Rehdanz, Katrin; Maddison, David

Working Paper
The amenity value of climate to German households

FEEM Working Papers, No. 2004,57

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Rehdanz, Katrin; Maddison, David (2004) : The amenity value of climate to German households, FEEM Working Papers, No. 2004,57, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/3255

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The Amenity Value of Climate to German Households
Katrin Rehdanz and David Maddison

NOTA DI LAVORO 57.2004

MARCH 2004

CCMP – Climate Change Modelling and Policy

Katrin Rehdanz, Centre for Marine and Climate Research, Hamburg University
David Maddison, Institute of Economics, University of Southern Denmark

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
The Amenity Value of Climate to German Households

Summary

This study uses the hedonic approach to measure the amenity value of climate in Germany. Unlike in earlier research separate hedonic wage and house price regressions are estimated for relatively small geographic areas and formal tests undertaken to determine whether the coefficients describing the impact of climate variables are homogenous across these areas. Evidence suggests that German households are compensated for climate amenities mainly through hedonic housing markets. Given that climate is largely unproductive to industry and few industries spend more on land than labour this is consistent with what theory would predict. Throughout Germany house prices are higher in areas with higher January temperatures, lower July temperatures and lower January precipitation. In East Germany wages are higher in areas with higher January precipitation. The full implicit price of climate variables however is very uncertain.

Keywords: Climate change, Germany, Hedonic pricing

JEL Classification: Q29, R29

We would like to thank the GSOEP group for making their dataset available and especially Katharina Spiess and Gundi Knies for their assistance during our stay in Berlin. We are also grateful to Hanne Breitkreuz, Markus Erhard, André Krebber and Malte Schoon for their help arranging the data set. The European Commission Research DG funded project INTEGRA (HPMT-GH-01-00373-04), the Berufungsfond of the BWF and the DIW provided financial support. All errors and opinions are ours.

Address for correspondence:

Katrin Rehdanz
Hamburg University
Centre for Marine and Climate Research
Bundesstrasse 55
20146 Hamburg
Germany
E-mail: rehdanz@dkrz.de
1. Introduction

Recent years have witnessed a bourgeoning number of studies investigating the consequences of climate change. Research work has examined changes in productivity in sectors like agriculture and forestry where climate plays an obvious and important role. Other papers have attempted to estimate the costs of protecting low lying but densely populated coastal areas. Attention has also been devoted to the costs of extreme events and hurricane intensity. Researchers have considered the health impacts of changes in the frequency of heat waves and of changes in the distribution of disease vectors. The ultimate goal of this and related research is presumably to compare the costs of preventing climate change to the benefits (Pearce et al, 1996; Intergovernmental Panel on Climate Change, 1998; Intergovernmental Panel on Climate Change, 2001; and more recently Tol 2002a; and Tol 2002b).

One important sector that will be impacted by climate change but has not yet attracted sufficient attention is the household sector. This neglect is not due to any consensus that the direct impact of climate change on households will be negligible. Climate determines the need for heating and cooling. It affects clothing, housing and nutritional expenditures and dictates recreational possibilities. Climate affects human health. Certain types of climate are also known to promote a sense of happiness and the sorts of fauna and flora supported by particular sorts of climate are also a source of pleasure to households. Considering the importance of the household sector information on the overall value of climate amenities to households would in our opinion, make a significant contribution to the overall assessment of climate change impacts.

One methodology that suggests itself for this purpose is the hedonic technique. Fundamental to the hedonic approach is the assumption that households are attracted to those localities offering preferred combinations of amenities. Households should expect to pay higher
property prices if the house is located in a preferred area and they might also accept different wage rates. Information on the implicit value placed on households can therefore be obtained by examining households’ locational choice. Compared to other methodologies the strength of the hedonic approach in this context is that it compares areas where it is assumed that all the myriad cost minimising adaptations to climatic differences have already occurred. Rosen (1974) provided the theoretical foundation of the technique. In his seminal paper he illustrated how individual willingness to pay for environmental goods can be derived from observable market prices. Roback (1982) is another major contribution to the theoretical literature on hedonic analysis. She was the first to note that across different geographical locations there generally have to exist both compensating wage and house price differentials and that amenity values can be capitalised into either or both of these. The critical assumptions of the hedonic approach are well known (e.g. Palmquist, 1991) and, with the exception of one particular assumption, not further discussed here.

Although a large number of hedonic studies have included climate variables for purposes incidental to the main aims of the study only a handful of studies have deliberately set out to measure the amenity value of climate to households using the hedonic technique. Hoch and Drake (1974) found evidence of the influence of climate on wages for different worker categories in the United States. Englin (1996) investigated the amenity value of rainfall as revealed in the housing market. He found that households prefer less rainfall to more but that holding annual rainfall constant households prefer a greater seasonal variation. Nordhaus (1996) used a hedonic wage regression corrected for differences in the cost of living to estimate the amenity value of January, April, July and October averages for temperature and precipitation. Cragg and Kahn (1997) and Cragg and Kahn (1999) estimate the demand for climate amenities using both the hedonic technique as well a technique that analyses the locational choice of migrants. Outside the United States Maddison and Bigano (2003) investigate the amenity value of climate of Italy using regional averages for expected after tax household labour income net of housing as the dependent variable. They find that Italians prefer a drier climate during the winter months and lower summertime temperatures.
A key aspect of previous research employing the hedonic technique is that researchers have found it necessary to estimate hedonic regressions over large geographic areas to identify statistically significant effects of climate on house prices and wage rates. This is because climate variables are undeviating over relatively large distances. But at such distances one of the underlying assumptions of the hedonic technique, namely the existence of a unified market for housing and employment within which the net benefits of different locations are eliminated, becomes untenable. As first pointed out by Straszheim (1974) researchers risk biased results by attempting to fit a single hedonic price function to what are in effect separate hedonic price schedules. The fact that researchers attempting to value a range of other environmental amenities have encountered evidence of structural instability at geographical distances much less than those over which significant differences in climate can be observed (e.g. Schnare and Struyk, 1976; and Michaels and Smith, 1990) invites the question of whether previous hedonic climate studies have in fact succeeded in measuring what they intended to measure.

This study uses the hedonic price approach to investigate household preferences for climate in Germany. Although it is the most populous country in the European Union we are not aware of any research attempting to determine the value of climate amenities to households in Germany. Indeed, although environmental issues and in particular climate change are taken very seriously in Germany, hedonic valuation studies of any kind are surprisingly scarce. A review by Navrud (1999) of European valuation studies completed between 1992 and 1999 revealed that Germany is one of the countries having the least valuation studies of any kind. Existing studies using the hedonic price method in Germany have looked mainly at noise and air pollution (e.g. Holm-Müller et al, 1991).

The data for this exercise is drawn from the German socio-economic panel survey. The German socio-economic panel is a survey of private households and individuals providing detailed information on housing, occupational and socio-economic characteristics of households and individuals. For the 1999 survey the panel offers additional information on neighbourhood characteristics important for the conduct of a hedonic analysis.
Unlike earlier research we estimate hedonic regressions for relatively small geographic areas and then formally test whether the coefficients describing the impact of climate variables on house prices and wage rates are homogenous across these regions. If the null hypothesis of parameter homogeneity is not rejected these coefficient estimates are combined to yield an improved estimate of the underlying effect. If the null hypothesis of parameter homogeneity is rejected then steps are taken to identify smaller geographical areas over which the assumption of parameter homogeneity is not rejected. Such an approach is especially warranted in a country only recently reunited. This can be compared with the work of Nordhaus (op cit) and Maddison and Bigano (op cit) who effectively assume a national market for housing and labour whilst including dummy variables for States or in the case of the latter paper, the islands of Sicily and Sardinia.

A second distinguishing feature of the paper is that it employs climate data at a far higher level of geographical resolution. The papers by Cragg and Kahn (op cit) and Hoch and Drake (op cit) for example assume that climate is homogenous at the level of the State. In this paper by contrast Germany, a country equal in size to Montana and half the size of Texas, is divided into more than four hundred climatic zones. Although the climate in Germany is mostly temperate and not nearly as diverse as for example Italy or the United States, it is influenced by the different geographical and topographical characteristics of its regions. Due to the effect of the sea the climate of the North German plain and the Baltic coast is relatively unvarying. The combination of high levels of sunshine and high rainfall results in a green and fertile landscape. The climate in Central and Southern Germany is more varied due to topographical features of these regions. In Bavaria the climate is similar to the Austrian Alps with cold winters and frequent snowfall. In Rhineland Palatine and Saarland in South Western Germany by contrast the climate is held to be particularly pleasant.

For Germany climate models predict as a consequence of projected increased greenhouse gas emissions an increase in temperature of about 4°C by 2100 with a greater degree of warming expected in the south of the country. Very warm summers will become more frequent and very cold winters increasingly rare. Summers are expected to become drier over all of Germany whilst winter is likely to become wetter (Hulme and Shead, 1999).
Before moving to the empirical analysis it is worthwhile remarking that the hedonic technique is not the only valuation methodology by which researchers have attempted estimate the amenity value of climate to households. In an interesting paper Frijters and Van Praag (1998) analyse self-reported happiness in Russia and find that this is greatly influenced by the climate of the location in which the individual lives. Maddison (2003) uses the household production function approach to explain differences in international patterns of consumption partially in terms of climatic differences, deriving an estimate of the welfare impact of climate change. In addition, a number of studies on migration have found an important role for climate (e.g. Graves, 1980; and Cushing, 1987). Although such studies are clearly interesting since they focus on the process by which the net benefits offered by particular locations are eliminated, because of their lack of welfare-theoretic underpinnings they do not admit making inferences regarding the amenity value of climate.

2. Empirical Analysis
Most of the data used in this study was provided by the German socio-economic panel survey. Since 1984 the survey has provided annual information on housing, and on the occupation, employment history and earnings of individuals. In 1990 it was extended to include former East Germany. In addition to a stable set of core questions, each year the survey focuses on a special topic and the 1999 dataset included detailed information on neighbourhood characteristics. In order to take advantage of this information the analysis in this paper relies exclusively on the 1999 survey. Currently the data is made available only on the district level (specifically Kreise and kreisfreie Städte) but with few exceptions it is plausible to assume that individuals living within these small geographic areas generally enjoy the same climate. In total 418 different Kreise or kreisfreie Städte are included in the following analysis. Each of these districts is assigned to one of 16 different Federal States (or Bundesländer). These are illustrated in figure 1.

Mitchell et al (2003) provide data on temperature and precipitation. Climate variables measured as monthly averages were matched to the respective Kreis or kreisfreie Stadt using MapInfo. Across these politically defined districts January mean temperatures range from -
3.9°C to 2.1°C whilst July mean temperatures range from 13.1°C to 18.1°C. Precipitation in January ranges from 28mm to 77mm whilst July precipitation ranges from 51mm to 158mm.

Following Roback (op cit) hedonic regressions were estimated both for house prices and wage rates. Dealing first with the hedonic house price regression, the logarithm of monthly rental costs per square metre was regressed on a number of environmental characteristics and structural attributes of the properties. Note that for owners, the survey provides self-reported imputed rents rather than actual rents. Hoffmann and Kurz (2002) state that the rental housing market in Germany is generally less regulated compared to many other European countries. We excluded from our analysis households living in residential home, student halls and hostels.

January temperature and precipitation and July temperature and precipitation are included in the regression alongside latitude and longitude, unemployment rates and population density. These variables do not vary at the level of the Kreise or kreisfreien Städte. Unemployment and population density are taken from Statistisches Bundesamt Deutschland (2001). The inclusion of both latitude and longitude in the hedonic regression equations may seem injudicious since both are correlated with the climate variables. Latitude however has a potentially important role in controlling for variations in daylight hours across the seasonal cycle whilst longitude further emphasises the robust nature of the results.

In terms of structural attributes the model includes dummy variables describing the property’s state of renovation, the date of its construction, as well as the type of property (flat, detached house etc). The model controls for the size of the property in square metres, as well as whether the house has heating, a garden and a balcony. Controls are also included for the size of the town or city in which the property is located as well as variables indicating the distance to the nearest large city and the nearest park. Dummy variables indicate whether the property is in a predominantly residential, industrial or commercial area.

Turning to the hedonic wage rate regression, the dependent variable was the logarithm of the hourly wage rate net of tax. Apart from climate variables, latitude, longitude, population
density and unemployment, the regression includes controls for a large number of worker and employer characteristics. These include gender, age and its squared value, the number of years with the current employer, possession of a degree, years of education, marital status, disability status and whether the worker is a trainee. Dummy variables identify the occupational grade of the worker (manager, professional, labourer etc) the industry in which they were working (agriculture, service sector, manufacturing etc) and the size of the employer. Data on union membership, although generally included in hedonic wage regressions, is unfortunately not provided by the survey.

In order to account for the possible correlation of residuals when observations are taken from the same Kreis or kreisfreien Stadt, the standard errors of the hedonic house price and wage rate regressions were adjusted for clustering on the level of the Kreise and kreisfreien Städte. The effect is to increase the standard errors of the parameter coefficients. This procedure also leads to robust variance estimates in the face of heteroscedasticity.

In total 5,366 observations are included in the house price regression whilst 6,862 observations are included in the wage regression. Separate regressions are run for 12 different regions. These regions are equivalent to the Bundesländer except that Hamburg and Schleswig-Holstein are included as one region as are Lower Saxony and Bremen; Rhineland Palatine and Saarland; and Brandenburg and Berlin. These contain varying numbers of Kreise and kreisfreie Städte. Bavaria, the largest of these regions, contains 87 Kreise and kreisfreie Städte. To avoid presenting a large number of regressions only the coefficients relating to the climate variables are presented in table 1 and table 2. Because these regressions were estimated over areas in which only limited variation in climate is observed it is unsurprising that few of the coefficients are statistically insignificant. In the following section however these coefficients are combined using meta-analytical techniques to shrink the associated uncertainty.

Only after experimenting with different ways of describing the climate was it determined that the single best description of climate in both the hedonic wage and house price regression was provided by the use of January and July averages. The hedonic analysis of Italy presented by
Maddison and Bigano (op cit) also found that representing the climate by January and July averages provided the best fit to their data. In the context of the United States Cushing (op cit) investigated the determinants of population migration decisions using different specifications of temperature and found that the warmest and coldest and wettest and driest months provided the best description of climate whereas annual averages were the least preferred. We also tried including higher order terms for the climate variables but discovered that even in regressions including all Bundesländer that they afforded no significant explanatory power. Note also that three different transformations of the dependent variable were considered: the linear, semi-logarithmic and inverse models. For both the wage and house price regression the semi-logarithmic model provided the most consistent results judging by tests for functional form.

Figure 1. The Federal States of Germany
Table 1. Parameter Homogeneity among the Coefficients from the House Price Regressions

<table>
<thead>
<tr>
<th>Region</th>
<th>January Temperature</th>
<th>July Temperature</th>
<th>January Precipitation</th>
<th>July Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein and Hamburg</td>
<td>-0.348</td>
<td>-0.238</td>
<td>0.00795</td>
<td>0.000948</td>
</tr>
<tr>
<td>Lower Saxony and Bremen</td>
<td>0.19</td>
<td>-0.188</td>
<td>-0.0108</td>
<td>0.00533</td>
</tr>
<tr>
<td>North Rhine-Westphalia</td>
<td>0.239</td>
<td>-0.151</td>
<td>-0.00216</td>
<td>0.00324</td>
</tr>
<tr>
<td>Hesse</td>
<td>0.0794</td>
<td>-0.116</td>
<td>-0.00824</td>
<td>-0.0122</td>
</tr>
<tr>
<td>Rhineland-Palatine and Saarland</td>
<td>0.145</td>
<td>-0.0593</td>
<td>0.00116</td>
<td>0.00246</td>
</tr>
<tr>
<td>Baden-Wuerttemberg</td>
<td>-0.0287</td>
<td>0.0737</td>
<td>-0.0083*</td>
<td>0.00367</td>
</tr>
<tr>
<td>Bavaria</td>
<td>0.377**</td>
<td>-0.332**</td>
<td>-0.0166*</td>
<td>-0.00333</td>
</tr>
<tr>
<td>Berlin and Brandenburg</td>
<td>-0.0266</td>
<td>0.0945</td>
<td>0.0188</td>
<td>0.00138</td>
</tr>
<tr>
<td>Mecklenburg Western-Pomerania</td>
<td>-0.0226</td>
<td>-0.0246</td>
<td>-0.00722</td>
<td>0.00394</td>
</tr>
<tr>
<td>Saxony</td>
<td>0.147</td>
<td>0.0847</td>
<td>0.0153</td>
<td>0.00412</td>
</tr>
<tr>
<td>Saxony-Anhalt</td>
<td>0.769*</td>
<td>-0.651*</td>
<td>-0.00135</td>
<td>-0.0117</td>
</tr>
<tr>
<td>Thuringia</td>
<td>-0.228</td>
<td>0.272</td>
<td>-0.035</td>
<td>0.0427</td>
</tr>
<tr>
<td>All Germany Parameter Homogeneity Test</td>
<td>$\chi^2(11) = 13.53$</td>
<td>$\chi^2(11) = 19.11$</td>
<td>$\chi^2(11) = 8.42$</td>
<td>$\chi^2(11) = 9.84$</td>
</tr>
<tr>
<td>All Germany Variance Weighted Estimate</td>
<td>0.155**</td>
<td>-0.094*</td>
<td>-0.006**</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: Significance at the five-percent level is indicated by * and significance at the one-percent level is indicated by **.
Table 2. Parameter Homogeneity among the Coefficients from the Wage Rate Regressions

<table>
<thead>
<tr>
<th>Region</th>
<th>January Temperature</th>
<th>July Temperature</th>
<th>January Precipitation</th>
<th>July Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein and Hamburg</td>
<td>-2.913</td>
<td>3.185</td>
<td>0.0229</td>
<td>0.093</td>
</tr>
<tr>
<td>Lower Saxony and Bremen</td>
<td>-0.576</td>
<td>0.803</td>
<td>0.0491</td>
<td>-0.035</td>
</tr>
<tr>
<td>North Rhine-Westphalia</td>
<td>0.0834</td>
<td>-0.144</td>
<td>-0.012</td>
<td>0.0204**</td>
</tr>
<tr>
<td>Hesse</td>
<td>-0.681</td>
<td>0.538</td>
<td>0.0079</td>
<td>-0.00982</td>
</tr>
<tr>
<td>Rhineland-Palatine and Saarland</td>
<td>-0.384</td>
<td>-0.0128</td>
<td>-0.00799</td>
<td>0.00416</td>
</tr>
<tr>
<td>Baden-Wuerttemberg</td>
<td>0.105</td>
<td>0.00526</td>
<td>-0.00692</td>
<td>0.00364</td>
</tr>
<tr>
<td>Bavaria</td>
<td>0.232</td>
<td>-0.126</td>
<td>0.0132</td>
<td>-0.00442</td>
</tr>
<tr>
<td>Berlin and Brandenburg</td>
<td>0.0332</td>
<td>0.141</td>
<td>0.014</td>
<td>0.0301</td>
</tr>
<tr>
<td>Mecklenburg Western-Pomerania</td>
<td>0.0677</td>
<td>-0.384**</td>
<td>0.0031</td>
<td>0.0398</td>
</tr>
<tr>
<td>Saxony</td>
<td>0.405</td>
<td>0.0898</td>
<td>0.0415**</td>
<td>-0.00278</td>
</tr>
<tr>
<td>Saxony-Anhalt</td>
<td>-1.0343</td>
<td>1.515**</td>
<td>0.0873**</td>
<td>-0.0376</td>
</tr>
<tr>
<td>Thuringia</td>
<td>1.14</td>
<td>-1.413</td>
<td>-0.00518</td>
<td>-0.0197</td>
</tr>
<tr>
<td>All Germany Parameter Homogeneity Test</td>
<td>$\chi^2(11) = 13.91$</td>
<td>$\chi^2(11) = 28.06**$</td>
<td>$\chi^2(11) = 28.56**$</td>
<td>$\chi^2(11) = 22.93*$</td>
</tr>
<tr>
<td>All Germany Variance Weighted Estimate</td>
<td>0.063</td>
<td>-0.074</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>West Germany Parameter Homogeneity Test</td>
<td>$\chi^2(6) = 8.39$</td>
<td>$\chi^2(6) = 9.88$</td>
<td>$\chi^2(6) = 8.49$</td>
<td>$\chi^2(6) = 14.53*$</td>
</tr>
<tr>
<td>West Germany Variance Weighted Estimate</td>
<td>0.053</td>
<td>0.003</td>
<td>-0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>West Germany excl. North Rhine-Westphalia Parameter</td>
<td>$\chi^2(5) = 8.45$</td>
<td>$\chi^2(5) = 9.16$</td>
<td>$\chi^2(5) = 7.40$</td>
<td>$\chi^2(5) = 6.44$</td>
</tr>
<tr>
<td>Homogeneity Test</td>
<td>West Germany excl. North Rhine-Westphalia Variance Weighted Estimate</td>
<td>East Germany Parameter Homogeneity Test</td>
<td>East Germany Variance Weighted Estimate</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------------------------------------</td>
<td>----------------------------------------</td>
<td>----------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.043 0.035 -0.002 -0.001</td>
<td>$\chi^2(4) = 5.43$ $\chi^2(4) = 15.52^{**}$ $\chi^2(4) = 3.64$ $\chi^2(4) = 7.97$</td>
<td>0.115 -0.218 0.045** -0.002</td>
<td></td>
</tr>
</tbody>
</table>

Note: Significance at the five-percent level is indicated by * and significance at the one-percent level is indicated by **.

3. Discussion

The parameter homogeneity test results for the housing regressions indicate that the effects of climate on house prices are homogenous over all Germany. Note that the tests for parameter homogeneity involve the use of the chi-squared test statistic described in Hedges and Olkin (1985). There are also examples of individual Bundesländer (most notably for the largest Bundesland, Bavaria) within which climate variables have a statistically significant effect.

The variance-weighted estimates (once more for the relevant formulae see Hedges and Olkin, op cit) indicate that there is a highly significant effect of January temperature and January precipitation. A significant effect for July temperatures is also observed but July precipitation is not significant. Judging by evidence from housing markets it appears that German households prefer drier, warmer winters and slightly cooler summers.

The results for the wage regressions by contrast are more convoluted. Once again there are examples of individual Bundesländer for which the climate variables exercise a statistically significant effect on wage rates especially in East Germany. The hypothesis of parameter homogeneity is rejected for precipitation in July and strongly rejected for both July temperature and January precipitation for all Germany. Even separating the estimates for West Germany and East Germany does not entirely eliminate the problem parameter heterogeneity: the test for parameter homogeneity is rejected for July precipitation for West Germany. The reason for coefficient heterogeneity appears to be the result for North Rhine-Westphalia, the region bordering Belgium and the Netherlands and bisected by the river.
Rhine. The estimate for July precipitation in North Rhine-Westphalia is highly significant suggesting that workers require compensation for working in Kreisen or kreisfreien Städten with higher rainfall. Excluding this region the test for parameter homogeneity is passed but none of the variance weighted estimates describing the effects of climate on wage rates are significant.

The parameter homogeneity tests for the effects of climate on wage rates in East Germany also strongly reject the pooling of coefficients for July temperatures. The results for January precipitation however can be combined and the variance-weighted estimate is highly significant and suggests that workers in East Germany require compensation for precipitation in January.

Given the fact that compensation for climate amenities appears to occur mainly through the hedonic housing market it is helpful to recollect the results of the theoretical model of Roback (op cit). According to her model the sign of the wage and rent gradient with respect to the level of an amenity depends on whether the amenity is productive to companies or attractive only to households. If a company’s production costs are not affected by the level of the environmental amenity and firms are mainly labour using rather than land using then the hedonic house price gradient is positive with respect to the level of the amenity whilst wages are not affected by the level of the amenity. Insofar as it is, with the exception of agriculture, difficult to think of many productive activities in Germany that are dependent upon climate or are intensive in the use of land the empirical results uncovered in this paper appear consistent with what theory would predict.

The final step is to calculate the full implicit price for climate variables (i.e. the implicit price of climate variables accounting for the fact that households might be compensated through both housing and labour markets). Implicit prices are calculated for Hamburg, Frankfurt (on the Main) and Munich. These cities are all located in West Germany but not in the Bundesland of North Rhine-Westphalia. The parameter estimates obtained in tables 1 and 2 are used to determine what fraction of annual household housing expenditures and what fraction of annual household labour income represents compensation for climate amenities. Note that annual
household labour income is calculated by multiplying the average number of workers per household by the fraction of those workers in employment and then multiplying by the average net wage per hour and the number of hours worked per employed person per year. These calculations are performed at the level of the Kreise and kreisfreien Städte except for the number of workers per household, which is assumed to be 0.96 in all locations (Statistisches Bundesamt Deutschland, 1999). A probability distribution for the implicit price of climate variables is constructed and presented in table 3.

This table serves to illustrate the great uncertainties associated with the welfare impacts of climate change. These arise largely because of uncertainties regarding the extent to which households are compensated for climate amenities through labour markets and also because in some instances the gradient of the hedonic house price function and the gradient of the hedonic wage rate function, taken with respect to the level of a particular climate amenity, share the same sign. For example higher January temperatures are associated with higher house prices as well as higher wages. Note however that there is no theoretical requirement that the gradient of the hedonic house price function and the gradient of the hedonic wage rate function should be differently signed (Roback, op cit). All that can be gleaned from table 3 is that households in each of the three cities analysed are more likely to view the higher July temperatures that climate change threatens as a disamenity rather than as an amenity.

Uncertainty regarding future emissions of greenhouse gases combined with the fact that different climate models predict different climate change scenarios further increases the range of possible outcomes.

Given the fact that most individuals are unlikely to be aware of differences in the frequency of extreme events offered by different locations, there is also uncertainty regarding whether individuals preferences for avoiding such risks can be identified through housing and labour market price differentials. This is of concern since climate change is expected to increase the frequency of such events. There is nevertheless the potential to use the hedonic approach to value for example the floods that have occurred in Germany during the last few years and which many people blamed on climate change. Houses located in areas likely to be flooded are expected to be less expensive compared to those not being at risk. Whilst this might be an
interesting study for the future unfortunately the data applied for our study is available on the
district level and not therefore adequate to test for this relationship. Nevertheless we feel that
the numbers presented in this paper give a first impression of how sensitive German
households are to the everyday implications of climate, if not necessarily to extreme events.

Table 3. The 5th and 95th Percentiles of the Implicit Price of Climate Variables

<table>
<thead>
<tr>
<th></th>
<th>Hamburg 5th Percentile</th>
<th>Hamburg 95th Percentile</th>
<th>Frankfurt (on the Main) 5th Percentile</th>
<th>Frankfurt (on the Main) 95th Percentile</th>
<th>Munich 5th Percentile</th>
<th>Munich 95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>January</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (DM / ºC)</td>
<td>-5,855</td>
<td>6,780</td>
<td>-5,646</td>
<td>6,868</td>
<td>-5,942</td>
<td>7,802</td>
</tr>
<tr>
<td><strong>July</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (DM / ºC)</td>
<td>-7,865</td>
<td>3,392</td>
<td>-7,873</td>
<td>3,270</td>
<td>-8,786</td>
<td>3,439</td>
</tr>
<tr>
<td><strong>January</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation (DM / mm)</td>
<td>-234</td>
<td>219</td>
<td>-238</td>
<td>212</td>
<td>-272</td>
<td>223</td>
</tr>
<tr>
<td><strong>July</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (DM / mm)</td>
<td>-121</td>
<td>209</td>
<td>-122</td>
<td>210</td>
<td>-137</td>
<td>237</td>
</tr>
</tbody>
</table>

*Note: One Deutsche Mark is worth 1.95583 Euros.*

4. Conclusions

This study has illustrated the extent to which German households’ preferences for climate
amenities are capitalised into wages and house prices. Estimates derived from the hedonic
house price regressions suggest that households pay a substantial premium for living in areas
characterised by higher temperatures during January and lower temperatures during July.
Higher levels of precipitation in January are associated with lower house prices and, in East
Germany, higher wages. All these estimates were derived without making implausible
assumptions about the geographical extent of housing and labour markets. Unfortunately
when the full implicit price of climate variables is computed it is seen that there are great
uncertainties regarding the possible impact of climate change on German households. Future
research might care to investigate the amenity value of changes in other climate variables
such as sunshine and snowfall.
It would be interesting to use the hedonic technique to investigate the effects of extreme events on property prices. Although it is unlikely that households consider such events before making choices relating to location, it might be that last year’s floods have affected property prices in low-lying areas. Although examining such effects would require more detailed information than is currently available in the German socio-economic panel survey it nonetheless presents an interesting possibility for a future case study.
References


Hulme, D. and Shead, N. (1999) *Climate Change Scenarios for Germany* Climate Change Unit, University of East Anglia: Norwich. Available at: [http://www.cru.uea.ac.uk/~mikeh/research/wwf.germany.pdf](http://www.cru.uea.ac.uk/~mikeh/research/wwf.germany.pdf)


<table>
<thead>
<tr>
<th>NOTE DI LAVORO PUBLISHED IN 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review</td>
</tr>
<tr>
<td>PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market</td>
</tr>
<tr>
<td>KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition</td>
</tr>
<tr>
<td>ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</td>
</tr>
<tr>
<td>SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers</td>
</tr>
<tr>
<td>NRM 8.2003 Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?</td>
</tr>
<tr>
<td>CLIM 9.2003 A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information</td>
</tr>
<tr>
<td>KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy</td>
</tr>
<tr>
<td>CLIM 11.2003 Selma van LONDON and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World Coalition Theory</td>
</tr>
<tr>
<td>PRIV 12.2003 Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories</td>
</tr>
<tr>
<td>KNOW 13.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art</td>
</tr>
<tr>
<td>KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lx): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life</td>
</tr>
<tr>
<td>KNOW 16.2003 Alexandra BITUSIKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia</td>
</tr>
<tr>
<td>KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lx): A Stage Model of Developing an Inclusive Community</td>
</tr>
<tr>
<td>KNOW 18.2003 Selma van LONDON and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World Coalition Theory</td>
</tr>
<tr>
<td>PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale</td>
</tr>
<tr>
<td>PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions</td>
</tr>
<tr>
<td>PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies</td>
</tr>
<tr>
<td>PRIV 24.2003 Hanna VARTIAINEN (lx): Auction Design without Commitment</td>
</tr>
<tr>
<td>PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs</td>
</tr>
<tr>
<td>PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes</td>
</tr>
<tr>
<td>PRIV 28.2003 Anders LUNANDER and Jan-Eric NIELSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts</td>
</tr>
<tr>
<td>PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities</td>
</tr>
<tr>
<td>ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
</tr>
<tr>
<td>KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty</td>
</tr>
<tr>
<td>PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?</td>
</tr>
<tr>
<td>KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&amp;D and Productivity: A Treatment Effect Analysis</td>
</tr>
<tr>
<td>ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation</td>
</tr>
</tbody>
</table>
GG 36.2003  Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003  Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003  Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

KNOW 39.2003  Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003  Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations


KNOW 42.2003  Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies


CLIM 44.2003  Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003  Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization


ETA 47.2003  Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

CLIM 48.2003  Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing


CTN 50.2003  László Á. KÖCZY and Luc LAUWERS (lxii): The Minimal Dominant Set is a Non-Empty Core-Extension

CTN 51.2003  Matthew O. JACKSON (lxii): Allocation Rules for Network Games

CTN 52.2003  Ana MAULEON and Vincent VANNETELBOSCH (lxii): Farsightedness and Cautiousness in Coalition Formation


CTN 54.2003  Matthew HAAG and Roger LAGUNOFF (lxii): On the Size and Structure of Group Cooperation

CTN 55.2003  Taiji FURUSAWA and Hideo KONISHI (lxii): Free Trade Networks

CTN 56.2003  Halis Murat YILDIZ (lxii): National Versus International Mergers and Trade Liberalization

CTN 57.2003  Santiago RUBIO and Alistair ULPH (lxii): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

KNOW 58.2003  Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

KNOW 59.2003  Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

ETA 60.2003  Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey

CLIM 61.2003  Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game


SIEV 63.2003  Alberto PETRUCCI: Taxing Land Rent in an Open Economy

CLIM 64.2003  Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

SIEV 65.2003  Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

SIEV 66.2003  Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

SIEV 67.2003  Paolo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Price Competition and Product Differentiation when Consumers Care for the Environment: Saint-Petersburg’s Case

CLIM 68.2003  ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

KNOW 69.2003  David FRANTZ (lxii): Lorenzo Market between Diversity and Mutation

KNOW 70.2003  Ercole SORI (lxii): Mapping Diversity in Social History

KNOW 71.2003  Liljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?

KNOW 72.2003  Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

KNOW 73.2003  Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

KNOW 74.2003  Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication

KNOW 75.2003  Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

KNOW 76.2003  Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

KNOW 77.2003  Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

KNOW 78.2003  Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas

KNOW 79.2003  Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003  Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003  Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003  Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003  Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003  Reyner GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes

NRM 85.2003  Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARI: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003  Elena BELLINI, Gianmarco I. P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003  Lucas BRETSCHGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments


CLIM 89.2003  Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003  Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003  Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries


ETA 93.2003  Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003  Parkash CHANDER: The y-Core and Coalition Formation

IEM 95.2003  Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

IEM 96.2003  Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices


KNOW 98.2003  John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities


KNOW 100.2003  Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003  David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003  Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003  Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003  Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003  Anil MARKANDYA and Dirk T.G. RÜBRELKE: Ancillary Benefits of Climate Policy

NRM 106.2003  Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003  Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003  Sara ANIYAR (lxv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example


NRM 110.2003  Anastasios XEPAPADEFAS and Catarina ROSETA-PALMA (lxv): Instabilities and Robust Control in Fisheries

NRM 111.2003  Charles PERRINGS and Brian WALKER (lxv): Conservation and Optimal Use of Rangelands


CTN 113.2003  Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003  Guillaume HAERRINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003  Hideo KONISHI and M. Utsu UNVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003  Somdeh LAHIRI: Stable Matchings for the Room-Mates Problem

CTN 117.2003  Somdeh LAHIRI: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003  Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty

CTN 119.2003  Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results

CTN 120.2003  Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

CTN 121.2003  Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players

CTN 122.2003  Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players

CTN 123.2003  Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players

1000  Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
Gianmarco I.P. OTTAVIANO and Giovanni PERI
Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN
Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO
Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA:
Slim Ben YOUSSEF:
Marta STRYSZOWSKA
Pegaret PICHLER and Alex STOMPER
Victor GINSBURGH and Shlomo WEBER:
Wilson PEREZ:
Franca ECKERT COEN and Claudio ROSSI
Andrea BIGANO and Stef PROOST:
Micheal FINUS
Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU
Ohad KADAN
Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER
Romano HAMILTON (lviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison
Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
Lessons from the Polder: Is Dutch CO2-Taxation Optimal
Strategic Immigration Policies and Welfare in Heterogeneous Countries
Do Privatizations Boost Household Shareholding? Evidence from Italy
Languages Disenfranchisement in the European Union
The Economic Value of Cultural Diversity: Evidence from US Cities
International Cooperation to Resolve International Pollution Problems
Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies

Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability

Sebastian BERVOETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Signe ANTHON and Bo JELLESMARK THORSEN: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits


Ekin BIROL, Agnés GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF: Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams

Timo GOESCHL and Tun LIN: Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE: Bioprospection: From the Economics of Contracts to Reflexive Governance

Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002.

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002.

This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003.

This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002.

This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003.

This paper was presented at the International Conference on “Theoretical Topics in Ecological Economics”, organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003.

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003.

This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003.

This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003.

This paper was presented at the ENGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003.

This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003.
### 2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

### 2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>