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A B S T R A C T

We construct a new family of chance constrained directional models in stochastic data envelopment analysis,
generalizing the deterministic directional models and the chance constrained radial models. We prove that
chance constrained directional models define the same concept of stochastic efficiency as the one given by
chance constrained radial models and, as a particular case, we obtain a stochastic version of the generalized
Farrell measure. Finally, we give some examples of application of chance constrained directional models with
stochastic and deterministic directions, showing that inefficiency scores obtained with stochastic directions
are less or equal than those obtained considering deterministic directions whose values are the means of the
stochastic ones.
1. Introduction

Data envelopment analysis (DEA) [1] is a non-parametric tech-
nique used to measure the relative efficiency of a homogeneous set
of decision-making units (DMUs) that use multiple inputs to obtain
multiple outputs. Using mathematical programming methods, DEA al-
lows the identification of the best practice frontier of the production
possibility set, determined by DMUs which are qualified as efficient. On
the other hand, DMUs that move away from this frontier are considered
inefficient.

Radial models were introduced in [1–3] for constant returns to scale
(CCR models), and [4] for variable returns to scale (BCC models). In
general, they can be either input or output-oriented. In the former case,
we look for determining the maximal proportionate reduction of inputs
allowed by the production possibility set, while maintaining the current
output level. On the other hand, in the output-oriented case, we want
to find the maximal proportionate increase of outputs while keeping
the current input consumption.

One of the drawbacks of radial models is that these reductions (of in-
puts) or increases (of outputs) have to be made in the same proportion.
Therefore, [5] defined non-radial models that allow non-proportional
movements in inputs and outputs. Subsequently, [6] introduced the so-
called additive models, which are also non-radial and do not distinguish
between orientations. Later, [7,8] constructed the slacks-based measure
of efficiency (SBM) models, with the same characteristics as additive
models but providing an efficiency score. However, all these models
compute efficiency with respect to the target located at the ‘‘farthest’’
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point within the portion of the efficient frontier that dominates the
evaluated DMU and, therefore, may be inappropriate in the case of
wanting to calculate a ‘‘close’’ efficient target. Some authors adapted
these non-radial models to the search of the closest targets. For ex-
ample, [9] adapted several models and constructed the mADD model
as the minimum-distance version of the additive model. In turn, [10]
developed the SBM-max model. Nevertheless, these models are not
weakly monotonic in general, in the sense that a DMU can get a worse
efficiency score than another DMU it outperforms.

Other models allowing non-proportional movements in inputs and
outputs were introduced in [11]. Later, the directional models were de-
veloped in [12–14]. These models, apart from being weakly monotonic,
generalize the classical radial models and can measure efficiency in the
full input–output space. The main goal of directional models is that the
user can change the proportion in which the inputs and outputs are
modified, thus defining a custom orientation taking account of partic-
ularities of the market and characterizing the criteria of management
chosen by the producer.

Nevertheless, all these models assume a deterministic behavior of
the inputs and outputs of the DMUs, and are not appropriate in a
stochastic framework. In this sense, stochastic DEA was developed in
two main directions (see [15] for a complete review on stochastic DEA).
On one hand, [16] initiated one approach that included statistical
axioms defining a statistical model and a sampling process into the
DEA framework. On the other hand, chance constrained DEA [17,18]
vailable online 10 June 2024
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allows for uncertainty in the inputs and outputs, ensuring that the
efficiency scores are obtained with a given degree of confidence and
hence, providing a more robust and realistic assessment of efficiency
compared to deterministic DEA. Chance constrained versions of some
radial models were developed in [19–21]. More recently, in [22], a
directional chance constrained model was applied to the very particular
case of portfolios, in which there is one input and one output that
are dependent on the portfolio return and its probability distribution.
However, up to our knowledge, there are no more chance constrained
directional models in the literature. Therefore, in the same way that
directional models generalize the classical radial models in the deter-
ministic DEA, the objective of this work is to define chance constrained
directional models, generalizing both chance constrained radial models,
and deterministic directional models. In this way, as we will see below,
the proposed models will allow us to select the proportion in which in-
puts and outputs are modified to achieve efficiency within a stochastic
framework.

Finally, it is worth mentioning that fuzzy DEA is another recent
approach to DEA analysis presenting uncertainty in inputs and outputs,
with Kao–Liu [23], Guo–Tanaka [24] and possibilistic [25] models as
the most relevant. More recently, some chance constrained fuzzy DEA
models has been developed in [26]. However, although fuzzy DEA
methods have proven to be very useful for the analysis of data where
uncertainty arises from ambiguity in the variables (as is the case for
linguistic variables), these methods do not make use of the information
derived from the probability distribution of the data.

The paper is organized as follows. In Section 2, we review direc-
tional models and adapt the notation to be able to define, in Section 3,
their chance constrained versions in which inputs and outputs become
stochastic. We have developed two types of chance constrained direc-
tional models: with stochastic directions and with deterministic directions.
Models with stochastic directions are introduced in Section 3.1 and they
generalize the existing chance constrained radial models. Moreover,
they serve to define a stochastic version of the generalized Farrell
measure. On the other hand, models with deterministic directions are
defined analogously in Section 3.2. Next, in Section 3.3, we explore
the joint chance constrained directional models assuming that variables
are stochastically independent. In Section 4, we give some examples of
application of chance constrained directional models with stochastic or
deterministic directions, and, finally, we present some conclusions in
Section 5, raising some open issues.

In general, we denote vectors by bold-face letters and they are
considered as column vectors unless otherwise stated. The elements of
a vector are denoted by the same letter as the vector, but unbolded and
with subscripts. The 0-vector is denoted by 𝟎 and the context determines
its dimension.

2. Directional models

We consider  =
{

DMU1,… ,DMU𝑛
}

a set of 𝑛 DMUs with 𝑚 inputs
and 𝑠 outputs. Matrices 𝑋 = (𝑥𝑖𝑗 ) and 𝑌 = (𝑦𝑟𝑗 ) are the input and
output data matrices, respectively, where 𝑥𝑖𝑗 and 𝑦𝑟𝑗 denote the 𝑖th input
and 𝑟th output of the 𝑗th DMU. We also assume that 𝑥𝑖𝑗 and 𝑦𝑟𝑗 are
all strictly positive. Given DMU𝑜 ∈ , we define the column vectors
𝐱𝑜 = (𝑥1𝑜,… , 𝑥𝑚𝑜)⊤ and 𝐲𝑜 = (𝑦1𝑜,… , 𝑦𝑠𝑜)⊤. Although we are going
to consider constant returns to scale (CRS) in all programs, different
returns to scale can be easily considered by adding the corresponding
constraints: 𝐞𝝀 = 1 for variable returns to scale (VRS), 0 ≤ 𝐞𝝀 ≤ 1
for non-increasing returns to scale (NIRS), 𝐞𝝀 ≥ 1 for non-decreasing
returns to scale (NDRS) or 𝐿 ≤ 𝐞𝝀 ≤ 𝑈 for generalized returns to scale
(GRS), with 0 ≤ 𝐿 ≤ 1 and 𝑈 ≥ 1, where 𝝀 ∈ R𝑛 and 𝐞 = (1,… , 1) ∈ R𝑛

is the all-ones row vector.
Directional models were introduced in [13,14]. Given DMU𝑜 ∈ ,
2

the associated linear program under CRS and its second stage are given
by

(a) max
𝛽,𝝀

𝛽

s.t. 𝛽𝐠− +𝑋𝝀 ≤ 𝐱𝑜,

− 𝛽𝐠+ + 𝑌 𝝀 ≥ 𝐲𝑜,

𝝀 ≥ 𝟎,

(b) max
𝝀,𝐬− ,𝐬+

𝐰−𝐬− + 𝐰+𝐬+

s.t. 𝑋𝝀 + 𝐬− = 𝐱𝑜 − 𝛽∗𝐠−,

𝑌 𝝀 − 𝐬+ = 𝐲𝑜 + 𝛽∗𝐠+,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(1)

where 𝝀 ∈ R𝑛 and the slacks 𝐬− ∈ R𝑚 and 𝐬+ ∈ R𝑠 are non-negative
column vectors, 𝐠 = (−𝐠−, 𝐠+) ≠ 𝟎 is a preassigned direction (with
𝐠− ∈ R𝑚 and 𝐠+ ∈ R𝑠 non-negative column vectors), while the weights
𝐰− ∈ R𝑚 and 𝐰+ ∈ R𝑠 are strictly positive row vectors. Moreover, in
(1) (b), 𝛽∗ is the optimal objective value of the first stage program (1)
(a), which is always greater than or equal to 0.

The advantage of directional models is that the way DMU𝑜 is pro-
jected onto the efficient frontier can be customized by using a direction
𝐠 according to the criteria of management chosen by the producer [12].

Definition 2.1. DMU𝑜 ∈  is efficient if and only if the optimal
objectives 𝛽∗ and 𝐰−𝐬−∗+𝐰+𝐬+∗ in (1) are 0, where 𝐬−∗, 𝐬+∗ are optimal
slacks. Moreover, we say that DMU𝑜 is weakly efficient if 𝛽∗ = 0 and it
is not efficient.

Remark 2.1. The concept of efficiency given in Definition 2.1 does not
depend on the direction 𝐠 because 𝛽∗ = 0 and hence, according to (1),
the optimal solution remains optimal if we change the direction. So,
if DMU𝑜 is efficient for a given direction, then it is efficient for any
direction.

Remark 2.2. We consider that the weights 𝐰− and 𝐰+ are strictly
positive and hence, 𝐰−𝐬−∗ + 𝐰+𝐬+∗ = 0 if and only if 𝐬−∗ = 𝟎 and
𝐬+∗ = 𝟎. However, allowing zero weights is useful in some cases. For
example, we can introduce non-discretionary inputs and outputs (which
are exogenously fixed, see [27, Chapter 7]) by setting the corresponding
directions and weights 𝑔−𝑖 = 𝑤−

𝑖 = 0 (for the 𝑖th input) or 𝑔+𝑟 = 𝑤+
𝑟 = 0

(for the 𝑟th output). In this case, the optimal slacks of non-discretionary
variables are not taken into account in the efficiency evaluation.

Nevertheless, in order to construct the chance constrained version
of the model in Section 3, it is convenient to write the second stage
program as

max
𝝀,𝐬− ,𝐬+

𝐰−𝐬− + 𝐰+𝐬+

s.t. 𝑋𝝀 + 𝐬− ≤ 𝐱𝑜 − 𝛽∗𝐠−,
𝑌 𝝀 − 𝐬+ ≥ 𝐲𝑜 + 𝛽∗𝐠+,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎.

(2)

Obviously, programs (1) (b) and (2) are equivalent, since any optimal
solution of (2) should also satisfy the constraints of (1) (b), and vice
versa.

The one-stage version of (1) (a) and (2) is given by

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛽𝐠− +𝑋𝝀 + 𝐬− ≤ 𝐱𝑜,
− 𝛽𝐠+ + 𝑌 𝝀 − 𝐬+ ≥ 𝐲𝑜,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(3)

where 𝜀 a positive non-Archimedean infinitesimal. Although the use of
non-Archimedean infinitesimals is not numerically rigorous, in the case
of DEA models with two stages is very useful because it synthesizes
the two stages in a single program and you can always do the reverse
process to recover the programs of each stage.

Let us consider the directions 𝐠− = 𝐷−𝐱𝑜 and 𝐠+ = 𝐷+𝐲𝑜, where the
− − − + + +
matrices 𝐷 = diag(𝑑1 ,… , 𝑑𝑚 ) and 𝐷 = diag(𝑑1 ,… , 𝑑𝑠 ) are diagonal
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with 𝑑−1 ,… , 𝑑−𝑚 , 𝑑
+
1 ,… , 𝑑+𝑠 ≥ 0. Then (3) becomes

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛩−(𝛽)𝐱𝑜 −𝑋𝝀 − 𝐬− ≥ 𝟎,
𝛩+(𝛽)𝐲𝑜 − 𝑌 𝝀 + 𝐬+ ≤ 𝟎,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(4)

where

𝛩−(𝛽) = 𝐼𝑚 − 𝛽𝐷−, 𝛩+(𝛽) = 𝐼𝑠 + 𝛽𝐷+, (5)

with 𝐼𝑚, 𝐼𝑠 the 𝑚 × 𝑚 and 𝑠 × 𝑠 identity matrices, respectively. The
optimal value 𝛽∗ given by (4) coincides with the oriented Farrell propor-
tional distance defined by [12], with orientation

(

𝐝−,𝐝+
)

, where 𝐝− =
(𝑑−1 ,… , 𝑑−𝑚 ) and 𝐝+ = (𝑑+1 ,… , 𝑑+𝑠 ). Hence, by Definition 2.1, DMU𝑜 is
efficient if and only if the optimal objective value of (4) is 0, regardless
of the orientation.

As a particular case, if 𝐷− = 𝐼𝑚 (i.e. 𝑑−1 ,… , 𝑑−𝑚 = 1), and 𝐷+ = 0
(i.e. 𝑑+1 ,… , 𝑑+𝑠 = 0), then we can write (4) as

min
𝜃,𝝀,𝐬− ,𝐬+

𝜃 − 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝜃𝐱𝑜 −𝑋𝝀 − 𝐬− ≥ 𝟎,
𝑌 𝝀 − 𝐬+ ≥ 𝐲𝑜,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(6)

where 𝜃 = 1 − 𝛽. Program (6) corresponds to the input-oriented
CRS radial model, also known as CCR model. So, according to Re-
mark 2.1 and considering strictly positive weights, the concept of effi-
ciency given in Definition 2.1 coincides with the classical CCR-efficiency
[27, Chapter 3].

On the other hand, if 𝐷− = 0 (i.e. 𝑑−1 ,… , 𝑑−𝑚 = 0), and 𝐷+ = 𝐼𝑠
(i.e. 𝑑+1 ,… , 𝑑+𝑠 = 1), then we can write (4) as

max
𝜙,𝝀,𝐬− ,𝐬+

𝜙 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑋𝝀 + 𝐬− ≤ 𝐱𝑜,
𝜙𝐲𝑜 − 𝑌 𝝀 + 𝐬+ ≤ 𝟎,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(7)

where 𝜙 = 1+ 𝛽. Program (7) is the output-oriented version of the CCR
model.

Moreover, if 𝐷− = 𝐼𝑚 and 𝐷+ = 𝐼𝑠 (i.e. 𝑑−1 ,… , 𝑑−𝑚 , 𝑑
+
1 ,… , 𝑑+𝑠 = 1),

then model (4) is non-oriented and 𝛽∗ coincides with the generalized
Farrell measure [12].

3. Chance constrained directional models

We consider  =
{

DMU1,… ,DMU𝑛
}

a set of 𝑛 DMUs with 𝑚
stochastic inputs and 𝑠 stochastic outputs. Matrices 𝑋̃ = (𝑥̃𝑖𝑗 ) and 𝑌 =
(𝑦̃𝑟𝑗 ) are the input and output data matrices, respectively, where 𝑥̃𝑖𝑗 and
̃𝑟𝑗 represent the 𝑖th input and 𝑟th output of the 𝑗th DMU. Moreover,
we denote by 𝑋 = (𝑥𝑖𝑗 ) and 𝑌 = (𝑦𝑟𝑗 ) their expected values, which we
assume to be strictly positive. Given DMU𝑜 ∈ , we define the column
vectors 𝐱̃𝑜 = (𝑥̃1𝑜,… , 𝑥̃𝑚𝑜)⊤, 𝐲̃𝑜 = (𝑦̃1𝑜,… , 𝑦̃𝑠𝑜)⊤, 𝐱𝑜 = (𝑥1𝑜,… , 𝑥𝑚𝑜)⊤ and
𝐲𝑜 = (𝑦1𝑜,… , 𝑦𝑠𝑜)⊤. Although we suppose CRS in all programs, different
returns to scale can be easily considered by adding the corresponding
constraints: 𝐞𝝀 = 1 (VRS), 0 ≤ 𝐞𝝀 ≤ 1 (NIRS), 𝐞𝝀 ≥ 1 (NDRS) or
𝐿 ≤ 𝐞𝝀 ≤ 𝑈 (GRS), with 0 ≤ 𝐿 ≤ 1 and 𝑈 ≥ 1.

In general, there are two methods for constructing a chance con-
strained model from a deterministic model in which inputs and outputs
become stochastic, according to [28, Chapter 4]. On the one hand, a P-
model is based on the highest probability of occurrence of the objective
function. On the other hand, an E-model is based on the mathematical
expectation to obtain the expected value of the objective function. In
both cases, constraints must be satisfied with a probability greater than
3

a certain threshold. v
In particular, we want to adapt the deterministic directional mod-
els (3) or (4) to their chance constrained versions in which inputs
and outputs become stochastic. Since the objective function remains
deterministic, we are going to apply the E-model approach.

Note that, although programs (3) and (4) are equivalent, there
is a relevant difference if we want to adapt them to the stochastic
case: the directions 𝐠− and 𝐠+ from (3) remain deterministic but, on
the other hand, the directions 𝐠− = 𝐷−𝐱̃𝑜 and 𝐠+ = 𝐷+𝐲̃𝑜 from (4)
become stochastic because they depend on the (stochastic) inputs and
outputs. So, we are mostly interested in adapting program (4) because
it generalizes the radial models, in which the radial direction depends
on the inputs or outputs. Hence, we will first adapt (4) in Section 3.1
and later, adapt (3) in Section 3.2.

With respect to the nature of the directions, we use stochastic
directions if the improvement strategy is relative to the value of the
variables and, on the other hand, we use deterministic directions if the
improvement strategy can be expressed in absolute terms, regardless
of the value of the variables. For example, if the improvement strategy
is increasing all outputs by the same percentage, the output direction
is stochastic and the same for all outputs; on the other hand, if the
improvement strategy is increasing all outputs by the same absolute
quantity, the output direction is deterministic and the same for all
outputs. We are going to show differences between stochastic and
deterministic directions using an example in Section 4.

3.1. Stochastic directions

In this section, we are going to apply the E-model approach to
program (4), considering that inputs and outputs become stochastic.
Hence, given 0 < 𝛼 < 1, the corresponding chance constrained E-model
can be written as

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃
{(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀 − 𝐬−
)

𝑖 ≥ 0
}

≥ 1 − 𝛼, 𝑖 = 1,… , 𝑚,

𝑃
{(

𝛩+(𝛽)𝐲̃𝑜 − 𝑌 𝝀 + 𝐬+
)

𝑟 ≤ 0
}

≥ 1 − 𝛼, 𝑟 = 1,… , 𝑠,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(8)

here 𝑃 denotes the probability function and 𝛩−(𝛽), 𝛩+(𝛽) are given
y (5).

efinition 3.1. DMU𝑜 ∈  is 𝛼-stochastically efficient if and only if the
ptimal objective value of (8) is 0, i.e. 𝛽∗ = 0 and 𝐰−𝐬−∗ + 𝐰+𝐬+∗ = 0.
oreover, we say that DMU𝑜 is 𝛼-stochastically weakly efficient if 𝛽∗ = 0

nd it is not 𝛼-stochastically efficient.

emark 3.1. The concept of stochastic efficiency given in Defini-
ion 3.1 does not depend on the orientation (𝐝−,𝐝+) because 𝛽∗ = 0
nd hence, by (5), 𝛩−(𝛽∗) = 𝐼𝑚 and 𝛩+(𝛽∗) = 𝐼𝑠 do not depend on the
rientation. So, according to (8), optimal solutions remain optimal if
e change the orientation, concluding that if DMU𝑜 is 𝛼-stochastically
fficient for a given orientation, then it is 𝛼-stochastically efficient for
ny orientation.

For constraints in (8), we have

𝑃
{(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀
)

𝑖 ≤ 𝑠−𝑖
}

≤ 𝛼, 𝑖 = 1,… , 𝑚, (9)
{(

𝑌 𝝀 − 𝛩+(𝛽)𝐲̃𝑜
)

𝑟 ≤ 𝑠+𝑟
}

≤ 𝛼, 𝑟 = 1,… , 𝑠. (10)

et us assume that inputs and outputs are correlated random variables
ollowing multivariate normal distributions with means 𝐸(𝑥̃𝑖𝑗 ) = 𝑥𝑖𝑗
nd 𝐸(𝑦̃𝑟𝑗 ) = 𝑦𝑟𝑗 . The use of the normal distribution is due to its great

ersatility and it is discussed in [19]. Then, we can define standard
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S
w

normal random variables by

𝑍̃−
𝑖 =

(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀
)

𝑖 −
(

𝛩−(𝛽)𝐱𝑜 −𝑋𝝀
)

𝑖
𝜎−𝑖 (𝛽,𝝀)

, 𝑖 = 1,… , 𝑚,

𝑍̃+
𝑟 =

(

𝑌 𝝀 − 𝛩+(𝛽)𝐲̃𝑜
)

𝑟 −
(

𝑌 𝝀 − 𝛩+(𝛽)𝐲𝑜
)

𝑟

𝜎+𝑟 (𝛽,𝝀)
, 𝑟 = 1,… , 𝑠,

where

(

𝜎−𝑖 (𝛽,𝝀)
)2 =Var

(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀
)

𝑖 = Var

(

(1 − 𝛽𝑑−𝑖 )𝑥̃𝑖𝑜 −
𝑛
∑

𝑗=1
𝜆𝑗 𝑥̃𝑖𝑗

)

=
𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑞) − 2(1 − 𝛽𝑑−𝑖 )

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑜) (11)

+ (1 − 𝛽𝑑−𝑖 )
2Var(𝑥̃𝑖𝑜), 𝑖 = 1,… , 𝑚,

(

𝜎+𝑟 (𝛽,𝝀)
)2 =Var

(

𝑌 𝝀 − 𝛩+(𝛽)𝐲̃𝑜
)

𝑟 = Var

( 𝑛
∑

𝑗=1
𝜆𝑗 𝑦̃𝑟𝑗 − (1 + 𝛽𝑑+𝑟 )𝑦̃𝑟𝑜

)

=
𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑞) − 2(1 + 𝛽𝑑+𝑟 )

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑜) (12)

+ (1 + 𝛽𝑑+𝑟 )
2Var(𝑦̃𝑟𝑜), 𝑟 = 1,… , 𝑠.

Hence, (9) and (10) become

𝑃

{

𝑍̃−
𝑖 ≤

𝑠−𝑖 −
(

𝛩−(𝛽)𝐱𝑜 −𝑋𝝀
)

𝑖
𝜎−𝑖 (𝛽,𝝀)

}

≤ 𝛼, 𝑖 = 1,… , 𝑚, (13)

{

𝑍̃+
𝑟 ≤

𝑠+𝑟 −
(

𝑌 𝝀 − 𝛩+(𝛽)𝐲𝑜
)

𝑟

𝜎+𝑟 (𝛽,𝝀)

}

≤ 𝛼, 𝑟 = 1,… , 𝑠. (14)

ince 𝑍̃−
𝑖 and 𝑍̃+

𝑟 follow the standard normal distribution 𝛷, we can
rite (13) and (14) as

𝑠−𝑖 −
(

𝛩−(𝛽)𝐱𝑜 −𝑋𝝀
)

𝑖
𝜎−𝑖 (𝛽,𝝀)

≤ 𝛷−1(𝛼), 𝑖 = 1,… , 𝑚, (15)

𝑠+𝑟 −
(

𝑌 𝝀 − 𝛩+(𝛽)𝐲𝑜
)

𝑟

𝜎+𝑟 (𝛽,𝝀)
≤ 𝛷−1(𝛼), 𝑟 = 1,… , 𝑠. (16)

Reordering and vectorizing expressions (15) and (16), we have that the
deterministic equivalent to (8) is given by

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛩−(𝛽)𝐱𝑜 −𝑋𝝀 − 𝐬− +𝛷−1(𝛼)𝝈−(𝛽,𝝀) ≥ 𝟎,
𝛩+(𝛽)𝐲𝑜 − 𝑌 𝝀 + 𝐬+ −𝛷−1(𝛼)𝝈+(𝛽,𝝀) ≤ 𝟎,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(17)

that is equivalent to

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛩−(𝛽)𝐱𝑜 −𝑋𝝀 − 𝐬− +𝛷−1(𝛼)𝝈−(𝛽,𝝀) = 𝟎,
𝛩+(𝛽)𝐲𝑜 − 𝑌 𝝀 + 𝐬+ −𝛷−1(𝛼)𝝈+(𝛽,𝝀) = 𝟎,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(18)

because any optimal solution of (17) should also satisfy the con-
straints of (18), and vice versa. Hence, by Definition 3.1, DMU𝑜 is
𝛼-stochastically efficient if and only if the optimal objective value of
(17)–(18) is 0. Note that, considering 𝝈−,𝝈+ as variables and adding
(11), (12) as constraints, programs (17)–(18) are quadratically con-
strained. Moreover, for 0 < 𝛼 ≤ 0.5, program (17) has a convex feasible
set. In fact, it can be expressed as a second-order cone program.
4

As a particular case of (17), if 𝐷− = 𝐼𝑚 (i.e. 𝑑−1 ,… , 𝑑−𝑚 = 1), and
𝐷+ = 0 (i.e. 𝑑+1 ,… , 𝑑+𝑠 = 0), then we can write

min
𝜃,𝝀,𝐬− ,𝐬+

𝜃 − 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝜃𝐱𝑜 −𝑋𝝀 − 𝐬− +𝛷−1(𝛼)𝝈−(𝜃,𝝀) ≥ 𝟎,
𝑌 𝝀 − 𝐬+ +𝛷−1(𝛼)𝝈+(𝝀) ≥ 𝐲𝑜,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(19)

where 𝜃 = 1 − 𝛽, and

(

𝜎−𝑖 (𝜃,𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑞) − 2𝜃

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑜) + 𝜃2Var(𝑥̃𝑖𝑜),

𝑖 = 1,… , 𝑚,

(

𝜎+𝑟 (𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑞) − 2

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑜) + Var(𝑦̃𝑟𝑜),

𝑟 = 1,… , 𝑠.

Program (19) is the chance constrained E-model corresponding to the
input-oriented CCR model (6), firstly introduced with some simplifica-
tions by [17].

On the other hand, if 𝐷− = 0 (i.e. 𝑑−1 ,… , 𝑑−𝑚 = 0), and 𝐷+ = 𝐼𝑠
(i.e. 𝑑+1 ,… , 𝑑+𝑠 = 1), then we can write (17) as

max
𝜙,𝝀,𝐬− ,𝐬+

𝜙 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑋𝝀 + 𝐬− −𝛷−1(𝛼)𝝈−(𝝀) ≤ 𝐱𝑜,

𝜙𝐲𝑜 − 𝑌 𝝀 + 𝐬+ −𝛷−1(𝛼)𝝈+(𝜙,𝝀) ≤ 𝟎,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(20)

where 𝜙 = 1 + 𝛽, and

(

𝜎−𝑖 (𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑞) − 2

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑜) + Var(𝑥̃𝑖𝑜),

𝑖 = 1,… , 𝑚,

(

𝜎+𝑟 (𝜙,𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑞) − 2𝜙

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑜) + 𝜙2Var(𝑦̃𝑟𝑜),

𝑟 = 1,… , 𝑠.

Program (20) is the chance constrained E-model corresponding to the
output-oriented CCR model (7). In fact, model (20) (with unit weights)
was constructed in [21].

Remark 3.2. Both chance constrained radial models, the input-oriented
(19) and the output-oriented (20), were used in [17,21], respectively,
to define concepts of stochastic efficiency. Nevertheless, taking into
account Remark 3.1 and the fact that (19) and (20) are particular cases
of (17)–(18) (that are equivalent to (8)) with 𝜃 = 1−𝛽 and 𝜙 = 1+𝛽, we
obtain that the concept of stochastic efficiency given in Definition 3.1
coincides with those introduced in [17,21].

Finally, if 𝐷− = 𝐼𝑚 and 𝐷+ = 𝐼𝑠 (i.e. 𝑑−1 ,… , 𝑑−𝑚 , 𝑑
+
1 ,… , 𝑑+𝑠 = 1),

then we obtain a chance constrained E-model for computing a stochastic
generalized Farrell measure as the optimal value 𝛽∗ of the following
quadratically constrained program:

max
𝛽,𝝀

𝛽

s.t. (1 − 𝛽)𝐼𝑚𝐱𝑜 −𝑋𝝀 +𝛷−1(𝛼)𝝈−(𝛽,𝝀) ≥ 𝟎,

(1 + 𝛽)𝐼𝑠𝐲𝑜 − 𝑌 𝝀 −𝛷−1(𝛼)𝝈+(𝛽,𝝀) ≤ 𝟎,

𝝀 ≥ 𝟎,

(21)

where 𝝈−(𝛽,𝝀) and 𝝈+(𝛽,𝝀) are given by (11) and (12), respectively.
Moreover, for 0 < 𝛼 ≤ 0.5, program (21) has a convex feasible set and

can be expressed as a second-order cone program.
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3.2. Deterministic directions

In this section, we are going to apply the E-model approach to
program (3), considering that inputs and outputs become stochastic but
the directions 𝐠−, 𝐠+ remain deterministic. Hence, given 0 < 𝛼 < 1, the
orresponding chance constrained E-model can be written as

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃
{(

𝐱̃𝑜 − 𝛽𝐠− − 𝑋̃𝝀 − 𝐬−
)

𝑖 ≥ 0
}

≥ 1 − 𝛼, 𝑖 = 1,… , 𝑚,

𝑃
{(

𝐲̃𝑜 + 𝛽𝐠+ − 𝑌 𝝀 + 𝐬+
)

𝑟 ≤ 0
}

≥ 1 − 𝛼, 𝑟 = 1,… , 𝑠,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎.

(22)

Remark 3.3. The optimal objective value of (22) is 0 if and only if the
optimal objective value of (8) is 0, regardless of the directions. Hence,
if we use program (22) instead of program (8) in Definition 3.1, then
we obtain an equivalent concept of stochastic efficiency. Analogously,
the same applies to the concept of stochastic weak efficiency.

If we assume that inputs and outputs are correlated random vari-
ables following multivariate normal distributions with means 𝐸(𝑥̃𝑖𝑗 ) =
𝑥𝑖𝑗 and 𝐸(𝑦̃𝑟𝑗 ) = 𝑦𝑟𝑗 , we can deduce the deterministic equivalent to (22)
following the methodology given in Section 3.1:

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛽𝐠− +𝑋𝝀 + 𝐬− −𝛷−1(𝛼)𝝈−(𝝀) ≤ 𝐱𝑜,
− 𝛽𝐠+ + 𝑌 𝝀 − 𝐬+ +𝛷−1(𝛼)𝝈+(𝝀) ≥ 𝐲𝑜,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(23)

where
(

𝜎−𝑖 (𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑞) − 2

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑥̃𝑖𝑗 , 𝑥̃𝑖𝑜) + Var(𝑥̃𝑖𝑜), (24)

𝑖 = 1,… , 𝑚,

(

𝜎+𝑟 (𝝀)
)2 =

𝑛
∑

𝑗,𝑞=1
𝜆𝑗𝜆𝑞Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑞) − 2

𝑛
∑

𝑗=1
𝜆𝑗Cov(𝑦̃𝑟𝑗 , 𝑦̃𝑟𝑜) + Var(𝑦̃𝑟𝑜), (25)

𝑟 = 1,… , 𝑠.

Considering 𝝈−,𝝈+ as variables and adding (24), (25) as constraints,
program (23) is convex for 0 < 𝛼 ≤ 0.5 and it can be expressed as a
second-order cone program. Although model (23) does not generalize
chance constrained radial models due to the deterministic behavior of
its directions, it may be appropriate in certain cases, as we will show
in Section 4.

Remark 3.4. Given the model (17) with stochastic directions of the
form 𝐠− = 𝐷−𝐱̃𝑜 and 𝐠+ = 𝐷+𝐲̃𝑜, we can consider a model (23) with
deterministic directions given by the means of the stochastic directions,
i.e. 𝐠− = 𝐷−𝐱𝑜 and 𝐠+ = 𝐷+𝐲𝑜. We can write this model as:

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛩−(𝛽)𝐱𝑜 −𝑋𝝀 − 𝐬− +𝛷−1(𝛼)𝝈−(𝝀) ≥ 𝟎,
𝛩+(𝛽)𝐲𝑜 − 𝑌 𝝀 + 𝐬+ −𝛷−1(𝛼)𝝈+(𝝀) ≤ 𝟎,
𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(26)

where 𝝈+(𝝀) and 𝝈−(𝝀) are given by (24) and (25), respectively. In this
case, we say that both models, (17) and (26), are associated. We have
that associated models are equivalent in the deterministic case, i.e. if
the variances of the stochastic variables are 0.

Conversely, given the model (23) with deterministic directions 𝐠−
and 𝐠+, we can always find an associated model (17) with stochastic
directions of the form 𝐠− = 𝐷−𝐱̃𝑜 and 𝐠+ = 𝐷+𝐲̃𝑜, where 𝐷− =
diag(𝑑−1 ,… , 𝑑−𝑚 ) and 𝐷+ = diag(𝑑+1 ,… , 𝑑+𝑠 ) with 𝑑−𝑖 = 𝑔−𝑖 ∕𝑥𝑖𝑜, 𝑑+𝑟 =
+

5

𝑔𝑟 ∕𝑦𝑟𝑜. s
3.3. Joint chance constrained directional models

The chance constrained methodology ensures that the constraints
are met with a certain probability, but considering each constraint
separately. A more appropriate study would be to require that all the
constraints are met at once with a certain probability.

Thus, for stochastic directions, program (8) would become

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃

⎧

⎪

⎨

⎪

⎩

(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀 − 𝐬− ≥ 𝟎
)

∧
(

𝛩+(𝛽)𝐲̃𝑜 − 𝑌 𝝀 + 𝐬+ ≤ 𝟎
)

⎫

⎪

⎬

⎪

⎭

≥ 1 − 𝛼,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(27)

nd for deterministic directions, program (22) would become

max
𝛽,𝝀,𝐬− ,𝐬+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃

⎧

⎪

⎨

⎪

⎩

(

𝐱̃𝑜 − 𝛽𝐠− − 𝑋̃𝝀 − 𝐬− ≥ 𝟎
)

∧
(

𝐲̃𝑜 + 𝛽𝐠+ − 𝑌 𝝀 + 𝐬+ ≤ 𝟎
)

⎫

⎪

⎬

⎪

⎭

≥ 1 − 𝛼,

𝝀 ≥ 𝟎, 𝐬− ≥ 𝟎, 𝐬+ ≥ 𝟎,

(28)

here ∧ denotes the logical conjunction. But, in order to find the deter-
inistic equivalent program of (27) or (28), we should use multivariate
robability distributions, for which the inverse distribution functions
re not uniquely defined.

An approach to overcome this problem is given in [29], whose
uthors consider stochastically independent variables, so that the joint
robability is the product of the separate probabilities. Nevertheless,
his assumption reduces the applicability of the model and, moreover,
t leads to highly non-linear programs that are very hard to solve, as we
ill show below. Hence, assuming that the variables are stochastically

ndependent and following the methodology in [29], program (27) can
e written as

max
𝛽,𝝀,𝐬− ,𝐬+ ,𝜸− ,𝜸+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃
{(

𝛩−(𝛽)𝐱̃𝑜 − 𝑋̃𝝀
)

𝑖 ≤ 𝑠−𝑖
}

≤ 𝛼𝛾
−
𝑖 , 𝑖 = 1,… , 𝑚,

𝑃
{(

𝑌 𝝀 − 𝛩+(𝛽)𝐲̃𝑜
)

𝑟 ≤ 𝑠+𝑟
}

≤ 𝛼𝛾+𝑟 , 𝑟 = 1,… , 𝑠,

𝐞−𝜸− = 1, 𝐞+𝜸+ = 1,

𝝀 ≥ 𝟎, 𝐬−, 𝜸− ≥ 𝟎, 𝐬+, 𝜸+ ≥ 𝟎,

(29)

or stochastic directions, where 𝜸− ∈ R𝑚, 𝜸+ ∈ R𝑠 are auxiliary
parameters and 𝐞− ∈ R𝑚, 𝐞+ ∈ R𝑠 are the all-ones row vectors. The
corresponding deterministic equivalent is given by

max
𝛽,𝝀,𝐬− ,𝐬+ ,𝜸− ,𝜸+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛩−(𝛽)𝐱𝑜 −𝑋𝝀 − 𝐬− +𝜱−1(𝛼𝜸− )𝝈−(𝛽,𝝀) ≥ 𝟎,
𝛩+(𝛽)𝐲𝑜 − 𝑌 𝝀 + 𝐬+ −𝜱−1(𝛼𝜸+ )𝝈+(𝛽,𝝀) ≤ 𝟎,
𝐞−𝜸− = 1, 𝐞+𝜸+ = 1,
𝝀 ≥ 𝟎, 𝐬−, 𝜸− ≥ 𝟎, 𝐬+, 𝜸+ ≥ 𝟎,

(30)

here 𝜱−1(𝛼𝜸− ) ∈ R𝑚 and 𝜱−1(𝛼𝜸+ ) ∈ R𝑠 are vectors with components
−1(𝛼𝛾

−
𝑖 ) for 𝑖 = 1,… , 𝑚 and 𝛷−1(𝛼𝛾+𝑟 ) for 𝑟 = 1,… , 𝑠, respectively.

oreover, 𝝈−(𝛽,𝝀) and 𝝈+(𝛽,𝝀) are given by (11) and (12), respectively.
onsidering 𝝈−,𝝈+ as variables and adding (11), (12) as constraints,
rogram (30) is convex for 0 < 𝛼 ≤ 0.5 and it can be expressed as a

econd-order cone program.
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Table 1
Average values from the first 10 school sites in the Program Follow Through.

Inputs Outputs

Site 1 (86.13, 16.24, 48.21, 49.69, 9) (54.53, 58.98, 38.16)
Site 2 (29.26, 10.24, 41.96, 40.65, 5) (24.69, 33.89, 26.02)
Site 3 (43.12, 11.31, 38.19, 35.03, 9) (36.41, 40.62, 28.51)
Site 4 (24.96, 6.14, 24.81, 25.15, 7) (14.94, 17.58, 16.19)
Site 5 (11.62, 2.21, 6.85, 6.37, 4) ( 7.81, 6.94, 5.37)
Site 6 (11.88, 4.97, 18.73, 18.04, 4) (12.59, 16.85, 12.84)
Site 7 (32.64, 6.88, 28.10, 25.45, 7) (17.06, 16.99, 17.82)
Site 8 (20.79, 12.97, 54.85, 52.07, 8) (20.19, 30.64, 33.16)
Site 9 (34.40, 11.04, 38.16, 42.40, 8) (26.13, 29.80, 26.29)
Site 10 (61.74, 14.50, 49.09, 42.92, 9) (46.42, 51.59, 35.20)

Analogously, for deterministic directions, program (28) can be writ-
en as

max
𝛽,𝝀,𝐬− ,𝐬+ ,𝜸− ,𝜸+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝑃
{(

𝐱̃𝑜 − 𝛽𝐠− − 𝑋̃𝝀
)

𝑖 ≤ 𝑠−𝑖
}

≤ 𝛼𝛾
−
𝑖 , 𝑖 = 1,… , 𝑚,

𝑃
{(

𝑌 𝝀 − 𝐲̃𝑜 − 𝛽𝐠+
)

𝑟 ≤ 𝑠+𝑟
}

≤ 𝛼𝛾+𝑟 , 𝑟 = 1,… , 𝑠,

𝐞−𝜸− = 1, 𝐞+𝜸+ = 1,

𝝀 ≥ 𝟎, 𝐬−, 𝜸− ≥ 𝟎, 𝐬+, 𝜸+ ≥ 𝟎,

(31)

whose deterministic equivalent is given by

max
𝛽,𝝀,𝐬− ,𝐬+ ,𝜸− ,𝜸+

𝛽 + 𝜀
(

𝐰−𝐬− + 𝐰+𝐬+
)

s.t. 𝛽𝐠− +𝑋𝝀 + 𝐬− −𝜱−1(𝛼𝜸− )𝝈−(𝝀) ≤ 𝐱𝑜,
− 𝛽𝐠+ + 𝑌 𝝀 − 𝐬+ +𝜱−1(𝛼𝜸+ )𝝈+(𝝀) ≥ 𝐲𝑜,
𝐞−𝜸− = 1, 𝐞+𝜸+ = 1,
𝝀 ≥ 𝟎, 𝐬−, 𝜸− ≥ 𝟎, 𝐬+, 𝜸+ ≥ 𝟎,

(32)

where 𝝈−(𝝀) and 𝝈+(𝝀) are given by (24) and (25), respectively. Consid-
ering 𝝈−,𝝈+ as variables and adding (24), (25) as constraints, program
(31) is convex for 0 < 𝛼 ≤ 0.5 and it can be expressed as a second-order
cone program.

As we noted above, programs (30) and (32) are highly non-linear
due to the new unknown parameters 𝜸− ∈ R𝑚 and 𝜸+ ∈ R𝑠. However,
some approximation methods based on second order cone program-
ming can be utilized as it is shown in [29]. This certainly poses new
open problems for future research.

4. Examples

We are going to consider the example given in [3,17], in which
the ‘‘Program Follow Through’’ experiment is analyzed in public school
education. We have to note that this example is given for illustrative
purposes only. Some other meaningful examples could be given by
considering factories instead of schools, workers instead of students,
etc. The original data set consists on 49 school sites enrolled in the ex-
periment, with 5 inputs (education, level of mother, parent occupation,
parental visit index, counseling index, and number of teachers) and 3
outputs (total reading scores, total math scores, and total Coopersmith1

scores). The average values of input and output variables are reported
for each school site. Table 1 shows these values for the first 10 school
sites.

In order to simplify the problem, we are going to assume that inputs
are deterministic and outputs are stochastic. Moreover, we assume that
all observed outputs coincide with their mathematical expectations, all
outputs are stochastically independent, and the within-school variabil-
ity of each output (as measured by the variance) is the same, 𝑐2, for

1 An index of a child’s self-esteem.
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all outputs and at all school sites. See [17] for a detailed discussion on
these assumptions.

In this example, we are interested in knowing how much each
school site’s output scores must improve to become 𝛼-stochastically
efficient or weakly efficient and therefore, only the optimal score 𝛽∗ of
an output-oriented model (i.e. with 𝐠− = 𝟎 or 𝐷− = 0) will be necessary.
The rationale for considering weak efficiency as a goal (jointly with
efficiency) lies in the fact that any small improvement in some output
that has no slacks, results in the DMU being 𝛼-stochastically efficient.
Note that this is always possible since, in output-oriented models, there
is always some output without slacks.

If we take 𝐷− = 0 and 𝐷+ = 𝐼3 (i.e. 𝑑+1 = 𝑑+2 = 𝑑+3 = 1) in program
17), then the chance constrained output-oriented CCR model (20) is
pplied. However, this choice treats all evaluated subjects (reading,
ath and Coopersmith) in the same way and hence, it may not reflect

he specific characteristics of improvement of each subject. On the
ther hand, if for example we set 𝑑+1 = 0.1, 𝑑+2 = 0.05 and 𝑑+3 = 0.01,
hen we suppose that students’ ability to improve the reading score by
0% is the same as their ability to improve the math score by 5%, and
he same as their ability to improve the Coopersmith score by 1%.

If we look at improvement capabilities in absolute terms, then the
irections become deterministic and we must apply model (23) with
− = 𝟎. For example, if we set 𝑔+1 = 5, 𝑔+2 = 4 and 𝑔+3 = 1, then
e suppose that students’ ability to improve the reading score by 5
bsolute points is the same as their ability to improve the math score
y 4 absolute points, and the same as their ability to improve the
oopersmith score by 1 absolute point.

Note that, in order to compare optimal scores 𝛽∗ from models with
ifferent directions, we have to take into account that those directions
hould represent the same ‘‘amount of effort’’ on the part of the students
f the corresponding evaluated school site. For example, if the students
n the Site 1 can improve their reading scores by 10%, their math scores
y 5% and their Coopersmith scores by 1% using 1 ‘‘unit of effort’’, and
he students in the Site 2 can improve their reading scores by 5 points,
heir math scores by 4 points and their Coopersmith scores by 1 point

also using 1 ‘‘unit of effort’’, then we can compare the 𝛽∗ scores of both
sites if we use model (17) with 𝐷− = 0, 𝑑+1 = 0.1, 𝑑+2 = 0.05, 𝑑+3 = 0.01
or evaluating Site 1, and model (23) with 𝐠− = 𝟎, 𝑔+1 = 5, 𝑔+2 = 4, 𝑔+3 = 1
or evaluating Site 2. In this case, 𝛽∗ is interpreted as the ‘‘total amount
f effort’’ of the corresponding school site for becoming 𝛼-stochastically
fficient or weakly efficient.

Taking all this into account, we have evaluated the first 10 school
ites with respect to the whole sample, for 𝛼 = 0.05 and using different
alues 𝑐2 of the variance of the outputs, obtaining the deterministic
ase by taking 𝑐 = 0. Tables 2–4 show the results of the optimal 𝛽∗

cores of chance constrained directional models with stochastic direc-
ions (columns 1 − 3) and their associated models with deterministic
irections (columns 4 − 6). Specifically, Table 2 shows the results
f applying the output-oriented chance constrained CCR model (20),
hat does not reflect the specific characteristics of improvement of
ach subject. Analogously, Table 3 shows the results of applying the
hance constrained directional model (17) with stochastic directions
etermined by orientation parameters 𝐷− = 0, 𝑑+1 = 0.1, 𝑑+2 = 0.05 and

𝑑+3 = 0.01. In this case, we are assuming that the students can improve
the reading score by 10% the math score by 5% and the Coopersmith
score by 1% using 1 ‘‘unit of effort’’ in all school sites. Finally, Table 4
shows the results of applying the chance constrained directional model
(23) with deterministic directions given by 𝐠− = 𝟎, 𝑔+1 = 5, 𝑔+2 = 4 and
+
3 = 1, assuming that the students can improve the reading score by
points, the math score by 4 points and the Coopersmith score by 1

oint using 1 ‘‘unit of effort’’ in all school sites.
Regarding the discussion of the results, first of all, associated models

ith stochastic and deterministic directions coincide in the determinis-
ic case (𝑐 = 0), as stated in Remark 3.4. Moreover, associated models

ive similar results, as long as the variance of the stochastic variables
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Table 2
Results of the optimal 𝛽∗ scores of chance constrained directional models with stochastic directions (𝐷− = 0, 𝑑+

1 = 1, 𝑑+
2 = 1, 𝑑+

3 = 1) and their
associated models with deterministic directions (𝐠− = 𝟎, 𝑔+1 = 𝑦1𝑜, 𝑔+2 = 𝑦2𝑜, 𝑔+3 = 𝑦3𝑜), applied to the first 10 school sites using different values
𝑐2 of the variance of the outputs and 𝛼 = 0.05.

Stochastic directions: 𝐷− = 0, 𝑑+
1 = 1, 𝑑+

2 = 1, 𝑑+
3 = 1

Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 0.109 0.012 0.108 0 0.103 0.121 0.093 0.148 0
𝑐 = 0.5 0 0.071 0 0.042 0 0.031 0.061 0.063 0.095 0
𝑐 = 1 0 0.036 0 0 0 0 0.006 0.026 0.053 0

Deterministic directions: 𝐠− = 𝟎, 𝑔+1 = 𝑦1𝑜 , 𝑔+2 = 𝑦2𝑜 , 𝑔+3 = 𝑦3𝑜
Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 0.109 0.012 0.108 0 0.103 0.121 0.093 0.148 0
𝑐 = 0.5 0 0.073 0 0.044 0 0.033 0.063 0.065 0.098 0
𝑐 = 1 0 0.038 0 0 0 0 0.007 0.033 0.055 0
Table 3
Results of the optimal 𝛽∗ scores of chance constrained directional models with stochastic directions (𝐷− = 0, 𝑑+

1 = 0.1, 𝑑+
2 = 0.05, 𝑑+

3 = 0.01)
and their associated models with deterministic directions (𝐠− = 𝟎, 𝑔+1 = 𝑑+

1 𝑦1𝑜, 𝑔
+
2 = 𝑑+

2 𝑦2𝑜, 𝑔
+
3 = 𝑑+

3 𝑦3𝑜), applied to the first 10 school sites using
different values 𝑐2 of the variance of the outputs and 𝛼 = 0.05.

Stochastic directions: 𝐷− = 0, 𝑑+
1 = 0.1, 𝑑+

2 = 0.05, 𝑑+
3 = 0.01

Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 5.041 0.388 4.988 0 3.380 5.468 8.218 5.303 0
𝑐 = 0.5 0 3.601 0 2.117 0 1.664 2.876 6.301 4.481 0
𝑐 = 1 0 2.296 0 0 0 0 0.374 3.409 3.573 0

Deterministic directions: 𝐠− = 𝟎, 𝑔+1 = 𝑑+
1 𝑦1𝑜 , 𝑔+2 = 𝑑+

2 𝑦2𝑜 , 𝑔+3 = 𝑑+
3 𝑦3𝑜

Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 5.041 0.388 4.988 0 3.380 5.468 8.218 5.303 0
𝑐 = 0.5 0 3.707 0 2.216 0 1.768 2.994 6.437 4.592 0
𝑐 = 1 0 2.426 0 0 0 0 0.404 3.555 3.752 0
Table 4
Results of the optimal 𝛽∗ scores of chance constrained directional models with deterministic directions (𝐠− = 𝟎, 𝑔+1 = 5, 𝑔+2 = 4, 𝑔+3 = 1) and their
associated models with stochastic directions (𝐷− = 0, 𝑑+

1 = 5∕𝑦1𝑜, 𝑑+
2 = 4∕𝑦2𝑜, 𝑑+

3 = 1∕𝑦3𝑜), applied to the first 10 school sites using different
values 𝑐2 of the variance of the outputs and 𝛼 = 0.05.

Stochastic directions: 𝐷− = 0, 𝑑+
1 = 5∕𝑦1𝑜 , 𝑑+

2 = 4∕𝑦2𝑜 , 𝑑+
3 = 1∕𝑦3𝑜

Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 1.982 0.211 1.137 0 0.754 1.412 3.090 2.561 0
𝑐 = 0.5 0 1.415 0 0.466 0 0.338 0.729 2.089 2.100 0
𝑐 = 1 0 0.819 0 0 0 0 0.080 1.130 1.413 0

Deterministic directions: 𝐠− = 𝟎, 𝑔+1 = 5, 𝑔+2 = 4, 𝑔+3 = 1

Site 1 2 3 4 5 6 7 8 9 10

𝑐 = 0 0 1.982 0.211 1.137 0 0.754 1.412 3.090 2.561 0
𝑐 = 0.5 0 1.457 0 0.487 0 0.359 0.755 2.134 2.152 0
𝑐 = 1 0 0.864 0 0 0 0 0.093 1.179 1.483 0
is not too large. Second, the greater the stochastic variability of outputs
(the greater the coefficient 𝑐), the smaller the optimal score 𝛽∗ is,
nd hence, school sites are less inefficient. The reason is that in the
hance constrained formulation of DEA, the ‘‘hard’’ efficient frontier
f deterministic DEA is replaced with a ‘‘soft’’ frontier that moves
uccessively closer to any given observation [17]. This effect is also
een among associated models, where models with stochastic directions
roduce better scores 𝛽∗ than the corresponding associated models
ith deterministic directions. Third, the relative rankings of inefficient

chool sites differ in the chance constrained analysis as compared to
eterministic DEA. For example, in Tables 2 and 3, Site 7 is more
nefficient than Site 2 for 𝑐 = 0, but this situation is reversed for 𝑐 = 0.5

and 𝑐 = 1. Moreover, in Table 4, Site 8 is more inefficient than Site
9 for 𝑐 = 0, but the opposite occurs for 𝑐 = 0.5 and 𝑐 = 1. Finally,
different directions (representing different improvement strategies) also
produce different rankings, as expected. For example, in Table 2, Site
2 is more inefficient than Site 8 for all values of 𝑐, just the opposite of
what happens in Tables 3 and 4.
7

We have used R 4.2.0 [30] for computations. Specifically, we have
used the optiSolve package [31] for solving quadratically constrained
programs, and the deaR package [32] for linear models, in order to
check the deterministic case 𝑐 = 0.

5. Concluding remarks

We have constructed different versions of stochastic directional
models following the chance constrained methodology and generalizing
the existing radial models developed in [21]. The advantage of direc-
tional models over radial models is the great versatility provided by the
choice of the direction, allowing the user to customize an improvement
strategy that can be adapted to market conditions. Moreover, chance
constrained models allow a closer approximation to a reality in which
measurements present uncertainty, providing an alternative to fuzzy
models. Hence, chance constrained directional models are appropriate
in any situation with stochastic variables where the user wants to
manage the proportion in which these variables are modified to achieve

efficiency.
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Nevertheless, chance constrained DEA also has drawbacks. The
major operational disadvantage is that programs are quadratically con-
strained, as opposed to deterministic models whose programs are usu-
ally linear. However, the models presented in this work lie within the
category of Second-Order Cone Programming, for which the numerical
algorithm Interior Point Optimization is fast and robust, compared with
general non-linear optimization methods. On the other hand, no formal
statistical model with a sampling process is specified, unlike what is
done in [16]. The main consequence is the difficulty in defining an
appropriate and meaningful measure of inefficiency [15].

Finally, according to Section 3.3, a more appropriate chance con-
strained methodology would be to require that all the constraints
are met at once with a certain probability, which would be a more
general problem, broadening thus the scope of the applications of the
models. However, in order to find the corresponding deterministic
equivalent program, we should either consider independent variables
(thus significantly reducing the applicability), or use multivariate prob-
ability distributions, for which the inverse distribution functions are not
uniquely defined. Nevertheless, despite the difficulty of working with
joint chance constrained models, they could lead to future studies and
more sophisticated models in the chance constrained DEA framework.
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