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In the Multi-Commodity two-echelon Distribution Problem (MC2DP), multiple commodities are distributed in
a two-echelon distribution system involving suppliers, distribution centres and customers. Each supplier may
provide different commodities and each customer may request several commodities as well. In the first echelon,
capacitated vehicles perform direct trips to transport the commodities from the suppliers to the distribution
centres for consolidation purposes. In the second echelon, each distribution centre owns a fleet of capacitated
vehicles to deliver the commodities to the customers through multi-stop routes. Commodities are compatible,
i.e., they can be mixed in the vehicles. Finally, customer requests can be split by commodities, that is, a
customer can be visited by several vehicles, but the total amount of each commodity has to be delivered by a
single vehicle. The aim of the MC2DP is to minimize the total transportation cost to satisfy customer demands.

We propose a set covering formulation for the MC2DP where the exponential number of variables relates
to the routes in the delivery echelon. We develop a Branch-Price-and-Cut algorithm (BPC) to solve the
problem. The pricing problem results in solving an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC) per distribution centre. We tackle the ESPPRC with a label setting dynamic programming algorithm
which incorporates ng-path relaxation and a bidirectional labelling search. Pricing heuristics are invoked to
speed up the procedure. In addition, the formulation is strengthened by integrating capacity cuts and two
families of valid inequalities specific for the multiple commodities aspect of the problem.

Our approach solves to optimality 439 over the 736 benchmark instances from the literature. The optimality
gap of the unsolved instances is 2.1%, on average.

1. Introduction In this article, we consider the two-echelon distribution problem
introduced in Gu et al. (2022), namely the Multi-Commodity two-echelon
Distribution Problem (MC2DP). In this context, origins, intermediate
facilities and destinations are referred to as suppliers, distribution centres
and customers, respectively. There are few vehicle routing problems
which explicitly deal with multiple commodities within a two-echelon

distribution system. To the best of our knowledge, among these prob-

In a two-echelon distribution system, goods are transferred from
origins (depots, suppliers) to destinations (customers) via intermedi-
ate facilities (satellites, distribution centres) (see Guastaroba et al.,
2016). In the collection echelon, large vehicles bring goods from the
origins to the intermediate facilities where consolidation operations
are performed. Whereas, in the delivery echelon, smaller vehicles are in

charge of distributing the goods to the final customers. Routing deci-
sions are usually required in both echelons. Two-echelon systems take
advantage of consolidating goods at intermediate facilities and using
different fleets within each echelon to reduce overall transportation
costs. An example of this delivery strategy can be encountered in city
logistics (Cattaruzza et al., 2017; Crainic et al., 2023) where the aim is
also to grant the access in urban areas only to environmental-friendly
vehicles that usually have a small capacity.

* Corresponding author.

lems, the MC2DP is the only one considering a many-to-many setting.
In fact, in the MC2DP, the commodity requested by a customer is
not pre-assigned to a specific supplier, so it can be collected at any
supplier or subset of suppliers where it is available. The amount of the
commodities available at the suppliers is limited. In contrast with the
usual setting in the literature, the MC2DP requires routing decisions
only in the delivery echelon. Indeed, commodities are collected from
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the suppliers and brought to the distribution centres via direct round
trips. In the delivery echelon, a fleet of vehicles performing routes
starting and ending at the same distribution centre is used to deliver the
commodities to the customers. All vehicles involved in the distribution
system are capacitated and commodities are compatible, i.e., they can
be mixed inside all vehicles. Finally, as in the Commodity constrained
Split Delivery Vehicle Routing Problem (C-SDVRP) (Archetti et al., 2016),
customers can be visited by multiple vehicles as long as the demand
of a single commodity is served by a single vehicle. The aim of the
MC2DP is to determine a distribution plan to satisfy customer de-
mands while respecting the capacity of the vehicles and not exceeding
the commodity availabilities at the suppliers and such that the total
transportation cost is minimized. The MC2DP finds an application
in the short and local fresh food supply chains (Berti and Mulligan,
2016) where farmers supply different agricultural products to canteens,
restaurants or supermarkets through indirect sales. Commonly, a single
decision maker, such as an association of farmers, coordinates both the
collection and delivery echelons. In this context, the farmers are less
numerous than delivery points since the maximal supply of one farmer
can cover the demand of several customers. Hence, the collection
from the farmers is usually performed via direct round trips. Then,
the distribution centres perform the consolidation operations and the
deliveries to the customers which are done by vehicles performing
routes. We refer to Gu et al. (2022) for more details about the problem
application.

The authors in Gu et al. (2022) proposed a compact Mixed Integer
Linear Programming (MILP) formulation and a sequential heuristic for
the MC2DP. The authors decompose the MC2DP in two subproblems:
one for the collection from suppliers, and the other one for the delivery
to customers. The collection subproblem is modelled as a MILP and
solved with a commercial solver while the delivery subproblem is
solved by an Adaptive Large Neighbourhood Search (ALNS) algorithm.

The contribution of this paper is to present an exended model and
to propose the first ever exact approach based on a Branch-Price-and-
Cut (BPC) algorithm to solve the MC2DP. Similar exact approaches
have recently been proposed to deal with two-echelon vehicle routing
problems (see e.g. Marques et al., 2020; Li et al., 2022; Mhamedi et al.,
2022; Marques et al., 2022).

However, our BPC algorithm is designed to take into account explic-
itly the multi-commodity dimension. Specifically, our algorithm relies
on a set covering formulation for the MC2DP where the exponentially-
many number of variables correspond to the routes in the delivery ech-
elon starting and ending at each distribution centre. We also strengthen
the formulation by the insertion of capacity cuts, valid inequalities
arising from the set covering polytope (Balas and Ng, 1989) and a new
family of valid inequalities based on the number partitioning problem
polytope. While capacity cuts are classical inequalities derived for the
Capacitated Vehicle Routing Problem (CVRP) (see Laporte et al., 1985),
the other two families of inequalities tackle the multi-commodity aspect
of the problem. Finally, several state-of-art speed-up techniques are also
incorporated in our BPC algorithm.

The remainder of the paper is organized as follows. Section 2
provides a literature review. In Section 3, a formal description of the
MC2DP is provided. In Section 4, a set covering formulation is pre-
sented along with different families of valid inequalities. Our Branch-
Price-and-Cut algorithm is described in Section 5. Finally, in Sec-
tion 6 we analyse the results obtained by the proposed algorithm on
the benchmark instances introduced in Gu et al. (2022) to assess its
effectiveness.

2. Literature review

In this section, we review the existing literature on the two-echelon
distribution problems, with particular attention to the ones dealing
with multiple commodities. The first two-echelon routing problem
introduced by Jacobsen and Madsen (1980) was motivated by a specific
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application. Newspapers have to be distributed from a printing office
to sales points possibly passing through some transfer points whose
locations are to be decided. Crainic et al. (2004, 2009) proposed a
formal description of a rich class of two-echelon routing problems
along with some economic insights. However, the seminal problem in
this class, namely the two-echelon Capacitated Vehicle Routing Problem
(2E-CVRP), was introduced in the literature and studied for the first
time in Perboli et al. (2011). In the 2E-CVRP, a single commodity has
to be transferred from a single origin to several destinations through
some intermediate facilities. Two fleets of capacitated vehicles perform
routes in the two echelons to transport the commodity from the origin
to the intermediate facilities and from the intermediate facilities to the
destinations. The objective of the 2E-CVRP is to minimize the total
transportation cost of the distribution system. The authors proposed
two math-heuristics to solve the problem, a diving and a sub-MIP
heuristic.

The 2E-CVRP and related problems have received increasing atten-
tion in recent years and many variants have been addressed, e.g., 2E-
CVRP with (i) time windows (Mhamedi et al., 2022); (ii) mobile
satellites (Li et al., 2020); (iii) synchronization (Grangier et al., 2016)
and bi-synchronization (Li et al., 2021b); (iv) simultaneous pickup and
delivery (Li et al., 2022); (v) electric vehicles (Breunig et al., 2019) and
battery swapping stations (Jie et al., 2019); (vi) real-time transshipment
capacity varying (Li et al., 2018); (vii) covering options (Enthoven
et al., 2020); (viii) delivery options (Zhou et al., 2018); (ix) stochastic
demands (Sluijk et al., 2022). The interested reader may refer to Cuda
et al. (2015), Li et al. (2021a) and Sluijk et al. (2023) for recent surveys
on the subject.

According to the existing literature, the vast majority of the two-
echelon routing problems deal with the single commodity case. Apart
from the MC2DP, which is addressed in this paper, only a few works
integrate multiple commodities in a two-echelon routing problem (e.g.
Dellaert et al., 2021; Jia et al., 2023; Gu et al., 2022). In Dellaert et al.
(2021), the authors extended the 2E-CVRP by introducing multiple
origins and multiple commodities. In addition, hard time windows
are imposed for the delivery at the destinations. In their problem,
customers have a commodity demand from a specific origin, i.e., there
is a one-to-one setting. Several mathematical formulations are proposed
and a BPC algorithm is devised to solve the problem. In Jia et al.
(2023), the problem setting is similar to the one of Dellaert et al.
(2021). However, the multi-commodity aspect is handled with more re-
strictions: only two origins are considered and each destination requires
one commodity per origin (one-to-one setting). The authors developed
an ALNS algorithm to solve large-scale instances of the problem. The
MC2DP introduced in Gu et al. (2022) differs from Dellaert et al.
(2021) and Jia et al. (2023) for three reasons: (i) there is a many-
to-many setting for the commodities, i.e. any commodity requested
by a customer can be served from any supplier; (ii) suppliers provide
commodities in limited amounts; (iii) routing decisions are not required
in the collection echelon.

3. Problem description

In the Multi-Commodity two-Echelon Distribution Problem (MC2DP),
a set of commodities K is distributed in a system involving a set of
suppliers (origins) S, a set of distribution centres (intermediate facilities)
D and a set of customers (destinations) C. The system is split in two
echelons: the collection echelon where the commodities are collected
at the suppliers and brought to the distribution centres, and the de-
livery echelon where the commodities at the distribution centres are
delivered to the customers. More precisely, in the collection echelon,
each supplier i € S provides a maximal amount P, > 0 for each
commodity k € K. Note that a supplier i € S might not supply a
commodity k € K, and in that case, P, takes value 0. An unlimited
fleet of homogeneous vehicles of capacity Q° performs direct round
trips from the distribution centres to collect the commodities from the
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suppliers. The vehicles can transport any subset of commodities. Due
to the limited capacity of the vehicles, direct round trips between a
distribution centre o € D and a supplier i € S may be performed by
several vehicles. The problem associated with the collection operations
can be modelled as a Multi-commodity Capacitated fixed-charge Network
Design Problem (MCNDP, Magnanti and Wong, 1984) with a specific
cost structure: there is a step-wise cost function defined by a unitary
cost associated with each vehicle used between a distribution centre
and a supplier.

Differently, the problem of distributing the commodities from the
distribution centres to the customers is a multi-depot version of the
Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP).
Each customer j € C has a demand D;, > 0 for all commodities
k € K. The request of customer ;j is identified by set K; = {k €
K : Dy > 0}. Each distribution centre owns an unlimited fleet of
homogeneous and capacitated vehicles of capacity QP which performs
routes to deliver the commodities to the customers. Each vehicle has
to end its route at its starting distribution centre. As in the collection
echelon, a vehicle can be loaded with any commodities. Without loss
of generality, we suppose Q° > max{},. K, D, : j € C}. Furthermore,
customer requests can be split, i.e., different vehicles can serve the
same customer. However, the demand of a single commodity cannot
be split: it has to be delivered by a single vehicle. Note that direct trips
from suppliers to customers and inter-connections between distribution
centres are not allowed.

Finally, the collection and delivery operations taking place in the
two echelons are coordinated at the distribution centres by means of the
so-called load synchronization strategy (Drexl, 2012): the total amount
of each commodity collected at the suppliers by each distribution centre
must be sufficient to serve the customer demands of that commodity
delivered by a vehicle of that distribution centre.

We formulate the MC2DP on a directed weighed graph ¢ = (V, A).
Set ¥V = SUDUC contains a vertex for each supplier, distribution centre
and customer. Arc set A = AgU.Ap is defined as the union of two sets
of arcs which model the possible vehicle travels in the two echelons.
Specifically, set Ag = (S X D) U (D x S) includes the arcs modelling
the direct trips from suppliers to distribution centres in the collection
echelon, whereas A, = (DxC)U(CxD)U(CxC) contains all arcs between
customers and between distribution centres and customers. Each arc
(i,j) € A is assigned with a non-negative cost C;; which represent
the transportation cost of a vehicle traversing (i, j). The arc costs are
symmetric and satisfy the triangular inequality. In graph G, a route in
the delivery echelon is a non-empty circuit starting and ending at a
distribution centre 0 € D. A route is feasible if the total amount of
commodities delivered to the customers visited along the route does
not exceed vehicle capacity QP. The cost of any feasible route r is
C. = Z(i, eaw Cijs where A(r) is the set of arcs traversed by the route.
Finally, the total transportation cost of the distribution system arising
from the MC2DP is the sum of the cost of the direct round trips in the
collection echelon and the routing costs in the delivery echelon.

The aim of the MC2DP is to determine a distribution plan, i.e., the
direct round trips in the collection echelon and the routes in the deliv-
ery echelon, which satisfies the customer requests, does not exceed the
commodity availabilities at the suppliers, satisfies the vehicle capacities
in both echelons and respects the load synchronization constraints
while minimizing the total transportation cost.

4. Problem formulation

We model the MC2DP by means of a set covering formulation,
where the exponentially-many variables are associated with the routes
in the delivery echelon.

For each distribution centre o € D, we define R, as the set of all
feasible routes starting and ending at o. The set of all feasible routes is

denoted by R = |J,cp R,- We define a binary coefficient a, with value
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one if commodity k € K is delivered to customer j € N by route r € R
and zero otherwise.

For each supplier i € S and each distribution centre 0 € D, we
introduce an integer variable x;, to represent the number of vehicles
traversing arc (i,0) € Ag. For each i € S, 0 € D and k € K, we define
a non-negative continuous variable q{‘o that represents the amount of
commodity k collected at supplier i by distribution centre o. Finally,
for each route r € R, we introduce a binary variable 4, taking value
one if r is selected in the solution and zero otherwise.

The Set Covering formulation [SC] for the MC2DP reads as follows:

[SCI min Y 2C,x,+ Y, CiA, 1)

(i,0)eAs rerR
st Y qf <Py viesS\Vkek (2)

oeD
Y 4 <0%x, VieSYoeD (3)
kek
Za;kirzl VieCVkek;, (4
rer
Dz Y YDy VoeD.VkeKk  (5)
i€S reRr, jeC
X, € L VieS,YoeD (6)
qf, € Ry vieSYoeDVkek (7)
4. €{0,1} VreR (8)

Objective function (1) minimizes the total transportation cost. Con-
straints (2) ensure that the commodity availabilities at each supplier
are respected. Constraints (3) guarantee that a sufficient number of
vehicles perform the collection operations and that the capacity of these
vehicles is not exceeded. Covering Constraints (4) impose that each
commodity required by a customer is served by at least one route. In
addition, the load synchronization constraint linking the collection and
delivery echelons is expressed in constraints (5): the quantity of each
commodity collected by each distribution centre has to be large enough
to satisfy the demand for that commodity delivered by a route of that
distribution centre. Finally, Constraints (6), (7) and (8) define variable
domains.

4.1. Valid inequalities

In this section, we introduce four families of valid inequalities con-
sidered to strengthen formulation [SC]. Two of these inequalities are
known in the context of vehicle routing problems, while the other two
are tailored to deal with the multi-commodity aspect of the MC2DP.
Note that such inequalities are valid for the C-SDVRP, hence for the
MC2DP.

In what follows, given a subset of customers ¢’ C C, we define
D(C") = ¥jecr Xkex, Dji to be the total demand requested by the
customers in C’. In addition, we introduce a binary coefficient b}, with
value one if route r € R traverses arc (i, j)) € Ay and zero otherwise.
Finally, we define ¢/, = [[;cum a;k to be a binary coefficient equal
to one if route r delivers all the commodities of subset M C K; to
customer j € C and zero otherwise.

Bounds on the number of vehicles
The following inequalities set bounds on the number of vehicles in
the collection and delivery echelons:

3 el

(i,0)EAs

and
2 Az o]
rerR

Z 4, < min{|C|,25}.
reR

(10a)

(10b)
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In inequalities (10a) and (10b), values v and o are obtained by solving
an instance of the Bin Packing Problem (BPP), where bins have size
equal to the vehicle capacity QP, and each customer demand has a
corresponding item to be packed with size D;,. Precisely, we solve an
integer program for the BPP on such an instance with a commercial
solver within a short time limit: v and & are the obtained lower and
upper bounds. If the instance is solved to optimality within the time
limit, v = 7 holds. The right hand-side of (10b) is the minimum between
twice value & (see Federgruen and Simchi-Levi, 1995) and the number
of customers.

Capacity cuts
Laporte et al. (1985) introduced the capacity cuts to deal with the
Capacitated Vehicle Routing Problem:

’
Z( > ’fj>ir2 [D(CW ve' cc, (an
el ! Qb
reR \(i,j)es=(C')

where 67(C") = {(i,j) € Ap : i € C',j € C'} is the set of arcs of graph G
reaching a vertex in C’. Given a subset of customers C’, inequality (11)
states that at least [D(C’)/QP] vehicles of the delivery echelon are
required to cover the requests of the customers in C’.

Set covering polytope

We present a family of valid inequalities inspired by the facet-
defining inequalities proposed in Balas and Ng (1989) for the set
covering polytope. Although these inequalities were proposed several
years ago, to the best of our knowledge, they have not yet been used
in BPC algorithms for vehicle routing problems. However, they are
similar to the strong minimum number of vehicles inequalities introduced
by Archetti et al. (2011) in the context of a BPC algorithm for the split
delivery vehicle routing problem with time windows.

Let us first briefly present a formulation for the set covering prob-
lem. Let T bet a set of elements to be covered, and J be a set of
subsets of Z. We denote by c; the cost associated to subset j € J,
and d;; a binary parameter that takes value one if element i € 7 is in
subset j € J, and zero otherwise. Let x ] be a binary decision variable
taking value one if subset j € J is selected, zero otherwise. An integer
programming formulation for the set covering problem is

min 2 CiX;j

JjEJ

st Y dyx; > 1 Viel
jeJ
x; €{0,1} vieJ

Given a subset I’ C 7, the inequalities introduced in Balas and Ng
(1989) reads as follows:

2 Z xj+ Z szza

jeg jedr

where g1’ = {jedJ: d,J = 1,Vi € I’} is the set of the elements of J
which cover 7/ and J' = {j € J : Yier di; 2 1 Alep di; = 0} is the
set of the elements of .7 which contain some, but not all, the elements
in 7'. The inequalities express how subset 7’ may be covered: either it
suffices to select a unique element in J that covers 7', i.e., an element
inJg 1/, or at least two elements in J that partially cover I’ have to be
selected, i.e., at least two elements in J ' Under specific conditions,
these constraints are facet defining for the set covering polytope.

In what follows, we adapt these inequalities to the MC2DP to
express how the subsets of commodities required by a given customer
may be covered. For the ease of readability, we introduce the following
notation. Let j € C be a customer and M; C K; be a subset of the

commodities requested by j. We denote by R;M/ C R the subset of

R e . M
routes delivering all commodities in M; to j, i.e., Rj T={reRrR:

e;Mj =1}.
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In addition, we write f{M’ C R for the subset of routes which
deliver some of the commodities in M; to j, but not all of them,
ie, R ={reR: Tiem, a2 A€y, =0l

The set covering polytope 1nequaht1es for the MC2DP are defined
as follows:

22/1+Z/L>2

reR; M reR ;

Vj€C.YM; CK;. a2

Inequalities (12) state that subset of commodities M ,CK; of customer

. . LM
j € C can be covered either by a single route in R; / or by at least

two routes in 7_{;\4". Note that these inequalities are meaningful only if
|M;| 2 3. Indeed, if |M;| = 2, they can be retrieved as an aggregation
of Covering Constraints (4).

Number partitioning polytope

We propose a novel family of valid inequalities which exploits
the multi-commodity aspect of the MC2DP. More precisely, given a
customer j € C, these inequalities specify the possible combinations
of routes to deliver the set of commodities £; required by customer ;.

For each customer j € C, we denote by R; the subset of routes
which deliver exactly / = 1,...,|K;| commodities to j, i.e., Rj. ={re
R : Zke’cj a, =1}

Equalities
1K)
Z Y A =1kl Viec 13)
=1 rERI

ensure that the selected routes that serve customer j will exactly bring
|K;| commodities to customer ;. As an example, let j € C be a customer
having a demand for three commodities, i.e., |K;| = 3. Equality (13) for
customer j states that the commodities of K 7 can be covered by (i) a
single route of R; or (ii) one route of R/% and a route of R/l, or (iii) three
routes of R..

Proposition 1 Equallties 1 3) are valid for the MC2DP. More precisely,
inequalities Z/ { 1y, = A 2 |K;l, ¥j € C, are implied by Covering
Constraints (4) and mequallﬂes

1K1
XY A<kl viec a4
I=1 reRj.

are valid for the MC2DP.

Proof. It is straightforward that equalities (14) are valid for the
MC2DP. Hence, we only need to show that Zl kit Yrer!l A 2 |1K;|. Vi€
C, are implied by Covering Constraints (4). Let j € C be a customer.
By summing up the Covering Constraints (4) associated with j and
swapping the summation order, we obtain

z Z @Ay 2 K.

rER keK;

Let M7 denote the subset of commodities delivered to customer j by
route r. We have ), K, i = M- The proof follows from partitioning

the set of routes as R = Ul ! Ri where we denoted by R‘; the subset
of routes which do not visit j. Indeed, it holds

1| 1|
IEDYDIEUEEDIPIEE
1=0 rER’ =1 rER’

Remark that if we model the MC2DP by means of a set partitioning
formulation, i.e., we impose the equality in Constraints (4), Equali-
ties (13) become trivial. Indeed, they can be retrieved as an aggregation
of the partitioning constraints.
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Given a customer j € Cand/ = 1, ..., | K|, we introduce an auxiliary
variable y, € Z defined as y} := Zrenj. 4,. Now, let

Ik |
. 151, !
Fyi={y €y Zzyjsucjn
=1

be the set of the integer points which satisfy inequality (14), rewritten
in terms of y§ variables.

Proposition 2. The inequalities defining the convex hull of F;, j € C, are
valid for the MC2DP.

Determining the external description of a convex set is not an easy
task, in particular in large dimensions. However, given that customers
require at most three commodities in the benchmark instances of Gu
et al. (2022) for the MC2DP, we explicitly derive the external descrip-
tion of the convex hull of sets 7; C 73, j € C. If the number of
commodities is greater than three, software for polyhedral transforma-
tions such as PORTA (Christof and Lobel, 2009) or PANDA (Lorwald
and Reinelt, 2015) can be used to determine the external description
of the convex hull of sets 7}, j € C.

Note that inequalities (14) are meaningful only for customers j € C
who require at least three commodities, i.e., |K;| > 3. The external
description of the convex hull of sets 7}, j € C such that |K;| = 3 reads
as follows:

1 2 3
¥ +2yj +3yj <3 (a)

yi=y; 20 (b)

(15)
y; 20 ©
¥ > 0. )

J

Inequalities (15c¢) and (15d) are trivial, indeed, they are implied by the
definition of variables y'. Therefore, inequalities (15a) and (15b) are
the only meaningful ones in the case of a customer j € C requiring three
commodities (|KC;| = 3); in terms of 4 variables, they are expressed
respectively as

1K1
212/1,5|1cj| Viec:|K|=3 (16)
=1 rer!

D A= 420 Vjiec: |k =3. a7
rERJ‘. rER%

In conclusion, the number partitioning polytope valid inequalities
we consider are (16) and (17).

5. Branch-Price-and-Cut algorithm

We solve formulation [SC] by means of a Branch-Price-and-Cut
(BPC) algorithm (Barnhart et al., 1998), i.e., a variant of the branch-
and-bound algorithm which deals with integer programming model
with exponentially-many variables. Specifically, at each node of the
branch-and-bound tree, the Master Problem (MP), that is the linear
relaxation of formulation [SC], is solved by a column generation pro-
cedure (Desrosiers and Liibbecke, 2005). If the solution of the MP is
fractional, violated valid inequalities of Section 4.1 may be inserted
and the column generation procedure is repeated while some valid
inequalities are violated. Finally, branching rules are applied to ensure
the integrality of the solution. We impose a time limit as a termination
criterion for our BPC algorithm.

In this section, we describe the main components of our BPC al-
gorithm. Specifically, in Section 5.1 we present the column genera-
tion scheme applied in our BPC algorithm. In Section 5.2, we detail
the management of the valid inequalities, and their impact on the
pricing problem. Branching strategies and accelerating techniques are
presented in Sections 5.3 and 5.4, respectively.
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5.1. Column generation

At each node of the branch-and-bound tree, a column generation
procedure solves the MP defined on the exponentially-many variables
A., r € R, which correspond to the routes in the delivery echelon.
The starting point is the Restricted Master Problem (RMP). The column
generation procedure iteratively solves a Restricted Master Problem
(RMP), i.e., the MP restricted to a subset of variables A,. At each
iteration of the procedure, after the RMP is solved, a subproblem,
named pricing problem is solved. The aim of the pricing problem is to
identify a variable (column) with the smallest reduced cost. If such a
column has a negative reduced cost, it is added to the RMP in order to
decrease (in a minimization problem) the current value of the solution,
and the column generation procedure iterates. The procedure ends
when the solution of the pricing problem is a non negative reduced
cost column, proving the optimality of the MP.

More precisely, the pricing problem is

[PP] min{C, : r € R}

where C, denotes the reduced cost of 4, variable. Note that set of routes
R can be partitioned per distribution centre, i.e., R = |J,p R, Where
R, is the set of routes starting and ending at o. Hence, solving [PP]
can be done by solving sequentially |D| independent problems with the

same structure:

[PP(0)] min{C, : r€R,}, o€D.

Specifically, the aim of problem [PP(0)] is to determine the most
negative reduced cost 4,, r € R,, or to detect that none of them exists.
The column generation procedure terminates once all problems [PP(0)],
o0 € D do not yield any negative reduced cost variable.

In the following, we detail how a problem [PP(0)] for 0 € D is
formulated and solved. By denoting i 2 0,Vj € Ck € K and
o = 0, Yo € D,k € K as the optimal dual prices associated with
Constraints (4) and (5), respectively, the reduced cost of a 4,, r € R,
variable is defined as follows:

C=C=Y Y dpu— Doy 18)
JjeC kek;

As mentioned in Section 3, the delivery echelon is a multi-depot
version of the C-SDVRP. Hence, the problem [PP(0)] is the pricing prob-
lem arising in Branch-Price-and-Cut approaches for the C-SDVRP (see
Archetti et al., 2015; Gschwind et al., 2019) and is formulated as an
Elementary Shortest Path Problem with Resource Constraints (ESPPRC) on
a multi-graph G(o) = (V(0),.A(0)). Such graph is analogous to the one
presented in Gschwind et al. (2019) to formulate the ESPPRC in the
context of the C-SDVRP. Vertex set V(o) contains two copies o’ and o”
of distribution centre o and two copies j’ and j” of each customer j € C.
Each arc of set A(o) is associated with two resources: demand D and
cost C. Arc set A(o) contains:

1. an arc (i",j’) for each arc (i, j) € A to model the movement of
a vehicle from vertex i to vertex j; the demand and cost are set

to Dyuj :=0and Cnjr = C;, respectively.

2. an arc (j/,j"”); for each customer j € C and each subset
M; € K; to model the delivery of the commodities of M; to

_M,;
Jj; the demand and cost are set to Dj,j’,, = e m; D and
M X
Cj,j{, =— ZkeM/ (pj — Dj0,), TeESpectively.

Solving problem [PP(o0)] results in searching for negative reduced cost
elementary paths in G(o) from o” to o’ such that the resource consump-
tion (demand) does not exceed the vehicle capacity QP.

To do so, we adopt a two phase procedure:

Phase 1 computes the Pareto-optimal (demand, cost) pairs (Djj,‘,/lj{,,

M
C’, 1) for each customer j € C.
'
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Phase 2 solves the ESPPRC on multi-graph G(o) which includes all
arcs of type (i”,j’), and only the Pareto-optimal arcs of type
(', j"Y™i that have been computed in phase 1. Precisely, the
ESPPRC is solved by means of a label setting dynamic pro-
gramming technique (Feillet et al., 2004) which works with an
implicit version of the bidirectional labelling search (see Righini
and Salani, 2006; Bode and Irnich, 2012). The elementarity con-
straints are the bottleneck of such procedure, hence, we partially
relax it by solving the ng-path relaxation (Baldacci et al., 2011)
of the ESPPRC. For each customer j € C, we consider a fixed
size ng-neighbourhood which includes the 10 closest customers
to j and j itself. Remark that such relaxation allows a route
to serve the same commodity to the same customer multiple
times. Hence, the coefficients of the constraints and valid in-
equalities need to be updated accordingly: e.g., in the Covering
Constraints (4), a;k becomes an integer coefficient expressing
the number of times customer j € C is delivered with commodity
k € K; by route r € R.

The reader may refer to Archetti et al. (2015) and Gschwind et al.
(2019) for further details. The resolution of the ESPPRCs is the bot-
tleneck of our algorithm, hence, we heuristically solve the ESPPRC
with the objective of quickly finding a negative reduced cost column.
Precisely, we apply the same heuristic algorithms to solve the ESPPRC
as those used in the column generation approach for the C-SDVRP
proposed in Petris et al. (2023). One of these heuristics is a two-phase
algorithm which exploits the multi-commodity aspect of the problem,
while the others are based on reducing the pricing multi-graph by
restricting the set of neighbours of the customers and by limiting the
total number of splits in a route. When all the heuristics fail to identify
a negative reduced cost column, we solve the ESPPRC exactly.

5.2. Management of the valid inequalities

In this section, we first describe how the valid inequalities presented
in Section 4.1 are considered in the pricing problem. Then, we present
the cutting strategy adopted in our BPC algorithm.

Impact of the valid inequalities on the pricing problem

First, note that inequality (9) imposes a lower bound on the number
of vehicles used in the collection echelon. Therefore, it has no impact on
the pricing problem. The other inequalities presented in Section 4.1 are
all robust, i.e. they do not change the structure of the pricing problem,
and their associated dual prices have to be integrated into the objective
function of pricing problems [PP(0)], o € D, i.e. on the cost of arcs in
multi-graph G(o).

The arc costs in multi-graph G(o0) are modified in the following way:

Inequalities (10a) and (10b). Let =+ > 0 and 7~ < 0 be the optimal
dual prices associated with valid inequalities (10a) and (10b)
respectively. The value 7% /2 + v~ /2 is subtracted from the cost
of arcs of type (i”,j"), if vertices i or j represent distribution
centre o.

Inequalities (11). Let £~ > 0 be the optimal dual prices associated
with the capacity cut (11) defined over the subset of customers
C' C C. Let 67(C’) be the subset of arcs in graph ¢ entering in
vertices of C'. The value & is subtracted from the cost of arcs
@i, jh, for all (i, j) € 6=(C’).

Inequalities (12). Let y; M, 20 be the optimal dual prices associated
with the inequality (12) identified by customer j € C and
commodity subset M; € K;. The value 2y;,,, is subtracted from

!
the cost of arcs (j’, j” )Mf‘, for all M’ C K ; that contain at least
all the commodities of M;, ie, M; C M; The value Yim, is
’
subtracted from the cost of arcs (j, j” )MJ for all M; that contain
some, but not all, commodities of M, i.e. M; NM; # @ and
M; nM; #M,.
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Inequalities (16) and (17). Letj € C be a customer requiring exactly
three commodities (|KC;| = 3) and let w > 0 and y < 0 be the
optimal dual prices associated with inequalities (16) and (17)
defined on j. For all M; C K;, the cost of arc G’ MM s
modified as follows: value | M, |y is subtracted, value y is added
if IM;| =2, and value y is subtracted if |M;| = 1.

Management of the valid inequalities in the RMP

Valid inequalities on vehicle bounds, namely (9), (10a) and (10b),
are included in the formulation from the beginning of the solution pro-
cedure. Differently, a cut generation procedure manages the insertion
of violated inequalities (11), (12), (16) and (17) in the RMP. Such a
procedure is called at each node of the branch-and-bound tree of level
at most equal to 5, if the associated solution of the RMP is fractional.
Specifically, it separates the inequalities hierarchically according to
the sequence : (11), (12), (16), and (17). When the separation of a
given inequality fails, we separate the next one in the above order. The
separation of inequalities (11) is done using the heuristic algorithms
presented in Ralphs et al. (2003), namely the extended shrinking heuristic
and the greedy shrinking heuristic. Then, although, inequalities (12)
are exponentially-many, the size of the problem instances allows the
separation by enumeration. The same separation strategy is applied for
inequalities (16) and (17), whose number is linear in the number of
customers |C|. Finally, we limit the number of inequalities (11) to 100
in each cut generation round. For the other inequalities, we include all
the violated inequalities.

5.3. Branching strategies

Let (x,4,4) be a fractional optimal solution of the MP at a cer-
tain node of the branch-and-bound tree. We consider seven branching
rules that are hierarchically applied. In addition to these rules, the
correctness of the algorithm requires the separation of a family of valid
inequalities, namely the strong-degree inequalities. Rules 1 and 3 are
specific for the MC2DP, while the other ones and the family of valid
inequalities are used to solve the C-SDVRP by Branch-and-Price. The
interested reader can refer to Gschwind et al. (2019) for more details
about the branching strategy for the C-SDVRP.

Rule 1 is on the number of vehicles traversing an arc in the collection
echelon, i.e., on value %,,, i € S, o € D. Since A, variables are
not concerned by this rule, there is no impact on the pricing
problem.

Rule 2 is on the number of vehicles used at each distribution centre
0 € D in the delivery echelon, i.e., on value ¥, Ay

Rule 3 forces the assignment of a delivery to a distribution centre.
Specifically, given a distribution centre 0 € D, a customer
Jj € C and a commodity k € K;, we branch on value p?k =
Zrer, a;, A, The branching decisions related to this rule can be
expressed as follows: commodity k required by customer j is
either delivered from distribution centre o, i.e. ¥ ep\ (o) ZrERul
a’ 4, = 0; or not delivered from o, ie. Zren,, a4, = 0. Note
that both decisions entail modifications in the pricing problem.
As an example, if the first decision is imposed, then we prevent
the pricing problem from generating routes starting and ending
at distribution centres o’ € D\ {0} and delivering commodity k to
customer j. Arcs of type (j/,j”)*, with M; CK; and k € M,
are removed from all multi-graphs G(0’), o’ € D\ {o}.

Rule 4 is on the number of visits to each customer j € C from a
distribution centre o € D.

Rule 5 considers the flow on the edges in the delivery echelon coming
from a specific distribution centre.
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Rules 6 and 7 implement the Ryan and Foster branching rules (Ryan
and Foster, 1981) which force the two customer requests to be
served by different routes or by the same route. Such rules imply
the addition of non-robust constraints in the RMP . The manage-
ment of the associated dual variables in the labelling algorithm
used to solve the pricing problem can be found in Gschwind
et al. (2019).

These seven rules are sufficient to ensure the correctness of the
algorithm when only elementary routes are present in formulation
[SC]. Indeed, Rule 1 guarantees the integrality of the variables of the
collection echelon. Then, regarding the delivery echelon, Rule 3 assigns
the deliveries to a specific distribution centre. Once these assignments
are done, Rules 2 and 4-7 are enough to guarantee the correctness of
the algorithm. Indeed, the delivery echelon is a multi-depot version
of the C-SDVRP and such rules ensure the integrality of a solution
for the C-SDVRP (see Gschwind et al., 2019). However, as mentioned
in Section 5.1, we relax the elementarity requirement of the routes
in the second echelon via the ng-path relaxation when solving the
pricing problem. Consequently, formulation [SC] may contain routes
that serve the same commodity to the same customer more than once.
In such a case, applying only Rules 1-7 might lead to a fractional
solution as shown by Gschwind et al. (2019) for the C-SDVRP. Hence,
after applying Rule 7, strong-degree inequalities (Contardo et al., 2014)
have to be separated to ensure providing an integer solution. The
strong-degree inequalities read as:

Tez

rer

vjecvjek,,

where &y is a binary coefficient with value one if route r € R
delivers customer j € C with commodity k¥ € K;. In our branching
strategy, when none of the seven rules are applicable, we separate these
inequalities. As for Rules 6 and 7, these inequalities are non-robust. The
management of the associated dual variables in the labelling algorithm
invoked to solve the pricing problem is described in Contardo et al.
(2014).

The branch-and-bound tree is explored according to a best-bound
first strategy to favour the improvement of the dual bound. The strate-
gies to select the branching decisions are presented in the following.
For rule 2, we branch on the fractional value closest to 0.5. For rules 6
and 7, we branch on the first fractional value that is found. For all the
other rules, we consider a two-round strong branching procedure (S.,
2012) similar to the one presented in Pessoa et al. (2020). In the
first round, we evaluate at most 100 branching candidates according
to the product rule (Achterberg, 2007). More precisely, each candidate
gives rise to two branching decisions d;, and d, and is evaluated
by applying such decisions to the RMP and by solving it without
generating columns. Then, each candidate is assigned with a score
se(dy,d,) = max{e,ALB;} x max{e,ALB,}, where ¢ = 107® and ALB;
is the increase of the lower bound obtained by applying decision d; to
the RMP. The three candidates with the highest scores are sent to the
second round, where the same evaluation criterion is used to select the
winning candidate. Differently from the first round, here, LB, and LB,
are the values of the RMP after a single column generation iteration
where the pricing problem is solved heuristically.

The strong branching procedure is employed in nodes of the branch-
and-bound tree of level at most 5. In the other levels, we evaluate the
branching candidates based on the fractional value closest to 0.5 for all
the rules.

5.4. Accelerating strategies

The BPC algorithm incorporates the following accelerating strate-
gies:
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Initialization of set R. We initialize the set of routes R to avoid
very large dual prices at the first iterations of the column
generation procedure which may slow down the pricing so-
lution (Desaulniers, 2010). Specifically, for each distribution
centre 0 € D, we include round-trips (0-j-0) to each cus-
tomer j € N, which deliver the commodities of each subset
M; C K; requested by j. In addition, we modified the random-
ized Clarke-Wright algorithm (CW) (Clarke and Wright, 1964)
proposed in Battarra et al. (2008) to take into account the multi-
commodity aspect of our problem. The algorithm is run 10 times
per distribution centre and the obtained routes are inserted into
R.

Heuristic column generators. Before solving the pricing problem to
optimality, we consider heuristic column generators to speed
up the solution of problems [PP(0)], o € D. As mentioned
in Section 5.1, each problem [PP(0)] is the pricing problem
arising in a BPC algorithm for the C-SDVRP. Hence, we apply
the same heuristic scheme used in Petris et al. (2023) which
proved to be effective in accelerating such pricing problems.
This scheme considers two reduced graph heuristics and the
two-phase heuristic introduced in Petris et al. (2023) which
proved to be effective in dealing with the multi-commodity
aspect of the C-SDVRP. The two reduced graph heuristics reduce
the size of multi-graphs G(0), o € D by limiting both the
possibilities of travelling between customers and of deliveries
to customers. In the two-phase heuristic, the aim of the first
phase is to compute a set of promising customer sequences by
solving the ESPPRC on a modified version of multi-graphs G(o0)
where only one delivery per customer is allowed. Specifically,
when visiting a customer, the least consuming commodity is
delivered and all the profitable dual prices are collected. In the
second phase, for each of the customer sequences generated by
the first phase, we solve the ESPPRC on the associated acyclic
graphs to obtain all negative reduced cost routes arising from
the sequence. We refer to Petris et al. (2023) for more details.

Restricted master heuristic. We invoke a restricted master heuristic,
which consists in solving the formulation [SC] restricted to
the subset of variables generated so far, to obtain good upper
bounds. Such a technique helps to reduce the integrality gap (see
Archetti et al., 2013). Note that variables A, are then binary. We
call the restricted master heuristic every 1000 explored nodes in
the branch-and-bound tree as well as when the time limit of the
algorithm is reached. In this latter case, we apply a local search
procedure based on an adapted version of the mathematical
programming operator proposed for the C-SDVRP in Gu et al.
(2019). Specifically, we generalized such an operator to deal
with the two-echelon case. When the restricted master heuristic
is called during the tree exploration a time limit of 3 seconds is
imposed, while the time limit is 30 seconds when the algorithm
terminates.

6. Computational experiments

We implemented the BPC algorithm in C++ and compiled it in
release mode under a 64-bit version of MS Visual Studio 2019. IBM
CPLEX 12.9.0 (64-bit version) is used as a solver. We performed the
experiments on a 64-bit Windows machine equipped with a Intel(R)
Xeon(R) Silver 4214 processor with 24 cores hyper-threaded to 48
virtual cores, with a base clock frequency of 2.2 GHz, and 96 GB of
RAM. For each run of the algorithm, we impose one hour time limit
and allow a single thread.

In this section, first, we describe the characteristics of the bench-
mark instances for the MC2DP introduced in Gu et al. (2022). Then,
we discuss the impact of valid inequalities (12), (16) and (17). Finally,
we evaluate the effectiveness of the BPC algorithm against solving the
compact formulation for the MC2DP presented in Gu et al. (2022) with
a commercial solver and we present the results obtained by the BPC
algorithm on the benchmark instances.
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Table 1
Characteristics of the sets of instances.
Set # Characteristics
|S] IC] K| Description
54 64 8 30 2,3 Base set
5”]5 64 8 30 2,3 Unbalanced supplier locations (6-2)
5/; 64 8 30 2,3 Unbalanced supplier locations (8-0)
LS”]C 64 8 30 2,3 Unbalanced customer locations (5-10, with § = —5,30)
5”2‘ 64 8 30 2,3 Unbalanced customer locations (5-10, with § = 10, 30)
5”3‘ 64 8 30 2,3 Unbalanced customer locations (10-5, with 6 = —5,30)
7€ 64 8 30 2,3 Unbalanced customer locations (10-5, with 6 = 10,30)
70 32 8 30 2 Unbalanced available amounts at the suppliers
5’]3 add 64 10 30 2,3 Increased number of suppliers to 10
Y; aid 64 12 30 2,3 Increased number of suppliers to 12
5”]( add 64 8 50 2,3 Increased number of customers to 50
5”; add 64 8 70 2,3 Increased number of customers to 70
Small 36 4, 6 10, 15, 20, 25 2,3 Small instances

6.1. Benchmark instances

Gu et al. (2022) introduced artificial instances as well as instances
arising from a real-world case study in the context of a short and local
fresh food supply chain. In the following computational experiments,
we only consider the artificial instances. Indeed, the sizes of the in-
stances based on the case study are too large to be tackled efficiently
with the BPC algorithm.

First, Gu et al. (2022) generated a base set of 64 artificial instances
. with two distribution centres (|D| = 2), eight suppliers (|S| = 8) and
30 customers (|C| = 30). The features of the delivery echelon are based
on the 64 small instances proposed in Archetti et al. (2016) for the C-
SDVRP. Each C-SDVRP instance gives rise to a MC2DP instance where
the locations of one distribution centre and 15 customers are the ones
of the C-SDVRP instance. Such distribution centre and 15 customers are
duplicated and their locations are modified by applying a translation
of parameter § = (30,30) to their coordinates. Customer demands are
also as in the C-SDVRP instance. Four suppliers are randomly located
around each distribution centre. The availability of each commodity
at the suppliers is calculated as a fraction of the total demand. The
commodity availabilities are the same for all the suppliers.

Then, Gu et al. (2022) produced 12 additional sets of instances
by applying modifications to one of the characteristics of the base
set, such as the suppliers/customers locations, the number of suppli-
ers/customers or the available quantities at the suppliers. In all sets of
instances, the number of distribution centres is fixed at two. In Table 1,
we summarize the main characteristics of all sets of instances. Each
row of the table represents a set of instances. The columns of the table
report: set: the name of the set of instances; #: the number of instances
in the set; |S|: the number of suppliers; |C|: the number of customers;
|K|: the number of commodities; description: a brief description of the
main characteristic of the set. In such an entry, we write n; — n,
to express the distribution of the suppliers/customers around each
distribution centre, meaning that n, suppliers/customers are located
around one distribution centre and n, are located around the other one.
Parameter § is a translation parameter used to determine the locations
of the customers/suppliers around the two distribution centres. We
refer to Gu et al. (2022) for further details regarding the generation
of the set of instances.

6.2. Impact of valid inequalties
In this section, we assess the impact of valid inequalities. To do so,

we consider the 32 instances of base set . having three commodities.
Indeed, as mentioned in Section 4.1, if the number of commodities is

equal to two, inequalities (12), (16) and (17) can be retrieved as an
aggregation of Covering Constraints (4).

We examine the following four variants of the BPC algorithm.
BPC: valid inequalities on bounds on the number of vehicles are
inserted, and no valid inequalities is separated in the course of the
algorithm; BPC+CC: only capacity cuts (valid inequalities (11)) are sep-
arated; BPC+SC+NP: only the inequalities arising from the set covering
polytope (SC), i.e., inequalities (12), and the ones arising from the
number partitioning polytope (NP) are separated, i.e., inequalities (16)
and (17), are separated; BPC+CC+SC+NP: all valid inequalities are
separated.

Each row of Table 2 corresponds to a BPC variant. The first two
columns report the average lower bound (avg.LB) and time (avg.t[s])
at the root node of the branch-and-bound-tree. The next four columns
show the results at the end of the execution of the corresponding
BPC variant: the average number of nodes of the branch-and-bound
tree (avg. #nodes), the average lower bound at termination (avg.LB) the
average time (avg.t[s]) and the number of instances solved to optimality
(#opt./#inst.) over the 32 instances.

As expected, BPC yields the worst results solving only six instances
out of the 32 considered. Variant BPC+SC+NP solves an additional
instance w.r.t. BPC, however, the improvement of the lower bound
at the root node is mediocre. The best results are obtained when
the well-established capacity cuts are separated, namely with vari-
ants BPC+CC and BPC+CC+SC+NP. Both variants solve the same 14
instances to optimality and yield the best lower bounds at the root
node, being on average equal to 1000.35 and 1001.31 in BPC+CC
and BPC+CC+SC+NP, respectively. The same remark applies to the
lower bounds at termination which is on average equal to 1039.61
in BPC+CC and BPC+CC+SC+NP. In both cases, lower bounds at the
root node and at termination improve significantly with respect to
BPC. We also observe that the addition of inequalities (12), (16) and
(17) in BPC+CC+SC+NP slightly improves the results with respect
to BPC+CC in terms of lower bounds at the root node, number of
explored branch-and-bound nodes and solution time. Hence, we choose
BPC+CC+SC+NP as the configuration for our BPC algorithm.

6.3. Evaluation of the BPC algorithm

The aim of this section is to evaluate the effectiveness of the BPC
algorithm. To do so, we compare the results obtained by the BPC
algorithm on the instances of set small with the ones obtained by
solving a compact formulation for the MC2DP on the same instances
with CPLEX 12.8. The latter results are retrieved from Gu et al. (2022)
and were obtained on a machine with Intel (R) Core(TM) i7-4600U
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Table 2
Comparison of four variants of the BPC algorithm.

EURO Journal on Transportation and Logistics 13 (2024) 100139

BPC variant Root node BPC results
avg.LB avg.t [s] avg.#nodes avg.LB avg.t [s] #opt./#inst.

BPC 983.00 25.30 3235.72 1028.08 3145.03 6/32

BPC+CC 1000.35 54.51 1721.53 1039.61 2484.34 14/32

BPC+SC+NP 985.36 46.19 2970.78 1029.42 2992.08 7/32

BPC+CC+SC+NP 1001.31 76.40 1623.84 1039.61 2454.58 14/32

Table 3
Results on set small.

Instances BPC CPLEX

|S| IC| |K| P Set #nodes LB UB Gap [%] t [s] Gap [%] t [s]
2 0.6 & 161 394.655 394.655 opt 5.26 opt 240
2 1 & 17 579.522 579.522 opt 0.98 5.55 3600
3 0.6 & 7787 470.77 470.77 opt 1446.16 opt 378
2 0.6 FE 101 406.52 406.52 opt 4.28 opt 108

4 10 2 1 7S 11 562.34 562.34 opt 1.19 opt 1441
3 0.6 75 227 437.98 437.98 opt 14.10 opt 486
2 0.6 75 23 406.52 406.52 opt 1.11 opt 57
2 1 75 13 663.52 663.52 opt 0.66 opt 2261
3 0.6 75 19 463.58 463.58 opt 0.80 opt 41
2 0.6 & 181 510.88 510.88 opt 10.75 8.45 3600
2 1 4 15 742.71 742.71 opt 1.37 17.89 3600
3 0.6 4 13785 551.87 551.87 opt 3469.76 6.87 3600
2 0.6 S 195 533.43 533.43 opt 13.98 13.82 3600

4 15 2 1 78 3185 784.05 784.05 opt 349.18 15.79 3600
3 0.6 7S 3829 553.49 553.49 opt 624.91 20.42 3600
2 0.6 75 33 590.55 590.55 opt 2.32 7.25 3600
2 1 75 17 893.09 893.09 opt 1.67 20.62 3600
3 0.6 75 117 590.71 590.71 opt 11.41 15.26 3600
2 0.6 4 45 636.71 636.71 opt 7.64 22.09 3600
2 1 4 233 1007.04 1007.04 opt 24.61 31.75 3600
3 0.6 4 63 708.62 708.62 opt 24.26 28.15 3600
2 0.6 75 139 659.37 659.37 opt 35.82 37.59 3600

4 20 2 1 7S 13848 1069.54 1077.43 0.74 3631.00 30.18 3600
3 0.6 7 1209 768.57 768.57 opt 528.33 37.92 3600
2 0.6 75 43 713.16 713.16 opt 7.29 27.87 3600
2 1 75 5 1177.46 1177.46 opt 0.98 43.37 3600
3 0.6 73 157 835.00 835.00 opt 74.17 37.47 3600
2 0.6 4 209 815.15 815.15 opt 70.15 - 3600
2 1 4 661 1184.62 1184.62 opt 227.48 31.32 3600
3 0.6 & 555 826.12 826.12 opt 334.55 58.7 3600
2 0.6 T 287 784.11 784.11 opt 70.08 37.76 3600

6 25 2 1 7S 1111 1258.91 1258.91 opt 310.47 5477 3600
3 0.6 F 4073 876.72 908.00 3.57 3632.66 87.9 3600
2 0.6 75 35 881.02 881.02 opt 9.95 - 3600
2 1 73 99 1367.61 1367.61 opt 29.11 60.19 3600
3 0.6 7y 15 939.52 939.52 opt 18.84 65.95 3600

processor with a base clock frequency of 2.10 GHz and with 16 GB
of RAM. A time limit of one hour is imposed on both methods.

Table 3 presents the results of the comparison. Each row of the table
corresponds to an instance in set small. The first five columns report
some characteristics of the instance (see Section 6.1). The following
five columns report the results of the BPC algorithm: #nodes: number
of nodes of the branch-and-bound tree; LB: lower bound at termination;
UB: value of the best solution found; gap[%]: percentage optimality
gap (100((UB — LB)/LB)) if the instance is not solved to optimality,
opt otherwise; t[s]: total computational time in seconds of the BPC

algorithm. Last, in the last two columns, we report the optimality gap
(gap[%]) and computational time (t[s]) obtained by Gu et al. (2022)
when solving the compact formulation. In column gap[%], a ’-’ indicates
that CPLEX was not able to provide a feasible solution.

The results of Table 3 show that the BPC algorithm proved to be
effective as it provides 34 optima over 36 instances. The two unsolved
instances are with 20 and 25 customers and are left with an optimality
gap of 0.74% and 3.57%, respectively. Conversely, the performance
of the compact formulation deteriorates as the size of the instances
grows. The formulation provides only eight optima, all obtained for
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Aggregated results on the instances solved to optimality by the BPC algorithm.

Instances BPC results
#nodes dev. Gu et al. (2022)
Set K| # #opt. avg. min. max. avg.gap™” [%] avg.t [s] avg. min. max.
> 2 32 31 791.19 11 7037 3.50 241.78 -0.19 -2.21 0.00
3 32 14 751.79 23 2197 4.24 921.14 —0.95 -2.61 0.00
s 2 32 30 2126.47 47 21125 4.90 621.02 -0.19 -1.69 0.00
! 3 32 15 872.00 29 2674 4.51 837.63 -1.02 -3.08 0.00
s 2 32 26 3350.61 51 18367 4.93 768.70 -1.65 -5.31 0.00
2 3 32 20 1932.25 47 12259 4.95 1417.92 -2.11 -6.71 0.00
o 2 32 29 667.83 13 2669 3.82 430.16 -0.61 -2.94 0.00
! 3 32 15 600.13 39 1547 3.48 872.74 -1.13 —4.04 0.00
e 2 32 27 674.85 5 3213 4.08 449.58 —-0.66 -3.00 0.00
2 3 32 15 780.53 81 1855 3.98 1058.08 -1.01 -3.63 0.00
e 2 32 24 2627.50 25 41105 4.58 747.43 —-0.65 —-3.64 0.00
3 3 32 15 1040.20 141 4269 4.81 1125.06 -0.91 -3.49 0.00
P 2 32 26 958.85 15 11217 4.21 471.72 —-0.88 -3.70 0.00
4 3 32 13 978.23 219 2109 4.06 909.64 -0.83 -3.09 0.00
F0 2 32 14 5925.57 435 20135 6.44 1360.41 -2.34 —4.24 0.00
oS 2 32 30 1339.33 79 12299 5.34 444.41 -0.35 -1.99 0.00
1 3 32 17 727.18 87 2247 4.57 904.53 -0.16 -2.55 0.00
o 2 32 32 1160.37 1 17735 6.43 284.21 -0.12 -1.77 0.00
2 3 32 23 622.13 65 2651 7.07 826.92 -0.09 -1.64 0.00
s 2 32 16 1900.87 43 5481 3.08 1292.03 -0.23 -1.12 0.00
! 3 32 4 404.25 27 728 2.53 875.52 —-0.04 -0.16 0.00
o Cass 2 32 3 2884.33 663 5855 1.68 1159.56 -0.71 -0.97 -0.36
<2 3 32 0 - - - - - - - -

instances with 10 customers, and it fails to return a feasible solution
for two instances with 25 customers. The average optimality gap of the
remaining 26 instances is 31.73%. Finally, when both approaches prove
the optimality of a solution, the BPC algorithm is generally faster than
the compact formulation by at least one order of magnitude.

6.4. Results on the whole testbed

In this section, we present a summary of the results obtained by the
BPC algorithm in Tables 4 and 6 on the 12 sets of benchmark instances
with one-hour time limit. The instance-by-instance results can be found
at https://hal.inria.fr/hal-03946477v1.

In Table 4, we report results for the instances solved to optimal-
ity and Table 6 summarizes the results for the remaining instances.
Each row of both tables corresponds to a subset of instances from
the same set and with the same number of commodities. The first
three columns of the tables report some information about the instance
subset (see Section 6.1). The column headings of Table 4 are defined
as follows: #opt.: number of instances solved to optimality; #nodes
avg./min./max.: average/minimum/maximum number of nodes of the
branch-and-bound tree; avg.gap™”[%]: average optimality gap at the
root node expressed as a percentage, i.e., 100((OPT — LB"")/LB""),
where OPT is the value of the optimal solution found by the BPC
algorithm and LB is the lower bound at the root node after the valid
inequalities have been inserted; avg.t[s]: average computational time;
dev. Gu et al. (2022) avg./min./max.: average/minimum/maximum de-
viation from the best solution value U B reported in Gu et al. (2022),
i.e., 100((OPT — UB)/UB).

Table 4 shows that the BPC algorithm identifies 439 optima over
the 736 instances. The number of nodes of the branch-and-bound tree
varies widely: it ranges from 1 to 41105 and its average is 1458 while its
standard deviation is 3237. Note that we found no correlation between
the number of nodes of the branch-and-bound tree and the gap at
the root node. The average time needed to prove the optimality of
a solution is 720 seconds. Among the 439 optima provided by the
BPC algorithm, 416 are obtained on the 10 sets of instances with 30
customers (first ten sets in Table 4).
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We observe that, except for set .79, the BPC algorithm behaves
homogeneously on instances with 30 customers, i.e., on ., 5/’]5 , st ,
ylc, 5”;, YSC, Yf, Zsﬂdd and yzs‘”"’. Indeed, the BPC algorithm solves
to optimality at least 60.9% of the 64 instances belonging to each
set. This percentage increases to 73.4% and 85.9% for the two sets
of instances with a larger number of suppliers (see fls”"” and yzs“"”
in Table 4). Increasing the number of suppliers seems to make the
instances easier to solve. In addition, in each of the sets with 30
customers, the BPC algorithm proves the optimality of almost all the
instances with two commodities (at least 24 out of 32) and of around
half of the instances with three commodities (on average 16 out of 32).
Hence, we can conclude that the BPC algorithm seems rather insensitive
with respect to the distinctive characteristics of the sets of instances
with 30 customers, i.e., unbalanced customer/supplier locations and an
increased number of suppliers. Conversely, increasing the number of
customers has a major impact on the performance of the BPC algorithm.
Indeed, when the number of customers increases to 50 and 70 (see sets
ylc"“ and Y’zc 4 jn Table 4), the number of optima decreases to 20 and
3, respectively.

Finally, we note that the sequential heuristic of Gu et al. (2022) was
able to identify 220 out of 439 optima. For the remaining instances, the
BPC algorithm improves the solution values found by Gu et al. (2022)
by 1.46% on average (see the last three columns of Table 4).

To better assess the difficulty of solving these 439 instances to
optimality, in Table 5, we report some statistics about the optimal
solutions. Each row corresponds to a subset of the instances. The first
three columns respectively report the name of the set of instances (set),
the number of instances in the set (#) and of those solved to optimality
by the BPC algorithm (#opt). The next three columns report statistics
regarding the collection echelon: vehicles avg.LB: average lower bound
(right hand-side of Constraint (9)) on the number of vehicles in the
collection echelon; vehicles avg.#: average number of vehicles used in
the collection echelon; avg #suppl. visits: average number of visits to
suppliers. The last four columns report statistics regarding the delivery
echelon: vehicles avg.LB: average lower bound (right hand-side of Con-
straint (10a)) on the number of vehicles used in the delivery echelon;
vehicles avg. #: average number of vehicles used in the delivery echelon;
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Table 5

Statistics about the optimal solutions.
Instances Collection Delivery

Vehicles Vehicles Avg.customers visits [%]

Set # #opt avg.LB avg.# avg.#suppl. visits avg.LB avg.# 1 2 3
7 64 45 12.87 13.78 1.74 13.27 14.02 89.04 10.96 0.00
5’]5 64 45 12.58 13.62 1.81 12.98 13.67 88.44 11.41 0.15
&5 64 46 11.93 12.89 1.74 12.24 12.70 87.90 11.88 0.22
£ 64 44 11.75 12.57 1.61 11.95 12.82 89.85 10.15 0.00
5"2(' 64 42 11.57 12.43 1.58 11.79 12.62 90.32 9.68 0.00
£ 64 39 12.13 13.00 1.68 12.54 13.38 89.49 10.43 0.09
£ 64 39 12.82 13.62 1.74 13.26 14.15 88.63 11.03 0.34
F0 32 14 12.71 13.86 1.73 13.64 14.29 76.43 23.57 0.00
5”15“"" 64 47 12.85 13.98 1.44 13.23 13.94 87.80 12.20 0.00
5’23“"“ 64 55 12.22 13.84 1.28 12.55 13.36 90.12 9.88 0.00
(S’IC““ 64 20 22.40 23.10 3.19 23.40 24.85 89.10 10.80 0.10
5”2(“‘“‘ 64 3 43.33 44.00 6.10 49.33 52.00 98.10 1.90 0.00

Table 6

Aggregated results on the instances not solved to proven optimality by the BPC algorithm.

Instances BPC results
#nodes Gap [%] dev. Gu et al. (2022)
Set 1K # #notOpt. avg. min. max. avg. min. max. avg.gap™” [%] avg. min. max.
> 2 32 1 653.00 653 653 3.31 3.31 3.31 14.08 2.07 2.07 2.07
3 32 18 2319.17 29 13135 2.44 0.01 6.46 6.80 0.92 -1.95 5.85
s 2 32 2 3880.00 940 6820 3.38 0.41 6.35 11.97 1.01 —-0.06 2.09
! 3 32 17 3057.65 19 16126 3.01 0.20 10.01 8.82 0.91 -2.67 5.10
s 2 32 6 12069.00 941 46 006 0.37 0.06 1.03 6.92 -1.15 -3.61 0.07
2 3 32 12 3212.42 40 13254 1.87 0.01 4.71 6.69 -1.30 —-5.89 3.67
C 2 32 3 29380.33 12463 40874 0.98 0.03 1.77 4.09 —0.58 —0.90 -0.29
! 3 32 17 1913.18 1 10229 2.61 0.34 7.11 6.68 0.16 -1.78 3.36
oc 2 32 5 18695.80 7 40567 0.78 0.03 2.82 3.55 —-0.43 -1.00 0.02
2 3 32 17 1856.53 23 9311 2.58 0.21 6.09 7.00 0.08 -1.67 2.86
c 2 32 8 4371.88 380 12552 1.09 0.12 2.25 5.34 0.17 —-0.92 1.94
3 3 32 17 2070.71 29 12984 2.72 0.03 10.89 7.65 0.85 -1.31 10.69
C 2 32 6 4876.50 342 12698 1.09 0.10 1.94 5.78 0.11 -1.13 1.62
4 3 32 19 1463.68 10 12005 2.47 0.18 5.96 7.23 0.41 -1.68 2.26
70 2 32 18 9788.83 1033 50109 2.24 0.13 9.17 8.15 0.05 —2.98 4.85
Su 2 32 2 774.50 763 786 2.37 1.05 3.69 18.86 1.32 0.69 1.96
“ 3 32 15 2484.00 37 12241 2.60 0.00 8.76 10.65 0.65 -1.77 2.40
S 2 32 0 - - - - - - - - - -
2 3 32 9 2990.11 16 14444 1.99 0.07 6.03 9.21 0.75 0.00 4.05
s 2 32 16 4300.00 180 32352 1.15 0.00 3.52 6.27 0.25 —-0.84 2.11
! 3 32 28 1344.14 1 6585 2.60 0.08 10.19 6.06 0.65 -1.20 4.63
pCaas 2 32 29 2141.07 337 14413 1.15 0.04 3.78 3.64 —-0.18 -1.83 2.98
2 3 32 32 684.22 1 2820 2.45 0.04 9.31 3.97 0.26 -2.32 2.93

avg. customers visits[%]: average percentage of the customers visited
one, two or three times.

The number of vehicles used in the collection echelon is rather tight
to the lower bound. Suppliers are visited on average between one and
two times, exception made for the instances with additional customers
where suppliers are visited 3.19 and 6.10 times, on average. In the
delivery echelon, the number of vehicles is also rather tight to the lower
bound, except for the instances of set Yzc“‘“’ . In each set of instances, at
least 76.43% of the customers in the instances is served with one visit,
i.e., with no splits. Around 10% of the customers is visited twice, except
for the instances of sets .7° and YZC‘“’" where such percentage increases
to 23.57 and decreases to 1.90, respectively. Note that in the latter
case the information may not be significant as the average is computed
considering only three instances. The percentage of customers visited
three times is negligible.

Table 6 reports the results on the instances not solved to proven
optimality by the BPC algorithm. The meaning of the rows and columns
in Table 6 is similar to the ones of Table 4. The differences are: the
column #opt. is replaced with the column #notOpt. which indicates the
number of instances not solved to proven optimality, and the column
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avg.t[s] is replaced by the columns gap[%] avg./min./max. reporting
the average, minimum, and maximum optimality gap computed as
100((U B — LB)/LB), where U B is the value of the best solution found
by the BPC algorithm and LB is the lower bound when the time limit
is reached. Similarly, the average gap at the root node avg.gap™” [%]:
and the average deviation from the best solution value reported in Gu
et al. (2022) are computed by replacing the optimal value OPT with
UB.

The BPC algorithm cannot prove the optimality for 297 instances.
For these instances, the average optimality gap at the root node is
6.63%. However, the exploration of the branch-and-bound tree al-
lows the optimality gap to be reduced to 2.1% on average. The final
optimality gap is larger than 5% for only 29 instances. The number
of nodes of the branch-and-bound tree follows the trend observed in
Table 4: it varies greatly, with an average of 3429 nodes, while the
standard deviation is 6809. The comparison with Gu et al. (2022) (last
three columns of Table 6) shows mixed results. The BPC algorithm
finds larger upper bounds for 161 instances. On these instances, the
average deviation is 1.23%. For 24 instances, the BPC algorithm finds
the same value as the one reported by Gu et al. (2022). Finally, for
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the remaining 112 instances, the BPC algorithm provides a lower value
with an average improvement of 1.02%.

7. Conclusions

In this paper, we presented a Branch-Price-and-Cut (BPC) algo-
rithm to solve the Multi-Commodity two-echelon Distribution Problem
(MC2DP), a two-echelon routing problem where multiple commodities
are sent from suppliers to customers via distribution centres. The col-
lection operations are done by capacitated vehicles performing direct
round trips between the distribution centres and the suppliers. The
delivery operations are also performed by capacitated vehicles. Each
delivery vehicle performs a route starting and ending at the same
distribution centre. Customers are allowed to be visited multiple times,
provided that the amount of a single commodity is delivered at once
by a single vehicle. Commodities can be mixed inside all vehicles. The
objective is to minimize the transportation costs of the distribution
system.

The BPC algorithm incorporates several state-of-the-art accelerating
techniques and three families of robust valid inequalities: capacity
cuts, valid inequalities arising from the set covering polytope, and
a new family of valid inequalities based on the number partitioning
polytope. The inequalities improve the lower bound at the root node
and reduce the number of nodes of the branch-and-bound tree and the
computational time. The BPC algorithm is able to solve to optimality
nearly 60% of the benchmark instances introduced in Gu et al. (2022)
within one-hour time limit. The final optimality gap is reasonable for
the remaining instances, with an average value of 2.1%. Finally, we
identified 331 new best-known solutions compared to the results of Gu
et al. (2022).

The main issue with the instances left unsolved by the BPC al-
gorithm is the large optimality gap at the root node. To overcome
this difficulty, future research should be devoted to the inclusion of
new dedicated valid inequalities. Adding non-robust valid inequalities
known for routing problems is also an interesting perspective. However,
it would lead to more difficult pricing problems to solve. In addition, Gu
et al. (2022) proposed a sequential heuristic for the MC2DP. There-
fore, another line of research could be the development of heuristic
algorithms that address the problem from an integrated point of view.
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