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A B S T R A C T

Predicting freeway traffic states is, so far, based on predicting speeds or traffic volumes with various
methodological approaches ranging from statistical modeling to deep learning. Traffic on freeways, however,
follows specific patterns in space–time, such as stop-and-go waves or mega jams. These patterns are informative
because they propagate in space–time in different ways, e.g., stop and go waves exhibit a typical propagation
that can range far ahead in time. If these patterns and their propagation become predictable, this information
can improve and enrich traffic state prediction. In this paper, we use a rich data set of congestion patterns
on the A9 freeway in Germany near Munich to develop a mixed logit model to predict the probability and
then spatio-temporally map the congestion patterns by analyzing the results. As explanatory variables, we
use variables characterizing the layout of the freeway and variables describing the presence of previous
congestion patterns. We find that a mixed logit model significantly improves the prediction of congestion
patterns compared to the prediction of congestion with the average presence of the patterns at a given location
or time.
1. Motivation

Crawling, stop and go, or total stoppage — traffic jams are a
phenomenon that occurs in road traffic all over the world. Speed in
congestion ranges from slow rolling or stop and go to a complete
stoppage in traffic. Congestion lengths vary from short stretches of
roads to miles-long lines of vehicles. They can also widely vary in time:
some congestion events dissipate in minutes, while others can paralyze
traffic for hours.

A crucial element in the study of congestion is the analysis of
historical data. In the data sets, a considerable amount of information
on each congestion’s spatial and temporal position can be found. This
information is of great importance as it provides insights and can help
to make data-based decisions on how to avoid, resolve, or predict
congestion. Using historical data, statements can be made about the
probabilities of ‘congestion’ or ‘no congestion’. These statements and
predictions about the traffic state help to increase traffic safety on
the roads in general and the freeways in particular. Predicting traffic
conditions is especially important for freeways because they have a
high traffic density and are considered major arterials. On freeways,
congestion and traffic delays can have a significant impact, not only
because of delays, but they also increase the risk of accidents due
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to abrupt braking and the resulting rear-end collisions. We want to
provide information on the probability of congestion, especially for
freeway operators because it affects many vehicles or people in this
context. The speed can be very high, especially without a general speed
limit, and adequate prediction methods are not yet integrated.

With the information from our model, the freeway operators can
adjust and prepare the traffic information systems and traffic man-
agement systems for the traffic for the following day or the following
hours/minutes. According to Li et al. (2022), accurate and dependable
short-term traffic forecasting holds a crucial significance in numer-
ous key applications within the field of traffic and transportation.
By providing trustworthy predictions of traffic quantities, short-term
traffic forecasting enables traffic managers to promptly respond and
make informed decisions to prevent congestion. Predicting congestion
patterns and, thus, the duration, size, and impact of a congestion event
contributes to improving traffic safety.

We focus on four congestion patterns mentioned by Karl et al.
(2019). These are Jam Wave, Stop and Go, Wide Jam, and Mega Jam,
whereas they range from a short speed breakdown to more distinc-
tive congestion in time and space. The differentiation is conducted
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via virtual trajectories to simulate driving vehicles through a con-
gested space–time domain. We refer to the original paper for a more
detailed description. Customized actions can be developed against in-
dividual congestion patterns to reduce the effects of congestion or keep
congestion small. No method still predicts the traffic state, which is
simultaneously simple, fast, and comprehensible for traffic managers.

The prediction of speeds and, thus, the prediction of travel times
or travel time losses for entire routes are necessary for routing and
route selection. For the rudimentary estimation of the danger of ‘‘traffic
jam’’, the prediction of the exact speed is not necessary. Defining
and predicting traffic conditions using specific thresholds rather than
forecasting directly observed traffic variables has the advantage that
the resulting condition classifications – such as Jam Wave, Stop and Go,
Wide Jam, and Mega Jam – provide more meaningful information about
traffic problems. As a result, more targeted measures can be initiated.
These categorizations may be easier for discrete models or machine
learning systems to predict because, unlike traffic variables such as
speed and density, which are often volatile, they represent clearly
defined and measurable criteria that can be captured more reliably in
real-time. In the best case, the traffic flow can be optimized in advance
by the model developed here, and a traffic jam does not occur at all
or does not evolve to the same extent without prior knowledge and
optimized traffic management.

This paper uses a discrete choice model: the multinomial logit
model, to address the predictability of congestion patterns on freeways.
This approach already existed in a comparable version in a 1998 paper.
Still, it was not pursued further, and now we want to contribute and
apply the latest computing technology to this methodology (Cottrell,
1998). By forecasting congestion events, freeway operators can con-
trol and interpret traffic optimally. When developing helpful tools for
freeway operators, they must be easy to understand and logically inter-
pretable. Also, the results are comprehensible and provide reliable and
fast guidance. The proposed model is a statistical model that evaluates
the historical traffic data of the freeway segment. Fig. 1 sketches the
methodology applied in the paper: (1) Data preparation and processing;
(2) Division of the study area into cells; (3) Spatio-temporal superimpo-
sition of historical data; (4) Prediction of the probability of a congestion
pattern in a space–time cell.

In Kessler et al. (2020), an approach is described to identify con-
gestion hot spots for these individual congestion patterns on a freeway
stretch. The proposed algorithm first isolates coherent congested clus-
ters from a spatio-temporally discretized speed matrix and then assigns
one of the four congestion patterns to each cluster. Considering the
spatial and temporal start and end points of each cluster, along with
its assigned congestion pattern, accumulated occurrences of congestion
can be determined. Regarding this analysis, the question arises about
how the individual congestion events relate to each other spatially
and temporally. The hot spot analysis of Kessler et al. (2020) showed
that clusters of individual congestion patterns over time and road
segments exist but lacks the question of whether individual congestion
events are also predictable by historical data. Many authors have tried
to predict various variables in traffic using many machine learning
and artificial intelligence methods. However, we want to develop an
easy-to-interpret model suitable for public authorities.

This paper is structured as follows. First, we describe the state
of the art of traffic prediction models and the usage of statistical
regression models in this field of research. Section 3 presents the data
used for this study and explains four congestion patterns proposed
in Karl et al. (2019). Thereafter, the prediction model is described in
detail. Section 5 contains the model implementation results and the
application of the methodology proposed in Molloy et al. (2021) to the
data derived from the German autobahn A9. The last section gives a
discussion, a summary, and an outlook on future research.
2 
2. State of the art

This section contains the current state of research on different
prediction capabilities of congestion, congestion patterns, and currently
used statistical prediction models in this field of study.

2.1. Congestion prediction

In the literature, traffic prediction can be done using different
techniques. These techniques can be grouped into several categories:
statistical models such as Yildirimoglu and Geroliminis (2013), tree
modeling such as Zhao et al. (2009), intelligence techniques such
as Mahmuda et al. (2021) and Dia (2001), and mixed modeling.

The critical challenges in predicting traffic, particularly the impor-
tance of observability and uncertainty, have been identified in recent
research (Li et al., 2022). It was noted that perfect observability,
where all state variables can be fully reconstructed from available
measurements, is a theoretical but not practical condition for perfect
predictability of traffic systems. While strict determinism and perfect
observability theoretically guarantee predictability, both conditions are
difficult to meet in transportation networks due to unobservable vari-
ables such as demand, route choice patterns, and individual behavior.
As a result, predicting traffic in large networks remains challenging,
as highlighted by Li et al. (2022), and requires the development of
interpretable models with traceable parameters.

Kerner’s traffic flow theory (Kerner and Rehborn, 1996; Kerner,
2001, 2004; Kerner et al., 2004; Kerner, 2009; Palmer et al., 2011)
describes the phenomenon of traffic congestion in detail. This theory
distinguishes three phases of traffic: free-flow, synchronized flow, and
wide moving jam. However, it should be emphasized that our study
does not only divide congested traffic into two phases but we analyze
four spatio-temporal patterns.

Many existing approaches deal with the prediction of travel times
for specific routes. van Lint et al. (2002) presents a recurrent neural net-
work approach for freeway travel time prediction. The proposed recur-
rent neural network addresses these limitations by implicitly capturing
spatio-temporal relationships derived from a state-space formulation of
the travel time prediction problem. van Lint (2006) showed that by
using an ensemble of State-Space-Neural-Network (SSNN) models, a
measure of the reliability of each prediction can also be generated.

A method combining stationary detector data and probe vehicle
data to predict freeway congestion fronts was presented, as highlighted
by Rempe et al. (2017). In Rempe and Bogenberger (2019), a forecast
algorithm was applied to urban road networks with farther links taken
into account. A clustering algorithm was used to analyze the level of
congestion within clusters, which was integrated into a K-nearest neigh-
bors travel time prediction algorithm. Rempe et al. (2021) proposed a
physically informed deep learning method to estimate traffic conditions
at locations without detection. The authors found that this method
improved the estimation and understanding of traffic density in real
freeway traffic data through data fusion.

Two methods for predicting the breakup point of traffic congestion
were presented by Lee et al. (2014). The first method uses a model that
records spatial and temporal changes in congestion on road networks
with multiple junctions. In contrast, the second method uses an algo-
rithm that finds similar historical congestion patterns and calculates
drainage timing from these templates. Weather data were analyzed and
used for congestion prediction in Lee et al. (2015), where big data
processing technology and multiple linear regression analysis explored
the relationship between weather and traffic congestion.

CPM-ConvLSTM, a novel deep learning-based model for traffic con-
gestion prediction, was presented by Di et al. (2019). The model
leverages the observed congestion patterns to predict the congestion
level of road segments by using a spatial matrix to incorporate both
the congestion patterns and the spatial relationships between road
segments.
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Fig. 1. Methodology described in the paper.
The Congestion-based Traffic Prediction Model (CTPM), which im-
proves predictions using congestion propagation patterns, was intro-
duced, as demonstrated by Nagy and Simon (2021). Performance stud-
ies show a significant improvement in forecasts. The new model PCNN
described in Chen et al. (2018) uses a deep convolutional neural net-
work to analyze periodic traffic data and make short-term congestion
predictions, incorporating techniques such as time series convolution
and multi-grained learning to capture local time dependencies and
multi-scale traffic patterns. Experiments with real traffic data show that
PCNN performs significantly better than comparable methods.

The estimation and prediction of origin–destination (OD) flow is
also a crucial issue and a possible solution in the fields of dynamic
traffic management and traffic estimation and prediction systems, ac-
cording to Antoniou et al. (2006). Advances in traffic data collection
technologies have provided an abundance of untapped data that can
be utilized in OD estimation and prediction. This study introduces a
flexible and general methodology to estimate and predict OD flow,
incorporating information from various conventional and innovative
traffic data sources, such as automatic vehicle identification systems
and probe vehicles.

Many of the methods mentioned specialize in forecasting travel
times but not traffic conditions. The expected travel time is a statement
for the individual driver and should be available before the start of
a trip. Likewise, a constant update of the travel time prediction for
the selected or possible alternative routes is handy. The prediction of
the traffic condition and, if applicable, the size of congestion is mainly
important for the freeway operators. The individual road user benefits
from the generally safer and smoother traffic flow. In the literature, this
has not yet been applied to freeways with a comprehensible modeling
approach to the best of our knowledge.

2.2. Multinomial logit estimation

Logit models are frequently used for predictions in the transport
sector, mostly for predicting accidents and their severities or the mode
choice of road users.
3 
Mixed logit models were developed to analyze driver injury severi-
ties and the differences between single-vehicle and multi-vehicle
crashes on rural two-lane highways in New Mexico over two years,
as demonstrated by Wu et al. (2014) and Dong et al. (2018). A series
of significant contributing factors are considered, including driver
behavior, weather conditions, environmental characteristics, roadway
geometric features, and traffic compositions. The research findings
indicate significant differences in the causal attributes determining
driver injury severities between these two types of crashes.

The tendency of drivers to engage in crash avoidance maneuvers
based on certain circumstances and characteristics of the accident is the
focus of research by Kaplan and Prato (2012). The analysis is conducted
utilizing a mixed logit model that represents the selection among five
emergency lateral and speed control maneuvers. A methodology that
addresses a driver’s decision of a damaged car following a traffic
accident is presented in Hamed and Al-Eideh (2020). The choice set
includes three alternatives. A random parameter (mixed) logit model
with heterogeneity in the means is specified and estimated to gain more
insight into the driver’s decision-making process following a traffic
accident.

In Li et al. (2010), the discrete choice model is also used to pre-
dict the duration of an incident. There, a multinomial logit model is
constructed to predict the duration of an incident. 62,941 recorded
incidents of the Beijing Transportation Management Bureau were used
for the development, and another 10,000 records for the validation.
The average relative error of the model is 27.3%.

Route choice models were used for estimation approaches to obtain
mode-specific values of travel time savings, based on data from Zurich,
as demonstrated by Schmid et al. (2021). They use the estimates of the
value of leisure and the values of benefits derived from the conditions
experienced while traveling. Combining these two values at their indi-
vidual level allows for a detailed analysis of the value of time assigned
to travel distributions. The same code is used from Schatzmann and
Axhausen (2021) for the study for the examination of the substitution
effects of long-distance buses in Switzerland (50 km+) and how they
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Fig. 2. Sketch of considered road stretch: stationary detectors (dashed green), inter-
changes (cyan), ramps (magenta). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

will affect the mode choice of trains and cars. They estimate standard
Multinomial Logit and Mixed Multinomial Logit models to account for
unobserved heterogeneity in cost and travel time sensitivities and also
incorporate typical social-demographic variables.

2.3. Congestion prediction using mixed logit models

A discrete choice model that predicts recurrent congestion on free-
ways was developed, as described by Cottrell (1998). This paper from
the year 1998 presents a model that estimates the probability of recur-
rent congestion at existing and potential freeway bottlenecks. The ob-
jectives of the model were to accept data that are commonly collected,
evaluate existing conditions, predict future conditions, and evaluate
the effects of mitigation measures. A logistic regression equation was
developed from 163 observations. The model correctly classifies 83%
of the data locations used in its development but should be tested
on additional data. To the best of our knowledge, there is no other
paper in this field of research, and the named model was not further
pursued. We consider the potential of modeling with discrete choice
methods to reach a very high level today, as there is now a higher
and denser data availability and also the computational capacities have
grown enormously.

3. Data

This section introduces the road stretch, presents all data used in
the study and describes the data processing.

3.1. Freeway data

The proposed methodology is applied to data collected on the
freeway A9 in Bavaria, Germany. As a test site, the freeway stretch from
Holledau to Munich is chosen with a stretch length of 50 km. Holledau
is located at km 480, Munich at km 530 (Fig. 2).

Speed data from inductive loops are available from 44 sensors with
an average spacing of 1.2 km, which gathers speed data minute-by-
minute. Data were recorded in eight months in 2019.
 p

4 
Table 1
ASM parameter values used for smoothing local speed data.

Parameter Value

Spatial grid distance 500 m
Temporal grid distance 1 min
Speed in congestion −18 km/h
Free-flow speed 80 km/h
Crossover from free to congested traffic 80 km/h
Width of the transition region 10 km/h

3.2. Data interpolation

All speed data are interpolated using the Adaptive Smoothing Method
(ASM), introduced by Treiber and Helbing (2002, 2003), Treiber et al.
(2011) and Schreiter et al. (2010). Briefly summarized, raw data of
a sparse input source are smoothed in two traffic-characteristic direc-
tions: 𝑣𝑐𝑜𝑛𝑔 denominating the wave speed in congested traffic condi-
tions, and 𝑣𝑓𝑟𝑒𝑒 denominating the wave speed in free-flow conditions.
In a discrete time–space domain, the resulting complete speed matrices
𝑉𝑐𝑜𝑛𝑔(𝑡, 𝑥) and 𝑉𝑓𝑟𝑒𝑒(𝑡, 𝑥) are combined cell-wise:

𝑉𝐴𝑆𝑀 (𝑡, 𝑥) = 𝑤(𝑡, 𝑥)𝑉𝑐𝑜𝑛𝑔(𝑡, 𝑥) + (1 −𝑤(𝑡, 𝑥))𝑉𝑓𝑟𝑒𝑒(𝑡, 𝑥). (1)

The weight 𝑤(𝑡, 𝑥) is adaptive and favors low speeds:

𝑤(𝑡, 𝑥) = 1
2

(

1 + tanh
(
𝑉𝑡ℎ𝑟 − min(𝑉𝑐𝑜𝑛𝑔(𝑡, 𝑥), 𝑉𝑓𝑟𝑒𝑒(𝑡, 𝑥))

𝛥𝑉
)

)

(2)

with 𝑉𝑡ℎ𝑟 a threshold where weight 𝑤(𝑡, 𝑥) equals to 0.5 and 𝛥𝑉 a
parameter to control the steepness of the weight function.

As an example, the resulting interpolated speed distribution from
Jul 13, 2019, is illustrated in Fig. 4. The 𝑥-axis shows the time running
from early morning to late evening. The 𝑦-axis shows the locations in
the direction of travel (from bottom to top). Each cell of the space–
time domain is colored depending on the speed, which is indicated in
the color bar on the right. To derive such a figure, the ASM parameter
values given in Table 1 are applied. They refer only to the preparation
– especially the interpolation – of the speed data out of the stationary
detectors for the congestion pattern detection.

3.3. Congestion classification

The congestion classification introduced by Kessler et al. (2020) is
then applied to the data set. The algorithm detects individual conges-
tion elements based on the algorithm (Kessler et al., 2018) and assigns
them to one of the congestion patterns defined by Karl et al. (2019).
The schematic workflow of the methodology is sketched in Fig. 3. The
parameter values of the congestion pattern definition can be found
in Table 2. Starting from a discretized speed distribution, congested
cells (speed below a threshold 𝑣𝑐𝑟𝑖𝑡) are identified. A cluster is a set
f neighbored congested cells. Using virtual trajectories, clusters that
re located close to each other are merged. Close to each other means
hat the travel time in uncongested conditions between two clusters is
ot larger than a threshold 𝑡𝑚𝑒𝑟𝑔𝑒. This way, the final congestion clusters
re determined. In order to assign a congestion pattern to each cluster,
he convex hull (to make the cluster unique) is embedded in free-flow
onditions, again crossed by virtual trajectories, and the speed profile
f each single trajectory traversing the congestion cluster is analyzed.

Depending on the frequency and the duration of each trajectory in
ongested conditions, one of the four congestion patterns is assigned
o the cluster. The sensitivity of the methodology has been assessed
n Karl et al. (2019). It is a robust algorithm that can identify and clas-
ify occurring congestion even beyond different data sources (Kessler
nd Bogenberger, 2023). It is also conceivable that the detection and
lassification work very well on the fused data. This is relevant for
ections of freeways where more than one data source is available. A

ossible approach for the fusion would be Kessler et al. (2021). We refer
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Fig. 3. Computation of congestion clusters and classification of congestion type (Kessler et al., 2020, 2018; Karl et al., 2019). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 2
Parameter values to identify and classify congestion clusters according to Karl et al.
(2019).

Parameter Value

Velocity threshold 𝑣crit 40 km/h
Free-flow speed 𝑣freeflow 120 km/h
Minimum free-flow time between congested areas 𝑡merge 4 min
Minimum size of congested areas 𝐴𝑚𝑖𝑛 12 km min

Maximum duration of Jam Wave 𝑡𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 3 min
Minimum duration of Mega Jam 𝑡𝑀𝑒𝑔𝑎𝐽𝑎𝑚 30 min
Minimum number of speed drops 𝑛𝑆𝑡𝑜𝑝𝑎𝑛𝑑𝐺𝑜 2
Temporal offset of starting trajectories 𝑡𝑟 5 min
Minimum share of congestion patterns (2 patterns) 𝑛2patterns 0.51
Minimum share of congestion patterns (3 patterns) 𝑛3patterns 0.41

to the original papers (Kessler et al., 2018; Karl et al., 2019; Kessler
et al., 2020; Kessler, 2021) for further details. Applying this congestion
classification to the speed distribution in Fig. 4, the result is depicted
in Fig. 5.

In the literature mentioned above, the origin and justification of
the four congestion patterns are explained in great detail. For the
prediction with statistical models, mainly recurrent congestion is rel-
evant. However, the data analysis shows that each of the four defined
congestion patterns occurs more frequently in location and time. A
list containing all identified congestion patterns and these interpolated
speed distributions of the considered eight months in 2019 over the
50 km stretch forms the basis for further investigations.

3.4. Data processing

We divide the investigated stretch into equidistant space–time cells
and store the known information per cell. The spatial cell size amounts
to 500 m, the temporal to one minute. For each of the cells, spatial and
temporal information is stored in addition to the congestion pattern
and speed. Spatial information is whether the segment comprises a
ramp (exit or parking lot), an interchange, and how far from Munich
the cell is located. Temporal information is about the weekday and
a binary value on the rush hour. This information is assigned to the
individual cells of every investigated day. Thus, it is impossible that
5 
Table 3
Sample characteristics.

Characteristics Value Percentage

Days 238
Jams 836
Location-sections (X) 100
Time-sections (T) 840

Total cells 20 088 269 1.0000
Free-flow cells 19 199 348 0.9558
Jam Wave cells 28 850 0.0014
Stop and Go cells 548 318 0.0273
Wide Jam cells 224 528 0.0112
Mega Jam cells 87 225 0.0043

Weekday cells 14 397 222 0.7167
Weekend cells 5 691 047 0.2833

Rush hour cells 7 165 836 0.3567
No rush hour cells 12 922 433 0.6433

Cells with a ramp 2 574 952 0.1282
Cells without a ramp 17 513 317 0.8718

Cells with an interchange 1 187 113 0.0591
Cells without an interchange 18 901 156 0.9409

several congestion patterns are assigned to one cell since only one
congestion pattern can be present at any given date, time, and location.
In addition, each cell is assigned the current speed at that point in time.

Table 3 gives an overview of the cell properties. The entire data
set (50 km and from 6 am to 8 pm) consists of 20, 088, 269 cells. From
these, 95.58% are without congestion. 0.14% of the cells are assigned
to Jam Wave, 2.73% to Stop and Go, 1.12% to Wide Jam, and 0.43% to
Mega Jam. Fig. 6 shows the distribution of both the frequency and the
location of the clusters of the congestion patterns, respectively. White
means very rare or not at all, and black means frequent occurrences.

Regarding temporal characteristics, 72% of all cells are flagged as
weekday and 36% as rush hour (defined from 6 to 9 am and from 4
to 7 pm). The proportion of the individual congestion patterns in the
total number of cells can be seen in the graphs (a) to (e) in Fig. 6. The
percentages of the respective congestion patterns are shown in black.
In the graphs, the time is limited from 6 am til 8 pm (the time axis
represents the minutes of a day) because congestion is hardly present
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Fig. 4. Interpolated speed distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Classified congestion clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
during night hours. In these graphs, it can also be seen that free flow
is predominantly detected.

The spatial criteria conditions can be seen in Fig. 2. There are
three interchanges in the interior of the entire stretch, excluding the
intersection with B2R at the very end of the freeway. In addition, there
are eight ramps and two parking lots along the stretch. The stretch
contains several areas with a different number of lanes. It varies from
two to four lanes. 13% of the cells have the information that there is a
6 
ramp for an exit or a parking lot, and 6% of the cells are flagged with
the information that there is an interchange in the area.

Initial probabilities can already be drawn from the cells. For ex-
ample, Fig. 7 shows the probability of Stop and Go congestion on
weekdays. This diagram shows a hot spot on weekdays of Stop and Go
traffic in the morning hours around km 520–530.

In the following, a mixed logit model is developed that can predict
if there is a specific congestion pattern or free-flowing traffic for the
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Fig. 6. Spatio-temporal distribution of the jam patterns.
next minutes. The model predicts the congestion pattern while con-
sidering both the speed and the congestion patterns in the temporally
and spatially preceding cells and the infrastructural parameters. To
compare the added value of labeling the prevailing cells with conges-
tion patterns, we set a model that only includes the speed and the
infrastructural parameters. The logit model predicts the probability of
the presence of one of five traffic patterns: free-flow, Jam Wave, Stop
7 
and Go, Wide Jam, or Mega Jam. We select a mixed logit model to
model the discrete outcomes or choices and a mixed model to correct
for the panel data structure of our model (Train, 2009). In contrast
to deep learning methods, explainable parameter values are retrieved
that can be used for modeling and decision-making. This also enhances
its applicability in traffic operations centers as the model’s behavior is
more transparent.
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Fig. 7. Most likely weekday congestion pattern.

For a better prediction of the current congestion pattern, the cells
that are spatially upstream and temporally ahead of the current cell
are considered. The triangular area of the cells, which are zero to five
steps in space and in time before the current cell builds a funnel, are
considered; see Fig. 8. The properties of these cells in the funnel and
the cells on the diagonal at the funnel (marked in bold in Fig. 8) are
added to the already given information of each individual cell.

4. Modeling the congestion prediction

This section describes the setup of the prediction model and its esti-
mation. In Section 4.1, two very simple naive forecasting methods from
data analysis are used. The results are in Table 7. Section 4.2 shows the
structure of two variants of a mixed logit model. The estimation model
formulas are presented in the last section of this chapter. We used the
package mixl in R (Molloy et al., 2021). Predicting congestion patterns
using a mixed logit model is not based on random utility theory, and
no human utility function is associated with each congestion pattern.
Here, we use the model structure of the mixed logit model to predict
congestion patterns as they are in the data in an explanatory way. Our
result is the latent propensity score of congestion patterns.

4.1. Base model specification

When analyzing the basic strategies for predicting traffic patterns, it
becomes clear that simplicity, especially at the beginning of an analysis,
often takes precedence over complexity when selecting methods. Initial
forecasts benefit from naive methods due to their simplicity, their
economy of calculation, and their usually easy possibility of interpreta-
tion. There is a variety of naive methods: two of these methods are
characterized by their practicality and applicability to our problem:
the persistence model, which assumes that the future value reflects the
immediate past, and the mean value method, which makes forecasts
based on the average of past data.

The persistence model Base model P is remarkable as it assumes
short-term continuity of traffic flows and is therefore suitable for stable
conditions. However, it is not sufficient during the beginning and
termination of congestion. This has safety implications and emphasizes
the need for accurate predictions at critical moments. In contrast,
the averaging approach uses historical frequency to anticipate future
conditions and provides a statistical prediction: Base model A. The
very simple basis variation that analyzes the data used to determine
8 
the probability of a traffic condition in a cell. An example of a result
of the basic variant for weekdays is shown in Fig. 7.

These naive forecasting models serve as a valuable benchmark. If
sophisticated algorithms fail to outperform the baseline established by
these methods, their application can be reconsidered. However, the
results must also be treated with caution and scrutinized carefully. A
simple method can perform well, but it does not necessarily reflect com-
plexity. This illustrates the importance of such elementary prediction
techniques in the early stages of traffic pattern analysis.

4.2. Mixed logit model specification

The data set with approx. 20 million cells is used as a basis for
the logit model (see Table 3). The data set is divided into a training
set of 80% of random days and a test set consisting of the remaining
20% of the days. This way, we get more than six months of training
data and almost two months of test data. Then, two variants (models I
and II) and a basic investigation of the model are created. The simple
basis variation that analyzes the data visualized in Fig. 1 determines
the probability of a traffic condition in a cell. An example of a result
of the basic variant for weekdays is shown in Fig. 7.

Model I calculates the probability of a traffic condition from histor-
ical data and spatial and temporal information. The input data are the
historical data of the traffic jams and the parameters of the individual
cells: the information on ramps, parking lots, or interchanges, and
weekday or rush hour. To estimate the probability of the current traffic
pattern, the speed is analyzed and included in the determination of the
likelihood of the current cell.

The development of model II has the same parameters as model
I but with the labeling of the congestion patterns. More precisely,
the model I only has the infrastructural information and speed in-
formation of the current and the previous funnel cells. In contrast,
model II additionally uses the information on the congestion patterns
in the funnel cells. This aims to demonstrate the benefit of historical
knowledge of the congestion pattern in the previous cells and allows
the analysis of the impact of congestion patterns for the prediction.
Model II also considers the speed in cell −3 (see Fig. 8). The speed
of this cell allows us to infer the congestion pattern by the different
frequencies and values of the speed. Cell −3 has a value frequently
lower than 50 km/h for Stop and Go, whereas the speed for Wide Jam
is significantly more often above 75 km/h (see Fig. 9). Additionally to
the speed in cell −3, the difference of the speed of cell −5 to cell −1 is
considered in model II. Fig. 10 shows that the speed difference is often
zero for Stop and Go as the general speed value is low. For Wide Jam,
the speed drop is often more recognizable. It should be noted that the
number of observations per congestion pattern is different. The plots
in Figs. 9 and 10 are normalized. To include the characteristic spatio-
temporal propagation of congestion, we use a co-moving coordinate
system in the modeling through the funnel. The explanatory variables
are summarized in the following list, and their hypothesis on the effects
of prediction is explained:

• Average speed in funnel 𝑠𝑝𝑒𝑒𝑑𝑓𝑢𝑛𝑛𝑒𝑙: This parameter is used for
the first sequence of models I and II. We expect that if the average
speed in the funnel is lower, the probability of congestion is
higher.

• Location to Munich 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑢𝑛𝑖𝑐ℎ: The nearer the city and thus
the metropolitan area, the higher the probability of congestion.

• Speed cell −3 𝑣𝑐𝑒𝑙𝑙−3: The speed in cell −3 of the funnel is shown
in detail in Fig. 9. The higher the speed in this cell, the more likely
are the congestion patterns Wide Jam or Mega Jam.

• Rush hour 𝑟ℎ: The cells have the binary information on rush
hour. The assumption is that at rush hour times, smaller conges-
tion patterns such as Jam Wave and Stop and Go will occur more

likely.
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Fig. 8. Look-ahead funnel for a cell 𝑥.
• Weekday 𝑤𝑒: Whether it is a weekday and, therefore, a working
day, a weekend day, or a public holiday is an important aspect
for the probability of emergence of congestion.

• Section with ramps or parking lot 𝑤𝑒𝑎𝑣𝑖𝑛𝑔𝑠𝑒𝑐𝑡𝑖𝑜𝑛: On sections
with ramps or entrances to junctions or car parks, the likelihood
of congestion may be increased compared to the mainline.

• Section with interchange 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒: On sections with a free-
way junction and many interconnecting processes, the likelihood
of minor traffic jams is increased.

• Speed difference of cell −5 to cell −1 𝑣𝑐𝑒𝑙𝑙−5𝑡𝑜1: A larger positive
difference from the speed in cell −5 to cell −1 and thus a larger
speed drop is decisive for a higher probability of a rather sudden
congestion object (congestion pattern Stop and Go or Mega Jam).
Congestion pattern Jam Wave or Wide Jam are more likely to
occur in areas with a generally low-speed level. The distribution
of the speed difference is presented in Fig. 10.

• Proportion of cells with congestion pattern Jam Wave in the
funnel 𝑖𝑛𝑑𝑖𝑐𝐽𝑎𝑚𝑊 𝑎𝑣𝑒: If in the previous cells of the funnel, the
proportion of cells with Jam Wave pattern was already high, the
probability that this congestion pattern is still present is high.

• Proportion of cells with congestion pattern Stop and Go in
the funnel 𝑖𝑛𝑑𝑖𝑐𝑆𝑡𝑜𝑝𝐺𝑜: If in the previous cells of the funnel the
proportion of cells with Stop and Go pattern was already high,
the probability that this congestion pattern is still present is high.

• Proportion of cells with congestion pattern Wide Jam in the
funnel 𝑖𝑛𝑑𝑖𝑐𝑊 𝑖𝑑𝑒𝐽𝑎𝑚: If in the previous cells of the funnel, the
proportion of cells with Wide Jam pattern was already high, the
probability that this congestion pattern is still present is high.

• Proportion of cells with congestion pattern Mega Jam in the
funnel 𝑖𝑛𝑑𝑖𝑐𝑀𝑒𝑔𝑎𝐽𝑎𝑚: If in the previous cells of the funnel the
proportion of cells with Mega Jam pattern was already high, the
probability that this congestion pattern is still present is high.

• Existence of congestion pattern Jam Wave in cell −1
𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−1: The probability of the Jam Wave pattern is higher
if the Jam Wave pattern was also present at the location at the
previous time interval.

• Existence of congestion pattern Jam Wave in cell −3
𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−3: On the other hand, the probability of the jam
pattern Jam Wave to occur decreases if the jam pattern was
already present in cell −3. This is because a Jam Wave is more
likely to stand alone. If there were several in succession, it would
be of the Stop and Go pattern.

We know that not all possibilities of data processing are being used
up. Information on demand clusters of the examined days and months
can be integrated so that, in addition to normal weekdays, days before
9 
public holidays or vacations will also be considered. These influences
are clearly noticeable on Bavarian freeways. In addition, exogenous
factors influencing traffic, such as the weather, are missing in the
current model.

4.3. Model estimation

The model is formulated as a mixed logit model (Train, 2009)
as estimated using the high-performance computing package mixl in
R (Molloy et al., 2021). A mixed logit model is a discrete choice model
for several categorical outcomes, such as congestion patterns, where
a single decision maker, here a cell in the space–time diagram, is ob-
served several times. In our case, each cell is observed 240 times. In our
model, we use error components and no random coefficients. A mixed
logit model can be used without a random-coefficients interpretation
by representing the correlation among the utilities for the different
alternatives by error components,

𝑝(𝑦 = 𝑖|𝑥, 𝜃) = 𝑒𝑈𝑖
∑

𝑗 𝑒𝑈𝑖
(3)

with the context of the following form of a utility function, according
to Train (2009):

𝑈𝑖 = 𝑥′𝛽𝑖 + 𝜀𝑖 (4)

The model is estimated using simulation techniques (Train, 2009)
that approximate the normal distribution of the random intercepts
utilizing a sequence of Halton draws (20 draws). The utility functions
for each alternative are specified linearly. The starting values are set
to 0.1. In the estimation, we experienced issues of co-linearity, as in
our observed data, where several categorical attributes are perfectly
co-linear and are removed consequently.

We specified five utility functions, one for each congestion pattern,
plus free flow. The free-flow utility function is set to zero. The other
four functions, for the congestion patterns Jam Wave, Stop and Go,
Wide Jam, and Mega Jam, are defined with several parameters. The
parameters are presented in an itemized list in Section 4.2. The model
is built up in two levels: in the first level, a preliminary analysis is
calculated, in which the probability of one of the congestion types is
calculated compared to free flow. For this purpose, the average speed
in the funnel before the current cell and the distance in kilometers to
the city (Munich) are used as parameters:

𝑉𝐽 = @𝐶𝐽𝑎𝑚 +@𝜎𝐽 ⋅ 𝑑𝑟𝑎𝑤1 +@𝑠𝑝𝑒𝑒𝑑𝑓𝑢𝑛𝑛𝑒𝑙 ⋅ $𝑚𝑒𝑎𝑛𝑠𝑝𝑒𝑒𝑑𝑓𝑢𝑛𝑛𝑒𝑙

+ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑢𝑛𝑖𝑐ℎ ⋅ $𝑥 (5)

In the second step, the individual utility functions

𝑈 = 0 (6a)
1
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Fig. 9. Normalized histogram of speed distribution in cell −3 (Fig. 8) before current cell with jam pattern.

Fig. 10. Normalized histogram of speed difference of cell −5 to cell −1 (Fig. 8) before current cell with jam pattern.
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𝑈2 = @𝐶2 + 𝐸𝐶2 +@𝑠𝑝𝑒𝑒𝑑𝑈2−𝑐𝑒𝑙𝑙−3 ⋅ $𝑣𝑐𝑒𝑙𝑙−3
+@𝑖𝑛𝑑𝑖𝑐𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 ⋅ $𝑓𝑢𝑛𝑛𝑒𝑙𝑠ℎ𝑎𝑟𝑒𝐽𝑎𝑚𝑊 𝑎𝑣𝑒

+@𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 ⋅ $𝑟ℎ +@𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 ⋅ $𝑤𝑑

+@𝑤𝑒𝑎𝑣𝑖𝑛𝑔𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 ⋅𝑤𝑠 +@𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 ⋅ $𝑖𝑐

+@𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−1 ⋅ $𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−1
+@𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−3 ⋅ $𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−3

(6b)

3 = @𝐶3 + 𝐸𝐶3 +@𝑠𝑝𝑒𝑒𝑑𝑈3−𝑐𝑒𝑙𝑙−3 ⋅ $𝑣𝑐𝑒𝑙𝑙−3
+@𝑖𝑛𝑑𝑖𝑐𝑆𝑡𝑜𝑝𝐺𝑜 ⋅ $𝑓𝑢𝑛𝑛𝑒𝑙𝑠ℎ𝑎𝑟𝑒𝑆𝑡𝑜𝑝𝐺𝑜 +@𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑆𝑡𝑜𝑝𝐺𝑜 ⋅ $𝑟ℎ

+@𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑆𝑡𝑜𝑝𝐺𝑜 ⋅ $𝑤𝑑 +@𝑤𝑒𝑎𝑣𝑖𝑛𝑔𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑜𝑝𝐺𝑜 ⋅𝑤𝑠

+@𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑜𝑝𝐺𝑜 ⋅ $𝑖𝑐

(6c)

4 = @𝐶4 + 𝐸𝐶4 +@𝑠𝑝𝑒𝑒𝑑𝑈4−𝑐𝑒𝑙𝑙−3 ⋅ $𝑣𝑐𝑒𝑙𝑙−3
+@𝑖𝑛𝑑𝑖𝑐𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 ⋅ $𝑓𝑢𝑛𝑛𝑒𝑙𝑠ℎ𝑎𝑟𝑒𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 +@𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 ⋅ $𝑟ℎ

+@𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 ⋅ $𝑤𝑑 +@𝑠𝑝𝑒𝑒𝑑𝑊 𝐽𝑐𝑒𝑙𝑙−5𝑡𝑜1 ⋅ $𝑣𝑐𝑒𝑙𝑙−5𝑡𝑜1

(6d)

5 = @𝐶5 + 𝐸𝐶5 +@𝑠𝑝𝑒𝑒𝑑𝑈5−𝑐𝑒𝑙𝑙−3 ⋅ $𝑣𝑐𝑒𝑙𝑙−3
+@𝑖𝑛𝑑𝑖𝑐𝑀𝑒𝑔𝑎𝐽𝑎𝑚 ⋅ $𝑓𝑢𝑛𝑛𝑒𝑙𝑠ℎ𝑎𝑟𝑒𝑀𝑒𝑔𝑎𝐽𝑎𝑚 +@𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑀𝑒𝑔𝑎𝐽𝑎𝑚 ⋅ $𝑟ℎ

+@𝑠𝑝𝑒𝑒𝑑𝑀𝐽𝑐𝑒𝑙𝑙−5𝑡𝑜1 ⋅ $𝑣𝑐𝑒𝑙𝑙−5𝑡𝑜1

(6e)

re defined to predict the probability of the individual congestion
atterns. Each alternative has its own utility function, referred to as
1 to 𝑈5 in this case. Each utility function consists of a constant term
𝐶𝐽𝑎𝑚, 𝐶2, 𝐶3, 𝐶4, 𝐶5), fixed effects marked with the @ sign multiplied
y the parameters out of the data set with the $ sign, and random
ffects (𝐸𝐶2, 𝐸𝐶3, 𝐸𝐶4, 𝐸𝐶5) that come from a normal distribution and
re calculated as follows:

𝐶2 = @𝜎12 ⋅ 𝑑𝑟𝑎𝑤1 +@𝜎2 ⋅ 𝑑𝑟𝑎𝑤5 (7a)

𝐶3 = @𝜎13 ⋅ 𝑑𝑟𝑎𝑤1 +@𝜎3 ⋅ 𝑑𝑟𝑎𝑤2 (7b)

𝐶4 = @𝜎14 ⋅ 𝑑𝑟𝑎𝑤1 +@𝜎4 ⋅ 𝑑𝑟𝑎𝑤3 (7c)

𝐶5 = @𝜎15 ⋅ 𝑑𝑟𝑎𝑤1 +@𝜎5 ⋅ 𝑑𝑟𝑎𝑤4 (7d)

In the combined probability function, the preselection 𝑉𝐽 is put
head by multiplication:

𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤 = 𝑒𝑉𝐽 ⋅ $𝑠𝑒𝑙𝐶ℎ𝑜𝑖𝑐𝑒
1 + 𝑒𝑉𝐽

+ 1 − $𝑠𝑒𝑙𝐶ℎ𝑜𝑖𝑐𝑒
1 + 𝑒𝑉𝐽

(8)

The variable 𝑉𝐽 represents the utility of the first alternative and
consists of a constant term, a random effect, fixed effects, and a linear
function of the characteristics. 𝑃𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤 is the probability that the first
alternative will be chosen, which is calculated by taking the exponent
of the utility of the first alternative and then normalizing it. Based on
this probability and the utility functions of the congestion patterns, the
probabilities of all five possible outcome functions are calculated.

5. Results

This section examines the prediction of the probability of the con-
gestion patterns by the discrete choice model. It describes a validation
to show how well the three proposed models predict the used data set.
In addition, we show the application of the model to one congestion
pattern as an example.

5.1. Estimation results

The models are based on the congestion patterns of the historical
database described in Section 3 in Table 3 and include actual speed.
The basis model contains no statistical variables and is evaluated in the
11 
Table 4
Model estimation results for the two model variants: random effects and error
components.

Parameter Model I Model II

C Jam indicator 𝐶𝐽𝑎𝑚 6.36 (0.02)∗∗∗ 6.07 (0.02)∗∗∗

C Jam Wave 𝐶2 1.01 (0.03)∗∗∗ −7.11 (0.12)∗∗∗

C Stop and Go 𝐶3 2.50 (0.02)∗∗∗ −8.43 (0.07)∗∗∗

C Wide Jam 𝐶4 3.45 (0.02)∗∗∗ −14.22 (0.17)∗∗∗

C Mega Jam 𝐶5 2.31 (0.02)∗∗∗ −21.08 (1.70)∗∗∗

SIGMA Stop and Go 𝜎3 −0.01 (0.07) −1.71 (0.04)∗∗∗

SIGMA link of free-flow and Stop and Go 𝜎13 −1.34 (0.01)∗∗∗ 1.23 (0.05)∗∗∗

SIGMA jam indicator 𝜎𝐽𝑎𝑚 −0.89 (0.01)∗∗∗ 0.22 (0.01)∗∗∗

SIGMA Mega Jam 𝜎5 1.33 (0.01)∗∗∗ −0.02 (0.09)
SIGMA Wide Jam 𝜎4 −0.93 (0.01)∗∗∗ −0.07 (0.05)
SIGMA link of free-flow and Wide Jam 𝜎14 −0.40 (0.01)∗∗∗ 3.45 (0.09)∗∗∗

SIGMA link of free-flow Mega Jam 𝜎15 −0.39 (0.02)∗∗∗ 5.28 (0.68)∗∗∗

SIGMA link of free-flow and Jam Wave 𝜎12 −1.05 (0.02)∗∗∗ 1.61 (0.08)∗∗∗

SIGMA Jam Wave 𝜎2 0.05 (0.03) −1.48 (0.08)∗∗∗

Standard errors in parentheses. ∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

ext section. The results of the statistical variants model I and model II
re shown in Table 4, Table 5, and Table 6.

After finding a model that predicts the occurrence of an event – in
his paper, the congestion pattern of Jam Wave, Stop and Go, Wide
am, Mega Jam, or free-flow – it is appropriate to check the prediction
uality or model quality. In principle, for many classification models,
uch as logistic regression, it is possible to specify a pseudo-R2. For the
ogit model, however, there are three popular variants of the pseudo-
2: McFadden R2, Cox&Snell R2, and the Nagelkerke R2. For their
alculation, the likelihood of the zero model LL is used. In our case,
e consider the McFadden R2, which can take a value between 0-
ery poor and 1-excellent. The McFadden R2 in Table 6 is 0.93 for
odel I and 0.99 for model II. These two values are relatively high

or a logit model. The reason for this is the immensely high correct
rediction of free flow. The speed pre-selection model also improves
he quality of the prediction. However, the increase of the value from
odel I to model II shows that it improves the prediction by including

he information on the traffic patterns before the currently considered
ell. The improvement in describing the data from model I to model II
s also supported by Akaike’s Information Criteria (AIC), which is lower
n the second variant (Brewer et al., 2016; Groß, 2015).

From Tables 4 and 5, statements can also be made about the
robability of the congestion patterns and the function of the model
an be checked. We will limit ourselves here to the best version of the
odels examined: model II. On the selected stretch, the probability of

ongestion, in general, increases when the mean speed in the funnel
ecreases. A falling speed in cell −3 of the funnel indicates a higher
robability of Jam Wave and Stop and Go. In contrast, it means a lower
ikelihood of Wide and Mega Jam. The time, especially the defined
ush hour, indicates a higher probability for all congestion patterns,
specially for Wide Jam. According to the simulation, the impact of
he day of the week on the prediction would mean that the probability
f congestion is higher on weekends than on weekdays. This does not
eem directly plausible to us, but the parameters increase the general
orrectness of the model.

The probability of Jam Wave and Stop and Go decreases in the
reas where merging operations (weaving section in Table 5) occur and
here a freeway interchange exists. This is contrary to the first consid-
ration for the probability of congestion at these locations. Concerning
he input data, the presence of a weaving section or an interchange
s always only the 500 m where the connection point or the exit onto
he other freeway at the interchange is located. The real merging
rocesses, however, take place before or after these areas. Therefore,
he statement of the model is plausible at this point. Splitting the
reas even further in a subsequent study would be conceivable. The
requency of the respective congestion pattern in the funnel strongly
ndicates the respective congestion pattern in the forecast. Again, the
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Table 5
Model estimation results for the two model variants: values for the data dependent parameters in Eq. (4) with @ sign.

Parameter Model I Model II

Average speed in funnel 𝑠𝑝𝑒𝑒𝑑𝑓𝑢𝑛𝑛𝑒𝑙 −0.11 (0.00)∗∗∗ −0.11 (0.00)∗∗∗

Kilometers to Munich 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑢𝑛𝑖𝑐ℎ −0.01 (0.00)∗∗∗ −0.00 (0.00)∗∗∗

Speed in cell −3 by Jam Wave 𝑠𝑝𝑒𝑒𝑑𝑈2−𝑐𝑒𝑙𝑙−3 −0.08 (0.00)∗∗∗ −0.03 (0.00)∗∗∗

Speed in cell −3 by Stop and Go 𝑠𝑝𝑒𝑒𝑑𝑈3−𝑐𝑒𝑙𝑙−3 −0.09 (0.00)∗∗∗ −0.01 (0.00)∗∗∗

Speed in cell −3 by Wide Jam 𝑠𝑝𝑒𝑒𝑑𝑈4−𝑐𝑒𝑙𝑙−3 −0.09 (0.00)∗∗∗ 0.02 (0.00)∗∗∗

Speed in cell −3 by Mega Jam 𝑠𝑝𝑒𝑒𝑑𝑈5−𝑐𝑒𝑙𝑙−3 −0.09 (0.00)∗∗∗ 0.03 (0.00)∗∗∗

Jam Wave while rush hour 𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 −0.15 (0.03)∗∗∗ 0.11 (0.06)
Stop and Go while rush hour 𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑆𝑡𝑜𝑝𝐺𝑜 0.67 (0.02)∗∗∗ 0.75 (0.03)∗∗∗

Wide Jam while rush hour 𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 −0.53 (0.02)∗∗∗ 0.62 (0.07)∗∗∗

Mega Jam while rush hour 𝑟𝑢𝑠ℎℎ𝑜𝑢𝑟𝑀𝑒𝑔𝑎𝐽𝑎𝑚 −0.09 (0.02)∗∗∗ 2.28 (0.24)∗∗∗

Jam Wave on weekdays 𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 −0.60 (0.02)∗∗∗ −0.57 (0.04)∗∗∗

Stop and Go on weekdays 𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑆𝑡𝑜𝑝𝐺𝑜 0.86 (0.01)∗∗∗ −0.11 (0.02)∗∗∗

Wide Jam on weekdays 𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 −0.81 (0.01)∗∗∗ 0.04 (0.03)
Jam Wave at weaving sections 𝑤𝑒𝑎𝑣𝑖𝑛𝑔𝑠𝑒𝑐𝑖𝑜𝑛𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 0.00 (0.04) 0.22 (0.07)∗∗∗

Stop and Go at weaving sections 𝑤𝑒𝑎𝑣𝑖𝑛𝑔𝑠𝑒𝑐𝑖𝑜𝑛𝑆𝑡𝑜𝑝𝐺𝑜 −0.18 (0.03)∗∗∗ −0.23 (0.05)∗∗∗

Jam Wave at interchanges 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 −1.10 (0.06)∗∗∗ −1.17 (0.11)∗∗∗

Stop and Go at interchanges 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑜𝑝𝐺𝑜 −0.34 (0.04)∗∗∗ −0.40 (0.07)∗∗∗

Speed difference of cell −5 to −1 by Wide Jam 𝑠𝑝𝑒𝑒𝑑𝑊 𝐽𝑐𝑒𝑙𝑙−5𝑡𝑜1 0.05 (0.00)∗∗∗ 0.09 (0.00)∗∗∗

Speed difference of cell −5 to −1 by Mega Jam 𝑠𝑝𝑒𝑒𝑑𝑀𝐽𝑐𝑒𝑙𝑙−5𝑡𝑜1 0.04 (0.00)∗∗∗ 0.10 (0.00)∗∗∗

Proportion Jam Wave in front of Jam Wave 𝑖𝑛𝑑𝑖𝑐𝐽𝑎𝑚𝑊 𝑎𝑣𝑒 18.18 (0.33)∗∗∗

Proportion Stop and Go in front of Stop and Go 𝑖𝑛𝑑𝑖𝑐𝑆𝑡𝑜𝑝𝐺𝑜 14.18 (0.08)∗∗∗

Proportion Wide Jam in front of Wide Jam 𝑖𝑛𝑑𝑖𝑐𝑊 𝑖𝑑𝑒𝐽𝑎𝑚 23.10 (0.27)∗∗∗

Proportion Mega Jam in front of Mega Jam 𝑖𝑛𝑑𝑖𝑐𝑀𝑒𝑔𝑎𝐽𝑎𝑚 33.40 (2.78)∗∗∗

Pattern in cell −1 by Jam Wave 𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−1 4.32 (0.12)∗∗∗

Pattern in cell −3 by Jam Wave 𝐽𝑎𝑚𝑊 𝑎𝑣𝑒𝑐𝑒𝑙𝑙−3 −9.11 (0.20)∗∗∗

Standard errors in parentheses. ∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.
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able 6
odel estimation results for the two model variants: statistical measures.
Parameter Model I Model II

Number of parameters 33.00 39.00
Number of respondents 81 582.00 81 582.00
Number of choice observations 15 407 162.00 15 407 162.00
Number of draws 20.00 20.00
LL(null) −24 853 418.98 −24 853 418.98
LL(final) −1 781 441.15 −252 278.68
McFadden R2 0.93 0.99
AIC 3 562 948.30 504 635.35

Standard errors in parentheses. ∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

influence of the real congestion pattern in cell −3 of the funnel was not
so clearly predictable. The probability of Jam Wave increases if Jam
Wave exists in cell −1. This is logical, but if Jam Wave exists in cell −3
of the funnel, the probability of Jam Wave decreases in the current cell
of the prediction. This phenomenon could be explained by the fact that
a Jam Wave occurs singularly: if it happened frequently, it would be
declared as Stop and Go.

5.2. Validation

The first estimation results from the error and combination terms
are shown in Table 4, and the results on the influences of the individual
parameters can be read in Table 5. Table 7 compares the models’
prediction from the training data set to the test data set. The five traffic
conditions are compared: free-flow, Jam Wave, Stop and Go, Wide Jam,
and Mega Jam. The table compares the traffic conditions of each of the
four models’ predictions with the correct traffic conditions.

To evaluate the classification results comprehensively, we selected
three key metrics that are particularly suitable for imbalanced datasets
like ours, since we have many more cells with free flow than cells with
congestion, see Table 3: Balanced Accuracy (BAcc), Macro F1 (MacF1),
and Cohen’s Kappa (𝜅). These metrics provide valuable insights into
model performance by addressing class imbalance and prediction qual-
ity across all classes.

BAcc improves upon traditional accuracy by accounting for class
imbalance. It calculates each class’s average recall (true positive rate),
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ensuring that both frequent and rare classes are equally represented in
the evaluation. BAcc is defined as:

𝐵𝐴𝑐𝑐 = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(9)

where 𝑁 is the number of classes, 𝑇𝑃𝑖 represents the true positives for
class 𝑖, and 𝐹𝑁𝑖 represents the false negatives for class 𝑖. By averaging
the recall across all classes, BAcc offers a fairer evaluation of a clas-
sifier’s performance, particularly for imbalanced datasets (Brodersen
et al., 2010).

The Macro F1 Score is another essential metric for evaluating mod-
els on imbalanced datasets. It computes the F1 score (the harmonic
mean of precision and recall) for each class individually and then
averages these scores across all classes. Unlike micro F1, which weights
the overall performance by class frequency, Macro F1 ensures that each
class contributes equally to the final score, regardless of size. This is
critical when rare courses like Mega Jam in our dataset are just as
important to predict as frequent ones like free-flow. The formula for
Macro F1 is:

𝑀𝑎𝑐𝑟𝑜𝐹1 = 1
𝑁

𝑁
∑

𝑖=1
𝐹1𝑖 (10)

here 𝐹1𝑖 is the F1 score for class 𝑖, and 𝑁 is the total number of
lasses. This metric helps ensure the model performs well across all
lasses, making it ideal for datasets where the correct prediction of all
raffic states is equally important (Sokolova and Lapalme, 2009).

Cohen’s Kappa is a robust metric that measures the agreement
etween predicted and actual classifications, considering the possi-
ility that it could occur by chance. This makes it a more reliable
erformance indicator than simple accuracy, particularly in multiclass
lassification problems. 𝜅 is beneficial in imbalanced datasets because
t adjusts for the expected agreement due to the class distribution:

=
𝑝0 − 𝑝𝑒
1 − 𝑝𝑒

(11)

where 𝑝0 is the observed proportional agreement between actual and
predicted values, and 𝑝𝑒 is the expected proportional agreement un-
der random classification. Kappa values range from 0 (agreement by
chance) to 1 (perfect agreement), with negative values indicating
worse-than-random agreement. In the context of this study, 𝜅 helps
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us differentiate between models that perform well across all traffic
conditions and those that may appear accurate but are biased towards
the majority class (Towards Data Science, 2020).

Given the imbalanced nature of the traffic conditions in our dataset,
these three metrics are particularly suitable for our evaluation. BAcc
ensures that the model’s performance is fairly evaluated across fre-
quent and rare classes, making it a more robust metric than simple
accuracy, which could be misleading in highly imbalanced scenarios.
Macro F1 allows us to evaluate the model’s performance across all
classes equally, emphasizing precision and recall, which is crucial
when rare traffic conditions are just as important as common ones.
Cohen’s 𝜅 adds an additional layer of understanding by adjusting for
the agreement expected by chance, making it particularly valuable for
imbalanced datasets where simple accuracy might overestimate model
performance. Together, these metrics provide a comprehensive and
fair assessment of the model’s ability to predict the various traffic
conditions in the dataset, ensuring that no single class dominates the
evaluation.

Table 7 shows all the results for a one-minute prediction of the
models listed above: Model I predicts 99.4% free-flow, 0% Jam Wave,
36.1% Stop and Go, 36.2% Wide Jam, and 0% of Mega Jam correctly,
resulting in a 𝜅 of 0.49 and an MacF1 of 0.25 and BAcc of 0.34. Model II
gives much more useful and better results than the base model. 99.7%
of free-flow, 73.6% of Jam Wave, 93.9% of Stop and Go, 88.9% of Wide
Jam, and 96.4% of Mega Jam are predicted correctly. This leads to
better classification rates than the previous models with a 𝜅 of 0.93,
a MacF1, and BAcc of 0.91. Model II is needed to improve the base
model because model I, without prior information, does not provide
a much better model than the base A variant. For the naive models,
Model P also has outstanding results, in contrast to Model A. The exact
classification rates and forecast results for one minute can be found in
Table 7.

We know that these are basic model variants and that the prediction
may include overfitting by the high proportion of free flow. However,
the high percentages of the correct classifications in the diagonal of
the third row in Table 7 and the relatively high correlation coefficients
show that the principle of the logit model works quite well and can be
applied to this use case. The results will fit even more by further input
parameters or investigations of the congestion pattern parameters and
properties.

In order to make more precise statements about the quality of the
models, and also to analyze beyond the one-minute forecast, a 30-
min forecast was created and the results calculated for 1 min, 5 min,
10 min and 30 min. Here, the results are limited to the two best models
from Table 7, i.e. only Base Model P and Model II. Similarly, only the
classification rates are calculated for each of the forecast periods and
not the entire cross-correlation matrix for reasons of clarity. Table 8
presents the performance metrics for Base Model P and Model II across
different prediction horizons. The table is divided into two sections:
full-class predictions and binary classifications. The three key metrics
are reported: BAcc, macF1, 𝜅.

For the Full-Class predictions: The Base Model P generally shows
high values across all metrics, with particularly strong performance in
short-term predictions (1 min) and gradually decreasing performance
as the prediction horizon extends to 30 min. Model II, has similar
values, but for all metrics substantially lower. As the prediction interval
increases, the model’s performance still remains below the performance
of Base Model P. For the binary Classifications, just the differentiation
of free flow or jam (i.e. all four congestion patterns) is made. Here,
Base Model P continues to perform consistently well, with only a
small decline in performance as the prediction horizon increases. Model
II shows stronger binary classification performance, especially at the
longer prediction horizons (5, 10, and 30 min), but still falls short
compared to Base Model P.

While the performance metrics in Tables 7 and 8 show Base Model P

with slightly better results in some areas, these figures should be viewed
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in context. Base Model P’s higher metrics likely stem from its simplistic
assumption that the current traffic state will continue, which may not
reflect the complexities of real-world traffic. In contrast, Model II’s
lower scores reflect its proactive and risk-averse nature, as it actively
predicts potential congestion even when conditions appear stable. This
makes Model II more suitable for use in preventive traffic management,
where the goal is to anticipate and prevent problems before they arise,
rather than merely reacting to them.

A key advantage of Model II is its focus on minimizing false
negatives—situations where traffic congestion occurs but is not pre-
dicted. By prioritizing congestion forecasting, Model II reduces the risk
of dangerous, unexpected traffic jams, even if this sometimes results in
false positives (predicting congestion when none occurs). Base Model
P, on the other hand, is more conservative and less likely to predict
congestion unless it has already started, which could lead to missed
opportunities for early intervention and safety precautions. In addition
to this, Model II incorporates contextual data, such as time of day and
location, which enhances its ability to detect recurring traffic patterns
and make more informed predictions. This is particularly useful in
scenarios where traffic patterns change rapidly or are influenced by
external factors, something Base Model P cannot account for with its
limited focus on the most recent traffic state.

Moreover, Model II bases its predictions on the class with the
highest probability, which means that in some cases, the chosen class
may only have a marginally higher probability than other classes. This
could lead to a situation where a slightly wrong class is predicted,
though the difference is minimal. However, this probabilistic approach
also allows traffic managers to use the predicted probabilities to inform
more nuanced decision-making, something Base Model P cannot offer,
as it provides only a single, deterministic class prediction.

In summary, while Base Model P shows better results, Model II of-
fers a more sophisticated approach to traffic forecasting by proactively
predicting congestion and integrating contextual data into its decision-
making process. This allows traffic operators to take preemptive action
before congestion becomes critical, making Model II more effective for
real-world traffic management, where safety and prevention are key
priorities.

5.3. Application

We use the model estimates for model II from Table 4 to show
how the proposed congestion pattern prediction model can be used in
practice. In this application example, we focus on February 10, 2019,
when a Wide Jam occurred around noon. The jam was detected at
11:37 am (𝑡 = 697). Fig. 11 shows a more detailed progress of the
congestion.

In this prediction application scenario, we set the prediction horizon
to 30 min and predict congestion patterns at one-minute intervals. As
shown in Fig. 8, information from the previous five minutes is used to
predict congestion patterns. The information in the funnel is used so
that all reliably available information is known up to the time of the
start of the forecast, including the information on the main congestion
pattern in the funnel cells directly before the forecast time. Although
this information is actually only reliably available after a congestion
pattern has been resolved, it is possible to determine a trend in the
congestion pattern by applying an optimized automated algorithm to
identify the congestion pattern even before a congestion pattern has
been completely resolved. This information is taken as given for the
application in this model.

The 30-min prediction works as follows. The first predicted time
interval uses measured information from the previous five minutes.
The output is a probability for each congestion pattern. In the second
predicted time interval, four minutes of measured data and one minute
of predicted data are used as input. Note that measured data for each
congestion pattern is in a binary format, i.e., the pattern is present or

not, while the predicted data is a probability. The third predicted time
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Table 7
Classification table of observed versus predicted congestion patterns with classification rates. Each prediction is made for a 1-min forecast
horizon, starting from every time step and location in the test dataset. All data up to the start time is assumed to be known, and predictions
are made from that point forward. The values in each row of the observed congestion patterns sum to one.

Predicted congestion pattern Observed congestion pattern Classification rate

Free-flow Jam Wave Stop and Go Wide Jam Mega Jam 𝜅 MacF1 BAcc

Base model A
Free-flow 0.995 0 0.005 0 0

0.32 0.16 0.27
Jam Wave 0.923 0 0.077 0 0
Stop and Go 0.654 0 0.346 0 0
Wide Jam 0.966 0 0.034 0 0
Mega Jam 0.942 0 0.058 0 0

Base model P
Free-flow 0.996 0.001 0.001 0.001 0.001

0.98 0.98 0.98
Jam Wave 0.060 0.940 0 0 0
Stop and Go 0.010 0.001 0.990 0 0
Wide Jam 0.009 0 0 0.991 0
Mega Jam 0.004 0 0 0 0.996

Model I
Free-flow 0.994 0 0.006 0.001 0

0.49 0.25 0.34
Jam Wave 0.639 0 0.163 0.198 0
Stop and Go 0.557 0 0.361 0.082 0
Wide Jam 0.448 0 0.190 0.362 0
Mega Jam 0.524 0 0.401 0.075 0

Model II
Free-flow 0.997 0 0.002 0.001 0

0.93 0.91 0.91
Jam Wave 0.264 0.736 0 0 0
Stop and Go 0.061 0 0.939 0 0
Wide Jam 0.111 0 0 0.889 0
Mega Jam 0.036 0 0 0 0.964
Table 8
Performance metrics for Base Model P and Model II, with prediction horizons of one, five, ten, and thirty mins. Forecasts are generated every
30 min (on the hour and half-hour).

Full-class predictions

Balanced Accuracy BAcc Macro F1 macF1 Cohen’s 𝜅

Prediction of horizon 1 min 5 min 10 min 30 min 1 min 5 min 10 min 30 min 1 min 5 min 10 min 30 min

Base Model P 0.982 0.944 0.906 0.824 0.983 0.945 0.904 0.814 0.988 0.966 0.940 0.856
Model II 0.791 0.774 0.764 0.724 0.751 0.626 0.614 0.504 0.612 0.659 0.625 0.390

Binary classifications

Balanced Accuracy BAcc Macro F1 macF1 Cohen’s 𝜅

Prediction of horizon 1 min 5 min 10 min 30 min 1 min 5 min 10 min 30 min 1 min 5 min 10 min 30 min

Base Model P 0.994 0.983 0.970 0.930 0.994 0.983 0.970 0.927 0.988 0.966 0.940 0.854
Model II 0.981 0.968 0.962 0.926 0.901 0.827 0.810 0.690 0.724 0.656 0.622 0.387
interval then uses three minutes of measured data and two minutes
of predicted data. The input from measured and predicted data con-
tinues until the fifth interval (five-minute prediction). After that, only
predicted values are used as input until the 30-min prediction horizon
is reached.

In Fig. 12, we show the prediction at 11:30 am (𝑡 = 690), 11:38
am (𝑡 = 698), and 12:00 pm (𝑡 = 720). The vertical red line shows
the current time interval from which on-wards congestion patterns are
predicted. The observations to the left of this line are the observed
states used for the prediction. Fig. 12 shows the probability of each
congestion pattern in each space–time cell. At 𝑡 = 690, no information
on congestion is present in the five minutes before the start of the pre-
diction interval, and thus, the model predicts that free-flow conditions
prevail in the next 30 min. At 𝑡 = 698, the jam has just been detected,
as can be seen in the tiny black space–time area for congestion type
Wide Jam in the second row of Fig. 12. It can be seen that, for the next
time intervals, the prediction model increases the probability that this
congestion type prevails. However, as only a small area in the space–
time funnel (c.f. Fig. 8) is affected, the prediction is not very distinctive
but can indicate an emerging trend. Moving the prediction point further
into the future to 12:00 pm (𝑡 = 720), we see a distinctive prediction
of the Wide Jam congestion pattern prevailing for more than 15 min.

The prediction further shows a familiar pattern of congestion moving
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backward. This is partly encoded in the used funnel structure and the
estimated model parameters. It can also be concluded from the lower
part of Fig. 12 that the model learned to some degree to predict the
end of congestion as it does not predict that this pattern will prevail
forever.

Fig. 13 shows the forecast behavior at the end of the congestion
event. Again, the probability of the congestion pattern decreases as
the time step progresses. The upper left sub-image in Figs. 12 and 13
represent the ground truth, respectively. It shows when the congestion
pattern should be predicted and when it should not be. The model takes
less than five minutes to recognize and correctly forecast a traffic jam
beginning and ending. However, it should be noted that the predicted
end can be updated when using new measurements or by including
additional parameters specifically targeted at the end of a congestion
pattern.

Table 9 demonstrates the high accuracy of our model in predicting
congestion patterns for one minute, five minutes, and the entire 30 min.
The cells that correctly predicted the traffic pattern were compared
with the cells at the time step over all mispredicted locations. The
resulting probability value from the model was rounded to 0 or 1,
with all results showing over 90% correctness for all time steps, as
depicted in Figs. 12 and 13. In summary, Model II is well-suited for this
example of aWide Jam. The next model design will include the duration

parameter to predict the more precise duration of a congestion pattern.
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Fig. 11. Spatio-temporal distribution of the application example. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Table 9
Hit rate of application example for prediction horizon of one, five and 30 min.
Prediction at time Hit rate of 1 min prediction Hit rate of 5 min prediction Hit rate of 30 min prediction

690 1 1 0.965
698 0.980 0.976 0.949
700 0.980 0.974 0.947
870 0.980 0.976 0.989
875 0.970 0.974 0.994
880 0.980 0.988 0.998
6. Discussion, conclusion, and outlook

In this paper, we applied a mixed logit model, a discrete choice
model, to predict congestion patterns using empirical data from a free-
way in Germany. We make use of the congestion patterns introduced
by Karl et al. (2019). The data set comprises the daytime hours from
6 am to 8 pm and a stretch length of 50 km. Four different models
were built for prediction: (i) a base model (A) that predicts congestion
patterns by the average occurrence of a congestion pattern at a given
location; (ii) a second base model (P) which uses the actual observed
pattern from the last period as a forecast for the next period; (iii) a
mixed logit model only with infrastructure effects and speed (Model
I); (iv) a mixed logit model with infrastructure effects, speed and
information on the existence of previous congestion patterns (Model
II). However, while Base Model P shows slightly better results in terms
of certain metrics, it is a reactive model that simply extends the current
traffic state without considering broader contextual factors. In contrast,
Model II, despite showing lower scores, offers a more advanced and
proactive approach by incorporating infrastructure, speed, and previous
congestion patterns. This makes Model II better suited for real-world
traffic management, where anticipating and preventing congestion is
crucial for improving safety and traffic flow.

The model is a complex statistical tool that provides detailed in-
sights into decision-making processes. The model can choose between
the five traffic patterns (Free Flow, Jam Wave, Stop&Go, Wide Jam,
and Mega Jam). The biggest influencing parameters are the presence
and distribution of the congestion patterns in the funnel. Here, the
funnel mainly takes into account the congestion front movement. It
is conceivable that the vehicle movement, i.e., almost perpendicular
15 
to the congestion front, also influences the forecast — similar to the
anisotropic smoothing kernel.

We conclude that the approach to predicting congestion pattern
probabilities with discrete choice methods and then analyzing the
result for the most likely pattern is applicable and a promising avenue
to improve the prediction of traffic patterns. However, the free-flow
pattern is a dominant outcome in the data, which can result in over-
fitting issues. We will further extend the parameter set by adding some
dynamic information about the start or end of each congestion pattern.
In addition, more attention will be paid to how artificial intelligence,
e.g., neural networks, can support the prediction of congestion patterns
– like van Cranenburgh et al. (2022) presented in their work – but
without losing the comprehensibility as in the logit model presented
here.

In conclusion, the practical implications of this novel and innovative
approach are at least twofold: First, the prediction of congestion times
comprises the spatio-temporal extent of the congestion patterns in the
space–time diagram. This can exceed the prediction of traffic patterns
in a single segment. Therefore, additional information is available
for traffic management centers and map operators to improve their
predictions. This prediction can be conceptualized in two steps, firstly
for a long-term forecast using only a simple static accumulation analysis
of the congestion patterns and including the information about the
location and time or date. The second step is to use the results of
the newly developed multinomial logit model to produce a short-term
forecast of up to 30 min. There are advantages here regarding traffic
safety, optimization of traffic flow, and knowledge of possible diver-
sions in the event of major and atypical traffic jams. This is particularly
important for freeways, as these are (still) the main traffic arteries —
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Fig. 12. Predicting congestion patterns; Start of congestion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 13. Predicting congestion patterns; End of congestion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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especially in Germany. Second, the applicability of a prediction based
on a mixed logit or related model in traffic management centers is
feasible. In particular, as the model parameters can be re-estimated
on a rolling horizon basis and these parameters are explainable, it is
a feature that is difficult to achieve in novel deep learning approaches.
This is evidently an advantage to getting the support of traffic managers
and decision-makers to implement such a prediction model.
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