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Bike-sharing systems have become a popular transportation alternative. Unfortunately, station networks are
often unbalanced, with some stations being empty, while others being congested. Given the complexity of the
underlying planning problems to rebalance station inventories via trucks, many mathematical optimizations
models have been proposed, mostly focusing on minimizing the unmet demand. This work explores the
benefits of two alternative objectives, which minimize the deviation from an inventory interval and a target
inventory, respectively. While the concepts of inventory intervals and targets better fit the planning practices
of many system operators, they also naturally introduce a buffer into the station inventory, therefore better
responding to stochastic demand fluctuations. We report on extensive computational experiments, evaluating
the entire pipeline required for an automatized and data-driven rebalancing process: the use of synthetic and
real-world data that relies on varying weather conditions, the prediction of demand and the computation
of inventory intervals and targets, different reoptimization modes throughout the planning horizon, and
an evaluation within a fine-grained simulator. Results allow for unanimous conclusions, indicating that the
proposed approaches reduce unmet demand by up to 34% over classical models.

Rebalancing imbalanced stations has been proven to be more cost-
effective than alternative solutions, such as adding more stations or
installing additional docks (Shu et al., 2013). The development of
effective rebalancing strategies has therefore become a crucial research
field with the potential to significantly improve user satisfaction. Two

1. Introduction

The pursuit of environmentally friendly transportation modes has
increased considerably in the last few years, with Bike-Sharing systems
(BSS) having emerged as a notable choice. As of 2022, there were over
1900 BSSs in operation comprising almost 9 million bikes (O’Brien
et al., 2022), offering cities opportunities to reduce carbon emissions,
traffic relief, and improve the quality of life for their residents (Chumin
et al., 2021).

A particular challenge in the management of BSSs are station imbal-
ances. Most users follow consistent travel patterns, often commuting

primary rebalancing schemes have been acknowledged in the literature:
overnight station rebalancing and intraday rebalancing (Pal and Zhang,
2017; Raviv et al., 2013). The latter is often referred to as the Dy-
namic Bicycle Repositioning Problem (DBRP) (Kloimiillner et al., 2014;
Mellou and Jaillet, 2019). In contrast to overnight rebalancing, the

toward commercial areas (such as city centers) during morning peak
hours and returning to residential zones after work. Such behavior
often results in stations being full or empty, leading to lost demand,
i.e., rental demand that cannot be met due to an empty station or
return demand that cannot be met as a result of a full station. Oc-
casional user trips introduce stochasticity, further aggravating station
imbalances. As a remedy, BSS operators often redistribute bikes among
the stations, typically, via trucks, a process known as rebalancing.

DBRP involves continuous intraday rebalancing operations in parallel
to the user trips occuring throughout the day. Given its higher impact
on demand satisfaction, we here focus on this problem.

While a few recent works use Markov Decision Processes
(Brinkmann et al., 2020; Legros, 2019; Li et al., 2021, 2018; Seo, 2020),
the majority of the literature applies Mixed-integer Programming (MIP)
models (Ghosh et al., 2019; Mellou and Jaillet, 2019; Zhang et al.,
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2017; Zheng et al., 2021), given that they are flexible and widely used
within industrial decision-making processes. Among MIP models, multi-
period models benefit from an integrated planning over all time-periods
and do therefore not suffer from the myopic behavior of single-period
models.

Most models aim at minimizing lost demand or maximizing suc-
cessful trips (Ghosh et al., 2019; Lowalekar et al., 2017; Shui and
Szeto, 2018; You, 2019; Zhang et al., 2017, 2021), with both rental
and return demands estimated either by naive predictions (e.g., the
historical mean) (Ghosh et al., 2015, 2017; Lowalekar et al., 2017;
Zhang et al.,, 2017) or more sophisticated Machine Learning (ML)
techniques (Zamir, 2020; Zhang et al., 2021). However, minimizing
lost demand may result in sub-optimal rebalancing solutions if the
predicted rental and return are not accurate enough. Aiming at an
easily understandable decision-making process that provides robustness
to demand fluctuations, BSS operators, like BIXI Montreal, often use
inventory intervals and target inventories within the rebalancing process.
The inventory interval of a station refers to the range of its inventory
at which it is considered balanced, ensuring that the station maintains
a sufficient level of available bikes and free docks. The target inventory
of a station represents the ideal number of bikes that would ensure
optimal service. At BIXI Montreal, stations that find their inventories
out of the defined interval raise an alert, based on which the operator
may decide to rebalance that station.

While many methods have been proposed to compute inventory
intervals and target inventories (see e.g., Huang et al., 2020; Hulot
et al., 2018; Liu et al., 2016; Raviv and Kolka, 2013), only a few have
incorporated them into optimization models. Notably, most relevant
studies (Gleditsch et al., 2022; Kloimiillner et al., 2014; Schuijbroek
et al.,, 2017) either focus on single-period models or minimize the
deviation of target inventory at the end of the planning process only.
Although Vogel (2016) and Vogel et al. (2014) attempt to introduce
intervals into multi-period models, they relax the intervals by using sta-
tion capacities directly in their experiments. Furthermore, the intervals
and targets in these models are often determined without considering
weather conditions, which significantly impact user behavior. As a
result, the benefits of combining optimization algorithms with intervals
or targets in the objective function for multi-period models are still to
be determined. In a similar vein, while some of the existing models
have been carried out in a rolling fashion (see, e.g., Ghosh et al., 2019;
Gleditsch et al., 2022; Mellou and Jaillet, 2019; Zamir, 2020; Shui and
Szeto, 2018), literature has not yet quantified the benefits of integrating
system status update through reoptimization (i.e., rolling and folding
planning) over classical static planning of multi-period rebalancing
models.

In this paper, we aim at filling a variety of these gaps, specifically:
What are the benefits of using inventory intervals and targets, as
opposed to minimizing lost demand? How does the accuracy of the
demand prediction model impact the quality of the induced rebalancing
decisions? And, what are the benefits of reoptimizing throughout the
planning horizon?

Contributions. Answering the questions above requires the evaluation
of the complete pipeline of an automatized and data-driven rebalancing
process in BSSs. As such, the main contributions can be summarized
as follows. (i) We propose two optimization models that integrate
inventory intervals and target inventories into the objective functions,
concepts that are often already used within the decision-making process
of BSS operators. In contrast to classical models that minimize unmet
demand, the proposed models tend to ensure a buffer in the station
inventories and are therefore more capable of dealing with demand
fluctuations. (ii) We propose a realistic instance generator, generating
varying weather conditions for different days along with trip data
that is historically coherent with such conditions. (iii) We conduct an
extensive comparison among three multi-period models with different
objective functions for DBRP, including the classical objective that min-
imizes unmet demand and the two proposed objectives that minimize
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the deviations from inventory intervals and target inventories. Demand
predictions are obtained from an advanced machine learning model,
capable of making sufficiently accurate predictions based on weather
and temporal features. Inventory and target inventories are computed
such that they maximize the desired service-level. The performance
is estimated by a fine-grained discrete-event simulator. Our models
demonstrate a remarkable robustness to cope with trip fluctuations,
reducing lost demand by up to 34% as compared to the model minimiz-
ing lost demand. (iv) We empirically compare the impact of employing
different reoptimization modes (i.e., static and rolling planning) for all
models. The results indicate a clear advantage of reoptimizing over the
planning horizon, reducing the lost demand by at least 30% on average,
without necessarily increasing the computing time. (iv) We compare
the impact of using perfect information and less accurate demand
predictions on the performance of the planning models. Interestingly,
our proposed optimization models remain remarkably robust. (v) A
case-study on real-world data is considered, confirming the benefits of
the proposed approaches.

Outline. This paper is organized as follows. Section 2 reviews rel-
evant literature on the objective functions used in rebalancing models,
inventory intervals and target inventories, trip prediction, and reopti-
mization modes. Section 3 reviews the baseline model that minimizes
unmet demand and introduces two dynamic rebalancing models mini-
mizing the deviations from inventory intervals and target inventories.
Numerical experiments and analysis on synthetic and real-world data
are presented in Section 4. This is followed by the conclusions in
Section 5.

2. Literature review for rebalancing problems in BSSs

This section reviews the literature related to the here considered
planning problem and our contributions, focusing on the objective
functions used within DBRP models, inventory intervals and targets,
demand prediction, and reoptimization modes.

2.1. Rebalancing models with inventory intervals and targets

We first review existing MIP models and their objective functions
used in dynamic rebalancing. Metrics used in the objective functions
can be classified into three different types (see Appendix of Liang et al.,
2024): distance-based metrics, loading-based metrics, and demand-
based metrics. Distance-based metrics are associated with the traveling
distance of vehicles, mainly including traveling costs, traveling time,
and fuel consumption (see e.g., Akova et al., 2022; Ghosh et al.,
2017; Rainer-Harbach et al., 2015; Zheng et al., 2021). Loading-based
metrics are associated with the number of handling (i.e., loading and
unloading) operations (see e.g., Hu et al., 2021; Tang et al., 2020).
Handling cost or time reflects the workload of operations. Finally,
demand-based metrics concern the dissatisfaction of customers. Some
studies consider more than one aspect in their objective functions (see,
e.g., Ghosh et al., 2015; Hu et al., 2021; Kloimiillner et al., 2014; Mellou
and Jaillet, 2019; Zhang et al., 2021).

We here focus on demand-based metrics, which have been more
relevant in the literature, and to which our contributions are directly
related. The most common approach for demand-based metrics is to
minimize the lost rental and return demand, which is also equivalent
to maximizing successful trips (see e.g., Contardo et al., 2012; Ghosh
et al., 2017, 2019; Hu et al., 2021; Lowalekar et al., 2017; Shui
and Szeto, 2018; You, 2019; Zhang et al., 2017, 2021; Zheng et al.,
2021). Concurrently, there have been a few attempts to minimize the
deviation between the inventories of the stations and their target in-
ventories (Gleditsch et al., 2022; Kloimdtillner et al., 2014) or inventory
intervals (Vogel et al., 2014), which still holds considerable potential
for further exploration. Our work focuses on such inventory intervals
and target inventories, for which the related literature is reviewed next.
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Table 1
Characterization of rebalancing optimization literature incorporating inventory target values or intervals.
Characteristic Paper This
Chemla et al. Chen et al. Gleditsch Kloimiillner Schuijbroek Vogel (2016) work
(2013) (2023) et al. (2022) et al. (2014) et al. (2017)
Planning horizon: multi-period v v v v
Solution approach: optimization model v v v v v v
Target tvpe: Target value v v v v v
get type: Inventory interval v v v
Target implementation: in OF v v v v
Target frequency: at each time-period v v
Performance evaluation via experiments v v v

As opposed to minimizing lost demand, the concepts of inventory
intervals and target inventories have been found to be useful within
the rebalancing decision-making process. Inventory intervals define an
acceptable range of the bike inventory at individual stations, whereas
target inventory values represent specific inventory levels that oper-
ators aim to uphold at each station. Both are typically designed to
ensure a high rate of demand satisfaction. We first review the literature
that aims at incorporating such targets into planning problems. Then,
approaches to compute either target values or inventory intervals are
reviewed.

Inventory intervals and targets in optimization models. Even
though inventory intervals and target inventories are often used con-
cepts in the planning processes of BSS operators, only a small body
of literature has incorporated them into optimization models. The
problem variants considered in such works, as well as the way how
target values and intervals are considered, may differ substantially.

Table 1 aims at visualizing the characteristics of the six papers
identified to incorporate either inventory target values or inventory
intervals within the context of BSS rebalancing planning. Specifically,
half of the papers explicitly consider a multi-period planning horizon,
which is desirable in a planning problem with such dynamic demand
synergies. The other half focuses on single-period problems (which
may also refer to overnight static rebalancing). Most papers present a
mathematical optimization model, which potentially enables decision-
makers to identify optimal planning solutions, whereas one paper only
proposes a heuristic. Four papers focus on reaching a specific target
value at each station inventory, while two consider target intervals.
Target deviation is minimized within the objective function in half
of the papers, while the other half aims at enforcing targets within
constraints. Such latter option, however, may be too restrictive, or
even render the model infeasible if the target values or intervals are
ill defined. We therefore here consider that minimizing deviation from
target values or intervals is a more appropriate choice. Next, only
one work aims at reaching the proposed targets at each of the time-
periods within a multi-period setting. The remainder either consider
single-period models, or consider the target only for the last time-
period of the planning horizon. BSS operators use inventory targets as
a mean of preparing station inventories for the upcoming rental and
return demand. As such, considering them at each of the time-periods
is necessary. Finally, only two of the papers have provided empirical
evaluations of the proposed approaches, which makes conclusions on
their practical suitability difficult.

The model of Schuijbroek et al. (2017) comes closest to the proposi-
tion of our paper. The authors focus on target intervals, but within their
computational experiments, the model optimizes different criteria and
ignores the target intervals. As such, the authors do not evaluate the
benefits of using inventory intervals. In our work, we aim at providing a
systematic comparison of such approach, additionally including models
that minimize deviation from target values. The other two multi-period
models (Chen et al., 2023; Kloimiillner et al., 2014) consider target
values only at the end of the planning horizon, which makes the
models unsuitable for our purposes. Further, one of the models does
not consider target values within the objective function, while the other
does not provide a corresponding empirical performance analysis.

We therefore conclude a significant lack in the literature that simul-
taneously aims at satisfying either target values or inventory intervals
at each of the time-periods within a multi-period setting. Our pa-
per aims at filling this gap, and at providing a systematic empirical
comparison of such approaches within different reoptimization modes.

Computation of inventory intervals and targets. While the works
cited above assume that target inventories and inventory intervals are
given, a few works also propose how to effectively compute them.
Target inventories have often been computed such that they reduce
the probability of a station reaching both the full and empty status,
typically requiring the prior estimation of rental and return distri-
bution on historical data (Gammelli et al., 2022; Gleditsch et al.,
2022; Huang et al., 2020; Raviv and Kolka, 2013). Inventory intervals
have been computed in a similar fashion (Schuijbroek et al., 2017;
Hulot et al., 2018), selecting those that minimize the likelihood of
a station becoming either empty or full. Finally, different from those
approaches, Datner et al. (2019) and Héctor et al. (2021) simulate the
performance of several sets of initial inventories and select the one that
performs best.

Most works cited above compute target inventories and inventory
intervals based on historical trip demand. However, they disregard
external factors such as weather conditions, the importance of which
has been widely acknowledged in the literature (see, e.g., Eren and
Uz, 2020; Gallop et al., 2011; Gebhart and Noland, 2014; Hulot et al.,
2018; Kim, 2018; Liu et al., 2016; O’Brien et al., 2022). To this
end, Hulot et al. (2018) extend the notion of service-levels proposed
by Schuijbroek et al. (2017), computing both target inventories and
inventory intervals based on the service level and the predicted de-
mand. The latter is estimated based on machine learning models trained
on both temporal and weather data, therefore holding the potential of
providing better performing target inventories and inventory intervals.
The authors also introduce two additional hyperparameters, « and g,
allowing operators to align inventory intervals and target inventories
with their priorities for either rentals or returns (see Appendix A for
more details), hence making it an attractive approach to operators.

2.2. Demand prediction for BSSs

Demand prediction is an essential step in the rebalancing process,
enabling operators to anticipate which stations require higher inven-
tories to better serve trip demand. Accurately predicting rentals and
returns is challenging, as it is influenced by numerous factors (Vogel
et al., 2011). Literature on demand prediction in BSSs can be divided
into approaches predicting at global demand level (see e.g., Gebhart
and Noland, 2014; Sathishkumar et al., 2020; Yin et al., 2012), at
the level of station-clusters (see e.g., Borgnat et al., 2011; Feng et al.,
2018; Vogel et al., 2011), and at the level of individual stations (see
e.g., Boufidis et al., 2020; El-Assi et al., 2017; Hulot et al., 2018; Pan
et al., 2019; Zamir, 2020). We here focus on works predicting demand
at station level, which is required for rebalancing operations since they
are tailored considering the rentals and returns for each station.

Different techniques have been used to predict demand in BSSs.
The average of historical trips (i.e., rentals and returns) can be used
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Fig. 1. The structure of rolling and folding planing.

to estimate future demand (Alvarez-Valdes et al., 2016; Datner et al.,
2019; Ghosh et al., 2015; Gleditsch et al., 2022; Raviv and Kolka,
2013; Schuijbroek et al., 2017; Zhang et al., 2017), which can be seen
as a naive predictor. Alternatively, rental and return (often Poisson)
distributions have been estimated from historical trip data, from which
trip demand is then sampled and used within the optimization models
(see, e.g., Ghosh et al., 2017; Lowalekar et al., 2017; Zhang et al.,
2017; Zheng et al., 2021). While such prediction methods centered
on historical mean demand have been quite popular, several studies
(see, e.g., Froehlich et al., 2009; Liu et al., 2016; Lozano et al., 2018)
haven suggested that such methods may result in high prediction errors
when compared to ML models, as the latter can take into considerations
features beyond historical trip data, including weather conditions, time
of day, day of the week and the occurrence of special events.

Generally, ML algorithms can capture intricate patterns and correla-
tions and may, therefore, result in significantly more accurate demand
predictions. Random forests and gradient boosted trees, in particular,
have been found to provide competitive prediction accuracy in the con-
text of rental and return predictions (Boufidis et al., 2020; Hulot et al.,
2018; Lozano et al., 2018; Wu et al., 2019; Yin et al., 2012). Typically,
such models integrate weather and temporal features, highlighting their
importance to accurately predict demand. Here, Hulot et al. (2018)
utilize Singular Value Decomposition, a dimension reduction technique,
to reduce the dimensionality of the trip data, eliminate noise and
improve both time required and the accuracy of hourly station-level
rental and return predictions (details can be found in Appendix A).
These reasons make this model an attractive option to estimate the
future trip demand for our rebalancing optimization models.

2.3. Reoptimization modes: static, rolling, and folding

In practice, both single-period and multi-period models can be
implemented in several ways. A simple, yet common approach (see,
e.g., Ghosh et al., 2015; Kloimdillner et al., 2014; Lu, 2016; Sayarshad
et al., 2012; Shu et al., 2013; Zhang et al., 2021) is to optimize once
over the entire planning horizon (i.e., all considered time-periods) and
then implement all rebalancing decisions (i.e., the number of bikes
dropped off and picked up at each station) as planned for all time
periods.

While multi-period models can represent the consequences of de-
cisions made at early time-periods, when executed within a static
planning, they do not benefit from updated system information (such as
station inventories or improved demand predictions). Therefore, prac-
titioners often tend to reoptimize the rebalancing decisions through-
out the planning horizon. Specifically, rolling planning (also called
rolling window planning) considers the reoptimization over several
time-periods at predefined reoptimization stages. Fig. 1(A) depicts the
rolling planning, where, at each reoptimization stage, the green squares
indicate time periods considered in the optimization models, and the
green dotted squares indicate decisions of the time-periods actually
executed in practice. This approach has been popular, with works

Table 2
Input parameters of the optimization model.

Input parameters Definition

[

The set of stations.

14 The set of vehicles.

T The set of discreted time-periods.

C The capacity of station s € S.

¢, The capacity of vehicle v e V.

L, The duration (in minutes) of time period r € T.

d The initial number of bikes at the station s € .S.

The initial number of bikes in vehicle v € V.

The initial location of each vehicle v € V,s € S.

fH The expected rental demand at station s € S in period t € T.
It The expected return demand at station s € S in period r € T.

implementing rolling planning for both multi-period (see, e.g., Ghosh
et al., 2019; Lowalekar et al., 2017; Mellou and Jaillet, 2019; Zamir,
2020; Shui and Szeto, 2018; Zhang et al., 2017) and single-period mod-
els (see e.g., Ghosh et al., 2016; Gleditsch et al., 2022; Hu et al., 2021).
Note that, in the case of rolling single-period models, the planning is
essentially myopic. Rolling planning allows for correcting ineffective
planning, e.g., due to forecasting inaccuracies. In addition, considering
only a subset of all time-periods within the planning window has the
advantage of resulting in a more tractable optimization model.

If model decisions at early time-periods may impact decisions sev-
eral time-periods ahead, one may want to consider a model with a
longer planning horizon. Folding planning therefore optimizes on the
remaining planning horizon, as depicted in Fig. 1(B). While this is
generally a common approach in multi-period models (Lin et al., 2022),
to the best of our knowledge, this approach has not yet been explored
for BSS rebalancing planning.

3. Dynamic rebalancing models

In this section, we formulate the DBRP as MIP models. Section 3.1
first describes a multi-period model, which minimizes the unmet rental
and return demand, the more popular objective in the literature (as
discussed in Section 2.1). We then propose two models integrating
inventory intervals and target inventories into the objective functions
in Section 3.2.

3.1. Multi-period rebalancing model minimizing lost demand

We consider a multi-period mixed-integer programming model pro-
vided by Liang et al. (2024), shown to provide consistently high per-
formance among a large variety of different model variants.

The input parameters are listed in Table 2 and decision variables are
shown in Table 3. We denote S as the set of stations, while V' denotes
the set of available vehicles. Each station s € .S has a capacity of C;
docks and each vehicle v € ¥ can hold at most C,, bikes. We consider a
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Table 3
Decision variables of the optimization model.
Variables Definition
d! The number of bikes available at station s € S at the beginning of period r € T.
dz The number of bikes in vehicle v € V' at the beginning of period r € T.
xH The number of successful rentals starting from station s € S in period t € T.
Xt The number of successful returns ending at station s € .S in period r € T'.
rit The number of bikes picked up at station s € S by vehicle v € V in period t € T
o The number of bikes dropped off at station s € .S by vehicle v € V in period t € T.
z Z, =1 if vehicle v € V visits station s € S in period r € T ; 0 otherwise.

planning horizon with |T'| time-periods, where each time period t € T
represents a duration of L, minutes.

This formulation expresses the expected rental and return demand
as input parameters f;' and f,', respectively. While the decision
variables x' and x;”’, separately capturing the rentals and returns,
do not allow for keeping track of the origin-destination pair of trips,
this modeling technique has been quite popular in the literature (see,
e.g., Contardo et al., 2012; Kloimiillner et al., 2014; Lowalekar et al.,
2017; You, 2019), given that it results in more compact models that are
computationally more tractable. Indeed, Liang et al. (2024) conclude
that such modeling technique results in planning solutions as good as
models that explicitly consider the origin—destination pair in the trip
demand and the corresponding decision variables.

We assume that a vehicle can visit only one station per time-period.
As a result, a vehicle can visit at most T stations during the entire
planning horizon. The decision variables ri; and r;, represent the
number of bikes vehicle v picks up and drops off, respectively, at station
s during period t. Furthermore, binary variable z! ” takes value 1 if
and only if vehicle v visits station s at time-period ¢. For each time-
period, intermediate variables are used: the number of bikes available
at stations and in vehicles, successful trips, and vehicle routes. The
resulting MIP model is expressed as follows:

min D N (£ = xt)+ YD =% )

seS teT seS teT
st A =dl Y ot - VoeV,teT @)
SES
At =dl = Y = =X X VsesS, teT €)
vev
Zzil;l YveV,teT 4)

VseS,veV,teT

)
0<d <C, Voev ©)
0<d <C, VseS @
0<xI' < fH0<x] < /7 VseS, teT ®)
OSrI;far;;fsCU VseS, veV,teT

©)
z, €{0,1} VseS, veV,1eT.
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The objective function (1) minimizes the total lost demand, i.e., the
unmet expected demand for both rentals and returns, over the entire
planning horizon at all stations. Constraints (2) compute the number
of bikes in each vehicle v in period ¢ + 1 based on the number of
bikes in the previous period and the number of picked up/ dropped
off bikes. Constraints (3) compute the number of bikes in period ¢ + 1
at each station s as the sum of the number of bikes of that station in
the previous period, the number of bikes rebalanced by vehicles, and
those moved by users (i.e., successful rentals and returns). Constraints
(4) ensure that each vehicle v can only be at one station at each time-
period. Constraints (5) ensure that a vehicle can perform operations at
a station only when it is present at that station. Constraints (6) impose

that the number of bikes in each vehicle is bounded by its capacity.
Constraints (7) are the capacity constraints for the stations. Constraints
(8) bound the number of successful trips by the expected rental and
return. Finally, constraints (9) enforce that the pick-up and drop-off
operations respect the vehicle’s capacities.

The above model, denoted as DROB-LD, derives rebalancing strate-
gies for the entire planning horizon, i.e., it decides how many bikes
each vehicle should pick up or drop off at which station. The model
can be easily implemented in different reoptimization modes (static,
rolling, and folding planning) with alterable length of planning hori-
zons and duration of time-periods, depending on the requirements of
the decision-maker.

3.2. Rebalancing models based on inventory interval and target inventory

Even though the above used objective minimizing the lost demand
is quite popular in the literature, its performance is sensitive to the
accuracy of the expected rentals f}* and returns f;”'. Rather than
minimizing the deviation from such a point estimate, we propose to
minimize the deviation from either the inventory interval or the target
inventory. This approach provides a buffer for the station inventories,
allowing them to maintain reasonable inventories even when the trip
prediction is less accurate, and to be better prepared for fluctuations of
the stochastic demand.

To this end, we propose two multi-period models with novel ob-
jective functions: Dynamic Rebalancing Optimization for BSS based on
Target Inventories (DROB-T) and DROB-I. The parameters and variables
used in both models are depicted in Table 4.

The objective function of DROB-T (11) aims at minimizing the total
deviations between station inventories and target values, thus yielding
the following formulation:
min Y 3|2 - dl an

ses el

s.t. (2)-(10).

DROB-I is designed to keep the station inventories as much as pos-
sible within the computed intervals. To this end, DROB-I is formulated
as the objective function (12), along with constraints (2)-(10) and
(13)—(15) as defined below:

min Z Z et +el 12)

seSteT

st. £ —e <d! VseS, teT ¢
A <7 et VseS, 1eT 14)
es_’tZO,e:“"ZO VsesS,teT (15)

(2)-(10).

Fig. 2 exemplifies the inventory of a station s, as well as the
lower bound and upper bound of the inventory interval, and its target
inventory. For DROB-I, the excess of inventory at each time-period (e
and e,”, respectively), with respect to the inventory interval [f;,?ts],
is computed by constraints (13) and (14). For DROB-T, Fig. 2 also
illustrates the deviation |¢! —d!| from the current target value. By
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Fig. 2. Example of deviations from inventory intervals and target inventory.

Table 4

Parameters and variables that define inventory intervals and target inventories.
Input Definition
44 The target inventory of station s € .S at period r € T
2 The lower bound for the inventory interval of station s € S at period t € T
=
‘. The upper bound for inventory interval of station s € S at period r € T
Variables Definition
et The number of bikes above the upper bound at station s € .S in period r € T
et The number of bikes below the lower bound at station s € .S in period r € T

s

Table 5

Comparative analysis of three objective functions for rebalancing operations.

Objective function Example 1

Example 2

Dropped off bikes

Expected lost demand®

Dropped off bikes Expected lost demand®

DROB-LD (1) 1 0.33
DROB-T (11) 8 0
DROB-I (12) 2 0

0 0.67
5 0
2 0

2 The expected lost demand is calculated considering all possible chronological sequences of rentals and returns derived from historical trip
data. For simplicity, we assume that the probability of a rental occurring before a return equals to that of a return happening before a rental.

minimizing these deviations, DROB-I and DROB-T aim at providing
safety buffers to the station inventory and are therefore more likely
of being capable to deal with stochastic demand fluctuations. We next
present two toy examples to provide an intuition of the potential
benefits of the two new objective functions.

Example 1. Consider an empty station with 10 docks. For a given time-
period at a given day, historical rentals follow a uniform distribution
ranging from O to 2, while no returns have been observed. A predictive
model is used to predict the expected demand and target value and
inventory interval are computed as to ensure a sufficient service level
(see Section 4.1.2 and Appendix A for details). As a result, an estimation
of 1 rental and no return is obtained, directly used in model DROB-
LD. For DROB-T, the computed target value is 8, while for DROB-I,
the computed inventory interval is [2, 10]. Table 5 summarizes the
number of bikes dropped off at that station according to each of the
three models. Furthermore, the table reports the expected lost demand
if rental demand is uniformly distributed between 0 to 2. Here, DROB-
T and DROB-I drop off at least 2 bikes, accounting for the potential
demand of 2 rentals. In contrast, DROB-LD drops off only 1 bike, and
therefore lacks 1 bike when the rental demand is 2.

Example 2. Consider that the same empty station, for another time-
period and given day, has a uniform distribution between 0 and 2
for both rentals and returns. Both the estimated rental and return are
therefore 1. The computed target value is 5, whereas the inventory

interval is [2, 8]. In this case, DROB-T and DROB-I still drop off at
least 2 bikes and therefore do not induce any unmet rental demand. In
contrast, DROB-LD implicitly assumes that returns cancel rentals, and
thus does not drop off any bikes, which may result in unmet demand
when the rental demand is 1 or higher.

4. Experiments and results

We now employ computational experiments to explore the benefits
of the proposed models. Section 4.1 introduces the synthetic data
and reports on the corresponding empirical results. A case study on
real-world data is then presented in Section 4.2.

Computational environment. All optimization models are solved us-
ing IBM ILOG CPLEX v20.1.0.0 on 2.70 GHz Intel Xeon Gold 6258R
machines with 8 cores. Optimization terminates once the MIP gap
reaches 0.01% or the time limit of 24 h is reached.

4.1. Experiments on synthetic data

We here focus on experiments carried out synthetic problem in-
stances. To this end, Section 4.1.1 first introduces the instance gen-
erator that generates weather-dependent trip data. Section 4.1.2 then
details the experimental set-up, including the machine learning model
used to predict rental demand, the computation of inventory inter-
vals and targets, and the simulator. This section also summarizes the
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Fig. 3. Process to generate weather data, station network and trip data.

computational results, comparing the performance of the various plan-
ning models. Finally, Section 4.1.4 then explores the performance of
the planning models under the assumptions that predictions are less
accurate.

4.1.1. Synthetic dataset

Even though we have access to real-world trip data, we synthetically
generate instances for several reasons. First, the available real-world
trip data lacks information on unobserved demand. Second, existing
data may contain noise related to trip and station inventory data.
Finally, rebalancing operations conducted by operators impact station
inventory, but data on such operations is not openly available.

The general data generation process of the here employed instance
generator is depicted in Fig. 3. We extend the instance generator
proposed by Liang et al. (2024) (corresponding to the third box in
Fig. 3: “Trip data for the generated station network”), which is capable of
generating diverse station networks and trip data, based on predefined
trip patterns & distributions that align with those observed in real-world
BSSs. Whereas the instance generator of Liang et al. (2024) generates
trip data under the same weather conditions (specifically, assuming
high demand during summer months), we here explicitly acknowledge
the strong correlation between weather conditions and trip demand.
As such, we extend this instance generator as follows. (i) We introduce
varying weather conditions into our generator (corresponding to the
first box “Weather data” in Fig. 3) by estimating statistical distributions
that represent the hourly changes of weather conditions estimated on
real-world weather data, and then sample new weather conditions from
these distributions. (ii) We then compute the system-wide level of trip
demand that is correlated to such weather conditions (corresponding to
the second box “Hourly rental for the original network” in Fig. 3), i.e., the
hourly number of rentals for the entire network. Finally, individual trip
demand is generated for the generated station network. Each of these
components is next explained in detail.

Generation of weather data. Given that we ultimately aim at
generating trip data that resembles periods of the demand peak season,
we are interested in generating weather conditions for the months of
June to August, which tend to have high user demand. We therefore
procure Real-world weather data' from Montreal for June, July, and
August from 2017 to 2020, resulting in a total of 368 days (includ-
ing both weekdays and weekends). We select two features of utmost
importance (see, e.g., Eren and Uz, 2020; Gallop et al., 2011; Gebhart
and Noland, 2014; Kim, 2018): temperature and humidity. We analyze
the temperature and humidity differences between consecutive hours
throughout the day and divide the day into four distinct time segments

1 https://climate.weather.gc.ca.

such that temperature and humidity tend to remain relatively stable
within each of which (0 am-5 am, 6 am-11 am, 12 pm-5 pm, and 6
pm-11 pm). The hourly differences are then used to estimate normal
Distributions of hourly weather change for each time segment. The esti-
mated distributions of temperature change for each time segment can
be found in Appendix B.

Synthetic weather data has been generated for a total of 500 days
as follows. For each hour of the original 368 days, we use the tem-
perate and humidity that originally occurred at that day and add a
change of temperature and humidity, respectively, sampled from the
corresponding distributions. To obtain a total of 500 days, we repeat
the process with the first 132 of the original 368 days. To ensure that
the generated weather conditions are sufficiently realistic and avoid
drastic fluctuations, we introduce constraints to keep the temperature
and humidity within 5.5 °C-36 °C and 15%-99%, respectively. We
denote the final set of the 500 generated days with synthetic weather
data as the Synthetic weather data.

Generation of hourly rental demand. Using the temperature, hu-
midity, hour, and weekday as features, we estimate the Hourly rental
prediction model. This linear regression model is trained using the Real-
world weather data and Real-world trip data (also see Section 4.2.1) and
captures the correlation between time and weather conditions and the
total demand level for the entire station network. The trained regres-
sion model is then used to estimate the total system-wide number of
Hourly # of rentals for the original network that depends on the Synthetic
weather data throughout each day. Given that this total number of
rentals has been estimated on the original network from the Real-world
trip data (here, the BIXI network with over 600 stations), this number
is then scaled to the number of stations used in the here considered
Station network (which has 60 stations). These hourly system-wide
rental demands (Hourly # of rentals for the generated network) then serve
as input to generate the detailed trip data.

Generation of station network and individual trip data. We gener-
ate three ground truth problem instances, denoted GT1, GT2, and GT3,
each of which contains a station network, as well as hourly weather data
and detailed trip information for 500 days. In all instances, the network
contains 60 stations with different numbers of city center stations. The
stations within city centers are equipped with 40 docks, while those
outside city centers have 20 docks each.

Generated trips contain the origin station, the destination station,
the departure time, and the arrival time. We consider four trip patterns
of user behaviors with origins and destinations outside (O) and inside
(I) city centers: (i) users who live outside city centers and work
inside city centers typically use similar origin (outside city centers) and
destination stations (inside city centers) during peak hours (OI trips);
(ii) users who live and work outside city centers (OO trips); (iii) random
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Table 6
Characteristics of the three considered ground truth instances.
Instance GT1 GT2 GT3
# of city centers 1 2 1
Network (60 stations) # of stations per city center 9 6 9
City center capacity 26% 35% 26%
o1 32% 32% 20%
Trip pattern 00 32% 32% 20%
PP RD 23%  23%  40%
RN 13% 13% 20%

non-work related trips occurring during the day (RD trips), and (iv)
random non-work related trips occurring during the night (RN trips).

The characteristics of instance ground truths are described in
Table 6. Although the proportions of work-related (i.e., city center
related) trips are identical in GT1 and GT2, the latter has more city
center stations (12 stations in 2 city centers, as opposed to 9 stations in
1 city center). As such, work related trips in GT2 are distributed over a
larger number of stations, which are therefore less stressed. In contrast,
GT3 contains more irregular, random trips to emulate contexts where
demand is less predictable.

To sample individual trips for the considered station network, we
assume that each trip type follows a particular temporal distribution,
indicating the probabilistic time at which the rental occurs (as detailed
in Liang et al., 2024). For each day, the trip generator then sequentially
samples trips (i.e., origin—destination pairs and exact time stamps) from
the Trip pattern & distributions (as defined by the ground truth) until the
hourly # of rentals for the generated network is met, resulting in the final
set of Trip Data.

4.1.2. Model performance based on regular trip predictions

Experimental set-up. The 500 generated days for each ground
truth are separated into training set, validation set and test set as
follows. The first 250 days are allocated to calibrate the gradient
boosted tree introduced in Hulot et al. (2018), capable of predict-
ing hourly station demand and trained on trips (time of rental and
arrival/departure stations), weather conditions (temperature and hu-
midity), and temporal data (day of the week, hour of the day, and a
binary indicator for holidays). The subsequent 100 days are used for the
validation and fine-tuning of the gradient boosted tree and inventory
intervals. Details on the training of the gradient boosted tree can be
found in Appendix A.

The remaining 150 days constitute the test set on which the op-
timization algorithms are executed. We consider a planning horizon
from 7 a.m. to 3 p.m., discretized into 8 time-periods, each with a
duration of one hour. For each of the 150 days, we assume to have
access only to its corresponding weather conditions, but not to the exact
trip (i.e., rental and return) demand. This is a reasonable assumption
in practice, where one can assume to have access to a reasonably
accurate weather prediction. Based on such weather conditions, the
trained gradient boosted tree then predicts the hourly rental and return
demand for each station (' and f;*'), used within model DROB-LD.
The inventory intervals and target values, used within models DROB-I
and DROB-T, are then computed based on the predicted rental demand
(details can also be found in Appendix A). For each of the 150 days, the
rebalancing planning solutions provided by the various models are then
evaluated in the simulator (see Section 4.1.2) on the exact trip data.
Note, again, that the optimization models only have access to demand
predictions (based on weather data), whereas the simulator evaluates
on the exact trip demand of the days in the test set.

In all experiments, 4 vehicles are available to rebalance the stations,
each with a capacity for 40 bikes. The initial inventory of stations is
obtained by solving an overnight rebalancing problem (equivalent to
the one used in Liang et al., 2024).
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Each of the optimization models can be executed in different reop-
timization planning modes. In static planning, the optimization model is
solved once for the entire planning horizon. The rebalancing strategies
of the first 6 (out of 8) time-periods are then executed within the
simulator to estimate the lost demand. The rolling planning has 3
optimization stages, each of which contemplates 4 time-periods. At
each stage, the rebalancing decisions of the first 2 time-periods are
executed within the simulator, as illustrated in Fig. 1(A). The folding
planning uses all the remaining time-periods at each stage, as depicted
in Fig. 1(B). The fine-grained discrete-event simulator from Liang et al.
(2024) here used employs a chronological first-arrive-first-serve rule,
for both user rentals and returns, as well as rebalancing vehicles
(i.e., pick-ups and drop-offs). Events are discretized events into 1-
min time-slots, which results in a particularly detailed and realistic
simulation.

Computational Results. illustrates the average lost demand and
computing time (over the test set) for all the models and reoptimization
modes (Static, Rolling, and Folding). We report the computing times
required to solve the optimization models as ‘Opt. Time’ (in minutes).
The lost rental demand is computed as the relative gap between suc-

cessful rentals and the original rental demand specified in the instances
U=

——, where %} is the

over the entire planning horizon, i.e.,

s fs
number of successful rentals in the simulator. The lost return demand

:,r(’%s' —Xg a—it

TS where %

returns in simulator.séirslce, in practice, return demand does not exist
when the corresponding rental demand is unsuccessful, the lost returns
are only associated with successful rentals 2}'. We also present the
relative difference (4(%)) of the rental, return, and total lost demand of
DROB-I and DROB-T when compared to DROB-LD under the respective
reoptimization mode.

allows for the following observations:

is computed as is the number of successful

1. Comparison of proposed models. From , models DROB-I and
DROB-T generally outperform DROB-LD for all ground truths.
For example, on GT1, DROB-I reduces the lost demand from
7.65% to 5.66% in rolling planning, while being solved within
seconds. While under static planning, DROB-I and DROB-T tend
to outperform DROB-LD, they consistently outperform DROB-
LD by a higher rate under rolling planning (reducing total lost
demand by 26.01% and 34.51%, respectively.)

2. Comparison of different reoptimization modes. The rolling
and folding planning consistently result in lower lost demand
than the static planning, likely due to the fact that they update
the station inventories before reoptimizing at every reoptimiza-
tion stage (see Fig. 1). Updating the inventory narrows the gap
between the estimated inventories in the optimization model
and the observed inventories during the simulation, allowing
the optimization models to make more informed decisions. For
example, rolling and folding planning in DROB-I on GT1 reduces
the lost demand from 7.43% to 5.66% and 5.74%, respectively,
over static planning. Note that updating the weather forecast
may have a significant impact on the rolling planning, which
will be discussed in Section 4.1.4. In terms of computing times,
even though most models have been solved within 1-2 min, the
folding planning requires much longer computing times for GT2.

3. Comparison among ground truths. While the general conclu-
sions and tendencies are the same for all ground truths, for GT1,
models present more unmet demand than for GT2. Indeed, GT2
has more stations located in city centers, a region with high
work-related demand, resulting in more evenly distributed trip
patterns for these stations. Moreover, the larger number of city
center stations translates into greater availability of docks in
the network, as stations located in this area contain twice the
number of docks than stations located in other regions of the
city. GT3 has more random trips, making demand prediction
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Results of dynamic rebalancing models for GT1, GT2, and GT3 under regular prediction.

Reopt. Opt. time

Lost demand (%)

Instance Model mode (min) Rental A (%) Return A (%) Total A (%)
s 019 13.14 274 8.31
DROB-LD R 002 1194 276 7.65
F 021 1154 2.87 7.48
s 018  10.68 379  a3832 743
GT1 DROB-I R 0.10 8.18 2.90 4507 566
F 039 839 2.84 574
s 153 998 397  a4480 7.4
DROB-T R 015 820 1.52 5.01
F 179 821 1.61 5.06
s 0.41 8.27 1.68 5.13
DROB-LD R 006 816 1.67 5.06
F 044 811 1.62 5.01

s 004 776 251 44940 524 A 214
GT2 DROB-I R 25.24 6.31 1.35 3.92
F 22915 587 1.12 3.57
s 013 879 4 6.29 0.63 4.91
DROB-T R 028 696 0.58 3.89
F 032 697 0.57 3.90
s 052  18.99 6.34 13.35
DROB-LD R 003  18.08 6.27 12.78
F 053  17.98 6.14 12.66
s 001 1811 579 12.58
GT3 DROB-I R 019  16.03 4.97 10.99
F 008  16.03 4.87 10.94
s 003  17.87 5.33 12.23
DROB-T R 1310  15.39 4.77 10.53
F 2508  15.33 471 10.47

more difficult and resulting in higher lost demand. However,
DROB-I and DROB-T still outperform DROB-LD, demonstrating
the robustness of our two models even when trip patterns are
less regular and predictable.

It can be observed that for DROB-I under GT2, and for DROB-T
under GT3, the average computing times are rather high, exceeding 10-
20 min on average. An analysis has shown that for those optimization
runs, the MIP solver tends to find high-quality solutions quickly, but
takes a long time to prove optimality. We therefore also report results
with a 5-min time limit for these two specific cases (see Appendix C.1).
The results indicate that the solution quality remains stable even un-
der drastically reduced computing time resources, suggesting that our
models remain effective and practically useful for time-sensitive plan-
ning contexts. Finally, we also report results from a study comparing
the performance under 30 and 60-min time-period discretization in
Appendix C.2. Such results confirm that, generally, more rebalancing
operations translate into an improved lost demand, while DROB-I and
DROB-T tend to outperform DROB-LD.

Results based on perfect trip prediction. We further carry out exper-
iments with perfect trip information for each day of the test set, i.e., the
model optimizes on the exact rental and return demand on which
its rebalancing policy is later evaluated within the simulator. These
experiments establish an empirical performance bound and provide
insights into the efficiency of the optimization models and reoptimiza-
tion modes. Fig. 4 presents the total lost demand obtained using the
predicted trip demand (i.e., the same as used for ) and the perfect
information for GT1. Unsurprisingly, if perfect information was avail-
able, DROB-LD would consistently outperform DROB-I and DROB-T,
given that an inventory safety buffer would be unnecessary. However,
in reality, demand is stochastic. In this case, DROB-I and DROB-T can
provide more robust station inventories, allowing them to deal with
the stochastic trip demand. Interestingly, DROB-I and DROB-T still
benefit from inventory updates (rolling and folding planning) under
perfect information, as opposed to DROB-LD. Indeed, the former two

models rely on the current inventory levels to update their objective
functions, while the objective of DROB-LD remains unchanged, even
when station inventories change. As a result, reoptimization for DROB-
LD is not beneficial. Finally, the results also enable us to derive insights
into the empirical bounds on the potential gains achieved through the
utilization of a more accurate predictive model. While the gains are
substantial (~5% of lost demand) for DROB-LD, they are much smaller
(~1%—-2%) for DROB-I and DROB-T. While using a more accurate
prediction may obviously lead to reduced unmet demand, we will
next investigate how those models perform when predictions are less
accurate.

4.1.3. Analysis of planning solutions characteristics

In this section, we provide an analysis of several key performance
indicators of the planning solutions suggested by the various models.
Table 8 summarizes such results for GT1. Specifically, we report the
average number of rebalanced bikes (“# of rebal. bikes”) conducted
per day and the average total daily travel distance (in km) covered
by all 4 vehicles (“Travel distance”). Additionally, we present three
metrics related to the travel patterns measured in percentage values:
the proportion of time-periods at which a vehicle remains at the same
station from one time-period to the next one (“Consecutive station
stays”), which is indicative of the general relocation frequency of vehi-
cles; the proportion of time-periods a vehicle visits stations located in
a city-center during consecutive time-periods (“‘consecutive city center
stays”), which tends to be close to each other, potentially indicating
smaller travel distances; and the proportion of transitions between two
stations where the travel time is estimated to be less than 20 min
(“consecutive short visits”), generally indicating short travel distances.

Table 8 demonstrates that both DROB-I and DROB-T perform more
rebalancing operations than DROB-LD, which is in line with our illus-
trative Example 1 in Section 3.2, allowing to more effectively reduce
lost demand (see ). Surprisingly, the increased number of rebalanced
bikes does not incur larger traveling distances. This can be attributed
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Fig. 4. Results of total lost demand for GT1 using regular prediction and ground truth.

Table 8
Rebalancing operation and travel distance statics for GT1 under regular prediction.

Model Reopt. mode # of rebal. bikes Travel distance Consecutive station stays Consecutive city center stays Consecutive short visits
N 99.03 160.92 0.97% 15.47% 43.60%
DROB-LD R 110.41 162.68 1.47% 14.13% 45.93%
F 107.18 164.88 1.27% 14.00% 45.80%
S 215.42 139.76 8.03% 10.47% 54.23%
DROB-I R 279.71 154.76 1.67% 12.20% 46.10%
F 284.19 153.24 1.70% 11.10% 46.17%
S 143.00 123.04 3.17% 11.37% 65.23%
DROB-T R 254.79 151.92 0.03% 15.33% 46.73%
F 253.41 150.27 0.10% 14.03% 48.33%

to several factors, as indicated by the three travel pattern percentage
metrics. DROB-I has the highest percentage of consecutive station
stays, which suggests that vehicles remain at the same station more
frequently, leading to less travel distance. DROB-T shows the highest
percentage of short visits and a relatively high percentage of city center
stays, indicating more frequent vehicle movements to nearby stations,
thereby reducing overall travel distance. One can conclude that DROB-
LD tends to relocate more often, but relocates fewer bikes. In contrast,
DROB-I and DROB-D relocate less often, but relocate more bikes at
each station. Even though none of the models explicitly considers
travel distances in their objective functions, the results above are not
surprising when considering how rebalancing operations are triggered
in each model. DROB-LD is more sensitive to demand prediction, as it
explicitly considers lost demand in its objective function. Anticipated
lost demand tends to be quite variable among the stations, giving
incentives to the model to relocate to a station where lost demand
can be reduced slightly more than at the current station. In contrast,
DROB-I and DROB-T are less sensitive to demand prediction, where
stations with similar demand levels may share similar inventory in-
tervals/targets. In other words, the loss-function considered in such
models may indicate a similar urgency for many stations, reducing the
need to relocate to a different station.

We may conclude that the two new models, DROB-I and DROB-
T, tend to provide a more sober assessment of relocation urgency
among the different stations, implicitly acknowledging the uncertainty
of demand fluctuations, and naturally providing less costly rebalancing
routes. This being said, we reiterate that none of the models explicitly
considers the relocation distances in their objective function, as the fo-
cus of our study lies in minimizing lost demand under vehicle resource
constraints. If economic efficiency is desired, such an indicator should
be explicitly modeled, either as a penalty within the objective function
or by constraining relocations to sufficiency small distances.

10

4.1.4. Model performance based on noisy prediction

The optimization models used in our previous experiments have
taken as input demand predictions and interval predictions that have
assumed a perfect weather forecast. In practice, weather forecasts for
the next 2 to 8 h can be prone to inaccuracies. In a similar vein,
having access to a predictive model with sufficiently high accuracy
may not always be possible. We will now investigate the performance
of the various models under the assumption that demand and interval
predictions are less accurate. To this end, we deliberately introduce
noise into the performed trip predictions. Since accurately predicting
demand becomes increasingly challenging as we project further into
the future, we introduce more noise to later time-periods.

Noisy predictions. We consider two types of effects caused by
noises over demand predictions: (i) overestimation, e.g., due to a fore-
cast of overly favorable weather conditions and, therefore, expecting
a higher number of trips than will actually occur; (ii) underestima-
tion, e.g., due to a forecast of adverse weather conditions, therefore
predicting a lower number of trips than will actually occur.

To obtain less accurate predictions for the demand at station s
at time ¢, we sample noise from a normal distribution. Its mean u
is determined by the original predicted number of rentals (or re-
turns), while its standard deviation is strategically adjusted to achieve
a predetermined increase in the Root Mean Squared Error (RMSE) for
these noisy predictions in comparison to y. This approach is applied
throughout the planning horizon for each stage in the rolling and
folding planning as illustrated in Fig. 5. Values sampled above the mean
are used to create overestimating predictions, whereas values below
the mean are sampled to create underestimating predictions. Thus, an
underestimating forecast consistently predicts lower demand and an
overestimating forecast consistently predicts higher demand. Note that
the static planning, as in the previous experiments, optimizes only once
and that for the entire planning horizon. For all three reoptimization
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Table 9

Results of dynamic rebalancing models for GT1 and GT2 under underestimating predictions.

Lost demand (%)

Instance Model Reopt. Opt. time
mode (min) Rental A (%) Return A (%) Total A (%)

s 002  13.97 4.56 9.62

DROB-LD R 002  11.90 3.54 7.99

F 0.04 1157 3.56 7.81

s 1145  10.31 4.37 7.51

GT1 DROB-I R 0.13 8.23 2.82 5.65
F 21.13 7.73 1.68 4.84

s 020  11.89 2.55 7.52

DROB-T R 0.30 9.98 111 5.78

F 284  10.03 1.04 5.78

s 001 11.66 2.69 7.46

DROB-LD R 001  10.85 1.36 6.39

F 0.02  10.44 1.38 6.17

s 0.23 8.60 2.48 5.68

GT2 DROB-I R 0.19 7.02 1.40 4294 432
F 1.94 6.99 1.39 4072 430

B 21.30 9.42 1.27 5.55

DROB-T R 0.79 7.42 0.56 413

F 21.88 7.48 116 4.45

modes, demand predictions for later time-periods deteriorate, i.e., have
a higher level of noise. In other words, the first 2 time-periods have a
noise corresponding to an RMSE increase of 20%, the next time periods
an RMSE increase of 40%, and so on. The visual illustration of the static
planning would therefore correspond to the planning horizon shown for
stage 1 in Fig. 5(B), not for stages 2 or 3.

Results. show the results for the three optimization models under
underestimating and overestimating predictions, respectively. As previ-
ously in , A(%) indicates the relative difference of lost demand between
DROB-I/DROB-T and baseline model DROB-LD.

Based on , we summarize our observations as follows:

1. Comparison of models. Although DROB-LD shows performance
improvement in the case of overestimating predictions, DROB-I
and DROB-T consistently demonstrate lower lost demand in most
cases. Especially within rolling and folding planning, DROB-I
and DROB-T outperform DROB-LD considerably. Their advan-
tage is particularly pronounced when optimizing on underesti-
mating predictions.

2. Comparison of different reoptimization modes. Generally,
the improvement of lost demand when transitioning from static
planning to folding and rolling planning is more significant
under perturbed trip predictions than under noise-free predic-
tions (see ). This confirms the importance of such reoptimization
planning modes when less accurate predictions are used.

11

3. Comparison between predictions. Underestimating trip pre-
dictions results in higher lost demand compared to noise-free
predictions since fewer rebalancing operations are triggered. In
contrast, overestimating predictions may lead to less lost de-
mand, especially notable for DROB-LD. This is explained by the
fact that overestimating predictions triggers more rebalancing
operations in DROB-LD. We report the number of rebalancing
operations (number of bikes picked up and dropped off) over the
planning horizon in Fig. 6. Indeed, overestimating predictions
results in more rebalancing operations to meet the high demand.
The respective statistics for DROB-I and DROB-T can be found in
Appendix C.3. Overall, it appears that DROB-I and DROB-T are
less sensitive to prediction noise than DROB-LD, given that they
are designed to introduce a buffer into the optimized stations’
inventories.

Remarks. Overall, the results indicate that DROB-LD is more sensitive
to demand prediction accuracy than DROB-I and DROB-T, as DROB-
LD explicitly considers predicted demand in its objective function. By
introducing a buffer to the stations inventories, the performance of
DROB-I and DROB-T remains more stable among the different pre-
diction approaches. To visualize the improvement of rolling/folding
planning over static planning, we illustrate the difference in total lost
demand between static and rolling planning in Fig. 7, and between
static and folding planning in Fig. 8 for both GT1 and GT2. It is
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Table 10
Results of dynamic rebalancing models for GT1 and GT2 under overestimating predictions.
i 0,
Instance Model Reodpt. ?pt )tlme Lost demand (%)
mode min, Rental 4 (%) Return 4 (%) Total 4 (%)
N 1.50 12.09 2.14 7.44
DROB-LD R 0.04 10.79 2.12 6.71
F 1.52 10.50 2.18 6.58
S 0.08 11.05 v -8.60 3.77 A 76.17 7.62 A 242
GTl DROB-I R 006 875 v -1891 162 v -2358 535 v 2027
F 1.41 8.59 v -18.19 0.86 v —60.55 4.91 v —-25.38
S 0.06 11.05 v -8.60 3.94 A 84.11 7.71 A 3.63
DROB-T R 0.10 8.77 v -18.72 1.24 v —41.51 5.19 v —-22.65
F 0.26 8.75 v -16.67 1.21 v —44.50 5.16 v —-21.58
N 1.31 7.58 0.77 4.32
DROB-LD R 0.06 6.97 0.93 4.07
F 1.46 6.87 0.85 3.97
N 0.03 8.04 A 6.07 1.64 A 112.99 4.98 A 15.28
G2 DROB-I R 0.03  7.00 4043 060 v -3548 393 v -3.44
F 0.07 7.01 A 2.04 0.60 v —29.41 3.93 v -1.01
N 0.08 8.63 A 13.85 1.56 A 102.6 5.27 A 21.99
DROB-T R 0.05 7.04 A 1.00 0.45 v -51.61 3.88 v —-4.67
F 0.16 7.06 A 277 0.46 v —45.88 3.89 v -2.02
(A) GT1 (B) GT2
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Fig. 6. Number of rebalancing operations in GT1 and GT2 for the DROB-LD.

(A) GT1 (B) GT2
g 95| Il Noise-free | g 95| Il Noise-free |
& 77| |InUnderestimating = 77| |InUnderestimating
] Overestimating ] Overestimating
v 2| 2 v 2| 2
8 8
g 15 g 15
E 5
/~ /~
< 1} 8 < 1} 2
= g
3 3
g g
A 051 8 A 051 :
+ +
8 8
3 3
0 0 —
DROB-LD DROB-I DROB-T DROB-LD DROB-I DROB-T
Fig. 7. Improvement of the total lost demand from static to rolling planning.
worth noting that the difference in total lost demand in these figures rolling and folding planning consistently outperform static planning.
consistently shows positive values, meaning that in all experiments, These improvements are even more significant in the experiments with
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Fig. 8. Improvement of the total lost demand from static to folding planning.

underestimating and overestimating predictions. This can be attributed
to the fact that, in addition to updating the station inventory, a more
accurate trip prediction is updated before re-optimization in each stage
(see Fig. 5).

4.2. Experiments on real-world data

In this section, we describe the real-world dataset used to val-
idate the effectiveness of model DROB-I, which, on synthetic data,
has demonstrated consistently low lost rentals while maintaining rea-
sonable computing times. We first describe the real-world dataset in
Section 4.2.1. We then describe the results in Section 4.2.2. The exper-
imental set-up and planning horizon here considered are the same as
in the experiments on synthetic data.

4.2.1. Real-world dataset

The real-world data consists of weather, temporal, station, and
trip data. Weather and temporal data are directly provided by the
official website of the Government of Canada, including temperature
and humidity. The temporal data contains the date, hour (0 h-23 h),
year (2019), and weekday (Monday to Friday). The trip and station
data are provided by BIXIL.? The trip data contain the origin station,
start time, destination station, and arrival time of each trip, while the
station data contain the location and station capacity (i.e., the number
of docks).

We only focus on trips during weekdays from May to September
2019. Selecting trips before 2020 ensures that analyzed trip patterns
are not affected by the COVID-19 pandemic. Weekdays are chosen due
to their typically consistent work-related trip patterns. The first 21 days
of each month, excluding the weekends, constitute the training dataset.
The remaining days of May are used for validation and the remaining
days from June to September are assigned to the test dataset. The initial
inventory for stations at 7 a.m. is also collected from BIXI dataset and
serves as input for the optimization models.

For BIXI’s station network, we exclude stations that have been
relocated more than 1 km from their original locations by the operator
during specific events, constructions, or holidays. As a result, 606 sta-
tions out of originally 620 remain in our experiments. This network is
too large to be directly solved by general-purpose solvers. As a remedy,
literature often divides the network into smaller clusters. Rebalancing
is then performed within a specific cluster or between different clusters
(see, e.g., Calafiore et al., 2019; Forma et al., 2015; Ghosh et al., 2015;
Huang et al., 2022; Jin et al., 2022; Liu et al., 2016).

2 https://bixi.com/en/open-data-2/.

13

Fig. 9. Cluster of BIXI stations located in Montreal (Canada).

We follow the approach of Liang et al. (2024) to cluster the stations
according to their trip behavior using k-means. We then select a cluster
around the downtown and plateau areas in which the total number
of rentals is approximately the same as the total number of returns.
This cluster has 53 stations, including several city center stations and
therefore contains work-related trips. Given that the distances between
stations inside the cluster are limited, vehicles have sufficient time
available to relocate and rebalance bikes within each time-period. The
stations in the selected cluster are visualized in Fig. 9.

4.2.2. Results on real-world data

Given that, on synthetic data, DROB-I within rolling planning out-
performed DROB-T on lost rental under all the predictions and con-
sistently had swift computing times, we here focus on comparing the
performance of DROB-I and DROB-LD. Experiments are carried out
in a rolling planning, which aligns with practice and accommodates
the need for swift runtime, while also allowing for real-time system
updates.

The results are visualized in Fig. 10. Detailed results for each day
can be found in Appendix D. DROB-I performs better on both lost
rental and total lost demand, while the lost return is higher than for
DROB-LD. Note that lower lost rental demand (and therefore more
successful trips) also results in more return demand, which explains
that DROB-I suffers from a slightly higher lost return. Such observations
align with previous results on synthetic data. The results on real-world
data confirm the benefits of model DROB-I, providing robustness to


https://bixi.com/en/open-data-2/

J. Liang et al.

1.8 | [NDROB-LD
— It DROB-I
IS
= 17
e
=

1.6
g
=
o 15
wn
o
= 14

Rental Return Total

Fig. 10. Lost demand of DROB-I and DROB-LD on a cluster from BIXI.

the station inventories and reducing the total lost demand. In terms of
computing time, both models can be solved to optimality within 1 min.

In contrast to the results on synthetic data, the improvement pro-
vided by DROB-I is not impressive. Such smaller improvement may
be explained by the fact that the here-considered real-world data only
contains successful trips. We also carried out static planning for the
DROB-LD and DROB-I. However, under static planning, DROB-LD runs
out of memory for many cases, given that the model contains more
time-periods. The total lost demand of DROB-I under static planning
has been 1.98%, shortly higher than the one under rolling planning
(1.58%), highlighting once again the benefits of the rolling planning
for DROB-I.

5. Conclusions

In this work, we have proposed two objective functions for multi-
period rebalancing models for Bike-sharing systems, DROB-I and DROB-
T, incorporating inventory intervals and target inventories. The re-
sulting models provide an alternative to classical models minimizing
unmet demand and are particularly suitable for BSS operators that use
(often manually computed) inventory intervals and targets to guide
their rebalancing process.

Our work evaluates the entire pipeline required for an automatized
and data-driven rebalancing process. Instead of relying on manual
input, we estimate rental and return demand for each hour and station
in a data-driven fashion, using a machine learning model that has been
shown to provide reasonably accurate results based on historical data
related to time, weather and user trips. Inventory intervals and targets
are then derived such that they maximize the desired service-level.

Our empirical analysis explores the capability of the proposed plan-
ning solutions to meet customer demands under three key charac-
teristics of the planning process: the used optimization model, the
employed reoptimization mode, and the impact of highly accurate
(or inaccurate) demand predictions. The obtained planning solutions
are then evaluated within a fine-grained minute-by-minute discrete-
event simulator. A series of experiments on synthetic data allows for
three key conclusions: First, our proposed models exhibit remarkable
robustness compared to DROB-LD, the classical model minimizing un-
met demand. DROB-T leads to a reduction in lost demand of up to
34.51%, while DROB-I decreases lost demand by up to 28.74%. Second,
such robustness is also observed when demand predictions are less
accurate, as these models introduce a conservative buffer into the
station inventories, capable of better dealing with stochastic demand
fluctuations. Third, there is a pronounced benefit in reoptimizing the
rebalancing decisions throughout the planning as opposed to executing
the optimization model only once and implementing a static planning
solution for the entire planning horizon. Allowing for updated system
information, the improvement via rolling or folding planning has been

14

EURO Journal on Transportation and Logistics 13 (2024) 100147

found to be consistently in the order of 15%-20% as opposed to static
planning for DROB-LD. For DROB-I and DROB-T, the improvement
tends to be higher than 30%, clearly indicating the benefits of such
additional reoptimization effort. Finally, the benefits of our proposed
models observed on synthetic data are also verified in a case study with
real-world data from a BIXI Montreal.

Our approach may be highly attractive to system operators, not only
due to their superior performance, but also due to their fit within the
existing decision-making processes, as inventory intervals and targets
are often used concepts in practice. In addition, we hope that the
here proposed weather generator inspires future research to evaluate
planning approaches in a more complex and realistic manner.

Given the benefits of the here proposed models, we believe that
the development of tailored solution methods may be a promising
research direction, which is likely to be highly useful for both academia
and practitioners to approach rebalancing in large-scale station net-
works. Mathematical decomposition methods are likely to be par-
ticularly promising avenues. For instance, Branch-and-cut-and-price
algorithms for Pick-up-and-delivery problems (see, e.g., Rostami et al.,
2021) may be extended to the here considered dynamic rebalancing
problem, and Benders decomposition methods for static rebalancing
(see, e.g., Dell’Amico et al., 2018) may be extended to the dynamic
case.
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Appendix A. Trip prediction and inventory interval

The methodology for predicting trips and calculating inventory
intervals and target inventories is adapted from the model presented
by Hulot et al. (2018). The rentals and returns (f; and f;"') are
predicted on an hourly basis for each station. The model utilizes a
Gradient Boosting Tree, which incorporates weather conditions (tem-
perature and humidity) and temporal information (the day of the week,
hour of the day, and holidays) as learning features. In this model, a
Singular Value Decomposition (SVD) technique is applied to reduce the
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Fig. A.1. Pipeline of the predictive model.

dimension of the trip data. This process results in faster predictions, en-
hancing tractability when dealing with an elevated number of stations.
The SVD also elevates the accuracy of the model, indicated by a lower
Root Mean Square Error (RMSE), as it effectively eliminates noise and
outliers from the trip data. Fig. A.1 illustrates the model’s pipeline.

Based on the predicted rental and return demand, the expected
proportion of satisfied trips, known as service level, is computed for a
given initial inventory. Assuming a station s with initial inventory i and
capacity Cy, the rental and the return service levels for a time period
[t,7 + A] are computed as:

S = pla, 0pr
f;t+A f;rr dt

LA A = Pl C)dt
/;H-A fs—,tdt

where £, and f; represent the rental and return rates, respectively,

for station s at time r. Further, p!(i,0), and p!(i,C,) represent the

probability that station s becomes empty and full, respectively, given
an initial inventory i at time 7.

SLH (i) = (a1

SLI() = , (A.2)

The overall service level is computed as (A.3)
SL' () = min{SL (i), SLT' (i)} (A.3)

The minimum and maximum service levels, for a station s in time
period [7, 7+4], can then be computed depending on the initial inventory
at time ¢ as follows:

) (SLLD)
SL;nax,t = maxie(O,...,C:)(SLz(i))'

(A.4)
(A.5)

mingt __ .
SLIM™ = minig (g

A threshold Q is created to establish an acceptable service level for
the time horizon [z, + A]:

Q= SLMM 4 pSLM — LM, (A.6)
in which the hyperparameter g controls the proximity of the threshold
Q! to either the minimum service level or the maximum service level.
In practice, this hyperparameter influences the gap between the upper
and the lower bound of the inventory interval.

The inventory interval for station s for time period [t,7 + 4] is then
defined as

I,={ie{0,.., ClL<i<U}, A7)

where £ = min{i € {0,...,C}|SLi() > 2}, and V" = max{i €
{0,...,C}ISLL() > Q). Finally, the target inventory for station s at
time-period [t,7 + 4] is set to the initial inventory that results in the
maximum service level (i.e., SL™*").

s
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Appendix B. Weather generator

The weather generator in Fig. 3 utilizes normal distributions derived
from the temperature and humidity differences between consecutive
hours throughout the day, capturing the change in weather conditions
over time.

Histograms of the temperature differences observed between two
consecutive hours of 4 periods during the day (0 am-5 am, 6 am-11 am,
12 pm-5 pm, and 6 pm-11 pm) are depicted in Fig. B.1. The overlaid
red curves illustrate the normal distributions in which the parameters
are computed using the Maximum Likelihood Estimator.

Fig. B.1(A) and (C) display narrower distributions, suggesting less
variability in temperature change, whereas Fig. B.1(B) and (D) ex-
hibit wider spreads, indicating greater fluctuation. The distributions for
humidity differences are obtained using the same approach.

Appendix C. Supplementary experimental results on synthetic data

C.1. Results with shorter computing time limit

In this section, we present results for configurations of ground truths
and model variants, where the original average computing times (as
reported in ) exceed 10 min. The results are summarized in , indicat-
ing that despite the reduced computing time resources, the solution
quality does not significantly deteriorate. These findings reinforce the
efficiency of our models, demonstrating their ability to provide near-
optimal solutions within a short time frame, making them suitable for
practical, time-sensitive applications.

C.2. Time discretization

In this section, we report experimental results with 60 and 30-
min time-periods in . Note that a shorter planning horizon of 4 h is
used, rather than the original 8 h, due to the computational resources
required, as the models take too much time to solve to optimality and
may risk running out of memory as the branching tree becomes too
extensive within the computing time limit of 24 h.

It can be observed that using shorter time-periods with more fre-
quent rebalancing operations can effectively reduce lost demand. For
example, the lost demand for DROB-I under the rolling planning de-
creases from 5.03% to 3.57%. Additionally, DROB-I and DROB-T con-
tinue to outperform DROB-LD, further reinforcing the effectiveness of
our approach.

C.3. Rebalancing operations with noisy prediction
We further report the total number of rebalancing operations ob-

tained from DROB-I and DROB-T in Figs. C.2 and C.3, respectively.
When comparing with Fig. 6, one can observe that DROB-I and DROB-T
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Table C.1
Results with a time limit of 5 min.
i 0,
Instance Model Reogt, Opjc. time Lost demand (%)
mode  (min) Rental 4 (%) Return 4 (%) Total 4 (%)
N 0.04 7.76 v -6.17 2.51 A 49.40 5.24 A 214
GT2 DROB-I R 3.04 6.31 v —-22.67 1.35 v -19.16 3.92 v —-22.53
F 4.12 6.27 v —-22.69 1.30 v —19.75 3.87 v —22.75
N 0.03 17.87 v -5.90 5.33 v —-15.93 12.23 v -8.39
GT3 DROB-T R 2.44 15.39 v —-14.88 4.77 v —-23.92 10.53 v -17.61
F 2.69 15.33 v —-14.74 4.70 v —23.45 10.47 v —17.30
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Table C.2
Results of dynamic rebalancing models for GT1 under different time period.
Length of Reopt.  Opt. time Lost demand (%)
. iod Model d .
time-perio mode (min) Rental 4 (%) Return A (%) Total 4 (%)
S 0.01 10.62 1.43 6.28
DROB-LD R 0.01 8.18 1.68 5.07
F 0.02 7.35 1.67 4.62
i S 0.01 7.91 v —25.52 1.90 A 3287 5.03 v —19.90
60 min DROB-I R 001 695 v -1504 1.80 A714 448 v 1164
F 0.02 6.15 v -16.33 1.85 A 10.78 4.07 v -11.90
S 0.01 7.17 v —32.49 1.91 A 33.57 4.64 v —26.11
DROB-T R 0.01 7.10 v —-13.20 1.11 v —-33.93 4.22 v -16.77
F 0.02 6.87 v —6.53 1.21 v —-27.54 4.15 v -10.17
S 0.09 6.41 1.32 3.95
DROB-LD R 0.02 4.78 1.34 3.11
F 0.11 4.44 1.28 2.90
i S 0.02 5.49 v —14.35 1.54 A 16.67 3.57 v -9.62
30 min DROB-1 R 298 444 v 711 126 v 597 289 v -7.07
F 1.05 4.36 v —-1.80 1.32 A 313 2.88 v —0.69
S 0.05 5.42 v —-15.44 1.41 A 6.82 3.48 v —11.90
DROB-T R 0.01 2.04 v -57.32 3.01 A 124,63 2.53 v —18.65
F 0.30 5.42 A 22.07 1.39 A 8.59 3.47 A 19.66
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Fig. C.3. Number of rebalancing operations in GT1 and GT2 for DROB-T.
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Table D.1
Lost demand for DROB-LD and DROB-I on BIXI cluster.

Day Model Opt. time MIP Lost demand (%)
(min) gap (%) Rental Return Total
Day 1 DROB-LD 0.00 0.00 0.85 7.52 4.40
y DROB-I 0.01 0.00 0.00 2.26 1.20
Day 2 DROB-LD 0.66 0.00 0.50 0.55 0.52
v DROB-I 0.41 0.00 0.50 0.55 0.52
Day 3 DROB-LD 5.41 0.00 0.73 0.98 0.85
Y DROB-I 0.01 0.70 0.73 1.96 1.33
Day 4 DROB-LD 0.06 0.00 2.96 1.51 2.27
y DROB-I 0.01 0.00 2.09 1.51 1.81
Day 5 DROB-LD 0.02 0.00 1.74 2.33 2.01
y DROB-I 0.01 0.00 1.90 4.83 3.27
Day 6 DROB-LD 0.01 0.00 0.16 0.18 0.17
Y DROB-I 0.01 0.00 0.00 1.41 0.66
Day 7 DROB-LD 0.04 0.00 0.35 2.92 1.56
Y DROB-I 0.01 0.00 0.17 3.31 1.65
Dav 8 DROB-LD 0.01 0.00 2.66 0.65 1.76
Y DROB-I 0.01 0.00 2.66 2.39 2.54
Day 9 DROB-LD 0.09 0.00 1.75 0.80 1.30
y DROB-I 0.01 0.00 1.92 1.59 1.77
Day 10 DROB-LD 0.02 0.00 2.90 2.49 2.71
y DROB-I 0.01 0.00 2.90 2.49 2.71
Day 11 DROB-LD 0.01 0.00 1.71 0.73 1.23
Y DROB-I 0.01 0.00 1.54 1.63 1.58
Day 12 DROB-LD 0.02 0.00 0.65 1.65 1.12
Y DROB-I 0.01 0.00 1.13 0.74 0.95
Day 13 DROB-LD 0.13 0.00 3.58 1.42 2.52
Y DROB-I 0.03 0.00 2.21 0.18 1.22
Day 14 DROB-LD 0.01 0.00 2.62 1.32 1.99
y DROB-I 0.01 0.00 2.62 1.81 2.23
Day 15 DROB-LD 0.01 0.00 0.85 2.21 1.50
Y DROB-I 0.01 0.00 0.68 0.37 0.53
Day 16 DROB-LD 0.02 0.00 0.53 3.03 1.81
Y DROB-I 0.02 0.00 0.00 3.03 1.55
Day 17 DROB-LD 0.11 0.00 2.56 1.12 1.84
Y DROB-I 0.01 0.00 2.28 0.00 1.13
Dav 18 DROB-LD 0.36 0.00 2.80 0.76 1.79
y DROB-I 0.03 0.00 2.24 3.82 3.02
Day 19 DROB-LD 0.01 0.00 2.34 0.20 1.29
v DROB-I 0.01 0.00 078 1.62 119
Day 20 DROB-LD 0.01 0.00 0.40 1.08 0.72
Y DROB-I 0.01 0.00 1.00 0.43 0.72

tend to carry out more rebalancing operations than DROB-LD, for both
underestimating and overestimating predictions. Furthermore, in con-
trast to the case of DROB-LD in Fig. 6, overestimating predictions do not
necessarily lead to more rebalancing operations than underestimating
predictions, indicating that DROB-I and DROB-T are less sensitive to
prediction noise.

Appendix D. Experimental results on BIXI cluster

The daily lost demand of models DROB-LD and DROB-I on the
considered BIXI cluster are detailed in Table D.1.
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