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A B S T R A C T

Online restaurant aggregators, which connect diners with restaurants and organize the delivery of ordered
meals, have experienced significant growth in recent years. Meal delivery logistics is quite challenging,
primarily due to the difficulty in managing the supply of delivery resources, i.e., crowdsourced couriers, to
satisfy dynamic and uncertain customer demand under very tight time constraints. In this paper, we study
several questions in meal delivery operations focused on matching the correct levels of supply with demand.
To ensure excellent customer service, delivery aggregators may, for example, decide to temporarily decrease
demand during an operating day by temporarily reducing the delivery area for one or more restaurants.
We show that such simple demand restriction strategies allow a significantly smaller fleet to meet service
requirements. To simplify analysis, we focus on problem geometries that enable the use of stylized mixed
integer programs to optimally deploy a fleet of couriers serving large numbers of orders. Applying the proposed
framework to several scenarios with one and two depots, we conduct an extensive experimental study of
the effects on system performance of (i) allowing courier sharing between multiple depots, (ii) relaxing the
delivery deadlines of placed orders, and (iii) restricting demand through limited adjustment of the coverage
of restaurants. The results demonstrate the potential effectiveness of different dispatch control and demand
management mechanisms, in terms of both the required courier fleet size to serve requests and the coverage
level of orders.
1. Introduction

Advances in technology are changing the logistics and transporta-
tion industry in profound ways and at a rapid rate. One important
trend has been the rise of digital transportation platforms, including
those provided by the online restaurant aggregator market segment.
Companies in this segment operate meal-ordering platforms which
provide a list of restaurants where customers can place orders, and
then subsequently arrange for the ordered meals to be delivered upon
request. In 2015, the food delivery market was worth $11 billion in
the US, and was predicted to grow at a 16% annual compound rate up
to 2022, potentially to $210 billion (Morgan Stanley Research, 2017).
Similar growth has been observed in the online restaurant aggregator
segment (Goch and Titone, 2018).

Online meal ordering is convenient for customers. In 2017, more
than 40% of the US population reportedly replaced meals at restaurants
by ordering food for delivery (Morgan Stanley Research, 2017). At the
same time, more people appear to dislike shopping at grocery stores
and cooking at home (Yoon, 2017).

Although the statistics above focus on the US food delivery mar-
ket, this phenomenon is also occurring in other parts of the world
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(Hirschberg et al., 2016). In 2018, the worldwide online food delivery
market revenue reached $82.7 billion (40% of which corresponds to
China, and 20% to the US), and worldwide revenue is expected to
increase to $164 billion by 2024 (Statista Report, 2019). India is also
exhibiting similar trends, where the popularity and number of food
delivery apps is steadily growing (Srinivasan, 2018).

Technological advances have not only enabled new business models
but have also led to new and complex decision problems in the efficient
operation of meal delivery systems. At the heart of operations is the
matching of delivery resources to orders over time. Customer service
expectations are high: meals should be delivered by so-called couriers a
short time after being placed and an even shorter time after becoming
ready; Reyes et al. (2018b) refer to meal delivery as the ultimate
challenge in last-mile logistics. Not only is there significant variability
in order arrival patterns (van Lon et al., 2016), there is also significant
variability in courier behavior since most systems allow couriers to
reject some delivery requests and cannot control courier repositioning
after deliveries.

This operating environment requires both effective matching tech-
nology, i.e., assigning orders to couriers, but also effective demand and
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supply management. Traditionally, demand management techniques
use dynamic pricing, i.e., adjusting the price charged for deliveries from
a particular restaurant, but, given the fact that the prices charged for
deliveries are very low, this may not be effective. Furthermore, as real-
time pricing of delivery is likely to cause a negative reaction in diners,
platforms avoid its usage (Dholakia, 2015; Taylor, 2018). Alternative
strategies involve adjusting the service coverage area associated with
a restaurant and/or redirecting diner demand to restaurants that are
easier to serve by reordering search results. Some research to date
covers the former, whereas the latter has received little attention (Yildiz
and Savelsbergh, 2019b). Our research seeks to better understand the
potential of demand management by adjusting the service coverage
area (what we refer to later on as radius management).

The meal delivery environment we consider is as follows: during
a given operating period, diners place orders to restaurants (in the
remainder sometimes called depots to stay close to the terminology
commonly used in the vehicle routing literature), and the aggregator
must assign these orders to couriers in such a way to deliver (most)
orders on time (i.e., at or before the delivery time promised to the diner
when the order is placed) while minimizing operating costs. The goal of
this paper is to analyze the fundamental relationship between service
and cost metrics in these systems. We consider two different models of
customer service, one which requires orders to be delivered by a hard
deadline and the other which has a target delivery time but allows some
fraction of orders to be delivered between the target time and a (later)
hard deadline. We measure cost primarily by the number of couriers
required during the operating period.

We develop optimization models that seek to compute the minimum
number of couriers required to meet service requirements, as well as
determine the maximum service area that a given courier fleet can
serve. To simplify analysis, we study the relationship between service
and cost in three stylized settings: (i) a single depot at one extreme of
a single line segment serving orders that must be delivered at points on
the line segment, (ii) a single depot at the end of multiple line segments
serving orders that must be delivered at points on the line segments,
and (iii) two depots at the opposite extremes of a line segment serving
orders that must be delivered at points on the line segment from a
specific depot (in which case couriers can pick up orders from either
depot, but the depot at which each courier starts operating is also part
of the decision). For simplicity, we assume that couriers follow the
instructions of the decision maker and never reject offered delivery
orders. For each of the settings, we provide an integer programming
(IP) formulation that assumes perfect information, i.e., order placement
times and delivery locations are known in advance. The results from
these models allow us to provide insights to the following fundamental
questions:

• For a given service requirement, a given number of couriers, and
a given order arrival rate, what fraction of orders can be served
(i.e., delivered at or before the delivery time promise)?

• For a given service requirement and a given order arrival rate,
what is the minimum number of couriers needed to serve all
orders?

• For a given service guarantee, a given number of couriers, and a
given order arrival rate, what is the largest coverage area that a
depot can serve?

To summarize, the main contributions of our research are:

• Developing an IP framework for studying supply and demand
management mechanisms for online meal delivery environments;
and

• Performing an extensive experimental analysis of the fundamental
trade-offs in meal delivery operations, which provides valuable
insight into the benefits of supply and demand management

mechanisms.

2 
The remainder of the paper is organized as follows. Section 2 dis-
cusses the relevant literature. Section 3 presents a detailed description
of the settings considered in our research and introduces the associated
IP formulations. Section 4 summarizes the results of our computational
experiments. Finally, Section 5 gives concluding remarks.

2. Literature review

In its most general setting, the problem we study in this work is
one in the family of dynamic vehicle routing problems (Psaraftis et al.,
2016) and more specifically is a dynamic pickup and delivery problem
(dPDP) (Berbeglia et al., 2010). The existing literature on these type of
problems is vast and has grown significantly over the past few decades,
mainly due to the advances in technology and telecommunication.

One of the applications for recent research in dPDP problems is
transport of persons. Examples of such are dial-a-ride, dial-a-flight
and ride-sharing. The latter problem is similar to our problem, with
a common fleet of drivers that must satisfy transportation requests
on short-notice, each characterized by an origin–destination pair with
time-based service requirements (Agatz et al., 2012). Meal delivery
problems are also part of the growing research area of dynamic delivery
problems (dDP) (Reyes et al., 2018b), including same-day delivery
problems. The growth of online retail in the last decades has attracted
researchers to same-day delivery operations, with focus on both sim-
plified analytic settings (Klapp et al., 2016; Archetti et al., 2015; Reyes
et al., 2018a; Ulmer et al., 2019) and real world situations (Reyes et al.,
2018b; Ulmer and Savelsbergh, 2020; Ulmer et al., 2020; Yildiz and
Savelsbergh, 2019a; Klapp et al., 2018; Auad et al., 2023). In dDP
problems, once a vehicle is dispatched to satisfy a set of deliveries,
adjusting the route does not produce any benefit if travel times and
costs do not change.

In the dDP literature, problems can be classified based on the
availability of information. Static problems are those where all the
information about orders and travel times is deterministic and known
in advance (Archetti et al., 2015; Reyes et al., 2018a; Yildiz and
Savelsbergh, 2019a). Dynamic problems on the other hand, consist on
settings where orders are revealed over time, and decisions are made
only based on the revealed information (Auad et al., 2024; Reyes et al.,
2018b; Ulmer et al., 2020; Klapp et al., 2018). If in addition, some of
the parameters follow a probabilistic distribution and such information
is available to the decision maker, then the problem is said to be
stochastic. In our work we study a static meal delivery routing problem.

Routing problems with time constraints are reviewed in Mor and
Speranza (2020). Static dDP problems are closely related to the multi-
trip VRP with release dates (VRP-rd), and with both release dates and
deadlines (VRP-rdd). In these problems, couriers may perform multiple
trips from the depot to serve orders that have an earliest ready time
(release date) at the depot. Additionally, in VRP-rdd settings, deliveries
to customers must occur before a deadline. An example of the VRP-
rd is the work by Cattaruzza et al. (2016). Here, the authors propose
the multi-trip VRP-rd with time windows, where a fleet of capacitated
couriers must serve all orders minimizing total travel distance. They
propose a hybrid genetic algorithm to solve the problem, and empiri-
cally show its effectiveness. Shelbourne et al. (2017) study the VRP-rdd
and develop a path relinking algorithm to minimize the convex sum of
the total distance and total positive deviations (delays) from the target
order delivery times.

The problems we analyze use simplified network topologies (i.e.,
customers distributed on a line or a star network), which helps avoiding
the complexity of the routing sub-problem (by turning them into a
scheduling problem), thus primarily focusing on aspects related to
capacity and demand management. There are multiple studies in the lit-
erature of transportation problems that simplify the routing component
to focus on specific problem features, such as Yildiz and Savelsbergh
(2019b), Klapp et al. (2016), Archetti et al. (2015), Reyes et al. (2018a),

Angelelli et al. (2007a,b) and Yildiz and Savelsbergh (2020), some of
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which are able to obtain meaningful insights despite the simplification.
As we will see later, doing this allows us to easily model and solve
different settings of interest that these works do not consider (e.g., mul-
tiple couriers, multiple depots, and problems with different objectives),
and obtain managerial insights about the system’s delivery capacity and
its capability of managing demand. To handle these additional com-
plexities, we use integer programming formulations built on underlying
time-expanded networks, directed networks whose vertices are pairs
with both a location and a time point component. The use of these
networks allows more flexibility when modeling time dependencies.
Some applications of time-expanded networks include service network
design (Erera et al., 2013; Boland et al., 2017) and the time dependent
TSP with time windows (Vu et al., 2018). However, flexibility comes
at the cost of efficiency in solving (Skutella, 2009).

3. Problem description

3.1. Single depot setting

We consider a single depot located at one end, 𝜏0 = 0, of the line
segment [0, 𝑈 ] with 𝑈 > 0. A set of orders, 𝑁 = {1,… , 𝑛} is placed on
he depot, where each order 𝑗 ∈ 𝑁 specifies:

• a ready time 𝑟𝑗 ∈ [0, 𝑈 ] ∩Z, which defines the earliest time it can
be dispatched for delivery;

• a location 𝜏𝑗 ∈ (0, 𝑈 ] ∩ Z, representing its delivery location
measured in travel time from the depot; and

• a due time 𝛥𝑗 ≥ 𝑟𝑗 + 𝜏𝑗 , 𝛥𝑗 ∈ Z where if order 𝑗 is not delivered
by time 𝛥𝑗 , it is considered late (and is potentially lost).

et 𝐓 ≡ [0, 𝑇 ] be the operating period. Without loss of generality, we
ssume 𝑟1 = 0 and 𝑟𝑗 ≤ 𝑟𝑗+1,∀𝑗 ∈ 𝑁 (with 𝑟𝑛+1 ≡ 𝑇 ). Furthermore, at
ime 𝑟𝑗 an available courier at the depot can be dispatched to deliver
along with any other orders 𝑖 with 𝑟𝑖 ≤ 𝑟𝑗 (no courier capacity). We

ssume that the times required for a courier to pick up or deliver orders
re negligible when compared to travel times. Thus, given an order set
⊆ 𝑁 with 𝜏𝐽 ≡ max𝑗∈𝐽 {𝜏𝑗}, a courier can deliver 𝐽 and return to the

epot in time 2𝜏𝐽 . When 𝐽 includes more than a single order, we say
hat the orders in 𝐽 are bundled.

Suppose that there are 𝑚 ≥ 1 couriers that can make deliveries, each
ocated at the depot at time 0 and required to return after their final
elivery by time 𝑇 (and therefore, 2𝑈 ≤ 𝑇 ; moreover, each order 𝑗 ∈ 𝑁
s assumed to satisfy 𝑟𝑗+2𝜏𝑗 ≤ 𝑇 so it can be feasibly served). Let 𝑆 ≥ 𝜏𝑁

be the (common) maximum acceptable service time for each order,
which implies that 𝛥𝑗 ≡ 𝑟𝑗+𝑆 for 𝑗 ∈ 𝑁 . Although in practice maximum
cceptable service times typically depend of the travel time between the
epot and delivery location of an order, using a common value for all
rders facilitates the analysis of the overall effect of delivery promises
n the system performance metrics.

In this setting, we consider two optimization problems: (1) maxi-
ize the number of orders that can be served on-time given 𝑚 couriers,

nd (2) minimize the number of couriers 𝑚 needed to serve all orders.
Formally:

Problem 1 (Order Maximization). Given 𝑚 identical couriers, find a
feasible delivery schedule for each of them that maximizes the total
number of orders served, where a feasible delivery schedule for a
courier specifies a number of delivery trips, each with a given departure
time and a set of orders to deliver, such that all served orders 𝑗 ∈ 𝑁
are ready at the time of departure and are delivered by their due time
𝛥𝑗 .

Problem 2 (Courier Minimization). Find the minimum number of couri-
ers (and a feasible delivery schedule for each of them) required to serve
all orders 𝑗 ∈ 𝑁 by their due time 𝛥𝑗 .

In the rest of this section we develop a mathematical framework for
analyzing these problems which relies on integer programs defined on
time-expanded networks.
3 
3.1.1. Creation of a time-expanded network
Before giving a mathematical model for Problems 1 and 2, we

provide a useful proposition; proofs for this and later results can all
be found in Appendix A.

Proposition 1. Consider an optimal schedule and let 𝐽 ⊆ 𝑁 be a set of
orders in that schedule with the same dispatch time 𝑡. Then, there exists an
optimal schedule in which the orders in 𝐽 are served by a single courier.

The next result shows how to determine a sufficient finite subset of
time points in 𝐓 with the property that there exists an optimal schedule
that only dispatches couriers at a subset of these points. Consider then
the following definition:

Definition 1 (Active Order). We say that order 𝑗 is active at time 𝑡 ∈ 𝐓
if 𝑡 ∈ {𝑟𝑗 , 𝑟𝑗 +1,… , 𝛥𝑗 − 𝜏𝑗} and it has not yet been dispatched by 𝑡. We
denote the set of active orders at time 𝑡 by 𝐴(𝑡).

Active orders at time 𝑡 can be dispatched feasibly. We now introduce
a lemma useful when modeling Problems 1 and 2.

Lemma 2. Given 𝑗 ∈ 𝑁 , let 𝑡 ∈ [𝑟𝑗 , 𝑟𝑗+1) be the earliest time that a
courier is available for dispatch at the depot. Then there exists an optimal
schedule for Problems 1 and 2 in which no courier is dispatched at any time
in (𝑡, 𝑟𝑗+1) ∩ Z.

From Lemma 2 it follows that the only necessary dispatch times
at the depot are the ready times {𝑟𝑗}𝑗∈𝑁 and the courier return times
𝑟𝑗 + 2

∑

𝑘∈𝐾 𝜏𝑘, for some 𝐾 ⊆ 𝑁 . We denote the set of such time points
by 0.

The time-expanded networks we build also model couriers moving
from one order delivery location to another or back to the depot. To
determine which time points are required to model these movement
decisions, let 𝑡 ∈ 𝐓 be a time point such that an optimal solution
dispatches a courier from the depot at 𝑡 with orders 𝐽 ⊆ 𝐴(𝑡), and
let {𝜏(𝑖)}

|𝐽 |
𝑖=1 be the locations of orders 𝐽 sorted in non-decreasing order

from the depot such that 𝜏(1) is closest. Then there exists an optimal
solution where the courier visits locations 𝜏(𝑖) sequentially at times 𝑡+𝜏(𝑖)
for 𝑖 = 1, 2,… , |𝐽 |. After visiting location 𝜏(|𝐽 |) the courier returns to
the depot, arriving at time 𝑡 + 2𝜏(|𝐽 |) either to be dispatched again
immediately or, by Lemma 2, to wait until the next order arrival time.

At any dispatch time 𝑡 ∈ 0 at the depot, an optimal solution will
either decide not to dispatch a courier or to dispatch a courier with a
subset 𝐽 ′ ⊆ 𝐴(𝑡). The only optimal subsets are those that include all
orders with locations 𝜏𝑗 ≤ 𝜏(𝑖∗) where 𝜏(𝑖∗) is the furthest order in 𝐽 ′,
and so each order 𝑗 in the subset is delivered exactly at time 𝑡 + 𝜏𝑗 .

Thus, it should be clear that these problems can be solved by con-
sidering models that include a discrete set of time points, specifically a
subset of the time points specified in Proposition 3 below:

Proposition 3. To solve Problems 1 and 2, it suffices to consider courier
schedule decisions at ready times 𝑟𝑗 , 𝑗 ∈ 𝑁 , at potential return times to the
depot 𝑟𝑗 + 2

∑

𝑘∈𝐾 𝜏𝑘, 𝑗 ∈ 𝑁,𝐾 ⊆ 𝑁 , and at potential delivery times at the
customers 𝑟𝑗 +

∑

𝑘∈𝐾 2𝜏𝑘 + 𝜏𝑖, 𝑗 ∈ 𝑁,𝐾 ⊆ 𝑁, 𝑖 ∈ 𝐴(𝑟𝑗 +
∑

𝑘∈𝐾 2𝜏𝑘).

Each time point of interest is also associated with a specific spatial
location: all dispatches occur at the depot 𝜏0 = 0, while deliveries are
performed at locations 𝑥 = 𝜏𝑗 , 𝑗 ∈ 𝑁 . Consequently, we will define
the nodes of our time-expanded network in the form (𝑡, 𝑠), representing
a location 𝑠 in the line segment [0, 𝑈 ] and an associated time point 𝑡.
Nodes in the time-expanded network belong to one of two types, which
we present in the following definition.

Definition 2 (Depot and Non-depot Node). A node of a time-expanded
network (𝑡, 𝑠) ∈  is called depot node if its spatial component 𝑠
corresponds to a depot location; otherwise it is labeled as non-depot
node.

The network construction routine is shown in detail in Appendix B.
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3.1.2. Integer programming formulations
Once the time-expanded network  = ( ,) is constructed, we can

ormulate Problems 1 and 2 as integer programs. For each 𝑗 ∈ 𝑁 , let
𝑗 ≡ {(𝑡, 𝜏𝑗 ) ∈  ∶ 𝑡 ∈ {𝑟𝑗 + 𝜏𝑗 ,… , 𝛥𝑗}} be the set of non-depot nodes
t which order 𝑗 may be delivered, and 0 ≡ {(𝑡, 0) ∈  ∶ 𝑡 ∈ 0} be
he set of depot nodes (and note that  ≡

⋃

𝑗∈𝑁∪{0} 𝑗). Moreover, for
each 𝑝 ∈  , let 𝛼−𝑝 ≡ {𝑞 ∈  ∶ (𝑞, 𝑝) ∈ } and 𝛼+𝑝 ≡ {𝑞 ∈  ∶ (𝑝, 𝑞) ∈ }.

The decision variables in these problems are:

𝑧𝑝𝑞 = Number of couriers that traverse arc (𝑝, 𝑞) ∈ 

𝑣𝑗𝑝 =
{

1 if order 𝑗 ∈ 𝑁 is delivered at node 𝑝 ∈ 𝑗
0 otherwise

For a fixed courier fleet size 𝑚, a valid mixed-integer programming
formulation for Problem 1 is given by

max
∑

𝑗∈𝑁

∑

𝑝∈𝑗

𝑣𝑗𝑝 (1a)

s.t.
∑

𝑝∈𝑗

𝑣𝑗𝑝 ≤ 1, ∀𝑗 ∈ 𝑁 (1b)

𝑣𝑗𝑝 ≤
∑

𝑞∈𝛼−𝑝

𝑧𝑞𝑝, ∀𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑗 (1c)

∑

𝑞∈𝛼+(0,0)

𝑧(0,0),𝑞 = 𝑚 (1d)

∑

𝑝∈𝛼−(0,𝑇 )

𝑧𝑝,(0,𝑇 ) = 𝑚 (1e)

∑

𝑝∈𝛼−𝑞

𝑧𝑝𝑞 =
∑

𝑟∈𝛼+𝑞

𝑧𝑞𝑟, ∀𝑞 ∈  ⧵ {(0, 0), (0, 𝑇 )} (1f)

𝑣𝑗𝑝 ∈ {0, 1},∀𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑗 (1g)

𝑧𝑝𝑞 ∈
{

R+ if 𝑝, 𝑞 ∈ 0,
{0, 1} otherwise ∀(𝑝, 𝑞) ∈  (1h)

Objective (1a) seeks to maximize the number of served orders. Con-
straints (1b) and (1c) are related to order acceptance; each order 𝑗 ∈ 𝑁
can only be delivered once and if this occurs at node 𝑝 ∈ 𝑗 , then
some courier must travel from a node 𝑞 ∈ 𝛼−𝑝 to 𝑝. Constraints (1d)–
(1f) are courier flow conservation constraints for all the network nodes.
Constraints (1g) and (1h) enforce non-negative flows on depot arcs and
binary flows elsewhere (due to Proposition 1).

Using a similar set of constraints and redefining the courier fleet
size 𝑚 as a decision variable, Problem 2 can be posed as

min 𝑚 (2a)

s.t.
∑

𝑝∈𝑗

𝑣𝑗𝑝 = 1, ∀𝑗 ∈ 𝑁 (2b)

(1c)–(1h)

𝑚 ∈ R+ (2c)

ote that Model (1) and (2) are always feasible. Moreover, the structure
f these models grants them the property that for fixed values of vari-
bles 𝑣, the feasible-set polyhedron formed by variables 𝑧 corresponds
o one of a network flow model with integer extreme points. As a direct
onsequence, for each binary vector 𝑣 there exists1 an optimal vector 𝑧
ith only integer components. This is formalized next.

roposition 4. For fixed binary 𝑣, the set of feasible 𝑧 in Models (1)
nd (2) describe a network flow polyhedron. Thus, for integer values of 𝑚,
ecision variables 𝑧 will take integer values in an optimal solution.

1 This is true for Model (1), as long as the fixed value of 𝑚 is integer and
allows feasibility for the fixed 𝑣.
4 
3.1.3. Incorporating lateness
In practical delivery problems, it is common that when a customer

places an order, an estimated time of arrival (ETA) is announced and the
operator seeks to serve the order no later than this time. In Models (1)
and (2) we represent this idea by assuming that each order 𝑗 ∈ 𝑁 must
be served by 𝛥𝑗 (if served at all). In this section, we consider alternative
models that allow some orders to be served if they arrive late. To do
so, in addition to the hard due time 𝛥𝑗 of each order 𝑗, we introduce
a target delivery time 𝛿𝑗 to represent the ETA by which order 𝑗 ∈ 𝑁
is sought to be delivered. An order 𝑗 delivered at 𝑡 ∈ (𝛿𝑗 , 𝛥𝑗 ] is then
considered late.

Mathematically, let 𝑠 ∈ {𝜏𝑁 , 𝜏𝑁 + 1,… , 𝑆} be a (common) target
service time for all orders. Then similar to how the maximum service
time 𝑆 determines the due time 𝛥𝑗 for each 𝑗 ∈ 𝑁 , we now define
𝛿𝑗 ≡ 𝑟𝑗 + 𝑠 ≤ 𝛥𝑗 as the target delivery time by which order 𝑗 ∈ 𝑁 is
desired to be delivered. From this definition we present a problem that
seeks to minimize delivery lateness measured as the number of orders
delivered after their target delivery time 𝛿𝑗 .

Problem 3 (Late Orders Minimization). Given a fleet of couriers of size
𝑚, find a schedule for each courier that serves every order 𝑗 ∈ 𝑁 by 𝛥𝑗
and such that the number of orders served later than 𝛿𝑗 is minimized.

For a given order 𝑗 ∈ 𝑁 , let 𝑗 ≡ {(𝑡, 𝜏𝑗 ) ∈ 𝑗 ∶ 𝛿𝑗 + 1 ≤ 𝑡 ≤ 𝛥𝑗}
be the set of late service nodes of 𝑗. Then Problem 3 is solved by the
following integer program.

min
∑

𝑗∈𝑁

∑

𝑝∈𝑗

𝑣𝑗𝑝 (3a)

s.t. (2b), (1c) − (1h)

bjective (3a) minimizes the number of orders served later than the
arget service time 𝛿𝑗 by penalizing the objective every time this
ccurs while all orders must be served by their due time 𝛥𝑗 . Note that
roblem 3 is feasible if and only if the number of couriers 𝑚 in the input
s at least the optimal value of Problem 2, as otherwise Constraint (2b)
ill lead to infeasibility.

Note that Problem 3 could use an alternative lateness-based objec-
ive. For example, the decision maker may prefer to minimize the total
ggregated lateness over all the orders, giving a larger penalty to orders
hat are served closer to their maximum acceptable delivery time 𝛥𝑖. In
ur current formulation, this would only require replacing (3a) by the
xpression min

∑

𝑗∈𝑁
∑

𝑝∈𝑗
(𝑡 − 𝛿𝑗 )𝑣𝑗𝑝.

.1.4. Radius management
In the earlier formulations, when determining the maximum num-

er of orders that can be served by a fixed fleet of couriers the
ssumption was that the optimization model can selectively choose
o provide or deny service to any individual order. Such a strategy
s reasonable when determining an upper bound on maximum orders
erved in hindsight or with complete information. A potentially more
ealistic model for accepting or rejecting orders is to use a service radius:
f an order is attempted to be placed at time 𝑡 when the service radius
s 𝜌, then the order must be served if 𝜏 ≤ 𝜌 and must be denied service
therwise.

In this section, we introduce modifications of the models to handle
uch radius-based order management decisions. In the basic model, we
ssume that a service radius is set at the beginning of the horizon and
emains unchanged through the operating horizon. We formally state
he decision problem as follows:

roblem 4 (Single Service Radius Maximization). Given a fleet of 𝑚
couriers, find a schedule for each and a service radius 𝜌 that maximize
the number of served orders, where each order 𝑗 ∈ 𝑁 is served if and

only if 𝜏𝑗 ≤ 𝜌.
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From Problem 4 we can develop a natural extension that selects a
(potentially different) service radius at 𝑅 different fixed times {𝑡1,… ,
𝑡𝑅} ⊆ 𝐓, where 𝑡1 ≡ 0. For any 𝑡 ∈ 𝐓, let 𝜌𝓁 be the active radius during
time interval [𝑡𝓁 , 𝑡𝓁+1), 𝓁 ∈ {1,… , 𝑅} (with 𝑡𝑅+1 ≡ 𝑇 ). Then for order
𝑗 ∈ 𝑁 where 𝑟𝑗 ∈ [𝑡𝓁 , 𝑡𝓁+1), 𝑗 is served if and only if 𝜏𝑗 ≤ 𝜌𝓁 . We
mathematically formulate this extension as follows.

Problem 5 (Fixed-Time Radius Management Problem). Given a fleet of
𝑚 couriers, find a schedule for each of them and service radii {𝜌𝓁 ∈
[0, 𝜏𝑁 ]}𝑅𝓁=1 that maximize the number of served orders, where if order
𝑗 ∈ 𝑁 is such that 𝑟𝑗 ∈ [𝑡𝓁 , 𝑡𝓁+1), then 𝑗 is served if and only if 𝜏𝑗 ≤ 𝜌𝓁 .

Note from the problem definition that if some ready time 𝑟𝑗 coin-
cides with a radius shifting time 𝑡𝓁 , we assume the radius adjustment
is performed right before the order is placed.

Since {𝑡𝓁}𝑅𝓁=1 are given, we can model Problem 5 by augmenting
Model (1) with a few additional constraints.

Proposition 5. For each 𝓁 ∈ {1,… , 𝑅}, let 𝐵𝓁 ⊆ 𝑁 be a list of orders
such that (i) 𝑗 ∈ 𝐵𝓁 if and only if 𝑟𝑗 ∈ [𝑡𝓁 , 𝑡𝓁+1); and (ii) elements of 𝐵𝓁
are sorted in ascending order of travel time from the depot to their delivery
location, with 𝐵𝓁,𝑖 denoting the 𝑖th element of list 𝐵𝓁 (and so 𝜏𝐵𝓁,𝑖

≤ 𝜏𝐵𝓁,𝑖+1
).

Then for solving Problem 5, it suffices to solve the integer program resulting
from combining Model (1) with the extra linear constraints

∑

𝑝∈𝐵𝓁,𝑖

𝑣𝐵𝓁,𝑖 ,𝑝

⎧

⎪

⎨

⎪

⎩

≥
∑

𝑝∈𝐵𝓁,𝑖+1
𝑣𝐵𝓁,𝑖+1 ,𝑝 if 𝜏𝐵𝓁,𝑖

< 𝜏𝐵𝓁,𝑖+1

=
∑

𝑝∈𝐵𝓁,𝑖+1
𝑣𝐵𝓁,𝑖+1 ,𝑝 if 𝜏𝐵𝓁,𝑖

= 𝜏𝐵𝓁,𝑖+1

,
∀𝓁 ∈ {1,… , 𝑅}

∀𝑖 ∈ {1,… , |𝐵𝓁| − 1}

(4)

Moreover, given an optimal solution (𝑣∗, 𝑧∗) of the resulting model, each
optimal service radius can be recovered by computing

𝜌∗𝓁 = max
𝑗∈𝐵𝓁

⎧

⎪

⎨

⎪

⎩

𝜏𝑗 ∶
∑

𝑝∈𝑗

𝑣∗𝑗𝑝 = 1

⎫

⎪

⎬

⎪

⎭

, ∀𝓁 ∈ {1,… , 𝑅}

Adding Constraint set (4) forces an order to be served if the next
furthest order placed from the depot during the same time interval 𝓁 is
served while also forcing all orders during interval 𝓁 to be either served
or not served if they have the same value of 𝜏.

3.1.5. L-star extension
Although the setting considered up to now assumes that all the

orders delivery locations lie in a single line segment with the depot at
one of its extremes, our framework can easily be adapted to the more
general case with an arbitrary 𝐿 number of line segments radiating
from the depot point. Note that this network topology assumes that
all travels between line segments must transit the depot, and thus the
only reasonable order bundles for dispatches are those where all orders
are to be delivered in a common segment.

For ℎ ∈ {1,… , 𝐿}, let 𝑁ℎ ⊆ 𝑁 be the subset of 𝑁 containing orders
to be delivered in line segment ℎ, with 𝑛ℎ ≡ |𝑁ℎ| and ∑𝐿

ℎ=1 𝑛ℎ = 𝑛.
Moreover, we assume that orders in each subset 𝑁ℎ are in ascending
order of ready time. In addition, since 𝐿 ≥ 1 the delivery location of
order 𝑗 ∈ 𝑁ℎ is now characterized by the pair (𝜏𝑗 , ℎ), representing a
distance 𝜏𝑗 from the depot along the line segment ℎ. As a result, nodes
in the time-expanded network encode a time, a line segment and a
distance from the depot. Defining ℎ = 0 for nodes at the depot, we
redefine depot nodes as (𝑡, 0, 0), and non-depot nodes as (𝑡, 𝜏𝑗 , ℎ).

Aside from these minor adjustments, the only procedure that re-
quires a few additional considerations is the routine that creates the
time-expanded networks. This is due to the dispatches at a returning
time: at the time a courier returns from delivering orders at a particular
line segment, it can either remain in the depot until the next order is

ready or else be immediately dispatched into any of the 𝐿 line segments
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with a new set of active orders. This implies that any depot node
defined by the return of a courier defines an outbound arc to each of
the 𝐿 line segments containing the delivery location of an active order
at that time. The adapted network building routine can be found in
Appendix C.

Once the time-expanded network  = ( ,) is created, consider
the following redefinition of the sets of nodes: for 𝑗 ∈ 𝑁ℎ, let 𝑗 ≡
{(𝑡, 𝜏𝑗 , ℎ) ∈  ∶ 𝑟𝑗 + 𝜏𝑗 ≤ 𝑡 ≤ 𝛥𝑗} be the set of nodes where order 𝑗 can
be served. Similarly, let 0 = {(𝑡, 0, 0) ∈ }. Lastly, for each 𝑝 ∈  the
sets of adjacent nodes 𝛼−𝑝 and 𝛼+𝑝 are defined as in the previous section.
With these modifications, the integer program formulations provided
for problems from the previous section exactly model the corresponding
𝐿-star variant.

3.2. Two-depot setting

In Section 3.1 it is assumed that every order was placed to a single
depot. In this section, we extend this setting to a single line segment
with two depots, one located at each of its ends, that share a courier
fleet to make deliveries. Customers place an order that is to be filled
by a specific depot; for example, these locations may represent two
different restaurants. Subject to some minor changes, we model and
solve this case employing the same framework presented in Section 3.1.

Consider a line segment [0, 𝑈 ] with 𝑈 > 0, and two depots 1 and 2
located at 𝜏0 = 0 and 𝜏𝑈 = 𝑈 , respectively. For depot 𝑑 ∈ {1, 2}, let 𝑁𝑑
be the set of orders that must be picked up from 𝑑, with 𝑛𝑑 ≡ |𝑁𝑑 | and
𝑛 ≡ 𝑛1 + 𝑛2. Moreover, for each depot 𝑑 we define

• A 𝑛𝑑 -dimensional vector of ready times corresponding to orders
placed at depot 𝑑, 𝒓𝑑 ≡ (𝑟𝑑1 ,… , 𝑟𝑑𝑛𝑑 ), whose components are sorted
in increasing order. In the following, we label an order from depot
𝑑 by 𝑗 if the order has the 𝑗th earliest ready time among the orders
in such depot. Furthermore, without lost of generality, we assume
𝑟11 = 0 and 𝑟21 ≥ 0.

• A corresponding 𝑛𝑑 -dimensional vector of delivery locations 𝝉𝑑 ≡
(𝜏𝑑1 ,… , 𝜏𝑑𝑛𝑑 ), where the 𝑗th component denotes the delivery loca-
tion of order 𝑗 ∈ 𝑁𝑑 measured with respect to depot 1.

• A corresponding 𝑛𝑑 -dimensional vectors of target delivery times
𝜹𝑑 ≡ (𝛿𝑑1 ,… , 𝛿𝑑𝑛𝑑 ), and due times 𝜟𝑑 ≡ (𝛥𝑑

1 ,… , 𝛥𝑑
𝑛𝑑
).

Also, consider

𝑑 ≡
{

2 if 𝑑 = 1
1 if 𝑑 = 2

𝜏𝑑𝑗 ≡

{

𝜏𝑑𝑗 if 𝑑 = 1
𝑈 − 𝜏𝑑𝑗 if 𝑑 = 2

where 𝑑 denotes the complement of depot 𝑑, and 𝜏𝑑𝑗 corresponds to the
elivery location of order 𝑗 ∈ 𝑁𝑑 measured from its depot 𝑑. Now we

pose the two-depot version of the early problems as follows:

Problem 6 (Two-depot Order Maximization). Given depots 1 and 2, and
a fleet of 𝑚 identical couriers. Find a schedule for each courier that
maximizes the total number of orders served in 𝑁1 ∪𝑁2.

roblem 7 (Two-depot Courier Minimization). Given two depots 1 and 2.
ind the minimum number of identical couriers needed and a schedule
or each of them, such that every order in 𝑁1 ∪𝑁2 is served on time.

Note that we do not make assumptions on how order placements
compare between both depots, and so depots may have different capac-
ity needs at different times of the operating period. Correspondingly,
we assume that for all the considered two-depot problems, the decision-
maker has the ability to select at which depot each courier starts
operating. Furthermore, the decision-maker can also instruct couriers
to cross the line segment from a depot 𝑑 to 𝑑 in case the latter requires
more delivery capacity later in the operating period; crossing couriers
can be initially idle at 𝑑 (in which case they would be instructed to
traverse to 𝑑 to pick up orders) or can be dispatched for delivery from
𝑑 (in which case they would traverse the line segment to 𝑑 and deliver
all dispatched orders on their way there). Also, couriers may end their
operation at either depot regardless of their starting location.
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3.2.1. Time-expanded network construction
Next we present a routine that constructs a time-expanded net-

work  = ( ,) with two depots. This new algorithm creates a
ime-expanded sub-network for each of the two depots (with their
orresponding depot and non-depot nodes) that are connected through
epot nodes. In order to make the distinction between both sub-
etworks explicit we redefine every node in the network as a tuple
= (𝑡, 𝑠, 𝑑), where 𝑠 represents a spatial location, 𝑡 a time point, and
∈ {1, 2} an associated sub-network based on a corresponding depot.

imilarly, every arc (𝑣1, 𝑣2) is now associated to a sub-network which is
iven by the sub-network of 𝑣1. For the network construction routine,
ee Appendix D.

.2.2. Integer program formulations
It is not hard to extend models from Section 3.1 to formulate

roblems 6 and 7. Indeed, it suffices to redefine the decision variables
nd constraints used in the single depot models but incorporating into
he existing notation the depot 𝑑 ∈ {1, 2} sub-network to which each
ode belongs to. First consider the sets of time stamps at which depot
odes for each depot are defined by Algorithm 5, namely 0 and 𝑈
or depots 1 and 2, respectively. For depot 𝑑 ∈ {1, 2} and 𝑗 ∈ 𝑁𝑑 , let
𝑑
𝑗 ≡ {(𝑡, 𝜏𝑗 , 𝑑) ∈  ∶ 𝑟𝑑𝑗 + 𝜏𝑑𝑗 ≤ 𝑡 ≤ 𝛥𝑑

𝑗 } be the nodes set where order 𝑗
can be served. Similarly, let 0 = {(𝑡, 0, 1) ∈ } and 𝑈 = {(𝑡, 𝑈, 2) ∈ }
the sets of depot nodes at depot 1 and 2, respectively. Lastly, for each
node 𝑝 ∈  consider the sets of adjacent nodes 𝛼−𝑝 and 𝛼+𝑝 defined as in
past sections. Then consider the following decision variables:

𝑧𝑝𝑞 = Number of couriers that traverse arc (𝑝, 𝑞) ∈ 

𝑣𝑑𝑗𝑝 =

{

1 if order 𝑗 ∈ 𝑁𝑑 is served at node 𝑝 ∈ 𝑑
𝑗 , 𝑑 ∈ {1, 2}

0 otherwise

We can formulate Problem 6 as the following integer program.

max
2
∑

𝑑=1

∑

𝑗∈𝑁𝑑

∑

𝑝∈𝑑
𝑗

𝑣𝑑𝑗𝑝 (5a)

s.t.
∑

𝑡∈𝑗

𝑣𝑑𝑗𝑡 ≤ 1, ∀𝑑 ∈ {1, 2}, ∀𝑗 ∈ 𝑁𝑑 (5b)

𝑣𝑑𝑗𝑝 ≤
∑

𝑞∈𝛼−𝑝

𝑧𝑞𝑝, ∀𝑑 ∈ {1, 2}, ∀𝑗 ∈ 𝑁𝑑 , ∀𝑝 ∈ 𝑑
𝑗 (5c)

∑

𝑞∈𝛼+(0,0,1)

𝑧(0,0,1),𝑞 = 𝑚 (5d)

∑

𝑝∈𝛼−(𝑇 ,0,1)

𝑧𝑝,(𝑇 ,0,1) = 𝑚 (5e)

∑

𝑝∈𝛼−𝑞

𝑧𝑝𝑞 =
∑

𝑟∈𝛼+𝑞

𝑧𝑞𝑟, ∀𝑞 ∈  ⧵ {(0, 0, 1), (𝑇 , 0, 1)} (5f)

𝑣𝑑𝑗𝑝 ∈ {0, 1}, ∀𝑑 ∈ {1, 2}, ∀𝑗 ∈ 𝑁𝑑 , ∀𝑝 ∈ 𝑑
𝑗 (5g)

𝑧𝑝𝑞 ∈
{

R+ if 𝑝, 𝑞 ∈ 0 ∪ 𝑈
{0, 1} otherwise , ∀(𝑝, 𝑞) ∈  (5h)

Model (5) is very similar to Model (1). Objective (5a) seeks to
aximize the total number of served orders. For each depot 𝑑 ∈ {1, 2},
onstraint (5b) enforces that each order 𝑗 ∈ 𝑁𝑑 is served at most once.
onstraint (5c) requires a courier at node (𝑡, 𝜏𝑗 , 𝑑) ∈ 𝑑

𝑗 for order 𝑗 ∈ 𝑁𝑑
to be served at time 𝑡. Constraints (5d)–(5f) are courier flow constraints;
note that the insertion of arc ((0, 0, 1), (𝑟21, 𝑈 , 2)) allows the model to
select how many of the 𝑚 couriers start the operating horizon at each
depot, and arc ((𝑇 , 𝑈, 2), (𝑇 , 0, 1)) leaves (𝑇 , 0, 1) as the unique sink in
network  . Lastly, constraints (5g) and (5h) specify the domain of the
decision variables.

Similarly, a formulation for Problem 7 can be obtained by extending
Model (2) as follows:
min 𝑚 (6a)

6 
s.t.
∑

𝑝∈𝑑
𝑗

𝑣𝑑𝑗𝑝 = 1, ∀𝑑 ∈ {1, 2}, ∀𝑗 ∈ 𝑁𝑑 (6b)

(5c)–(5h)

𝑚 ∈ R+ (6c)

The similarities between formulations for the single depot and two-
depot cases allow to preserve the result in Proposition 4 for two-depot
models.

3.2.3. Incorporating lateness
Now we introduce the notion of lateness for two-depot models by

incorporating the target delivery time 𝛿𝑑𝑗 .

Problem 8 (Two-depot Late Orders Minimization). Given depots 1 and
2 and a fleet of 𝑚 identical couriers. Find a schedule for each courier
such that every order 𝑗 ∈ 𝑁𝑑 , 𝑑 ∈ {1, 2} is served by its due time 𝛥𝑑

𝑗
and such that the number of orders served after the target delivery time
𝛿𝑑𝑗 is minimized.

For 𝑑 ∈ {1, 2} and 𝑗 ∈ 𝑁𝑑 , let 𝑑
𝑗 ≡ {(𝜏𝑗 , 𝑡, 𝑑) ∈ 𝑑

𝑗 ∶ 𝛿𝑑𝑗 +1 ≤ 𝑡 ≤ 𝛥𝑑
𝑗 }.

Then Problem 8 is formulated as

min
2
∑

𝑑=1

∑

𝑗∈𝑁𝑑

∑

𝑝∈𝑑
𝑗

𝑣𝑑𝑗𝑝 (7a)

s.t. (6b), (5c)–(5h)

Model (7) minimizes the number of orders that are served after the
corresponding target delivery 𝛿𝑑𝑗 subject to every orders being served by
its due time 𝛥𝑑

𝑗 (Constraint (6b)) and courier flow constraints (5c)–(5h).
Feasibility of Problem 8 is equivalent to the input number of couriers 𝑚
being at least the optimal value of Problem 7, as otherwise Constraint
(6b) cannot be satisfied.

3.2.4. Radius management
We adapt the radius management models from Section 3.1 to the

two-depot case. In this setting, each depot 𝑑 ∈ {1, 2} may select a
service radius up to 𝑅𝑑 ≥ 1 times during the operating horizon, with
the first radius being selected at 𝑡𝑑1 ≡ 𝑟𝑑1 , and any order whose delivery
location lies inside the active radius at the moment of its placement
must be served. Mathematically, let {𝑡𝑑𝓁}

𝑅𝑑
𝓁=1 be the times at which depot

𝑑 changes its radius, and let 𝜌𝑑𝓁 be the radius selected at time 𝑡𝑑𝓁 . If order
𝑗 ∈ 𝑁𝑑 satisfies 𝑟𝑑𝑗 ∈ [𝑡𝑑𝓁 , 𝑡

𝑑
𝓁+1) (with 𝑡𝑑𝑅𝑑+1

≡ 𝑇 ), then 𝑗 is served if and
only if and 𝜏𝑑𝑗 ≤ 𝜌𝑑𝓁 .

Now we present the two-depot version of the problem:

Problem 9 (Two-depot Fixed-Time Service Radius Management Problem).
Given depots 1 and 2 and a fleet of 𝑚 identical couriers. Find a schedule
for each courier and service radii {𝜌𝑑𝓁 ∈ [0,max𝑖∈𝑁𝑑

{𝜏𝑑𝑖 }]}
𝑅𝑑
𝓁=1 for depots

𝑑 ∈ {1, 2} such that the total number of served orders is maximized,
where if some order 𝑗 ∈ 𝑁𝑑 is such that 𝑟𝑑𝑗 ∈ [𝑡𝑑𝓁 , 𝑡

𝑑
𝓁+1), then such order

is served if and only if 𝜏𝑑𝑗 ≤ 𝜌𝑑𝓁 .

In order to solve Problem 9, it is enough to add a small set of linear
constraints to Model (5):

Proposition 6. Let {𝐵𝑑
𝓁}

𝑅𝑑
𝓁=1 be the list of orders 𝑗 such that 𝑟

𝑑
𝑗 ∈ [𝑡𝑑𝓁 , 𝑡

𝑑
𝓁+1)

for depot 𝑑 ∈ {1, 2}, obtained from Algorithm 1 by replacing 𝜏𝑑𝑗 in its input
by 𝜏𝑗 𝑑 ; and let 𝐵𝑑

𝓁,𝑖 be the 𝑖th element of list 𝐵𝑑
𝓁 . Then Problem 9 can be

formulated by adding the following linear constraints to Model (5):

∑

𝑝∈𝑑
𝐵𝑑
𝓁,𝑖

𝑣𝑑
𝐵𝑑
𝓁,𝑖 ,𝑝

⎧

⎪

⎨

⎪

⎩

≥
∑

𝑝∈𝑑
𝐵𝑑
𝓁,𝑖+1

𝑣𝐵𝑑
𝓁,𝑖+1 ,𝑝

if 𝜏𝑑
𝐵𝑑
𝓁,𝑖

< 𝜏𝑑
𝐵𝑑
𝓁,𝑖+1

=
∑

𝑝∈𝑑
𝐵𝑑
𝓁,𝑖+1

𝑣𝐵𝑑
𝓁,𝑖+1 ,𝑝

if 𝜏𝐵𝑑
𝓁,𝑖

= 𝜏𝐵𝑑
𝓁,𝑖+1

,
∀𝑑 ∈ {1, 2}

∀𝓁 ∈ {1,… , 𝑅𝑑}
∀𝑖 ∈ {1,… , |𝐵𝑑

𝓁 | − 1}
(8)
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Moreover, given an optimal solution (𝑣1∗, 𝑣2∗, 𝑧∗) for the resulting model,
the optimal service radii can be determined as

𝜌𝑑∗𝓁 = max
𝑗∈𝐵𝓁

⎧

⎪

⎨

⎪

⎩

𝜏𝑑𝑗 ∶
∑

𝑝∈𝑝
𝑗

𝑣𝑑∗𝑗𝑝 = 1

⎫

⎪

⎬

⎪

⎭

, ∀𝑑 ∈ {1, 2}, ∀𝓁 ∈ {1,… , 𝑅𝑑}

. Experimental results

In this section we report results from solving the proposed models
n various instances to gain insights about required fleet sizes and de-
and management strategies in meal delivery systems. The conducted

xperiments are separated into three subsections which, respectively,
rovide understanding about (i) the minimum fleet sizes required to
erve delivery requests for various instances, (ii) the value of establish-
ng an individual target delivery time to manage delivery lateness, and
iii) the potential benefits of dynamically adjusting a depot coverage
adius as a demand management strategy.

Tested values for parameters 𝑛, 𝑆, 𝑚 and 𝑠 vary with the type of
experiment and are shown at the beginning of each experiment subsec-
tion. The remaining parameters are either assumed constant or defined
as a function of the aforementioned ones. In particular:

• All the instances consider a time horizon length of 𝑇 = 660 min
(11 h).

• Order ready times 𝑟𝑑𝑗 are obtained by randomly sampling from a
continuous bimodal distribution and rounding each element to its
nearest integer, as shown in Fig. 1(a).

• Travel times 𝜏𝑑𝑗 are obtained by first drawing a random number
from a continuous distribution and then rounding each element
to its nearest integer (minute). The distribution we use depends
on the number of depots considered:

– For single depot settings we use a uniform distribution and
a triangular distribution to sample delivery locations. These
are illustrated in Figs. 1(b) and 1(c), respectively.

– For the two-depot scenario we test two different levels of
separation, 𝑈 ∈ {60, 90} min, each with its own sampling
scheme. For 𝑈 = 60 travel time to delivery locations of
orders from depot 1 and 2 are sampled from triangular dis-
tributions 𝑇 𝑟𝑖𝑎(1, 1, 45) and 𝑇 𝑟𝑖𝑎(15, 59, 59), respectively. On
the other hand, for 𝑈 = 90 travel times to delivery locations
of orders from depot 1 and 2 are generated from triangular
distributions 𝑇 𝑟𝑖𝑎(1, 1, 45) and 𝑇 𝑟𝑖𝑎(45, 89, 89), respectively.

• All single depot instance settings consider 𝐿 = 4 line segments.
Moreover, orders are assumed to be distributed between the 𝐿
line segments in such a way that for any two line segments, the
numbers of orders to be delivered in each never differ by more
than one order.

• For the two-depot scenario we further consider that each order is
assigned to a specific depot at random with equal probability.

The bimodal sampling distribution for orders ready times in
Fig. 1(a) is motivated in realistic meal delivery operations, where
it is observed that meal delivery demand is highly concentrated at
lunch and dinner times. For the single depot setup, we consider two
configurations for customer locations, namely one where they are
mostly in the proximity of the depot (triangular distribution), and
another one where customers are homogeneously located across the
line segments (uniform distribution); these configurations allow us
to study the effect of customer locations with the system’s delivery
capacity requirements and order coverage. For two depots, we consider
two levels of separation between them, to study its effect in the
system’s capability to have couriers serve orders from both depots, and
ultimately analyze the benefits of sharing couriers. For the instances
we optimally solve, the corresponding running times are provided in
Appendix E.
 c

7 
Table 1
Parameter values used for fleet size minimization experiments.

Setting 𝑛 𝑆

Single depot {75, 100, 120, 150} {45, 50, 55, 60}
Two depots {150, 200, 240, 300} {45, 50, 55, 60}

Table 2
Average 𝑚∗ for some single depot configurations.
(𝑛, 𝑆) 𝜏𝑗 ∼ 𝑈𝑛𝑖𝑓 (1, 45) 𝜏𝑗 ∼ 𝑇 𝑟𝑖𝑎(1, 1, 45) Average

(75, 45) 10.50 5.88 8.19
(150, 45) 16.00 8.44 12.22
(75, 60) 7.10 4.30 5.70
(150, 60) 9.00 5.78 7.39

Average 10.65 6.10

4.1. Minimum fleet size

In this section, we solve problems that determine the minimum
courier fleet size required to serve all orders in a specific instance. The
parameter values considered for this section are summarized in Table 1.

We run 50 replications for each possible combination of settings
and parameter values and report statistics on optimal courier fleet
size 𝑚∗, and on bundle size, namely the number of orders in a single
dispatch. Additionally, for the two-depot setting we analyze the number
of crosses between both depots, proposing an auxiliary integer program
that is able to show exactly when fleet sharing between depots yields a
better operational cost than having each depot delivering orders with
its exclusive fleet.

4.1.1. Single depot case
Table 2 presents the obtained average fleet size values 𝑚∗ for

some of the considered single depot instances, and Fig. 2 illustrates
the effect of the different parameters involved on the optimal fleet
size. As expected, 𝑚∗ increases as either 𝑛 increases, 𝑆 decreases, or
rder delivery locations become more distant to the depot. However,
hese effects on 𝑚∗ differ in magnitude. To illustrate this, consider the
cenario (𝑛, 𝑆) = (75, 60) as a base case, which corresponds to the case
ith fewest orders and most flexible due times. Observe that everything
lse equal, doubling the number of orders to 𝑛 = 150 leads to a 30%
ncrease in 𝑚∗; on the other hand, decreasing 𝑆 by 25% to 𝑆 = 45
hile keeping all other values constant requires a relatively higher 44%

ncrease in fleet size.
This difference in the effect on 𝑚∗ is explained by both the bundling

f multiple orders in a single dispatch and by the reduction in the
well time of a courier who has returned to the depot before leaving
or a subsequent dispatch. Since couriers are modeled assuming no
imit on bundled orders, increasing the number of orders 𝑛 tends to
ncrease the number of orders bundled per dispatch and reduce the
ourier dwell time at the depot thus increasing courier productivity; the
leet size growth is modest with 𝑛. However, increasing the tightness
f the delivery windows by decreasing 𝑆 makes bundling orders less
ikely overall thus resulting in faster growth in required fleet sizes
hen 𝑛 grows for smaller 𝑆. We note that, although bundle sizes are
ot constrained, the average numbers of orders bundled together for
elivery lies between 1.5 and 3 for all instances; these averages are
llustrated in Fig. 3.

The customer location distribution also plays an important role in
etermining the optimal fleet size. Indeed, switching the location distri-
ution from triangular to uniform results in an average 75% increase in
he required minimum fleet size; we note that this change substantially
ncreases the average distance from the depot to a customer and

oncomitantly the duration of any given delivery dispatch.
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Fig. 1. Sample distributions.
Fig. 2. Average 𝑚∗ for a single depot.
Fig. 3. Average bundle size for a single depot.
t

4.1.2. Two-depot case
Results for the two-depot minimum fleet sizes 𝑚∗ and how they

vary with 𝑛, 𝑆 and 𝑈 are depicted by Fig. 4, and partial results are
reported in Table 3. As in the single depot case, consider the base case
(𝑛, 𝑆) = (150, 60) which has the least number of orders and the most
flexible delivery due times. Note that doubling 𝑛 while preserving 𝑆
results in an average 15.6% larger 𝑚∗, whereas only decreasing 𝑆 to
45 min leads to a substantial increase of 60.4% in the required fleet
size. Again, the ability to build larger bundles with larger values of 𝑆
is critical to keeping fleet sizes from growing too large.

Taking a closer look at the level of separation between depots, we
observe that increasing 𝑈 from 60 to 90 requires an 18% larger average
fleet size. This difference is explained by the potential benefit for
sharing couriers in the fleet between depots and this benefit diminishes
when the time required to transfer from one depot to another (after
serving a final customer) grows large when compared to the time
required to return to the original depot. Table 3 summarizes specific

minimum fleet sizes for some representative values of 𝑛 and 𝑆, and can w

8 
Table 3
Average 𝑚∗ for two depots.
(𝑛, 𝑆) 𝑈 = 60 𝑈 = 90 Average

(150, 45) 5.84 6.70 6.27
(300, 45) 7.32 8.56 7.94
(150, 60) 3.60 4.22 3.91
(300, 60) 4.00 5.04 4.52

Average 5.19 6.13

be compared directly to the results in Table 4 that compute minimum
fleet sizes when dedicated fleets are used at each depot. Our findings
from this comparison show that without fleet sharing, the system would
require a 21% larger number of couriers compared to the shared fleet
size for 𝑈 = 60. On the other hand, for a larger separation of 𝑈 = 90
he benefit from fleet sharing is only 2.4%.

In terms of bundling, the average bundle size and its relationship
ith 𝑛, 𝑆 and 𝑈 are presented in Fig. 5. As previously mentioned, we
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Fig. 4. Average 𝑚∗ for two depots.
Fig. 5. Average bundle size for two depots.
Table 4
Average 𝑚∗ for two depots (without fleet sharing).
(𝑛, 𝑆) Average 𝑚∗

(150, 45) 6.77
(300, 45) 8.77
(150, 60) 4.25
(300, 60) 5.33

Average 6.28

observe that the average bundle size follows a similar pattern with
respect to 𝑛 and 𝑆 as the one observed for a single depot. We also
ee that the average bundle size is slightly larger comparatively for the
= 60 instances versus the 𝑈 = 90 instances and this is consistent

with the smaller fleet sizes required for the former. Finally, it should
also be noted that the bundle sizes in these two depot instances are
roughly twice the size of those for single depot instances. This is due
to the fact that the same number of total orders are distributed over
two line segments (one from depot 1 and the other from depot 2) in
these instances and distributed over four line segments in the single
depot instances, so the order density per time is effectively doubled.

It is also interesting to analyze how often couriers cross the line
segment from one depot to the other in these two-depot instances. To
do so, we solve a second integer program for each instance that, for
a given optimal fleet size 𝑚∗, computes the minimum number of courier
rosses, i.e., the minimum number of times that couriers are instructed
o traverse from one depot to the other in order to serve all the orders
easibly. Let ∗ be the set of arcs that traverse from a non-depot node
o a depot node such that both nodes are associated with different depot
ub-networks, and let 𝑚∗ be the optimal fleet size obtained from solving
roblem 7. Then the integer program is formulated as follows:

min
∑

𝑧𝑝𝑞 (9a)

(𝑝,𝑞)∈∗

9 
Table 5
Percentage of instances whose optimal number of crossings is strictly positive.
(𝑛, 𝑆) 𝑈 = 60 𝑈 = 90

(150, 45) 84% 28%
(150, 60) 62% 4%
(300, 45) 96% 28%
(300, 60) 90% 22%

s.t. (6b), (5c), (5f)–(5h)
∑

𝑞∈𝛿+(0,0,1)

𝑧(0,0,1),𝑞 = 𝑚∗ (9b)

∑

𝑝∈𝛿−(𝑇 ,0,1)

𝑧𝑝,(𝑇 ,0,1) = 𝑚∗ (9c)

Objective (9a) minimizes the number of times couriers traverse from
one depot to the other. In addition, we replace the decision variable 𝑚
by the optimal fleet size 𝑚∗ in constraints (9b) and (9c).

Due to the optimality of 𝑚∗, a key property of this auxiliary integer
program is that it yields an optimal value of 0 crosses if and only if
solving the two-depot instance with fleet sharing does not give any
savings in the number of couriers with respect to employing individual
fleets. Therefore, a strictly positive number of crosses reveals potential
benefits from allowing a shared fleet for both depots. Table 5 shows
the percentage of solved instances for which fleet sharing results in
strictly fewer couriers than using dedicated courier fleets for each of the
depots. Almost all instances yield a strictly positive minimum number
of crossings for 𝑈 = 60, but when 𝑈 = 90 the benefit is much more
limited.

In order to control for the possible impact of the fleet size 𝑚∗ on the
optimal number of crosses, consider the ratio between the number of

∗
crosses and 𝑚 , which we denote by 𝛾 and depict in Fig. 6. The effect of
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Fig. 6. Average 𝛾 for different instance settings.
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Table 6
Parameter values used for lateness experiments.

Setting 𝑛 𝑆 𝑠

Single depot {75, 150} {60} {45, 50, 55}
Two depots {150, 300} {60} {45, 50, 55}

the level of separation 𝑈 on 𝛾 is evident: the operation exploits the short
nter-depot traveling times when 𝑈 = 60 by dynamically reallocating
ouriers between depots. On the other hand, the larger value 𝑈 = 90

leads to inter-depot traveling that is too time consuming to be effective,
and therefore the number of crosses per courier is usually below one in
ten.

Interestingly, when 𝑈 = 60 we observe that in general, 𝛾 is non-
ecreasing in both 𝑆 and 𝑛, with the exception of the case 𝑆 = 60.

In particular, we observe a significant decrease in 𝛾 when orders are
ncreased from 150 to 200 which also corresponds to a significant
ncrease in the minimum fleet size 𝑚∗. As 𝑛 is further increased, the
leet size does not increase and more orders are handled by the same
umber of couriers, many of which execute crosses from one depot to
he other. Hence, more crosses-per-courier are observed.

.2. Analysis of lateness via target delivery time

Now we report findings from solving problems that minimize the
umber of late orders. The results in this section demonstrate the
enefit of introducing a target due time 𝛿𝑗 = 𝑟𝑗 +𝑠 as a simple approach
or balancing the flexibility of the system between setting too large
nd too restrictive due times 𝛥𝑗 = 𝑟𝑗 + 𝑆. We empirically show that
ombining a restrictive target service level 𝑠 with a flexible service
evel 𝑆 can be effective, leading to solutions with very few late orders
hat use significantly fewer couriers than more restrictive settings with
ighter values of 𝑆. The experiments considered in this section were
onducted using the parameter values listed in Table 6. Note that
he selected value of 𝑆 used in this section corresponds to its most
lexible value in Section 4.1, whereas the range of values of 𝑠 begins

with the most restrictive value. For each combination of parameters
(𝑛, 𝑆, 𝑠, 𝑈 ) we randomly generate 50 stream of orders and compute the
minimum fraction of orders delivered after their target due time 𝛿𝑗 for
ifferent number of available couriers 𝑚. To preserve feasibility, we
nly consider fleet sizes no less than the minimum number of couriers
equired to serve all orders by their due time 𝛥𝑗 .

.2.1. Single depot case
The results for this section are presented in Fig. 7. We observe that

he delivery location proximity to the depot has a considerable effect on
he fleet size required to maintain a given level of lateness. Indeed, for

ome values of (𝑛, 𝑆, 𝑠), maintaining a given percentage of late orders r

10 
equires a fleet size that can be over 100% larger for the uniformly-
istributed locations case when compared to the triangular distribution
ocations.

As expected, our findings show that the most critical factor for
etermining the fraction of late orders is 𝑠. A small enough value of
his parameter strongly restricts the flexibility of the system, leading to
substantial increase in the fraction of late orders for smaller fleet sizes.
his is caused since lower values of 𝑠 restrict the bundling opportunities
or orders to be delivered before the target delivery time.

Lastly, we compare the setting that considers both target and hard
ue times 𝛿𝑗 and 𝛥𝑗 against the case that only includes due times
𝑗 . Note that only considering a hard due time corresponds to the
articular scenario of having a target due time that satisfies 𝑠 = 𝑆.
o illustrate the benefits from having a target due time, consider the

nstances with 𝑛 = 150 orders where delivery locations follow a uniform
istribution. Note that if 𝑆 = 𝑠 = 45 min, then on average about
= 16 couriers are needed to achieve on-time service. However, if

he maximum delivery time 𝑆 is relaxed to 60 min while maintaining
= 45, a 33% smaller courier fleet still manages to serve all 150 orders
ith only 5% of them delivered late (after 𝛿𝑗). Of course, even fewer

ouriers would be required by setting 𝑆 = 𝑠 = 60 min but the average
ime to delivery of the orders would increase.

.2.2. Two-depot case
The effects from 𝑠 and 𝑛 on the fraction of late orders in instances

ith two depots are similar to those observed for a single depot and
re shown in Fig. 8. We see that varying 𝑈 has a significant effect on
he number of late orders. For small fleet sizes for which flexibility is
imited, increasing 𝑈 from 60 to 90 can on average scale up the fraction
f late orders by a factor of 2.

Additionally, we again observe some advantages from considering
oth a target delivery time and a hard due time. As shown in Fig. 8 for
= 300 orders and a time between depots of 𝑈 = 60, the simple case
= 𝑠 = 45 results in a conservative solution that requires a total of
= 8 couriers in order to achieve full service with no late orders on

verage. Alternatively, relaxing 𝑆 to 60 min while keeping 𝑠 = 45 offers
reasonably more flexible solution that is able to serve all orders with

n approximately 30% smaller fleet with only 2.5% of orders served
ate. Similar results can be observed for the remaining (𝑛, 𝑈 ) pairs: a
ubstantial reduction of 33% of the fleet that serves all orders without
ateness results in a mild increase of late orders of less than 5%.

.3. Demand management via service radius adjustments

In this section we study order demand management using our model-
ng framework. Specifically, we consider demand management strate-
ies that are driven by a selected service radius from the depot (from
hich the order is placed). Radius-based strategies are simple: once a
adius length 𝜌 is selected, deliveries must be made to any order placed
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Fig. 7. Average fraction of late orders for a single depot.
Fig. 8. Average fraction of late orders for two depots.
y a customer with a delivery location 𝜏 within the disk around the
depot with radius 𝜌; in our simple geometric settings, this corresponds
o 𝜏 ≤ 𝜌. We will compare the performance of demand management
11 
strategies when the service radius is selected and fixed in advance to
those where the radius may change during the operating day using
Problems 5 and 9.
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Fig. 9. Fraction of served orders with 𝑛 = 150 for a single depot.
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Table 7
Parameter values used for demand management experiments.

Setting 𝑛 𝑆 𝑅𝑑

Single depot {75, 150} {45, 60} {1, 2, 5,∞}
Two depots {75, 150} {45, 60} {1, 2, 5,∞}

Table 8
Times at which the service radius may change.
𝑅𝑑 1 2 5 ∞

{𝑡𝑑𝑙 }
𝑅𝑑
𝑙=1 {0} {0, 300} {0, 100, 200, 400, 500} {𝑟𝑑𝑗 }𝑗∈𝑁𝑑

Tables 7 and 8 summarize the parameters used in this section,
here 𝑅𝑑 measures the number of times the service radius is adjusted

during the operating day. The case 𝑅𝑑 = 1 is referred to as the base
case and consists of simply setting a unique radius beginning at time
𝑡 = 0. On the other hand, the case 𝑅𝑑 = ∞ is referred to as the
selective-service case and, since the radius can change at every order
ready time, is equivalent to the settings of Problems 1 and 6 where
the operator selectively chooses to either accept or reject each order;
while this case is unrealistic in practice, it provides an upper bound on
system performance. To measure the effectiveness of radius-based de-
mand management, we experiment with 50 randomly-generated order
streams and focus primarily on the fraction of the 𝑛 orders served as a
function of the amount of available resources.

4.3.1. Single depot case
Fig. 9 shows the fraction of served orders in optimal solutions to

Problem 5 for different values of 𝑅 when 𝑛 = 150; the subfigures
rovide results for different combinations of 𝑆 and the travel time
istribution. Problems were solved for fleet sizes 𝑚 from one to the
inimum fleet size required to serve all orders in all instances.
12 
Although increasing 𝑅 results in more flexibility for the operator to
ecide when and where to accept orders, the value of this flexibility
epends on the available fleet size. In general, the results indicate that
he largest benefit of increasing 𝑅 occurs for instances with fleets of
edium size (not too small and not too large). In such cases, increasing
from 𝑅 = 1 to 𝑅 = 2 can on average close approximately 30% of

the gap to the upper bound; increasing to 𝑅 = 5 closes the gap by
approximately 50%. Systems with larger fleets intuitively benefit less
from increased values of 𝑅. However, we also see that the smallest
fleets that can only serve a small fraction of the orders do not benefit
substantially from small increases in 𝑅; larger jumps in the fraction of
orders served only occur when individual orders can be accepted or
rejected (as in the 𝑅 = ∞ case).

The results also help us understand the potential fleet size savings
that can be achieved when the objective is to serve some fixed fraction
of potential orders as 𝑅 is increased. For example, when 𝑛 = 150,
𝑆 = 45, and the order location distribution is uniform, 21 couriers
are required to serve all orders. However, using a radius-based demand
management scheme with 𝑅 = 1 leads to a fleet size requirement of 14
couriers to serve 95% of all orders. This fleet can be reduced again to
13 couriers when 𝑅 = 2. Table 9 summarizes the results for a large
set of scenarios and show that significantly smaller fleets can lead to
reasonable order coverage fractions. We also see that it is typical when
we require 80% or 95% demand coverage that when 𝑅 = 5, the number
of couriers required is often either the same or just one more than the
fleet required in the selective-service 𝑅 = ∞ case.

Lastly, we observe that 𝑆 and the distribution of 𝜏𝑗 lead to large
variations in the fleet size required to achieve a certain demand cover-
age fraction. In particular, decreasing 𝑆 from 60 to 45 min may result in
an average increase in the fleet size ranging between 30% and 60% to
maintain a fixed level of service, while changes in the delivery location
distribution from 𝑇 𝑟𝑖𝑎(1, 1, 45) to 𝑈𝑛𝑖𝑓 (1, 45) may require even doubling
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Table 9
Minimum fleet size 𝑚 needed to serve 80%, 95%, and 100% of all orders on average, for a single depot.
Average order 𝜏𝑗 ∼ 𝑈𝑛𝑖𝑓 (1, 45) 𝜏𝑗 ∼ 𝑇 𝑟𝑖𝑎(1, 1, 45)

coverage 𝑛 = 75 𝑛 = 150 𝑛 = 75 𝑛 = 150

𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60

80%

𝑅 = 1 7 5 9 6 4 3 5 3
𝑅 = 2 6 4 8 6 3 3 4 3
𝑅 = 5 5 4 8 5 3 3 4 3
𝑅 = ∞ 5 3 6 4 3 2 3 3

95%

𝑅 = 1 10 7 14 8 5 4 7 5
𝑅 = 2 9 6 13 8 5 4 7 5
𝑅 = 5 9 6 13 8 5 4 7 5
𝑅 = ∞ 8 5 11 7 4 3 6 4

100%

𝑅 = 1 16 9 21 11 8 5 10 7
𝑅 = 2 16 9 21 11 8 5 10 7
𝑅 = 5 16 9 21 11 8 5 10 7
𝑅 = ∞ 16 9 21 11 8 5 10 7
i
f
a
a
l

n
𝑅
l
c
[

a
s

the courier fleet. Interestingly, we observe that in order to increase the
average coverage from 95% to 100%, it might be necessary an increase
of the fleet size ranging between 20% to nearly 100%.

4.3.2. Two-depot case
When solving instances with two depots, we found that our pro-

posed formulation has difficulties solving a large number of replications
in reasonable times for relatively larger values of 𝑛, thus we limit the
results in this section to order volumes of 𝑛 ∈ {75, 150}.

For the tested instances with two depots, the results obtained in
erms of the maximum fraction of served orders are similar to the
nes from the single depot setting. The greatest benefit is obtained
or medium-sized fleets of couriers, as shown in Fig. 10. For almost
very tested fleet size 𝑚 and values of 𝑛, 𝑆 and 𝑈 , we observe that
ncreasing the number of radii changes 𝑅𝑑 from one to five results
n narrowing the performance gap to the upper bound by more than
0%; this is illustrated, for example, by the instances with 𝑚 ∈ {2, 3}
hen 𝑈 = 90, where flexibility is most limited. For the largest values of
, performance improvement from increasing 𝑅𝑑 is no longer possible

ince almost every order can be served when 𝑅𝑑 = 1.
For the results on the fleet sizes required to achieve certain mini-

um order coverage fractions, we observe that in most cases reducing
he fleet size is not possible in this scenario. Indeed, for a coverage
equirement of 80% of orders, in almost every scenario the number of
ouriers needed in the base case coincides with the one from the upper
ound, as reported in Table 10. In this case, the flexibility provided
y sharing couriers between depots is enough to allow either 3 or 2
ouriers to cover the required fraction of orders for almost any value
f 𝑅. When the coverage requirement is increased to 95%, however, the
ystem becomes less flexible, and for a few cases it becomes possible
o reduce the required fleet size by slightly increasing 𝑅, as shown in
able 10. Like for a single depot, achieving 100% of order coverage
ay require a considerable increase in the number of couriers with

espect to the ones required for 95% coverage, in some cases even
oubling the fleet size.

.3.3. Analysis of service radius
We further analyze the behavior of the optimal service radius values

btained when solving the radius management problems, taking as ref-
rence the single depot setting described in Section 3.1.4. Specifically,
e aim to understand: (i) how the optimal radii change as we increase

he number of allowed radius adjustments 𝑅, (ii) the extent to which
he radius selection rule limits the coverage of the operating space,
nd (iii) the characteristics of the optimal radius function over time,
articularly regarding any potential monotonicity patterns.

Fig. 11 shows the evolution of the service radius for different
alues of 𝑅, for two instances: Instance 1 (Fig. 11(a)) and Instance 2
Fig. 11(b)). Both instances comprise a 4-star network topology and

courier fleet of size 𝑚 = 8. The radius change times for 𝑅 ≤ 2
13 
align with those in the manuscript. For 𝑅 = 4, we set the change
times to {𝑡𝓁}4𝓁=1 = {0, 150, 300, 450}, ensuring that the set of change
times used for greater values of 𝑅 contains those used for lower values.
Additionally, we set the number of orders to 𝑛 = 100 and the service
level to 𝑆 = 45.

Tables 11 and 12 present the number of orders served in Instances 1
and 2 during specific time windows for each possible value of 𝑅. As 𝑅
ncreases, the fleet’s ability to serve orders improves due to the added
lexibility of adjusting the radius at more time points. Specifically, with

higher 𝑅, the fleet can adapt its service radius more frequently,
llowing it to capture orders that lie beyond the optimal radius for
ower 𝑅 values.

For Instance 1, increasing 𝑅 leads to a notable increase in the
umber of served orders during [0, 150), [300, 450), and [450, 600). With
= 1, the rigidity of a single radius for the entire operating period

imits the number of completed orders. However, with 𝑅 = 2, the fleet
an serve more orders during [300, 600) by decoupling the radii during
0, 300) and [300, 600). Similarly, with 𝑅 = 4, adjusting the radius at
𝑡 = 150 allows the fleet to further increase the radius during [0, 150)
nd serve additional orders while maintaining the number of orders
erved in [150, 300).

It is important to note that the reported optimal radius during
specific time windows may differ for different values of 𝑅. For example,
in Fig. 11(a), the optimal radius during [150, 300) for 𝑅 = 4 is 35,
while for 𝑅 = 1 it is 36. This discrepancy arises from how we calculate
the optimal radius, considering the furthest delivered order during the
corresponding window. Since for 𝑅 = 1 the service radius corresponds
to the full period [0, 600), which contains [150, 300), the reported radius
is higher during the smaller window [150, 300), but this just implies that
the furthest order served during [150, 300) is delivered within – and not
necessarily at – a distance of 36 from the depot (in particular, for both
cases 𝑅 = 1 and 𝑅 = 4, the number of served orders and the furthest
delivery location visited during [150, 300) are the same: 11 orders and at
a distance of 35 from the depot, respectively). This is the same reason
why the radius for [450, 600) when 𝑅 = 4 is reported as shorter than
when 𝑅 = 2, despite in both cases the number of orders served being
29, and the furthest visited delivery location being at a distance of 40
from the depot.

In Instance 2, a similar trend is observed during the first half
[0, 300). However, during [300, 600), increasing 𝑅 from 2 to 4 results in
a decrease in both radius and served orders during [300, 450), followed
by an increase in both during [450, 600). This strategic adjustment of
the service radius allows the fleet to optimize its coverage and serve
more orders overall.

Regarding the restrictiveness of the radius selection rule, Tables 13,
14, and 15 report the average fraction (across 20 different instances)
of the operating space 𝑈 covered by the optimal service radius, for
different fleet sizes and values of 𝑅. In every instance, the reported
service radius for a given window corresponds to the furthest delivery
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Fig. 10. Fraction of served orders with 𝑛 = 150 for two depots.
Table 10
Minimum fleet size 𝑚 needed to serve 80%, 95%, and 100% of orders on average, for two depots.
Average order 𝑈 = 60 𝑈 = 90

coverage 𝑛 = 75 𝑛 = 150 𝑛 = 75 𝑛 = 150

𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60 𝑆 = 45 𝑆 = 60

80%

𝑅 = 1 3 2 3 2 3 2 3 3
𝑅 = 2 3 2 3 2 3 2 3 2
𝑅 = 5 3 2 3 2 3 2 3 2
𝑅 = ∞ 2 2 3 2 2 2 3 2

95%

𝑅 = 1 4 3 5 3 4 3 5 4
𝑅 = 2 4 3 5 3 4 3 5 4
𝑅 = 5 4 3 4 3 4 3 5 3
𝑅 = ∞ 4 3 4 3 4 3 4 3

100%

𝑅 = 1 7 4 7 4 8 5 9 5
𝑅 = 2 7 4 7 4 8 5 9 5
𝑅 = 5 7 4 7 4 8 5 9 5
𝑅 = ∞ 7 4 7 4 8 5 9 5
Fig. 11. Evolution of service radius for different values of 𝑅, single depot, 𝑚 = 8.
14 
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Table 11
Instance 1: Orders served by time window.
𝑅 Time window Total

[0, 150) [150, 300) [300, 450) [450, 600)

1 16 11 26 26 79
2 16 11 29 29 85
4 19 11 29 29 88

Table 12
Instance 2: Orders served by time window.
𝑅 Time window Total

[0, 150) [150, 300) [300, 450) [450, 600)

1 10 12 27 32 81
2 11 15 27 32 85
4 11 15 25 36 87

Table 13
Average fraction of space of operations 𝑈 covered by optimal radius, single depot,
𝑅 = 1.
𝑚 Time window

[0, 150) [150, 300) [300, 450) (450, 600]

1 26.2% 26.2% 26.2% 26.2%
2 40.2% 40.2% 40.2% 40.2%
3 49.4% 49.4% 49.4% 49.4%
4 59.0% 59.0% 59.0% 59.0%
5 68.1% 68.1% 68.1% 68.1%
6 74.6% 74.6% 74.6% 74.6%
7 80.0% 80.0% 80.0% 80.0%
8 83.5% 83.5% 83.5% 83.5%
9 88.1% 88.1% 88.1% 88.1%
10 94.6% 94.6% 94.6% 94.6%
11 96.3% 96.3% 96.3% 96.3%
12 98.8% 98.8% 98.8% 98.8%
13 99.5% 99.5% 99.5% 99.5%
14 99.8% 99.8% 99.8% 99.8%
15 100.0% 100.0% 100.0% 100.0%

location of the orders served within that window; furthermore, if all
orders within that window are served, then the optimal radius is
reported as the length of the operating space, 𝑈 .

Our analysis shows that while increasing the fleet size leads to
diminishing coverage gains across all values of 𝑅, the flexibility intro-
duced by higher 𝑅 values allows the same fleet sizes to cover a greater
fraction of the territory. For instance, with 𝑅 = 1, a fleet of 7 couriers
can cover an average of 80% of the territory, whereas 15 couriers are
required to achieve full coverage across all instances. For higher values
of 𝑅, 15 couriers also suffice to cover all orders, but with the added
advantage of fleet sizes covering a larger fraction of the territory, due
to more frequent radius adjustments (e.g., 5 to 6 couriers can cover
80% of the territory for 𝑅 ≥ 2).

Finally, analyzing the plots in Fig. 11, we do not observe a clear
monotonic pattern in the optimal radius function over time. This is ex-
pected in meal delivery settings, where demand exhibits a multi-modal
behavior concentrated around meal times (e.g., lunch and dinner).
The radius trajectories seem to follow the demand patterns, decreasing
during peak periods to prioritize service in higher-density areas, and
expanding during periods of lower demand to increase the coverage
area.

More specifically, for a given instance with one depot, 𝑅 > 1 and
𝑚 ≥ 1 couriers, a set of sufficient conditions for observing a monotonic
𝜌(𝑡) over time would be (i) for each 𝓁 ∈ [1, 𝑅], the 𝑚 couriers can serve
all orders placed during [𝑡𝓁 , 𝑡𝓁+1) (denoted by the set of orders 𝐵𝓁),
and (ii) 𝜏𝐵𝓁

≐ max𝑗∈𝐵𝓁
𝜏𝑗 is monotonic in 𝓁. By definition of optimal

radii, (i) implies 𝜌(𝑡) = 𝜌∗𝓁 = 𝜏𝐵𝓁
for all 𝑡 ∈ [𝑡𝓁 , 𝑡𝓁+1), which would be

monotonic due to (ii). More generally, 𝜌(𝑡) is monotonic if and only if all
the instance’s parameters result in the 𝑚 couriers achieving a sequence
of maximum service radii values over the 𝑅 periods that is monotonic
15 
Table 14
Average fraction of space of operations 𝑈 covered by optimal radius, single depot,
𝑅 = 2.
𝑚 Time window

[0, 150) [150, 300) [300, 450) (450, 600]

1 34.6% 34.6% 25.4% 25.4%
2 50.4% 50.4% 40.0% 40.0%
3 62.5% 62.5% 48.9% 48.9%
4 74.1% 74.1% 59.0% 59.0%
5 82.7% 82.7% 67.2% 67.2%
6 89.6% 89.6% 75.8% 75.8%
7 91.9% 91.9% 81.0% 81.0%
8 94.3% 94.3% 84.7% 84.7%
9 96.3% 96.3% 89.4% 89.4%
10 97.8% 97.8% 94.6% 94.6%
11 98.0% 98.0% 96.3% 96.3%
12 99.3% 99.3% 98.8% 98.8%
13 99.3% 99.3% 99.5% 99.5%
14 99.3% 99.3% 99.8% 99.8%
15 100.0% 100.0% 100.0% 100.0%

Table 15
Average fraction of space of operations 𝑈 covered by optimal radius, single depot,
𝑅 = 4.
𝑚 Time window

[0, 150) [150, 300) [300, 450) (450, 600]

1 32.3% 33.3% 26.7% 24.2%
2 54.1% 55.8% 39.0% 44.4%
3 63.5% 68.9% 52.8% 51.6%
4 75.1% 77.3% 62.2% 59.3%
5 81.5% 82.7% 68.6% 69.1%
6 87.7% 90.1% 77.3% 76.3%
7 92.8% 88.9% 84.9% 81.7%
8 94.6% 90.9% 84.9% 89.4%
9 95.1% 92.6% 88.4% 91.9%
10 95.6% 94.3% 94.1% 93.8%
11 95.8% 96.0% 97.0% 96.0%
12 98.0% 99.3% 99.8% 97.8%
13 98.0% 99.3% 99.5% 99.8%
14 98.5% 99.3% 99.8% 99.8%
15 100.0% 100.0% 100.0% 100.0%

in 𝓁 ∈ {1,… , 𝑅}. This can be complex to achieve as it depends on
the capacity of the fleet to complete the delivery of orders and how
it evolves over the 𝑅 periods, which in turn specifically depends on
the fleet size 𝑚, the order maximum service time 𝑆, how spread apart
the order placement times 𝑟𝑗 are (closer orders facilitate bundling), the
delivery locations 𝜏𝑗 , and the radii change times {𝑡𝓁}𝑅𝓁=1. Furthermore,
onsidering multiple depots would make the task even more difficult,
s in such a case, monotonicity of 𝜌(𝑡) would also depend on how
ouriers can be efficiently shared between depots (e.g., given by the
epot separation distance 𝑈).

.3.4. Computing and evaluating a priori service radii
In this section, we propose and evaluate a simple data-driven ap-

roach to determine suitable service radii a priori, given a predicted
rder arrival pattern over the operating period. The goal is to find
adius values that can be fixed for different fleet sizes and time win-
ows, without having to solve optimization models in real-time as
rders arrive. This approach involves two phases: a training phase
here we compute optimal radii for a set of sample order placement

ealizations (i.e., scenarios), and a testing phase where the trained
adii are evaluated on a different set of scenarios under additional
onstraints that enforce the pre-computed radius values. We analyze
actors such as the fleet size 𝑚 and the number of allowed radius
hanges 𝑅.

Let 𝛺 be a set of order placement scenario. Given 𝜔 ∈ 𝛺, a set of
𝑅
radius change times {𝑡𝓁}𝓁=1, 𝑅 ≥ 1, and fleet size 𝑚, we solve Model
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Table 16
Times at which the service radius may be changed.
𝑅 1 2 4

{𝑡𝓁}𝑅𝓁=1 {0} {0, 300} {0, 150, 300, 450}

(1) with radius management constraints (4) to obtain scenario-specific
service radii 𝜌𝜔∗𝑚,𝓁 . Then, we compute the trained radii as

𝜌̂𝑚,𝓁 = 1
|𝛺|

∑

𝜔∈𝛺
𝜌𝜔∗𝑚,𝓁 ∀𝑚, ∀𝑅, ∀𝓁 ∈ {1,… , 𝑅}, (10)

amely, as the average radii across scenarios for each 𝑚, 𝑅, and time
indow [𝑡𝓁 , 𝑡𝓁+1).

Each 𝜌̂𝑚,𝓁 is then evaluated by running the following extension of
he radius management model over a set of order placement scenarios
′ (with 𝛺 ∩𝛺′ = ∅). In particular, for a specific test scenario 𝜔 ∈ 𝛺′,

leet size 𝑚, and number of radius changes 𝑅, we run Model (1) with
he set of additional constraints

𝑗,𝑝 = 0, ∀𝓁 ∈ {1,… , 𝑅}, ∀𝑗 ∈ 𝐵𝓁 if 𝜏𝑗 > 𝜌̂𝑚,𝓁 , ∀𝑝 ∈ 𝑗

ntuitively, these constraints dictate that all orders whose delivery lo-
ations are outside the optimal service radii at their placement (ready)
imes are excluded; this represents the situation where an order is not
laced due to the service radius not covering its delivery location.

Note that this test model guarantees that each test instance can be
easibly solved for each fleet size and corresponding optimal radii as
t does not impose that all orders within the radius must be served
although it is expected that for a given fleet size 𝑚, all or most of
he orders within the corresponding optimal service radii are served on
ime). Consequently, we analyze the fraction of orders served out of the
otal 𝑛, the fraction of orders that cannot be placed due to lying outside
he service radius (out-of-range orders). We also analyze the fraction of
rders within the radius that are not served.

We conduct experiments for instances with 𝑛 = 100 orders, a
ommon order maximum service time 𝑆 = 45 min, assuming the
ravel time from the depot to orders’ delivery locations are uniformly
istributed. We consider all the configurations of fleet sizes 𝑚 ∈

{1, 2,… , 20}, and service radius change times in Table 16. For each
of these configurations, we compute 𝜌̂𝑚,𝓁 based on |𝛺| = 30 scenarios
and then evaluate them over |𝛺′

| = 100 test scenarios. Figs. 12(a),
12(b), and 12(c) respectively report average percentages (across all test
instances) of served, out-of-range, and within-range unfulfilled orders
for each fleet size 𝑚.

We observe that for each fleet size 𝑚, as 𝑅 increases the system
improves its service coverage: more orders are served while fewer are
left out of range. The benefit of allowing 𝑅 = 2 radius changes is
significant and is in most cases comparable to the case 𝑅 = 4. For
𝑚 ≤ 4, increasing 𝑅 from 1 to 2 signifies an average increase of
8.8% in the number of served orders, and increasing 𝑅 from 1 to
4 yields a corresponding average increase of 11.4%. By contrast, for
moderate fleet sizes, i.e., 𝑚 ∈ {5,… , 11}, increasing 𝑅 to 2 allows to
serve 4.3% more orders, and for 𝑅 = 4, such increment is of 4.9%.
For larger fleet sizes, i.e., 𝑚 ≥ 12, the benefits from increasing 𝑅
vanish, due to the already high flexibility provided by the large amount
of couriers. For 𝑚 ≥ 15, virtually all orders are served in all tested
instances. Furthermore, we observe a reduction of out-of-range orders
when increasing 𝑅, for small and moderate fleet sizes; on average,
increasing 𝑅 from 1 to 2 yields a 16.6% decrease, while increasing 𝑅
from 1 to 4 reduces it by 19.3%.

Interestingly, for all fleet sizes 𝑚, the average fraction of within-
range unfulfilled orders falls below 1%, which overall shows that the
optimal radii obtained via the training model results in effectively

serving all the effectively placed orders in almost every test instances.

16 
5. Conclusion and future work

In this paper we have introduced several integer programs built
from time-expanded networks to represent different operational situ-
ations in food delivery logistics. The results obtained when solving
these optimization problems provide valuable insights on the effect
of different parameters on operational performance metrics, namely
customer distributions, target delivery time, order volume and fleet
size. In particular, this research seeks to answer basic questions about
how to optimize the delivery resources in response to different demand
patterns and service level requirements and to explore the effectiveness
of optimizing the coverage of orders around a depot given a limited
delivery capacity as a demand management mechanism. The flexibility
of these formulations can easily be adapted to study further trade-offs.
We show through computational experiments the interactions between
the analyzed metrics for cases with a single and two depots.

We have presented simplified instances and network construction
algorithms by assuming special geometries to avoid the complexity of
routing in a general network. Using these simplifications, we are able
to measure the benefits of fleet sizing and demand management in meal
delivery settings as this allows us to optimally solve the considered
problems for a wide variety of instances. Despite this, a natural line of
further research is to adapt our framework to general networks that are
more representative of urban settings. As this case not only considers
dispatch but also routing decisions, we anticipate that the complexity
of the corresponding time-expanded network will make computation
prohibitively expensive. Under such circumstances, exploring the use
of refinement algorithms like column generation and branch-and-price
may provide reasonable research directions for the perfect information
case, and adaptive approaches using different dispatch technologies
when information is partially revealed over time.

Other interesting extensions of our problems include (i) the study
of fleet sizing and demand management in settings involving multiple
depots with a shared set of couriers, to analyze how these features
scale when more complex settings are considered; and (ii) the study
of product substitution and the benefit of being able to select the
depot which an order should be picked up from, possibly increasing
the efficiency of the delivery process.
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Fig. 12. Evaluation of a priori service radii for different values of 𝑅 and 𝑚.
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Appendix A. Proofs

Proof of Proposition 1. If |𝐽 | = 1 the claim trivially follows and
therefore we assume |𝐽 | ≥ 2. Initially, let 𝐽 = 𝐽1 ∪ 𝐽2, 𝐽1, 𝐽2 ≠ ∅
and 𝐽1 ∩ 𝐽2 = ∅. Without loss of generality we can assume that 𝜏𝐽1 ≥
𝜏𝐽2 . Consider then a feasible schedule 𝑆1 to Problem 1 that at time 𝑡
dispatches two couriers 𝑐1 and 𝑐2 with order sets 𝐽1 and 𝐽2, respectively.
Note that 𝑐1 is unavailable for picking up other ready orders during time
points 𝐼1 = {𝑡, 𝑡+1,… , 𝑡+2𝜏𝐽1}, whereas 𝑐2 will be unavailable to serve
ny new orders from 𝑡 to 𝑡 + 2𝜏𝐽2 .

Alternatively, consider a schedule 𝑆2 that bundles 𝐽 into a single
ispatch for courier 𝑐1 at time 𝑡 (which is possible since couriers do not
ave a fixed capacity). Since by definition 𝜏𝐽 = 𝜏𝐽1 , dispatching 𝑐1 also
erves all |𝐽 | orders during 𝐼1 while courier 𝑐2 remains at the depot
eginning at time 𝑡, which is earlier than the return time 𝑡+2𝜏𝐽2 in the

above schedule. Thus, schedule 𝑆2 dominates 𝑆1. □

Proof of Lemma 2. Let 𝑡′ ∈ (𝑡, 𝑟𝑗+1), and consider schedule 𝑆(𝑡′) that
dispatches a courier at time 𝑡′ with orders set 𝐴(𝑡′). From 𝑡 ∈ [𝑟𝑗 , 𝑡′)
it follows that 𝐴(𝑡′) ⊆ 𝐴(𝑡): indeed, no new orders are placed in (𝑡, 𝑡′]

′
although some of the orders in 𝐴(𝑡) might not be active by 𝑡 . Hence,

17 
schedule 𝑆(𝑡′) can always be improved by the one that moves the
dispatch at 𝑡′ to 𝑡, which is always possible by definition of 𝑡. □

Proof of Proposition 3. For 𝑗 ∈ 𝑁 , the possible times at which a
courier might become available at the depot during [𝑟𝑗 , 𝑟𝑗+1) are 𝑟𝑗 and
any returning time 𝑟𝑖 + 2

∑

𝑘∈𝐾 𝜏𝑘 ∈ (𝑟𝑗 , 𝑟𝑗+1) with 𝑖 < 𝑗 and 𝐾 ⊆ 𝑁
that results from a dispatch previous to 𝑟𝑗 , thus Lemma 2 implies that
an optimal schedule can be obtained by considering only such dispatch
times.

Moreover, denoting the set of all dispatches of interest as 0, the
only time points outside the depot to be considered are the potential
delivery times {𝑡 + 𝜏𝑖 ∶ 𝑡 ∈ 0, 𝑖 ∈ 𝐴(𝑡)}, at each of which a dispatched
ourier decides between traversing to a further delivery location or
eturning to the depot. □

roof of Proposition 4. For a fixed binary vector 𝑣 and 𝑚 ∈ Z+, a
feasible value of 𝑧 must satisfy the constraints:

𝑣𝑗𝑝 ≤
∑

𝑞∈𝛼−𝑝

𝑧𝑞𝑝, ∀𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑗 (11a)

∑

𝑧𝛼𝑞 = 𝑚 (11b)

𝑞∈𝛼+𝛼



R. Auad et al.

a
M
r
f
a
c

{
{
P

O

c
i
t
d
A
c
d
a
r
d
n
s

A
L

p

EURO Journal on Transportation and Logistics 13 (2024) 100135 
∑

𝑝∈𝛼−𝜔

𝑧𝑝𝜔 = 𝑚 (11c)

∑

𝑝∈𝛼−𝑞

𝑧𝑝𝑞 =
∑

𝑟∈𝛼+𝑞

𝑧𝑞𝑟, ∀𝑞 ∈  ⧵ {𝛼, 𝜔} (11d)

𝑧𝑝𝑞 ∈
{

R+ if 𝑝, 𝑞 ∈ 0,
{0, 1} otherwise ∀(𝑝, 𝑞) ∈  (11e)

By construction of the underlying time-expanded network, each non-
depot node 𝑝 has a unique arc 𝑎𝑝 ∈  inbound to 𝑝, thus the right
hand side of (11a) can be written as ∑

𝑞∈𝛼−(𝑝) 𝑧𝑞𝑝 = 𝑧𝑎𝑝 . Consequently,
Constraints (11a) and (11e) give lower and upper bounds on the flow
of each arc in the network: the flow of arcs (𝑞, 𝑝) with 𝑝 being a non-
depot node is bounded by [𝑣𝑗𝑝, 1]; for the remaining arcs, the capacity
of the ones whose tail is a non-depot node is 1; lastly, arcs between two
depot nodes have infinite capacity. Furthermore, Constraints (11b)–
(11d) correspond to flow conservation equations at every node of the
network. Therefore, for variables 𝑧 the above constraints a network
flow polyhedron with integer coefficients, and hence the optimal 𝑧 is
integral. □

Proof of Proposition 5. As Problem 5 is by definition the setting
of Problem 1 with service radius management, it suffices to show
that Constraint set (4) accurately models the service radius mechanics
described in the formulation of Problem 5 and allows to compute the
optimal service radii. Consider Algorithm 1, which partitions the set of
orders 𝑁 into the 𝑅 sorted lists {𝐵𝓁}𝑅𝓁=1. Note that Constraint set (4)
enforces that for each 𝓁 = 1,… , 𝑅, whenever order 𝐵𝓁,𝑖 is served, so
re all the orders 𝐵𝓁,𝑗 ,∀𝑗 < 𝑖, which is the definition of service radius.
oreover, this formulation allows us to compute the optimal service

adius for each radius shift without using explicit decision variables
or the service radii: let (𝑣∗, 𝑧∗) be the optimal solution to Problem 5,
nd for each 𝓁 ∈ {1,… , 𝑅}, let 𝜇𝓁 = max{𝑖 ∶

∑

𝑝 𝑣
∗
𝐵𝓁,𝑖 ,𝑝

= 1}, then by
onstruction of 𝐵𝓁 each optimal radius is calculated as 𝜌𝓁 = 𝜏𝐵𝓁,𝜇𝓁

. □

Proof of Proposition 6. Running Algorithm 1 for each depot 𝑑 ∈
1, 2} and replacing 𝜏𝑗 by 𝜏𝑑𝑗 ,∀𝑗 ∈ 𝑁𝑑 constructs the sorted lists
𝐵𝑑
𝓁}

𝑅𝑑
𝓁=1. Then the claim follows from applying the same argument for

roposition 5 to each depot. □

Algorithm 1 (R_Partition_Sort)

Input: 𝑁, {(𝑟𝑗 , 𝜏𝑗 )}𝑗∈𝑁 , {𝑡𝓁}𝑅𝓁=1
utput: Lists of orders 𝐵1,… , 𝐵𝑅, each sorted in ascending order of
𝜏𝑗 .

1: 𝐵𝓁 ← ∅, ∀𝓁 = 1,… , 𝑅
2: 𝑗 ← 1
3: for 𝓁 ∈ {1,… , 𝑅} do
4: while 𝑟𝑗 < 𝑡𝓁+1 do
5: 𝐵𝓁 ← 𝐵𝓁 ∪ {𝑗}
6: 𝑗 ← 𝑗 + 1
7: Sort elements of 𝐵𝓁 in ascending order of 𝜏𝑗

return {𝐵𝓁}𝑅𝓁=1

Appendix B. Construction of the time-expanded network for the
single depot setting

Algorithm 2 specifies how to produce the complete time-expanded
network for these optimization problems. The algorithm starts by defin-
ing in lines 1–3, depot nodes with order ready times 𝑟𝑗 , and initializes
the set of dispatch times 0 with ready times {𝑟𝑗}𝑗∈𝑁 . Then for each
dispatch time 𝑡 ∈ 0, the algorithm first finds the ready time 𝑟𝑗∗ that
immediately succeeds 𝑡 and creates a wait arc from depot node (𝑡, 0)
 e

18 
Table 17
Characterization of orders of numerical example.
𝑗 𝑟𝑗 𝜏𝑗 𝛥𝑗

1 0 2 3
2 1 1 4

to (𝑟𝑗∗, 0) (lines 5 and 6). If there exists active orders at 𝑡, then line 7
and 8 sort them in non-decreasing order in terms of the travel time
from the depot, and then lines 9–12 iterate over the sorted set of
active orders, sequentially creating the non-depot node at the time and
location at which each of the orders can be delivered with an inbound
arc, as well as a return node that originates from that delivery with
the corresponding returning arc; if such return node was not previously
defined in the network, then the corresponding depot time is added to
the set 0, as this constitutes a potentially new dispatch time. Once the
algorithm stops discovering new returning times, it returns the network
 = ( ,).

Algorithm 2 (Create_network)
Input: 𝑁, (𝑟𝑗 , 𝜏𝑗 , 𝛥𝑗 )𝑗∈𝑁 , 𝑇
Output: Directed network  = ( ,)
1:  ← {(𝑟𝑗 , 0)}𝑗∈𝑁
2:  ← ∅
3: 0 ← {𝑟𝑗}𝑗∈𝑁
4: for 𝑡 ∈ 0 do
5: Find lowest index 𝑗∗ ∈ 𝑁 ∪ {𝑛 + 1} s.t. 𝑡 < 𝑟𝑗∗ ⊳ 𝑟𝑛+1 ≡ 𝑇
6:  ←  ∪ {((𝑡, 0), (𝑟𝑗∗ , 0))}
7: Compute set of active orders 𝐴(𝑡) = {𝑗 ∈ 𝑁 ∶ 𝑡 ≥ 𝑟𝑗 , 𝑡+ 𝜏𝑗 ≤ 𝛥𝑗}
8: Sort {𝜏𝑗}𝑗∈𝐴(𝑡) in non-decreasing order, into {𝜏(𝑖)}

|𝐴(𝑡)|
𝑖=1

9: for 𝑖 = 1,… , |𝐴(𝑡)| do
10:  ←  ∪ {(𝑡 + 𝜏(𝑖), 𝜏(𝑖)), (𝑡 + 2𝜏(𝑖), 0)}
11:  ←  ∪ {((𝑡 + 𝜏(𝑖−1), 𝜏(𝑖−1)), (𝑡 + 𝜏(𝑖), 𝜏(𝑖))), ((𝑡 + 𝜏(𝑖), 𝜏(𝑖)), (𝑡 +

2𝜏(𝑖), 0))} ⊳ 𝜏(0) ≡ 0
12: 0 ← 0 ∪ {𝑡 + 2𝜏(𝑖)}

return  = ( ,)

A numerical example

For an example of the output of Algorithm 1, consider an instance
with 𝑇 = 6, 𝑆 = 3, and whose set of orders to be served 𝑁 = {1, 2} is
haracterized by Table 17. The resulting partial time-expanded network
s illustrated in Fig. 13. In the illustration, nodes that are filled and in
he horizontal axis correspond to depot nodes; otherwise they are non-
epot nodes, representing when and where orders can be delivered.
rcs inbound to a non-depot node that emerge from a depot node
orrespond to a dispatch; and arcs inbound to a depot node from a non-
epot node represent a return. Arcs between depot nodes represent the
ction of a courier waiting at the depot; arcs between non-depot nodes
epresent the action of traveling between order destinations. Note that a
ispatch from the depot at 𝑡 = 3 to order 2 is not needed since the return
ode arrived only from already delivering order 2. In this example, a
ingle courier is able to serve both orders when dispatched at time 𝑡 = 1.

ppendix C. Construction of the time-expanded network for the
-star setting

For line segment ℎ ∈ {1, 2,… , 𝐿}, let  ℎ
0 be the set of time points of

ossible dispatches to line segment ℎ. Algorithm 3 constructs the time-
xpanded network for the 𝐿-star setting. This algorithm firstly creates
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Fig. 13. Example of a time-expanded network for an instance with two orders.
O

1
1

a
o

depot nodes at ready times of every order in the system for all line
segments, and then for each line segment ℎ, it initializes the set  ℎ

0
with the ready times of orders to be delivered along ℎ (lines 1–5).

Subsequently in lines 6 and 7, Algorithm 3 creates arcs and non-
depot nodes for dispatches at ready times, and arcs and depot nodes
for the corresponding return times, by executing Algorithm 4 once for
every line segment. For a given line segment ℎ, this subroutine works
similar to Algorithm 2 for the single line segment setting, although this
extension also defines new dispatches from a return node to every line
segments. This is done with the help of auxiliary sets ℎ′

0 , which keep
rack of new dispatch times not yet in  ℎ′

0 .
Algorithm 3 performs a final iterative step in lines 8–14 if new

ispatches are yet to be evaluated for some line segments, i.e., if 𝑆𝑡𝑒𝑚𝑝 ≠
. For a line segment ℎ ∈ 𝑆𝑡𝑒𝑚𝑝, Algorithm 4 is executed to evaluate and
efine new dispatch times in the set ℎ

0 , and to define the corresponding
odes and arcs. Note that this in turn may generate new dispatch times
or some other line segment ℎ′ due to new return times, in which
ase these are appended to ℎ′

0 and ℎ′ is included in 𝑆𝑡𝑒𝑚𝑝. Once the
ew dispatches are defined, the new dispatch times are appended to
he defined dispatch times  ℎ

0 , 𝑆𝑡𝑒𝑚𝑝 is computed again. This process
epeats until no new dispatch times are left to be evaluated for any
ine segment, i.e. when 𝑆𝑡𝑒𝑚𝑝 = ∅. At this point, Algorithm 3 returns
he network  = ( ,).

Algorithm 3 L_star_network_creation
Input: 𝐿, {𝑁ℎ, {(𝑟𝑗 , 𝜏𝑗 , 𝛥𝑗 )}𝑗∈𝑁ℎ

}ℎ∈{1,2,…,𝐿}, 𝑇
Output: Directed network  = ( ,)
1:  ← {(𝑟𝑗 , 0, 0)}𝑗∈𝑁 ∪ {(𝑇 , 0, 0)}
2:  ← ∅
3: for ℎ ∈ {1, 2,… , 𝐿} do
4:  ℎ

0 ← {𝑟𝑗}𝑗∈𝑁ℎ
5: ℎ

0 ← ∅

6: for ℎ ∈ {1, 2,… , 𝐿} do
7: ( ,, {ℎ′

0 }𝐿ℎ′=1) = L_star_routes( ,, ℎ,  ℎ
0 , { ℎ′

0 }𝐿ℎ′=1,
{ℎ′

0 }𝐿ℎ′=1)

8: 𝑆𝑡𝑒𝑚𝑝 ← {ℎ ∈ {1, 2,… , 𝐿} ∶ ℎ
0 ≠ ∅}

9: while 𝑆𝑡𝑒𝑚𝑝 ≠ ∅ do
0: Let ℎ be one of the elements in 𝑆𝑡𝑒𝑚𝑝

1: ( ,, {ℎ′
0 }𝐿ℎ′=1) = L_star_routes( ,, ℎ,ℎ

0 , {
ℎ′
0 }𝐿ℎ′=1,

{ℎ′
0 }𝐿ℎ′=1)

2:  ℎ
0 ←  ℎ

0 ∪ ℎ
0

3: ℎ
0 ← ∅

4: 𝑆𝑡𝑒𝑚𝑝 ← {ℎ′ ∈ {1, 2,… , 𝐿} ∶ ℎ′
0 ≠ ∅}

return  = ( ,)
19 
Algorithm 4 L_star_routes( ,, ℎ,  , { ℎ′
0 }𝐿ℎ′=1, {

ℎ′
0 }𝐿ℎ′=1)

Input: Node set  , arc set , line segment ℎ, set of time point at the
depot  , sets of existing depot time points { ℎ′

0 }𝐿ℎ′=1, sets of new
returning time point at all line segments {ℎ′

0 }𝐿ℎ′=1
utput: Updated sets  ,, {ℎ′

0 }𝐿ℎ′=1
1: for 𝑡 ∈  do
2: Find lowest 𝑗∗ ∈ 𝑁 ∪ {𝑛 + 1} s.t. 𝑡 < 𝑟𝑗∗ ⊳ 𝑟𝑛+1 ≡ 𝑇
3:  ←  ∪ {((𝑡, 0, 0), (𝑟𝑗∗ , 0, 0))}
4: Compute set of active orders 𝐴ℎ(𝑡) ⊆ 𝑁ℎ
5: Sort {𝜏𝑗}𝑗∈𝐴ℎ(𝑡) in ascending order, into {𝜏(𝑖)}

|𝐴ℎ(𝑡)|
𝑖=1

6: for 𝑖 ∈ {1, 2,… , |𝐴ℎ(𝑡)|} do
7:  ←  ∪ {(𝑡 + 𝜏(𝑖), 𝜏(𝑖), ℎ)}
8:  ←  ∪ {((𝑡 + 𝜏(𝑖−1), 𝜏(𝑖−1), 𝟏[𝑖≠1] × ℎ), (𝑡 + 𝜏(𝑖), 𝜏(𝑖), ℎ))} ⊳

𝜏(0) ≡ 0
9: for ℎ′ ∈ {1, 2,… , 𝐿} do
0: if 𝑡 + 2𝜏(𝑖) ∉  ℎ′

0 then
1: ℎ′

0 ← ℎ′
0 ∪ {𝑡 + 2𝜏(𝑖)}

12:  ←  ∪ {(𝑡 + 2𝜏(𝑖), 0, 0)}
13:  ←  ∪ {((𝑡 + 𝜏(𝑖), 𝜏(𝑖), ℎ), (𝑡 + 2𝜏(𝑖), 0, 0))}

return ( ,, {ℎ′
0 }𝐿ℎ′=1)

Appendix D. Construction of the time-expanded network for the
two-depot setting

The network construction procedure is presented in Algorithm 5.
Here, the location of depot 𝑑 in the 𝑥-axis is denoted as 𝜉𝑑 , with 𝜉1 = 0
nd 𝜉2 = 𝑈 . In lines 1–4, the constructor first defines depot nodes with
rder ready times 𝑟𝑑𝑗 at each depot 𝑑, and arcs ((0, 0, 1), (𝑟21, 𝑈 , 2)) and

((𝑇 , 𝑈, 2), (𝑇 , 0, 1)) to ensure that the resulting network has a unique
source node (0, 0, 1) and a unique sink node (𝑇 , 0, 1). Moreover, it also
initializes the set 𝜉𝑑 of depot times with ready times {𝑟𝑑𝑗 }

𝑛𝑑
𝑗=1.

Then in lines 5–8, Algorithm 5 runs Algorithm 6 once for each depot
𝑑 ∈ {1, 2} to define the non-depot nodes where orders in 𝑁𝑑 may be
served, and additional depot nodes that correspond to courier returning
times to 𝑑 (lines 2–12 of Algorithm 6). Note that in this setting, each
dispatch from 𝑑 allows to travel beyond the furthest delivery location
among the dispatched orders to get to the other depot 𝑑, and so
Algorithm 6 creates an extra arc ((𝑡 + 𝜏𝑑(|𝐴𝑑 (𝑡)|)

, 𝜏𝑑(|𝐴𝑑 (𝑡)|)
, 𝑑), (𝑡 + 𝑈, 𝜉𝑑 , 𝑑))

from the furthest non-depot node of a dispatch to the corresponding
arrival node at 𝑑. The new arrival node to 𝑑 is in turn a potential
dispatch from that depot, and so the corresponding arrival time is
stored in the set  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
so a dispatch can be evaluated later on (lines

13–15 of Algorithm 6).
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Lastly, Algorithm 5 performs a final step in lines 9–14 that itera-
tively runs Algorithm 6 to evaluate new potential dispatch from each
depot 𝑑 at times in  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
(similar to Algorithm 3 for the 𝐿-star

setting). These dispatches may produce new arrival times to depot 𝑑
due to crosses between depots, each of them in turn potentially defining
a new dispatch time from 𝑑. In such case, the new dispatch time is
dded to the set  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
. Once the dispatches nodes and arcs are

defined for a depot 𝑑, the new dispatch times are appended to the set of
defined dispatch times 𝜉𝑑 . The iterative process repeats until no new
dispatch times are discovered for either depot, namely,  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
⊆ 𝜉𝑑

for some 𝑑 ∈ {1, 2}.

Algorithm 5 (2_depot_create_network)

Input: {𝑁𝑑 , 𝒓𝑑 , 𝝉𝑑 ,𝜟𝑑}𝑑∈{1,2}, 𝑇 , 𝑈
Output: Directed network  = ( ,)
1:  ←

⋃2
𝑑=1{(𝑟

𝑑
𝑗 , 𝜉𝑑 , 𝑑)}𝑗∈𝑁𝑑

∪ {(𝑇 , 0, 1), (𝑇 , 𝑈, 2)}
2:  ← {((0, 0, 1), (𝑟21, 𝑈 , 2)), ((𝑇 , 𝑈, 2), (𝑇 , 0, 1))}
3: 0 ← {𝑟1𝑗 }𝑗∈𝑁1

4: 𝑈 ← {𝑟2𝑗 }𝑗∈𝑁2

5: ( ,, 0, 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝑈 ) ← 2_depot_routes( ,, 1, 0)

6: 𝑈 ← 𝑈 ∪  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝑈

7:  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝑈 ← ∅

8: ( ,, 𝑈 , 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
0 ) ← 2_depot_routes( ,, 2, 𝑈 )

9: while True do
10: for 𝑑 ∈ {1, 2} do
11: if  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
⊆ 𝜉𝑑 then return  = ( ,)

12: ( ,,  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

,  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

) ← 2_depot_routes( ,, 1,  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

⧵
𝜉𝑑 )

3: 𝜉𝑑 ← 𝜉𝑑 ∪  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

4:  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

← ∅

Algorithm 6 2_depot_routes( ,, 𝑑,  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

)

Input: Node set  , arc set , depot 𝑑, time point set  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

utput: Updated sets  ,, 𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

, and set of time points
 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

1:  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜉𝑑

← ∅

2: for 𝑡 ∈  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

do
3: Find lowest 𝑗∗ ∈ {1, 2,… , 𝑛𝑑 + 1} s.t. 𝑡 < 𝑟𝑑𝑗∗ ⊳ 𝑟𝑑𝑛𝑑+1 ≡ 𝑇
4:  ←  ∪ {((𝑡, 𝜉𝑑 , 𝑑), (𝑟𝑑𝑗∗ , 𝜉𝑑 , 𝑑))}
5: Compute set of active orders 𝐴𝑑 (𝑡) ⊆ 𝑁𝑑
6: Sort {𝜏𝑑𝑗 }𝑗∈𝐴𝑑 (𝑡) in ascending or descending order if 𝑑 = 1 or 𝑑 =

2, respectively (if {𝜏𝑑(𝑖)}
|𝐴𝑑 (𝑡)|
𝑖=1 is the corresponding sorted sequence,

then 𝜏1(𝑖) ≤ 𝜏1(𝑖+1) and 𝜏2(𝑖) ≥ 𝜏2(𝑖+1),∀𝑖 ∈ {1,… , |𝐴𝑑 (𝑡)| − 1})
7: for 𝑖 ∈ {1, 2,… , |𝐴𝑑 (𝑡)|} do
8:  ←  ∪ {(𝑡 + 𝜏𝑑(𝑖), 𝜏

𝑑
(𝑖), 𝑑)}

9:  ←  ∪ {((𝑡 + 𝜏𝑑(𝑖−1), 𝜏
𝑑
(𝑖−1), 𝑑), (𝑡 + 𝜏𝑑(𝑖), 𝜏

𝑑
(𝑖), 𝑑))} ⊳ 𝜏𝑑(0) ≡ 𝜉𝑑

10:  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

←  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝜉𝑑

∪ {𝑡 + 2𝜏𝑑(𝑖)}
11:  ←  ∪ {(𝑡 + 2𝜏𝑑(𝑖), 𝜉𝑑 , 𝑑)}
12:  ←  ∪ {((𝑡 + 𝜏𝑑(𝑖), 𝜏

𝑑
(𝑖), 𝑑), (𝑡 + 2𝜏𝑑(𝑖), 𝜉𝑑 , 𝑑)}

13:  ←  ∪ {(𝑡 + 𝑈, 𝜉𝑑 , 𝑑)}
14:  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
←  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
∪ {(𝑡 + 𝑈 )}

15:  ←  ∪ {((𝑡 + 𝜏𝑑(|𝐴𝑑 (𝑡)|)
, 𝜏𝑑(|𝐴𝑑 (𝑡)|)

, 𝑑), (𝑡 + 𝑈, 𝜉𝑑 , 𝑑))}
return ( ,,  𝑛𝑒𝑤_𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑠

𝜉𝑑
,  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝜉𝑑
)

20 
Table 18
Characterization of orders of numerical example.
𝑑 𝑗 𝑟𝑑𝑗 𝜏𝑑𝑗 𝜏𝑑𝑗 𝛥𝑑

𝑗

1 1 0 2 2 3
1 2 6 1 1 9
2 1 2 3 1 5

A numerical example

Fig. 14 illustrates a network example with two depots at locations
0 and 𝑈 = 4, with parameter values of 𝑆 = 3, 𝑇 = 10, and orders
information as in Table 18. Depot nodes at location 0 and non-depot
nodes with solid edge lines correspond to nodes associated to depot 1,
whereas depot nodes at location 4 and non-depot nodes with dashed
edge lines correspond to depot 2. The origin corresponds to node
(0, 0, 1). A flow of courier 𝑚 is injected to the network through the origin
node and arc ((0, 0, 1), (2, 4, 2)) allows to selectively allocate couriers to
begin their shift at either depot. From there couriers can traverse from
one depot to the other when being dispatched to serve orders, and by
the end they finish the shift at either (10, 4, 2) or (10, 0, 1); in any case,
the insertion of arc ((10, 4, 2), (10, 0, 1)) allows to consider a single sink.
In this particular example, a single courier is sufficient to achieve full
service.

Appendix E. Running times

Minimum fleet size

In general, our framework is able to find the minimum fleet size
in a few seconds. There is a slight increase in running times as the
number of orders and the maximum acceptable service time increase
since this translates into larger instances and more options of serving
orders. We also note that the two-depot instances require significantly
longer solving times than the single-depot setting (see Figs. 15 and 16).

Analysis of lateness via target delivery time

As for fleet minimization, our methods are able to quickly solve all
the instances of lateness minimization. Intuitively, a longer acceptable
service time translates into more choices of when to serve orders, and
hence this causes an increase in the running times. Again, we see an
extra computational burden when solving instances with two depots
(see Figs. 17 and 18).

Demand management via service radius adjustments

The running times required to solve the service radius management
problem are considerably longer than the previous problems. Interest-
ingly, solving the case 𝑅 = ∞ for a single depot is substantially faster
than all the other cases; however, for the two-depot setting the case
𝑚 = 1 for 𝑅 = ∞ results in notoriously longer times to optimally solve
the instances, possibly because the solver must decide which depot to
initially allocate the single courier to. However, despite these large
reported times for 𝑚 = 1, it is important to note that all the instances
are able to find the optimal solution in under a minute, and the solver
spends the rest of the time proving optimality (see Figs. 19 and 20).
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Fig. 14. Example of a time-expanded network with 2 depots and 3 orders. Solid arcs are associated to depot 1, and dashed arcs to depot 2.

Fig. 15. Average running time for the fleet size minimization problem, single depot.

Fig. 16. Average running time for the fleet size minimization problem, two depots.
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Fig. 17. Average running time for the late orders minimization problem, single depot.

Fig. 18. Average running time for the late orders minimization problem, two depots.
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Fig. 19. Average running time for the service radius management problem, single depot, 𝑛 = 150.

Fig. 20. Average running time for the service radius management problem, two depots, 𝑛 = 150.
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