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A B S T R A C T

Autonomous trucks are expected to fundamentally transform the freight transportation industry. In particular,
Autonomous Transfer Hub Networks (ATHNs), which combine autonomous trucks on middle miles with human-
driven trucks on the first and last miles, are seen as the most likely deployment pathway for this technology.
This paper presents a framework to optimize ATHN operations and evaluate the benefits of autonomous
trucking. By exploiting the problem structure, this paper introduces a flow-based optimization model for this
purpose that can be solved by blackbox solvers in a matter of hours. The resulting framework is easy to
apply and enables the data-driven analysis of large-scale systems. The power of this approach is demonstrated
on a system that spans all of the United States over a four-week horizon. The case study quantifies the
potential impact of autonomous trucking and shows that ATHNs can have significant benefits over traditional
transportation networks.
1. Introduction

Self-driving trucks are expected to fundamentally transform the
freight transportation industry. Morgan Stanley estimates the poten-
tial savings from self-driving trucks at $168 billion annually for the
United States alone (Greene, 2013). Additionally, autonomous trans-
portation may improve on-road safety, and reduce emissions and traffic
congestion (Short and Murray, 2016; Slowik and Sharpe, 2018).

SAE International defines different levels of driving automation,
ranging from L0 to L5, corresponding to no-driving automation to full-
driving automation (SAE International, 2018). The current focus is on
L4 technology (high automation), which aims at delivering automated
trucks that can drive without any human intervention in specific do-
mains, e.g., on highways. The trucking industry is actively involved in
making L4 vehicles a reality. Daimler Trucks, one of the leading heavy-
duty truck manufacturers in North America, acquired a majority stake
in self-driving truck developer Torc Robotics, which laid out a roadmap
to launch autonomous trucks in 2027 (Transport Topics, 2023). Au-
tonomous trucking company TuSimple has recently completed the first
driverless tests on Chinese public roads (TechCrunch, 2023). In the US,
Aurora Innovation teamed up with FedEx to haul freight between Fort
Worth and El Paso, Texas, and the company reports that 60,000 miles
have been completed without incidents (FedEx, 2022). These are just
some of the companies involved in autonomous trucking, and others
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include Embark, Gatik, Kodiak, and Plus (FleetOwner, 2021; Forbes,
2021; FreightWaves, 2021).

A study by Viscelli describes different scenarios for the adoption of
autonomous trucks by the industry (Viscelli, 2018). The most likely
scenario, according to some of the major players, is the transfer hub
business model (Viscelli, 2018; Berger, 2018; Shahandasht et al., 2019).
Joanna Buttler, head of Daimler’s global autonomous technology group,
for example, stated that ‘‘We are staying laser focused on U.S. hub-to-
hub, on-highway’’ (Transport Topics, 2023). An Autonomous Transfer
Hub Network (ATHN) makes use of autonomous truck ports, or transfer
hubs, to hand off trailers between human-driven trucks and driverless
autonomous trucks. Autonomous trucks then carry out the transporta-
tion between the hubs, while regular trucks serve the first and last
miles (see Fig. 1). Orders are split into a first-mile leg, an autonomous
leg, and a last-mile leg, each of which served by a different vehicle.
A human-driven truck picks up the freight at the customer location,
and drops it off at a nearby transfer hub. A driverless self-driving truck
moves the trailer to a transfer hub close to the destination, and another
human-driven truck performs the last leg.

The ATHN applies automation where it counts: Monotonous high-
way driving is automated, while more complex local driving and cus-
tomer contact is left to humans. Global consultancy firm Berger esti-
mates operational cost savings between 22% and 40% in the transfer
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Fig. 1. Example of an autonomous transfer hub network.
hub model, based on cost estimates for three example trips (Berger,
2018). A recent white paper published by Ryder System, Inc. and the
Socially Aware Mobility Lab studies whether these savings can be at-
tained for actual operations and realistic orders in Full Truckload (FTL)
shipping (Ryder System and Socially Aware Mobility Lab, 2021). It
models ATHN operations as a scheduling problem and uses a Constraint
Programming (CP) model to minimize empty miles and produce savings
from 27% to 40% on a case study in the Southeast of the United States.

The current paper is an extension of the Ryder white paper that
substantially improves, simplifies, and generalizes the methodology. It
is the culmination of two years of research into the core computational
difficulty of optimizing ATHN operations, reported in the Ryder white
paper and in technical reports by the authors (Dalmeijer and Van Hen-
tenryck, 2021; Lee et al., 2022). The CP model presented in Dalmeijer
and Van Hentenryck (2021) produces solutions that outperform the
current operations, but that do not provide a bound on optimality. Lee
et al. (2022) introduces a Column Generation (CG) approach and a
bespoke Network Flow (NF) model. It is shown that the CP solution can
be more than 10% from optimal, and that the NF model can quickly
produce solutions within 1% from optimality. These earlier findings
motivate the flow-based optimization model in this paper that exploits
the problem structure and is solved to optimality by blackbox solvers in
a matter of hours. The resulting framework is easy to apply and enables
the data-driven analysis of large-scale systems. It has also enabled a
follow-up study on the role of hub capacities in ATHNs (Lee et al.,
2023).

The power of the new methodology is demonstrated on an FTL
system that spans all of the United States over a four-week horizon,
expanding both the region and time horizon used in earlier reports.
The case study quantifies the potential impact of self-driving trucks and
shows that ATHNs yield significant benefit over traditional transporta-
tion networks. The main contributions of this work can be summarized
as follows:

1. The paper provides a high-level framework to optimize ATHN
operations.

2. The paper demonstrates that this enables the study of large-scale
systems, requiring only a blackbox solver.

3. The paper uses realistic order data to quantify the potential
impact of FTL autonomous trucking in the US on a national scale.

The remainder of this paper is organized as follows. Section 2
presents an overview of the literature. Section 3 provides the problem
description and Section 4 discusses the methodology for optimizing
ATHNs. This methodology is applied to a case study in the US that is
introduced in Section 5. The baseline results and the analysis of the
potential impact of autonomous trucking are presented in Section 6
and a detailed sensitivity analysis is provided by Section 7. Finally,
Section 8 provides the conclusions.
2 
2. Literature review

As autonomous technology advances, more papers are studying the
effect of autonomous vehicles on transportation systems. Flämig (2016)
provides an overview of the different ways that autonomous vehicles
can be used both on public infrastructure and on private property
(e.g., warehouses or company grounds). In the urban transportation
setting, de Almeida Correia and van Arem (2016) studies the effect of
autonomous vehicles on traffic delays and parking demand in a city.
The authors use convex optimization to determine traffic assignments
and a mixed integer nonlinear formulation to assign autonomous vehi-
cles to households. A case study for the city of Delft, The Netherlands,
demonstrates a positive impact on the road network.

In the freight transportation context, routing and scheduling prob-
lems with autonomous trucks have gained attention very recently. Chen
et al. (2021) considers scheduling a platoon of autonomous trucks to
reduce air resistance when traveling between two seaport terminals in
Singapore. The authors present a mixed integer second-order-cone for-
mulation that is solved with a column-generation based heuristic. In the
area of service network design, Scherr et al. (2018) proposes a problem
where a human-driven truck leads a platoon of autonomous vehicles in
the first tier of city logistics. An arc-based mixed integer programming
model on a time-space network is presented, but empirical observations
show that only small problem instances are tractable. Scherr et al.
(2020) extends this work by introducing a dynamic discretization
discovery approach that outperforms a commercial solver, and also
present a heuristic to quickly generate solutions.

In the Less-Than-Truckload (LTL) context, Al Hajj Hassan et al.
(2022) studies the daily load planning problem under different levels
of automation. The paper focuses on modifying a given base plan to
deal with dynamic load requests and other aspects that are important
during operations, including driver regulations where drivers are in-
volved. The authors present a column-generation based heuristic to
solve industry-based instances with up to 20 hubs and 1500 loads over
a one-week horizon.

In terms of the problem structure, optimizing full truckload ATHN
operations can be seen as a Pickup and Delivery Problem with Time
Windows (PDPTW), where trucks pick up and drop off loads within
the time windows prescribed by the customers. The book Toth and
Vigo (2014) provides a survey of this vehicle routing problem and
other variants. However, instead of routing, this paper will exploit the
problem structure and take the perspective of scheduling a sequence of
tasks (combined pickups and deliveries), which is closely related to the
Vehicle Scheduling Problem with Time Windows (VSPTW, Desrosiers
et al. (1995)). These problems are well studied, and several exact and
heuristic solution methods exist. For example, Freling et al. (2001)



C. Lee et al.

f
c
𝑎
b
d
d
a
a
f
f

O
a
w
A

c
m
n

EURO Journal on Transportation and Logistics 13 (2024) 100141 
presents a solution method based on the primal–dual algorithm frame-
work for VSPTW with a single depot. Ribeiro and Soumis (1994)
proposes a column-generation approach for the VPSTW with multiple
depots, and Hadjar et al. (2006) presents a branch-and-cut algorithm
for the same problem. Steinzen et al. (2010) considers solving the time-
extended variant of the VSPTW with multiple depots using a heuristic
based on the branch-and-price framework. Campbell and Savelsbergh
(2004) presents insertion heuristics for vehicle routing and scheduling
problems.

The Vehicle Routing Problem with Full Truckloads (VRPFL, Aruna-
puram et al., 2003) is the specific variant that perhaps most structurally
resembles the ATHN problem. Similar to the current paper, the VRPFL
asks for minimum-cost truck routes to serve a set of loads that are
specified by an origin, destination, and a pickup time window. Aruna-
puram et al. (2003) proposes a branch-and-price framework as the
solution approach. The authors assume that each order consumes the
full capacity of the truck, and the same assumption is made for op-
timizing ATHN operations, which reflects that autonomous trucks are
expected to be mostly used for long-haul trips. A crucial technical
difference between (Arunapuram et al., 2003) and the current paper is
that autonomous trucks are assumed to be completely interchangeable.
This will allow for a flow-based optimization model that is amenable
to blackbox solving.

This paper introduces a high-level framework to optimize ATHN
operations. The goal of this framework is to provide a practical way to
study large-scale autonomous FTL systems and to quantify the potential
impact of autonomous trucking. Previous works often rely on advanced
optimization techniques such as cutting planes or column generation,
or provide methods that do not scale to industry-sized problems. For
example, the largest problem considered by Arunapuram et al. (2003)
involves only 5 hubs and 160 loads. In contrast, this paper exploits the
problem structure to provide a model that is blackbox solvable on a
large scale (up to 200 hubs and 6000+ loads over a four-week horizon).
Another benefit of the high-level framework is that it can be used to
generate a base plan that forms the basis for the operational decisions,
e.g., as studied by Al Hajj Hassan et al. (2022) for LTL trucking.

3. Problem description

This section introduces the problem of optimizing ATHN operations,
while the solution methodology is presented in Section 4. Table 1
summarizes the nomenclature for the problem description. The goal is
to serve a set of 𝑛 full truckloads 𝐿 at minimum cost with a combination
of deliveries through the autonomous network and direct deliveries
with regular trucks. Each load 𝑙 ∈ 𝐿 is identified by an origin location
𝑜(𝑙), a destination location 𝑑(𝑙), and a planned departure time, or release
time, 𝑟(𝑙). The autonomous network is based on a set of transfer hubs
𝑉𝐻 . Every load 𝑙 ∈ 𝐿 is associated with an origin hub ℎ+𝑙 ∈ 𝑉𝐻 near
the origin 𝑜(𝑙) and a destination hub ℎ−𝑙 ∈ 𝑉𝐻 near the destination 𝑑(𝑙).

Solution. A solution consists of three types of decisions that are made
jointly. First, it is determined how each load 𝑙 ∈ 𝐿 is served. It is
assumed that there are exactly two options:

• Autonomous: The load follows the path 𝑜(𝑙) → ℎ+𝑙 → ℎ−𝑙 → 𝑑(𝑙).
The first and last legs are performed by a regular truck, while the
connection between the hubs is served by an autonomous truck.

• Direct: The load follows the path 𝑜(𝑙) → 𝑑(𝑙) → 𝑜(𝑙). Both legs
are served by a single regular truck that returns empty. Note that
the case study will consider challenging orders that actually incur
such an empty return in practice.

Second, the autonomous legs (ℎ+𝑙 → ℎ−𝑙 ) of the loads that are served
autonomously are combined into routes for at most 𝐾 ≥ 0 autonomous
trucks. Note that these routes may include empty relocations from ℎ+𝑙 to
ℎ−𝑙′ between loads 𝑙 and 𝑙′. It is assumed that sufficient regular trucks are

available to perform the traditional legs. The corresponding costs will f

3 
be captured in the objective function, but the regular truck routes are
not modeled explicitly. This is motivated by the fact that, in practice,
the first- and last-mile problems are not very constrained. Third, it
is decided at which time each load is picked up. It is assumed that
every load 𝑙 ∈ 𝐿 admits a flexibility of 𝛥 ≥ 0 around the planned
departure time 𝑟(𝑙), leading to a time window of [𝑟(𝑙) − 𝛥, 𝑟(𝑙) + 𝛥] for
pickup. This time window is translated to ℎ+𝑙 , ℎ−𝑙 , and 𝑑(𝑙) according
to the travel times to maintain this flexibility throughout. The travel
times include time for loading and unloading the autonomous truck,
which is assumed to be 𝑆 ≥ 0. A solution is feasible if each load
is served autonomously or directly, all implied autonomous legs are
covered by autonomous truck routes, and the autonomous truck routes
are feasible with respect to time. Note that it is always feasible to
replicate the current situation by serving all loads directly and not using
any autonomous trucks.

Location graph. Before defining the objective, it is convenient to define
a location graph. The location graph models all relevant locations and
potential connections in the ATHN. Let the location graph be denoted
by the directed graph 𝐺 = (𝑉 ,𝐴). Vertex set 𝑉 contains a vertex
or every hub location, and two vertices for every load 𝑙 ∈ 𝐿 that
orrespond to the origin 𝑜(𝑙) and the destination 𝑑(𝑙), respectively. Arcs
∈ 𝐴 are defined from every origin to the hubs (traditional first mile),
etween all the hubs (autonomous middle mile), from the hubs to every
estination (traditional last mile), and between origin and destination
irectly (traditional direct delivery and empty return). Note that the
rcs between the hubs form a complete graph. Every arc 𝑎 ∈ 𝐴 is
ssociated with a distance 𝑐𝑎 ≥ 0 and a travel time 𝜏𝑎 > 0 obtained
rom OpenStreetMap (2021). For convenience, the cost and travel time
rom 𝑖 ∈ 𝑉 to itself are defined as 0.

bjective. The objective is to serve all loads at minimum cost. While
ny non-negative arc-additive cost structure is supported, this paper
ill define cost as the total distance in traditional mileage equivalent.
utonomous trucks incur a cost of (1−𝛼)𝑐𝑎 for every arc 𝑎 ∈ 𝐴 on their

routes, including arcs that represent empty relocations. The parameter
𝛼 ∈ [0, 1] discounts the autonomous distance to correct for reduced
labor cost. A direct trip for load 𝑙 ∈ 𝐿 has a cost equal to its distance of
𝑐𝑜(𝑙)𝑑(𝑙)+𝑐𝑑(𝑙)𝑜(𝑙). Note that the discount does not apply to regular trucks.
Finally, each first/last-mile arc 𝑎 ∈ 𝐴 is assigned a cost of 1

1−𝛽 𝑐𝑎. The
parameter 𝛽 ∈ [0, 1) represents the first/last-mile inefficiency, which
assumes that a fraction 𝛽 of the first/last-mile route mileage would be
empty. The factor 1

1−𝛽 increases the cost of the first/last-mile arcs to
compensate for the fact that these routes are not modeled explicitly.
The total objective is the sum of the above components and can be
interpreted as the total distance measured in equivalent traditional
mileage.

4. Methodology

This section introduces the methodology that enables a large-scale
data-driven study to quantify the impact of self-driving trucks. The
nomenclature for this section is summarized by Table 2. Practical
assumptions and preprocessing steps lead to a model that is easy to
implement, can immediately be solved by blackbox solvers, and is
highly extensible. The section ends by providing a practical guide
to enable regional and temporal analysis in this framework, which
requires only minor modifications to the input and the model.

Task graph. The optimization model considers the problem of opti-
mizing ATHN operations from the perspective of scheduling tasks for
autonomous trucks. Similar transformations are common in the arc-
routing literature (e.g., see Black et al. (2013)). One task 𝑡 ∈ 𝑇 is
reated for every load 𝑙 ∈ 𝐿. If an autonomous truck performs a task, it
eans that the corresponding load is served through the autonomous
etwork, and this truck serves the middle mile. If a task is not per-

ormed by any autonomous truck, this means that the corresponding
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Table 1
Nomenclature problem description.
Symbol Definition

Sets and graphs

𝐿 Set of loads, each load 𝑙 ∈ 𝐿 consists of an origin 𝑜(𝑙), a destination 𝑑(𝑙) and a release time 𝑟(𝑙).
𝑉𝐻 Set of autonomous transfer hub locations, 𝑉𝐻 ⊆ 𝑉 .
𝐺 = (𝑉 ,𝐴), location graph that models locations and connections in the ATHN.
𝑉 Set of locations.
𝐴 Set of location arcs, each arc (𝑖, 𝑗) ∈ 𝐴 corresponds to travel from location 𝑖 ∈ 𝑉 to location 𝑗 ∈ 𝑉 .

Parameters

𝑛 Number of loads, 𝑛 = |𝐿|.
ℎ+
𝑙 Origin hub for load 𝑙 ∈ 𝐿, ℎ+

𝑙 ∈ 𝑉𝐻 .
ℎ−
𝑙 Destination hub for load 𝑙 ∈ 𝐿, ℎ−

𝑙 ∈ 𝑉𝐻 .
𝐾 Maximum number of autonomous trucks.
𝛥 Flexibility around the planned departure time (depart up to 𝛥 earlier or later than planned).
𝑆 Autonomous truck loading/unloading time.
𝑐𝑎 Distance to travel location arc 𝑎 ∈ 𝐴, 𝑐𝑎 ≥ 0.
𝜏𝑎 Time to travel location arc 𝑎 ∈ 𝐴, 𝜏𝑎 > 0.
𝛼 Discount factor for autonomous mileage, 𝛼 ∈ [0, 1]
𝛽 First/last-mile inefficiency, 𝛽 ∈ [0, 1)
Table 2
Nomenclature methodology.
Symbol Definition

Sets and graphs

𝑇 Set of tasks, each task 𝑡 ∈ 𝑇 corresponds one-to-one to a load 𝑙(𝑡) ∈ 𝐿, and represents serving this load on the
ATHN with pickup time 𝑝(𝑡) at its origin hub.

𝐺̄ = (𝑉 , 𝐴̄), task graph that models the sequence of tasks.
𝑉 Set of vertices {0,… , 𝑛 + 1} with source 0, sink 𝑛 + 1, and tasks 1,… , 𝑛.
𝐴̄ Set of task arcs, each arc (𝑡, 𝑡′) ∈ 𝐴̄ indicates that vertex 𝑡 ∈ 𝑉 is followed immediately by vertex 𝑡′ ∈ 𝑉 .

Parameters

𝜏𝑎 Duration of task arc (𝑡, 𝑡′) ∈ 𝐴̄, 𝜏𝑎 > 0, which consists of loading a truck for task 𝑡, driving between hubs, unloading,
and relocating to the origin hub of task 𝑡′.

𝐶̄𝑡 Baseline cost for serving load 𝑙(𝑡) directly with a regular truck.
𝑐𝑎 Cost of task arc 𝑎 ∈ 𝐴̄, which is the difference between serving load 𝑙(𝑡) compared to the baseline.
𝑀𝑡𝑡′ = 𝑝(𝑡) − 𝑝(𝑡′) + 2𝛥 + 𝜏𝑡𝑡′ , for 𝑡, 𝑡′ ∈ 𝑇 , sufficiently large big-M for Constraints (2e).

Variables

𝑥𝑡 Continuous variable that indicates the start time of task 𝑡 ∈ 𝑇 .
𝑦𝑎 Binary variable that takes value one if 𝑎 ∈ 𝐴̄ is selected (i.e., the corresponding tasks are performed sequentially by

the same vehicle), and zero otherwise.
c
t
𝑡

𝑆
m
𝑙
b
p
w

c
𝑐

𝑐

load is served directly by a regular truck. Note that while performing
tasks is optional, all loads are served in the end: performing a task only
indicates that the task is served autonomously. Appropriate benefits
will be assigned to performing tasks to match the cost structure in
Section 3.

To capture this perspective, the location graph is transformed into
a directed task graph 𝐺̄ = (𝑉 , 𝐴̄) in which the nodes are tasks and the
rcs indicate the sequence of tasks performed by the same autonomous
ruck. The set 𝑉 includes a source node 0 where each sequence starts,
nd a sink node 𝑛 + 1 where it ends. As the nodes now represent tasks
nstead of locations, the number of nodes in the task graph is typically
arger than the number of nodes in the location graph. Arcs are defined
rom the source to the tasks, between the tasks (bi-directional), and
rom the tasks to the sink. Fig. 2 provides an illustrative example. The
ocation graph shows four hubs and two loads 𝑙1 and 𝑙2 associated with
asks 𝑡1 and 𝑡2, respectively. Visiting node 𝑡1 means that an autonomous
ruck loads at origin hub ℎ+𝑙1 , drives to destination hub ℎ−𝑙1 , and unloads
here. It also implies that the first and last miles are performed by
egular trucks (not pictured). After that, the autonomous truck may
ither perform another task 𝑡2 ∈ 𝑇 , which first requires a relocation
rom ℎ−𝑙1 to ℎ+𝑙2 , or it may end its sequence. Loads for which the
orresponding task is not covered are served by a direct trip with a
egular truck (not pictured). This means that all operations in the ATHN
re captured in the task graph by a set of paths from the source to the
ink, where each path corresponds to an autonomous truck.

outes and costs. Optimizing ATHN operations now amounts to choos-
ng a set of feasible autonomous truck routes that minimize the total
4 
ost. A route is defined as a simple path in the task graph from source
o sink, together with a starting time for every task. Arcs between tasks
1, 𝑡2 ∈ 𝑇 model the passage of time between picking up loads 𝑙1 and
𝑙2, respectively. That is, the duration is defined as 𝜏𝑡1𝑡2 = 𝑆 + 𝜏ℎ+𝑙1ℎ

−
𝑙1
+

+𝜏ℎ−𝑙1ℎ
+
𝑙2
> 0, which sums the time for loading, performing the middle

ile of load 𝑙1, unloading, and relocating to the starting point of load
2. Task 𝑡1 must start in the correct time window, which is obtained
y shifting the original time window of load 𝑙1 by the time it takes to
erform the first mile. This time window is given by [𝑝(𝑡1)−𝛥, 𝑝(𝑡1)+𝛥],
here 𝑝(𝑡1) = 𝑟(𝑙1) + 𝑡𝑜(𝑙1)ℎ+𝑙1

.
Not covering task 𝑡1 ∈ 𝑇 is associated with a constant baseline

ost of 𝐶̄𝑡1 for performing a direct trip. This value is given by 𝐶̄𝑡1 =
𝑜(𝑙1)𝑑(𝑙1) + 𝑐𝑑(𝑙1)𝑜(𝑙1). If task 𝑡1 is performed, the cost on the outgoing arc

replaces the baseline cost with the appropriate costs for serving the load
autonomously. More precisely, if task 𝑡1 appears in a sequence followed
by task 𝑡2 ∈ 𝑇 , the cost 𝑐𝑡1𝑡2 of arc (𝑡1, 𝑡2) ∈ 𝐴 is defined as follows:

𝑡̄1 𝑡2 =
1

1 − 𝛽
𝑐𝑜(𝑙1)ℎ+𝑙1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
first mile

+ (1 − 𝛼)𝑐ℎ+𝑙1 ℎ
−
𝑙1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
middle mile

+ 1
1 − 𝛽

𝑐ℎ−𝑙1 𝑑(𝑙1)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

last mile

+ (1 − 𝛼)𝑐ℎ−𝑙1 ℎ
+
𝑙2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
relocation

− 𝐶̄𝑡1
⏟⏟⏟

direct

.

(1)

Along the same lines, source arcs 𝑎 ∈ 𝐴̄ have cost 𝑐𝑎 = 0 and sink
arcs omit the relocation term. Note that 𝑐𝑎 < 0 when an autonomous
delivery is preferred over a direct delivery, which encourages the task
to be performed.
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Fig. 2. Constructing the task graph from the location graph.
Optimization model. The optimization problem can now be stated as
follows:

min
∑

𝑡∈𝑇
𝐶̄𝑡 +

∑

𝑎∈𝐴̄

𝑐𝑎𝑦𝑎, (2a)

s.t.
∑

𝑎∈𝛿+𝑡

𝑦𝑎 ≤ 1 ∀𝑡 ∈ 𝑇 , (2b)

∑

𝑎∈𝛿+𝑡

𝑦𝑎 =
∑

𝑎∈𝛿−𝑡

𝑦𝑎 ∀𝑡 ∈ 𝑇 , (2c)

∑

𝑎∈𝛿+0

𝑦𝑎 ≤ 𝐾, (2d)

𝑥𝑡′ ≥ 𝑥𝑡 + 𝜏𝑡𝑡′ −𝑀𝑡𝑡′ (1 − 𝑦𝑎), ∀𝑡, 𝑡′ ∈ 𝑇 , (𝑡, 𝑡′) ∈ 𝐴̄ (2e)

𝑥𝑡 ∈ [𝑝(𝑡) − 𝛥, 𝑝(𝑡) + 𝛥] ∀𝑡 ∈ 𝑇 , (2f)

𝑦𝑎 ∈ B ∀𝑎 ∈ 𝐴̄. (2g)

Let 𝑥𝑡 ∈ [𝑝(𝑡)−𝛥, 𝑝(𝑡)+𝛥] be the start time of task 𝑡 ∈ 𝑇 . The variable
𝑦𝑎 ∈ B is the flow on arc 𝑎 ∈ 𝐴̄, i.e., it takes value one if the tasks are
performed sequentially by the same vehicle and zero otherwise. For
convenience, let 𝛿+𝑣 and 𝛿−𝑣 denote the out-arcs and in-arcs of 𝑣 ∈ 𝑉 ,
respectively. Problem (2) then models the optimization of ATHN op-
erations. Objective (2a) minimizes the system cost as discussed above.
Constraints (2b) require that each task is performed at most once, and
Constraints (2c) ensure flow conservation. The number of vehicles is
limited by Constraint (2d). Constraints (2e) are Miller, Tucker, and
Zemlin (1960) constraints that model the passage of time and eliminate
cycles. It is straightforward to show that the constants

𝑀𝑡𝑡′ = 𝜏𝑡𝑡′ −
(

𝑝(𝑡′) − 𝛥
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
lowerbound on 𝑥𝑡′

+ (𝑝(𝑡) + 𝛥)
⏟⏞⏞⏟⏞⏞⏟

upperbound on 𝑥𝑡

(3)

are sufficiently large to make the constraint inactive when 𝑦𝑎 = 0.
Finally, Eqs. (2f)–(2g) define the variables. For a consistent analysis,
the solution is postprocessed to shift the start times to as early in time
as possible.
5 
4.1. Acceleration techniques

The size of Problem (2) can be reduced significantly by recognizing
that many arcs (𝑡, 𝑡′) ∈ 𝐴̄ are either trivially time-feasible because task
𝑡′ is planned much later than task 𝑡, or trivially time-infeasible because
task 𝑡′ is planned much earlier than task 𝑡. These observations are
formalized in the following proposition.

Proposition 1 (Preprocessing Rules). Let 𝑎𝑡 = 𝑝(𝑡) − 𝛥 and 𝑏𝑡 = 𝑝(𝑡) + 𝛥
be the earliest and latest possible start time of task 𝑡 ∈ 𝑇 , respectively. The
following preprocessing rules are valid for arc (𝑡, 𝑡′) ∈ 𝐴̄ between two tasks
𝑡, 𝑡′ ∈ 𝑇 .

1. Arc is always time feasible: 𝑏𝑡+𝜏𝑡𝑡′ ≤ 𝑎𝑡′ ⇒ remove Constraint (2e)
for arc (𝑡, 𝑡′).

2. Arc is never time feasible: 𝑎𝑡 + 𝜏𝑡𝑡′ > 𝑏𝑡′ ⇒ remove arc (𝑡, 𝑡′) from
𝐴̄.

Proof. By definition, 𝑥𝑡 is only allowed to take values in 𝑥𝑡 ∈ [𝑎𝑡, 𝑏𝑡].
The condition in the first rule implies 𝑥𝑡 + 𝜏𝑡𝑡′ ≤ 𝑏𝑡 + 𝜏𝑡𝑡′ ≤ 𝑎𝑡′ ≤ 𝑥𝑡′ ⇔
𝑥𝑡′ ≥ 𝑥𝑡+𝜏𝑡𝑡′ for all feasible values of 𝑥𝑡 and 𝑥𝑡′ . It follows that the time
constraint is redundant and can be removed. Similarly, the condition
in the second rule implies 𝑥𝑡 + 𝜏𝑡𝑡′ ≥ 𝑎𝑡 + 𝜏𝑡𝑡′ > 𝑏𝑡′ ≥ 𝑥′𝑡 ⇔ 𝑥′𝑡 < 𝑥𝑡 + 𝜏𝑡𝑡′ .
It follows that 𝑦𝑡𝑡′ = 1 would violate Constraint (2e). As such, 𝑦𝑡𝑡′ may
be set to zero, which is achieved by simply removing the arc. Hence,
these preprocessing rules are valid. □

Both preprocessing rules eliminate time constraints, which can
make them incredibly powerful. If all time Constraints (2e) are elim-
inated, then the 𝑥-variables (2f) are automatically satisfied, and the
remainder of Problem (2) can be seen as a minimum-cost network
flow problem. The only constraints that are not in standard form are
Constraints (2b) and (2d), but they take the form of node capacities that
can be handled through node splitting (Ahuja et al., 1993). It is well-
known that the min-cost flow problem exhibits the integrality property,
and can be solved in polynomial time by linear programming. As the
flexibility 𝛥 decreases, the preprocessing rules become more effective,
and Problem (2) gets closer to a minimum-cost network flow problem.
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Fig. 3. Arc filtering for temporal decomposition (𝐴̂ in red and 𝑉 in blue).
In fact, this situation is reached for the no-flexibility 𝛥 = 0 case, when
every arc (𝑡, 𝑡′) ∈ 𝐴̄ either satisfies Rule 1 or Rule 2 and all time
constraints are eliminated. Informally, it is easier to optimize ATHN
operations when there is less flexibility, to the point where it becomes
provably easy without flexibility.

MIP start. In addition to preprocessing, this paper will try to improve
the optimization process by providing the solver with an initial feasible
solution. This solution is known as a MIP start and provides an upper
bound that can assist the branch-and-bound process. Regardless of the
flexibility 𝛥, a feasible solution can be calculated efficiently by solving
the case when flexibility is set to zero. The calculated solution is then
used as a starting point for the actual problem. To avoid the overhead
of building an additional model, the solver is provided a partial MIP
start of only 𝑥𝑡 = 𝑝(𝑡) for all 𝑡 ∈ 𝑇 , which is sufficient to find the same
solution.

The fact that 𝛥 = 0 is easy to solve and guarantees a valid
upper bound is specifically because the trucks are autonomous. The
main technical difference is that autonomous trucks are completely
interchangable, while human-driven trucks need to be distinguished
to ensure that drivers return to their specific starting point (Aruna-
puram et al., 2003) or that they do not exceed the maximum driving
time (Gronalt et al., 2003). Network flow relaxations that aggregated
drivers have been used to derive lower bounds (Gronalt et al., 2003),
but it is not obvious how to transform the outcome into a feasible
solution. For autonomous trucks these human factors do not apply,
which enables the framework in this paper.

4.2. Regional and temporal decomposition

The framework in this paper is easily extended to perform regional
and temporal decomposition. This requires only minor modifications to
the input and to the model.

Regional decomposition. The goal of the regional decomposition is to
compare the global optimization of ATHN operations to a situation in
which each region (e.g., the South of the US) has dedicated autonomous
trucks that only pick up loads that start in that region. In this case,
trucks can serve loads within their region and loads that are moving
out of the region. However, after leaving the region to drop off a load,
the truck has to return before it can perform another task. The model
will be modified to jointly optimize how trucks are assigned to regions
and how to operate the ATHN under these restrictions. Performing an
analysis in this setting helps answer questions about the scale at which
autonomous trucks are effective and where they should be deployed.

Regional decomposition can easily be performed by filtering arcs
from the task graph. First assign every task 𝑡 ∈ 𝑇 to a region based
on the location of the origin hub ℎ+𝑙(𝑡). Next, remove all arcs (𝑡, 𝑡′) ∈ 𝐴̄
between tasks 𝑡, 𝑡′ ∈ 𝑇 if the regions are different. It follows that when
a flow reaches a task that starts from a specific region, there is no
way to reach tasks that start from a different region, as intended. The

amount of flow from the source to each region represents the amount

6 
of trucks that are assigned to that region. The truck assignments and
operations are then jointly optimized by solving this filtered instance
of Problem (2).

Temporal decomposition. The goal of the temporal decomposition is to
plan ATHN operations on a rolling horizon (e.g., one week at a time),
rather than for a full period at once (e.g., four weeks). Optimizing over
a shorter horizon requires less information and is easier computation-
ally. However, the model does not explicitly rebalance trucks at the
end of the period. This means that optimizing myopically may leave the
trucks ill-positioned for the next period. The temporal decomposition
can be used to explore these trade-offs.

Implementing a rolling horizon for Problem (2) is relatively straight-
forward. A practical way to do so is by reusing the existing structures
and modifying the model as little as possible. Fig. 3 provides an
illustrative example. First, build the task graph for the full period.
For a given horizon, identify the arcs 𝐴̂ of the partial routes created
previously (without sink arcs). Fix these arcs 𝑎 ∈ 𝐴̂ to 𝑦𝑎 = 1 in the
optimization model to stay consistent with the past. To plan for the
current horizon, only the following nodes 𝑉 are relevant: the source,
the sink, the current route endpoints, and the tasks that start during the
horizon. Now filter the task graph to only keep the arcs in 𝐴̂ and the
arcs in the subgraph induced by 𝑉 . This makes it impossible to plan
outside of the horizon. The model is solved and the steps are repeated
until the full period is planned.

5. Case study

To quantify the impact of autonomous trucking on a realistic trans-
portation network, a case study is presented for the dedicated trans-
portation business of Ryder System, Inc. (Ryder). Ryder is one of the
largest transportation and logistics companies in North America, and
provides fleet management, supply chain, and dedicated transportation
services to over 50,000 customers.

Data. Ryder has provided a dataset that is representative for its dedi-
cated transportation business in the US, reducing the scope to orders
that are strong candidates for automation. The case study focuses
on the challenging orders that currently consist of a single delivery
followed by an empty return trip. These orders are highly inefficient
and contribute significantly to the overall empty mileage, such that
ATHN can potentially have a big impact. The challenging orders also
allow for a clean comparison to the current situation: These are orders
for which Ryder was unable to find a backhaul, and returning empty
after delivery is how they would be served in practice. The challenging
orders are converted into loads with an origin, destination, and planned
departure time. The ATHN operations are optimized for loads that start
during the first four weeks of October 2019. This corresponds to 6842
loads, with an average distance of 390 km (242 mi).

Network design. To design an effective network, it is important to select
hubs that are 1. close to frequently used origins and destinations to

minimize the first/last mile, and 2. easily accessible from the highway
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Fig. 4. ATHN design for 100 hubs (Circle area proportional to number of assigned loads).
to enable automation between the hubs. This is achieved by first using
the K-means algorithm in Scikit-learn (Pedregosa et al., 2011) to cluster
the origins and destinations into the desired number of hubs, based on
data from October to December 2019. Next, the centroids are mapped
onto the closest US truck stop obtained from the U.S. Department of
Transportation (2019), according to haversine distance. The origin and
destination hubs ℎ+𝑙 ≠ ℎ−𝑙 for load 𝑙 ∈ 𝐿 are chosen to minimize the
value of 𝑐𝑜(𝑙)ℎ+𝑙 +(1−𝛾)𝑐ℎ+𝑙 ℎ−𝑙 +𝑐ℎ−𝑙 𝑑(𝑙), where 𝛾 ∈ [0, 1] is a discount factor
for autonomous trucks. For 𝛾 = 0 this minimizes the total distance,
for 𝛾 = 1 this minimizes the first/last-mile distance, and 𝛾 ∈ (0, 1)
minimizes a combination of the two. By taking both the origin and the
destination into account, the rule allows for assigning hubs in the right
direction that are not necessarily the closest. Fig. 4 visualizes the 100-
hub design for 𝛾 = 40%, in which the area of each hub is proportional
to the number of loads that are assigned to it. It can be seen that
many loads are concentrated in the South (purple) and in the Northeast
(red).

Experimental settings. Table 3 provides an overview of the baseline
parameter values used in the case study. Various sensitivity analyses
will be performed to observe how these parameters affect the system.
The baseline includes two autonomous discount factors: 𝛼 = 25% and
𝛼 = 40%. This results in a conservative estimate of the benefits of
autonomous trucking, which is predicted to be 29% to 45% cheaper
per mile (Engholm et al., 2020). All experiments use a consistent hub-
assignment rule with autonomous discount factor 𝛾 = 40% to ensure
that the results are comparable. A higher value of 𝛾 tends towards load
paths that include more autonomous mileage. The baseline also uses
multiple values of 𝐾 to observe the impact of increasing availability
of autonomous trucks, with the value 𝐾 = 100 as the standard.
These instances are solved sequentially by increasing the right-hand
side of Constraint (2d) and reoptimizing. All steps in Section 4 are
implemented in Python 3.9 and the ATHN operations are optimized
with Gurobi 9.5.2. Gurobi is given three hours of solving time for each
instance, unless stated otherwise. Each experiment is run on a Linux
machine with dual Intel Xeon Gold 6226 CPUs on the PACE Phoenix
cluster (PACE, 2017), using a single node with 24 cores and 192 GB
of RAM. If memory is insufficient, the experiment is repeated on a
7 
Table 3
Baseline parameter values for the case study.

Parameter Value

𝑛 6842 loads
|𝑉𝐻 | 100 transfer hubs
𝐾 ∈ {0, 50, 100, 150, 200, 250} autonomous trucks
𝛥 1 h pickup-time flexibility
𝑆 30 min autonomous truck loading/unloading time
𝛼 ∈ {25%, 40%} discount for autonomous mileage
𝛽 25% first/last-mile inefficiency
𝛾 40% discount for autonomous mileage during hub-assignment
Preprocessing Applied
MIP start Disabled
Solver time limit 3 h

machine with 384 GB of RAM. Note that if high-memory machines
are not available, memory could also be traded for computing time by
reducing the number of parallel threads.

6. Baseline results

This section discusses the baseline results for the case study. It
first presents computational results to demonstrate that the presented
framework can handle large-scale systems. Next, it analyzes the impact
of autonomous trucking for the case study.

6.1. Computational results

Table 4 presents the computational results for the baseline in-
stances. The instances differ by the discount for autonomous mileage 𝛼
and the number of vehicles 𝐾. As described in the previous section, the
instances for different 𝐾 are run sequentially and reuse the same model,
as would be done in practice to study the system. The ‘LP Relaxation’
columns present the time to solve the linear programming relaxation
(before cuts) and the corresponding root gap. The ‘Branch and Bound’
columns summarize the full branch-and-bound process, reporting the
number of nodes in the tree, the solution time (10,800 if the time limit
of three hours is reached), and the final gap. The table omits the time
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Table 4
Baseline computation statistics.

Parameters LP relaxation Branch and bound

𝛼 𝐾 Seconds Gap % Nodes Seconds Gap (%)

25%

0 0 0 0 0 0
50 218 19.50 1 10,800 0.03
100 170 6.44 1 4,133 0
150 183 1.81 1 3,261 0
200 181 0.70 1 2,754 0
250 177 0.40 1 2,850 0

40%

0 0 0 0 0 0
50 268 25.10 1 10,800 0.18
100 206 10.40 3382 6,430 0
150 232 3.20 1 2,972 0
200 207 1.00 1 3,149 0
250 189 0.74 1 2,026 0

for building the model, which was less than six minutes, and the time
for presolve, which took less than four minutes in all cases.

Despite the fact that each model has over 22M binary variables and
close to 300k constraints, Gurobi is able to find optimal solutions in
most cases. For 𝐾 = 0, the problem is trivial and is solved immediately
in presolve. The cases with fewer vehicles are challenging to the
solver, presumably because the tasks are packed more densely into the
schedule, as will be discussed in Section 7.2. Only the 𝐾 = 50 cases
where not solved to optimality, and remain at 0.03% and 0.18% gap.
Both for 𝛼 = 25% and 𝛼 = 40% the solver tends to keep adding cutting
planes rather than branch. This strategy is successful to solve all other
instances to optimality within the time limit. The only instance that
stands out is 𝛼 = 40% and 𝐾 = 100, which explores 3382 nodes in the
branch-and-bound tree. For this instance, the log shows that a gap of
0.01% is found after 4845 s. When the gap is still at 0.01% at 5921 s,
the solver decides to start branching to close the gap. This behavior
can likely be explained by symmetry in the solution space, e.g., if two
vehicles swap half of their tasks, the solution is likely to be of similar
quality. The result is that good solutions are found quickly, but it takes
a substantial number of cuts or branches to find the optimum. Overall,
the computations for the baseline instances show that the proposed
methodology can find optimal or close to optimal solutions in a short
amount of time compared to the planning horizon.

Using MIP starts. Enabling MIP start forces the solver to construct an
initial feasible solution before starting the search (Section 4). Fig. 5
provides an example of the effect of enabling MIP start for the 𝛼 = 25%
baseline with 𝐾 = 100 trucks. Note that these tests are run indepen-
dently without reusing the model for 𝐾 = 50 as in the experiments
above. Without any guidance, Gurobi takes 520 s to report the first
optimality gap of 33%. At 741 s, a significantly better solution of 1.25%
gap is found, and the problem is solved to optimality in under an hour.
When MIP start is enabled, it takes more time for the search proper to
start, and the first gap is reported at 1139 s. However, spending time
to construct an initial feasible solution immediately leads to a gap of
only 1.19% because of the improved upper bound. The full problem is
solved in under one hour and 15 min.

Two observations are made for the case study. First, using a MIP
start does not seem to improve solution time, but it does create a
more predictable result. Especially if the instance cannot be solved to
optimality, the MIP start is more likely to produce a reasonable solution
before the time limit. Second, the small initial gap for the MIP start
suggests that the initial solution is already of high quality. Recall that
this zero-flexibility 𝛥 = 0 case can be seen as a min-cost flow problem,
which gives practitioners the possibility to avoid commercial software
and instead plan ATHN operations with highly-efficient open source
solvers such as the LEMON graph library (Dezső et al., 2011). As most
8 
Fig. 5. Optimality gap over time for 𝛼 = 25% and 100 trucks.

instances can be solved to optimality, MIP starts will only be enabled
for the difficult large-flexibility instances in Section 7.1.

6.2. Impact of autonomous trucking

Fig. 6 presents the impact of autonomous trucking for the baseline,
where autonomous mileage is discounted by either 𝛼 = 25% or 𝛼 =
40%. It is clear that introducing autonomous trucks leads to substantial
benefits. Fig. 6(a) shows that the first 50 trucks already lower the
operational cost of the system (including first/last miles) by the equiv-
alent of more than one million traditional kilometers. E.g., at $1.25/km
(≈$2/mile) for traditional trucks, this corresponds to a value of about
$1.3M per four weeks or $16.9M per year. The percentage savings for
the overall system are provided in Fig. 6(c). These savings range from
20% for 50 trucks in the more expensive scenario to 37% for 250 trucks
when autonomous trucking is less expensive. It is interesting to observe
that adding vehicles clearly satisfies the law of diminishing returns.
As more vehicles are added, more loads are served autonomously
(Fig. 6(b)) and more savings are obtained (Fig. 6(c)), but the benefits
level out at about 100 trucks for the Ryder case study. Note that this
is a relatively small number of trucks compared to the 6842 loads,
which reflects the fact that autonomous trucks can operate around the
clock. Fig. 6(d) looks at the savings percentage only for loads that are
served autonomously. It can be seen that, on average, loads that are
served autonomously save between 31% and 42% in costs compared to
traditional transportation.

Table 5 and Fig. 7 dive deeper into the results for 𝛼 = 25% and
100 trucks specifically. The table shows that the total distance driven
in the ATHN (including empty miles) is 13.0% lower than for the
current system. These savings are due to the flexibility of autonomous
trucks that can operate throughout the night and never need to return
home. This allows for only 29% empty miles on the autonomous middle
mile, which is a substantial improvement over the rate of 50% in the
current system. When labor cost reduction is taken into account, the
savings increase to 25.2%. The truck schedule in Fig. 7 also shows
that relocations are small compared to the work performed: Every row
represents a single truck, where blue bars correspond to performing
tasks, and the red bars correspond to driving empty. The schedule
is relatively tight, except for the four ‘gaps’ during the weekends, in
which not many loads are planned. This is an artifact of the data that
results from planning around people, Section 7 will explore the value of
increasing flexibility and allowing autonomous trucks to pick up loads
on any day.
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Fig. 6. Baseline results.
Fig. 7. Truck schedule for 𝛼 = 25% and 100 trucks.
Table 5
Statistics for 𝛼 = 25% and 100 trucks.

Service Loads Segment Total km Empty Cost factor Cost

Current Direct 6842 Full 5,323,357 50% 1 5,323,357

ATHN Autonomous 4828 Middle 2,598,418 29% 0.75 1,948,814
First/last 875,215 25% 1 875,215

Direct 2014 Full 1,159,133 50% 1 1,159,133

Total 6842 4,632,766 3,983,162

Savings ATHN compared to Current 690,591 1,340,195
13.0% 25.2%
9 
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Fig. 8. Upper and lower bounds for different time flexibilities 𝛥.
Table 6
Optimality gaps at time limit for large-flexibility instances.
𝛥 𝛼 = 25% 𝛼 = 40%

Without MIP start With MIP start Without MIP start With MIP start

2 h 0.04% 0.07% 0.17% 0.20%
12 h 20.05% 4.52% 11.38% 5.50%
24 h 14.80% 4.69% 29.77% 4.62%

7. Sensitivity analysis

The baseline results demonstrate significant benefits of autonomous
trucking for the case study. This section provides an extensive sensitiv-
ity analysis of these results. It explores flexibility in pickup times, the
trade-off between operating cost and autonomous truck utilization, the
effect of regional and temporal decomposition, and various changes in
input parameters.

7.1. Pickup-time flexibility

Even for a limited pickup-time flexibility of one hour, the baseline
showed significant benefits of ATHN compared to traditional trans-
portation. This section explores whether increasing the flexibility to up
to 24 h further improves network performance. If there are major gains
in efficiency, it may be worth negotiating new pickup times or new
service-level agreements with the customers. From a computational
standpoint, Section 6.1 explained that large-flexibility instances are
more difficult to solve. For this reason, this section will rely heavily
on MIP starts.

Figs. 8(a) and 8(b) present upper bounds (feasible solutions) and
lower bounds for pickup-time flexibilities ranging from 0 to 24 h. In
terms of computational performance, the figures show that the 0 h and
1 h instances can be solved to optimality, the 2 h instances have a small
remaining gap, and the 12 h and 24 h instances prove difficult to solve.
The exact optimality gaps are reported in Table 6. It can be seen that
for the difficult instances, using a MIP start really helps to obtain better
solutions, e.g., reducing the gap from 30% to 5% in the 𝛼 = 40% and
𝛥 = 24h case. Increasing the flexibility from 1 h to 2 h reduces the
overall cost of the system by 0.9% for 𝛼 = 25% and 1.8% for 𝛼 = 40%.
With the current algorithm, increasing the flexibility to 12 h and 24 h
does not lead to better solutions (upper bounds). However, the lower
bounds show potential savings of up to 5.3% compared to the 𝛥 = 1h
baseline. This makes it an interesting direction for future research to
develop methods that are effective for larger flexibility. For 𝛼 = 40%
and 𝛥 = 24h, the solver is able to improve over the MIP start solution.
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The resulting schedule is presented by Fig. 9. It shows that the increased
flexibility creates a schedule that is more sparse and departs from the
current weekly pattern shown by Fig. 7.

7.2. Number of autonomous trucks

This section explores the trade-off between operating cost and au-
tonomous truck utilization in the ATHN. Fig. 10 presents the total
cost of the ATHN operations from zero to 250 trucks in increments of
10, and all solutions are within 0.25% of optimality. The inactivity is
defined as the percentage of time that autonomous trucks are waiting
and not performing any tasks. The convex cost curves clearly show that
the first autonomous trucks will be the most impactful and will almost
never be inactive. This property makes it easier to run successful pilots
and encourage the adoption of ATHN. Cost improvements start leveling
out as more vehicles are added to the system. Inactivity goes up because
more vehicles are available, but also because there is sufficient extra
capacity to wait for the next load at the current location rather than to
relocate.

Fig. 11 analyzes how long it would take to make back the purchas-
ing costs of the autonomous trucks with the savings obtained by the
ATHN. The plot presents results for autonomous trucks that cost $150k
to $250k each, based on the $200k estimated by Arizona Bank & Trust
(2022). For the baseline scenario with 𝐾 = 100 vehicles, the figure
shows a payback period of less than 1.5 years, demonstrating a rapid
return on investment for all parameters. Again it can be seen that the
first vehicles are the most profitable, and a system with only 10 trucks
would pay back the trucks within half a year.

The number of autonomous trucks in the system also affects the
routes that are created. Figs. 12 and 13 present routes taken from
the 𝐾 = 10 and 𝐾 = 150 vehicle solutions, respectively. Blue arrows
represent loaded trucks, and red arrows correspond to driving empty.
For the 𝐾 = 10 case, nine of the ten routes are clustered in the East
(Figs. 12(a) and 12(b)), and one route also serves loads in the West
(Fig. 12(c)). It is clear that the optimization uses the limited number
of trucks to serve the most dense region, as shown in Fig. 4. When the
number of trucks increases, Fig. 13 shows that routes start to cover all
regions of the US. The Ryder case study therefore suggests a roll-out
strategy that starts in the East and expands from there.

7.3. Regional and temporal decomposition

In practice it may be necessary to plan ATHN operations for a
specific region or for a specific time horizon. Examples are if states do

not share order information, or if loads are only announced a week in



C. Lee et al. EURO Journal on Transportation and Logistics 13 (2024) 100141 
Fig. 9. Truck schedule for increased flexibility of 𝛥 = 24h (𝛼 = 40%, MIP start enabled).
Fig. 10. Total cost and autonomous truck inactivity.

advance. Decomposing the problem is also a strategy to speed up the
optimization.

Regional decomposition. The US is comprised of smaller areas where the
ATHN framework can be applied separately according to Section 4.2.
This study focuses on the impact of regional decomposition on the
ATHN problem. Three regional decomposition schemes: 1. Region, 2.
Division, and 3. State, adopted from the U.S. Census Bureau (2010),
are used to solve the base cases with 𝐾 = 100.

Fig. 14 presents the summary of the regional decomposition. As
expected, a finer regional decomposition decreases the number of loads
served by the ATHN and lowers the savings. But surprisingly, most of
the benefits are still obtained when ATHN operations are planned on
the region or division level. Planning at the state level is significantly
more expensive, although ATHN still outperforms the current system
by 13% to 21%. This indicates that a successful system is likely to
require collaboration between states. Fig. 15 presents the allocation
of autonomous trucks to regions or divisions. Recall that this is op-
timized by the model as a byproduct of the regional decomposition
(Section 4.2). Both plots indicate that a majority of the trucks are
allocated to the South and in the Northeast, in line with the data
presented in Fig. 4. Fig. 16 presents an example route for the Northeast
region for 𝛼 = 25%. Note that vehicles are allowed to leave the region,
but have to return empty before they can pick up the next load. This
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corresponds to a situation where regions have joint infrastructure but
do not communicate about orders.

Temporal decomposition. Fig. 17 summarizes the results for decompos-
ing the optimization problem into smaller time periods that are solved
on a rolling horizon as described in Section 4.2. Surprisingly, Fig. 17(a)
shows that the ATHN can be operated on a weekly basis at only a
minimal increase in cost. This indicates that a week is sufficiently
long to deal with the vehicle imbalances created during the previous
period, without the need for explicit rebalancing. Fig. 17(b) shows that
essentially the same number of loads are served whether the operations
are planned on a monthly, biweekly, or weekly basis. This has the
potential to greatly simplify planning, as loads do not have to be
announced too far in advance. When the planning period is reduced to
a single day, it can be seen that the costs do increase. More noticeably,
the number of served loads drops significantly. This suggests that the
optimization model is still able to perform the most profitable tasks,
but is unable to exploit all the opportunities because the autonomous
trucks are not in the right place at the beginning of the day.

In terms of solution time, there is also a significant advantage to
planning on a weekly basis. Fig. 17(a) includes two line plots that
indicate the total solving time over the full horizon. For the 𝛼 = 25%
case, for example, it shows that planning biweekly instead of monthly
only requires 35% of the solving time, while planning weekly instead
of monthly only requires 12% of the solving time. It is concluded for
the case study that planning weekly is a practical and fast alternative
to planning monthly. Although the quality is worse, planning daily is
extremely fast and may be useful to adjust schedules when unforeseen
events happen.

7.4. Loading and unloading time

The baseline assumes that loading or unloading an autonomous
truck takes 30 min. However, there remains uncertainty in the time this
will take in practice. For example, operators may choose to perform
more extensive inspections that increase the loading and unloading
time. Fig. 18 presents results for the 𝐾 = 100 case when the load-
ing/unloading time 𝑆 is varied from zero up to two hours. All instance
were solved to optimality, except for the case 𝛼 = 40% and 𝑆 = 2
hours which remained at a small gap of less than 0.01%. It can be seen
that increasing the loading/unloading time reduces the amount of loads
that are served autonomously. At the same time, the overall savings go
down, but not by as much. This indicates that when loading/unloading
time increases, the optimization model becomes more selective about

which loads to serve autonomously and which loads to serve with
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Fig. 11. Payback period for capital investments in autonomous trucks.

Fig. 12. Example routes for 𝐾 = 10.

Fig. 13. Example routes for 𝐾 = 150.

Fig. 14. Statistics for regional decomposition.
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Fig. 15. Vehicle allocation per area.
Fig. 16. Example route northeast region for 𝛼 = 25%.

direct trips. This allows for accommodating a significant increase in
loading/unloading time without substantial cost increases.

7.5. Network size

Finally, it is explored how the number of transfer hubs affects the
ATHN. Fig. 19 summarizes the results. Fig. 19(a) shows that as the
number of hubs increases, more loads will be served autonomously.
This effect is due to the shorter first and last mile distances that make
it more attractive to use the ATHN. Fig. 19(b) shows that the ATHN
remains at least 19.7% cheaper than the current system, even when the
number of hubs is reduced to 50. This is an important fact for practical
implementation: it is not necessary to deploy the full network at once
to obtain substantial savings. For the case study, additional benefits can
be obtained by further extending to 200 hubs. In this case the benefits
mainly derive from making the first and last miles shorter, rather than
capturing additional loads.

8. Conclusion

Autonomous trucks are expected to fundamentally transform the
freight transportation industry. In particular, Autonomous Transfer
Hub Networks (ATHNs), which combine autonomous trucks on middle
miles with human-driven trucks on the first and last miles, are seen
as the most likely deployment pathway for this technology. This pa-
per presented a framework to optimize ATHN operations based on a
flow-based optimization model. The optimization model exploits the
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problem structure and can be solved by blackbox solvers in a matter
of hours. Tools were also provided to perform regional and temporal
decomposition in the same framework.

A realistic case study was performed to demonstrate the capability
of the optimization model to handle large-scale systems. The case study
is based on realistic data provided by Ryder System, Inc., that spans
all of the United States over a four-week horizon. Computational
results were presented for a system of 100 hubs, 6842 loads, and up
to 250 vehicles. The results show that a blackbox solver can solve
these instances to within 0.18% of optimality within three hours of
computation time.

The case study itself provided many insights into the impact of self-
driving trucks on freight transportation. The baseline results indicate
cost savings in the range of 20% to 37% for the most challenging orders
that are currently served by direct trips. This corresponds to upward
of $16.9M per year on the case study. A detailed sensitivity analysis
was provided to study various changes to the system. It was shown
that increasing the pickup-time flexibility leads to additional potential
savings that cannot yet be exploited by the current algorithm, which
motivates future work. Using a MIP start significantly improved the
performance for these difficult instances. The analysis of the number
of trucks demonstrates the trade-off between cost reduction and truck
inactivity. It also shows the recommended path of implementation for
the case study, starting with trucks that exclusively serve the busy East
and West, and moving to routes that cover the whole country as the
number of trucks increases.

Decomposing the optimization problems into regions and into
smaller time periods led to some interesting practical insights. For the
case study, it was shown that planning on the regional level maintains
many of the benefits of planning on the national level. Similarly, it
was found that planning one week ahead on a rolling horizon leads
to surprisingly good results and also significantly reduced solving
time by 88%. Daily planning is extremely fast and may be useful to
adjust schedules when unforeseen events happen. The analysis of the
loading/unloading time showed that long loading/unloading times of
up to two hours (e.g., to perform inspections) can be accommodated
with minimal impact on the system’s cost-effectiveness. And finally,
varying the size of the network demonstrated that the ATHN can still
be run efficiently when the number of hubs is reduced from 100 to 50.

In conclusion, it is found that the optimization framework for ATHN
is an effective tool to study large full truckload systems and gain
insights from real data. Interesting directions for future work include

studying the effect of ATHN on human labor beyond the drivers,
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Fig. 17. Statistics for temporal decomposition.
Fig. 18. Statistics for varying loading/Unloading time.
Fig. 19. Statistics for varying number of hubs.
-

e.g., support staff at the transfer hubs. A first step in that direction
has been taken by Lee et al. (2023), which presents a constraint
programming method to optimize the size of each hub. Another future
direction could be to incorporate the possibility of platooning into
the model, to save additional costs. Finally, it would be interesting to
extend the framework to less-than-truckload transportation.
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