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Abstract

We introduce a task-based framework for modeling production in which
certain tasks are too complex for many workers to perform. In such an environ-
ment, workers’ wages may significantly diverge from their relative productivities:
Workers with marginally higher skill levels may obtain a large additional wage
premium on top of the skill premium, which we call complexity premium. We
apply our framework to explain past employment and wage polarization and
estimate model parameters for the U.S. labor market between 2001 and 2019.
Beyond a rising skill level and skill premium, we find that the complexity of tasks
increases and employees performing more complex tasks earn a significant com-
plexity premium, which accounts for up to 43 percent of their wages. Finally,
we explore the effects of artificial intelligence and find it may aggravate wage
inequality, with an ambiguous effect on complexity premia.
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1 Introduction

We propose a novel task-based model, the task-complexity model, in which workers are
substitutes for one another across tasks as long as they satisfy an additional constraint:
their skill level must be sufficient to master the task’s complexity (for empirical evi-
dence, see Autor et al., 2003, and Frey and Osborne, 2017). Therefore, less-skilled labor
may not merely be an imperfect substitute for higher-skilled labor but no substitute at
all. This constraint, which we denote as the sufficient skill condition, can translate into
a scarcity of labor and wage premia that cannot be explained by productivity alone.
Specifically, a worker with a skill level that just satisfies the sufficient skill condition for
one task may earn significantly more than another worker with a marginally lower skill
level. We call the difference in the wages of workers with virtually the same skill level
a complexity premium, and a labor market exhibiting such jumps in the wage scheme
disintegrated.

Our model contributes to the existing literature in various dimensions. First, from
a theoretical perspective, the task-complexity model provides a formal framework to
explain how wage inequality across skills can be caused by the supply and the demand
side of the labor market, both of which have been found to be relevant in the empirical
literature (Goldin and Katz, 2018). On the supply side, skill may determine productiv-
ity, resulting in skill premia. On the demand side, the distribution of task complexities
may or may not cause complexity premia of different sizes. This novel demand-side
mechanism is the model’s key contribution.

Second, our approach helps explain stylized outcomes driven by skill-biased technolog-
ical change. In our example, we focus on the computerization phase that began around
1980. The task-complexity model can reconcile the following two stylized facts. First,
Autor and Dorn (2013) observe a polarizing distribution of wages and employment
across the complexity space, i.e., increasing wages and employment shares particularly
in low- and high-complexity occupations. Second, (Acemoglu and Autor, 2011; Autor,
2019) find decreasing real wages among less educated individuals, which might appear
to be at odds with rising wages in low-complexity occupations as implied by the first
fact.

Third, the complexity premium is an important explanatory factor of wage differences
in the data. The estimated model can be used as a measurement tool to decompose
wages into skill and complexity premia and identify drivers of observed wage inequality.
We find that, in the period of 2001–2019, a disintegration of the U.S. labor market has
significantly contributed to wage differences among low-, medium-, and high-skilled
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employees. The complexity premium explains up to 43 percent of the wages of the high-
skilled. Such high complexity premia create strong incentives for firms to reduce the
complexity of their tasks and for workers to increase their skill level. In the estimation
results, only the latter is observed.

Fourth, we argue that the sufficient skill condition creates a new mechanism by which
artificial intelligence (AI) may affect wage inequality. AI exerts downward pressure on
wages in tasks where it can substitute for human labor, and affected workers cannot
transition to exclusively human tasks that are too complex for them to perform. How-
ever, we also study settings in which workers can switch to low-complexity tasks—such
as manual labor—in which AI cannot be used, thereby avoiding nominal wage losses.
Even in this scenario, our model predicts that AI exacerbates wage inequality, and
declining real wages for low- and medium-skilled workers cannot be ruled out. The
effect of AI on complexity premia in high-complexity tasks performed by humans is
ambiguous and driven by price effects in the goods market.

The task-complexity model builds on the existing task-based model literature. In
contrast to the earlier, so-called canonical model, workers in task-based models allocate
endogenously into tasks based on their individual skill levels (Acemoglu and Autor,
2011; Acemoglu and Zilibotti, 2001; Autor et al., 2003). While workers may have a
comparative advantage in one task, they are in principle able to perform any task. The
essential difference between our model and previous task-based models is the sufficient
skill condition. This constraint implies that workers are substitutes in some tasks but
not in others.

We stress that our model features a continuous distribution of skill levels. In this
regard, our model is similar to the early task-based model proposed by Kremer and
Maskin (1996) and a model by Jung and Mercenier (2011). In prominent models by
Acemoglu and Zilibotti (2001), Acemoglu and Autor (2011), Acemoglu and Restrepo
(2022), and Acemoglu (2025), there is a finite and mostly small number of skill levels.
We argue that a continuous skill level distribution is more realistic, and it enables us
to stay agnostic about the relevance of discrete proxies like educational degrees for skill
in production. Instead, we can estimate parameters of the skill level distribution from
the data.

The remainder of the paper is organized as follows. We formally describe the model
in Section 2 and illustrate major mechanisms in a two-firm example in Section 3. In
Section 4, we replicate stylized facts about wages and employment observed in the past
(1980–2005). In Section 5, we estimate our model on recent U.S. labor market data
from 2001 to 2019. In Section 6, we discuss the effects that the emergence of AI can be
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expected to have on wages in the future. Section 7 concludes and suggests directions
for future research with the task-complexity model.

2 The Model

2.1 Households

There is a continuum of households of mass one. We refer to households and workers
interchangeably, and index them by their skill level r. We assume that the skill level is
distributed according to some continuous density function f(r) and cumulative distri-
bution function F (r) with support R = [0, 1]. For notational convenience, we denote
the density of households with skill level r by Lr = f(r). Hence, Lr is a continuous
function of r.

Households derive utility from consuming final goods i ∈ I. Household r’s utility is
given by a CES function

U r
(
{cri}i∈I

)
= Cr, (1)

where

Cr :=
(∑
i∈I

(cri )
σ−1
σ

) σ
σ−1

.

Cr represents both the utility and the consumption basket of household r. In the
consumption basket, cri is the amount of final good i consumed by household r. The
parameter σ is the elasticity of substitution between goods. We assume that σ > 1.

Household r receives earns wage wr and receives firm profits Πr. We do not make any
assumptions about the distribution of firm ownership across households since equilibria
can be determined independently. Accordingly, the budget constraint of household r

is ∑
i∈I

pic
r
i ≤ Lrwr + Πr , (2)

where pi denotes the price of final good i. The demand of household r for a good i is

cri =
(
pi
P

)−σ
Cr,

where

P =
(∑
i∈I

p1−σ
i

) 1
1−σ

(3)
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is the aggregate price index. The derivation is detailed in Appendix A.1. Then, total
demand for a representative product i is

ci =
(
pi
P

)−σ
C, (4)

where C :=
∫ 1

0 C
rLrdr is total consumption. Aggregating budget constraints across

households yields
PC =

∫ 1

0
wrLrdr +

∫ 1

0
ΠrLrdr ,

where PC denotes the total nominal consumption expenditures.

2.2 Firms

Final good i is produced in industry i in quantity xi and is a CES aggregate of inter-
mediate goods ij:

xi =
(∫ 1

0
x
σ−1
σ

ij dj
) σ
σ−1

(5)

such that pi is the index

pi =
(∫ 1

0
p1−σ
ij dj

) 1
1−σ

. (6)

Each intermediate good ij is produced by a firm indexed accordingly. Firms act as
monopolistic competitors. For tractability, we assume that the elasticity of substitution
is the same between final and intermediate goods.

Demand for the intermediate good ij follows as

xdij =
(
pij
pi

)−σ (
pi
P

)−σ
C. (7)

Please refer to Appendix A.2 for the derivation.

Production Technology

All firms in industry i use the same technology that involving a single task. Thus, we
index final goods, industries, and tasks by i. We refer to the complexity level of a task
as its task complexity and denote it by τi. The task complexity indicates the degree of
difficulty connected with the successful completion of a task, i.e., the higher the task
complexity, the more difficult the production process.

Indices in the set I =
{

1, ..., ī
}

are ordered according to related task complexities such
that τi < τi+1 ∀ i. Hence, task ī is the most complex, and task 1 is the least complex
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in the economy. Assuming strict inequality in τi < τi+1 ∀ i implies a bijective mapping
between industries and task complexities. We denote the set of task complexities as
T = {τ1, . . . , τī, τī+1}.

The following assumption is essential:

Assumption 1 (Sufficient Skill Condition)
Labor with skill level r can only perform at task complexity τi if r ≥ τi.

We assume τi ∈ [0, 1) ∀ i ∈ I such that for each industry i there will be some worker r
satisfying the sufficient skill condition given in Assumption 1. Note that task complex-
ity τī+1 does not correspond to an industry. It is set to one and is used in expressions
derived later.

As a side note, Assumption 1 implies that a fraction of workers F (τ1) remains unem-
ployed whenever τ1 > 0 and f(r) > 0 for some r < τ1. As discussed in Brynjolfsson
and McAfee (2014), Harari (2016), and Keynes (2010), such a class of unemployed
workers may indeed emerge as a result of technological progress, reflected in our model
as a shift of task complexities. However, unemployment is not the focus of our paper.
Instead, we concentrate on studying wage differences across employed workers due to
what we call complexity premia.

The production function of firm ij relates the amount lij(r) of labor of skill level r to
xij:

xij =
∫
r∈Rij

κ(r)lij(r)dr , (8)

where Rij denotes the set of skill levels used in production by firm ij and κ(r) : [0, 1]→
R+ denotes the productivity of worker r. We assume κ′(·) > 0, i.e., productivity is
strictly increasing in the worker’s skill level.

Profit Maximization

The profit maximization problem of firm ij is

max
Rij ,pij ,{xij(r)}r∈Rij ,{lij(r)}r∈Rij

∫
r∈Rij

(
pijxij(r)− xij(r)

wr

κ(r)

)
dr , (9)

s.t. xij =
∫
r∈Rij

xij(r)dr = xdij =
(
pij
pi

)−σ (
pi
P

)−σ
C,

r ≥ τi ∀ r ∈ Rij ,

Rij ⊆ R .
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Firm ij chooses a set of skill levels for production Rij, an amount of labor input lij(r)
for each skill level in Rij, and a price pij. The total output of firm ij, xij, must equal
the total demand for its variety, xdij.

Firm ij’s profit maximization problem is solved by dividing it into two subproblems:

(i) Cost minimization

As there is a continuum of firms in each industry and workers do not have preferences
for working in certain firms, we assume perfect competition among firms in the labor
market, such that firms take wages as given. Firm ij minimizes the cost per unit
of output, wr

κ(r) , by choosing a subset of skills Rij ⊆ R that minimizes this cost and
satisfies Assumption 1.

All firms in industry i are symmetric, and the mass of firms in industry i is one, so
Rij = Ri ∀ i, j. Further, we expect wr

κ(r) to be homogeneous and equal to a constant ωi
for all r ∈ Ri. If this were not the case—i.e., if there existed r, r′ ∈ Ri for which wr

′

κ(r′) >
wr

κ(r) = ωi—then the firm would prefer not to hire labor of skill level r′, contradicting
r′ ∈ Ri. We refer to ωi as the scaling factor of industry i, and define ω = {ω1, . . . , ωī}
as the set of scaling factors for all industries. These definitions will be used in the next
section to solve for the equilibrium.

(ii) Profit maximization

Given the cost-minimizing set of skill levels in production Ri, firm ij chooses a price
that solves the profit maximization problem given in (9). With ωi = wr

κ(r) , the problem
becomes

max
pij

∫
r∈Ri

(pijxij − ωixij) dr ,

s.t. xij = xdij =
(
pij
pi

)−σ (
pi
P

)−σ
C .

Note that the integrand is independent of r. The solution to the maximization problem
is

pij = pi = σ

σ − 1ωi ∀ i, j. (10)

Thus, the price equals the constant mark-up, σ
σ−1 times the marginal cost ωi = wr

κ(r) for
all firms in industry i.
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Because firms in industry i are symmetric and there is a unit mass of firms in each
industry, we may index output and labor demand of a representative firm in industry
i by i, such that xi = xij and li(r) = lij(r) ∀ i, j.

2.3 Equilibrium

We begin by defining an equilibrium.

Definition 1 (Equilibrium) An equilibrium consists of:

(i) a set of skill levels Ri ⊆ R for each representative firm i, with i ∈ I, that this
firm is willing to employ,

(ii) output levels, {xi}i∈I, and labor, {li(r)}(i,r)∈I×Ri, chosen by representative firm
i,

(iii) a set of consumption levels, {cri}(i,r)∈I×R, for each household r’s consumption of
each final good i,

(iv) a set of goods prices, {pi}i∈I,

(v) a set of wages, {wr}r∈R,

such that

(A) xi, {li(r)}r∈Ri, and pi solve the representative firm i’s profit maximization prob-
lem (9) ∀ i ∈ I,

(B) {cri}i∈I maximizes the utility of household r in (1) subject to the household’s
budget constraint (2) ∀ r ∈ R,

(C) goods markets clear for all products,

(D) labor markets clear, and

(E) Ri fulfills Assumption 1 for all i ∈ I.

To characterize the equilibrium, we define effective labor demand l̃i of a representative
firm or industry i as

l̃i :=
∫
Ri
li(r)

κ(r)
κ(1)dr . (11)
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Intuitively, effective labor demand is labor demand in terms of the number of workers
adjusted for their respective productivity differences.

On the supply side, we may define effective labor supply as the analog. Specifically,

L̃∆
i :=

∫ τi+1

τi

κ(r)
κ(1)L

rdr (12)

denotes effective labor that can be employed in task i (or less complex tasks), but not
in task i+ 1.

To close our model, we introduce a labor market clearing condition—henceforth LMCC—
represented by inequality (13):

LMCC (Labor Market Clearing Condition)
∑
ĩ≥i

L̃∆
ĩ ≥

∑
ĩ≥i

l̃̃i (W) ∀ i ∈ I , (13)

whereW = {wr}r∈R denotes the wage scheme that describes the wages paid to workers
of different skill levels. The left-hand side is the supply of effective labor that is able
to perform task i with complexity τi or more complex tasks. The right-hand side is
the cumulative demand of all industries ĩ ≥ i for effective labor given wage scheme W .
In an equilibrium, Condition (13) must hold for every task i ∈ I and with equality
for the least complex task 1. If the latter was not the case, there would be aggregate
excess labor supply or demand. Whenever the LMCC is satisfied as an inequality for
some i > 1, this reflects a case in which more skilled labor with r ≥ τi is available
than needed for all tasks ĩ ≥ i. In equilibrium, this does not translate into excess labor
supply for any task as workers r ≥ τi can still be hired for some task î < i.

Recall that we determined the scaling factor ωi of industry i as

ωi = wr

κ(r) ∀ r ∈ Ri,

implying wr = ωiκ(r) ∀ r ∈ Ri. Therefore, we can write the wage scheme W as

W = {ωiκ(r)}(i,r)∈I×R . (14)

When we adopt scaling factor ωi = 1 for all firms, wage scheme W implies wr

κ(r) =
wr
′

κ(r′) ∀ r, r
′ ≥ τ1. However, Equation (14) also covers cases with heterogeneity in the

scaling factor across tasks. Intuitively, ωi will adjust due to perfect competition on the
labor market: If there is excess labor demand for ωi = 1, atomistic producers ij will
increase wages up to the point where demand equals supply.
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Whenever ωi = 1 ∀ i , we speak of an integrated labor market equilibrium, henceforth
ILM. If, on the other hand, the demand for high-skilled workers exceeds the supply with
this scheme, we need a scaling factor ωi 6= 1. In that case, we speak of a disintegrated
labor market equilibrium, henceforth DLM. We may also observe a locally integrated
labor market within a disintegrated labor market when the scaling factor is equal across
at least two neighboring tasks but different for some other task, i.e., ωi = ωi+1 6= ωĩ
for some ĩ /∈ [i, i+ 1].

Having introduced the scaling factor and the definition of a disintegrated labor market,
we may now formally define a complexity premium:

Definition 2 (Complexity Premium) In a disintegrated labor market with ωi > 1
for some task i, the complexity premium earned by worker r ∈ Ri is the difference
between wage and productivity, i.e., wr − κ(r) = (ωi − 1)κ(r).

We now proceed to solve for the equilibrium. Given pi from (10) and the aggregate
price index (3), we obtain

P = σ

σ − 1

(∑
i∈I

ωi
1−σ

) 1
1−σ

.

Substituting pi from (10) and P into the household demand function (4) yields

ci = ω−σi

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C . (15)

Market clearing for good i implies ci = xi. Combining the definition of effective labor
demand (11) and technology (8), we find ci = κ(1)l̃i. Substituting this into (15) gives

l̃i = ω−σi κ(1)−1

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C ∀ i ∈ I . (16)

Total wages earned by households must equal total wages paid by firms TW , i.e.,

TW = κ(1)
∑
i

ωiL̃
∆
i = κ(1)

∑
i

ωil̃i. (17)

Multiplying (16) by ωi and summing over all industries yields total consumption as a
function of total wages:

C =
(∑
i∈I

ω1−σ
i

) 1
σ−1

TW. (18)
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Thus, given a solution for ωi, C becomes a linear function of TW , and TW itself
depends on exogenous labor supply L̃∆

i and productivity κ(1) only. Labor demand
from industries (16) and demand for final good i (15) both depend on scaling factors
and C. Thus, all that is needed to solve the model is the equilibrium solution for the
scaling factors and thereby the wage scheme, ω? and W?.

We impose three restrictions on W?. First, we set the wages of unemployable workers
with r < τ1 to zero. Second, we normalize the scaling factor of the industry with the
lowest task complexity to one, i.e., ω?1 := 1. Thus, the lowest-skilled employable worker
always earns his productivity such that wτ1 = κ(τ1). Third, equilibrium scaling factors
ω?i have to be non-decreasing in i. Otherwise, wages as a function of skill levels would
not be increasing in the skill level everywhere, which cannot be an equilibrium.

To simplify further derivations and language, we define a group as a set of tasks with
a common scaling factor. A group is indexed by g ∈ N. Note that a group may
encompass multiple task complexities. We order groups by their scaling factors and
refer to a collection of such groups as a group structure, denoted G. The number of
groups, |G|, equals the number of labor market separations plus 1, i.e., the number
of jumps in the scaling factor plus one. Thus, if |G| = 1, there is no labor market
disintegration and the economy is in an ILM equilibrium. If |G| > 1, the economy is
in a DLM equilibrium. If |G| ∈ (1, |I|), the economy is in a DLM equilibrium with at
least one locally integrated labor market.

The scaling factor within a group is denoted by ωg. By construction,

ωg+1 > ωg ∀ g ∈ G , (19)

i.e., the higher a group’s index, the higher its scaling factor. The following proposition
establishes the existence and uniqueness of the equilibrium.

Proposition 1 (Existence and Uniqueness)
There exists a unique equilibrium with group structure G?.

The proof is given in Appendix B.1. In the proof, we also establish the following
properties regarding the equilibrium wages:

Corollary 1 (Wage Scheme)
1. The uniquely determined wage scheme W? can be characterized by

W? := {ω?(r)κ(r)}r∈R, where ω?(r) = ω?i if r ∈ [τi, τi+1).

2. If two workers of skill levels r and r′ are in the same group, then ω?(r) = ω?(r′).

10



In Appendix C, we present the algorithm used to solve for W?.

From the previous considerations, we obtain a full characterization of the equilibrium:

Proposition 2 (Equilibrium)
The equilibrium is characterized by a group structure G? and by

(i) W? = {ω?(r)κ(r)}r∈R ,

(ii) R?
i ⊆ {{r ∈ R|r ≥ τi} ∩ {r ∈ R|ω?(r) = ω?i }} ∀ i ∈ I ,

(iii) p?i = σ
σ−1ω

?
i ∀ i ∈ I ,

P ? = σ
σ−1

(∑
i∈I (ω?i )

1−σ
) 1

1−σ ,

(iv) TW ? = κ(1)∑i∈I ω
?
i L̃

∆
i ,

(v) l̃?i = ω?i
−σ∑

ĩ∈I(ω?ĩ )
1−σκ(1)−1TW ? ,

(vi) x?i = κ(1)l̃?i ,

(vii) π?i = κ(1)ω?i l̃
?
i

σ−1 ,

(viii) C? =
(∑

i∈I (ω?i )
1−σ

) 1
σ−1 TW ? ,

and P ?C? = σ
σ−1TW

?.

Item (ii) indicates that representative firm i hires only labor that satisfies Assumption 1
and is paid according to representative firm i’s scaling factor.

Note that any equilibrium characterized by Proposition 2 is Pareto-efficient. There are
no externalities and all conditions of the First Welfare Theorem are fulfilled. Yet, this
Pareto efficiency may be associated with a high degree of wage inequality, especially
in DLM equilibria with complexity premia.

3 A Two-Industry Example

In this section, we provide a simple example with only two industries. We begin by
analyzing general properties of the equilibrium and its solution. Next, we present both
an ILM and a DLM equilibrium.
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3.1 Setup

Assume that skill levels are uniformly distributed, i.e., Lr = 1 on R = [0, 1]. Further,
skill is transformed one-to-one into productivity, so that κ(r) = r. Finally, the economy
consists of only two industries, each with a representative firm and a corresponding task
i ∈ {1, 2}, with associated task complexities satisfying 0 < τ1 < τ2 < 1. Recall that we
normalize ω1 = 1. Hence, the labor market is integrated if ω2 = 1 and disintegrated if
ω2 > 1.

To study the equilibrium, we begin with the labor market clearing condition (13).
Substituting (12) for L̃∆

i and using (16), (18), and (17) to express l̃i, we obtain:

∫ 1

τî

κ(r)
κ(1)L

rdr ≥
∑
i≥î ω

−σ
i∑

ĩ ω
1−σ
ĩ

∑
ĩ

ωĩ

∫ τĩ+1

τĩ

κ(r)
κ(1)L

rdr ∀ î ∈ I. (20)

Exploiting the assumptions Lr = 1 and κ(r) = r ∀ r ∈ R, this simplifies to

1− τ 2
1 ≥

1 + ω−σ2

1 + ω1−σ
2

(
τ 2

2 − τ 2
1 + ω2

(
1− τ 2

2

))
for î = 1, (21)

1− τ 2
2 ≥

ω−σ2

1 + ω1−σ
2

(
τ 2

2 − τ 2
1 + ω2

(
1− τ 2

2

))
for î = 2. (22)

First, assume an integrated labor market, i.e., ω2 = 1. This yields

1 ≥ 1 for î = 1,√
1
2(τ1)2 + 1

2 ≥ τ2 for î = 2.

The first line is trivially satisfied, but this is not necessarily the case for the second.
If τ2 is large relative to τ1, the condition will be violated, indicating that the ILM is
not an equilibrium. The respective threshold value of τ2 for a given τ1 is illustrated in
Figure 1. Note that for any τ1, there is a τ2 such that the labor market is integrated.
This implies that the absolute level of task complexities is irrelevant for disintegration;
what matters is their relative position. Similarly, the level of σ does not affect whether
the labor market is integrated or disintegrated.

These findings generalize as follows. Labor market disintegration and scaling factors
depend on the size of the labor force satisfying the sufficient skill condition for tasks i
compared to the total labor supply satisfying it for task 1 (see (B.9) and Appendix C).
Thus, it holds in general that the relative position of some τi compared to τ1 is crucial.
Moreover, we confirm that altering σ alone cannot cause disintegration although it
influences the magnitude of scaling factors in DLM equilibria.
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Figure 1: Disintegrated and Integrated Labor Markets, for Levels of τ2 Given τ1, in a
Two-Firm Example.

Figure 2: Scaling Factor ω2 as a Function of τ2 in a Two-Firm Example, Fixing τ1 = 0.1
and σ = 2. Figure Cut off at τ2 = 0.85.

We now continue to study the two-industry example. In the case where (22) is violated
as τ2 >

√
1
2(τ1)2 + 1

2 , the solution for ω2 can be obtained by solving (22) under equality
for ω2 or using the general solution derived in Appendix C. With both approaches, we
obtain ω2 =

( 1−τ2
2

τ2
2−τ

2
1

)− 1
σ . As ω2 = 1 up to τ2 =

√
1
2(τ1)2 + 1

2 and ω2 is strictly increasing
in τ2 for τ2 >

√
1
2(τ1)2 + 1

2 , it follows that

ω2 = max

1,
(

1− τ 2
2

τ 2
2 − τ 2

1

)− 1
σ

 , (23)

for any levels of τ1, τ2, and σ. Given τ1 = 0.1 and σ = 2, the relationship between ω2

and τ2 is depicted in Figure 2. In a disintegrated labor market, ω2 grows rapidly as τ2

increases and goes to infinity as τ2 → 1.
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3.2 Comparison of Two Scenarios

Next, we calibrate the model for two scenarios to study the effects of a shift towards
a more heterogeneous task-complexity distribution. Holding all other parameters con-
stant, we first compute wages for task complexities τ1 = 0.1 and τ2 = 0.5. In the second
case, we set τ2 = 0.85. Given that the threshold for a disintegrated labor market at
τ1 = 0.1 is at 0.71, the first scenario corresponds to an integrated and the second to
a disintegrated labor market (see Figure 2). The resulting wage schemes and effective
labor demand for both firms are depicted in Figure 3.

We can summarize our findings as follows. In the integrated labor market (ILM) sce-
nario, illustrated in Figure 3a, effective labor demand—represented by shaded areas—is
homogeneous across both firms. The same holds for scaling factors, prices, output, and
profits. Consequently, aside from each firm’s chosen skill level set Ri and the wages
paid, firms are fully symmetric in the ILM equilibrium.

In the presented disintegrated labor market (DLM) scenario shown in Figure 3b, τ2

is sufficiently high that the supply of effective labor satisfying r ≥ τ2 is smaller than
firm 2’s demand in the ILM. Thus, scaling factor ω2 increases as predicted in Figure 2.
Total production and consumption decline by 5 percent, and the wage share in the
economy rises by 12 percentage points due to higher wages for high-skilled workers.
The Gini coefficient of labor income increases from 0.35 to 0.42, indicating a rise in
wage inequality. Since prices are given by pi = σ

σ−1ωi, the aggregate price level P
increases by approximately 23 percent. As a result, workers employed in industry 1
experience declining real wages. Firms have become heterogeneous not only in terms
of prices but also in terms of output and labor demand—industry 2’s share of output
and effective labor declines from 50 to less than 28 percent.

Plotting effective labor demand for firms 1 and 2 in Figure 3a requires to pin down
labor allocation for the integrated labor market case. One way to do this is imposing
Assumption 2.
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Figure 3: Wage Distributions and Labor Demand in a Two-Firm Example of an Inte-
grated and a Disintegrated Labor Market.

(a) Integrated Labor Market (τ2 = 0.5). (b) Disintegrated Labor Market (τ2 = 0.85).

Assumption 2 (Allocation of Skill Levels to Tasks)
For all tasks i ∈ I,

1. Ri is an interval,

2. firm i hires all available labor with skill level r ∈ Ri, i.e. li(r) = Lr and l̃i(r) =
0 ∀ ĩ ∈ I : ĩ 6= i.

Without this assumption, it would be indeterminate which workers r ≥ τ2 are allocated
to firm 1 and firm 2. Importantly, Assumption 2 has no impact on wages, prices, firms’
effective labor demand or any other equilibrium variable included in Proposition 2.

In the next section, we examine how the model can be used to explain stylized patterns
observed in labor market data.

4 The Past: Explaining Stylized Facts since 1980
in the Task-Complexity Model

4.1 Stylized Facts

Investigating a period from 1980 to 2005 in the United States, Autor and Dorn (2013)
document a U-shaped growth of wages and employment across the skill distribution:
both increased most for low- and high-skilled labor and only weakly for medium-skilled
employees. In terms of wages, high-skilled individuals benefited more than low-skilled
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ones, but wages for both of these groups rose substantially more than those of the
medium-skilled.

Autor and Dorn (2013) use the occupational mean wage in 1980 as a proxy for skill level.
To measure wage growth, they calculate the difference in mean wages per occupation
between 2005 and 1980. Using this approach, real wage growth was positive across all
skill groups, although growth was weaker among medium-skilled workers. In contrast,
studies relying on educational attainment as a proxy for skill find real wage losses
for less-educated individuals over the same period (Acemoglu and Autor, 2011; Autor,
2019).

We argue that this apparent discrepancy arises from differences in skill measurement.
While education may be related to skills on the supply side of the labor market, oc-
cupational mean wages are an equilibrium outcome shaped by the allocation of skills
across occupations. This allocation may change over time, as it is the case in our ap-
plication of the task-complexity model below. Accordingly, we interpret the findings of
Autor and Dorn (2013) as referring wage and employment growth across occupations
of varying complexity.

Autor and Dorn (2013) conclude that the observed increase in wages and employ-
ment for workers in—using our terminology—high- and low-complexity occupations
was driven by demand-side factors. Specifically, they argue that service occupations at
the lower end of the task-complexity distribution are comparably costly to automate
as complex, non-routine tasks performed by high-skilled labor. In contrast, workers in
medium-complexity occupations involving routine tasks were more easily substituted
by information technology.

Broad empirical evidence qualitatively confirms the trend of employment polarization
in developed countries, for instance Autor et al. (2006) for the United States, Spitz-
Oener (2006) and Dustmann et al. (2009) for Germany, and Goos et al. (2009) for
16 European countries. However, the quantitative findings are heterogeneous, suggest-
ing that technological change alone cannot fully account for these patterns. The same
holds for wage polarization: Antonczyk et al. (2018) find that rising skill premia played
a more prominent role in the United States than in Germany.

4.2 Replicating Trends in the Model

We now illustrate how empirical trends in wages and employment can be explained
within the task-complexity model, where computerization is represented by a polar-
ization of the task-complexity distribution. Cross-country differences in wage and
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employment distributions are consistent with our model particularly if the skill level
distribution varies over countries.

In what follows, we use a simple calibration of the task-complexity model to simulate
labor market conditions before and after computerization. For the pre-computerization
state, we assume five industries i ∈ I = {1, 2, 3, 4, 5} with associated task complexities
τ1 = 0.1, τ2 = 0.35, τ3 = 0.475, τ4 = 0.6, and τ5 = 0.85. Dividing the complexity
space into three equally-spaced segments, we classify tasks between τ = 1

3 and τ = 2
3

as medium-complexity, and those outside this range as low- and high-complexity tasks,
respectively. All other assumptions from the previous section remain unchanged.

Given this calibration, the labor market is integrated (see Figure 4a). As more skilled
workers allocate to more complex tasks (occupations) and wages are increasing in the
skill level, the occupational mean wage is informative about the average skill level in a
task, as proposed by Autor and Dorn (2013).

Following Autor and Dorn (2013), we assume that tasks performed by medium-skilled
labor are automated in the computerization phase. In our framework, this leads to a
polarization of the task-complexity distribution. Specifically, as shown in Figure 4b,
we assume that τ2 shifts closer to τ1, whereas τ4 approaches τ5, and τ3 remains un-
changed. As a result, there is only one medium-complexity task left. Importantly, the
number of industries remains constant with this setup, which eliminates an additional
demand-side effect on the goods market through the consumers’ CES preferences. The
labor market is now disintegrated. Remarkably, shifting only two task complexities is
sufficient to replicate all four stylized facts observed by Autor and Dorn (2013):

First, as shown in Figure 4c, employment in low-complexity tasks increases as relative
demand for medium-complexity tasks declines. Since the labor market remains locally
integrated across low- and medium-complexity tasks, some workers previously em-
ployed in medium-complexity occupations can be reallocated to low-complexity tasks.
This reallocation effect has also been discussed by Goos and Manning (2007).

Second, as depicted in Figure 4d, real wages in low-complexity tasks rise substantially
more than wages in medium-complexity tasks. This pattern arises from the higher pro-
ductivity of medium-skilled labor now employed in low-complexity tasks, which raises
the average wage in these occupations. Autor and Dorn (2013) assume complementar-
ity between goods and services in consumption to explain this observation.

Third, employment in high-complexity tasks increases. As industries concentrate at
the upper end of the task-complexity distribution, high-skilled labor becomes scarce,
and industries 4 and 5 employ all workers with sufficiently high skill levels. Prior to
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computerization, some individuals with skill levels r ≥ 0.85 were employed in medium-
complexity tasks.

Fourth, wages in high-complexity tasks increase due to the scarcity of high-skilled
labor and the resulting complexity premium. As in the data shown by Autor and Dorn
(2013), this wage growth exceeds that observed in low-complexity tasks.

It is worth noting why wages also increase in the remaining medium-complexity task
(task 3, see Figure 4d). Labor demand from firms 1 and 2 is too large to be satisfied
by workers with r < τ3 alone. Therefore, the least-skilled workers with r ≥ τ3 are still
hired for low-complexity tasks (by Assumption 2). As a result, the workers remaining
in task 3 exhibit higher average productivity than before computerization, leading to
higher wages.

In summary, our model can simultaneously explain four stylized facts through an ad-
justment in task complexities only. In addition, it can explain why empirical results
depend on the variable that is used to measure skill. As discussed, Autor and Dorn
(2013) approximate the skill level by the occupational mean wage in the base year 1980.
They implicitly assume that the allocation of skills to occupations remains constant
to compute the U-shaped growth patterns of wages and employment across skill levels
from 1980 to 2005. In contrast, Acemoglu and Autor (2011) and Autor (2019) use
educational attainment as a proxy for skill and observe negative—rather than merely
lower—wage growth for low- and medium-skilled labor.

In our model, both results can be reconciled if the allocation of skills to occupations
is endogenous. As shown in Figures 4d and 4e, wage growth is positive across firms
regardless of task complexity, but negative for all workers with skill levels too low to
qualify for high-complexity tasks after computerization. This occurs because all low-
and medium-skill workers with r < 0.85 experience constant nominal wages before and
after computerization, while the aggregate price level rises due to higher wages paid
in tasks 4 and 5. Importantly, these falling real wages for low- and medium-skilled
workers do not contradict rising wages in low- and medium-complexity tasks, which
result from the reallocation of more productive labor into these tasks.

Finally, our simulations help explain rising wage dispersion within the group of high-
skilled labor, another phenomenon documented in the literature (Lemieux, 2006; An-
tonczyk et al., 2018). In our model, wage inequality among workers with skill levels
above r = 0.85 increases because the scaling factor for this group rises, steepening the
slope of the wage curve and amplifying differences in earnings. Simultaneously, the
model predicts greater wage dispersion within low-complexity tasks, as more skilled
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Figure 4: Replication of Stylized Facts Before and After Computerization.

(a) Integrated Labor Market before Com-
puterization.

(b) Disintegrated Labor Market after
Computerization of Medium-Complexity
Tasks.

(c) Employment Growth due to Comput-
erization.

(d) Wage Growth due to Computerization
by Task Complexity.

(e) Wage Growth due to Computerization
by Skill Level.
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workers are reallocated to these occupations. This outcome is also consistent with
empirical findings (Antonczyk et al., 2018).

It is important to note that Assumption 2 is required in this section not only to
plot effective labor demand but also to compute employment and wage growth across
complexity levels (Figures 4c and 4d). In Appendix D, we relax Assumption 2 and
show that all results remain qualitatively unaltered.

5 The Present: Estimating the Task-Complexity
Model on Recent Data

In the previous section, we demonstrated that shifts in task complexities can quali-
tatively account for observed labor market trends, specifically the rise in employment
and wages in both low- and high-complexity tasks.

In this section, we propose an approach for estimating the model parameters using U.S.
labor market data on occupational wages from 2001 to 2019. Since wages are influenced
by various factors beyond the scope of our model, our primary objective is not to
precisely replicate the observed wage distribution across all occupations. Instead, we
apply the model to uncover underlying labor market trends related to the relationship
between skill and productivity, the distribution of skill levels in the population, and
the task-complexity distribution on the firms’ side. The strength of our framework lies
in its ability to structurally disentangle these distinct labor demand and supply effects.

In the remainder of this section, we begin by presenting the data underlying our estima-
tion. Next, we investigate the relation of skill levels and wages and derive stylized facts
based on our data in a descriptive analysis. Finally, we estimate the model parameters
and present the results in detail.

5.1 Data and Measure of Skill

To obtain data on skill levels and related wages, we draw on the O*NET database,
version 28.3, (National Center for O*NET Development, 2024) and the Occupational
Employment and Wage Statistics (Bureau of Labor Statistics, 2024).

The O*NET database provides a range of indicators suitable as complexity measures for
over 700 occupations. We focus on variables from the “Work Activities” sub-database
and construct a single task-complexity measure by aggregating two scales for non-
routine cognitive activities proposed by Acemoglu and Autor (2011). These scales have
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been shown to correlate positively with higher educational attainment and employment
in high-wage occupations. Details on the construction of the task-complexity variable
are provided in Appendix E. We treat the resulting measure as cardinal and normalize
its domain to [0, 1].

The indicators on which the task-complexity variable is based were observed only once
per occupation and in different years between 2004 and 2022. We assume them to be
stable over the whole period from 2001 to 2019. This is common practice in the liter-
ature but may not be accurate if the within-occupation composition of tasks changes
over time, as discussed in Autor (2013). While occupational task complexities are
time-invariant in our data, we can still estimate movements in the task-complexity dis-
tribution by leveraging variation in observed wages, which reflect skill and complexity
premia and thereby allow us to infer the scarcity of the corresponding skill levels.

We retrieve occupational wage data from the Occupational Employment and Wage
Statistics (OEWS). The occupation-specific version of this database covers the period
from 1997 to 2023. A major revision to the occupational classification system occurred
in 1999. To reduce sampling errors, the U.S. Bureau of Labor Statistics aggregates
data from three consecutive years for each annual dataset. As a result, the first year
with a complete sample is 2001 (Bureau of Labor Statistics, 2001), which marks the
beginning of our estimation period.

After merging OEWS and O*NET data via occupation codes and retaining only oc-
cupations observed in both datasets, we obtain a sample of 639 unique occupations.
Of these, we observe an average of 571 occupations per year, with a rising trend over
time: the number of observed occupations ranges from 543 in 2003 to 617 in 2019.

We do not observe the distribution of skill levels within occupations, and therefore
cannot directly link a specific skill level to the average wage paid in an occupation.
However, we do observe occupational task complexities in the O*NET database. We
exploit this information to infer a relationship between skill levels and wages. We
assume that the least-skilled worker in an occupation possesses a skill level that just
matches the occupational task complexity. This worker should be expected to earn the
lowest wage among all workers in the occupation. Accordingly, we interpret the lowest
wage paid in an occupation as corresponding to a skill level equal to the occupational
complexity. Note that we need to impose Assumption 1 for occupations and not only
for tasks to make our argument.

Unfortunately, the OEWS does not report the lowest occupational wage but only the
10th-percentile wage. We proceed by treating this wage as described above, linking it
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to the skill level equal to the occupational complexity reported in O*NET. Although
skipping nine percentiles may introduce some inaccuracy, it can also be interpreted
as excluding outliers potentially driven by measurement error or factors outside the
scope of our model. Furthermore, robustness checks presented in Appendix F indicate
that the estimation results remain qualitatively unchanged even when using the 25th-
or 50th-percentile occupational wage instead. To remove business cycle effects from
each occupation’s wage series, we apply an HP filter with a smoothing parameter of
λ = 6.25, as recommended by Ravn and Uhlig (2002) for annual data.

As discussed in the previous section, alternative skill measures proposed in the liter-
ature include wages in a base year (Autor and Dorn, 2013; Acemoglu and Restrepo,
2022) and educational degrees (Lemieux, 2006; Acemoglu and Autor, 2011; Antonczyk
et al., 2018). For our model, these measures are inadequate, as we require a cardinal
skill-level measure to locate observations in the skill-level space R. Educational de-
grees are inherently ordinal, while base-year wages—though cardinal—translate into
an ordinal skill-level measure unless the equilibrium wage scheme W? is known. We
therefore rely on O*NET/OEWS data to construct our skill-level variable. In the fol-
lowing descriptive analysis, we show that this measure is positively correlated with
observed wages.

5.2 Descriptive Analysis

Relation between Skill Level and Wages

Our model predicts that wages will increase in the skill level, with the steepness of
the increase depending on labor market integration or disintegration and the effect
of skill on productivity. A scatter plot showing skill levels and wages in our data—
or, equivalently, occupational 10th-percentile wages and task complexities—in the first
year of our estimation period (2001) is presented in Figure 5.

We observe a positive and potentially more-than-linear relationship between wages
and skill levels. When each observation is weighted by the number of employees, the
correlation coefficient is 0.66, suggesting a strong positive association between our
skill-level variable and wages. A linear regression, again weighted by employee shares,
yields a slope coefficient of 3.60; the resulting regression line is included in Figure 5.
By 2019, both the correlation coefficient and the regression slope increase to 0.68 and
4.49, respectively, following a dip before 2010 that may reflect disturbances caused by
the Great Recession (see Figure 6).
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Figure 5: Hourly Wages and Skill Levels (or, Equivalently, Hourly 10th-Percentile
Occupational Wages and Task Complexities) in 2001 and Fitted Values, Computed by
Weighting each Occupation by the Number of Employees. Sources: National Center
for O*NET Development (2024) and Bureau of Labor Statistics (2024).

Figure 6: Correlation Coefficients and Linear Regression Slope Coefficients for Skill
Levels and Wages (or Occupational Task Complexities and 10th-Percentile Wages).
Observations are Weighted by the Number of Employees.
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Stylized Facts in the Joint O*NET/OEWS Dataset

Next, we identify trends in wages and employment using the joint O*NET/OEWS
dataset. Recall that Autor and Dorn (2013) measured skill as the mean wage per
occupation in the base year of their observation period, 1980. Between 1980 and 2005,
they documented a U-shaped pattern of wage and employment growth over this skill-
level proxy. We have shown that the allocation of skills across occupations may vary
over time, implying that the base-year mean wage is better interpreted as a proxy for
occupational complexity rather than for skill level.

As described above, we can establish a direct relationship between skill and wages
in our data. Changes in this relationship between 2001 and 2019 are depicted in
Figure 7a. Observations are weighted by the number of employees per occupation,
both for determining the size of each occupation’s marker and for computing a degree-
3 spline. Nominal wages are deflated using consumption price data from U.S. Bureau
of Economic Analysis (2025), ensuring comparability over time. We observe real wage
gains across nearly all skill levels, with the largest increases occurring at skill levels
around 0.3 and between 0.6 and 0.7. At the very highest skill levels, the spline indicates
lower wage growth, though this appears to be driven by a small number of occupations
with relatively few employees.

While we can observe pairs of skill levels and wages in the data, they do not provide
information on the mass of workers with a respective skill level. Nevertheless, we can
relate changes in employment to the complexity of occupations. This relationship is
depicted in Figure 7b. Similar to wages and skill levels, employment shares increased
in both low- and high-complexity occupations, with the exception of the most complex
occupations at the upper end of the distribution.

In summary, we still observe a U-shaped growth of wages and employment over the
skill level and the occupational complexities. In the next section, we turn to identifying
the mechanisms underlying these stylized facts.

5.3 Estimation

Procedure

We estimate the model for a 19-year period between 2001 and 2019. For each year, we
estimate the productivity-skill mapping κ(r), the skill-level distribution in the popula-
tion Lr, and the task-complexity distribution T .
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Figure 7: Trends in Wages and Employment over Skill and Complexity, 2001–2019.

(a) Change in Log Real Wages over Skill. (b) Change in Employment Shares over Oc-
cupational Complexities.

For productivity, we assume the functional form κ(r) = rq and estimate the parameter
q. Note that a linear transformation of productivity, such as κ(r) = brq with b 6= 1,
does not affect the estimation results, as it leaves relative wages and effective labor
unchanged for all r.

For the skill-level distribution Lr, we assume it follows a beta distribution with the
probability density function

f(r) = rαL−1(1− r)βL−1,

and estimate the parameters αL and βL. This specification ensures that all workers’
skill levels lie within the closed interval [0, 1]. Moreover, the beta distribution is flex-
ible: it can approximate uniform or normal distributions, and it can accommodate
concentrations of mass both at the center and at the margins of the skill-level space
R. We remain ex-ante agnostic about the shape of the skill-level distribution due to
the lack of suitable alternatives. As discussed earlier, educational degrees or base-year
wages translate into ordinal skill level variables only.

Finally, we assume that task complexities across industries follow a second beta distri-
bution with the probability density function

h(r) =
(
r − τ1

τ̄ − τ1

)ατ−1 (
1− r − τ1

τ̄ − τ1

)βτ−1
for r ∈ [τ1, τ̄ ].

Here, τ1 and τ̄ denote the lowest and highest occupational task complexities observed
in our dataset. We assume ten tasks and compute τ2, τ3, . . . , τ10 as the 10th, 20th, . . . ,
and 90th percentile of the distribution. This approach ensures that all industries in our
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model are relatable to some observed occupation in the data and vice versa. With ten
industries, we allow for a wide range of locations for possible labor-market breaks in the
task-complexity space. In a robustness exercise, we vary the number of tasks from 8 to
15 without significantly affecting the estimation results (see Appendix F). Note that
increasing the number of industries arbitrarily is infeasible, as the number of possible
labor-market arrangements 2|I|−1 and thereby code runtimes grow exponentially with
|I|.

As in the case of the skill-level distribution in the population, we lack alternatives
to being agnostic about the distribution of industries in the complexity space. One
alternative would be to treat occupations or groups of occupations listed in the O*NET
database as tasks. As the number of employees per occupation is recorded in the
OEWS, this could serve as a proxy for the number of firms hiring workers for each task.
However, firm and industry sizes may vary significantly across the complexity space,
depending on labor supply and the complexity of further tasks. Thus, the number
of employees per occupation is uninformative about the distribution of industries. A
second alternative would be to exploit another dataset that directly includes firms
or industries. Yet, no dataset exists that links firms or industries to occupation codes
and, by extension, to skill levels. For instance, the Statistics of U.S. Businesses (United
States Census Bureau, 2021) provides data on industries but not on occupations.

We estimate all of the aforementioned parameters on grids since the potential discon-
tinuity of the wage function in our model poses a challenge for gradient-descent-based
optimizers. For q in κ(r) = rq, we select 21 evenly spaced grid points between 10e−5

(chosen to be close to but strictly greater zero, as we assume κ′ > 0) and 2. For all beta
distribution parameters, we construct grids with evenly spaced values between 4 and
20 in steps of 2. To improve coverage near unity, where small changes can significantly
affect the shape of the beta distribution, we add the values 1, 1.5, 2, and 3 to each
grid. This results in 13 grid points per beta parameter. In total, we evaluate 599,781
parameter combinations.

For each year, we further drop the subset of grid points for αL and βL that cannot
be aligned with the employment data reported in the OEWS. Let τ occ

k denote the
complexity of occupation k in the O*NET data. Following Assumption 1, we compare
the share of the working population employed in occupations above some complexity
τ occ
k in the data to 1−F (τ occ

k ), where F (r) denotes the cumulative distribution function
of Lr according to the estimated beta distribution. If the computed share 1− F (τ occ

k )
is smaller than the observed one, we discard the respective grid points as the supply
of skilled labor in the model is too low to be aligned with observed employment in the

26



data. Conversely, 1 − F (τ occ
k ) can never be too large to be in line with the data as

higher-skilled labor can always work in less complex occupations.

The only parameter we calibrate externally is the elasticity of substitution, σ. For
each year, it is chosen such that the firms’ markups σ

σ−1 matches the average markup
estimated by De Loecker et al. (2020) for the period 2001–2016. To remove business
cycle effects, we compute the HP-filtered trend of the markup series, again with the
smoothing parameter λ = 6.25. We extend the time series beyond 2016 by assuming
that σ remains constant thereafter.

Finally, for each year and each grid point, we compute the mean squared error (MSE)
between observed wages and model-predicted wages at the corresponding skill levels.
Each observation is weighted by the number of employees in the respective occupation.
We select the parameter combination that minimizes the weighted MSE as the final
estimate.

Results

The yearly parameter estimates are reported in Table 1, which also includes the means,
modes, and standard deviations of the distributions f(r) and h(r). Three key trends
emerge from the data.

First, the mean skill level in the population has increased substantially over time,
rising from 0.54 in 2001 to 0.70 in 2019, while the standard deviation of the skill-
level distribution has remained relatively stable. This suggests that skill levels have
improved across all groups in the population.

Second, the mean of the task-complexity distribution has increased from 0.60 in 2001
to 0.69 in 2019 whereas its standard deviation has almost halved from 0.09 to 0.05.
Effectively, this means that tasks have become more complex on average and are also
more concentrated in the high-complexity region.

Third, productivity, modeled as κ(r) = rq, has become significantly more sensitive to
skill over time, with q rising from 0.2 in 2001 to 0.7 in 2019. Accordingly, even in the
absence of labor market disintegration, wages have become more dependent on skill in
later years.

To illustrate these findings, we present the estimated wage schemes for 2001 and 2019
alongside observed wages and skill levels in Figure 8, and the corresponding estimated
skill-level and task-complexity distributions in Figure 9. Wages in Figure 8 are ex-
pressed in real US dollars, adjusted to 2001 prices.
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Table 1: Estimation Results for the Skill-Level Distribution, Task-Complexity Distri-
bution, and Productivity.

Parameters Distribution Moments
Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 14 12.00 6 3 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2002 14 12.00 6 3 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2003 14 12.00 6 3 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2004 14 12.00 6 3 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2005 14 12.00 6 3 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2006 14 12.00 6 3 0.30 0.54 0.54 0.10 0.60 0.62 0.09
2007 8 4.00 14 3 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2008 8 4.00 14 3 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2009 12 6.00 14 3 0.60 0.67 0.69 0.11 0.69 0.71 0.05
2010 8 4.00 14 3 0.50 0.67 0.70 0.13 0.69 0.71 0.05
2011 8 4.00 14 3 0.50 0.67 0.70 0.13 0.69 0.71 0.05
2012 8 4.00 14 3 0.50 0.67 0.70 0.13 0.69 0.71 0.05
2013 8 4.00 14 3 0.50 0.67 0.70 0.13 0.69 0.71 0.05
2014 8 4.00 14 3 0.50 0.67 0.70 0.13 0.69 0.71 0.05
2015 12 6.00 14 3 0.50 0.67 0.69 0.11 0.69 0.71 0.05
2016 12 6.00 14 3 0.50 0.67 0.69 0.11 0.69 0.71 0.05
2017 12 6.00 14 3 0.50 0.67 0.69 0.11 0.69 0.71 0.05
2018 4 1.50 14 3 0.60 0.73 0.86 0.17 0.69 0.71 0.05
2019 14 6.00 14 3 0.70 0.70 0.72 0.10 0.69 0.71 0.05
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Figure 8: Estimated and Observed Wages in 2001 and 2019.

(a) 2001. (b) 2019.

In 2001, labor market breaks were present for all tasks except i = 10 (Figure 8a),
reflecting the scarcity of medium- and high-skilled labor (Figure 9a). By 2019, all
task complexities except τ1 had increased (Figure 9b), while high-skilled labor supply
soared, too (Figure 9a). Although this increase in supply was not sufficient to prevent
a large scaling factor jump for ω2 (Figure 8b), it ensured that this remained the only
estimated labor-market break.

Despite the lower number of jumps in the wage function in 2019, high-skilled workers
earned more relative to low-skilled workers than in 2001: The ratio of wages estimated
for the highest and lowest observed skill levels increases from 2.28 to 3.14. This trend
cannot be explained by the complexity premium. In fact, the complexity premium
associated with the highest observed skill level (r = 0.79) decreased from a share of
43 percent of the wage in 2001 to 19 percent in 2019. Instead, growing wage inequality
is primarily driven by the significant increase in the q parameter, i.e., the rising con-
vexity of κ(r) = rq. At the same time, our results underscore that complexity premia
consistently accounted for a substantial share of wages throughout the sample period
and play a crucial role in explaining wage differences across skill levels.

Figures illustrating wage schemes for all years are provided in Appendix E. In Ap-
pendix F, we demonstrate that our results are robust to changes in the assumed num-
ber of industries and the percentile of the wage distribution used to link wages with
task complexities and skills.
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Figure 9: Estimated Skill-Level and Task-Complexity Distributions in 2001 and 2019.

(a) Skill-Level Distributions. (b) Task-Complexity Distributions.

Interpretation

Based on our estimates, we identify the key drivers behind the stylized facts discussed
in the descriptive analysis section, namely a U-shaped growth of wages across skill levels
and a U-shaped growth of employment across occupational complexities. The estima-
tion results suggest that wages at the bottom and top of the skill level distribution
rose disproportionately as medium-skill workers suffered from a shift of the first labor
market break to higher skill levels, eliminating their complexity premia. Wages for
high-skilled workers additionally benefited from the increased convexity of productiv-
ity with respect to skill. The general shift of task complexities to higher levels explains
the rise in employment in low-complexity occupations: workers previously employed in
medium-complexity occupations were reallocated to less complex occupations (this is
the same mechanism as described in Section 4). Employment in high-complexity oc-
cupations increased because of greater demand for highly complex tasks, accompanied
by an increase in skill levels within the labor force.

How can these results be explained intuitively? The estimates suggest that firms have
not reduced the complexity of their tasks (see Figure 9b), despite the strong incentive to
do so created by the high complexity premia at the beginning of the sample period. This
findings speaks against the hypothesis of directed technical change on the firm side—or
at least suggests that such change has not been strong enough to offset the trend toward
higher complexity. Nevertheless, the increasing convexity of κ(r) = rq could reflect
rising productivity among high-skilled workers due to complementarities between high-
skilled labor and information technology, as discussed in Acemoglu and Autor (2011)
and Autor and Dorn (2013). Recall that increasing labor productivity raises the supply
of effective labor even if the number of workers stays constant. Equipping high-skilled
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workers with information technology could therefore be interpreted as a strategy on
the firm side to reduce complexity premia without lowering task complexities. While
firms may be incentivized to reduce complexity premia, workers can be expected to
increase their skill level in response to high wage premia, whether driven by complexity
or skill premia. This hypothesis aligns with our results in Figure 9a.

6 The Future: Artificial Intelligence in the Task-
Complexity Model

After applying the task-complexity model to replicate stylized facts observed between
1980 and 2005 and to identify labor market trends from 2001 until 2019, this section
explores potential future effects of artificial intelligence (AI) within the framework.
While our analysis of computerization since 1980 in Section 4 focused on shifts in the
task-complexity distribution on the firm side—that is, the demand side of the labor
market—we think of AI as competing with workers on the supply side.

6.1 The AI-Augmented Task-Complexity Model

We assume that AI is able to perform tasks i ∈ [ia, ia] as a perfect substitute for labor.
The lower bound ia reflects the idea that AI is not suitable for replacing workers in
low-complexity, often manual tasks, but may be capable of performing medium- or
even high-complexity clerical work.

AI’s productivity is normalized to one. We assume an infinite supply of AI at a rental
rate (or AI “wage”) denoted by wa. The demand of representative firm ij for AI is
denoted by Aij. The profit maximization problem of a firm ij in industry i ∈ [ia, ia] is
given by:
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max
Rij ,pij ,Aij ,{lij(r)}r∈Rij

pijxij −
∫
r∈Rij

wrlij(r)dr − waAij

s.t.

xij =
∫
r∈Rij

κ(r)lij(r)dr + Aij,

xij = xdij =
(
pij
pi

)−σ (
pi
P

)−σ
C,

r ≥ τij ∀ r ∈ Rij,

Rij ⊆ R.

As firms in each industry i remain symmetric and each industry comprises a unit mass
of firms, we may continue to consider one representative firm per industry i. Since AI’s
productivity is normalized to one, the cost of producing a marginal unit of output with
AI is wa, compared to wr

κ(r) when human labor is employed, where wr

κ(r) = ωi ∀ r ∈ Ri.
Based on this comparison, we can distinguish three cases regarding the use of AI in
industries i ∈ [ia, ia]:

1. If wa > ωi, the representative firm does not rent AI, and we find Ai = 0.

2. If wa < ωi, the firm does not employ any workers, i.e., l̃i = 0.

3. If wa = ωi, the firm is indifferent between hiring labor and renting AI. We assume
that firms hire all available labor in this case and satisfy any additional consumer
demand by renting AI.

The profit maximization problem for firms in industries k /∈ [ia, ia] remains as defined
in (9), and we impose Ak = 0. A full formal derivation of the AI-augmented model
and its solution is provided in Appendix G.

6.2 Two Scenarios for the Transition to AI

In the following, we present a baseline labor market setting and then introduce AI to
examine its effects on wages and employment under two scenarios. In both scenarios,
we fix the AI rental rate at wa = 0.5, which is lower than the smallest scaling factor
ω1 = 1 observed in any labor market without AI. This implies that AI will always
reduce wages in the tasks it is able to perform.
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We assume a task-complexity distribution T = {0.1, 0.5, 0.8, 0.95}, which enables a
detailed analysis of AI’s impact on complexity premia in detail. We distinguish between
a setting in which AI can versus a setting in which AI cannot perform the least complex
task, imposing ia = 1 or ia = 2, respectively. In both scenarios, the most complex task
for which AI can be used is ia = 2. All remaining parameters are calibrated as described
in Section 3.

Before AI is introduced into the model economy, the labor market is locally integrated
across industries 1 and 2 and disintegrated for all further tasks (Figure 10a).

In the scenario in which AI can be rented for the least complex two tasks (Figure 10b),
we observe that wages in these tasks decline from κ(r) to waκ(r). Due to the sufficient
skill condition, workers r < τ3 are trapped in their industries and cannot avoid this
drop in nominal wages. Notably, wages in industries 3 and 4 also decline, as complexity
premia vanish entirely in industry 3 and decrease in industry 4. The Gini coefficient of
the wage distribution increases from 0.40 to 0.51, indicating a rise in wage inequality
driven by the drop in wages for tasks 1 and 2.

If AI cannot perform task 1 but can perform task 2 only (Figure 10c), wages for workers
in task 1 still equal their productivity κ(r). Therefore, all workers r < τ3 are attracted
to industry 1, and no human labor is employed in task 2 (consequently, no wages are
depicted for this task). AI now has the opposite effect on complexity premia in tasks 3
and 4, as they increase relative to the pre-AI scenario. The Gini coefficient of the
wage distribution is 0.46 and thus in between its levels in the pre-AI scenario and the
scenario in which AI is used in both task 1 and 2.

Why do complexity premia drop in the first case and rise in the latter relative to the
pre-AI scenario? Ceteris paribus, labor demand in an exclusively human industry de-
creases if wages decrease in a task that can be performed by AI (see equation G.1 in
the Appendix), leading to lower equilibrium complexity premia. The underlying mech-
anism is downward price pressure on the goods market from tasks that are (partially)
performed by AI, which explains the differing complexity premia observed across the
two AI scenarios.

This channel does not, however, explain why complexity premia in the second AI sce-
nario are higher even compared to the pre-AI scenario. This is due to the large supply
of final good 1, resulting from the increased number of workers hired by industry 1
relative to the pre-AI scenario. On the goods market, this higher supply can only
match demand if the relative price of good 1 decreases (see Equation 4). As the price
of good 1 is fixed—industry 1 pays workers according to their productivity ω1 = 1
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and p1 = σ
σ−1ω1—the prices of other goods must rise to establish equilibrium relative

prices. Given constant mark-ups, this requires an increase in ω3 and ω4. Indeed, we
observe that the aggregate price level P is 39 percent higher in the second AI scenario
than in the first.

In the context of price levels, we shall discuss the effects of AI on real wages within
our model. Note that the price level declines in both scenarios, but more significantly
in the setting where AI can perform two tasks, as described in the previous paragraph.
When AI can be used in the two least complex tasks, the reduction in the price level is
insufficient to prevent declining real wages for workers trapped in these two tasks. The
opposite holds for workers in tasks 3 and 4 that cannot be performed by AI—for them,
the decreasing price level outweighs the reduction in complexity premia, resulting in
rising real wages (Figure 10d). In the scenario where AI is limited to task 2, no worker
experiences a decline in nominal wages (Figure 10e). Although the price level in this
case remains higher than in the other AI scenario, it is still lower than before AI’s
introduction, leading to real wage growth across all skill levels—most pronounced in
industries not directly impacted by AI.

Note, however, that even when workers can switch to low-complexity, exclusively hu-
man tasks, real wage growth may not be guaranteed for all workers. We can con-
struct an example with real wage losses for workers r < 0.8 by setting wa sufficiently
high—still assuming that AI can only perform task 2 and keeping all other parameters
constant. In this case, the general price level rises following the introduction of AI, as
complexity premia in industries 3 and 4—and the associated goods prices—increase,
while the drop in the price of final good 2 is insufficient to outweigh this effect. Strik-
ingly, not only reallocated workers who were previously employed in industry 2, but
also those who have worked in industry 1 before, are negatively affected. Real wage
growth across skill levels for a calibration with wa = 0.9 is illustrated in Figure 11.

6.3 Discussion

In the task-complexity model, AI lowers wages in tasks for which it is rented. This may
have no effect on workers’ wages if they can switch to less complex tasks that cannot
be performed by AI. Furthermore, the use of AI might decrease or increase complexity
premia in tasks in which it cannot be used. This ambiguous effect arises from opposing
price effects on the goods market. Across all scenarios, we observe that AI increases
wage inequality relative to the pre-AI baseline scenario, and it may even trigger a drop
in real wages for workers in low-complexity industries.
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Figure 10: The Effect of AI on Wages and Labor Demand in 2 Different Scenarios.

(a) Pre-AI Scenario.

(b) AI Can Perform 2 Least Complex
Tasks.

(c) AI Can Only Perform Task 2.

(d) Real Wage Growth across Skill Lev-
els Relative to Pre-AI Scenario if AI Can
Perform 2 Least Complex Tasks.

(e) Real Wage Growth across Skill Lev-
els Relative to Pre-AI Scenario if AI Can
Only Perform Task 2.
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Figure 11: Real Wage Growth across Skill Levels Relative to Pre-AI Scenario if AI Can
Only Perform Task 2, wa = 0.9.

How do these predictions compare to findings in the existing literature? Our approach
to modeling complexity has been extended by Korinek and Suh (2024) in the version
of their model with heterogeneous worker skills, with the key difference that skilled
labor is never scarce in their framework. As a result, labor in tasks i /∈ [ia, ia]—those
not directly affected by AI—is always paid according to its marginal product, implying
that AI does not influence wages for these workers. In contrast, the task-complexity
model allows for unequal complexity premia across tasks that are not automated by
AI, and this inequality may be either dampened or amplified if AI is used in other
tasks.

In contrast to our model and that of Korinek and Suh (2024), Acemoglu (2025) assumes
that both low- and high-skilled labor can perform any task, with differences arising only
in productivity. Thus, as in Korinek and Suh (2024), labor is never scarce, and there
are no complexity premia. In such a framework, all labor reallocates to tasks that AI
cannot perform, and it is a priori unclear whether wages will grow or shrink due to
AI-based automation. Wage inequality is affected by AI only if it modifies the relative
productivity of skill groups through complementarities—a mechanism that is absent in
our model.

Finally, how realistic are the presented scenarios? Experiments by Shojaee et al. (2025)
demonstrate that AI’s productivity drops to zero once the complexity of the task it
is asked to solve exceeds a certain threshold. Eloundou et al. (2024) show that many,
though not all, tasks included in the O*NET database may be (partially) performed
by AI. We interpret both findings as evidence for ia < ī. At the same time, Felten
et al. (2021) find that tasks AI cannot perform are especially prevalent in “blue-collar
industries that involve manual labor”, supporting ia > 1. In summary, we expect a
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scenario as depicted in Figure 10c to be the most realistic. According to our model,
we therefore expect the reallocation of medium-skill workers to low-complexity tasks
and increasing wage inequality. Real wages of reallocated workers may decrease if AI is
less expensive than human labor but still relatively costly. Potentially, such a setting
could be observed if AI was supplied in an insufficiently competitive environment.

7 Conclusion

We propose a new task-based model, which we call the task-complexity model. In
this framework, the labor force exhibits a continuous skill-level distribution. On the
demand side, there is a finite set of tasks, each associated with a distinct level of task
complexity. Workers whose skill level falls below a task’s complexity cannot be hired
for this task. In such a setting, high-skilled workers receive wage premia exceeding
their marginal productivity if they are sufficiently scarce. We refer to these premia
as complexity premia, and we term a labor market in which they arise a disintegrated
labor market.

We have shown that a calibrated version of the task-complexity model is consistent
with the stylized facts documented by Autor and Dorn (2013) for the period from 1980
to 2005, namely rising wages and employment in both low- and high-complexity tasks.
In our model, wages at the top of the skill distribution increase because high-skilled
labor is scarce and earns a complexity premium. Wages at the bottom rise as relatively
productive medium-skill workers are forced to work in low-complexity tasks as a result
the automation of medium-complexity tasks.

Next, we derived stylized facts for a more recent period up to 2019 and estimated
model parameters to match annual data on occupational wages and skill levels. We
found that labor market disintegration persisted, yet complexity premia have become
less relevant, accounting for up to 43 percent of wages in 2001 and only 19 percent in
2019. Also, labor market disintegration is observed for higher skill levels only in later
years, explaining relatively low wage growth for medium-skilled workers. As during the
earlier automation period beginning in 1980, medium-skill workers were reallocated into
low-complexity tasks. Combined with rising skill levels in the population, this yields a
U-shaped pattern in employment growth across occupations ranked by task complexity.

Finally, we discussed the potential effects of AI within our framework. We assume that,
per unit of output, employing AI is less costly than hiring human labor. Therefore,
its availability exerts downward pressure on wages in the tasks it can perform. In our
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model, the sufficient skill condition prevents workers from switching to high-complexity
tasks in such a case. However, if low-complexity tasks exist that AI cannot perform—a
scenario supported by recent empirical findings—workers may shift toward these tasks.
Nevertheless, wage inequality can be expected to increase, and real wages may decline
for low- and medium-skilled workers.

The framework provides several avenues for extension. First, we have imposed the
simplifying assumption that each industry’s production involves only a single task.
In an extended version of the model, one could allow for production processes—or
even individual jobs—that bundle multiple tasks with varying levels of complexity.
Suppose that a job’s complexity is determined by the most complex task it includes.
If technology automates some tasks but not the most complex one, the job’s overall
complexity would remain unchanged, while productivity and skill premia would rise.
By contrast, if technology automates or simplifies the most complex task in a job’s task
bundle, the job’s complexity and associated complexity premia would decline. Such a
setup could generate a non-monotonic impact of technological progress on wages over
time, a pattern been observed in empirical data (Acemoglu and Autor, 2011; Carneiro
and Lee, 2011).

Second, one could endogenize movements in the skill-level and task-complexity distri-
butions. On the workers’ side, we would expect responses in terms of education and
migration if either skill or complexity premia are sufficiently large. On the firms’ side,
we may assume investments in complexity-reducing technologies if complexity premia
are large, whereas skill premia do not alter firms’ incentives. Furthermore, high com-
plexity premia could even induce market exits of firms in high-complexity industries
and thereby relax the scarcity of high-skilled labor if a fixed cost of production is added
to the model.

Finally, one might extend the setting to encompass more than one dimension of task
complexity along which workers’ skills can be ordered. With multiple dimensions of
task complexity, matching skills to task complexities across these dimensions becomes
essential for the functioning of the labor market. Work by Lise and Postel-Vinay (2020)
demonstrates that both endogenous skill accumulation and multiple skill dimensions
can be incorporated into a job-search model. The integration of these features into the
task-complexity model is a promising direction for future research.
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Appendix

A Derivation of Demand Functions

A.1 Household Demand for Final Good i

To derive the demand of a household r for final good i, we solve the household’s
optimization problem by setting up the Lagrangian

L =
(∑
i∈I

(cri )
σ−1
σ

) σ
σ−1

− λ
(∑
i∈I

pic
r
i − Lrwr − Πr

)
.

We take the derivative with respect to consumption of one final good i:

∂L
∂cri

=
(
cri
Cr

)− 1
σ

− λpi = 0 .

Thus, the ratio of the marginal utilities of consumption of good cri and of good crk must
be proportional to their respective prices

pi
pk

=
(
cri
crk

)− 1
σ

. (A.1)

Using Equation (A.1) and the budget constraint, we can derive the following condition:

cri = p−σi

∑
ĩ∈I

p1−σ
ĩ

−1

(Lrwr + Πr) . (A.2)

Using the price index P :=
(∑

ĩ∈I p
1−σ
ĩ

) 1
1−σ and the fact that the budget constraint

must be binding, i.e., PCr = Lrwr + Πr, we can rewrite the equation as household
demand for good i as a function of P and Cr:

cri =
(
pi
P

)−σ
Cr . (A.3)
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A.2 Demand for Variety ij

We assume that in each industry i a final good producer operates under perfect com-
petition. Its profit maximization problem reads as

max
xij

pixi −
∫ 1

0
pijxijdj

with the corresponding first-order condition

pi
∂xi
∂xij

= pij.

Using (5), we obtain an explicit expression for ∂xi
∂xij

and find

xij =
(
pij
pi

)−σ
xi. (A.4)

Use the market-clearing condition ci = xi and combine (A.4) with (4) to arrive at (7).

B Proofs

B.1 Proof of Proposition 1

We prove the uniqueness of the equilibrium. Using an induction argument, we see
that there are 2|I|−1 possible arrangements of the labor market. For a given set of
industries I, there are |I| − 1 possible locations for jumps of ωi for i ∈ I. Since at
each potential location of a jump there are two possibilities (jump or no jump), there
are 2|I|−1 possible arrangements of the labor market. Examples:

• For |I| = 2, there are 2 potential arrangements, 1× ILM and 1× DLM.

• For |I| = 3, there are 4 potential arrangements, 1× ILM, 2× a single separation,
and 1× a double separation.

• For |I| = 4, there are 8 potential arrangements, 1× ILM, 3× a single separation,
3× a double separation, and 1× three separations.

Next, we use the group notation. We can rewrite the problem as a system of nonlinear
equations. We denote the demand for a group g’s effective labor by L̃dg. Using (16),
(18), and (17), we can derive L̃dg = ∑

i∈g l̃i, which is
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L̃dg =ω−σg

∑
ĝ∈G

∑
i∈ĝ

ω1−σ
i

−1 ∑
ĝ∈G

∑
i∈ĝ

ωiL̃
∆
i

=ω−σg

∑
ĝ∈G

ω1−σ
ĝ

−1 ∑
ĝ∈G

ωĝ
∑
i∈ĝ

L̃∆
i .

We denote L̃∆
g = ∑

i∈g L̃
∆
i (this is the effective labor supply in group g). Using this, we

rewrite the demand for group g’s effective labor,

L̃dg =ω−σg

∑
ĝ∈G

ω1−σ
ĝ

−1 ∑
ĝ∈G

ωĝL̃
∆
ĝ . (B.1)

In equilibrium, for each group the labor market must clear, i.e., L̃dg = L̃∆
g . Thus,

1 =
ω1−σ
g∑

ĝ∈G ω
1−σ
ĝ

∑
ĝ∈G ωĝL̃

∆
ĝ

ωgL̃∆
g

. (B.2)

Accordingly, we need to find a solution to system (B.2) with a number of |G| unknowns
under the constraint given in (19), i.e. ωg+1 > ωg ∀ g ∈ G. Without loss of generality,
we can normalize ωg1 ≡ 1. Furthermore, for each group g it can be shown that the
partials for the demand for a group’s effective labor, denoted by L̃dg, fulfill the following
properties in the auxiliary Lemma 1:

Lemma 1
The partial derivatives with respect to scaling factors for a group’s effective labor
demand are

∂L̃dg
∂ωg

< 0 for |G| ≥ 2 and
∂L̃dg
∂ωg

= 0 for |G| = 1, (B.3)

∂L̃dg
∂ωĝ

=
∂L̃dg
∂ωg′

L̃∆
ĝ

L̃∆
g′
> 0 ∀ĝ, g′ ∈ G \ g, (B.4)

A proof is given in Section B.2. Lemma 1 implies that groups are gross substitutes.
Furthermore, (B.2) is homogeneous of degree 0 in wages, and Walras’ Law holds. Thus,
the system is equivalent to a demand system with fixed supply.

The proof of Proposition 1 now proceeds in three steps. First, we show that for each
group structure G the system described in (B.2) has a unique solution. Since there
are 2|I|−1 group structures, there are 2|I|−1 potential solutions. Second, using (19)
we show that all potential solutions are mutually exclusive, i.e., only one can qualify
as an equilibrium solution for the wage scheme. Third, we show that there exists an
equilibrium solution which, given Step 2, must be unique.
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Step 1: Unique solution for given G ′

EXISTENCE: An economy with a group structure G ′ can be interpreted as a pure
exchange economy with |G ′| goods and |G ′| agents, where there is a demand for labor
and a given labor supply. Then the aggregate excess demand can be denoted by

z(~ω) =
∑
g∈G′

(
L̃dg(~ω, ωgL̃∆

g )− L̃∆
g

)
≡ 0 ,

where ~ω denotes the vector of scaling factors. Since preferences are described by CES
utiliy functions, demand functions are continuous, and we can define continuous func-
tions sg(~ω),

sg(~ω) = ωg + max {0, zg(~ω)}
1 +∑

ĝ∈G′ max {0, zĝ(~ω)} ∀ g ∈ G
′ ,

where zg(~ω) is defined as zg(~ω) = L̃dg(~ω, ωgL̃∆
g ) − L̃∆

g . Then, by using Kakutani’s
fixed-point theorem (see Proposition 17.C.1 in Mas-Colell et al. (1995), applied to a
sufficiently large compact and convex set in R|G| that contains all feasible vectors ~ω),
there exists ~ω? with ~ω? = s(~ω?). This implies

zg(~ω?) =L̃dg(~ω?, ω?gL̃∆
g )− L̃∆

g = 0 ∀ g ∈ G ′.

Thus, ~ω? is a price vector solution for the economy with a group structure G ′ that
satisfies the equilibrium condition (B.2).1

UNIQUENESS: Partial derivatives expressed in (B.4) and (B.3) show that group labor
demand are gross substitutes. Thus the solution of (B.2) for a given group structure
G is unique.

NUMBER OF SOLUTIONS: There are 2|I|−1 ways to build a group structure, and
for every particular group structure G ′ there is a unique solution. Thus there must be
2|I|−1 unique solutions.

Step 2: Mutually exclusive solution
1If |G′| = 3, for example, market clearing is given by

L̃dg1,g1
(~ω?, ω?g1

L̃∆
g1

) + L̃dg1,g2
(~ω?, ω?g2

L̃∆
g2

) + L̃dg1,g3
(~ω?, ω?g3

L̃∆
g3

)− L̃∆
g1

=0 ,
L̃dg2,g1

(~ω?, ω?g1
L̃∆
g1

) + L̃dg2,g2
(~ω?, ω?g2

L̃∆
g2

) + L̃dg2,g3
(~ω?, ω?g3

L̃∆
g3

)− L̃∆
g2

=0 ,
L̃dg3,g1

(~ω?, ω?g1
L̃∆
g1

) + L̃dg3,g2
(~ω?, ω?g2

L̃∆
g2

) + L̃dg3,g3
(~ω?, ω?g3

L̃∆
g3

)− L̃∆
g3

=0 ,

where L̃dg2,g1
(~ω?, ω?g1

L̃∆
g1

) := ω?g2
−σI cg2

(∑
g∈G ω

?
g

1−σI

)−1
ω?g1

L̃∆
g1

denotes the demand of group g2 from
group g1.
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Given a set of task complexities I, we show that Inequality (19) implies that potential
solutions are mutually exclusive.

From Proposition 2 we know that effective labor demand from a representative firm,
price indices, and total wages are

l̃i = ω?i
−σ∑

ĩ∈I

(
ω?
ĩ

)1−σκ(1)−1TW ? (B.5)

p?i = σ

σ − 1ω
?
i (B.6)

P ? = σ

σ − 1

(∑
i∈I

(ω?i )
1−σ

) 1
1−σ

P ?C? = σ

σ − 1TW
? .

Rearrange the price indices and plug them into Equation (B.5) to obtain

l̃i = σ

σ − 1κ(1)−1
(
p?i
P ?

)−σ TW ?

P ?
.

Substituting for total wages yields

l̃i =κ(1)−1
(
p?i
P ?

)−σ
C? . (B.7)

We first note that since production is linear in labor, and the labor market clears, the
total amount of effective labor employed is constant, no matter how it is allocated
across industries and groups. We define two group structures: Ga = {ga1 , ga2 , ...}, Gb ={
gb1, g

b
2, ...

}
, where Ga 6= Gb.

We need to analyze two cases:

• CROSSING: Assume that there are two group structures—Ga and Gb—as de-
picted in Figure 12, i.e., their wage schemes cross at i = 3. We observe that
ωa1 = ωb1 = 1 and that ωa2 > ωb2. Then, Ga implies that l̃a1 = L̃∆

1 , and Gb im-
plies that l̃b1 ≥ L̃∆

1 , i.e., the demand for effective labor from representative firm
1 is greater than or equal to the supply of low-skilled effective labor in group
structure b. Thus, higher skill levels (with r ≥ τ̃1 and r < τ2) may also work
in firm 1. With Gb, the labor market is locally integrated and i = 1, 2 form the
group gb1 ∈ Gb. Now, Ga also implies that l̃a2 ≥ L̃∆

2 and Gb implies that l̃b2 ≤ L̃∆
2 .

To see that crossing cannot be a solution, note that:
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Figure 12: Crossing

i1 2 3

ωi

0

ω1 := 1

ωa2

ωb3

Ga

Gb

i. l̃a1 ≤ l̃b1 and Equation (B.7) imply that
(
pa1
Pa

)−σ
Ca ≤

(
pb1
P b

)−σ
Cb.

ii. l̃a2 ≥ l̃b2 and Equation (B.7) imply that
(
pa2
Pa

)−σ
Ca ≥

(
pb2
P b

)−σI
Cb.

iii. Now, pa1 = pb1 (as ωa1 = ωb1 = 1) implies CaP aσ ≤ CbP bσ through (i).

iv. Then, as CaP aσ ≤ CbP bσ, it must be the case that pa2−σ ≥ pb2
−σ (see (ii)).

v. As pa2−σ ≥ pb2
−σ, it must be the case that ωa2 ≤ ωb2, given price index pi in

equilibrium (B.6).

This contradicts ωa2 > ωb2.

• DOMINANCE: Assume now that the two group structures Ga and Gb correspond
to Figure 13. Again, Ga implies that l̃a1 = L̃∆

1 , and Gb implies that l̃b1 ≥ L̃∆
1 .

Thus, with Gb, the labor market is locally integrated from i = 1 to i = 2 (forming
group gb1 ∈ Gb), and we can use the same rationale as above (see CROSSING) to
conclude that ωa2 ≤ ωb2.

This, again, contradicts ωa2 > ωb2.

Thus, we have proven that under Condition (19), potential solutions are mutually
exclusive, i.e., there is at most one solution fulfilling Condition (19).
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Figure 13: Dominance
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Step 3: At least one solution

We now show that there must be at least one solution that fulfills Condition (19) and
derive this solution. Use the labor-market clearing condition as given in (13) and plug
in (16): ∑

ĩ≥i

L̃∆
i ≥ κ(1)−1

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C
∑
ĩ≥i

ω−σ
ĩ
. (B.8)

Further, define L̃si := ∑
ĩ≥i L̃

∆
i as the aggregate effective labor satisfying the sufficient

skill condition r ≥ τi. As (B.8) needs to hold with equality for i = 1, we find

κ(1)−1

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C = L̃s1

∑
ĩ

ω−σ
ĩ

−1

,

which can be plugged back into (B.8). Now, we have derived a version of the LMCC
that only depends on labor supply satisfying r ≥ τi relative to total labor supply and
scaling factors:

L̃si ≥
∑
ĩ≥i ω

−σ
ĩ∑

ĩ ω
−σ
ĩ

L̃s1, (B.9)

Let us assume ωi = 1 ∀ i ∈ I. If the labor market is integrated, (B.9) is satisfied and
we have found the solution. If (B.9) is not satisfied, denote the first î for which it is
violated as ib. Then, we observe

L̃sib
L̃s1

<

∑
i∈I:i≥ib ω

−σ
i∑

i∈I ω
−σ
i

.

We now show that ωib can always be adjusted such that the labor market clearing
condition for ib is satisfied again. Note that for all ωi with i > ib Condition (19)
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requiring that ωi is weakly increasing in i is binding. Thus, the above inequality
becomes

L̃sib
L̃s1

<
(̄i+ 1− ib)ω−σib∑

i∈I:i<ib ω
−σ
i + (̄i+ 1− ib)ω−σib

.

Now, we can solve for an ωib such that the inequality becomes an equality. This is
given as

ωib =
 Λib

ī+ 1− ib
∑

i∈I:i<ib
ω−σi

− 1
σ

,

with Λib =
L̃sib

L̃s1−L̃
s
ib

.

After plugging in the solution for all ωi with i ≥ ib, we can search for the next î that
violates (B.9) and apply the same procedure repeatedly until there are no labor market
breaks left.

In sum, we have proven that, given σ > 1, there is one unique solution W? for any set
of task complexities I and skill distribution Lr.

2

B.2 Proof of Lemma 1

We use (B.1). We first prove (B.3), then we prove (B.4).

For |G| ≥ 2, the derivative of (B.1) with respect to its own scaling factor ωg is given
by

∂L̃dg
∂ωg

=ω−σg

∑
ĝ∈G

ω1−σ
ĝ

−1
−σω−1

g

∑
ĝ∈G

ωĝL̃
∆
ĝ + (σ − 1)ω−σg

∑
ĝ∈G

ω1−σ
ĝ

−1 ∑
ĝ∈G

ωĝL̃
∆
ĝ + L̃∆

g

 ,

We now show that the sum of the terms in brackets is negative. We multiply by scaling
factor ωg and divide by ∑ĝ∈G ωĝL̃

∆
ĝ to obtain

− σ + (σ − 1)
ω1−σ
g∑

ĝ∈G ω
1−σ
ĝ

+
ωgL̃

∆
g∑

ĝ∈G ωĝL̃
∆
ĝ

=σ
(

ω1−σ
g∑

ĝ∈G ω
1−σ
ĝ

− 1
)
−

ω1−σ
g∑

ĝ∈G ω
1−σ
ĝ

+
ωgL̃

∆
g∑

ĝ∈G ωĝL̃
∆
ĝ

.

From (B.2) we know that − ω1−σ
g∑

ĝ∈G ω
1−σ
ĝ

+ ωgL̃∆
g∑

ĝ∈G ωĝL̃
∆
ĝ

= 0. Observe that σ > 0 and that,

as ωgL̃∆
g∑

ĝ∈G ωĝL̃
∆
ĝ

< 1, ω1−σ
g∑

ĝ∈G γĝω
1−σ
ĝ

− 1 < 0. Thus, we have proven that ∂L̃dg
∂ωg

< 0.
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The derivative of (B.1) with respect to some scaling factor ωg′ (g′ 6= g) is given by

∂L̃dg
∂ωg′

=ω−σg

∑
ĝ∈G

ω1−σ
ĝ

−1
(σ − 1)ω−σg′

∑
ĝ∈G

ω1−σ
ĝ

−1 ∑
ĝ∈G

ωĝL̃
∆
ĝ + L̃∆

g′

 > 0 .

Thus we have proven that ∂L̃dg
∂ωg′

> 0.

2

C Solution Algorithm

In Appendix B.1, we proved that there exists a unique solution in the task-complexity
model. In this section, we present the solution algorithm that we apply to determine
this solution.

When proving the existence of the solution, we have already proposed a method for
determining scaling factor ωib when ib is the index of a labor market break. This
method is based on verifying the satisfaction of the labor market clearing condition
(LMCC) for each industry and repeatedly increasing scaling factors if necessary. The
algorithm introduced in this section is fast as it omits the sequential checking of the
LMCC for each industry. Instead, it computes solutions for all possible labor market
arrangements first and then drops solutions that violate the LMCC or Condition 19.

Starting with (B.9) and defining Λi ≡ L̃si
L̃s1−L̃

s
i

, we find

ωi ≥

Λi

∑
ĩ<i

ω−σ
ĩ
−
∑
ĩ>i

ω−σ
ĩ

− 1
σ

.

Define the right-hand side as

Ωi

(
ωĩ∈I\i

)
:=
Λi

∑
ĩ<i

ω−σ
ĩ
−
∑
ĩ>i

ω−σ
ĩ

− 1
σ

. (C.1)

If we also impose Condition (19) and normalize ω1 = 1, we obtain

ωi =

1 for i = 1,
max {ωi−1,Ωi} for i > 1.

(C.2)

This holds with equality, as ωi > Ωi > ωi−1 would imply a labor market break despite
the lack of excess demand.

We can now solve the model by applying the following procedure:
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Table 2: All Possible Labor Market Arrangements in a Model with 3 Industries.

Arrangement 1 2 3 4
ω1 1 1 1 1
ω2 1 1 Ω2 (1) Ω2 (1)
ω3 1 Ω3 (1, 1) Ω2 (1) Ω3 (1,Ω2 (1))

1. List all possible 2|I|−1 labor market arrangements.

2. Determine each ωi for all arrangements by either setting ωi = ωi−1 or by com-
puting Ωi

(
ωĩ∈I\i

)
.

In Table 2, we present all possible labor market arrangements for |I| = 3 as an
example. For arrangement 2, computing Ω3 is straightforward as ω1 and ω2 are
known and equal to one. For the two remaining arrangements, we can replace
ω3 in Ω2

(
ωĩ∈I\2

)
either by Ω2 (arrangement 3) or Ω3 (arrangement 4) such that

we are left with Ω2 (ω1). In cases with more industries and arrangements, we can
repeat this substitution until we have an expression for Ωi that depends on ωĩ<i
only. In general, it reads as

Ωi =
 Λi − Λib+

(ib+ − i)(1 + Λib+)
∑
ĩ<i

ω−σ
ĩ

− 1
σ

, (C.3)

where ib+ is the index of the next scaling factor break. If there are no further
breaks, we set ib+ = |I| + 1 and Λib+ = 0. Starting from i = 2, we can straight-
forwardly compute all Ωi since Ωi depends on ωĩ with ĩ < i only.

3. Delete the labor market arrangements for which at least one ωi violates (19), i.e.,
where there is some i such that ωi < ωi−1.

4. Check which of the remaining solution candidates satisfies the labor market clear-
ing condition (B.9). The uniqueness of the solution has already been proven.

D Robustness of the Stylized Facts Replication in
Section 4

To compute changes in employment and wages across complexities in Figures 4a and
4b, we relied on Assumption 2. It states that, for each representative firm i, Ri is an
interval and the firm hires all available labor with skill level r ∈ Ri, i.e., li(r) = Lr and
l̃i(r) = 0 ∀ ĩ 6= i. Effectively, this means that, given l̃1 and the sufficient skill condition,
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Figure 14: Alternative Labor Demand Schemes.

(a) ILM Labor Demand Scheme as Shown
in Section 4 (Figure 4a).

(b) Alternative ILM Labor Demand
Scheme.

(c) DLM Labor Demand Scheme as Shown
in Section 4 (Figure 4b).

(d) Alternative DLM Labor Demand
Scheme.

the average skill level employed in representative firm 1 is minimized, followed by a
minimization of the average skill level in firm 2 and subsequent firms.

In what follows, we continue to assume that each representative firm hires all available
labor with skill level r ∈ Ri, i.e., li(r) = Lr. However, we drop the assumption that Ri

is a single interval. Instead of minimizing the average skill level per firm, starting with
the least complex task, we maximize it. This means that firm 1 still hires all labor up
to τ2, as no other firm can employ these workers. But after that, it switches to hiring
the most productive available workers. “Available” in this sense means that firm 1 can
hire them without causing excess labor demand for another firm. The same procedure
applies for firm 2, then firm 3, and so on. As a result, Ri may be a union of intervals
instead of a single one. In Figure 14, we compare the resulting allocation of skills to
firms under this alternative rule to the outcome under Assumption 2.
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Figure 15: Employment and Wage Growth over Task Complexities Given an Alterna-
tive Labor Demand Scheme.

(a) Employment Growth Computed in
Section 4 (Figure 4c).

(b) Employment Growth Given the Alter-
native Labor Demand Scheme.

(c) Wage Growth Computed in Section 4
(Figure 4d).

(d) Wage Growth Given the Alternative
Labor Demand Scheme.

Again, we compute employment and wage growth across three complexity groups from
the pre- to the post-automation scenario, where medium-complexity tasks are defined
as those with task-complexities τi ∈ [0.33, 0.67]. In Figure 15, we compare the results
to those shown in Section 4. We find that they are qualitatively equivalent, with a
U-shaped pattern of employment and wage growth across complexities. Thus, the
robustness analysis confirms that the model’s ability to replicate the stylized facts
observed by Autor and Dorn (2013) does not hinge on Assumption 2 but sustains even
under the opposite allocation rule.
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E Data and Estimation

E.1 Construction of the Task-Complexity Variable

The task-complexity variable used for the estimation of our model is constructed as the
sum of six indicators from the “Work Activities” table given in the O*NET database,
version 28.3. These indicators are:

1. analyzing data or information (4.A.2.a.4),

2. thinking creatively (4.A.2.b.2),

3. interpreting the meaning of information for others (4.A.4.a.1),

4. establishing and maintaining interpersonal relationships (4.A.4.a.4),

5. guiding, directing, and motivating subordinates (4.A.4.b.4),

6. coaching and developing others (4.A.4.b.5).

The first three indicators in this list are used by Acemoglu and Autor (2011) as a
composite measure for analytical non-routine cognitive tasks, while the remaining three
serve as a measure for interpersonal non-routine cognitive tasks. The measure for
analytical non-routine cognitive tasks is also adopted by Braxton et al. (2023). We
sum the level scores for all six indicators to construct our task-complexity variable.

As the scale for each original indicator ranges from 0 to 7, the total score goes from 0
to 42 for each occupation. We divide the score by 42 to normalize the variable to the
domain [0, 1].

E.2 Plots of Estimated Wage Schemes and Complexity Pre-
mia for 2001–2019

Figure 16 displays estimated wage schemes, estimated complexity premia, and observed
occupational wages in 2001 prices. The underlying parameter values for the skill-level
distribution, task-complexity distribution, and productivity are given in Table 1.

F Robustness of the Estimation

We assess the robustness of the estimation results presented in Table 1 by varying
two parameters. First, we vary the number of industries (or, equivalently, tasks) in the
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Figure 16: Estimated Wage Schemes and Observed Wages across Skills, 2001–2019.

(a) 2001. (b) 2002.

(c) 2003. (d) 2004.
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(e) 2005. (f) 2006.

(g) 2007. (h) 2008.

(i) 2009. (j) 2010.

(k) 2011. (l) 2012.
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(m) 2013. (n) 2014.

(o) 2015. (p) 2016.

(q) 2017. (r) 2018.

(s) 2019.
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economy. Second, we retrieve additional moments of the occupational wage distribution
from the OEWS data to match skills to wages.

Estimation results for different numbers of industries in the economy are reported in
Tables 3 to 5. Recall that the complexity of each task i is determined as the 100 · i−1

|T | th
percentile of an estimated beta distribution, and that |T | was set to 10 in the main
body. In our robustness exercise, we additionally test |T | = 8, 12, 15. Estimation
results for these values of |T | confirm three trends identified in the main body.

First, productivity has become more convex in the skill level, as the q parameter
has increased over the years. Second, tasks have become more complex on average,
measured by the mean of the task-complexity distribution µτ . Additionally, tasks
are more concentrated in the high-complexity region as στ has declined. Third, the
average skill level in the labor force µL has increased as well, without a clear trend in
the dispersion of skill levels, captured by σL. Results are less stable only for the case
of twelve tasks in years 2018 and 2019.

In a second analysis, we vary the occupational hourly wage percentile used to map
skills to wages. Recall that we assumed that the skill level of the least-paid worker
in an occupation to matches the occupational task complexity. As we observe the
occupational task complexity in the O*NET database, this assumption allows us to
establish a relationship between skills and wages. Finally, matching this relationship
was the objective when estimating the skill-level and task-complexity distribution, as
well as parameter q, which determines the convexity of productivity in skill.

As the OEWS data do not include the wage of the least-paid worker in each occupation
but only the 10th percentile of the hourly wage distribution, we proceeded with this
percentile, arguing that it may at least exclude outliers resulting from measurement
errors or mechanisms not captured by our model. Still, one may argue that using the
10th percentile specifically is arbitrary. We address this critique by switching from the
10th percentile to the 25th percentile (Table 6) and 50th percentile (Table 7) of the
hourly wage distribution, which are the next two moments observed in OEWS. Com-
paring the robustness results to those of the original estimation presented in Table 1, we
observe no significant differences for the trends in productivity, the skill-level distribu-
tion, or the task-complexity distribution. Thus, we are confident that our conclusions
do not hinge on using a specific percentile of the wage distribution.
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Table 3: Robustness Results for 8 Industries.

Parameters Distribution Moments
Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 12.00 12.00 4.00 3.00 0.40 0.50 0.50 0.10 0.54 0.56 0.10
2002 12.00 12.00 4.00 3.00 0.40 0.50 0.50 0.10 0.54 0.56 0.10
2003 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2004 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2005 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2006 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2007 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2008 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2009 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2010 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2011 6.00 3.00 14.00 3.00 0.60 0.67 0.71 0.15 0.69 0.71 0.05
2012 6.00 3.00 16.00 4.00 0.50 0.67 0.71 0.15 0.67 0.69 0.05
2013 6.00 3.00 16.00 4.00 0.50 0.67 0.71 0.15 0.67 0.69 0.05
2014 6.00 3.00 16.00 4.00 0.50 0.67 0.71 0.15 0.67 0.69 0.05
2015 8.00 4.00 16.00 4.00 0.50 0.67 0.70 0.13 0.67 0.69 0.05
2016 8.00 4.00 16.00 4.00 0.50 0.67 0.70 0.13 0.67 0.69 0.05
2017 8.00 4.00 16.00 4.00 0.50 0.67 0.70 0.13 0.67 0.69 0.05
2018 8.00 4.00 16.00 4.00 0.50 0.67 0.70 0.13 0.67 0.69 0.05
2019 16.00 8.00 16.00 4.00 0.60 0.67 0.68 0.09 0.67 0.69 0.05
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Table 4: Robustness Results for 12 Industries.

Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 16.00 14.00 6.00 3.00 0.20 0.53 0.54 0.09 0.60 0.62 0.09
2002 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2003 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2004 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2005 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2006 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2007 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2008 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2009 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09
2010 16.00 14.00 6.00 3.00 0.10 0.53 0.54 0.09 0.60 0.62 0.09
2011 4.00 1.50 16.00 3.00 0.60 0.73 0.86 0.17 0.70 0.72 0.05
2012 8.00 4.00 10.00 2.00 0.50 0.67 0.70 0.13 0.69 0.73 0.06
2013 4.00 1.50 18.00 4.00 0.60 0.73 0.86 0.17 0.68 0.70 0.05
2014 4.00 1.50 18.00 4.00 0.50 0.73 0.86 0.17 0.68 0.70 0.05
2015 4.00 1.50 18.00 4.00 0.50 0.73 0.86 0.17 0.68 0.70 0.05
2016 4.00 1.50 18.00 4.00 0.50 0.73 0.86 0.17 0.68 0.70 0.05
2017 4.00 1.50 10.00 2.00 0.50 0.73 0.86 0.17 0.69 0.73 0.06
2018 14.00 12.00 6.00 3.00 0.10 0.54 0.54 0.10 0.60 0.62 0.09
2019 14.00 12.00 6.00 3.00 0.20 0.54 0.54 0.10 0.60 0.62 0.09

Table 5: Robustness Results for 15 Industries.

Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2002 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2003 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2004 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2005 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2006 10.00 8.00 4.00 1.50 0.30 0.56 0.56 0.11 0.63 0.71 0.10
2007 10.00 4.00 16.00 3.00 0.60 0.71 0.75 0.12 0.70 0.72 0.05
2008 10.00 4.00 16.00 3.00 0.60 0.71 0.75 0.12 0.70 0.72 0.05
2009 10.00 4.00 16.00 3.00 0.60 0.71 0.75 0.12 0.70 0.72 0.05
2010 10.00 4.00 16.00 3.00 0.60 0.71 0.75 0.12 0.70 0.72 0.05
2011 4.00 1.50 16.00 3.00 0.50 0.73 0.86 0.17 0.70 0.72 0.05
2012 4.00 1.50 10.00 1.50 0.50 0.73 0.86 0.17 0.71 0.76 0.06
2013 4.00 1.50 12.00 2.00 0.50 0.73 0.86 0.17 0.71 0.74 0.05
2014 4.00 1.50 12.00 2.00 0.50 0.73 0.86 0.17 0.71 0.74 0.05
2015 8.00 3.00 12.00 2.00 0.50 0.73 0.78 0.13 0.71 0.74 0.05
2016 8.00 3.00 12.00 2.00 0.50 0.73 0.78 0.13 0.71 0.74 0.05
2017 8.00 3.00 12.00 2.00 0.50 0.73 0.78 0.13 0.71 0.74 0.05
2018 8.00 3.00 12.00 2.00 0.50 0.73 0.78 0.13 0.71 0.74 0.05
2019 8.00 3.00 12.00 2.00 0.60 0.73 0.78 0.13 0.71 0.74 0.05
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Table 6: Robustness Results for the 25th Hourly Wage Percentile.

Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 16.00 14.00 6.00 3.00 0.30 0.53 0.54 0.09 0.60 0.62 0.09
2002 16.00 14.00 6.00 3.00 0.30 0.53 0.54 0.09 0.60 0.62 0.09
2003 16.00 14.00 6.00 3.00 0.30 0.53 0.54 0.09 0.60 0.62 0.09
2004 14.00 12.00 6.00 3.00 0.30 0.54 0.54 0.10 0.60 0.62 0.09
2005 14.00 12.00 6.00 3.00 0.40 0.54 0.54 0.10 0.60 0.62 0.09
2006 14.00 12.00 6.00 3.00 0.40 0.54 0.54 0.10 0.60 0.62 0.09
2007 14.00 12.00 6.00 3.00 0.40 0.54 0.54 0.10 0.60 0.62 0.09
2008 6.00 3.00 14.00 3.00 0.70 0.67 0.71 0.15 0.69 0.71 0.05
2009 6.00 3.00 14.00 3.00 0.70 0.67 0.71 0.15 0.69 0.71 0.05
2010 8.00 4.00 14.00 3.00 0.70 0.67 0.70 0.13 0.69 0.71 0.05
2011 6.00 3.00 14.00 3.00 0.70 0.67 0.71 0.15 0.69 0.71 0.05
2012 6.00 3.00 14.00 3.00 0.70 0.67 0.71 0.15 0.69 0.71 0.05
2013 6.00 3.00 14.00 3.00 0.70 0.67 0.71 0.15 0.69 0.71 0.05
2014 8.00 4.00 14.00 3.00 0.70 0.67 0.70 0.13 0.69 0.71 0.05
2015 8.00 4.00 14.00 3.00 0.70 0.67 0.70 0.13 0.69 0.71 0.05
2016 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2017 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2018 8.00 4.00 14.00 3.00 0.60 0.67 0.70 0.13 0.69 0.71 0.05
2019 8.00 4.00 14.00 3.00 0.70 0.67 0.70 0.13 0.69 0.71 0.05

Table 7: Robustness Results for the 50th Hourly Wage Percentile.

Year αL βL ατ βτ q µL modeL σL µτ modeτ στ

2001 12.00 12.00 4.00 2.00 0.20 0.50 0.50 0.10 0.60 0.64 0.10
2002 12.00 12.00 4.00 2.00 0.20 0.50 0.50 0.10 0.60 0.64 0.10
2003 12.00 12.00 4.00 2.00 0.20 0.50 0.50 0.10 0.60 0.64 0.10
2004 12.00 12.00 4.00 2.00 0.20 0.50 0.50 0.10 0.60 0.64 0.10
2005 12.00 12.00 4.00 2.00 0.30 0.50 0.50 0.10 0.60 0.64 0.10
2006 12.00 12.00 4.00 2.00 0.30 0.50 0.50 0.10 0.60 0.64 0.10
2007 14.00 12.00 6.00 3.00 0.50 0.54 0.54 0.10 0.60 0.62 0.09
2008 16.00 14.00 6.00 3.00 0.50 0.53 0.54 0.09 0.60 0.62 0.09
2009 16.00 14.00 6.00 3.00 0.50 0.53 0.54 0.09 0.60 0.62 0.09
2010 16.00 14.00 6.00 3.00 0.50 0.53 0.54 0.09 0.60 0.62 0.09
2011 6.00 3.00 14.00 3.00 0.90 0.67 0.71 0.15 0.69 0.71 0.05
2012 6.00 3.00 14.00 3.00 0.90 0.67 0.71 0.15 0.69 0.71 0.05
2013 6.00 3.00 14.00 3.00 0.90 0.67 0.71 0.15 0.69 0.71 0.05
2014 6.00 3.00 14.00 3.00 0.90 0.67 0.71 0.15 0.69 0.71 0.05
2015 6.00 3.00 14.00 3.00 0.80 0.67 0.71 0.15 0.69 0.71 0.05
2016 6.00 3.00 14.00 3.00 0.80 0.67 0.71 0.15 0.69 0.71 0.05
2017 6.00 3.00 14.00 3.00 0.80 0.67 0.71 0.15 0.69 0.71 0.05
2018 8.00 4.00 14.00 3.00 0.80 0.67 0.70 0.13 0.69 0.71 0.05
2019 8.00 4.00 14.00 3.00 0.80 0.67 0.70 0.13 0.69 0.71 0.05
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G Solving the AI-Augmented Task-Complexity Model

G.1 Formal Derivation of the Model

As outlined in the main body, AI can perform tasks i ∈ [ia, ia], and its productivity is
normalized to one. There is an infinite supply of AI at rental rate wa. Here, we only
provide the solution for the case wa < 1, which is consistent with the calibration in the
main body. A representative firm i’s demand for AI is denoted by Ai.

In what follows, we first go through the necessary amendments to the model equations
summarized in Section 2. We then introduce the required adaptations to the solution
algorithm presented in Appendix C.

The goods market clearing condition now reads:

ci = xi = κ(1)l̃i + Ai

⇔ l̃i = κ(1)−1(ci − Ai)

for any i ∈ [ia, ia].

To solve the model, we introduce Assumption 3:

Assumption 3 (Allocation of Skills in the Presence of AI)
No labor allocates to tasks i ∈ [ia, ia] if ia > 1.

If ia = 1, labor with r ≥ τia+1 does not allocate to tasks i ∈ [ia, ia].

Intuitively, this assumption reflects the preference of workers to not be employed in
an industry which only pays wage waκ(r), with wa < 1, if they are skilled enough to
work in another industry i paying ωiκ(r) with ωi ≥ 1. If ia > 1, workers with skill
level r ∈ [τia , τia) prefer to “flee” to low-complexity tasks i < ia. In practice, this
could mean that medium-skilled workers move from medium-complexity office jobs to
manual work that cannot be carried out by AI. If ia = 1, there are no exclusively
human low-complexity jobs left, such that any worker with r < τia+1 works in tasks
with wage waκ(r).

Further, we assume that in case ia = 1 representative firms i ∈ [ia, ia] hire all skill
levels r ∈ [τi, τi+1), i.e., L̃∆

i . This assumption is needed to solve for specific l̃i and Ai

for i ∈ [ia, ia] but not otherwise.
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With these assumptions, effective labor demand (16) becomes

l̃i =


L̃∆
i for i ∈ [ia, ia] if ia = 1,

0 for i ∈ [ia, ia] if ia > 1,
κ(1)−1ω−σi

(∑
ĩ∈I ω

1−σ
ĩ

) σ
1−σ C for i /∈ [ia, ia].

(G.1)

In all cases, Ai follows as the residual of output produced by labor and consumer
demand:

Ai = ci − κ(1)l̃i. (G.2)

Using (15), we can write ci in (G.2) as a function of C and scaling factors.

We can solve for C in (G.1) and (G.2) using total wages TW . Use (G.1) to obtain

TW = κ(1)
∑
i

ωil̃i

=


wa
(
L̃sia − L̃sia+1

)
+

ī∑
ĩ=ia+1

ω1−σ
ĩ

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C if ia = 1,

∑
ĩ /∈[ia,ia]

ω1−σ
ĩ

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C if ia > 1.

⇔ C =



(
TW − wa

(
L̃sia − L̃sia+1

)) (∑
ĩ ω

1−σ
ĩ

) σ
σ−1∑ī

ĩ=ia+1 ω
1−σ
ĩ

if ia = 1,

TW
(∑

ĩ ω
1−σ
ĩ

) σ
σ−1∑

ĩ /∈[ia,ia] ω
1−σ
ĩ

if ia > 1.

Here, we used L̃si := ∑
ĩ≥i L̃

∆
ĩ

=
∫ 1
τi
κ(r)
κ(1)L

rdr as defined in Appendix B. Now, we have
obtained C as a function of TW and the scaling factors. TW can be computed as

TW =

κ(1)∑i∈I ωiL̃
∆
i if ia = 1,

κ(1)
(∑

i/∈[ia,ia] ωiL̃
∆
i + ωia−1

∑
i∈[ia,ia] L̃

∆
i

)
if ia > 1.

The expression for case ia > 1 follows from Assumption 3—no workers will allocate to
tasks i ∈ [ia, ia] that only pay waκ(r) if ia > 1.

Knowing C and TW , we have fully derived a solution for l̃i and Ai given the scaling
factor scheme and can characterize the equilibrium.

Proposition 3 (Equilibrium in the AI-Augmented Task-Complexity Model)
The equilibrium in the AI-augmented task-complexity model is characterized by a
group structure G? and by
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(i) W? = {ω?(r)κ(r)}r∈R ,

(ii) R?
i ⊆ {{r ∈ R|r ≥ τi} ∩ {r ∈ R|ω?(r) = ω?i }} ∀ i ∈ I ,

(iii) p?i = σ
σ−1ω

?
i ,

(iv) P ? = σ
σ−1

(∑
i∈I (ω?i )

1−σ
) 1

1−σ ,

(v) TW ? =

κ(1)∑i∈I ω
?
i L̃

∆
i if ia = 1,

κ(1)
(∑

i/∈[ia,ia] ω
?
i L̃

∆
i + ω?ia−1

∑
i∈[ia,ia] L̃

∆
i

)
if ia > 1,

(vi) C? =



(
TW ? − wa

(
L̃sia − L̃sia+1

)) (∑
ĩ

(
ω?
ĩ

)1−σ
) σ
σ−1

∑ī
ĩ=ia+1

(
ω?
ĩ

)1−σ if ia = 1,

TW ?

(∑
ĩ

(
ω?
ĩ

)1−σ
) σ
σ−1

∑
ĩ /∈[ia,ia]

(
ω?
ĩ

)1−σ if ia > 1,

(vii) l̃?i =


L̃si − L̃si+1 for i ∈ [ia, ia] if ia = 1,
0 for i ∈ [ia, ia] if ia > 1,

κ(1)−1 (ω?i )
−σ
(∑

ĩ∈I

(
ω?
ĩ

)1−σ
) σ

1−σ
C? for i /∈ [ia, ia],

(viii) x?i =
(
p?i
P ?

)−σ
C?,

(ix) A?i = x?i − κ(1)l̃?i ,

(x) π?i = ω?i
σ−1x

?
i

G.2 Solution Algorithm in the Presence of AI

Next, we derive the solution to the scaling factor scheme in the AI-augmented task-
complexity model. Let us start with the labor market clearing condition in its general
form (13), using L̃si := ∑

ĩ≥i L̃
∆
ĩ

:

L̃si ≥
∑
ĩ≥i

l̃̃i ∀ i ∈ I. (G.3)

We proceed by distinguishing the cases given in the labor demand scheme (G.1):
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1. Case ia = 1:

By Assumption 3, the labor market clearing condition (LMCC) needs to hold
with equality for i = ia + 1, the least complex task AI cannot perform. Using
(G.1), we find

L̃sia+1 = κ(1)−1 ∑
ĩ≥ia+1

ω−σ
ĩ

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C

⇔ κ(1)−1

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C = L̃sia+1

 ∑
ĩ≥ia+1

ω−σ
ĩ

−1

.

This can be plugged into the LMCC for any i ≥ ia + 1:

L̃si ≥
∑
ĩ≥i ω

−σ
ĩ∑

ĩ≥ia+1 ω
−σ
ĩ

L̃sia+1.

Observe that this is equivalent to (B.9) with index 1 replaced by ia+1. Therefore,
we can follow the steps outlined in Appendix C. Find

ωi =


wa for i ∈ [ia, ia],
1 for i = ia + 1,
max

{
ωi−1,Ωia=1

i

}
for i > ia + 1,

with

Ωia=1
i =

 Λia=1
i − Λia=1

ib+

(ib+ − i)
(
1 + Λia=1

ib+

) ∑
ĩ∈(ia,i)

ω−σ
ĩ

− 1
σ

∀ i > ia,

where Λia=1
i ≡ L̃si

L̃s
ia+1

−L̃si
∀ i ≥ ia + 1.

2. Case ia > 1:

Combining (G.3) and (G.1), we can rewrite the LMCC as

L̃si ≥ κ(1)−1 ∑
ĩ≥i,̃i/∈[ia,ia]

ω−σ
ĩ

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C. (G.4)

Imposing equality for i = 1, we find

κ(1)−1

∑
ĩ

ω1−σ
ĩ

 σ
1−σ

C = L̃s1

 ∑
ĩ≥1,̃i /∈[ia,ia]

ω−σ
ĩ

−1

,
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which can be used in (G.4) to arrive at

L̃si ≥
∑
ĩ≥i,̃i/∈[ia,ia] ω

−σ
ĩ∑

ĩ≥1,̃i /∈[ia,ia] ω
−σ
ĩ

L̃s1.

Observe that this is equivalent to (B.9) with all indices i ∈ [ia, ia] excluded in the
summation terms. Following the steps outlined in Appendix C, we find

ωi =



1 for i = 1,
max

{
ωi−1,Ωia>1

i

}
for i ∈ (1, ia) and for i > ia + 1,

wa for i ∈ [ia, ia],
max

{
ωia−1,Ωia>1

ia+1

}
for i = ia + 1.

with

Ωia>1
i =

 Λi − Λib+

(ib+ − i)
(
1 + Λib+

) ∑
ĩ<i,̃i/∈[ia,ia]

ω−σ
ĩ

− 1
σ

∀ i /∈ [ia, ia].
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