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Stability metrics for a maritime inventory routing problem under sailing
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Homayoun Shaabani a,*, Lars Magnus Hvattum a, Gilbert Laporte a,b, Arild Hoff a

a Faculty of Logistics, Molde University College, PO Box 2110, NO 6402, Molde, Norway
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A B S T R A C T

We study a multi-product maritime inventory routing problem (MIRP) with sailing time uncertainty. We
explicitly consider the replanning that happens after uncertainty is revealed. The objective is to determine the
stability of the adjusted plans after the occurrence of an uncertain event and to evaluate the effect of incorpo-
rating different stability metrics in the rescheduling process. Five stability metrics are introduced, and mathe-
matical formulations of the MIRP incorporating each metric are presented. A reoptimization framework is then
used to analyze the impact of each stability metric. Calculations are performed using 360 instances. The main
result is that adjustments to the original plan occur at no additional cost almost 50% of the time. If decision
makers want a more stable plan, they should accept a 5% cost deterioration, resulting in 20% more stable
solutions.

1. Introduction

In 2022, more than 80% of the volume of goods in international trade
was carried by maritime transport, corresponding to 12.03 billion tons.
It is expected that the volume of maritime trade will grow by more than
2% annually between 2024 and 2028 (UNCTAD, 2023), and therefore
optimized maritime transportation is of great importance. We study the
maritime inventory routing problem (MIRP) which is a particular
maritime transportation planning problem (Papageorgiou et al., 2014).
The MIRP is a variant of the inventory routing problem (IRP) in a
maritime context. The IRP integrates inventory management decisions
with routing decisions under a vendor-managed inventory (VMI) sys-
tem, where the supplier is responsible for determining the delivery
schedule for a given customer, the delivery quantity for that customer,
and the assignment of customers to vehicle routes.

In the MIRP there are five time elements, shown in Fig. 1 along with
six event points labelled from “a" to “f". The routing is between points “a"
and “b" and after “f". Although the vessel is stationed at a port between
points “b" and “f", the temporal status of this interval affects the routing
after “f" to reach “b" at the next port.

There are always several uncertain parameters in maritime trade.
According to UNCTAD (2021), supply chain disruptions, changes in

globalization patterns, transportation costs, port congestion, and pan-
demics are the main uncertain elements. In the MIRP, there are several
problem features that could be influenced by uncertainty, some of which
are listed below.

• The sailing time can be uncertain due to reasons such as bad weather
conditions (Rodrigues and Agra, 2022), mechanical failure of vessels
(Rodrigues and Agra, 2022), or the ice conditions in the Arctic region
(Choi et al., 2015).

• The waiting time can be uncertain due to port congestion (Agra et al.,
2015).

• The port delay time can be uncertain for reasons such as strikes and
equipment failure at ports (Christiansen and Nygreen, 2005).

• Demand, which is the main feature with uncertainty in inland IRPs
(Touzout et al., 2021), can also be uncertain in a maritime setting
(Cheng and Duran, 2004; Soroush and Al-Yakoob, 2018).

Previous research on the MIRP under uncertainty has mostly focused
on sailing time as an uncertain parameter. Papageorgiou et al. (2014)
stated that the sailing time is one of the primary features influenced by
uncertainty in maritime applications. Accordingly, sailing time is
considered as the only source of uncertainty in the current study.
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Three different approaches for dealing with uncertainty in an opti-
mization problem have been proposed in the literature (Rodrigues and
Agra (2022); De Maio et al. (2021); Aytug et al. (2005)), defined in
Table 1.

In a MIRP with reactive approaches, frequent adjustments to the
original plan can lead to inefficiencies from the perspective of the port
planner (Liu et al., 2017), since these adjustments can trigger a series of
changes in subsequent decisions such as staff scheduling and container
storage (Xu et al., 2012). It is therefore important to know how stable the
adjusted plans are, i.e., how large the deviation from the original plan is
when reactive actions are applied. To incorporate the frequency infor-
mation, Cui et al. (2022) introduced a distributionally robust optimi-
zation aimed at ensuring the robustness of inventory replenishment and
routing decisions against the impact of distributional ambiguity. Hence,
the research question of the current study is: how to measure the sta-
bility of solutions to a MIRP under the uncertainty of sailing time? We
introduce stability metrics that examine the sequence of routes, which
port visits are made, and the quantities loaded and unloaded in each
visit.

The only paper having used a reactive approach for the MIRP is by
Dong et al. (2018) who solved an uncertain MIRP using a mixed integer
linear programming model and then reviewed the information revealed
in each period. Whenever the solution obtained after considering this
information is infeasible, a reoptimization is performed for the entire
planning horizon, ignoring the amount of deviation from the original
plan. After the reoptimization, the horizon is rolled forward and the
procedure is iterated until the end of the horizon.

Touzout et al. (2021) attempted to measure the stability of solutions
to the IRP under uncertain demand using reoptimization models. They
stated that their method could be extended to other applications and
proposed to consider other sources of uncertainty. In this regard, the
current study aims to introduce a reoptimization framework for the
MIRP under sailing time uncertainty in which stability metrics are
introduced. The main contribution of this paper is threefold.

1. Unlike Dong et al. (2018) and Touzout et al. (2021), who performed
reoptimization at specific time intervals, in the current study reop-
timization can occur at any point in time. This allows us to respond to
uncertainties whenever they are revealed. This is explained in Sec-
tion 5.

2. Relevant stability metrics for the MIRP are identified, and mathe-
matical formulations for each of these metrics are proposed. This is
explained in Section 6.

3. Each of the formulations is tested by performing computational ex-
periments to determine the impact of each stability metric. This is
explained in Section 7.

The remainder of the paper is organized as follows. Section 2 reviews
the literature on MIRPs with uncertainties and classifies the papers ac-
cording to uncertain parameters, approaches, and models. Section 3
provides a description of the problem. Mathematical notations are
explained in Section 4. Section 5 is devoted to the reoptimization
framework. Stability metrics are introduced in Section 6, followed by
their analysis in Section 7, where numerical results and findings are
presented. Finally, Section 8 provides concluding remarks.

2. Literature review

The most recent review of the MIRP was presented by Papageorgiou
et al. (2014), who studied a deterministic single-product MIRP. The
authors stated that robustness is a challenge for MIRP and therefore
recommended the development of approaches that can deal with un-
certainty. Ksciuk et al. (2022) provided a review of uncertainty in
maritime ship routing and scheduling, examining uncertainty in eight
different problems, including the MIRP. The authors mentioned that in
the MIRP, there are no fixed pickup and delivery port pairs, and no
predetermined number of port calls. Therefore, they concluded that this
makes the MIRP a challenging problem even without uncertainty.

The current section focuses onMIRPs with uncertainty. The reviewed
papers are summarized in Table 2, which indicates the uncertain pa-
rameters, the approaches used to deal with uncertainty, and the
employed model. The remainder of this section first introduces some of
the commonly used modelling techniques in an uncertain environment
and then discusses each of the approaches used to deal with uncertainty.

Some of the commonly used techniques for modelling of optimiza-
tion problems under uncertainty are the following.

• Stochastic programming is a modeling framework for optimization
problems under uncertainty (Klein Haneveld et al., 2020), in which
the uncertain parameters are assumed to follow known (or partially
known) probability distributions (Rodrigues and Agra, 2022).

• Recourse models are a class of models in stochastic programming,
including two-stage and multistage models. When the true value of
an uncertain parameter is observed, corrective actions can be taken
in recourse models (Klein Haneveld et al., 2020).

• Chance-constrained programming, introduced by Charnes and
Cooper (1959), provides a tool for solving optimization problems

Fig. 1. Five time elements.

Table 1
Three approaches for dealing with uncertainty.

Approaches Which decisions are made before uncertainty is
revealed

Which decisions are made after
uncertainty is revealed

Notes

Considering uncertain
information explicitly

Considering
deterministic
parameters

Proactive All decisions – No adjustment These approaches are better suited for problems with low uncertainty
and where the original plan can be maintained without any adjustment.

Reactive – An initial plan All the decisions are recourse
actions

These approaches are better suited for problems with high uncertainty.

Mixed An initial plan – Some of the decisions are
recourse actions

This is known as a priori optimization, a concept introduced by
Bertsimas et al. (1990)
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under uncertainty. This method optimizes the problem in such a way
that the constraints are satisfied with a given probability. The min-
imum required reliability should be set by the decision maker to a
value between zero and one. If this value is zero, the decision maker
is extremely risk seeking, and if it is one, it indicates an extremely
conservative attitude (risk averse).

• Robust optimization accounts for uncertainty sets where the proba-
bility distribution is unknown or does not exist (Rodrigues and Agra,
2022). The decision maker constructs a solution that is feasible for
each realization of uncertainty in the given set (Bertsimas et al.,
2011). In other words, it optimizes the problem based on the worst
possible outcome within the uncertainty set. Unlike stochastic pro-
gramming, where the uncertain parameter is assumed to be a
random variable that follows a known (or partially known) proba-
bility distribution, the uncertainty model in robust optimization is
usually deterministic and set-based (Bertsimas et al., 2011). There-
fore, the uncertain parameters can take any value within the un-
certainty set.

• Reoptimization can be used to deal with uncertainty or in situations
where the planning horizon is shorter than the horizon of the actual
problem (Dong et al., 2018).

• The integration of simulation and optimization can be used to deal
with uncertainty. Zhou et al. (2021) studied different types of inte-
gration approaches in maritime logistics.

Touzout et al. (2021) expressed that a priori approaches proactively
address uncertainties by formulating robust replenishment plans. In
terms of proactive approaches, Cheng and Duran (2004) considered a
decision support system that uses a simulation model and an optimiza-
tion model. The simulation model represents the inventory and trans-
portation system, and the optimization model is formulated as a
discrete-time Markov decision process that deals with the uncertainty

of sailing time and of demand. A deterministic model with penalty costs
is used as a proactive approach in two studies. First, Christiansen and
Nygreen (2005) considered the uncertainty of sailing time and waiting
time for a single-product MIRP. They applied soft inventory constraints,
where levels should lie within a certain interval, and introduced lower
and upper alarm intervals with artificial penalty costs to increase the
robustness of their model. Second, Rakke et al. (2011) introduced a
deterministic model with penalty costs for deviating from long-term
customer contracts, maximizing revenue based on the spot market
price and the quantity of sales in that market.

In another proactive approach by Soroush and Al-Yakoob (2018) for
a single-product MIRP, demand was assumed to be a normally distrib-
uted random variable, and penalties for understocking or overstocking
were considered. The authors proposed a stochastic optimization model
with linear constraints and a convex objective function. They used
DICOPT as a commercial solver to solve the problem.

Zhang et al. (2018) employed time windows to model sailing time
uncertainty for a single-product MIRP. They defined flexible solutions as
those that can accommodate unplanned disruptions by adjusting routing
solutions where delivery dates and total delivery quantities cannot be
changed. Furthermore, a Lagrangian heuristic was implemented to find
flexible solutions using soft constraints, and a simulator was introduced
that generates a disruption in each simulation run to evaluate the
robustness of the solutions. Diz et al. (2019) considered the uncertainty
of the total time vessels spend in ports due to delays in vessel operations
for a single-product MIRP. They developed a robust optimization
scheme using more vessels to protect the solution against delays. The
risk of infeasibility was quantified for different levels of robustness and
Gurobi used to solve the problem.

Regarding the mixed approaches, three studies have considered
recourse models that take into account routing, the quantities to be
loaded and unloaded, the order of port visits in the first stage, as well as

Table 2
Summary of MIRP papers with uncertainty.

Year Authors Uncertain parameters Approach Models

Pa Rb Mc

2004 Cheng & Duran • Sailing times
• Demand

✓ ​ ​ Simulation and optimization

2005 Christiansen &
Nygreen

• Sailing times
• Port delay times

✓ ​ ​ Deterministic model with penalty cost for inventory violation

2011 Rakke et al. • Spot market price ✓ ​ ​ Deterministic model with penalty cost for deviation from the customer long-term
contracts

2015 Agra et al. • Sailing times
• Waiting times

​ ​ ✓ Stochastic programming

2016 Agra et al. • Sailing times ​ ​ ✓ Stochastic programming
2018 Soroush & Al-Yakoob • Demand ✓ ​ ​ Chance-constrained programming
2018 Agra et al. • Sailing times

• Port delay times
​ ​ ✓ Robust optimization

2018 Cho et al. • Sailing times ​ ​ ✓ Stochastic programming
2018 Zhang et al. • Sailing times ✓ ​ ​ Stochastic programming
2018 Dong et al. • Vessel availability

• Trip delays
• Pick-up window information
• Consumption and production
rates

​ ✓ ​ Reoptimization

2019 Diz et al. • Waiting times
• Port delay times

✓ ​ ​ Robust optimization

2019 Rodrigues et al. • Sailing times ✓ ​ ✓ • Deterministic models with inventory buffers
• Robust optimization
• Stochastic programming
• Conditional value-at-risk

2021 Liu et al. • Sailing times
• Waiting times

​ ​ ✓ Two-stage distributionally robust optimization

2023 Nikolaisen et al. • Departure times
• Sailing times

​ ​ ✓ Optimization and simulation

2024 Current study • Sailing times ​ ✓ ​ Reoptimization including stability metrics

a P: Proactive approaches.
b R: Reactive approaches.
c M: Mixed approaches.
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visit times to ports and inventory decisions in the second stage, which
can be adjusted to the scenario. The first study, by Agra et al. (2015),
introduced a two-stage stochastic programming model with recourse
and solved this model using a decomposition algorithm in which opti-
mality cuts are added dynamically. The second study, by Agra et al.
(2016), used a model similar to that of the previous study, but solved it
with a combination of a commercial solver and local search heuristics. In
the third study, by Agra et al. (2018), robust optimization was used and
a decomposition algorithm was suggested. Also, an iterated local search
heuristic was introduced to improve the decomposition algorithm.

Several techniques to handle uncertainty in MIRPs were compared
by Rodrigues et al. (2019), who considered uncertain sailing times for a
single-product MIRP and employed different models and algorithms to
handle uncertainty. They discovered that three methods provide a good
trade-off between the amount and probability of inventory limit viola-
tions and routing costs. These methods are 1) deterministic modeling
with inventory buffers, 2) stochastic programming with high penalties
for inventory bounds violations, and 3) a hybrid algorithm that solves a
deterministic approach with inventory buffers derived from a condi-
tional value-at-risk approach.

Another mixed methodology applied to MIRP under uncertainty
comes from Cho et al. (2018), who proposed a two-stage stochastic
programming model in which production inventory schedule decisions
are made in the first stage and the production rate is adjusted for each
scenario in the second stage. Liu et al. (2021) applied a two-stage dis-
tributionally robust optimization algorithm in which the routing de-
cisions are made in the first stage, while decisions regarding quantities
to be loaded and unloaded, visit time to ports, and inventory levels are
made in the second stage after observing uncertainties.

A reactive methodology was applied once in the context of MIRP by
Dong et al. (2018). The authors developed stochastic simulations to
account for several sources of uncertainty, presented in Table 2, and an
algorithm that integrates reoptimization and stochastic simulation re-
sults. They reoptimized the model at a specified frequency, typically
once per day. At each stage, the parameters are updated as uncertainties
are observed, and the optimization problem is solved. This procedure is
repeated for each day of the time horizon of the current problem.

3. Problem description

The MIRP considers the transportation of products between multiple
ports while meeting inventory requirements. Different ports produce
and consume multiple products at a given production and consumption
rate. Initial inventories, minimum inventory levels, and maximum in-
ventory levels are specified for each port.

A heterogeneous fleet of vessels with a given capacity, a fixed speed,
and a daily operating cost is given. The position of a vessel at the
beginning of the planning horizon is referred to as its origin, which can
be a port or any location at sea. Sailing times from the origin to each port
and between each pair of ports are determined based on the given dis-
tance and speed of the vessel. The sailing costs are also derived from the
sailing time multiplied by the daily cost of a vessel. The maximum
unloading quantities are determined by the consumption ports based on
the vessel capacity and the maximum inventory of the port. The
maximum number of visits to each port is predetermined. The holding
cost and penalty cost for each product in each port are known. The
objective of the problem is to minimize the sum of three components:
sailing costs, inventory holding costs, penalty costs for backlogs and
overstocks.

The sailing times are assumed to be subject to uncertainty due to
weather conditions. Although a planning horizon is specified, the un-
certainty in sailing times may cause the planning horizon to be excee-
ded. The problem is solved under deterministic conditions and
whenever the uncertainty is revealed, reoptimization is performed.

4. Mathematical notations

This section explains some of the most frequently used notations
throughout this paper, whereas the complete list of notations can be
found in Appendix A. The problem consists of some ports represented by
i, j and h, and each port can be visited at most m times. There is a set of
products denoted by K and a set of vessels denoted by V. We define a
network in which the nodes are represented by (i,m), denoting the visit
m to port i. The vessels movement from node (i,m) to node (j, n) are
represented by (i,m,j,n). The set of possible port arrivals (i,m) is defined
as SA and the set of port arrivals that may be made by vessel v is defined
as SAv . The set of all possible vessel movements (i,m, j, n) is defined as SX

and the set of all possible moves for vessel v is defined as SXv .
The binary variable oimvk is one if and only if product k is loaded onto

or unloaded from vessel v at the port visit (i,m). The amount of product k
loaded onto or unloaded from vessel v at port visit (i,m) is denoted by
qimvk. The amount of product k that vessel v transports from port visit
(i,m) to port visit (j, n) is denoted by fimjnvk. Let simk represent the in-
ventory level of product k at the start of port visit (i,m) and sEimk represent
the inventory level of product k at the end of port visit (i,m).

The sailing of vessel v from port arrival (i,m) directly to port arrival
(j, n) is denoted by ximjnv, sailing of vessel v from its initial position to
port arrival (i,m) is denoted by xOimv, the port visit (i,m) is denoted by yim,
the visit to port i by vessel v at port arrival (i,m) is denoted by wimv. Let
tim be the start time for port arrival (i,m) and tEim be the end time for port
arrival (i,m).

Fig. 2 depicts the route of one vessel as an example of this network,
where Ov is the origin of v.

5. Reoptimization framework

The mathematical formulation of the MIRP given in Appendix A is
the same as that of Shaabani et al. (2023). It is used as the basic model of
the reoptimization framework. The solution of this deterministic model
is considered as the initial plan for the reoptimization.

Periodic reoptimization considers the problem periodically at fixed
time intervals. Continuous reoptimization, on the other hand, solves the
problem throughout the day and whenever data change; a procedure
collects the information up to that point and then starts the reoptim-
ization (Pillac et al., 2013). In the current study, unlike Dong et al.
(2018) and Touzout et al. (2021), a continuous-time model is used that
reacts to uncertainties as soon as they appear, hence continuous reop-
timization is performed. In this context, TU is defined as the time at
which an uncertain event occurs. Therefore, the nominal sailing times
are used until TU and then the sailing times are changed due to the
uncertain event. Since TU is an uncertain event, it can occur at any time

Fig. 2. Example of the network.
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in [0, T]. We assume that there is only one TU value in each planning
horizon. Whenever the TU value is revealed, the following changes are
made to the basic model to prepare the model for reoptimization.

• The set SA in the basic model, is replaced with SB, excluding port
arrivals visited before TU. In the same manner, the set SAv is replaced
with SBv , the set SX is replaced with SY , the set SXv is replaced with SYv .

• The solution to the deterministic problem is extracted and defined as
the data set for the reoptimization model. The sailing of vessel v from
port arrival (i,m) directly to port arrival (j, n) is denoted by Ximjnv, the
sailing of vessel v from its initial position to port arrival (i,m) is
denoted by XO

imv, the visit to port arrival (i,m) is denoted by Yim, the
visit of port i by vessel v at port arrival (i,m) is denoted byWimv, and
the amount of product k loaded onto or unloaded from vessel v at
port visit (i,m) is denoted by Qimvk.

• Due to the occurrence of the uncertain event, two new time con-
straints are defined:

tim ≥ TU (i,m) ∈ SB (1)

tEim ≥ TU (i,m) ∈ SB. (2)

If a vessel was on route from (i,m) to (j, n) when time hit TU, then the
vessel is forced to visit (j,n), but the planned arrival timemay be affected
by the updated sailing times.

• The initial inventory levels are updated when the new problem starts
after TU. If Jik = − 1, the amount of inventory consumed up to TU is
subtracted from the initial inventory, and if Jik = 1, the amount of
inventory produced up to TU is added to the initial inventory.

• The values of the decision variables visited before TU are fixed. These
decision variables are as follows: ximjnv, xOimv, oimvk, qimvk, fimjnvk, simk,
sEimk, t

E
im.

• Constraints (A28) and (A29) are deleted because the uncertainty of
the sailing time is considered, which may lead to exceeding the
planning horizon.

Now the modified model is ready, and we call it “Model 0”, which
represents the metric “cost”. The reoptimized solution represents the
sailing costs and the port operation costs, plus penalty costs for backlogs
and overstocks without stability metrics. The sailing costs and port
operation costs are called C*. Therefore, the reoptimized solution may
differ from the initial solution. In this context, stability metrics are
introduced in the next section to reduce this discrepancy.

6. Stability metrics

In this section we present five stability metrics for the MIRP and new
constraints added to the model are then given for each metric. The
objective function of the mathematical model for each of the stability
metrics consists of two parts: first it minimizes the violation of the
metrics, second it minimizes the penalty cost for backlogs and over-
stocks. Based on the values of consumption and production rates, vessel
capacity, and minimum and maximum inventories, the sizes of the
different elements in the objective function are such that we implicitly
prioritize the first part of the objective function before the second part.

6.1. Sequence preservation

The sequence preservation metric, called SP, means that the
sequence of the reoptimized solution should not differ significantly from
that of the original solution (Dettenbach and Ubber, 2015). Applications
of the sequence preservation metric mostly belong to routing and
scheduling problems (Touzout et al., 2021).

In the MIRP, traveling times are typically much longer than in an

inland IRP, and because the uncertain event can occur at any time,
changing the sequence and rerouting may be costly. If the sequence of
shipments has changed, more lifting operations are required at the new
port in order to reach the unscheduled product unloads, resulting in
higher costs. Another case where sequence preservation is critical in
maritime transport occurs on transshipment routes where another vessel
is waiting at a port of transshipment.

The mathematical formulation of the SP metric contains two new
binary variables. The binary variable zSPimjnv is defined to indicate whether
or not there is a sequence change, and zSPOimv is a binary variable equal to
one if and only if there is a change in the first visit made by the vessel.
Therefore, two new constraints are defined as follows:

zSPimjnv =
⃒
⃒Ximjnv − ximjnv

⃒
⃒ v ∈ V, (i,m, j, n) ∈ SYv (3)

zSPOimv =
⃒
⃒XO

imv − xOimv
⃒
⃒ v ∈ V, (i,m) ∈ SBv . (4)

Constraints (3) and (4) are nonlinear but can be linearized into
constraints (6) to (9) as shown by Touzout et al. (2021). Constraints (3)
count a sequence change when an arc from (i,m) to (j, n) is visited by
vessel v in the original solution but not in the reoptimized solution, and
vice versa. Constraints Eq. (4) count a sequence change if vessel v sails
directly from its initial position to port arrival (i,m) in the original so-
lution but does not in the reoptimized solution, and vice versa. The
mathematical formulation for the SP metric is as follows:
Model 1: Reoptimization based on sequence preservation (SP) metric

Minimize
∑

v∈V

∑

(i,m,j,n)∈SXv
zSPimjnv +

∑

v∈V

∑

(i,m)∈SAv
zSPOimv +

∑

(i,m)∈SA

∑

k∈Kv |Jik=− 1
CPik

(
rimk + rEimk

)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=1
CPP
ik r

PT
ik

(5)

subject to ​ ​
(1) and (2) ​ ​
(A2) to (A27) and (A30) to (A45) ​ ​
zSPimjnv ≥ Ximjnv − ximjnv v ∈ V, (i,m, j,n) ∈ SYv (6)

zSPimjnv ≥ ximjnv − Ximjnv v ∈ V, (i,m, j,n) ∈ SYv (7)

zSPOimv ≥ XO
imv − xOimv v ∈ V, (i,m) ∈ SBv (8)

zSPOimv ≥ xOimv − XO
imv v ∈ V, (i,m) ∈ SBv (9)

zSPimjnv ∈ {0,1} v ∈ V, (i,m, j,n) ∈ SYv (10)

zSPOimv ∈ {0,1} v ∈ V, (i,m) ∈ SBv . (11)

6.2. Sequence preservation with vessel replacement

The sequence preservation with vessel replacement metric, called
SPV, is similar to the SPmetric with one difference. Touzout et al. (2021)
proposed the SP metric where the sequence of an original solution must
be preserved in the reoptimized solution; in comparison, the SPV metric
measures the preservation of the sequence of the original solution for the
reoptimized solution, even if the vessels are replaced with others. For
example, an arc from (i,m) to (j, n) that was traversed by vessel 1 in the
original solution can be traversed by vessel 3 in the reoptimized solu-
tion. A sequence here is meant to be the sequence of deliveries to ports
regardless of vessel number.

With respect to the SP metric, the SPVmetric places greater emphasis
on maintaining the delivery sequence, ensuring the order of deliveries to
ports is preserved even with a new vessel, which is more stringent
compared to the SP metric. This metric aims to enhance operational
efficiency and logistical coordination at ports. Ports typically allocate
schedules and resources based on the expected sequence of arrivals.
Disrupting this sequence can lead to delays and increased waiting times
for vessels. Additionally, cargo handling and distribution are often
planned according to a specific sequence. By maintaining this sequence,
the right resources and personnel can be ensured to be available at the
right time and place. Besides, the SPV metric may make a correct
measurement when the fleet is homogeneous, whereas SP metric may
make a correct measurement when the fleet is heterogeneous.

The SPV implicitly considers the arrival time because preserving the
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sequence can also preserve the visiting times of the ports. This is shown
in Fig. 3 which also shows the difference of SP and SPV. Fig. 3 shows an
example for a part of a representation of a solution of the original plan
(3a) and two examples of the reoptimized plans (3b,3c). The values of SP
and SPV for each example are calculated and presented in Figure (3). In
Figure (3b), the reoptimized solution maintains the same vessel as the
original plan but changes the sequence of visits. In contrast, Figure (3c)
shows a reoptimized solution that employs different vessels compared to
the original plan while preserving the original sequence. When
comparing the solutions in Figure (3b) and Figure (3c), the altered
sequence in Figure (3b) can result in significant changes to the arrival
times of most port visits, whereas the solution in Figure (3c) preserves

the original sequence and, consequently, the same arrival times as the
original plan.

The mathematical formulation of the SPV metric uses two new bi-
nary variables. The binary variable zSPVimjn is defined to indicate whether or
not there is sequence change with vessel replacement, and zSPVOim is a
binary variable equal to one if and only if there is sequence change with
vessel replacement for the initial position of the vessels. Therefore, two
new constraints are defined as follows:

zSPVimjn =

⃒
⃒
⃒
⃒
⃒

∑

v∈V
Ximjnv −

∑

v∈V
ximjnv

⃒
⃒
⃒
⃒
⃒

(i,m, j, n) ∈ SY (12)

zSPVOim =

⃒
⃒
⃒
⃒
⃒

∑

v∈V
XO
imv −

∑

v∈V
xOimv

⃒
⃒
⃒
⃒
⃒

(i,m) ∈ SB. (13)

Like constraints (3) and (4), constraints (12) and (13) can be line-
arized, as is the case in constraints (15) to (18). Constraints (12) count a
change of sequence with vessel replacement if an arc from (i,m) to (j, n)
was visited in the original solution but not in the reoptimized solution
and vice versa. Constraints (13) count a change of sequence with vessel
replacement if a vessel sails directly from its initial position to port
arrival (i,m) in the original solution but not in the reoptimized solution

Table 3
Probability distributions for sailing time.

Probability distributions Sailing time

× 1 × 1.5 × 2

P = 1 0.85 0.10 0.05
P = 2 0.50 0.30 0.20
P = 3 0.15 0.45 0.40

Fig. 3. Example for the calculation of the values for the SP and SPV.
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and vice versa. The mathematical formulation for the SPV metric is as
follows:
Model 2: Reoptimization based on sequence preservation with vessel replacement
(SPV) metric

Minimize
∑

(i,m,j,n)∈SX
zSPVimjn +

∑

(i,m)∈SA
zSPVOim +

∑

(i,m)∈SA

∑

k∈Kv |Jik=− 1
CPik

(
rimk +

rEimk
)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=1
CPPik r

PT
ik

(14)

subject to ​ ​
(1) and (2) ​ ​
(A2) to (A27) and (A30) to (A45) ​ ​
zSPVimjn ≥

∑

v∈V
Ximjnv −

∑

v∈V
ximjnv (i,m, j,n) ∈ SY (15)

zSPVimjn ≥
∑

v∈V
ximjnv −

∑

v∈V
Ximjnv (i,m, j,n) ∈ SY (16)

zSPVOim ≥
∑

v∈V
XO
imv −

∑

v∈V
xOimv (i,m) ∈ SB (17)

zSPVOim ≥
∑

v∈V
xOimv −

∑

v∈V
XO
imv (i,m) ∈ SB (18)

zSPVimjn ∈ {0,1} (i,m, j,n) ∈ SY (19)

zSPVOim ∈ {0,1} (i,m) ∈ SB . (20)

6.3. Visit deviation

The visit deviation metric, called VD, compares port visits in the
reoptimized solution to those in the original solution and counts visit
violations which should be minimized (Touzout et al., 2021). This
metric does not consider the vessel number. As an example, port i at visit
m that is visited by vessel 1 in the original solution, may be visited by
vessel 3 in the reoptimized solution. This metric is helpful in situations
where it is very costly to miss a scheduled visit. If a planned port visit is
omitted in the reoptimized solution, this may result in wasted time and
resources, and if a new port visit occurs in the reoptimized solution that
was not planned in the original solution, this may result in higher
operating costs due to the unavailability of resources at a port.

The mathematical formulation of the VD metric has a new binary
variable, zVDim which is defined to denote whether or not there is a visit
deviation for port arrival (i,m). Thus, the new constraint is defined as
follows:

zVDim = |Yim − yim| (i,m) ∈ SB. (21)

Like constraints (3) and (4), constraint (21) can be linearized,
resulting in constraints (23) and (24). Constraints (21) count a visit
violation if port arrival (i,m) was visited in the original solution and not
in the reoptimized solution, and vice versa. The mathematical formu-
lation for the VD metric is as follows:
Model 3: Reoptimization based on visit deviation (VD) metric

Minimize
∑

(i,m)∈SA
zVDim +

∑

(i,m)∈SA

∑

k∈Kv |Jik=− 1
CP
ik
(
rimk + rEimk

)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=1
CPP
ik r

PT
ik

(22)

subject to ​ ​
(1) and (2) ​ ​
(A2) to (A27) and (A30) to (A45) ​ ​
zVDim ≥ Yim − yim (i,m) ∈ SB (23)
zVDim ≥ yim − Yim (i,m) ∈ SB (24)
zVDim ∈ {0,1} (i,m) ∈ SB . (25)

6.4. Visit deviation without vessel replacement

The visit deviation without vessel replacement metric, called VDV,
computes the number of ports that are not visited in the reoptimized
solution but are visited in the original solution with a certain vessel
number. This metric differs with previous metric in terms of vessel
number. For example, ifW221 = 1 andw223 = 1 then VDVmetric is equal
to 2 but VD metric is equal to 0 because Y22 = 1 and y22 = 1.

We have introduced the new VDV metric, which differs from the VD
metric described by Touzout et al. (2021). Since these authors consider a
single-product problem, all the vehicles transport the same product.
Therefore, if the same customer is visited in the reoptimized solution
compared to the original solution, then it is less important by which
vehicle it has been visited. However, since the current study considers a

multi-product problem, it could be important to use the same vessel in
the reoptimized solution as in the original solution because each vessel
can carry a different product mix.

When determining which vessel will be assigned to a particular cargo,
it is important to plan for any additional equipment or services needed for
port operations, such as pilot, tugboats, and port services. These ar-
rangements can be made in advance. However, the fleet of vessels is
heterogeneous, and if a cargo is rescheduled and assigned to a different
vessel, it may necessitate the procurement of additional equipment or
services. In such cases, the existing arrangements must be cancelled, and
new ones must be established. Making these changes, even if possible, can
be a labour-intensive process (Fagerholt et al., 2009).

The mathematical formulation of the VDV metric contains a new
binary variable. Let zVDVi denote whether there is a visit deviation
without vessel replacement for port i or not. Hence, the new constraint is
defined as follows:

zVDVimv = |Wimv − wimv| v ∈ V, (i,m) ∈ SBv . (26)

Constraints (26) count a violation of visit without vessel replacement
if the number of visits to port i in the original solution is not the same as
in the reoptimized solution. Like constraints (3) and (4), constraints (26)
can be linearized as shown in constraints (28) and (29). The mathe-
matical formulation for the VDV metric is as follows:
Model 4: Reoptimization based on visit deviation without vessel replacement (VDV)
metric

Minimize
∑

(i,m)∈SAv

∑

v∈V
zVDVimv +

∑

(i,m)∈SA

∑

k∈Kv |Jik=− 1
CP
ik
(
rimk +

rEimk
)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=1
CPPik r

PT
ik

(27)

subject to ​ ​
(1) and (2) ​ ​
(A2) to (A27) and (A30) to (A45) ​ ​
zVDVimv ≥ Wimv − wimv v ∈ V, (i,m) ∈ SBv (28)
zVDVimv ≥ wimv − Wimv v ∈ V, (i,m) ∈ SBv (29)
zVDVimv ∈ {0,1} v ∈ V, (i,m) ∈ SBv . (30)

6.5. Quantity deviation

The quantity deviation metric, called QD, calculates the difference
between the quantity of product loaded onto or unloaded from a vessel
at a port in the original solution and the loaded or unloaded quantity in
the reoptimized solution. Minimizing this metric leads to fewer planning
issues (Touzout et al., 2021) and it is significant because it is the only
metric that addresses the inventory component of the MIRP.

The mathematical formulation of the QD metric contains a new
variable. Let zQDimvk be the difference in the quantity of product k loaded
onto or unloaded from vessel v upon arrival at port (i,m) in the original
solution and the reoptimized solution. Thus, the new constraint is
defined as follows:

zQDimvk = |Qimvk − qimvk| v ∈ V, (i,m) ∈ SBv , k ∈ Kv : Jik ∕= 0. (31)

Constraints (31) calculate the difference between the loaded or
unloaded quantity in the original solution and the reoptimized solution.
Like constraints (3) and (4), constraints (31) can be linearized as in
constraints (33) and (34). The mathematical formulation for the QD
metric is as follows:
Model 5: Reoptimization based on quantity deviation (QD) metric

Minimize
∑

(i,m)∈SAv

∑

v∈V

∑

k∈KvJik∕=0
zQDimvk +

∑

(i,m)∈SA

∑

k∈Kv |Jik=− 1
CP
ik
(
rimk +

rEimk
)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=1
CPPik r

PT
ik

(32)

subject to ​ ​
(1) and (2) ​ ​
(A2) to (A27) and (A30) to (A45) ​ ​
zQDimvk ≥ Qimvk − qimvk v ∈ V, (i,m) ∈ SBv ,k ∈ Kv : Jik ∕= 0 (33)

zQDimvk ≥ qimvk − Qimvk v ∈ V, (i,m) ∈ SBv ,k ∈ Kv : Jik ∕= 0 (34)

zQDimvk ≥ 0 v ∈ V, (i,m) ∈ SBv ,k ∈ Kv : Jik ∕= 0. (35)
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7. Analysis of the stability metrics

In this section, each stability metric is analyzed. First, the problem
instances are presented in Section 7.1. The evaluation procedure is
explained in Section 7.2 and numerical results and findings are pre-
sented in Section 7.3.

7.1. Problem instances

There are 360 instances in this paper. Instances are divided into three
groups called A, B and C. Group A consists of instances with one product,
three vessels and eight ports; Group B consists of instances with two
products, four vessels and 16 ports; and group C is similar to group A but
with four products. In group A and B, each port is limited to at most one
product, but in group C, there are sometimes more than one product in a
given port. The input parameters of instances are derived from base
cases I1 to I10 of Shaabani et al. (2023) where each case differs by the
initial inventory of product k at port i, the maximum inventory of
product k at port i, and the demand rate of port i for product k. Two
different time horizons (T= 30,60 days) are considered for the problem.
The instances are available upon request.

The sailing times are assumed to be subject to uncertainty due to
weather conditions. As was done by Agra et al. (2015), in the current
study we introduce two possible changes in sailing times, considering
that sailing times can also remain unchanged. In the first change, sailing
times are increased to 1.5 times the original value, and in the second
change, they are increased to twice the original value. Based on any of
these changes, the sailing times for each port may change. Since

uncertainty may affect an area at sea, sailing times are selected based on
the combination of arrival and departure ports. Therefore, for example,
if an event occurs in the area of port 1, all sailing times from port 1 to
other ports and from other ports to port 1 are affected. Table 3 shows the
three probability distributions considered, where each column repre-
sents one of the possible changes that can occur for sailing times and
each row represents a probability distribution and gives the probability
for each of the three possible changes. If all sailing times are assigned to
the first column, then no uncertainty has occurred. However, since the
current problem examines uncertainty in sailing times, this is not
considered, and another change is created based on the same probability
distribution until at least one sailing time is assigned to the second or
third column. Besides, four scenarios are generated for each probability
distribution.

Table 4 shows the characteristics of the problem instances where the
total number of instances is 360 (3 groups × 5 base cases ×
2 time horizons × 3 probability distributions × 4 scenarios). Let g be a
group of instances and G = {A,B,C} be the set of groups. Also, let u be a
base case and U a set of base cases, then

U=

{
I1,…, I5, g ∈ {A,B}
I6,…, I10, g ∈ {C} .

According to Shaabani et al. (2023), the structure of instances can
make the MIRP difficult to solve; therefore, these instances are selected
such that the optimal solutions can be found in less than 21,600 s,
thereby enabling a fair analysis of the stability metrics.

7.2. Evaluation procedure

A set of metrics which represents the ʹ́cos tʹ́ metric and five intro-
duced stability metrics in Section 6 is defined as Θ = {θ0,…, θ5} where
θ0 = cost, θ1 = SP, θ2 = SPV, θ3 = VD, θ4 = VDV, θ5 = QD.

All instances are solved directly by CPLEX 20.1. First the determin-
istic model given in Section 5 is solved according to Algorithm 1. Then,
the evaluation procedure for an instance is given in Algorithm 2 and
matrix R represents the structure of the outcomes for all metrics for an
instance and is shown in Table 5.

The details of the evaluation procedure are as follows. After solving
the deterministic model the modifications to the basic model explained
in Section 5 are applied. Now the modified model can be solved, mini-
mizing the ʹ́cos tʹ́ metric, and the reoptimized solution is obtained,
which includes the sailing costs and port operation costs, plus penalty
costs for backlogs and overstocks, but only the sailing costs and port
operation costs, which is called C*, is reported. Since all models include
penalty cost terms and the values obtained for these terms are mostly
identical, the solutions for all models are reported without the value for

Table 4
Characteristics of the problem instances.

Groups g Number of products
|K|

Number of vessels |V| Number of ports
|N|

Base cases
U

Time horizon
T

Probability distributions P Scenarios
S

A 1 3 8 {I1,…, I5} {30,60} {1,2,3} {1,2,3,4}
B 2 4 16 {I1,…, I5}
C 4 3 8 {I6,…, I10}

Table 5
Matrix R showing the structure of outcomes for an instance.

Cost SP SPV VD VDV QD

Cost C* SP*(C*) SPV*(C*) VD*(C*) VDV*(C*) QD*(C*)
SP C*(SP*) SP* SPV*(SP*) VD*(SP*) VDV*(SP*) QD*(SP*)
SPV C*(SPV*) SP*(SPV*) SPV* VD*(SPV*) VDV*(SPV*) QD*(SPV*)
VD C*(VD*) SP*(VD*) SPV*(VD*) VD* VDV*(VD*) QD*(VD*)
VDV C*(VDV*) SP*(VDV*) SPV*(VDV*) VD*(VDV*) VDV* QD*(VDV*)
QD C*(QD*) SP*(QD*) SPV*(QD*) VD*(QD*) VDV*(QD*) QD*

Table 6
Additional constraints.

Additional
constraints
indicator

Added constraints

α0
∑

v∈V

∑

(i,m,j,n)∈SXv
CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SAv
CTO
oivxOimv +

∑

v∈V

∑

(i,m)∈SAv

∑

k∈Kv |Jik∕=0
CO
ikoimvk = C*

α1 Constraints (6) to (11),
and

∑

v∈V

∑

(i,m,j,n)∈SXv
zSPimjnv +

∑

v∈V

∑

(i,m)∈SAv
zSPOimv = SP*

α2 Constraints (15) to (20),
and

∑

(i,m,j,n)∈SX
zSPVimjn +

∑

(i,m)∈SA
zSPVOim =

SPV*

α3 Constraints (23) to (25),
and

∑

(i,m)∈SA
zVDim = VD*

α4 Constraints (28) to (30),
and

∑

(i,m)∈SAv

∑

v∈V
zVDVimv = VDV*

α5 Constraints (33) to (35),
and

∑

(i,m)∈SAv

∑

v∈V

∑

k∈KvJik∕=0
zQDimvk = QD*
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penalty costs.
The model is then solved considering each stability metric. There-

fore, the five models given in Section 6 are solved, and the objective
values are given in the main diagonal part of Table 5. Then, similarly to
the procedure introduced by Touzout et al. (2021), an evaluation of the
stability metrics is performed, where one metric is fixed at its optimal
value by some additional constraints presented in Table 6, and the
model is solved to optimality. For example, in the second row in Table 5,
the SP metric was fixed at its optimal value (SP*) except for the main
diagonal element, and then the optimal value of the other metrics was
found. For example, QD*(SP*) reports the optimal solution of the model
with the QD metric, while SP is kept at its optimal value.

Algorithm 1. Solving the deterministic model
1: Inputs: A group g ∈ G, a base case u ∈ U, a planning horizon T ∈ {30,60}
2: Solve the deterministic model in Section 5
3: Output: Initial plan for the reoptimization

Algorithm 2. The evaluation procedure for an instance
1: Inputs: One probability distribution P ∈ {1,2,3}, one of its scenarios S ∈ {1,2,

3,4}, an uncertain event occurs at TU, an empty matrix R
2: Modifications to the model (according to Section 5)
3: for θi ∈ Θ
4: Solve the “Model i” (according to Section 5 and Section 6.1 to 6.5)
5: end for
6: for θi ∈ Θ
7: for θj ∈ Θ,θj ∕= θi
8: Add the additional constraints αj to the “Model i” (according to Table 6)
9: Solve the model
10: end for
11: end for
12: Output: Matrix R (Shown in Table 5)

7.3. Numerical results and findings

This section contains the results for the three groups, A, B, and C.
Each group includes 120 instances and the aggregate result of these 120
instances is given for each group. To create an aggregate result, the
equivalence rate must be defined.

Two metrics are said to be equivalent when optimizing one does not
prevent the other from being optimal and vice versa (Touzout et al.,
2021). This is evaluated using the output of Algorithm 2. Also, two
metrics are said to be divergent if optimizing one worsens the value of
the other metric and vice versa. A new matrix is created corresponding
to matrix R in which each cell has a value of 1 when two metrics are
equivalent and has a value of 0 when two metrics are divergent.

Here is an example, Table 7(a) shows the results for the first scenario
of the first probability distribution of group A with time horizon 60 for

Table 8
The percent equivalence rate between the stability metrics.

Group A Cost SP SPV VD VDV QD

Cost – 42.50 43.33 50.00 55.83 43.33
SP 42.50 – 95.00 82.50 80.00 61.67
SPV 43.33 95.00 – 81.67 90.00 55.83
VD 50.00 82.50 81.67 – 99.17 70.83
VDV 55.83 80.00 90.00 99.17 – 72.50
QD 43.33 61.67 55.83 70.83 72.50 –

Group B Cost SP SPV VD VDV QD

Cost – 39.17 35.00 55.83 70.00 60.00
SP 39.17 – 94.17 70.83 69.17 80.83
SPV 35.00 94.17 – 77.50 70.83 89.17
VD 55.83 70.83 77.50 – 90.83 84.17
VDV 70.00 69.17 70.83 90.83 – 90.00
QD 60.00 80.83 89.17 84.17 90.00 –

Group C Cost SP SPV VD VDV QD

Cost – 54.17 52.50 50.00 50.00 57.50
SP 54.17 – 97.50 67.50 66.67 91.67
SPV 52.50 97.50 – 65.83 60.83 83.33
VD 50.00 67.50 65.83 – 39.17 36.67
VDV 50.00 66.67 60.83 39.17 – 75.83
QD 57.50 91.67 83.33 36.67 75.83 –

Fig. 4. Equivalence rate between the stability metrics for groups A, B, and C. Fig. 5. Average equivalence rate between the stability metrics.

Table 7
Results for an instance of group A.

(a) Results (b) Metrics are: equivalent = 1 or divergent = 0

​ Cost SP SPV VD VDV QD ​ Cost SP SPV VD VDV QD
Cost 632.99 9 9 7 8 900.46 Cost – 0 0 0 0 0
SP 732.79 6 6 4 5 746.32 SP 0 – 1 1 1 0
SPV 740.52 6 6 4 5 746.32 SPV 0 1 – 1 1 0
VD 732.52 6 6 4 5 746.32 VD 0 1 1 – 1 0
VDV 732.52 6 6 4 5 746.32 VDV 0 1 1 1 – 0
QD 673.78 7 7 5 6 464.37 QD 0 0 0 0 0 –
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base case I1, where SP and VD are equivalent since SP*(VD*) = SP* and
VD*(SP*) = VD* but SP and QD are divergent because SP* = 6 and by
fixing QD at the optimal value, the SP* deteriorates so that SP*(QD*) = 7
and QD* = 464.37 and by fixing SP at the optimal value, the QD* de-
teriorates such that QD*(SP*) = 746.32. Table 7(b) shows the new
matrix corresponding to the matrix in Table 7(a) showing which metrics
are equivalent.

The matrix shown in Table 7(b) is an example of a single instance,
and this type of matrix is created for all instances. Thus, there are 120
such matrices for each group and the ratio of instances in which each
pair of metrics is equivalent is called the equivalence rate of these
metrics. The detailed solutions for all instances are available at: https:
//github.com/shhom/Results-metrics-MIRP. Table 8 shows the equiv-
alence rate between the stability metrics for the three groups.

Fig. 4 illustrates the information from Table 8 and Fig. 5 shows the

average value of the equivalence rate for the three groups. Based on
these two figures, the following observations can be made.

• As shown in Fig. 5, cost is the only metric that is always below a 60%
equivalence ratio. This is not surprising, since it is costly to keep a
plan unchanged when it is subject to uncertainty, but there is a slight
difference when comparing the cost with the five stability metrics.
On average, keeping SP or SPV at the optimal value is almost
divergent with optimizing cost (equivalence rate around 45%).
Looking at the different groups, it can be seen that SP or SPV with
cost metric are less divergent in group C compared with group A and
B, which is due to the structure of group C, where each port is not
limited to one product; therefore, it is less difficult to keep the
sequence.

• The equivalence rate between VD and VDV for group A is nearly
100%. There may be two reasons for this. First, this is a single-

Fig. 6. Example for the calculation of the values for the SP and VDV.
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product problem where it is not difficult to keep a scheduled visit
when uncertainties arise, so it is not necessary to replace a vessel to
keep a scheduled visit. For group B, where there are two products,
this value was reduced by 10%. Second, in these two cases, each port
is limited to at most one product, so it is easy to keep a scheduled
visit.

• The largest difference in the equivalence rate of similar pairs of
metrics between three groups belongs to two pairs (VD and VDV, VD
and QD), where there is a high equivalence rate (over 70%) for
groups A and B, but it is very low (under 40%) for group C. The main
reason for this large difference is the structure of the groups, where
each port is limited to at most one product for groups A and B but in
group C, there is no such limitation; however, it could still be that

there is only one product. Therefore, the results state these two pairs
(VD and VDV, VD and QD) are divergent when each port is not
limited to one product.

• The SP and SPV are the only two metrics shown to be strongly
equivalent for all groups, with an average of about 95%. As shown in
Fig. 5, the equivalence rate of all other pairs of metrics averages less
than 80%.

• Although the highest equivalence rate is between SP and SPV, eight
other pairs of metrics also have high equivalence rates. As shown in
Fig. 5, equivalence rate for eight pairs of metrics is between 70% and
80%.

• On average, as seen in Fig. 5, keeping QD at its optimal value is more
likely to lead to convergence in the other metrics than keeping VD at

Fig. 7. The frequency of the cost gap in percent.
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its optimal value. However, based on Fig. 4, it is the other way
around when considering only group A, since there is only one
product, which leads to less flexibility in terms of quantity delivered,
but it is much easier to keep the visit unchanged since it always in-
cludes one product.

• Keeping VD or VDV at the optimal value leads to almost the same
equivalence rate in all three groups with SP. This is because minimal
changes in scheduled port visits contribute to a smaller number of
changes in visit order optimization.

• It is important to investigate the possible redundancy between SP
and VDV because both metrics consider a certain vessel. The equiv-
alence rate between SP and VDV is about 70%, which shows that
these two metrics do not perform the same way all the time. The
reason for this lies in situations where the same ports in the original
plan are visited in the reoptimized plan, but the sequence of visits is
different. An example of this case is shown in Fig. 6.

Since the cost metric is the most divergent metric, a more detailed
analysis is performed for it, while the other metrics have their optimal
value. In this context, the percentage of the cost gap of the optimal cost
with respect to the other metrics is computed. For example, the cost gap
of the cost metric with respect to the SP metric is calculated as C*(SP*)− C*

C* ,
where C* is the optimal value for cost metric and C*(SP*) is the optimal
solution of the model with the cost metric, while SP is kept at its optimal
value. Fig. 7 shows the frequency of the cost gap in percent. Fig. (7a)
through 7(e) show the cost gap for each of the three groups for SP, SPV,
VD, VDV, and QD, and Fig. (7f) shows the mean of the cost gap for all
groups and the cumulative percentage for the average of the five sta-
bility metrics. A cost gap of zero means that the cost metric is equivalent
to the given metric.

Fig. 7 shows that almost 20% of the instances for all metrics have a
cost gap of 0% to 5%, and almost 15% of the instances for the SP metric
and almost 12% of the instances for the SPV, VD, VDV, and QD metrics
have a cost gap between 5% and 10%. In addition, almost 45% of the
instances for the SP and SPV metrics and almost 55% of the instances for
VD, VDV, and QD metrics are equivalent to the cost metric. Conse-
quently, less than 20% of the instances for all metrics have a cost gap
greater than 10%. This means that a decision maker has a choice be-
tween a more stable plan with some cost deterioration or minimizing
costs by making frequent adjustments to the original plan. If the decision
maker chooses to make frequent adjustments to the original plan, the
cost deterioration threshold is set to 0%, which, based on the cumulative
percentages shown in Fig. (7f), means that optimizing for stability re-
sults in no additional cost nearly 50% of the time. If the decision maker
chooses a more stable plan, a certain threshold for cost deterioration can
be set. The results show that if the decision maker accepts a cost dete-
rioration of 5%, this leads to 20% more stable solutions. Thus, in almost
70% of the instances, optimizing stability resulted in a maximum of 5%
additional cost. Even more stable solutions can be obtained where more
than 80% of the instances lead to stable solutions, but the decision
maker has to accept a cost deterioration of 10%.

An absolute equivalence is defined here. An instance is said to be
“absolutely equivalent” if all pairs of metrics are equivalent, meaning
that optimizing any metric in one instance does not prevent the other
from being optimal; thus, there are no conflicting metrics. The result
shows that the number of instances with absolute equivalence for groups
A, B, and C is 28, 13, and 21, respectively. Overall, almost 17% of the
instances have absolute equivalence, which means that the problem
involves conflicting decisions in about 83% of the instances. This may
motivate the use of multiple-criteria decision analysis (MCDA) or multi-
objective optimization to find trade-offs between different conflicting
stability metrics.

8. Conclusion

We have studied the problem of maritime inventory routing under
sailing time uncertainty. Five stability metrics were introduced and
embedded in the mathematical formulations to determine the extent of
changes to an original plan when uncertainties occur. Therefore, a
reoptimization framework was implemented to determine the impact of
each stability metric on the reoptimized plan.

The analyses have shown that it is costly to keep a plan unchanged.
Therefore, the cost metric becomes worse when any other metrics have
been set to their optimal values. The remaining pairs of metrics,
including all pairs among SP, SPV, VD, VDV, QD can be divided into
three groups. The first group, with the strongest equivalence rate of
about 95%, includes only SP and SPV. The second group also contains
only one pair, which includes VD and QD with the weakest equivalence
rate of about 64%. The third group, where the equivalence rate is be-
tween 70% and 80%, includes the remaining eight pairs of metrics (SP
and VD, SP and VDV, SP and QD, SPV and VD, SPV and VDV, SPV and
QD, VD and VDV, VDV and QD). An analysis of the percentage of the cost
gap showed that optimization of the stability metrics without additional
costs occurs in almost 50% of the cases but accepting a 5% cost deteri-
oration can lead to 20% more stable solutions. Future research could
integrate heuristics with the reoptimization framework, allowing it to
address all types of instances and determine how stability metrics work
for more difficult cases.
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Appendix A. Mathematical model

This appendix first defines the notations and then presents the mathematical model.

Indices
i, j,h Indices for ports, i, j,h ∈ {1,…, |N|}
m,n Indices for visits at each port, m,n ∈ {1,…,m}

v Index for vessels, v ∈ {1,…, |V|}
k Index for products, k ∈ {1,…, |K|}
(i,m) Index for mth visit of port i

(continued on next page)
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(continued )

Sets
SA Set of possible port arrivals (i,m)

SAv Set of port arrivals that may be visited by vessel v
SX Set of all possible vessel movements (i,m, j,n)
SXv Set of all possible movements of vessel v
Vi Set of vessels that can visit port i
Kv Set of products that vessel v can transport
N Set of ports
V Set of vessels
K Set of products
Parameters
m Maximum number of visits
Jik 1 if port i is a supplier of product k; − 1 if port i is a consumer of product k; 0 if port i is neither a supplier nor a consumer of product k
Rik Demand rate of port i for product k
QO
vk Load of vessel v of product k at the beginning of the planning horizon

Cvk Capacity of the compartment of vessel v dedicated to product k
QMIN
ik Minimum unloading quantities of product k at port i

QMAX
ik Maximum unloading quantities of product k at port i

T Length of the time horizon
TQik Time required to (un)load one unit of product k at port i

TSik Set up time required to operate product k at port i
Tijv Sailing time between port i and j by vessel v
TOiv Sailing time from initial position to port i by vessel v
TBi Minimum interval between the departure of one vessel and the next arrival at port i
TWim Waiting time at port arrival (i,m)

SOik Initial inventory level of product k at port i
SMIN
ik Minimum inventory level of product k at port i
SMAX
ik Maximum inventory level of product k at port i
CT
ijv Sailing cost of vessel v from port i to port j

CTO
oiv Sailing cost of vessel v from its initial port position to port i

CO
ik Operating cost of product k at port i

CP
ik Penalty cost for backlogging of product k at port i

CPP
ik Penalty cost for having more than maximum allowed level at port i for product k
Binary variables
ximjnv 1 if and only if vessel v sails from port arrival (i,m) directly to port arrival (j,n)
xOimv 1 if and only if vessel v sails directly from its initial position to port arrival (i,m)

wimv 1 if and only if vessel v visits port i at arrival (i,m)

zimv 1 if and only if vessel v ends its route at port arrival (i,m)

yim 1 if and only if vessel visit port arrival (i,m)

zOv 1if and only if vessel v is not used
oimvk 1 if and only if product k is loaded onto or unloaded from vessel v at port visit (i,m)

Continuous variables
qimvk Amount of product k loaded onto or unloaded from vessel v at port visit (i,m)

fimjnvk Amount of product k that vessel v transports from port visit (i,m) to port visit (j,n)
fOimvk Amount of product k that vessel v transports from its initial position to port visit (i,m)

tim Start time for port arrival (i,m)

tEim End time for port arrival (i,m)

t+i Remaining time from the end of the last visit of port i until time T
simk Inventory level of product k at the start of port visit (i,m)

sEimk Inventory level of product k at the end of port visit (i,m)

sTik Inventory level of product k, above the minimum stock level for port i at the end of time T or at the end of the last visit (if this occurs after T)
sPTik Amount of product k below the maximum stock level for port i at the end of time T or at the end of last visit (if this occurs after T)
rimk Backlog of product k at the start of port visit (i,m)

rEimk Backlog of product k at the end of port visit (i,m)

rTik Amount of product k below the minimum level for port i at the end of time T
rPTik Amount of product k above the maximum level for port i at the end of time T

Minimize
∑

v∈V

∑

(i,m,j,n)∈SXv
CT
ijvximjnv +

∑

v∈V

∑

(i,m)∈SAv
CTO
oivxOimv +

∑

v∈V

∑

(i,m)∈SAv

∑

k∈Kv |Jik∕=0
CO
ikoimvk +

∑

(i,m)∈SAv

∑

k∈Kv |Jik=− 1
CP
ik(rimk + rEimk

)
+

∑

i∈N

∑

k∈Kv |Jik=− 1
CP
ikr

T
ik +

∑

i∈N

∑

k∈Kv |Jik=+1
CPP
ik r

PT
ik

(A1)

subject to ​ ​
routing constraints: ​ ​
∑

(i,m)∈SAv
xOimv + zOv = 1 v ∈ V (A2)

wimv −
∑

(j,n)∈SAvj∕=i
xjnimv − xOimv = 0 v ∈ V, (i,m) ∈ SAv (A3)

wimv −
∑

(j,n)∈SAvj∕=i
ximjnv − zimv = 0 v ∈ V, (i,m) ∈ SAv (A4)

∑

v∈Vi
wimv = yim (i,m) ∈ SA (A5)

yi(m− 1) − yim ≥ 0 (i,m) ∈ SA : m > 1 (A6)
xOimv, wimv, zimv ∈ {0,1} v ∈ V, (i,m) ∈ SAv (A7)
ximjnv ∈ {0,1} v ∈ V, (i,m, j,n) ∈ SXv (A8)

(continued on next page)
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(continued )

zOv ∈ {0,1} v ∈ V (A9)
yim ∈ {0,1} (i,m) ∈ SAv (A10)
loading and unloading constraints: ​ ​
fOimvk +

∑

(j,n)∈SAv
fjnimvk + Jikqimvk =

∑

(j,n)∈SAv
fimjnvk (A11)

​ v ∈ V, (i,m) ∈ SAv ,k ∈ Kv

fOimvk = QO
vk x

O
imv v ∈ V, (i,m) ∈ SAv ,k ∈ Kv (A12)

fimjnvk ≤ Cvkximjnv v ∈ V, (i,m, j,n) ∈ SXv ,k ∈ Kv (A13)
0 ≤ qimvk ≤ Cvkoimvk v ∈ V, (i,m) ∈ SAv ,k ∈ Kv : Jik = 1 (A14)
QMIN
ik oimvk ≤ qimvk ≤ QMAX

ik oimvk v ∈ V, (i,m) ∈ SAv ,k ∈ Kv : Jik = − 1 (A15)
∑

k∈Kv
oimvk ≥ wimv v ∈ V, (i,m) ∈ SAv (A16)

∑

(i,m)∈SAv

∑

v∈V

∑

k∈KvJik=− 1
qimvk ≥

∑

i∈N

∑

k∈KJik=− 1
RikT −

∑

i∈N

∑

k∈KJik=− 1
SOik (A17)

oimvk ≤ wimv v ∈ V, (i,m) ∈ SAv ,k ∈ Kv (A18)
fimjnvk ≥ 0 v ∈ V, (i,m, j,n) ∈ SAv ,k ∈ Kv (A19)
fOimvk ≥ 0 v ∈ V, (i,m) ∈ SAv ,k ∈ Kv (A20)
qimvk ≥ 0 v ∈ V, (i,m) ∈ SAv ,k ∈ Kv : Jik ∕= 0 (A21)
oimvk ∈ {0,1} v ∈ V, (i,m) ∈ SAv ,k ∈ Kv : Jik ∕= 0 (A22)
time constraints: ​ ​
tEim ≥ tim +

∑

v∈V

∑

k∈Kv
TSik oimvk +

∑

v∈V

∑

k∈Kv
TQik qimvk (A23)

​ (i,m) ∈ SA

tim − tEi(m− 1) − TBi yim ≥ 0 (i,m) ∈ SA : m > 1 (A24)

tEim +
∑

v∈Vi∩Vj
Tijvximjnv + TWjn yjn − tjn ≤ 2T

(
1 −

∑

v∈Vi∩Vj
ximjnv

)
(A25)

​ (i,m, j,n) ∈ SX
∑

v∈V
TOivxOimv + TWimyim ≤ tim (i,m) ∈ SA (A26)

t+i ≥ T − tEim i ∈ N (A27)
tim ≤ T (i,m) ∈ SA (A28)
tEim ≤ T (i,m) ∈ SA (A29)
tim ≥ 0, tEim ≥ 0 (i,m) ∈ SA (A30)
t+i ≥ 0 i ∈ N (A31)
inventory constraints (consumption ports): ​
si1k = SOik − Rikti1 + ri1k i ∈ N,k ∈ K : Jik = − 1 (A32)

sEimk + rimk = simk + rEimk +
∑

v∈V
qimvk − Rik

(
tEim − tim

) (A33)

​ (i,m) ∈ SA,k ∈ Kv : Jik = − 1
simk + rEi(m− 1)k = sEi(m− 1)k + rimk − Rik

(
tim − tEi(m− 1)

)
(A34)

​ (i,m) ∈ SA : m > 1,k ∈ K : Jik = − 1
sEimk + rTik = rEimk + sTik + Rikt+i + SMIN

ik (A35)
​ i ∈ N,k ∈ K : Jik = − 1
simk,SEimk ≤ SMAX

ik (i,m) ∈ SA,k ∈ K : Jik = − 1 (A36)
simk, sEimk, rimk, r

E
imk ≥ 0 (i,m) ∈ SA,k ∈ K : Jik = − 1 (A37)

sTik, r
T
ik ≥ 0 i ∈ N,k ∈ K : Jik = − 1 (A38)

inventory constraints (production ports): ​
si1k = SOik + Rikti1 i ∈ N,k ∈ K : Jik = 1 (A39)

sEimk = simk −
∑

v∈V
qimvk + Rik

(
tEim − tim

)
(i,m) ∈ SA,k ∈ Kv : Jik = 1 (A40)

simk = sEi(m− 1)k + Rik
(
tim − tEi(m− 1)

)
(i,m) ∈ SA : m > 1,k ∈ K : Jik = 1 (A41)

sEimk + Rikt+i − rPTik = SMAX
ik − sPTik i ∈ N,k ∈ K : Jik = 1 (A42)

simk,SEimk ≤ SMAX
ik (i,m) ∈ SA,k ∈ K : Jik = 1 (A43)

simk, sEimk ≥ 0 (i,m) ∈ SA,k ∈ K : Jik = 1 (A44)

sPTik , r
PT
ik ≥ 0 i ∈ N,k ∈ K : Jik = 1 (A45)
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