

a;; 20, ap 20, a3 20,
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ap =ap++/ajap 20,
ap t=ap++/aja; 20,

dy; 1=ay +/ana 20

and

Va11a0a33 + a1p4/a33 + a13/ap + ayz/ay + V/2a15a13d3 2 0. (2

In the special case where all diagonal entries are equal to one, and if there
is a sign change in two rows off the diagonal (the only case where no
row/column reduction is directly possible, see below), e.g., if min{a,3,a,3} >
0 > ay,, these conditions reduce to

ap 2 -1,
while for the opposite case max{a,3,a,3} <0 < a, they reduce to

min{aj3,a,3} > =1 and 14 ap, +\/2a,d3053 > —(aj3 + ax).

Note that the original criterion in the case of order 3 in [19] is
slightly different: while keeping the first 6 inequalities a; > 0 and
a; > —\/rajj above, condition (2) is replaced with the alternative
condition

det A>0 or +/ajanasz;+apy/asz+aj;z/as +ayy/a;; = 0. 3

As claimed in [17], direct equivalence was proved by [18]. In the sequel
we will employ either (2) or (3), whichever seems more convenient.

Similar closed-form conditions to determine copositivity of a matrix
of order n < 7 can be found in [21] — beyond this order, to the best of
the authors’ knowledge, there are no algorithmic solutions to that do
not either focus on an investigation on single rows/columns or require
some recursive procedure. To this end, in the sequel we will focus on
decomposition methods. For recursions, we only consider matrices of
higher order (n > 7), as smaller ones can be solved directly.

1.4. Decomposition strategies for checking copositivity

In order to reduce the order of the matrix to be checked, the
following theorem explains in which cases specific columns/rows can
be omitted. Since every permuted version PTAP of A shares the same
copositivity property with A, we can focus without loss of generality
on the first row.

Theorem 1.4 ([7,22]). Let A € R"™" be a symmetric matrix with the
following partitioning:

a b
A= [bT B] “)

where B is an (n — 1) X (n — 1) (symmetric) matrix, « € R and b € R"!,
Then the following statements hold:

(@) If a <0 then A is not copositive.
—1 . . . . .
(® Ifb € Ry and a > 0 then A is copositive if and only if B is
copositive.
—1 . . . .
(c) If however —b € R!"! and a > 0 then A is copositive if and only if

aB—bbT,
the Schur complement scaled by a, is copositive.

(d) If « = 0 and at least one entry of b is negative, then A is not
copositive.

Generalizing above result (c) to more than one row, we obtain the
following:
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Theorem 1.5 ([23,24]). Let A € S, with the decomposition
B D
A= [ decT dec] (5)

where B,,. € S,, Cyec € S; and D, € R™! with m + 1 = n. Let B, be
positive-definite and assume that B;e'c Dy.. has no positive entry.

Then A is copositive if and only if Cy,, — Dy, B} Dy, is copositive.

Remark 1.6. If we assume B, only copositive instead, this result does
not hold any longer — consider the following example:
1 2 -1
1 2

-1
A=|2 1 =1, Bdec = [2 1] ) Ddec = [_1] ’ Cdec = [07]
Then we have that

-1 -1 07
o2l [-l
B;c}chec = [ 23 _3l:| —1] = |:_i:|
3 3 3

has no positive entry, and

T
-1
Tp-1

Cdec - Ddec Bdechec =07- [_1]
0

is copositive. But the original matrix A is not copositive, as x = | 1 | with
1

x"TAx = —0.3 < 0 is a violating vector.

With the same decomposition, the following result uses different
(sufficient) conditions.

Proposition 1.7. Let A € S, with the decomposition
A= [ Bdcc_l_ Ddcc] (6)

where By, € S,,, Cyoc € S; and D, € R™! with m+1 = n, such that B,
and Cy,, are both copositive, and such that D,,. € R™! has no negative
entry.

Then A is copositive.

Proof. It is trivial to see that the sum of copositive matrices is always
copositive. In our case, A is the sum of three matrices

Bjee ©O (0] Dyjee (6] (6]
A= dec ] + [ deL] + [ ] , (7)
[ OT o DdecT o OT Cdec

each of which are copositive for different obvious reasons. []

This means that if a matrix is brought in a form where nonnegative
values accumulate in the northeast (upper right) and southwest (lower
left) corner, and hence forming ‘rectangles’ in the corners such that the
decomposition in (6) can be applied, only B, and C,,. have to be
checked for copositivity to verify the same for A. This is the main idea
of the copositivity checking procedure explained in the sequel.

To ease formulation, let us introduce the undirected negative sign-
graph G_(A) of a given symmetric n X n matrix A: the vertex set is
V = {1,...,n} and every negative a;; < 0 generates an edge {i,j} in
G_(A), which then has adjacency matrix

A% 1= [H(=a;)]i jrevxy -

with the Heaviside function H(¢) = sign(max{t,0}), hence

{0
H@) =
1

Obviously, if A is a symmetric matrix, then A® is also symmetric.

ift <0,
ift>0.

If G_(A) has m connected components, Proposition 1.7 can be re-
peatedly applied:
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Theorem 1.8. If A € R™" is a symmetric matrix such that A® is a block
diagonal matrix with off-diagonal zero blocks,

A’lr o - O
o es
I s A ®
0O 0O - A
then A is copositive if and only if the respective matrices A, ..., A, are
copositive.

Proof. The assertion follows from Proposition 1.7 by induction on m
and Theorem 1.1. [

2. Preprocessing, reordering and decomposition with overlaps
2.1. Matrix preprocessing

In the following sections we will assume that the given matrix A
is preprocessed, meaning that the criteria of Theorem 1.4 are checked
and applied repeatedly, until none of these criteria is met anymore.
This means especially that rows/columns with only positive or negative
values (apart from the main diagonal) are removed. Also, as a final step
using Theorem 1.2 we ensure A,; = 1 for all positive main diagonal
elements of A.

2.2. Fast reordering for decomposition

Both for visualization and easy implementation, the first step of
our algorithm is to reorder A° such that connected components used
in Theorem 1.8 can easily be identified. These components are then
checked for copositivity.

To this end, the (reversed) Cuthill-McKee algorithm, as first men-
tioned in [25] is used to find an appropriate permutation of rows
and columns; see [26]. A fast implementation in Python using the
‘Scipy’ module [27] is available. Once the desired permutation of
A’ is reached, A gets permuted in the same way. This implicitly leads
to non-negative values accumulating in the north-east and south-west
(see Fig. 1).

The result is that starting from the lower right corner, connected
points are kept together while separate components form their own
clusters. If the graph has separated components, a clearly visible struc-
ture indicating the split point between the components will emerge.

An example is visualized and discussed in the appendix.

Proceeding for connected components (if necessary, for all), we
finally have to deal with the connected case.

2.3. Case of connected G_(A)
Theorem 2.1. Let A € S, be a matrix resulting from all preprocessing

steps. After appropriate symmetric reordering of rows and columns, the
following decomposition of A is always possible, generalizing (7):

A=B+C+D-E (C)]
with

B (@)
B=[é"c o €S, and By €S,,

(6]
C=[O ]es,, and Cu €S,

9] Cdec
o) 0] Ddec
D=| O O O |eWN, with D, R,
Dje! O O

and
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20 40 60 80

Fig. 2. Left: original matrix; center: reordered matrix; right: found decomposition with the matrices B,,,,C,
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0 20 40 60 80

0 5 10 15 20

and E,,, indicated by their yellow boundaries, defined by the matrix

dec

D, in the corners. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

O O O
E=|0 Eg. OfeS, with Ei €8,
O O O

such that E ;.. is the overlapping common part of the matrices B,,. and C,,.
This means that m+ ! —u=n, m+h=nand l + k = n.

Proof. Assume A to be a matrix as described. Then there must exist
at least one non-negative entry in each row/column of the matrix
(otherwise this row would have been deleted in the preprocessing steps
of Theorem 1.4). Hence there always exists a permutation such that
there is a non-negative entry in the upper right corner of the matrix.
So D,,. can at least be set to only consist of this one entry and define
the other matrices accordingly, which is a valid (but perhaps not very
useful) decomposition according to the theorem. []

Based on Theorem 2.1, we note the equivalence of (9) to
A-D=B-E)+(C-E)+E. (10)

The matrix E represents the overlapping part between the matrices B
and C, i.e. where their respective adjacency matrices B° and C° could
have nonzero entries. In the case described in (6), E would be the empty
matrix (of order 0). The matrix D consists of non-negative entries that
accumulate in the northeast and southwest corners of the matrix A
after reordering. See Fig. 2. The matrix D is by no means unique; in
implementation it pays to pick the largest of available “dark rectangles”
(by area).

Now we can derive some properties given the introduced decompo-
sition:

Theorem 2.2.
Theorem 2.1.
(a) If one of the matrices B, C and E is not copositive, then A cannot
be copositive. Constructing violating vectors for A using those of the other
negative certificates is straightforward by augmentation.
(b) All copositivity tests for above submatrices actually can be applied
after dropping zero rows and columns, which may reduce order.

Let A € S, have the decomposition as discussed in

Proof. (a) The addressed matrices are all PSMs, so the result follows
by Theorem 1.1. (b) is trivial. []

Now we introduce a sufficient condition for copositivity of A with
connected G_(A):

Theorem 2.3. Let A € S, be a real, symmetric matrix with connected
G_(A), decomposed as discussed in Theorem 2.1. Then A is copositive if
there is a A € (0, 1) such that

B-—(1-AE=B-E)+4E and C—AE=(C—-E)+ (- AE

are both copositive.

Proof. If a A exists such that both B—(1—1)E and C— AE are copositive,
then by (10) we have

(A-D)=[B-E)+ AE]+[(C—E)+ (1 — DE]

which is copositive as the sum of copositive matrices is always coposi-
tive. Hence A is copositive. []

Remark 2.4. It is worth noting that
B-(1-ADE=B-E)+4E and C-AE=(C-E)+(1-AE
both copositive with 4 € {0,1} is not possible. If we assume 1 = 0 we
have
B-(1-A)E=B-E
which is equivalent to
[B+ Bz]_[o O]z[B% Bz]'
82 Egdec O Egec B2 (0]

Now, if any entry in B, were negative, the resulting matrix would not be
copositive due to Theorem 1.4(d). But if there were indeed no negative
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entries in B,, G_(A) would actually be disconnected, contradicting the
assumption in Theorem 2.3.

For a positive certificate, the main task is now to find such a 4.
In the following, some cases that can occur while searching for this
are discussed. While looking for a suitable A to prove copositivity, it
is possible that only one of both resulting matrices is copositive while
the other one is not. But such a mixed result yields no valuable insight
since no conclusion about copositivity of A can be made. Hence, one
has to keep looking for a ‘decisive’ A — the following theorem ensures
that this search will always terminate in either of the cases presented.

Theorem 2.5. Let A € S, preprocessed and reordered with a decompo-
sition as in Theorem 2.1 and assume B, C and E are copositive. Then there
is always a A € [0, 1] such that either

both B — (1 — A)E and C — AE are copositive
or
both B — (1 — A)E and C — AE are not copositive.

If there is a A, such that both matrices are copositive, then there is no A,
such that both of them are not copositive and vice versa.

Proof. Define the functions

f) = min{xT(B —(1-AE)X :x€ Ri, x|l =1}
and

g(A) =min{x (C—AE)x : x e R", ||x|| =1}

for some norm ||.||. Obviously both functions are continuous in the vari-
able 4. Also, since the matrix E is assumed to be copositive, both func-
tions are monotone - f is monotonically increasing, g is monotonically
decreasing.

If for some 4 either f or g is negative, the respective matrix is not
copositive - on the other hand, if the function takes a non-negative
value, the respective matrix is copositive.

If for some 4 both functions evaluate to a negative result case 2 is
satisfied, and if both functions evaluate to a non-negative result, case 1
is satisfied. Now the focus lies on showing that either of both cases is
always satisfied. Without loss of generality, we say that for 0 < 4, <1
we have that f(4,) < 0 and g(4;) > 0 (e.g. we know that for 4 = 0,
g(0) > 0 since C is copositive, and if the negative sign graph G_(A) is
connected, f(0) < 0 as established in Remark 2.4).

Now, evaluate f(1). If the result was negative, then B would be not
copositive which contradicts the assumptions made on B.

By the intermediate value theorem, there must exist a 4 € (4;,1]
such that f(A) = 0. We therefore choose

Ay i=min{A € (4;,1] : f(1) =0}.

Next, evaluate g(4,); if the result is non-negative, both functions are
non-negative with the same 4,, and we are done since f(4,) = 0. If, on
the other hand, g(4,) < 0, then (by continuity of f and g) there exists
an e > 0 such that g(4, —¢) < 0 and f(4, —€) < 0, which completes this
part of the proof.

What is left to check is that there can never co-exist two 4,,4, €
[0, 1] with

g(A)) <0and f(4,) <0
and simultaneously
g(4,) >0and f(4,)>0.

Assume such 4; existed. Then by monotonicity of f and g

g4 <0<g(h) = Ah<4
and at the same time
FAD <0< fh) = ALh>4y,

which are contradictory statements. []
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Observe that the functions f and g are merely used for proof
purposes, we need not know all values of them. One way of determining
the correct A in a concrete implementation would be to apply a bisec-
tion procedure, i.e., starting at 4 = 0.5 and evaluating both matrices. If
f(4) is positive and g(4) is negative, choose 4 = 0.25 in the next step,
if f(A) is negative and g(4) is positive continue with A = 0.75 etc. until
both matrices are copositive or both are not.

Even if it seems impossible to obtain a straightforward definitive
statement on copositivity of A if (A — D) is not copositive in a general
case, it is still worth investigating some properties that are connected
to the described procedure.

Theorem 2.6. If there is a A such that both B — (1 — 1)E and C — AE are
not copositive, then (A — D) is not copositive if the intersection of

_X_-r X
B; i={yeR!:|y| B-(1-AE)|y|<0 for somex €R’
707 [J]
and
e Ll
0 o
C} =1y €RY:|y| (C-4E)|y|<0 for some z € RY
z z

is not empty, Bj n Cy* # (. Here n is the order of the original matrix A and
ut+v+w=n.

Proof. Consider a vector y € B; n Cj. Also, based on the definition of
both sets, there are vectors x € B;, A= C; that satisfy

$'B-(1-ADEX <O
and
72 (C—JE)Z <0

with

T T 7 n
, X ¥,2€R],

N < ©

X 0
X=|y[,¥y=|y|.z=
o o

such that both contain the y vector. Then we have that

0>%"(B—(1-ADE)X+Z (C—AE)z =
E+2-9)'B-(1-DEE+Z-§) +&+Z-y) (C—IE)X+Z—-§) =

®+Z2-9)(B-E)+(C-E)+E)X+Z-§) = X+Z—F) (A-D)X+Z~-¥)"
and X + 7 — § € R/, since the y part occurred in both vectors X and z.
The expansion of the vectors follows the structure of the matrices B, C,
and E. [

In summary, the approach is the following:

Once the decomposition Theorem 2.1 has been applied, the follow-
ing steps have to be taken:

1. Check if B, C and E are copositive matrices.

(1a) If they are copositive, continue;
(1b) else A is not copositive.

2. Find a 4 for the matrices B and C as described in Theorem 2.5.

(2a) If both B — (1 — A)E and C — AE are copositive. Then A is
copositive;

(2b) If both B — (1 — A)E and C — AE are not copositive. Then A
is flagged ‘not determined - so no copositivity certificate
on A can be issued at this stage.
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Obviously, the algorithm can be applied recursively, splitting up
very large matrices into smaller, easier-to-check parts.

3. Decomposition for k-diagonal matrices

Above decomposition strategy can be used on any arbitrary matrix
in the quest to prove copositivity, but the computational cost may be
growing exponentially with the order. However, for a special class of
matrices this algorithm seems particularly appropriate:

Definition 3.1. Consider an odd k € N. A matrix A € S, is called
k-diagonal, if all its entries are 0, except for the main diagonal and the
(k — 1)/2 adjacent off-diagonals: a;; = 0 if |i — j| > k/2.

Obviously, if the matrices B and C in the decomposition procedure
are chosen properly, we are able to get D = O (a zero matrix) rather
easily with this specific type of matrices — namely when choosing B4,
and Cgye. as 3 x 3 matrices. Then, starting from the upper left corner we
can step by step check the individual block, i.e., the resulting matrices
B, C and E, and try to find a A such that the block becomes copositive.
Hence, instead of ending up with a rapidly growing tree of possibilities
for the best choice of A-s, the search simplifies to a straightforward
procedure.

This idea is demonstrated for the case k = 5, i.e., pentadiagonal
matrices. But the exact same algorithm could be applied to arbitrary k
- given that a sufficiently fast copositivity check for the intermediate
matrices exists (following [21], one can imagine a comparably fast
procedure for k < 13).

Since every symmetric, pentadiagonal matrix can be processed such
that the main diagonal only consists of ones (without having any effect
on the property of copositivity), matrices considered in this section are
of the form

I ap ap 0 0 0
a1 ay ay 0 0
A=|%B 932 1 a3y 0
0 ap agy 1 n—2n
0 0 Ay p

0 0 0 a a 1

n,n—2 n,n—1

with a;; = a;; and without loss of generality all entries in the range
[-1,1]; indeed, recall that g; ;< -1 renders the matrix not copositive,
while a;; > 1 can be truncated to one without changing the copositivity

status of the matrix [22, Lemma 4.4].
3.1. Case n=4

This is the smallest order where pentadiagonality has a meaning,
namely a;, = 0. We will study this just to illustrate how this structure
can simplify analysis. We will give only rough ideas and start with
a case distinction according to sign patterns. Indeed, define k_ to be
the number of negative entries above the diagonal, and assume that
matrices of order three can be easily treated. Then obviously the cases
k_ € {0,1} are easy, because at least one row/column can be dropped.
The next case k_ = 2 has essentially two patterns, one where again a
non-negative row/column can be dropped. The other, not immediately
reducible pattern looks like

1 + - 0
A=|t 1+ - with negative-sign graph G_(A)
- o+ 1+ equal to two disjoint edges.
0 - + 1

Proposition 3.2. Suppose A follows above sign-pattern with all PSMs of
order two positive-semidefinite. Then A is copositive.
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Proof. Exchanging rows/columns 2 and 3 by P, we are in the disjointly
decomposable case

I - + 0
pTap=|" 1 * 7
+ 1 -

0 + - 1

where all PSMs of order 2 are copositive by hypothesis, therefore the
whole A is as well, according to Proposition 1.7. []

We proceed to k_ =3 and at first look at the sign pattern

I - + 0
Al I - + with negative-sign graph
[+ - 1 —|"  G_(A) = P, the path on 4 vertices.
0 + - 1

This is not immediately reducible. The copositivity criteria are more
complex than before, some may imply others, and they may be simpli-
fied a bit as well:

Proposition 3.3. Suppose A follows above sign-pattern with all PSMs of
order two positive-semidefinite. Then all PSMs of order three are copositive

if and only if

2 2 2 .
1 apayy <a3 or ap,+a;+ay, <142apa3a3 and

2 2 v)
2. apayy <ay or  ay +ay, +ay, <1+ 2anaa3.

Furthermore, in this case A itself is copositive if the two following
conditions are satisfied in addition:
2 2 _ 2
3. apaiy+ayaz <ay or  (apapy +ayaz—ay) < (1- ap, —ay)(1-
2 _ 2.

aj, —ay,); and

2 2 2 2
4. max{a21 + a5, a3 + 034} <l

Proof. First we investigate copositivity of all PSMs of order three. For
ease of notation let us decompose and denote in this proof

1 a" o
. 1 o
A=|a E b| with E=[ 1],
0 b7 1 °
where max{a, b,,0} <0 <min{a,,b,}. In the two PSMs of order three,
1 a O
a 1 b|.ie{1,2},
0 b 1

i

dropping, respectively, row/column 1 if i = 1 and row/column 3 if i = 2
which both contain no negative entry. Thus they are copositive, as all
PSMs of order two are by hypothesis.

-
By contrast, in both the remaining two PSMs Lll aE] and in

E b' . . .
[b 1 ], the center row/columns contain only negative off-diagonals,

so by Theorem 1.4(c) we have to check copositivity of the scaled Schur
complements F;, i € {1,2}, where
1-ad? a, —oa 1-6%> b —ob

F, = 1 2 ' and F,= L 2.

! [02 —-oa, 1-¢? 2 by —ob, 1 —b%
As no diagonal elements of above 2 x 2 matrices F; are negative, it
is enough to check non-negativity of the off-diagonals, or else non-
negativity of the determinants of F;. Hence the result on the PSMs of
order three.

Next define

l—a?—b% o —aya, — bb,

6 —aja, — by b, 1-a2 -l

F:=E—aa —bb' =

If F is copositive, then so is
1 a™ 0] Jo o 0] [0 o ©
A=|a aa' of+|o bbT b|+|lo F o
0 o 0] [0 BT 1| |0 o 0

Here ¢ < 0, so positivity of the diagonal of F is not sufficient for its
copositivity. We either need 6 —a,a, — b b, > 0 or else det F > 0, which
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entails Condition 3. Condition 4 is the request that F has no negative
diagonal entries. Hence the result. [J

The next challenging sign pattern with k_ =3 is

1 + - 0
A=|t 1 - - again with negative-sign graph
|- - 1 4| G_(A) = P, the path on 4 vertices.
0 - + 1

However this is equivalent to the previous one up to a swap of
row/column two with row/column three. As can be checked easily, all
remaining patterns with k_ € {3,4,5} allow for immediate reduction in
order, hence perhaps less interesting; nevertheless, similar conditions
as in Propositions 3.2 and 3.3 can be derived explicitly with little
additional effort.

3.2. Case n > 4: linear-time procedure

Given such a matrix, an attempt to prove copositivity in linear
time can be made using the decomposition procedure introduced in
Section 2.3.

For the first step, we choose

1 ay; ayy 0 0
1 a, ap as, 1 as, 0
Baec = a1 1 ay| and Cyee =|ay,  ay 1 A2
ay  as 1 0 i
0 0 anvn—Z an,n—l 1
with Egee = [a; a?]. Then D = O follows immediately from the fact

that A is a pentadiagonal matrix. In this decomposition, we first check
Egec € S, for copositivity by application of Theorem 1.3 (and omit the
checks of By and Cg..). Since the overlap between B and C is not
empty, Theorem 2.3 is applicable, i.e., we have to find a 4 such that
both

B—(1-4)E=(B—-E)+AE and C-AE = (C-E)+(1-A)E are copositive.

While this would lead to a exponentially growing tree in a general case
— as checking Cg,. for copositivity would again require a decomposi-
tion and search for 4 etc. - for pentadiagonal matrices it is quite the
opposite. No tree forms at all, but instead one simply calculates the
smallest A such that

B—(l-AE

is copositive — which can be performed due to the small order of B
in a very efficient manner. Given that E itself is copositive, if a 4 can
be found such that this condition is fulfilled, we can update the rest
of the matrix by subtracting the already ‘used up’ part of E from C and
continue the process from the beginning — treating C as a ‘new’ matrix
A

Continuing this procedure, one of two cases will eventually arrive:

» No 4 can be found such that B — (1 — A)E is copositive.

* A 4 can be found in every step until A itself is only a 3 x 3
matrix, which itself is copositive — in this case, the entire matrix
A is copositive, and we obtain a positive certificate.

Therefore, for pentadiagonal instances, we have a polynomial-time
heuristic procedure to determining copositivity which is complete un-
less it terminates prematurely which unfortunately may happen, see
below and Appendix!

4. Algorithmic details for pentadiagonal matrices

The procedure iteratively reduces the order of a given pentadiagonal
symmetric matrix A of order » until a decision is reached to backtrack
for a certificate of the original matrix. Beforehand, preprocessing steps
as introduced earlier are applied to the original matrix A.
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First, we check the diagonal entries for positivity, removing rows/
columns with no negative entries, and exiting with a negative cer-
tificate if a; = 0 > g;; for some i # j. Obviously, the result still
is pentadiagonal (even more: if the second or third row/column is
removed, there remains only one non-zero diagonal entry in the first
row/column, and we can reduce it as above (if > 0) or below, if
negative; thus, order is even reduced by 2).

Next, following Theorem 1.4(b), we remove rows/columns where
a; 2 0and q; > 0 for all i # j. This way, we arrive at a possibly
smaller pentadiagonal matrix (which for convenience we again call A)
with a strictly positive diagonal and a sign change in every row/column
off the diagonal.

Following that, we scale A diagonally such that diag A = e and
truncate entries a;; > 1 to one, i.e., replace a;; with max{a,;,1}. This
new matrix is copositive if and only if the original was, and negative
certificates can be transferred easily [22, Lemma 4.4]. We obtain a
matrix (again called A for easing notation) where all PSMs of order two
are positive-semidefinite, or equivalently, where |a;;| < 1 = a;; for all
i,j. - as values smaller than —1 would immediately refute copositivity.

Now, initialize A; = A (enjoying above property) and n, = n; the
iterative step consists in processing A, € S, with n, < n— k until
either (positive or negative) certificates of A, are obtained, or else the
stopping criterion n, <4 is met:

1. if possible, remove/reduce rows/columns (and update n;), then
scale A, such that diag A, = e € R" and truncate; call the result
again A;;

2. decompose

A =B+C—E

as described in Theorem 2.1 with By, € S;, Egee € S, and
Cigec € Sn—1> SO that Dy, = O € R™mu~D. Note that by
truncation, E;,. € S, is automatically copositive (because even
positive-semidefinite);

3. aiming to profit from Theorem 2.3, we investigate a decomposi-
tion

A, =[B—-(1-AE]+[C-AE],

trying to match the sufficient condition there. As we already
know E € COP,,, the best chance will be to choose

Ma, B,y) 1= min {4 € [0,1] : Byee(4) € COP5} an
with
00 0] [t « 5
Biec(d) =Bgee —(1=D|0 1 y[=|la 4 y|eS;. (12)
0 y 1 Ay A

Lemma 4.1 below gives a closed-form expression for this A(a, 8,7)
which will be the updated 4. Alternatively, this value could be
found by line search in conjunction with (frequently) checking
the conditions in Theorem 1.3 for By, (4).

4. The corresponding block in C — A,E has the form

(1 - A)Eg. RT
R S

Caec(dp) = €S, (13)

-1
and we will take the preprocessed version of it (row/columns
removed or reduced, rescaled and truncated) as the update
A1 € Sy, - Should preprocessing already provide certificates,
we exit (either with a positive certificate of A, and therefore, by
construction, certifying copositivity of A, or else with a negative
certificate, which leads to premature termination and allows no
immediate conclusion about whether A is copositive or not). This
case is also reached if 1, = 1 as Cy..(4,) would not be copositive
by the same argument as in Remark 2.4 and the fact that (due
to the preprocessing) R # O; else we increment k by one and
repeat.
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Next we will present a closed-form expression for A(a, f,y) defined
in (11):

Lemma 4.1. (a) Consider the case y = —1; then the matrix By, = By (1)
defined in (12) is copositive if and only if max{|a|,|f|} <1 and a + f > 0.
(b) Consider the case y > —1, the matrix B (4) € S; defined in (12) and
Aa, p,y) as defined in (11) with max{|al, ||, |7|} <1 and af < 0, as well
as Bye.(1) € COP5. Then we have

@ foy) = max{a?, %}, if a+p>00ry=1,
EELDZ max{a® @ p.n)) . if a+p<Oandly| <1,
where
. 2 2442 .
ﬂ(a’ﬂ,y)=mm{<"l'—:f) %ﬂwy} if lrl<1.

Proof. For both (a) and (b), we use the copositivity conditions on
Byec(4) € S5 (in (a) for A = —y = 1) provided by Theorem 1.3. The psd
conditions on the PSM of order two reduce to 4 > a2, A > p? and the
automatically satisfied A(1—y2) > 0. So it only remains to investigate (3)
or (2), which we will use alternatively, distinguishing cases.

In case a + # > 0, (2) reduces to

L+ )2+ @+ HVi+ V220 + )@+ VDB + VD) 20,

which does not restrict 4 > 0 at all, due to y > —1. In case y = -1,
this reduces to (a + ﬁ)ﬁ > 0 which shows (a) as well, as (considering
Bgec(4 = 1) = By,.) it in turn enforces a + f > 0. Summarizing above, we
arrive at

Ma, p,y) = max{a®, f?} ifa+p20,
and y = —1 with By, € COP; implies a + § > 0. Next to the case y = 1
but a + f < 0: here we always have

det By (1) = —A(a — f)> <0

due to 4 > 0 and a # p, so employing (3), we focus on the other
condition which reduces to 1 > ”—;ﬂ

2 2
Az max{a?, f7) > L (#) ,

, which is implied by

using af < 0. So also

Ma, B, +1) = max{a®, 2} .

Finally we deal with the case « + # < 0 and |y| < 1. Again using (3),
A > max{a?, f?} has to satisfy at least one of the conditions
(@+A)Vi+147)A >0 or  A2(1—p2)—Aa*+f*—2apy) = det By (1) > 0,

which is equivalent to 4 > u(a,f,y) as defined above. Hence the
result. [J

Remark 4.2. As can be easily shown, we have (if af < 0)

2
atp : af 14
= if < L
( I+y) ’ a?4p2 T 1427
a2 +p2-2apy
1-y2 ’

ula,B,y) =
else.

5. Experiments

In order to prove effectiveness of the proposed method, an experi-
ment was carried out on randomly generated pentadiagonal matrices.
The method to generate the matrices allows to influence the likelihood
of a matrix to be copositive or not and is explained in the following:

First, a positive definite, symmetric 3 x 3-matrix (the first block)
with unit entries on the diagonal is generated as the Gram matrix of
randomly chosen unit vectors, with a sign pattern conforming that of
Proposition 3.3. We fix the value of a single parameter p with 0 < p < 1
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Experiment 1: Number of copositive matrices for each value of p

1000 - -]

800

(=]

(=]

(=]
L

# copositive matrices
o
(=]
o
L

200 A

| .

0.2 0.4 0.6 0.8 1.0
P

Fig. 3. For p < 0.81 (almost) all matrices could be proved to be copositive, for values
0.81 < p < 0.87 we can observe a rapid drop in success rate of proving copositivity —
until eventually for 0.87 < p no matrix is proved to be copositive anymore.

which shall serve to control the likelihood that the generated matrix is
copositive in the following way.

Iteratively, 3 x 3 blocks — which have a 2 x 2 overlap with
the previous block (call it W) — are computed by augmenting a row
[0, pvy, pv,, 1] and its transpose as the last column, using the parameter
p to scale the newly added part. Thereby we obtain a 4 x 4 matrix,
choosing v; > 0 > v, but randomly otherwise, scaling such that
vIWv = 1, which ensures that the new 3 x 3 block (the south-east
part of the 4 x 4 block) is positive-definite (as p < 1). This procedure
ensures that the first off-diagonal only contains negative entries, while
the second off-diagonal only contains positive entries. Points 3 and 4 in
Proposition 3.3 with a;; — 0 imply that a small value for p guarantees
copositivity of the new 4 x 4 block, suggesting a higher likelihood for
the entire matrix to be copositive.

For the first experiment, all the generated matrices were of or-
der 1000. For p, we sampled 100 values randomly from the interval
[0.1,0.9999] and took their square root to increase density in the upper
(more interesting) region of values. For each value of p, a total of
1000 matrices were generated. Upon generation, the decomposition
algorithm was applied — if the matrix was proved to be copositive,
the result was counted as a 1, in case it failed at some point to find a
suitable 4 (cf. Lemma 4.1 and Remark 4.2) to continue the chain, the
result was counted as 0.

In the second experiment, additional to the copositivity check, if
the algorithm was not successful on proving copositivity, the largest
‘connected’ copositive submatrix was recorded. To achieve this, the
same method was used — if a matrix was not found to be copositive, the
first row/column was removed and the procedure was repeated. Due
to computational limitations, the interval for values of p was shrunk to
[0.80,0.9999], and the matrix order was decreased to 200.

The goal of the second experiment was to understand whether there
is an abrupt transition between different values of p that produce
copositive and non-copositive matrices, or whether the size of coposi-
tive submatrices steadily decreases. Naturally, with higher order of the
matrix in question, likelihood of it being copositive decreases. Hence,
the second experiment allows a better insight in whether it is likely
that the generated matrices which could not be proved copositive are
indeed not copositive.

The result matches the expected outcome — the very drastic drop
starting at p ~ 0.81 in Fig. 3 is surprising though. Of course, with higher
probability for smaller (sub)matrices to be not copositive, it becomes
very unlikely that the entire matrix of order 1000 is still copositive
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Experiment 2: Distribution of biggest copositive, connected submatrices per p
200

175 A

150 A

125 4

100 A

wu ~
=] a
L s

order of biggest copositive, connected submatrix
N
w

=]
s

0.80 0.85 0.90 0.95 1.00

Fig. 4. Distribution of order of largest connected submatrices.

— the second experiment tried to uncover how a growing value for
p influences the size of the largest connected copositive submatrix.

In Fig. 4 it becomes visible that with increasing p and around the
“critical” value of p ~ 0.85 with the sharp drop in Fig. 3, the distribution
of order of largest connected submatrices decreases rapidly as well,
eventually reaching its mean at around 13 for p = 0.9999. But one can
still see that even for higher values of p, big portions of a matrix can be
identified as copositive. E.g., only for p > 0.9 no copositive submatrix
with order > 100 could be identified.

The outcome of the second experiment suggests that it is indeed
extremely unlikely that the generated matrices are copositive for large
values of p - for values larger than 0.9 one would not expect to find
a copositive matrix anymore. In general, the algorithm was able to
efficiently prove ~ 82% of all generated matrices of order 1000 to be
copositive — with ~ 11.7% matrices almost certainly being indeed not
copositive.

6. Conclusion and outlook

In this paper, a novel decomposition strategy for copositivity detec-
tion was introduced that is applicable to arbitrary matrices and leads
to a linear-time proving procedure for k-diagonal matrices. The main
downside of the procedure is the case where the procedure fails: a
negative certificate along the procedure leads to premature termination
with no definitive conclusion on the copositivity status of the instance.
However, even in this case we obtain some information by occurrence
of negative certificate (in what iteration/what part of the matrix).
This information could be used to reduce the search space for finding
violating vectors for the given instance, or in some restricted areas of it.
In the experiments with fast search methods in [28], in many situations
this improves success quite significantly.

Furthermore, options for re-evaluation of blocks that yield negative
certificates, e.g., by reverting the ’proof direction’ (i.e., starting from
south-east rather than north-west) came up that might hold potential
to overcome some currently present hurdles and to identify critical
parts in a matrix (which should be examined closer to prove or refute
copositivity). All these potential directions of future research may be
particularly well suited for k-diagonal matrices. The results of the
numerical experiments using pentadiagonal matrices prove effective-
ness of the proposed algorithm by efficiently retrieving a proof for
copositivity — if successful — within less than a second, even for large
matrices, illustrating the big potential of the method.
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Appendix A. Example of disconnected G_(A)

First, we introduce the original matrix, which is 11 x 11 in this case
(see Figs. A.5 and A.6).

Obviously, the algorithm’s main step is the reordering step.

From this, the other matrices can be derived already. As can be seen
in Fig. A.7, there will be 3 parts in the end — of orders 4, 4, and 3. The
corresponding matrices read

[ 100 -032 -054 058 100 —0.63 —0.18 0.69
-0.32 1.00 -0.89 0.59 -0.63 1.00 -0.97 0.06
-0.54 -0.89 1.00 -057|" -0.18 -097 100 -073|’
| 058 059 057  1.00 069 006 -0.73 1.00
and
[ 1.00 -0.79 0.20
-079 1.00 —0.01
[ 020 -0.01  1.00

Now, to verify or refute copositivity, only these three matrices have
to be checked, which is significantly easier than checking the original
matrix. Let us continue by investigating the first one. According to
Theorem 1.4(c), the third column can be removed since it contains no
positive off-diagonal values, and corresponding adjustment yields the
3 X 3 matrix

1.00 -2.09 0.39

-2.09 1.00 022

0.39 0.22  1.00

In turn, this matrix has a non-negative last row and column which can
be dropped, according to Theorem 1.4(b); the resulting 2 x 2 matrix
is obviously not copositive; a violating vector is, for example, [1,1],
hence the original 11 x 11 matrix A is not copositive. Since the first
matrix investigated already refuted copositivity of A, there is no need
to check any further matrices. If, on the other hand, this was copositive,
we would have continued with the second and the third matrix in the
same way until either all of them are proved copositive, or we find at
least one matrix which is not.

Appendix B. Pentadiagonal example with premature termination

As already mentioned, in case the procedure breaks (i.e., when
encountering a negative certificate at any point), the result is that
neither copositivity can be proved nor can it be refuted with the
aforementioned method. This section displays such a scenario.

Let us have a look at the matrix

1.0 -05 04 0.0 0.0
-05 10 -09 -07 00
A=]04 -09 10. 0.9 0.3
00 =07 09 1.0 =09
0.0 0.0 0.3 -0.9 1.0

which is clearly pentadiagonal. We can also visualize this in similar
fashion as previously — the result can be seen in Fig. B.8.
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r 1.00 0.28 0.79 0.4 0.3 —0.54 0.55 —0.89 0.48 0.56 —0.571
0.28 1.00 0.08 0.5 0.99 0.66 0.20 0.83 —0.79 0.83 0.58
0.79 0.08 1.00 —0.18 —0.73 0.13 0.58 0.16 0.06 —0.97 0.06
0.4 0.5 —0.18 1.00 0.69 0.89 0.07 0.54 0.73 —0.63 0.95
0.3 0.99 —0.73 0.69 1.00 0.72 0.13 0.57 0.22 0.06 0.04

—0.54 0.66 0.13 0.89 0.72 1.00 0.8 —0.32 0.96 0.74 0.58
0.55 0.20 0.58 0.07 0.13 0.8 1.00 0.72 —0.01 0.98 0.79

—0.89 0.83 0.16 0.54 0.57 —0.32 0.72 1.00 0.20 0.08 0.59
0.48 —-0.79 0.06 0.73 0.22 0.96 —0.01 0.20 1.00 0.25 0.64
0.56 0.83 —0.97 —-0.63 0.06 0.74 0.98 0.08 0.25 1.00 0.36

L—0.57 0.58 0.06 0.95 0.04 0.58 0.79 0.59 0.64 0.36 1.0 A

]
2
4
]
8
10
0 2 4 6 8 10 0 2 4 6 8 10
10 4
Fig. A.7. left: reordered matrix A; right: respective matrix A°.
A’ and L after 0 steps Matrices U and O

0

0 1 2 3 4 0 1 2 3

X Fig. B.9. Left: The matrix B, — E,,; right: matrix E,.
Fig. B.8. The starting matrix A.

on the 3 x 3 block in the upper-left corner, i.e., we look at the matrices
B,.. and E,,. depicted in Fig. B.9. Now we have to find the smallest
Ay such that B,,. — (1 — 4,)E,,, is still copositive (if such a 4, exists

All blocks (submatrices) of order 2 and 3 are themselves copositive.
Still, this procedure cannot prove copositivity of the overall matrix as
we will see in the next calculation steps. In the first iteration we focus

10
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A’ and L after 1 steps

0 0
1 1
2 2
3 3
4 4
0 1 2 3 4 0 1 2 3 4

Fig. B.10. The matrix A’ after the first iteration.

Matrices U and O

-0.5 0.5
0.0 A 00
0.5 A 05
10 1 10
15 1 15
2.0 1 20
25 - 25

0

0

Fig. B.11. Left: the current matrix B, — E,,; right: E,,.

at all, which is the case in this example). The smallest 4, found that
way is 4; ~ 0.2631. Since 4, was found, we can proceed with dropping
the first row/column of matrix A, subtract the “used up” part of E,,,.
from the 2 x 2 block in the top-left corner and rescale the remaining
matrix to have only ones along the main diagonal, as described in
Theorem 1.2. This results in the following matrix A’ € S, visualized
in Fig. B.10 (note that for better readability values were rounded to 4
decimal places, suppressing trailing zeroes).

1 -09  -0.8155 0
| —09 1 1.0485  0.3495
—0.8155 1.0485 1 -0.9
0 0.3495 -0.9 1

The same procedure is repeated again, starting with picking the matri-
ces B, and E,,. (Fig. B.11). Again, we want to find a suitable 4,, but
have to settle with the already very large 4, = 0.81. This means that
only a ’small portion’ of E,,. will be available for the last step. This
can be seen in the remaining updated 3 x 3 matrix A” visualized in

Fig. B.12.
1 1.0485  0.8019
A" =11.0485 1 —2.0651
0.8019 —2.0651 1

Now we come to the last iteration, where B,,. and E,,, together make
up A”. As we can see, E,,, has very small entries and is far from being
copositive (see Fig. B.13). Also, there is no A; to make B, — (1 —43)E .,
copositive. Hence the procedure terminates.
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A" and L after 2 steps

3 4 o

Fig. B.12. Updated matrix A” after the second iteration.

Matrices U and O

0.5
0.0
0.5
10
15
20

25

o 1 2

Fig. B.13. Left: the current matrix B,,. — E,; right: E,,,.

But we still cannot make any assumption about the overall (non)
copositiveness of the original matrix A just based on this result (A is ac-
tually not copositive, a violating vector is v = [0.175,0.35,0,0.75,0.75]7
with vT Av = —0.1631).

Data availability

No data was used for the research described in the article.
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