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A B S T R A C T

This paper develops an approximate closed-form optimal portfolio allocation formula for a spot asset whose
variance follows a GARCH(1,1) process. We consider an investor with constant relative risk aversion (CRRA)
utility who wants to maximize the expected utility from terminal wealth under a Heston and Nandi (2000)
GARCH (HN-GARCH) model. Based on an approximation of the log returns from Campbell and Viceira (1999),
we obtain closed formulas for the optimal investment strategy, the value function and the optimal terminal
wealth. We find the optimal strategy is independent of the development of the risky asset, and the solution
converges to that of a continuous-time Heston stochastic volatility model (Kraft, 2005), albeit under additional
conditions. For a daily trading scenario, the optimal solutions are quite robust to variations in the parameters,
while the numerical wealth equivalent loss (WEL) analysis shows good performance of the Heston solution,
with a quite inferior performance of the Merton solution.The solution is extended to two dimensions under
the multivariate affine GARCH in Escobar-Anel et al. (2020).
1. Introduction

The topic of portfolio selection is one of the oldest and still one of
the most discussed research areas in financial economics. [1] was a pio-
neer using mathematical modeling to study this problem. He presented
a framework to optimize portfolios in a mean–variance one-period
setting. Even thought this is probably the most influential portfolio
framework today, at the time only little attention was paid to his work.
By only accounting for one period, he made the assumption that either
investors do not adjust their investment decisions over time as new
information arrives or that they only care about short horizons. In the
60s, [2–4] considered a multi-period portfolio problem where, instead
of optimizing a mean–variance trade-off, they maximized expected
utility, i.e. Expected Utility Theory (EUT). [2] was the first to document
a dynamic programming approach to optimize expected utility from
terminal wealth. He chose a discrete-time model for the evolution of
wealth using i.i.d. returns of arbitrary distribution with one risky and
one risk-free asset. [3] expanded this problem by introducing con-
sumption. A shift towards continuous-time models, in the seminal work
of [4], permitted closed-form expressions for optimal consumption and
asset allocation under a CRRA utility and a geometric Brownian motion
(GBM) process for the asset price.

The complexity of financial time series has steadily increased in the
last 50 years. This fact is supported by the wide range of stylized facts
detected on stock returns, see [5] for an overview. Consequently, plenty
of progress has been made in the area of dynamic process modeling, see
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for instance [6] for a survey of generalized autoregressive conditional
heteroskedasticity (GARCH) models. The feasibility of closed-form solu-
tions in continuous-time portfolio problems has given an advantage to
the continuous-time stream of research, leading to analytical solutions
for extensions of the GBM model. Two representative examples are [7]
with the stochastic volatility model of [8], and [9] adding jumps with
stochastic intensities. Reality, advanced continuous-time models are
challenging from an estimation/calibration perspective. This is mainly
due to the presence of unobservable hidden processes which hurts the
stability and efficiency of estimation methods.

On the other hand, discrete-time models are much more convenient
to estimate with available data, and are more realistic in terms of time
frequency for investor decisions. Nonetheless, multi-period portfolio
analysis has seen limited action since the intensive work of the 60s. One
could speculate that this is due to the lack of closed-form solutions for
realistic models. One stream of the literature has proposed numerical
methods and approximations for dynamic portfolio optimization prob-
lems. For instance, based on log return approximations, [10] obtained
solutions for an investor with Epstein–Zin–Weil utility in a homoskedas-
tic setting. More recently, [11] presents a Monte Carlo (MC) based
approach where the risky assets follow a multivariate GARCH model
numerically. [12] relies on the Bellman principle, Taylor expansions
and Least Squares MC to build an approximation. While [13] uses the
martingale method for complete markets to approximate a solution.
vailable online 29 December 2021
214-7160/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
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A parallel stream has constructed analytical solutions for less re-
alistic models. For instance, [14] present a solution under a market
model that follows a discrete-time Markov chain for exponential util-
ity. [15] produces a solution where the market model allows serial
correlation in asset returns, leading to a myopic strategy i.e. inde-
pendent of time. [16] consider a vector autoregressive (VAR) model
for the dynamics of prices that allows for stylized facts such as serial
correlation of returns and offers flexibility in modeling the covariance
structure among assets. A very similar paper considering an exponential
utility function was published by [17]. In their model, asset returns are
assumed to be partly determined by a set of predictable state variables
e.g. dividend yield, term spread or another asset return.

While all these approaches are improvements over the pioneering
work of [2,3], deriving these optimal solutions is either very time
consuming, or the models miss well-known stylized facts observed in
asset returns. In particular, closed-form solutions to the EUT portfolio
problem in the context of GARCH models, and therefore capturing
volatility clustering, has not been successfully solved yet. This is the
main objective of the paper. For clarity, the contributions of this paper
are listed next:

1. We obtain the first approximate closed-form solution to a dy-
namic portfolio optimization problem for a GARCH model (i.e.
the HN-GARCH proposed by [18]), we rely on the approximation
methodology developed in [10]. In particular we produce formu-
las for the optimal investment strategy, the value function, the
optimal wealth process and its conditional moment generating
function (m.g.f.), in the context of a CRRA investor.

2. Our approach provides the optimal strategy for any given rebal-
ancing frequency (e.g. intraday, daily, quarterly, etc.), connect-
ing to the well-known closed-form solutions from continuous-
time models, i.e. one rebalancing time as per Merton’s GBM
model, and continuous rebalancing as per Heston’s model.

3. In particular, we prove the convergence of the optimal HN-
GARCH strategy in rebalancing frequency to the optimal strategy
in Heston’s model (as per [7]). The convergence behavior of our
solution is shown numerically to be slightly non-linear for some
risk aversion levels.

4. We illustrate the impact of the various GARCH parameters on
the optimal investment strategy, demonstrating the solution is
quite robust against deviations from the true parameter values
e.g. inaccurate estimations.

5. The impact of the approximation from [10], which can be char-
acterized by a failure of the self-financing condition, is shown
to be negligible in terms of the wealth process and extra cash
flows.

6. We study the wealth-equivalent loss (WEL) incurred by an
investor who trades daily as per our model, but uses popu-
lar closed-form continuous-time solutions (e.g. GBM or Heston
model) instead of our optimal. The analysis demonstrates a good
performance by Heston, which is only compromised in cases of
high levels of market price of risk. And a quite poor performance
of Merton’s solution across most of the parametric space.

7. Additional properties of the solution are presented in the com-
plementary appendix, Appendix B, while the solution for the
two dimensional affine GARCH model in [19] is presented in
Appendix C.

The paper is organized as follows: Section 2 introduces the math-
matical setting and lines out our approach to obtain the closed-
orm solution. Section 3 presents the main results and derives the
ontinuous-time limit of our optimal strategy. Section 4 presents nu-
eric analysis dealing with the impact of approximating the wealth
rocess, the sensitivity of our solution towards various parameters, the
onvergence behavior of our solution and a comparison to other well-
nown portfolio strategies. Section 5 concludes the paper. Most proofs
re provided in Appendix A or the supplementary online material
Appendix B and Appendix C).
2
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2. Mathematical setting and outline of the approach

Let (𝛺,  , P) be a complete probability space with filtration
{

𝑡
}

𝑡∈{0,1,…𝑇 }. All stochastic processes are defined on this probability
pace. In this setting the log of the risky spot asset price 𝑋𝑡 = log𝑆𝑡
s 𝑡-progressively measurable and follows the Heston–Nandi GARCH
1,1) model,

𝑡 = 𝑋𝑡−1 + 𝑟 + 𝜆ℎ𝑡 +
√

ℎ𝑡𝑧𝑡, 𝑋(0) = 𝑥0 > 0 (1)

𝑡 = 𝜔 + 𝛽ℎ𝑡−1 + 𝛼(𝑧𝑡−1 − 𝜃
√

ℎ𝑡−1)2 (2)

where 𝑥0 is non-random, 𝑟 is the continuously compounded single-
period risk-free rate, 𝑧𝑡 is a standard normal disturbance and ℎ𝑡 is the
conditional variance of the log return of the asset between 𝑡 − 1 and
𝑡 with 𝛽 + 𝛼𝜃2 < 1 ensuring stationarity. Assuming variance station-
arity, the long-term average of the variance (ℎ) and the conditional
covariance between the variance and the log-stock are given by

ℎ̄ = 𝛼 + 𝜔
1 − 𝛽 − 𝛼𝜃2

(3)

𝑜𝑣𝑡−1[ℎ𝑡+1, 𝑋𝑡] = −2𝛼𝜃ℎ𝑡. (4)

The second asset is the risk-free bank account 𝐵𝑡 bearing the con-
inuously compounded interest rate 𝑟 for the time interval from 𝑡 to
+ 1.

The proportion of wealth invested in the risky asset 𝑆𝑡 at any time 𝑡
s defined as 𝜋𝑡. The remaining wealth (1−𝜋𝑡) goes into the risk-free cash
ccount 𝐵𝑡. We will work in the space  [0, 𝑇 ] of admissible strategies
∶=

{

𝜋𝑡
}

𝑡∈{0,1,…𝑇 }, satisfying three conditions: 𝜋𝑡 is 𝑡-progressively
easurable, wealth is non-negative in [0, 𝑇 ] and the expectation in (9)

s well-defined. We further assume that our market is frictionless and
hat the risky asset pays no dividends.

Next, we construct the portfolio value 𝑉𝑡 (wealth) using a self-
inancing argument. Let 𝜑𝑆,𝑡 denote the number of stocks and 𝜑𝐵,𝑡 the
umber of units in the cash account at time 𝑡. The value of a portfolio
ust not change through re-balancing, i.e. the value must be the same
ith and without re-balancing. This implies

𝑡 = 𝜑𝑆,𝑡𝑆𝑡 + 𝜑𝐵,𝑡𝐵𝑡 = 𝜑𝑆,𝑡−1𝑆𝑡 + 𝜑𝐵,𝑡−1𝐵𝑡,

here 𝜋𝑡−1 =
𝜑𝑡−1𝑆𝑡−1

𝑉𝑡−1
⇔ 𝜑𝑡−1 =

𝜋𝑡−1𝑉𝑡−1
𝑆𝑡−1

. Using 𝜋𝑡−1 ∶= 𝜋𝑆,𝑡−1 = 1−𝜋𝐵,𝑡−1,
we can rewrite the condition as
𝑉𝑡 − 𝑉𝑡−1

𝑉𝑡−1
= 𝜋𝑡−1

𝑆𝑡 − 𝑆𝑡−1
𝑆𝑡−1

+
(

1 − 𝜋𝑡−1
) 𝐵𝑡 − 𝐵𝑡−1

𝐵𝑡−1
.

This is the exact self-financing condition (SFC), which can be simplified
to,
𝑉𝑡
𝑉𝑡−1

= 𝜋𝑡−1
𝑆𝑡
𝑆𝑡−1

+
(

1 − 𝜋𝑡−1
) 𝐵𝑡
𝐵𝑡−1

.

The GARCH modeling of stocks targets log prices rather than re-
turns, e.g. Eq. (1). Therefore, we aim at modeling log wealth rather
than wealth returns. This means we must, like in previous literature,
approximate all returns in the self-financing condition by log prices.
The procedure we employ for that purpose is the one from [10],
Eq. (16), see also the seminal papers [16,20]. More specifically, the
approximation is done via the Taylor expansion of order two presented
next.1

Using a Taylor series expansion around 1 and working with the vari-
ance of the return instead of the squared return as per the continuous
time counterpart, we can approximate the log-return process of 𝑆𝑡 as

log
(

𝑆𝑡
𝑆𝑡−1

)

≈
𝑆𝑡 − 𝑆𝑡−1

𝑆𝑡−1
− 1

2

(

𝑆𝑡 − 𝑆𝑡−1
𝑆𝑡−1

)2

1 Order two ensures a convergence to the continuous-time solution as
pposed to order one. Higher order approximations could also be entertained
ith no impact on the continuous-time limit.
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≈
𝑆𝑡 − 𝑆𝑡−1

𝑆𝑡−1
− 1

2
V𝑎𝑟

[

𝑆𝑡 − 𝑆𝑡−1
𝑆𝑡−1

]

. (5)

This can be done analogously for 𝐵𝑡 and 𝑉𝑡, i.e. 𝐵𝑡−𝐵𝑡−1
𝐵𝑡−1

≈ log
(

𝐵𝑡
𝐵𝑡−1

)

= 𝑟

and 𝑉𝑡−𝑉𝑡−1
𝑉𝑡−1

≈ log
(

𝑉𝑡
𝑉𝑡−1

)

+ 1
2V𝑎𝑟𝑡[

𝑉𝑡−𝑉𝑡−1
𝑉𝑡−1

] = 𝑊𝑡 − 𝑊𝑡−1 + 1
2𝜋

2
𝑡−1ℎ𝑡 with

𝑡 = log(𝑉𝑡). Using these approximations and rearranging terms leads
o:

𝑡 = 𝑊𝑡−1+𝜋𝑡−1𝑌𝑡+
(

𝜋𝑡−1 − 𝜋2
𝑡−1

) 1
2
ℎ𝑡+

(

1 − 𝜋𝑡−1
)

𝑟, 𝑌𝑡 ∶= 𝑋𝑡−𝑋𝑡−1. (6)

his is equation (16) in [10], motivated from a self-financing condi-
ion perspective. From now on, we will work with 𝑊𝑡 instead of 𝑉𝑡
nd Eq. (6), i.e. with the approximation of the self-financing condition.
ection 3.2 shows analytically the convergence of the approximate
ealth process to the exact continuous-time expression under the Hes-

on model from [7]. This implies that the approximation error vanishes
s the size of a time step approaches zero (faster for higher order
pproximations). For larger step sizes, the negligible impact of the
pproximation will be studied in Section 4.1.

Substituting the Heston–Nandi model for 𝑋𝑡 we get

𝑡 −𝑊𝑡−1 = 𝜋𝑡−1𝜆ℎ𝑡 +
(

𝜋𝑡−1 − 𝜋2
𝑡−1

) 1
2
ℎ𝑡 + 𝜋𝑡−1

√

ℎ𝑡𝑧𝑡 + 𝑟 (7)

ℎ𝑡 = 𝜔 + 𝛽ℎ𝑡−1 + 𝛼(𝑧𝑡−1 − 𝜃
√

ℎ𝑡−1)2.

We now choose a power utility function of the form 𝑈 (𝑣) = 𝑣𝛾

𝛾 .
his power utility characterizes the investor as having a constant

evel of relative risk aversion (CRRA) of (1 − 𝛾), implying that for a
ecreasing 𝛾 risk aversion increases. Economically speaking, an investor
ith CRRA allocates the same fraction of his wealth in the risky asset
s his wealth increases. Compared to utility function with constant
bsolute risk aversion (CARA), which implies that the investor allocates
he same absolute amount of money to the risky asset as his wealth
ncreases, a utility function with CRRA is more realistic. Therefore,
RRA utility functions in general and the power utility function in
articular have been a popular choice in this stream of research (see
.g. [4,7]. Moreover, with the choice of CRRA, the value function of
he Bellman iteration always stays positive and affine ensuring the
xistence of a class M as necessary to obtain the results in Theorem 1.
or our portfolio optimization problem we will need to put a constraint
n the risk aversion parameter 𝛾. That is,

< 0. (8)

ote that this assumption is sufficient but not necessary in general. It
nsures that the second derivative in the optimization step is negative,
owever it is not clear that it is positive for 𝛾 > 1. As a matter of
act, the numerical Section 4.3 suggests our results are still valid for
< 1, 𝛾 ≠ 0.

The problem of interest is to maximize expected utility from termi-
al wealth2 i.e. to find a strategy 𝜋∗ which solves the optimal control
roblem3

max
𝜋𝑡}𝑇−1𝑡=0

E0
[

𝑈
(

𝑉𝑇
)]

= max
{𝜋𝑡}𝑇−1𝑡=0

E0

[

exp
{

𝛾𝑊𝑇
}

𝛾

]

= 𝛷0(𝑤0, ℎ1), 𝑤0 = log(𝑣0) (9)

e use Bellman’s principle to solve the problem recursively period
y period starting at time 𝑇 . A more detailed outline of this idea
s presented below. We start by formulating the following stochastic
ontrol problem:

Let W ⊂ R be the set of possible wealth, A be the set of admissible
portfolios, H = (0,∞), and Y = (0,∞). The transition function (T) from

× A ×H × Y to W is given by (6). Thus, we define

(𝑊 , 𝑎, ℎ, 𝑌 ) ∶= 𝑊 + 𝑎𝑌 +
(

𝑎 − 𝑎2
) 1
2
ℎ + (1 − 𝑎) 𝑟, ℎ > 0. (10)

2 We do not consider consumption for the sake of simplicity.
3 The dependence of 𝑉𝑇 on the investment strategy is omitted from the

otation.
3

r

Further, let the operators L and U be well defined for all admissible
functions 𝛷 by.

𝛷(𝑊 , 𝑎, ℎ) ∶= E [𝛷(T(𝑊 , 𝑎, ℎ, 𝑌 ))] , 𝑊 ∈ W, 𝑎 ∈ A, ℎ ∈ H (11)

U𝛷(𝑊 ,ℎ) ∶= max
𝑎∈A

L𝛷(𝑊 , 𝑎, ℎ), 𝑊 ∈ W, ℎ ∈ H (12)

A function 𝛷 is called admissible if there exists a set of functions

M ⊂ {𝛷 ∶ W ×H → R ∶ E [|𝛷|] < ∞, 𝛷 concave in W} (13)

uch that U ∶ M → M, 𝛷0(𝑤0, ℎ1) ∈ M and that for all 𝛷 ∈ M there
exists an 𝑎 ∈ A such that 𝑎(𝑊 ,ℎ) maximizes 𝑎 ↦ L𝛷(𝑊 , 𝑎, ℎ) on A for
all 𝑊 ∈ W and ℎ ∈ H.4

As per the discrete-time Bellman principle (cf. [21] Theorem 1–13),
optimizing recursively step by step yields the optimal strategy 𝜋∗ for
problems of the form of (9). Thus, we can solve the problem via the
value iteration

𝛷𝑡(𝑊𝑡, ℎ𝑡+1) = U𝛷𝑡+1(𝑊𝑡, ℎ𝑡+1), 𝑡 = 0,… , 𝑇 − 1. (14)

This notation and Eq. (9) require the terminal condition

𝛷𝑇 (𝑊𝑇 , ℎ𝑇+1) = 𝛷𝑇 (𝑊𝑇 ) = 𝑈
(

𝑊𝑇
)

. (15)

For a power utility, we first find 𝜋∗
𝑇−1(𝑊𝑇−1, ℎ𝑇 ) as the maximizer

𝛷𝑇−1(𝑊𝑇−1, ℎ𝑇 ) = U𝛷𝑇 (𝑊𝑇−1, ℎ𝑇 ) = max
𝑎∈A

L𝛷𝑇 (𝑊𝑇−1, 𝑎, ℎ𝑇 )

= max
𝑎∈A

E𝑇−1
[

𝛷𝑇 (T(𝑊𝑇−1, 𝑎, ℎ𝑇 , 𝑌𝑇 ))
]

(16)

hen going after 𝜋∗
𝑇−2(𝑊𝑇−2, ℎ𝑇−1) in

𝑇−2(𝑊𝑇−2, ℎ𝑇−1) = max
𝑎∈A

E𝑇−1
[

𝛷𝑇−1(T(𝑊𝑇−2, 𝑎, ℎ𝑇−1, 𝑌𝑇−1))
]

(17)

nd continue recursively till reaching 𝑡 = 0.
This type of portfolio choice problem, where Bellman’s optimality

rinciple can be applied is usually called time consistent. If this is not
he case the problem is called time inconsistent (see for example [22]).
his can for example happen when considering stochastic interest rates

ike in [23].
The solution we obtain on 𝑊𝑡 for problem (9) is summarized in

heorem 1. The impact of the approximation will be assessed later in
his paper.

. Portfolio optimization solution

In this section we solve the portfolio optimization problem (9).
ection 3.1 presents the main results. Therein, we also present prop-
rties of the wealth process that is generated by the optimal strategy.
he continuous-time limit of the solution can be found in Section 3.2.
ection 3.3 introduces the concept of wealth-equivalent loss and shows
ow it can be calculated in our setting.

.1. Main results

Assume the model setting described in Section 2, in particular
qs. (7) with the expected utility maximization problem in Eq. (9).
urther, assume that
M ∶=

{

𝛷 ∶ W ×H → R ∶ 𝛷(𝑊 ,ℎ) = 1
𝛾 𝑒

𝐷+𝛾𝑊 +𝐸ℎ, 𝐷 ∈ R, 𝐸 ∈ R
}

.

heorem 1. Let 𝛾 < 0. Then, for the problem described in Eq. (9) where
the log wealth follows the dynamics in (7) and 1−2𝛼𝐸∗

𝑡,𝑇 > 05, we have for
any time t:

4 In general the existence of 𝜋𝑡 is not necessarily given, however in our
application this is always the case. Thus, we also use the 𝑚𝑎𝑥, instead of the
𝑠𝑢𝑝 operator in the definition of U.

5 In the supplementary material we show that this condition is not
estrictive.
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• the optimal expected utility from terminal wealth is given by

𝛷𝑡(𝑊𝑡, ℎ𝑡+1) =
1
𝛾
exp

{

𝐷𝑡,𝑇 + 𝛾𝑊𝑡 + 𝐸∗
𝑡,𝑇 ℎ𝑡+1

}

(18)

where

𝐷𝑡,𝑇 = 𝐷𝑡+1,𝑇 + 𝐸∗
𝑡+1,𝑇𝜔 + 𝛾𝑟 − log

(√

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

)

,

𝑡 = 0,… , 𝑇 − 1 (19)

𝐸∗
𝑡,𝑇 =

(

𝛽 + 𝛼𝜃2
)

𝐸∗
𝑡+1,𝑇 +

(

𝛾𝜋∗
𝑡 − 2𝜃𝛼𝐸∗

𝑡+1,𝑇

)2

2(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

+ 𝛾
(

(𝜆 + 1
2
)𝜋∗

𝑡 − 1
2
(𝜋∗

𝑡 )
2
)

, 𝑡 = 0,… , 𝑇 − 1 (20)

with

𝐷𝑇 ,𝑇 = 𝐸∗
𝑇 ,𝑇 = 0 (21)

• the optimal proportion invested in the risky asset at any time t is

𝜋∗
𝑡 =

𝜆 + 1
2

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 ) − 𝛾

−

(

𝜃 + (𝜆 + 1
2 )
)

2𝛼𝐸∗
𝑡+1,𝑇

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 ) − 𝛾

(22)

• the optimal wealth is

𝑊 ∗
𝑡 = 𝑤0 +

𝑡
∑

𝑘=1

(

(𝜆 + 1
2
)𝜋∗

𝑡−𝑘 −
1
2
(𝜋∗

𝑡−𝑘)
2
)

ℎ𝑡+1−𝑘

+
𝑡

∑

𝑘=1

(

𝜋∗
𝑡−𝑘

√

ℎ𝑡+1−𝑘𝑧𝑡+1−𝑘
)

+ 𝑟𝑡 (23)

Proof. See Appendix A. □

We note that 𝜋∗
𝑡 is a deterministic process as it does neither depend

on the movements of the investors wealth, nor on the variance.
As an alternative to (22) the formula for the optimal solution can

also be decomposed into two different terms in the following way:

𝜋∗
𝑡 =

𝜆 + 1
2

1 − 𝛾
+

[

(1 − 𝛾)
(

𝜃 + (𝜆 + 1
2 )
)

+ (𝜆 + 1
2 )
]

2𝛼𝐸∗
𝑡+1,𝑇

(1 − 𝛾)
(

𝛾 − (1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

) . (24)

One of these terms is constant, proportional to the risk premium
and inversely proportional to the investor’s risk preference. This term
is usually called the myopic component of an investment (see for
example [10] or [7]). The second term changes over time and is
often referred to as the investor’s hedging demand against unfavorable
relative price changes in assets. This interpretation was first proposed
by [24]. In other words, the myopic investor only makes single-period
decisions disregarding future reinvestment opportunities (see for exam-
ple [13]). As our optimal decision 𝜋∗

𝑡 depends on the time to maturity
our strategy is clearly non-myopic.

Our time-dependent hedging component vanishes as the investment
horizon 𝑇 − 𝑡 goes to 1. The solution for this case is the solution for the
extreme case where the number of trading periods in between 𝑡 and 𝑇
goes to one i.e. the opposite case to the continuous-time limit where
the number of trading periods goes to infinity. This solution is derived
explicitly in the first part of the proof of Theorem 1 in Appendix A and
coincides with the myopic term of the above formula. Comparing this to
Merton’s solution from [4], that is the risk premium of the stock divided
by one minus the risk-aversion parameter, we see that both are exactly
the same. Thus our solution incorporates Merton’s as a particular case.
Moreover, there is a second case in which the hedging term is zero and
where we recover Merton’s myopic solution. This occurs when 𝛼 = 0,
which means that the variance is deterministic.

Of paramount importance to an investor is the evolution of his
wealth over time. Applying the results from Theorem 1 to the optimal
log wealth process

{

𝑊 ∗
𝑡
}𝑇
𝑡=0 reads

𝑊 ∗ = 𝑊 ∗ +
(

(𝜆 + 1 )𝜋∗ − 1 (𝜋∗ )2
)

ℎ + 𝜋∗ √

ℎ 𝑧 + 𝑟 (25)
4

𝑡 𝑡−1 2 𝑡−1 2 𝑡−1 𝑡 𝑡−1 𝑡 𝑡
ℎ𝑡 = 𝜔 + 𝛽ℎ𝑡−1 + 𝛼(𝑧𝑡−1 − 𝜃
√

ℎ𝑡−1)2.

This process has some interesting properties that can be shown ana-
lytically. First of all, we note that the log-wealth process is an affine
GARCH process itself. Its properties are similar to the HN-GARCH
model. Effects like volatility clustering or skewness and kurtosis of
returns over multiple periods can be captured. Corollary 2 presents the
moment generating function of the optimal log-wealth process. With
this, all moments of the distribution can be calculated at any given time
𝑡.

Corollary 2. The optimal log-wealth process from (25) is an affine
ARCH model. Its conditional moment generating function E𝑡

[

𝑒𝑢𝑊
∗
𝑇
]

is
iven by
(𝑡)
𝑊 ∗

𝑇
(𝑢) = E𝑡[𝑒

𝑢𝑊 ∗
𝑇 ] = exp

{

𝑢𝑊 ∗
𝑡 + 𝐴𝑡,𝑇 + 𝐵𝑡,𝑇 ℎ𝑡+1

}

(26)

here

𝑡,𝑇 = 𝐴𝑡+1,𝑇 + 𝑢𝑟 + 𝐵𝑡+1,𝑇𝜔 − 1
2
log(1 − 2𝛼𝐵𝑡+1,𝑇 ), 𝑡 = 0,… , 𝑇 − 1

(27)

𝐵𝑡,𝑇 = 𝑢
(

(𝜆 + 1
2
)𝜋∗

𝑡 − 1
2
(𝜋∗

𝑡 )
2
)

+
(

𝛽 + 𝛼𝜃2
)

𝐵𝑡+1,𝑇

+
(𝑢𝜋∗

𝑡 − 2𝛼𝜃𝐵𝑡+1,𝑇 )2

2(1 − 2𝛼𝐵𝑡+1,𝑇 )
, 𝑡 = 0,… , 𝑇 − 1 (28)

with 𝐴𝑇 ,𝑇 = 0, 𝐵𝑇 ,𝑇 = 0.

roof. See the complimentary material in Appendix B. □

The log-wealth process is of similar type as the HN-GARCH model
ut with drift and variance depending on 𝜋∗

𝑡 . Further, this m.g.f.
incorporates the HN-GARCH model as a special case, i.e. setting 𝜋∗

𝑡 = 1
or all 𝑡. Furthermore, the same stationarity condition for the variance
rocess applies as in the HN-GARCH model. The return process of the
og wealth though, might not be stationary due to its dependence on
∗
𝑡 .

As an alternative to using the m.g.f. one can also calculate the multi-
period expectation of the optimal wealth process via the following
corollary.

Corollary 3. The multi-period expectation of the optimal log-wealth
process (25) is given by

E0[𝑊 ∗
𝑡 ] = 𝑤0 + 𝑟𝑡

+
𝑡

∑

𝑘=1

[

(

(𝜆 + 1
2
)𝜋∗

𝑡−𝑘 −
1
2
(𝜋∗

𝑡−𝑘)
2
)

(

(𝛼 + 𝜔)

(

1 −
(

𝛽 + 𝛼𝜃2
)(𝑡+1−𝑘)

1 −
(

𝛽 + 𝛼𝜃2
)

)

+(𝛽 + 𝛼𝜃2)(𝑡+1−𝑘)ℎ0

)]

.

Proof. See the complimentary material in Appendix B. □

3.2. Continuous-time limit of the optimal strategy

As shown in [25], the continuous-time limit of the HN-GARCH
model is the model from [8] with 𝜌 = −1. Therefore, one would
intuitively expect that the limit of the solution under the HN-GARCH
model coincides with the solution under the Heston model. The opti-
mization problem however, does not only consist of the dynamics of
the risky asset. In order to show that our solution converges to the
Heston solution we need to show that the problems are equivalent as
a whole. In general both problems consist of two components: (i) the
utility function and (ii) the stochastics of 𝑉𝑇 .

The utility function in both problems is the same and given by
𝑈 (𝑣) = 𝑣𝛾 . So showing that our solution converges to the Heston
𝛾
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solution from [7] boils down to showing that the discrete-time wealth
process 𝑉𝑡 = 𝑒𝑊𝑡 with

𝑡 −𝑊𝑡−𝛥 = 𝑟(𝛥) + 𝜋𝑡−𝛥𝜆(𝛥)ℎ𝑡 +
(

𝜋𝑡−𝛥 − 𝜋2
𝑡−𝛥

) 1
2
ℎ𝑡 + 𝜋𝑡−𝛥

√

ℎ𝑡𝑧𝑡 (29)

ℎ𝑡+𝛥 = 𝜔ℎ(𝛥) + 𝛽ℎ(𝛥)ℎ𝑡 + 𝛼ℎ(𝛥)(𝑧𝑡 − 𝜃ℎ(𝛥)
√

ℎ𝑡)2, (30)

where 𝛥 represents the time increments, converges to the continuous-
time process
𝑑𝑉𝑡
𝑉𝑡

=
(

𝑟 + 𝜋𝑡𝜆𝑣𝑡
)

𝑑𝑡 + 𝜋𝑡
√

𝑣𝑡𝑑𝑧
𝑆
𝑡 (31)

𝑑𝑣𝑡 = 𝜅
(

𝜃𝑉 − 𝑣𝑡
)

𝑑𝑡 − 𝜎
√

𝑣𝑡𝑑𝑧
𝑆
𝑡 (32)

where 𝑧𝑆𝑡 denotes a standard Wiener process, for 𝛥 → 0 i.e. to the
portfolio process under the Heston model with 𝜌 = −1. This approach
of showing the converges of discrete-time solutions as 𝛥 ⟶ 0 was
sed earlier by [26]. They show that under mild assumptions Merton’s
ontinuous-time solution is asymptotically optimal under a discrete-
ime model if this model converges to Merton’s GBM as the time steps
ecome very small.

Analogue to [19] we derive the continuous-time limit by using
he weak convergence of Markov processes to diffusions. For this we
ssume that lim

𝛥→0
𝑟(𝛥)
𝛥 = 𝑟 where 𝑟 is the instantaneous short rate and

start by writing (29) and (30) in terms of 𝑣𝑡 =
ℎ𝑡
𝛥 :

𝑊𝑡 −𝑊𝑡−𝛥 = 𝑟(𝛥) + 𝜋𝑡−𝛥𝜆(𝛥)𝑣𝑡𝛥 +
(

𝜋𝑡−𝛥 − 𝜋2
𝑡−𝛥

) 1
2
𝑣𝑡𝛥 + 𝜋𝑡−𝛥

√

𝑣𝑡
√

𝛥𝑧𝑡

(33)

𝑣𝑡+𝛥 = 𝜔(𝛥) + 𝛽(𝛥)𝑣𝑡 + 𝛼(𝛥)(𝑧𝑡 − 𝜃(𝛥)
√

𝑣𝑡)2, (34)

with 𝜔(𝛥) ∶= 𝜔ℎ(𝛥)
𝛥 , 𝛽(𝛥) ∶= 𝛽ℎ(𝛥), 𝛼(𝛥) ∶=

𝛼ℎ(𝛥)
𝛥 , 𝜃(𝛥) ∶= 𝜃ℎ(𝛥)

√

𝛥.
The convergence of (34) to (32) is already known from [19].
To show the convergence of the wealth process itself, it is conve-

nient to rewrite the continuous-time process in the following way. First,
using It ô’s Lemma we write the process in terms of log-prices which
reads

𝑑𝑊𝑡 =
(

𝑟 + 𝜋𝑡𝜆𝑣𝑡 −
1
2
𝜋2
𝑡 𝑣𝑡

)

𝑑𝑡 + 𝜋𝑡
√

𝑣𝑡𝑑𝑧
𝑆
𝑡

=
(

𝑟 + 𝜋𝑡𝜆𝑣𝑡 + (𝜋𝑡 − 𝜋2
𝑡 )
1
2
𝑣𝑡
)

𝑑𝑡 + 𝜋𝑡
√

𝑣𝑡𝑑𝑧
𝑆
𝑡 . (35)

where 𝜆̄, the risk premium on the return, relates to the risk premium
on the log-return 𝜆 via 𝜆̄ = 𝜆+ 1

2 . With that one can derive the following
roposition.

roposition 4. The stochastic difference Eq. (33) converges weakly to
he stochastic differential Eq. (35).

roof. See the complimentary material in Appendix B. □

This shows that our solution converges to Heston’s for 𝛥 ⟶ 0.
urther our solution is a generalization of Heston’s solution with respect
o 𝛥. From the perspective of a practitioner that cannot rebalance
ontinuously but at discrete points in time, this additional flexibility of
he model is valuable because he can optimize his strategy exactly to his
ebalancing behavior. In a continuous-time model on the other hand,
he investor would suffer losses by implementing the optimal strategy
n a suboptimal way i.e. by rebalancing only discretely. We will study
his point in the numerical section.

An alternative treatment of the convergence of discrete-time solu-
ions using ordinary differential equations can be found in [22].

.3. Losses from suboptimal strategies

In this subsection we study the wealth-equivalent loss (WEL) an
nvestor suffers by following a suboptimal strategy 𝜋𝑠. Furthermore we
resent some properties of suboptimal strategies. The expected utility
rom terminal wealth for an investor following such a strategy can
5

i

e written analogously to Section 2 while omitting the maximization,
.e. only using the tower property of conditional expectations. This is,
𝑠
0(log(𝑣0), ℎ1) = E0

[

𝑈
(

log(𝑉𝑇 )
)]

= E0
[

E1
[

…E𝑇−2
[

E𝑇−1
[

𝑈
(

log(𝑉𝑇 )
)]]

…
]]

(36)

and

𝛷𝑠
𝑡 (log(𝑉𝑡), ℎ𝑡+1) = E𝑡[𝛷𝑠

𝑡+1(T(log(𝑉𝑡), 𝜋
𝑠
𝑡 , ℎ𝑡+1, 𝑌𝑡+1))], (37)

ith 𝛷𝑠
𝑇 (log(𝑉𝑇 ), ℎ𝑇+1) = 𝛷𝑠

𝑇 (log(𝑉𝑇 )) = 𝑈 (log(𝑉𝑇 )).
From the definition of 𝛷𝑡(𝑉𝑡, ℎ𝑡+1) in (14) it follows that 𝛷𝑠

𝑡 (𝑉𝑡, ℎ𝑡+1)
𝛷𝑡(𝑉𝑡, ℎ𝑡+1) with equality when 𝜋𝑠 = 𝜋∗.
Following [27] we define the wealth-equivalent utility loss 𝐿𝑠

𝑡 from
following a suboptimal strategy as the solution to

𝛷𝑡(log(𝑉𝑡(1 − 𝐿𝑠
𝑡 )), ℎ𝑡+1) = 𝛷𝑠

𝑡 (log(𝑉𝑡), ℎ𝑡+1). (38)

An investor following the optimal strategy thus only needs a fraction
of 1 − 𝐿𝑠

𝑡 of the initial capital to achieve the same expected utility
as if he applies the suboptimal strategy. In other words, applying the
suboptimal strategy, a fraction of 𝐿𝑠

𝑡 of the initial capital would be
wasted or lost compared to the optimal strategy.

To arrive at an explicit expression for 𝐿𝑠
𝑡 some preparation is

needed. Let us denote the set of admissible strategies  [0, 𝑇 ] addition-
ally including the condition 1−2𝛼𝐸𝑠

𝑡,𝑇 > 0 ∀𝑡 ∈ [0, 𝑇 ], with 𝐸𝑠
𝑡,𝑇 as per

Eq. (41), by  𝑠[0, 𝑇 ].6

Proposition 5. For any admissible strategy 𝜋𝑠
𝑡 the expected utility from

terminal wealth conditioned on 𝑡 is given by

𝛷𝑠
𝑡 (𝑊𝑡, ℎ𝑡+1) =

1
𝛾
exp

{

𝐷𝑠
𝑡,𝑇 + 𝛾𝑊𝑡 + 𝐸𝑠

𝑡,𝑇 ℎ𝑡+1
}

(39)

here
𝑠
𝑡,𝑇 = 𝐷𝑠

𝑡+1,𝑇 + 𝐸𝑠
𝑡+1,𝑇𝜔 + 𝛾𝑟 − log

(√

(1 − 2𝛼𝐸𝑠
𝑡+1,𝑇 )

)

, 𝑡 = 0,… , 𝑇 − 1

(40)

𝐸𝑠
𝑡,𝑇 =

(

𝛽 + 𝛼𝜃2
)

𝐸𝑠
𝑡+1,𝑇 +

(

𝛾𝜋𝑠
𝑡 − 2𝜃𝛼𝐸𝑠

𝑡+1,𝑇

)2

2(1 − 2𝛼𝐸𝑠
𝑡+1,𝑇 )

+ 𝛾
(

(𝜆 + 1
2
)𝜋𝑠

𝑡 −
1
2
(𝜋𝑠

𝑡 )
2
)

,

𝑡 = 0,… , 𝑇 − 1 (41)

with 𝐷𝑠
𝑇 ,𝑇 = 𝐸𝑠

𝑇 ,𝑇 = 0.

Proof. See the complimentary material in Appendix B. □

Now we can derive an explicit expression for 𝐿𝑠
𝑡 which is presented

in the following lemma.

Lemma 6.

𝐿𝑠
𝑡 (ℎ𝑡+1) = 1 − exp

{

1
𝛾

((

𝐷𝑠
𝑡,𝑇 −𝐷𝑡,𝑇

)

+
(

𝐸𝑠
𝑡,𝑇 − 𝐸∗

𝑡,𝑇

)

ℎ𝑡+1
)

}

Proof. See the complimentary material. □

These results will be used later to conduct numerical experiments
that compare meaningful suboptimal and optimal strategies with re-
spect to WEL.

4. Numerical analysis

In this section we present some numerical results on the optimiza-
tion approach presented above. Section 4.1 analyzes the impact of the
approximation used in the derivation of the SFC while Section 4.2

6 The last condition is a technical one assuring that the formulas obtained
n this section are well defined.
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discusses the sensitivity of the optimal solution to various parameters.
Section 4.3 compares our optimal allocation to other well-known solu-
tions of the portfolio optimization problem. Finally, in Section 4.4 we
compare the performance of our strategy to other strategies in terms of
wealth-equivalent losses.

Throughout this section we consider the parameter estimates of
daily returns from [28] for the HN-GARCH model:

𝛼 = 3.660 ⋅10−6, 𝛽 = 0.9026, 𝜆 = 2.772, 𝜃 = 128.4, 𝜔 = 3.038 ⋅10−9

4.1. On the approximation of the SFC

In Section 2 we derived the exact SFC for the wealth process.
Working with log prices, 𝑋𝑡 = log𝑆𝑡 and using that 𝑟𝑑 = 𝑒𝑟 − 1 where
𝑟𝑑 ∶= 𝐵𝑡−𝐵𝑡−1

𝐵𝑡−1
is the discrete return and 𝑟 ∶= log 𝐵𝑡

𝐵𝑡−1
the log-return of

the risk-free bond, we arrive at

𝑉𝑡 = 𝑉𝑡−1
(

𝜋𝑡−1𝑒
𝑋𝑡−𝑋𝑡−1 +

(

1 − 𝜋𝑡−1
)

𝑒𝑟
)

. (42)

As a proxy for this process we worked with

𝑊𝑡 = 𝑊𝑡−1 + 𝜋𝑡−1
(

𝑋𝑡 −𝑋𝑡−1
)

+
(

1 − 𝜋𝑡−1
)

𝑟 +
(

𝜋𝑡−1 − 𝜋2
𝑡−1

) 1
2
ℎ𝑡

⇔ 𝑉𝑡 = 𝑉𝑡−1 exp
{

𝜋𝑡−1
(

𝑋𝑡 −𝑋𝑡−1
)

+
(

1 − 𝜋𝑡−1
)

𝑟 +
(

𝜋𝑡−1 − 𝜋2
𝑡−1

) 1
2
ℎ𝑡
}

.

(43)

While the optimal wealth process that is generated by the strategy
proposed in this paper follows the dynamics in Eq. (43) the self-
financing dynamics of the portfolio are given by Eq. (42). To assess this
difference we perform simulations with the following configuration:

𝑟 = 0.01∕252, 𝛾 = −5, 𝑇 = 5 ⋅ 252 days (i.e. 5 trading years),
number of simulations: 10,000

An important question for someone who wants to implement the
proposed strategy is whether the performance of the portfolio is com-
promised when using (43) as an approximation for (42)? To answer
this question we simulated pairs of sample paths of the wealth process
generated by the optimal strategy. The two paths of one pair were
calculated by means of (42) (a) and (43) (b) respectively. Both use
the same realization of the random variable. In Fig. 1 we report the
distribution of the terminal wealth for both processes (subplots (a) and
(b)). Looking at these two subplots we see that both distributions are
almost identical. Subplot (c) presents the distribution of the difference
in terminal wealths. The center of the distribution is close to 0. The
difference in terminal wealth one might encounter after a 5-year in-
vestment period is mostly in the range from −0.4% to 0.6% of the initial
investment.

If an investor wants to follow the optimal wealth process exactly
he needs to either pay cash into the strategy or withdraw cash from
the strategy in every period i.e. in every period he needs to set 𝑉𝑡−1 =
exp(𝑊𝑡−1). The distribution of the cash flows necessary to maintain
such a non-self-financing strategy is shown in Fig. 2. The number
of simulations for this figure was 100,000. Subplot (a) displays the
distribution of daily cash flows. We observe that the distribution is
negatively skewed. This means that in most cases the investor has to
supply a small amount of money and in fewer cases he can withdraw
a relatively high amount. Most cash flows that need to be supplied to
maintain the optimal strategy are in a range from −0.008% to 0.003% of
the investors current wealth. Subplot (b) presents the distribution of the
accumulated daily cash flows over the investment horizon of 5 years. It
is negatively skewed as well but less so than the distribution in subplot
(a). The magnitude of the cumulative cash flows supplied over 5 years
is of course somewhat larger than the one of the daily cash flows and
lies in a range between −0.3% and 0.25% of the investors initial wealth.
As we will discuss the optimality of our solution for 𝛾 ∈ (0, 1] later we
also performed all calculations for this case. The absolute magnitude of
the cash flows was very similar to what is shown here. The distribution
6

Fig. 1. Distribution of terminal wealth for the proxy and exact wealth process. This
figure plots the distribution of terminal wealth after a 5-year investment horizon for
the approximated wealth process (a) and the exact wealth process (b). Further, it plots
the distribution of the difference in terminal wealth after the same horizon in subplot
(c).

seems to be the same but mirrored on a vertical axis at zero i.e. on
average cash has to be supplied to the strategy.

Overall, we conclude that the approximation of the SFC that was
used to derive the optimal strategy has only a minor influence on the
evolution of the investors wealth.

4.2. Sensitivity of the optimal solution

In this subsection we investigate how the optimal strategy reacts
to changes in model parameters. The optimal solution was calculated
for 𝑇 = 252 trading days and model parameters in a range from 50%
to 200% of the estimates in [28]. While varying one parameter all
others were held constant to 100% of the [28] values with 𝛾 = −5. The
parameters 𝛼, 𝛽 and 𝜃 where capped such that the stationarity condition
of the HN-GARCH model i.e. 𝛽 + 𝛼𝜃2 < 1 is satisfied at any time. 𝛾
was in a range from −0.1 to −10 and 𝑟 in the range from −2%∕252 to
4%∕252. The results are shown in Fig. 3. The first horizontal axis shows
the different values of each parameter, while the second horizontal axis
shows the time.

One parameter that stands out is 𝜆 i.e. the market price of risk. The
fraction invested in the risky asset rises linearly with 𝜆 for all 𝑡. This
is what one would expect. An agent who found a utility maximizing
trade-off between risk and reward would not take any more absolute
risk unless the reward per unit of additional risk increases. In the latter
case, the agent would be willing to invest a higher fraction of wealth
in the risky asset. Another obvious picture can be observed for 𝛾. A
lower risk aversion, which corresponds to a 𝛾 closer to zero, implies a
higher investment in the risky asset. 𝜔 and 𝑟 have no significant impact
whatsoever. As for 𝑟 one can already see from the theoretical results
that the optimal strategy is independent of 𝑟. 𝜔 is traditionally very
small when estimating GARCH models and has thus only minor impact
on the optimal solution. Often, this parameter is even assumed to be
zero.

The more interesting parameters are 𝛼, 𝛽 and 𝜃. They have a
similar impact on the optimal investment as 𝜋∗ rises with parameters
increasing to values that just fulfill the stationarity condition while
showing a decreasing sensitivity as 𝑡 ⟶ 𝑇 . 𝛽 is the parameter that
models the intensity of autocorrelation in the variance process. Thus,
lower values of 𝛽 imply stronger mean-reversion of the variance and
vice versa. Furthermore, from (3) we know that lower values of 𝛽 also
imply a lower average level of variance. From Fig. 3 we can see that
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Fig. 2. Distribution of cash supplied to maintain the optimal wealth process. This figure plots the distribution of the extra cash flows that are necessary to compensate the fact
that the approximated wealth process in not exactly self-financing. Subplot (a) displays the distribution of daily cash flows as a fraction of the current wealth. Subplot (b) displays
the distribution of the cumulative daily cash flows over a 5-year horizon.
it is optimal for an investor to have a higher exposure to the risky
asset when 𝛽 is higher i.e. when mean-reversion is weaker and when
the average variance is higher. This might seem counter intuitive at
first but it becomes clear when digging a little deeper. First, from (1)
one can see that if variance increases the expected return increases as
well. Thus, for rising values of 𝛽 we have a trade-off between higher
variance and higher expected return. Therefore, an increase in 𝛽 does
not necessarily imply lower exposure to the risky asset. Second, one
has to take correlation into account and note that changes in 𝛽 only
impact the non-myopic hedging term. When correlation between stock
and variance becomes more negative the hedging effect between the
two increases. This is, variance risk and stock risk cancel out to a certain
degree. Hence, overall risk decreases and one can invest more risky.

This impact of correlation is consistent with the solution under
the Heston model. In the setting of a HN-GARCH model, increasing
volatility implies more negative correlation between stock and variance
which can be seen from similar considerations as for (B.17). Thus, it
makes sense that for some parametric settings an increase in variance
increases the non-myopic part of the optimal allocation. Our results
show, that this is indeed the case for reasonable model parameters.
While in the literature 𝛼 is mainly held responsible for the kurtosis
and 𝜃 for the skewness of multi-period asset returns, both parameters
actually influence both distribution characteristics. The increase of each
of those parameters leads to an increase in kurtosis and a decrease in
skewness i.e. returns become more negatively skewed. It seems intuitive
that with decreasing skewness the attractiveness of the risky asset de-
clines. For the kurtosis on the other hand this is not so clear as a higher
kurtosis implies a higher probability of both tails of the distribution.
Furthermore, as of Eq. (3) higher values of 𝛼 or 𝜃 also imply a higher
average level of variance and thus more negative correlation between
stock and variance. Hence, similar arguments hold as for 𝛽. Our results
suggest, that the larger right tail of the returns distribution due to the
increase in kurtosis and the more negative correlation between stock
and variance lead to an increase in the optimal allocation. Hence, 𝜋∗

rises with increasing values of 𝜃 and 𝛼. Furthermore note, that there
might be an interdependence of the effect of different parameters on
the optimal strategy especially for the parameters 𝛼, 𝛽 and 𝜃 as they
are linked via the stationarity condition. For example, if 𝛼 is smaller
then the impact of the same increase in 𝛽 may be smaller as if 𝛼 is
bigger.

Overall we find that the optimal solution is quite robust against
small changes in parameters. This is, when parameters are miss-
specified, for example due to inaccurate estimation, the resulting
strategy is not far off the optimal one using the true parameter set.
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4.3. Convergence of the optimal strategy to known solutions

We already related our solution to the continuous-time ones under
the Merton and Heston models from a theoretical point of view. Now
let us enrich this with some numerical results.

Fig. 4 reports the different portfolio weights over time for the
parameter configuration 𝑟 = 0.01∕252, 𝑇 = 5 ⋅252 days. In this figure we
denote our solution ‘‘EGZ’’. Not surprisingly, given the daily frequency
of the parameters, our solution is close to the Heston solution regardless
of the sign of 𝛾. Even though its analytical derivation only shows
optimality for 𝛾 < 0 explicitly, this fact supports the hypothesis that
our solution is optimal for 𝛾 < 1, 𝛾 ≠ 0 similar to both continuous-time
solutions.

Both, the Heston solution and our solution are greater than Merton’s
for 𝛾 < 0 and smaller than Merton’s for 𝛾 > 0 over the whole investment
horizon. Overall, all three solutions are rather close to each other for
the selected parameter configurations. Note that if 𝑡 ⟶ 𝑇 − 1 our
solution converges to Merton’s. This is the same result that we found
in Section 3.1.

Fig. 5 displays the convergence behavior of our solution as 𝛥 ⟶ 0.
Subplots (a) and (b) show the case where 𝑇 = 1 day. We use this
investment horizon to show our solution for low rebalancing frequen-
cies, i.e. few rebalancings over the fixed horizon. We have defined
the rebalancing frequency as 𝑇

𝛥 i.e. the number of rebalancing periods
over the investment horizon. From [25] we know how the parameters
change with 𝛥 for 𝛥 ≤ 1 day as we use parameters estimated from daily
returns. How the parameters dependent on 𝛥 for all 𝛥 > 1 day for daily
returns is unknown in the literature and a topic for future research.
Note that, for the purpose of writing our solution dependent on 𝛥, we
need to write the parameter specifications from [25] in terms of ℎ𝑡
instead of 𝑣𝑡. As 𝛥 has this upper bound of 1, we can only show low
rebalancing frequencies 𝑇

𝛥 by choosing small 𝑇 . Setting 𝑇 = 1, 𝛥 = 0.5
implies rebalancing twice, 𝛥 = 0.25 implies choosing weights four times
and so on. For 𝛥 < 𝑇 our solution departs from Merton’s and moves
towards the Heston solution. The behavior is the same for 𝛾 < 0 and
𝛾 > 0.

Subplots (c) and (d) in Fig. 5 show the convergence behavior for
high rebalancing frequencies, i.e. many rebalancing times for the fixed
investment horizon. For this we use 5 years i.e. 𝑇 = 5 ⋅ 252 again. In
the case 𝛾 > 0 (subplot(d)) everything is as suggested by subplot (b).
Our solution converges to the Heston solution for 𝛥 ⟶ 0. Curiously,
subplot (c) which shows the case 𝛾 < 0 suggests a ‘‘non-linear’’
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Fig. 3. Sensitivity of the optimal solution to various parameters. This figure plots the sensitivity of the optimal investment strategy to changes of various parameters.
convergence behavior. In most regions of 𝛥 our solution is smaller than
Heston’s and converges to it from below for a shrinking 𝛥. But for very
small rebalancing frequencies, our solution rises above Heston’s before
converging back to it from above. This indicates that there are opposite
forces at work as 𝛥 ⟶ 0, one that pulls our solution towards the Heston
solution and one that pushes it above. The, latter seems to dominate
only for very specific regions of 𝛥. An economic explanation for the
second force might be that the discrete-time model assumes that there
is no movement of the risky asset in-between two points in time, while
under the continuous-time model there is movement at any point in
time. Thus, the same risky asset might be perceived as less risky under
the discrete-time model and therefore a higher stake in the risky asset
can be chosen for the same risk preference.

4.4. Performance of the optimal and suboptimal strategies

A numerical comparison of the performance for different strategies
is conducted in this subsection. We again use simulations to implement
some of the analysis. The parameters for the simulation are:

𝑉0 = 1, 𝑟 = 0.01∕252, 𝛾 = −5, 𝑇 = 252 days,
number of simulations: 1,000,000
Table 1 reports the moments of the one year return distribution and
the expected utility from terminal wealth generated by different strate-
gies. The latter was calculated using the closed-form expressions from
8

Table 1
Distribution moments of realized returns and expected utility from terminal wealth
generated by different strategies.

Strategy 𝜇 𝜎 Skewness Kurtosis SR 𝐸[𝑈𝑇 ]

EGZ 0.0567 0.0863 −0.1472 3.0546 0.6568 −168.9989E−03
Heston 0.0566 0.0863 −0.1471 3.0471 0.6560 −168.9990E−03
Merton 0.0552 0.0833 −0.1561 3.0494 0.6628 −169.0227E−03

Theorem 1. The same expressions can also be applied to any other in-
vestment strategy as per Proposition 5. We denote our optimal strategy
‘‘EGZ’’. ‘‘Heston’’ refers to the strategy from [7] while ‘‘Merton’’ refers
to the one from [4]. Merton’s strategy deviates the most from the other
two. We can see that it produces a slightly higher Sharpe ratio and
lower kurtosis than the other two strategies. On the other hand it also
has more negatively skewed returns and most importantly it obviously
has a lower expected utility from terminal wealth. The Heston solution
holds up quite well in our setting based on this analysis.

Based on the results from Section 3.3, we further estimate the utility
loss for an investor who follows a suboptimal strategy. We start by
exploring the WEL induced by following the Heston and the Merton
strategy instead of the strategy optimal to this setting and its sensitivity
towards the risk aversion parameter 𝛾. The results are shown in Fig. 6.
Subplot (a) shows the whole region, while subplot (b) provides a closer
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Fig. 4. Comparison of different strategies. This figure shows a comparison between our strategy and the Heston and Merton strategy.
Fig. 5. Convergence behavior of the optimal solution. This figure shows convergence behavior of our optimal solution as the time step goes to zero.
look at the comparison to the Heston strategy. The first thing to note
is that, for the parameter set at hand, WEL is relatively small over all
values of 𝛾. Furthermore, the WEL induced by the Heston solution is
almost negligible compared to the one induced by Merton’s solution.
9

In Fig. 7 we report the WEL when exploring other reasonable values
for each parameter while keeping all other parameters unchanged.
When varying the parameters we ensure that the stationarity condition
as well as the technical condition 1 − 2𝛼𝐸𝑠 > 0 from Section 3.3 are
𝑡,𝑇
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Fig. 6. Wealth-equivalent loss from suboptimal strategies with 𝑇 = 252 ∗ 10 days. This figure plots the WEL induced by following Merton’s and Heston’s strategy for different
levels of risk aversion 𝛾. Subplot (a) shows the whole picture, subplot (b) provides a closer look at the comparison to the Heston strategy.

Fig. 7. Wealth-equivalent loss from following suboptimal strategies with 𝑇 = 252 ⋅ 10 days and 𝛾 = −5. This figure plots the WEL induced by following Merton’s and Heston’s
strategy for different parameter configurations.
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satisfied. Other parameter regions than the ones shown in the plots do
not reveal any additional insights.

Recall, the WEL is calculated via the formula in Lemma 6. For
the purpose of these numerical examples we set ℎ𝑡+1 = ℎ using the
original parameters from [28]. This gives us an annualized volatility
at time 𝑡 + 1 of 0.1578 which is not modified along with the model
parameters. The reason for this is that if we recalculate ℎ𝑡+1 using the
varied parameters, ℎ𝑡+1 would inflate as 𝛼, 𝛽 or 𝜃 approach values that
nly just fulfill the stationarity condition. This would cause the WEL
o explode, i.e. 𝑒𝑥𝑝() in Lemma 6 goes to −∞ due to 𝛾 < 0. However,

we are interested in the WEL that is induced by the difference in the
strategies i.e. 𝐷𝑠

𝑡,𝑇 − 𝐷𝑡,𝑇 and/or 𝐸𝑠
𝑡,𝑇 − 𝐸∗

𝑡,𝑇 and not by the inflation
of ℎ𝑡+1. Keeping ℎ𝑡+1 unchanged implies that Fig. 7 can answer the
following question. If we observe an annualized variance of 0.1578
today, what would be the impact of changing one model parameter
on the WEL?

We observe that WEL rises as the values of 𝛼, 𝛽, 𝜃 or 𝜆 increase. For
he first three parameters, the loss inferred by following the Heston
trategy is negligible, the one inferred by Merton’s solution on the
ther hand rises significantly. This behavior is reasonable because if
hese parameters rise, then the variance becomes more random hence
reating a larger separation to Merton. The Merton solution completely
isregards the fact that variance is random in the HN-GARCH setting.
xplicitly modeling the variance gives additional information about
ow the variance moves that can be exploited to achieve a higher
xpected utility or more precisely the highest possible expected utility.

has almost no impact on WEL whatsoever because the optimal
trategy is not sensitive to changes in 𝜔 as demonstrated in Section 4.2.
i.e. the equity risk premium has a significant impact on WEL. Recall

rom Fig. 3, that 𝜆 already had a significant impact on the overall
trategy. However, from representation (24) one can see that it not
nly plays a role in the myopic but also in the non-myopic part of
he strategy. As its influence on the myopic part is the same as for
erton’s strategy one can follow from Fig. 7 that the non-myopic part

ecomes more and more important for larger values of 𝜆. Economically,
he WEL induced by following Merton’s strategy can be explained as
ollows. 𝜆 is the risk premium per unit of variance. Merton assumes

constant variance that means the premium (𝜆ℎ𝑡) he can collect is
lways the same. If one knows how variance moves over time, one
an better incorporate how the premium (𝜆ℎ𝑡) moves over time and

thus collect this premium better. When looking at the Heston strategy,
one can see that 𝜆 also has the biggest impact on WEL. As the only
difference between the Heston strategy and ours is the size of one
period this has to be the reason for the WEL induced by following
the Heston strategy. A possible economic interpretation is that Heston
over- or underestimates the opportunity to exploit the risk premium
by assuming the risky asset moves continuously while it actually does
only move at certain points in time. Furthermore, it is likely that WEL
significantly increases when using larger rebalancing frequencies.

In summary, WEL induced by following either Merton’s or the
Heston solution instead of ours is rather small within this parameter
set. However, there are reasonable regions of parameters where WEL
increases to a considerable level.

5. Conclusion

This paper develops a closed-form solution for a portfolio opti-
mization problem where the investor maximizes a CRRA utility from
terminal wealth assuming that the variance of the spot asset follows
the HN-GARCH model. To avoid the possibility of a negative wealth
we employ an approximation for the wealth process.

In our two-asset setting, we find that the optimal portfolio process
is independent of the development of the risky asset and non-myopic
i.e. has a time-dependent component. In the limit where the length
of one period goes to zero our solution converges to the one under
the Heston stochastic volatility model under some conditions. Further
11
we obtain a recursive representation for the conditional m.g.f. of the
optimal (and any other) wealth process facilitating risk management
and pricing.

Finally, using empirically relevant parameter estimates, we con-
duct a numerical analysis of our optimal strategy. Firstly, we find
that the approximation of the wealth process has only minor impact.
Secondly, our strategy is quite robust against changes in parameter
values. Thirdly, we visualize the connection between our solution, the
one under the Heston model and the one under the Merton model. Our
strategy contains both of the other strategies as a special case i.e. the
case 𝛥 ⟶ 0 and the case 𝛥 = 𝑇 . And lastly, we investigate the WEL
induced by following the Heston and the Merton strategy for different
parameter settings. We report that, for a daily trading scenario, the
optimal solution under the Heston model shows a good performance
while the optimal solution under the Merton model shows significant
losses.

There are many potential directions to extend this work to benefit
practitioners and academics alike. For instance, considering multiple
stocks in the investment portfolio. In the complementary package,
Appendix C, we use the multivariate GARCH model of [19] to construct
the two dimensional solution. Further exploration is needed to un-
derstand the implications of diversification and implementation of the
solution. Other beneficial areas are, the presence of investor’s consump-
tion, more general utility functions, flexibility in the distributions of the
innovations to capture non-Gaussian one-step behavior, and dynamic
correlations among the underlying, to mention a few. Our work paves
the way for a resurgence of discrete time portfolio optimization.

Overall, this paper provides a quick method of finding utility-
optimal portfolios under an advanced time-series model which is easy
to implement and takes into account important stylized facts.
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Appendix A. Proofs

Proof of Theorem 1. We prove the statements (18)–(22) from Theo-
rem 1 by induction.

Base case We start by optimizing the last period first i.e. from 𝑇 − 1
o 𝑇 and use this as the base case. Let us solve problem (9) backward
sing Bellman’s principle. The first step reads 3

𝑇−1(𝑊𝑇−1, ℎ𝑇 ) = max
𝜋𝑇−1

E𝑇−1

[

exp
{

𝛾𝑊𝑇
}

𝛾

]

where from (7) we have 𝑊𝑇 = 𝑊𝑇−1 + 𝑟 +
(

𝜋𝑇−1 − 𝜋2
𝑇−1

) 1
2ℎ𝑇 +

𝜋𝑇−1
(

𝜆ℎ𝑇 +
√

ℎ𝑇 𝑧𝑇
)

.
From [18] we know the one-period m.g.f. of the log stock under the

HN-GARCH model 𝛹 (𝑡−1)
𝑋𝑡

is

𝛹 (𝑇−1)
𝑋𝑇

(𝑢) = E𝑇−1[𝑒𝑢𝑋𝑇 ] = exp
(

𝑢𝑋𝑇−1 + 𝐴𝑇−1,𝑇 + 𝐵𝑇−1,𝑇 ℎ𝑇
)

𝐴𝑇−1,𝑇 = 𝑢𝑟, 𝐵𝑇−1,𝑇 = 𝑢𝜆 + 1
2
𝑢2.

Using this we can produce the m.g.f. for log wealth as

𝛹 (𝑡−1)
𝑊𝑡

(𝑢) = E𝑡−1
[

exp
{

𝑢𝑊𝑡
}]

= 𝛹 (𝑡−1) (𝑢𝜋
)

𝑋𝑡 𝑡−1
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× exp
{

𝑢
(

𝑊𝑡−1 − 𝜋𝑡−1𝑋𝑡−1 +
(

𝜋𝑡−1 − 𝜋2
𝑡−1

) 1
2
ℎ𝑡 +

(

1 − 𝜋𝑡−1
)

𝑟
)}

= exp
{

𝑢𝑊𝑡−1 + 𝑢𝑟 +
(

𝜋𝑡−1𝑢𝜆 + 𝜋2
𝑡−1

1
2
𝑢2 +

(

𝜋𝑡−1 − 𝜋2
𝑡−1

)

𝑢 1
2

)

ℎ𝑡
}

(A.1)

Note this is the exponential of a polynomial of order two on 𝜋𝑡−1, which
ill be used to maximize on 𝜋𝑡−1. With this we can rewrite the problem
s

𝑇−1(𝑊𝑇−1, ℎ𝑇 ) = max
𝜋𝑇−1

E𝑇−1

[

exp
{

𝛾𝑊𝑇
}

𝛾

]

= max
𝜋𝑇−1

1
𝛾
𝛹 (𝑇−1)
𝑊𝑇

(𝛾)

(A.1)
= max

𝜋𝑇−1

1
𝛾
exp

{

𝛾𝑊𝑇−1 + 𝛾𝑟 +
(

𝜋𝑇−1𝛾𝜆 + 𝜋2
𝑇−1

1
2
𝛾2 + 𝛾

(

𝜋𝑇−1 − 𝜋2
𝑇−1

) 1
2

)

ℎ𝑇

}

= max
𝜋𝑇−1

1
𝛾
exp

{

𝐷𝑇−1,𝑇 + 𝛾𝑊𝑇−1 + 𝐸𝑇−1,𝑇 (𝜋𝑇−1)ℎ𝑇
}

(A.2)

where 𝐷𝑇−1,𝑇 = 𝛾𝑟, 𝐸𝑇−1,𝑇 (𝜋𝑇−1) = 𝜋𝑇−1
(

𝜆 + 1
2

)

𝛾 + 𝜋2
𝑇−1

1
2
(

𝛾2 − 𝛾
)

.
Before carrying on, note that in (A.2) only 𝐸𝑇−1,𝑇 (𝜋𝑇−1) depends on
𝜋𝑇−1 and that the exponential function is strictly monotonously in-
creasing in 𝐸𝑇−1,𝑇 (𝜋𝑇−1). Therefore, it is sufficient to only optimize
𝐸𝑇−1,𝑇 (𝜋𝑇−1). Further, note that the sign of the second derivative of
the overall optimization problem is only depending on the signs of 𝛾
and 𝐸′′

𝑇−1,𝑇 . Therefore, it is also sufficient to calculate 𝐸′′
𝑇−1,𝑇 . With this

we can proceed to solve the optimization problem in (A.2) by taking
the first derivative of 𝐸𝑇−1,𝑇 (𝜋𝑇−1) w.r.t. 𝜋𝑇−1 and set it equal to zero,

(

𝜆 + 1
2

)

𝛾 + 𝜋∗
𝑇−1

(

𝛾2 − 𝛾
)

= 0 ⇔ 𝜋∗
𝑇−1 =

𝜆 + 1
2

1 − 𝛾
.

o check whether this is a minimum or a maximum we calculate the
econd derivative of 𝐸𝑇−1,𝑇 (𝜋𝑇−1) as 𝛾2−𝛾 > 0, 𝛾 < 0. This shows that

the optimum from above is maximizing if 𝛾 < 0. However, one cannot
be sure that the solution is minimizing for 𝛾 > 0. Substituting 𝜋∗

𝑇−1 into
equation (A.2) leads to

𝛷𝑇−1(𝑊𝑇−1, ℎ𝑇 ) =
1
𝛾
exp

{

𝐷𝑇−1,𝑇 + 𝛾𝑊𝑇−1 + 𝐸∗
𝑇−1,𝑇 ℎ𝑇

}

(A.3)

= 1
𝛾
exp

⎧

⎪

⎨

⎪

⎩

𝛾𝑟 + 𝛾𝑊𝑇−1 +
𝛾(𝜆 + 1

2 )
2

2(1 − 𝛾)
ℎ𝑇

⎫

⎪

⎬

⎪

⎭

(A.4)

where 𝐸∗
𝑇−1,𝑇 = 𝐸𝑇−1,𝑇 (𝜋∗

𝑇−1) = (𝜆 + 1
2 )

2
(

𝛾
1−𝛾 + 1

2
1

(1−𝛾)2 (𝛾
2 − 𝛾)

)

=
𝛾(𝜆+ 1

2 )
2

2(1−𝛾) . Hence, 𝛷𝑇−1 ∈ M. We can rewrite the terminal condition (15)
s

𝑇 (𝑊𝑇 , ℎ𝑇+1) = 𝛷𝑇 (𝑊𝑇 ) =
exp

{

𝛾𝑊𝑇
}

𝛾
∈ M.

his representation imposes terminal conditions on 𝐷𝑡,𝑇 and 𝐸∗
𝑡,𝑇 :

𝑇 ,𝑇 = 0, and 𝐸∗
𝑇 ,𝑇 = 0.

Inductive step Next we will perform the inductive step by assuming
hat the statements hold for a particular 𝑡 + 1 and showing that in this
ase they also hold for 𝑡. Moving one step backward from 𝑡 + 1 to 𝑡 by
pplying Bellman’s principle like before we get after plugging in the
efinitions of 𝑊𝑡+1 and ℎ𝑡+2 and some algebraic manipulation:

𝑡(𝑊𝑡, ℎ𝑡+1) = max
𝜋𝑡

E𝑡
[

𝛷𝑡+1(𝑊𝑡+1, ℎ𝑡+2)
]

= max
𝜋𝑡

E𝑡

[

1
𝛾
exp

{

𝐷𝑡+1,𝑇 + 𝛾𝑊𝑡+1 + 𝐸∗
𝑡+1,𝑇 ℎ𝑡+2

}

]

= max
𝜋𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝛾 exp(𝐷𝑡+1,𝑇 + 𝛾

(

𝑊𝑡 + 𝑟 + 𝜋𝑡𝜆ℎ𝑡+1 +
(

𝜋𝑡 − 𝜋2
𝑡
) 1

2ℎ𝑡+1
)

+𝐸∗
𝑡+1,𝑇

(

𝜔 + 𝛽ℎ𝑡+1 + 𝛼𝜃2ℎ𝑡+1
)

)

×E𝑡

[

exp
{(

𝛾𝜋𝑡 − 2𝐸∗
𝑡+1,𝑇 𝛼𝜃

)

√

ℎ𝑡+1𝑧𝑡+1 + 𝐸∗
𝑡+1,𝑇 𝛼𝑧

2
𝑡+1

}]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

A useful result for a standard normal variable 𝑧 is that, like in [18],

E[exp(𝑎𝑧2 + 𝑏𝑧)] = 1
√

exp
(

𝑏2
)

. (A.5)
12

(1 − 2𝑎) 2(1 − 2𝑎)
With this we reduce the expectation to

E𝑡

[

exp
{(

𝛾𝜋𝑡 − 2𝐸∗
𝑡+1,𝑇 𝛼𝜃

)

√

ℎ𝑡+1𝑧𝑡+1 + 𝐸∗
𝑡+1,𝑇 𝛼𝑧

2
𝑡+1

}]

= 1
√

1 − 2𝐸∗
𝑡+1,𝑇 𝛼

exp

⎛

⎜

⎜

⎜

⎝

(

𝛾𝜋𝑡 − 2𝐸∗
𝑡+1,𝑇 𝛼𝜃

)2

2(1 − 2𝐸∗
𝑡+1,𝑇 𝛼)

ℎ𝑡+1

⎞

⎟

⎟

⎟

⎠

.

Here we need 1 − 2𝛼𝐸∗
𝑡,𝑇 > 0 for the solution to be well defined, again.

Plugging this in and grouping yields

𝛷𝑡(𝑊𝑡, ℎ𝑡+1) = max
𝜋𝑡

1

𝛾
√

1 − 2𝐸∗
𝑡+1,𝑇 𝛼

× exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝑡+1,𝑇 + 𝛾
(

𝑊𝑡 + 𝑟
)

+ 𝐸∗
𝑡+1,𝑇𝜔

+

⎛

⎜

⎜

⎜

⎝

𝛾
(

𝜆 + 1
2

)

𝜋𝑡 − 𝛾 1
2
𝜋2
𝑡 + 𝐸∗

𝑡+1,𝑇

(

𝛽 + 𝛼𝜃2
)

+

(

𝛾𝜋𝑡 − 2𝐸∗
𝑡+1,𝑇 𝛼𝜃

)2

2(1 − 2𝐸∗
𝑡+1,𝑇 𝛼)

⎞

⎟

⎟

⎟

⎠

ℎ𝑡+1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= max
𝜋𝑡

1
𝛾
exp

{

𝐷𝑡,𝑇 + 𝛾𝑊𝑡 + 𝐸𝑡,𝑇 (𝜋𝑡)ℎ𝑡+1
}

(A.6)

here

𝐷𝑡,𝑇 = 𝐸∗
𝑡+1,𝑇𝜔 + 𝛾𝑟 +𝐷𝑡+1,𝑇 − log

(√

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

)

(A.7)

𝐸𝑡,𝑇 (𝜋𝑡) =
(

𝛽 + 𝛼𝜃2
)

𝐸∗
𝑡+1,𝑇 +

(

𝛾𝜋𝑡 − 2𝜃𝛼𝐸∗
𝑡+1,𝑇

)2

2(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

+ 𝛾
((

𝜆 + 1
2

)

𝜋𝑡 −
1
2
𝜋2
𝑡

)

. (A.8)

Solving the optimization problem in (A.6) yields
1

2(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

(

𝛾22𝜋∗
𝑡 − 4𝛾𝐸∗

𝑡+1,𝑇 𝛼𝜃
)

− 𝛾𝜋∗
𝑡 + 𝛾

(

𝜆 + 1
2

)

= 0

⇔ 𝜋∗
𝑡 =

⎛

⎜

⎜

⎜

⎝

2𝛾𝐸∗
𝑡+1,𝑇 𝛼𝜃 − 𝛾

(

𝜆 + 1
2

)

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

1 − 2𝛼𝐸∗
𝑡+1,𝑇

⎞

⎟

⎟

⎟

⎠

(

1 − 2𝛼𝐸∗
𝑡+1,𝑇

𝛾2 − 𝛾(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

)

=
𝜆 + 1

2
(1 − 2𝛼𝐸∗

𝑡+1,𝑇 ) − 𝛾
−

(

𝜃 + (𝜆 + 1
2 )
)

2𝛼𝐸∗
𝑡+1,𝑇

(1 − 2𝛼𝐸∗
𝑡+1,𝑇 ) − 𝛾

. (A.9)

To check whether this is a minimum or a maximum we calculate the
second derivative of 𝐸𝑡,𝑇 (𝜋𝑡) as 1

1 − 2𝛼𝐸∗
𝑡+1,𝑇

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
>0

𝛾2
⏟⏟⏟

>0

−𝛾
⏟⏟⏟

>0

> 0, 𝛾 <

0. Therefore, one can see that the assumption 𝛾 < 0 is sufficient
but not necessary for any general 𝑡. If 𝛾 > 0, we cannot be sure
that it is minimizing. Plugging 𝜋∗

𝑡 into Eq. (A.6) yields 𝛷𝑡(𝑊𝑡, ℎ𝑡+1) =
1
𝛾 exp

{

𝐷𝑡,𝑇 + 𝛾𝑊𝑡 + 𝐸∗
𝑡,𝑇 ℎ𝑡+1

}

where in terms of 𝐸∗
𝑡+1,𝑇

𝐸∗
𝑡,𝑇 =

(

𝛽 + 𝛼𝜃2
)

𝐸∗
𝑡+1,𝑇 +

(

𝛾𝜋∗
𝑡 − 2𝜃𝛼𝐸∗

𝑡+1,𝑇

)2

2(1 − 2𝛼𝐸∗
𝑡+1,𝑇 )

+ 𝛾
(

(𝜆 + 1
2
)𝜋∗

𝑡 − 1
2
(𝜋∗

𝑡 )
2
)

.

(A.10)

ence, 𝛷𝑡 ∈ M. Starting from the induction hypothesis that the
tatement holds for 𝑡 + 1 we have shown that in this case it also holds
or 𝑡.

roof of Eq. (23) as representation of 𝑊 ∗
𝑡 . We conjecture that the

nalytical expression of 𝑊 ∗
𝑡 is given by Eq. (23). We will prove it by

nduction. The Base case is straight forward to see that if we plug 𝑡 = 1
nto the conjecture, we recover (25) which is the definition of 𝑊 ∗

𝑡 .
hus, the statement holds for the base case.
Inductive step: The induction hypothesis is that Eq. (23) holds

or a particular 𝑡. It follows by adding
(

(𝜆 + 1
2 )𝜋

∗
𝑡 − 1

2 (𝜋
∗
𝑡 )

2
)

ℎ𝑡+1 +
∗
𝑡
√

ℎ𝑡+1𝑧𝑡+1 + 𝑟 on both sides of the equation that

𝑊 ∗ +
(

(𝜆 + 1 )𝜋∗ − 1 (𝜋∗)2
)

ℎ + 𝜋∗√ℎ 𝑧 + 𝑟
𝑡 2 𝑡 2 𝑡 𝑡+1 𝑡 𝑡+1 𝑡+1
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r

𝑤

= 𝑤0 +
𝑡

∑

𝑘=1

(

(𝜆 + 1
2
)𝜋∗

𝑡−𝑘 −
1
2
(𝜋∗

𝑡−𝑘)
2
)

ℎ𝑡+1−𝑘

+
𝑡

∑

𝑘=1

(

𝜋∗
𝑡−𝑘

√

ℎ𝑡+1−𝑘𝑧𝑡+1−𝑘
)

+ 𝑟𝑡

+
(

(𝜆 + 1
2
)𝜋∗

𝑡 − 1
2
(𝜋∗

𝑡 )
2
)

ℎ𝑡+1 + 𝜋∗
𝑡
√

ℎ𝑡+1𝑧𝑡+1 + 𝑟.

By (25) the left-hand side of this equation is equal to 𝑊 ∗
𝑡+1. The

ight-hand side can be written as

0 +
𝑡+1
∑

𝑘=1

(

(𝜆 + 1
2
)𝜋∗

𝑡+1−𝑘 −
1
2
(𝜋∗

𝑡+1−𝑘)
2
)

ℎ(𝑡+1)+1−𝑘

+
𝑡+1
∑

𝑘=1

(

𝜋∗
𝑡+1−𝑘

√

ℎ(𝑡+1)+1−𝑘𝑧(𝑡+1)+1−𝑘
)

+ 𝑟(𝑡 + 1).

Equating both sides, we deduce the statement also holds true for 𝑡 + 1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.orp.2021.100216.
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