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Given a set of transport requests to a transit station and a set of homogeneous vehicle, both geographically
dispersed in a business area, the First-Mile Ride-Sharing Problem (FMRSP) consists of finding least cost vehicle
routes to transport passengers to the station by shared rides. In this paper we formulate the problem as
a mathematical optimization problem and study the effectiveness of preventive movements of idle vehicles
(i.e., rebalancing) in order to anticipate future demand. That is, we identify promising rebalancing locations
based on historical data and give the model incentives to assign vehicles to such location. We then assess the

effectiveness of such movements by simulating online usage of the mathematical model in a rolling-horizon
framework. The results show that rebalancing is consistently preferable both in terms of profits and service
rate. Particularly, in operating contexts where the station is not centrally located, rebalancing movements
increase both profits and service rates by around 30% on average.

1. Introduction

Ride-sharing services, which are linked to a reduction of the number
of private cars on the road, emissions and congestion (Al-Abbasi et al.,
2019), have emerged as a potential solution to the increase in road
congestion and air pollution generated by growing urban areas and
population (Taniguchi et al., 2014). Such services have yet significant
potential for development. As an example, according to the NYC taxicab
data (Commission and Limousine, 2023), during January 2020 there
were 363,874 taxi trips to the Pennsylvania Station, a fairly busy transit
station in New York City see Fig. 1(a), that is, on average 12,129 taxis
trips daily to the station. Of these, only 6% were shared by multiple
passengers, see Fig. 1(b), which leaves significant margins for more
efficient connections to the station.

An effective implementation of ride-sharing services requires ad-
equate responses to potentially frequent changes in demand patterns
during the day that may determine geographical mismatches between
demand as supply. Fig. 2 illustrates the location of the requests of trans-
portation to Pennsylvania Station during January 2014, showing that
the majority of the requests arrive from the North-East area, whereas
much fewer requests arrive from the remaining zones of the city.
This suggests implementing mechanisms that prepare the geographical
distribution of the fleet in such a way to anticipate demand and perhaps
reduce waiting and response times as well as service rate.

* Corresponding author.

The existing literature study various aspects of ride-sharing services,
including pricing mechanisms (Bian and Liu, 2019b,a; Bian et al.,
2020; Chen and Wang, 2018), integration with public transport (Shen
et al., 2018), order dispatching and vehicle routes (Wang, 2019; Chen
et al., 2020). Conversely, strategies for anticipating demand through,
e.g. preventive or rebalancing movements (Wen et al., 2018), remain,
to a large extent, an open research question. Particularly, efficient
ways to simultaneously determine both dispatching and rebalancing
movements have, to the best of our knowledge, been neglected.

We contribute to filling this gap by providing a mathematical pro-
gramming model for joint order dispatch and rebalancing decisions
in a first-mile ride-sharing service which transports passengers from
their initial location to a common destination (e.g., a transit station).
We will refer to this decision problem as the First-Mile Ride-Sharing
Problem (FMRSP). In addition, we propose a strategy for identifying
promising locations where to rebalance empty vehicles. The model and
rebalancing strategies are tested in a rolling-horizon framework which
simulates on-line usage.

The rest of this paper is structured as follows. In Section 2 we review
the related literature and underline the contribution of this article. In
Section 3 we formally introduce the problem and the corresponding
mathematical programming model. In Section 4 we describe two meth-
ods for deciding where to relocate vehicles in anticipation of future
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2020.01
All Vehicles

Zone: Penn Station/Madison Sq West
Count: 363,874

a All Trips
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2020.01
Shared Vehicles

Zone: Penn Station/Madison Sq West
Count: 22,913

b Shared Trips

Fig. 1. Taxi trips to Penn Station. Data from Commission and Limousine (2023).

/ i " B
-74.00 -73.99 -73.98

Fig. 2. Distribution of trips to Penn Station.

demand. In Section 5 we describe the simulation framework and the
numerical experiments we performed with the model and illustrate the
results. Finally, we draw conclusions in Section 6.

2. Literature review

The routing decisions considered in the FMRSP share similarities
with those involved in well studied routing problems. Among these
we find the Vehicle Routing Problem (VRP). Starting from the seminal
paper of Dantzig and Ramser (1959), several exact and heuristics
algorithms were proposed to solve VRPs (Briysy and Gendreau, 2005;
Bertsimas et al., 2019; Toth and Vigo, 2002) and several flavors of
the problem have been studied, see e.g., the surveys (Kumar and Pan-
neerselvam, 2012; Pillac et al., 2013; Lin et al., 2014; Ritzinger et al.,

2016; Braekers et al., 2016). One of the major differences between the
FMRSP and the different variants of the VRP is that VRPs typically
consist of designing tours returning to the depot, while the FMRSP
designs open paths from the vehicle’s origins to a common destination.
Arguably, a (variant of the) VRP would resemble more closely a last-
mile ride-sharing problem where a vehicle departs and returns to the
station visiting the destinations of a number of customers. Furthermore,
FMRSPs focus on transporting customers from multiple locations to
the destination (station) while VRPs are typically concerned with the
delivery of goods to customers. This impacts the types of restrictions
imposed on the routes.

Particularly, the FMRSP shares features with the Dial-a-ride Problem
(DARP) and the Pick-up-and-delivery Problem (PDP) (Cordeau and
Laporte, 2003; Ropke and Cordeau, 2009; Berbeglia et al., 2010), which
are generalizations of the VRP. A comprehensive review of DARP and
PDP can be found in Ho et al. (2018). The goal of the DARP is to
minimize the cost/time to transport a set of passenger by means of
a fixed fleet of vehicles. Requests have different pickup and delivery
locations, and the vehicles can pick up more than one passengers at a
time. Also for the DARP different variants can be found, such as where
the objective is to minimize the detour for the customers on board the
vehicles (Pfeiffer and Schulz, 2022). The DARP can be considered as
a variant of the PDP. The PDP typically deals with the transportation
of goods while the DARP deals with passenger transportation (Parragh
et al., 2008). Thus, the difference between DARP and PDP is usually
expressed in terms of additional constraints or objectives that explicitly
take user (in)convenience into account (e.g., time window and vehicle
capacity constraints). The FMRSP can be seen as a special case of
DARP where passengers travel to a common depot (station) and with
additional service-specific constraints. In particular, the FMRSP takes
the desired arrival time of accepted customers as constraints. This, in
turn, implicitly shapes feasible time window for the other customers
on board the same vehicle and for the newly arrived customers in a
rolling horizon optimization framework. Particularly, in this paper, we
study on-line dispatch and rebalancing decisions. That is, we consider
the allocation of customers requests to vehicles as they arrive and
while vehicles are busy with other transportation requests. This entails
dealing two types of customers. First, we find customers whose request
has been accepted in previous decision epochs and have not yet picked
up. These customers requests must be satisfied. Second, we find new
customers whose request may or may not be accepted, similarly to a
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Table 1
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Summary of the available literature. Under “Decisions” we report the main decisions addressed by the article. Matching refers to the assignment
of customers to vehicles. Rebalancing refers to the assignment of vehicles to zones. Under “Service” we use RS for a general ride-sharing service
and FM for a first-mile ride-sharing service. Under “Model” a Yes or a No indicate whether the study provides an optimization model or not.

Study Service Decisions Model Method

Shen et al. (2018) FM Fleet size, matching, routing No Simulation

Zhao et al. (2018) RS Matching Yes MILP, Heuristics
Bertsimas et al. (2019) RS Matching Yes MILP, Heuristics

Wang et al. (2018) RS Matching Yes MILP, Heuristics

Chen et al. (2020) FM Matching Yes MILP

Lotfi and Abdelghany (2022) RS Matching No Heuristics

Santos and Xavier (2015) RS Matching Yes MILP

Elting and Ehmke (2021) RS Matching Yes Constraint Satisfaction Problem
Zheng and Pantuso (2023) FM Matching Yes MILP, Heuristics
Fagnant and Kockelman (2018) RS Fleet size, matching No Simulation
Lokhandwala and Cai (2018) RS Matching No Simulation

Mao et al. (2020) RS Rebalancing Yes MILP, Reinforcement Learning
Noruzoliaee and Zou (2022) RS Matching Yes MILP

Beirigo et al. (2022) RS Matching Yes MILP

Bongiovanni et al. (2022) RS Matching Yes MILP

Wallar et al. (2018) RS Zone partition, rebalancing of idle vehicles Yes MILP, Poisson process
Wen et al. (2018) RS Rebalancing of idle vehicles No Reinforcement learning
Alonso-mora et al. (2018) RS Matching, rebalancing of idle vehicles No* MILP

Sayarshad and Chow (2017) RS Matching, rebalancing of idle vehicles Yes MINLP

Ma et al. (2019a) RS Matching, rebalancing of idle vehicles No Queue theory

2 The authors provide a verbal description of the mathematical model.

price-collecting TSP (Balas, 1989) where visiting customers is optional
and provides a reward. Finally, empty vehicles may be moved to
rebalancing centers in order to position for future demand.

Due to the fast development of GPS technology and widespread use
of smart-phones, ride-sharing services enabled by mobile applications
have attracted broad attentions. Commercial companies such as Uber
and Didi have implemented versions of the service (Xu et al., 2018;
Lin et al., 2018). The attention of the research community has grown
providing both optimization methods (Stiglic et al., 2015; Masoud
et al., 2017; Masoud and Jayakrishnan, 2017; Alonso-mora et al., 2018;
Stiglic et al., 2018; Huang et al., 2014; Wang et al., 2018; Mourad et al.,
2019) and reinforcement learning methods (Xu et al., 2018; Lin et al.,
2018; Li et al., 2019; Tang et al., 2019; Qin et al., 2019).

The FMRSP and, in general, ride-sharing problems are, however, a
relatively new family of problems and the corresponding literature is
somewhat sparse. In what follows we review the available literature
before highlighting how our work extends the state-of-the-art. The
literature is also summarized in Table 1 for the reader’s convenience.

Shen et al. (2018) study the integration of a FMRS service based
on autonomous vehicles (AVs) with public transportation. The idea
is to preserve high demand bus routes while using shared AVs as an
alternative for low demand routes. In a simulation framework they use
simple heuristics to match passengers to vehicles and define routes.
Chen et al. (2020) provide a mixed-integer linear programming (MILP)
model to decide the assignment of request groups to AV in FMRS
service. The objective is that of minimizing operational costs. The
authors devise a cluster-based solution method to deal with large-scale
instances. Zhao et al. (2018) address the joint problem of optimally
matching passengers and vehicles and that of routing each vehicle.
The problem is formulated as a PDP with the addition of space-time
windows. Wang et al. (2018) consider a ride-share setting in which
a ride-share provider receives trip requests over time from potential
participants. A trip can be either a driver or a rider. This process
generates two disjoint sets of trip requests. The authors focus on finding
a stable match between the two sets. Bertsimas et al. (2019) study
the problem of assigning customers to vehicles. The authors include
service-specific constraints, including time windows and latest time for
accepting or rejecting a transportation request. The authors address
the problem via periodic re-optimization. Lotfi and Abdelghany (2022)
consider a set of passengers requiring a ride and study the problem
of assigning passengers to vehicles. This set of passengers is known at
the time the problem is solved. Passengers are characterized by origin,

destination, earliest pick-up time, latest drop-off time and willingness to
share the ride. The authors consider two objectives, namely maximizing
profit and maximizing passengers’ travel experience, measured in terms
of transfers and travel times. The problem is solved by means of a
heuristic. In the study of Santos and Xavier (2015) users decide whether
to share either their own car or a taxi. They specify pickup and drop-off
location, earliest pick-up time, latest drop-off time and the maximum
cost tolerated. In addition, car owners also specify the departure time
and the maximum accepted delay. The authors address the problem of
matching users to vehicles and of determining the routes. Elting and
Ehmke (2021) assess the economic potential of shared taxi services.
Here a service operator collects requests from individual travelers.
Based on every request’s origin and destination as well as the desired
pick-up time, the service provider matches vehicles and travelers and
builds a route plan for each vehicle. Zheng and Pantuso (2023) consider
a FMRS service where passengers have to be transported to a common
destination. The problem consists of assigning customers to vehicles
and deciding vehicle routes. Transport requests may be rejected. The
problem is formulated as a bi-objective MILP where the two conflicting
objectives are travel costs and service rates. Fagnant and Kockelman
(2018) consider an AV-based ride-sharing service. They use simulation
to find the best fleet size. In their simulation they match passengers
to AVs based on specific rules, such as assigning passengers to the
nearest vehicle. Their study shares similarities with (Lokhandwala and
Cai, 2018) who also propose a simulation study for quantifying the
environmental impact of ride-sharing with AVs over traditional taxis. In
their simulation framework, passengers are assigned to vehicles based
on a detailed algorithm which takes into account the preferences of the
customer and looks for suitable AV routes. Noruzoliaee and Zou (2022)
study the problem of assigning the multiple requests (from different
origins and destinations) to shared AVs with the scope of avoiding
undesired rider en-route transfers. Beirigo et al. (2022) also study the
assignment of requests to vehicles in an AV-based ride-sharing system
where users differ according to expectations in terms of responsiveness,
reliability, and privacy. The authors assume possible that privately
owned freelance AVs can be hired on short notice. They propose a
multi-objectives MILP which optimizes vehicle occupancy, number of
AVs used, service level violation, and the waiting times. Bongiovanni
et al. (2022) also study the problem of assigning passengers to AVs.
They propose a two-phase heuristic which assigns new requests AVs
and subsequently re-optimizes such assignments through intra- and
inter-vehicle route moves.
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A number of studies address the problem of rebalancing vehicles.
Wen et al. (2018) propose a reinforcement learning method to move
idle vehicles in a shared mobility-on-demand systems. They test their
solution method on a first-mile ride-sharing service in the city of
London. Mao et al. (2020) consider a taxi sharing systems with AVs.
They study the problem of determining the number of AVs to send from
a zone of the city to another in order to minimize the expected cost of
repositioning AVs. They compare a reinforcement learning algorithm
with an integer programming model that assumes full knowledge of
future demand. Wallar et al. (2018) propose algorithms for partitioning
the operating area into zones, estimating the real-time demand and
rebalancing idle vehicles. Sayarshad and Chow (2017) propose a queue-
based model for matching and rebalancing decisions. They assume
that the number of idle vehicles is known in advance. Alonso-mora
et al. (2018) design a matching algorithm for on-demand ride-sharing.
The method incorporates rebalancing decisions for idle vehicles. The
authors describe a MILP formulation for the problem and solve the
problem via a specialized procedure that begins by assigning passengers
to vehicles and finding feasible trips, and terminates by rebalancing
idle vehicles. Ma et al. (2019a) study a more involved system in which
a ride-sharing fleet is operated jointly with public transport services in
order to arrange complete on-demand journeys for their customers. The
authors consider also the rebalancing of idle vehicles. They propose a
queueing-theoretic model for the problem.

As it is evident in Table 1, the available literature has typically
addressed matching decisions (i.e., the assignment of passengers to
vehicles) and rebalancing decisions (i.e., the assignment of vehicles
to zones) separately. Furthermore, when rebalancing decisions are
addressed, they concern mainly idle vehicles, that is vehicles which
have not been dispatched to customer requests. Thus, matching and
rebalancing decisions have been understood as sequential decisions.
First, vehicles match current requests, then the remaining ones may
be rebalanced. Finally, it is possible to notice that not all articles that
study rebalancing decisions provide an optimization model for that. We
extend the state-of-the-art in the following ways:

1. We address matching, routing and rebalancing decisions simul-
taneously. This entails that we do not necessarily rebalance only
idle vehicles. In our approach, vehicles may move to promising
demand areas in advance, even if this entails giving up the profit
of a current request.

2. We consider online optimization with binding acceptance of
transportation requests. This entails that a subset of the cus-
tomers (those whose request has been accepted in previous
decision problems) must be serviced, while the remaining cus-
tomers (those newly arrived) may be picked up if feasible and
profitable. A side effect of this is that previously and newly
accepted customers have an impact on the time window of the
vehicle.

3. For this problem we provide an explicit mathematical model.
The model includes service-specific constraints such as max-
imum waiting time, latest arrival time, and the necessity of
fulfilling binding acceptance of transport requests.

4. We propose simple techniques to identify promising locations
where to rebalance.

5. We test our model in a rolling-horizon simulation framework
with periodic re-optimization based on randomly generated in-
stances to assess the solutions delivered by the model and,
particularly, the advantage provided by rebalancing activities.

It must be noted that rebalancing decisions have been extensively
studied in other emerging problems in shared mobility. These include
carsharing (Illgen and Hock, 2019; Folkestad et al., 2020; Pantuso,
2022), bike sharing (Faghih-Imani et al., 2017; Liu et al., 2016; Chemla
et al., 2013), scooter sharing (Osorio et al., 2021). Nevertheless, the re-
location problem involved is significantly different. In the ride-sharing
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problem, a vehicle has to drive (with its own driver) to a more promis-
ing location. In the other vehicle-sharing problems, vehicles have to be
picked up by drivers or service vehicles to be moved to more promising
locations. The amount of work in the latter is typically much higher
and the relocation problem alone may involve complex optimization
problems. Similarities may emerge in the methods used to predict
demand occurrence. However, we believe the methods proposed are not
immediately applicable due to the inherent differences in the systems
and types of demand.

3. The first-mile ride-sharing problem

In this section, we formally introduce the First-Mile Ride-Sharing
Problem. We start, in Section 3.1, by providing a general introduction
to the problem. Following, in Section 3.2, we introduce a mathematical
model for the FMRSP. In addition, in Appendix A we provide a table
that summarizes the notation and in Appendix B we provide a simple
example that illustrates possible feasible solutions to the problem.

3.1. Problem statement

We consider the operator of a fleet of vehicles % := {I,...,K}
concerned with dispatch and relocation decisions in order to ensure a
first-mile ride-sharing service. The fleet is homogeneous with capacity
Q. We assume the operator makes dispatch and relocations decisions
periodically, e.g., every 5 or 10 min, as a result of the arrival of
new transportation requests. We refer to these decision times as “(re)-
optimization phases”. At each re-optimization phase, the available
customers can be partitioned in two sets, namely #p = {1,...,Np}
which contains the customers whose transportation request had al-
ready been accepted during a previous optimization phase, and /. :=
{1,...,Nc} which contains newly arrived customer requests which
have not been considered in previous optimization phases. We assume
that the customers in .4, may be either accepted (and thus assigned to
a vehicles) or rejected, while the customers in ./, must be picked up
(thus we assume acceptance decisions are binding). For convenience
we set Ny = N U Np.

All customers travel to a common destination d located in position
o(d) (e.g., a transit station) and for each customer i, the operator knows
the requested pick-up time T'.P , the requested arrival time TI.A and the
origin o(i). We let A4 be the maximum waiting time (i.e., difference
between actual pick-up time and requested pick-up time). Similarly, at
the beginning of the re-optimization phase, denoted T, each vehicle
k is located at o(k) as a result of previous deployment or relocation
decisions. The vehicle is either idle in its location, or traveling between
customers or to the station. In addition, vehicles might initially have
customers on board. We denote ¥V, the number of customers on board
of vehicle k at the beginning of the re-optimization phase and 7} the
earliest arrival time of the passengers already on board vehicle k.
The operator needs to ensure that vehicles with customers on board
terminate their journey to the station. Conversely, vehicles with no
customers on board may be sent to a rebalancing point or stay at their
origin location o(k). A set £ := {l,...,R} of potential rebalancing
points in the operating area is available. For each rebalancing point
r we let B, denote an upper bound on the number of vehicles that can
be dispatched to the rebalancing point.

The operator bears transportation costs generated by vehicle move-
ments. Particularly, we assume travel times are known, with T;; being
the travel time between locations o(i) and o(j) with i € F U 4,
Jj € Ny UZR U {d} and cost C is born for each unit of travel time.
The operator collects a revenue P, when picking up customer i, for
i € /M. Note that the revenue is collected only when picking up new
customers as we assume the revenue for the customers in ./, has been
collected during previous optimization phases. Furthermore, E, denotes
the expected revenue collected for each vehicle relocated to rebalancing
center i € #. Parameter E, is calculated as P, — CT},, where P, is the
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expected revenue obtained from dispatching a vehicle to rebalancing
center i € %. Expected future revenues from rebalancing activities
are discounted using a parameter § that denotes the weight of the
rebalancing reward.

The decisions made by the operator can be formalized as follows.
We let xl’.‘j take value 1 if vehicle k moves directly between o(i) and o(}),
0 otherwise, for all i € {k} U Ay, j € Ny URU{d}, k € K. Furthermore,
we let tf denote the actual arrival time of vehicle k to the station, for
k € # and t,.P denote the actual pick-up time of customer i, for i € ;.

Thus, we use a 3-index formulation of size O(|/||F||2|). The
FMRSP is NP-hard, as it contains the prize-collecting TSP (Balas, 1989)
as a special case.

3.2. Mathematical model

Having defined all decision variables and parameters, we may for-
mulate the problem as follows.

wY Y ¥ ond- ¥ 3 e

keX i€eNc jeNyUld} i€lkluMy JENyURULd} kEKH

FY Y az

IER kEFK
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Objective function (1a) represents the profit for the operator. The
first term represents the revenue generated by picking up customers,
the second term the total cost born of the vehicles movements and,
finally, the third term is the discounted expected profit obtained in the
rebalancing centers.

Constraints (1b) and (1c) state that new customers may be picked
up at most once and customers already accepted must be picked up
exactly once, respectively. Observe, in (1b) and (1c), that after visiting
a customer i € J or i € Wp, the vehicle can only move to another
customer i € Ap U S or to the station d. Constraints (1d) ensure
that vehicles travel to the station at most once. Constraints (1e) state
that whenever a vehicle arrives at a customer location, it must then
move to another customer or to the station. Notice that a vehicle can
arrive at a customer location j either from another customer or from
the vehicle’s original location o(k). We remind the reader that variable
x’;. must be understood as vehicle k moving from its original location
o(k) to the location o(j) of customer j. Constraints (1f) state that, if a
vehicle departs from its original location o(k), i.e., xzj =1 for some j,
it must terminate its journey either at the station or at a rebalancing
point. Also in this case, variables xi. must be understood as the vehicle
moving from its origin, o(k), see Section 3.1.

Constraints (1g) ensure that the capacity of the vehicles is not ex-
ceeded, while constraints (1h) ensure that the total number of vehicles
dispatched to a rebalancing center will not exceed the upper bound on
the vehicles dispatchable at the rebalancing center. Constraint (1i) state
that only empty vehicles may be dispatched to rebalancing centers. For
instance, if vehicle k is dispatched to one of the rebalancing center,
the right-hand-side becomes 0, and the constraints can only be satisfied
when V, is equal to 0. If vehicle k is not dispatched to any rebalancing
center, the right-hand-side reduces to the capacity of the vehicle, and
the constraint holds with any value of V,. Notice that the movements
between customer points ./#;; and rebalancing points are automatically
forbidden by the absence of the corresponding xf.‘j variables. Constraints
(1j) state that the vehicles that already have customers on board at the
beginning of the period must be dispatched (i.e., cannot stay idle). If
V, is strictly positive, the constraint forces the right-hand-side to be
strictly positive as well, and thus to dispatch the vehicle.

Constraints (1k) state that if customer j is picked up by vehicle
k immediately after picking up customer i, then the actual picking
up time of customer i plus the travel time between customer i and j
must be less or equal to customer j’s actual pick up time. Here TL:
= max,{T} for i € Ny is an upper bound on the requested arrival
time. Similarly, constraints (11) denote the pick-up time for the first
customers in the route. Constraints (1m) ensure that the difference
between the actual pick up time and the requested pick up time of the
customer does not exceed the maximum waiting time A. Constraints
(In) ensure that the actual arrival time of vehicle k must be earlier
than the requested arrival time of any of the customers on board of it.
For instance, if customer i is picked up by vehicle k, the right-hand-side
becomes TI.A enforcing that the actual arrival time of vehicle k is before
TiA. Constraints (10) ensure that the actual arrival time of vehicle k
is earlier than the earliest requested arrival time T} of the passengers
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on board at the beginning of the re-optimization phase. Constraints
(1p) state the relationship between pick-up time and arrival time. For
example, if j is the last customer picked up by vehicle k before the
station x;f , takes value 1, the left-hand-side becomes tf +T;,, and the
right-hand-side becomes t?, enforcing that the actual pick-up time of
customer j plus the travel time between customer j and station be less
than or equal to the actual arrival time of vehicle k. If j is not the last
customer picked up by the vehicle k before arrive at the station, then
the left-hand-side becomes tf , the right-hand-side becomes t;‘ + Tk,
which always holds. Finally, constraints (1q)—(1s) define the domain
of the decision variables.

An illustrative example of possible solutions to the problem is
provided in Appendix B.

4. Finding rebalancing centers

Identifying where to rebalance in order to anticipate demand, and
how many vehicles to send to each rebalancing point is currently an
open research question. Any such prediction model could be used to
feed rebalancing centers to model (1). In this section we introduce a
clustering-based methods for identifying rebalancing centers. We refer
to the method as the K-means Clustering (KC) method. The method
identifies both the location and demand of the rebalancing centers, and
this in turn allows us to determine the upper bound on the number of
vehicles dispatchable to the different rebalancing centers.

Given a number k of rebalancing centers to find, the KC method
finds rebalancing centers by partitioning all requests received in the
current re-optimization phase into k = |%| clusters. Clusters are created
in such a way as to minimize the total distance between the points
allocated to the cluster and the centroid of the cluster. The centroids
of the clusters will then be used as rebalancing centers. The expected
demand (number of requests) of the rebalancing centers will be set
equal to the number of requests in the corresponding cluster. We let
D, be the demand of rebalancing point r € Z.

The rational behind the clustering method is the following. Assume
that the decision maker performs frequent re-optimizations and that
the demand distribution changes slow enough. Then the geographical
distribution of demand in the near future is approximately the same
as the current demand. Current requests represent a sample from this
(unknown) distribution. Thus, over many repetitions one expects to put
rebalancing centers where there is actually more demand. We believe
our assumption of frequent re-optimizations and demand changing
slower than the re-optimizations is reasonable in real-life. However,
clearly, the prediction accuracy of the KC method is expected to fall
when either (i) there is no underlying pattern in the demand (we
argue that any prediction method would probably fail in this case)
and (ii) when the demand changes rapidly or re-optimizations are not
performed sufficiently frequently. In the computational study we assess
both cases.

In Section 5 we compare the KC method against two benchmarks,
namely random selection and no rebalancing. The random selection
method (hereafter named RS method) consists of randomly selecting
|£| points in the operating area as rebalancing centers. To each rebal-
ancing center is assigned a demand equal to the number of customer
requests of the current re-optimization phase within a certain distance
(e.g., 1 km) of the rebalancing center. No rebalancing entails % = §.

For both the KC and RS methods, the upper bound B, of the number
vehicles that can be dispatched to each rebalancing center r is defined
as B, = D,/0, where O denotes the average number of customer on
board a vehicle during one trip.

5. Numerical experiments

In this section we report the results of our numerical experiments.
The scope of the experiments is to assess, in terms of profits and service
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rates, two different configurations of the service which we refer to as
without rebalancing (woR) and with rebalancing (wR). The configuration
woR refers to the situation where the service provider dispatches the
vehicles only based on customer requests of the current re-optimization
phase. For the model without rebalancing, we simplify our model
in Section 3 by having an empty set of rebalancing centers. In the
configuration wR, the service provider makes the dispatching decision
based both on current customer requests and on predicted demand
using rebalancing centers. In this case, we test the model with two
different method for finding rebalancing centers. In the first case, which
we refer to as WRKC, the company use KC to obtain the location and
demand of the rebalancing centers. In the second case, which we refer
to as wRRS, the company uses the RS method to find the locations and
demands of the rebalancing centers.

Observe that the potential value of relocation activities in on-
demand mobility has been the focus of other studies, such as Ma et al.
(2019b), Jamshidi et al. (2021), Sayarshad and Chow (2017), Kash
et al. (2022) and Danassis et al. (2022) for different configurations of
the service. Particularly, our work shares similarities with Sayarshad
and Chow (2017) who also explicitly model the decision of the service
provider as an optimization model. However, with respect to Sayarshad
and Chow (2017) we consider (i) binding previously accepted requests,
(ii) customers desired arrival times and (iii) an upper bound on the
maximum waiting time. We believe our study can provides evidences
based on a more involved setup of the service.

The different configurations are tested on a set of random instances
introduced in Section 5.2. All problems are solved with the Python
libraries of GUROBI 9.5.0 and a server equipped with Intel Core i5 and
16 GB of RAM.

5.1. Simulation framework

We test our model in a simulation framework, based on rolling-
horizon optimization, with a planning horizon of one hour. We assume
online re-optimization happens every 5 minutes. This means that every
simulation requires the solution of 12 optimization problems (1). At
each re-optimization we update the status of the system, and randomly
generate (as explained in the next section) a number of new customers.
Particularly,

+ At the initial optimization phase, say T = 0, we assume that the
Np is empty. This means that there is no customer whose request
had already been accepted in a previous optimization phase. We
generate a number of new customers ./, rebalancing centers %,
and initial vehicle positions (as explained in the next section) and
solve the resulting model (1).

We then step five minutes forward in time, say optimization
phase T = 1, and assume the solution to the model for T =
0, has been implemented. This entails the vehicle followed the
routes determined by the previous optimization model for five
minutes, moving either to customers locations or to rebalanc-
ing centers. This provides their updated location for the new
re-optimization phase. We then partition the customers of the
previous optimization phase into three groups:

1. The first group contains those customers that had been
assigned to a vehicle but have not yet been picked up in
the five minutes interval between the two re-optimizations
(i.e., the route of the vehicle assigned to the customer did
not stop by the customer within the five-minute interval
between re-optimizations). These customers form the set of
mandatory customers ./, in the new re-optimization phase
and must be picked up by some vehicle (possibly differ-
ent from the one assigned in the previous re-optimization
phase).
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Fig. 3. Uniform and non-uniform distribution of customers with the station located in the center.

2. The second group contains those customers that had been
assigned to a vehicle in the previous re-optimization phase
and the route of the assigned vehicle stopped by the cus-
tomer within the five-minute interval between
re-optimizations. In the new re-optimization phase these
customers represents occupied seats (V,) in the vehicles
to which they were assigned. Therefore, these customers
represent fulfilled requests and do not appear in ./} in the
new re-optimization phase.

3. The third group contains those customers that had not been
assigned to a vehicle in the previous re-optimization phase.
These represent customers whose request has been rejected
and will not show up in the new re-optimization phase.

Observe, that in the new re-optimization phase, vehicles may
find themselves into one of the following situations. (A) The
vehicle is empty at a given position and was on the way to pick-
up customers or to a rebalancing centers. (B) The vehicle has
passengers on board at a given position and was on the way to
pick-up additional customers or to the station. In case (A), in
the new re-optimization phase the vehicles may be assigned to
new customers or to a rebalancing center, independently of the
decision made in the previous re-optimization phase. That is, it is
possible that the vehicle is assigned to a set of customers different
from the ones previously assigned to the vehicle. In case (B) the
vehicle cannot be sent to a rebalancing center but may be as-
signed to new customers or sent directly to the station. Following,
we generate new customers ¥ for the new re-optimization phase
and resolve a problem (1).

The procedure continues stepping five minutes forward in time until
the end of the one-hour planning horizon. Thus, we are able to collect
statistics on the performance of the service. Particularly, the profit is
computed as follows. At the end of each re-optimization phase, we
collect the fee for all the customers that have been accepted (i.e., a
vehicle has been assigned to them) and picked up (i.e., the vehicle
has arrived at their location during the five-minute interval between
re-optimizations) and subtract the cost of the movements the vehicles
have done during the five-minute interval between re-optimizations.
The final total profit is then the sum of the individual profits made
during the one-hour planning horizon. The procedure is explained by
the following example.

+ Assume that at 7 = 0, //p is empty and V, = 0 for all vehicles
k € {D,,D,,D;}. That is, there is no customer whose request
had already been accepted in a previous optimization phase.
We generate a number (say four) of new customers 4, :=
{co,c?, Cg, C?}, rebalancing centers % := R, and initial vehicle
positions o(D,),o(D,),o(D3) and solve the resulting model (1).
Assume that the solution determines the following routes for the
three vehicles: Route1” := {D;,C?,C?,d}, Route2” =: {D,.CY,d},
Route3? := {Ds, R?} and that customer Cf" is rejected.

The solution computed at 7 = 0 is implemented and the vehicle
follow the respective routes for five minutes. This provides up-
dated system information for optimization phase 7' = 1. That is,
we updated the location of the vehicles {o(D,),o(D,),0o(D3)}. We
observe that,

1. For Routel’, the vehicle D, already picked up customer
C?, and is still on the way to pickup CJ, so we can delete
Ci) from the system, update V, = 1 and move Cg to
mandatory customer set #p = {Cg}.

2. For Route2’, vehicle D, already picked up customer CJ
and is still on the way to station, so we can delete Cg from
the system and update V,, = 1.

3. For Route3’, vehicle Dj arrived at the rebalancing center
R), thus v, =0.

In the new optimization phase T = 1, since the vehicles D, D,
already have customers on board, they cannot be sent to a re-
balancing center but may be assigned to new customers or sent
directly to the station. However, vehicle D; may be assigned to
new customers or to a rebalancing center as it is still empty.
Following, we generate new customers Jg := CII,CZI,C;,Ci for
the new re-optimization phase T = 1 and resolve the problem (1).

5.2. Instance generation

We generate a number of artificial and randomly generated in-
stances that mimic real-life operating scenarios for the service. Particu-
larly, we assume a fleet of homogeneous vehicles of capacity O = 4. The
position of the vehicles for the first re-optimization phase is generated
randomly in the business area (defined below) and initially vehicles are
assumed to have no passenger on board. For the re-optimization phases
other than the first, the position of the vehicles, and the number of
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Fig. 4. Uniform and non-uniform distribution of customers with the station located in a corner.

passengers on board is computed as the result of previous optimization
phases.

We consider two different geographies of the business area. In the
first geography, depicted in Fig. 3, the station is located at the center of
the business area, and the business area itself is represented by a circle
of radius R = 4 km. In the second geography, see Fig. 4, the station
is located in a corner and the business area is a quarter of a circle
of radius of R = 8 km. The second geography is meant to represent
urban contexts where the demand is concentrated only on one side of
the station due to, e.g., physical barriers such as rivers or harbors.

For each geography, and for each re-optimization phase, customer
requests are generated in the following two different scenarios of
demand distribution. In the first scenario, referred to as the uniform
demand scenario, pickup locations are randomly scattered in the whole
business area, see Figs. 3(a) and 4(a). In the second scenario, referred
to as the non-uniform demand scenario, one third of the requests arrive,
randomly, from inside the inner circle of radius R’ = 0.6R (where R
is the radius of the outer circle), while the remaining requests arrive,
randomly, from the outer portion of the circle, see Figs. 3(b) and 4(b).
We obtain, in total, four configurations namely

. station in the center and uniform demand (UCt),
. station in the center and non-uniform demand (NUCt),
. station in the corner and uniform demand (UCn),
. station in the corner and non-uniform demand (NUCn).

A wWN -

For each request, the requested pickup time (TiP ) is randomly generated
uniformly between 0 and 3 minutes after the beginning of the planning
horizon, and the requested arrival time (TI.A) is set as the sum of
requested pickup time, 7,7, travel time between customer i and the
station d, and a buffer time randomly generated between 5 and 8
minutes. Travel time T}; are calculated using Euclidean distances and
assuming an average speed of 36 Km/h (Commission and Limousine,
2023). The unit transportation cost C is set to $11.25/h (English, 2008)
and trip revenues P, are computed using a fare of $2.59 per Km traveled
plus $0.74 per minute traveled, with a minimum fare of $8 following
the setting in INSHUR (2022).

We set the value of # to 0.1 in the objective function, unless
otherwise specified. Observe that f determines the impact of rebal-
ancing movements. High values will increase the potential benefit of
rebalancing and might lead to rejecting current customers while low
values might lead the model to provide myopic decisions. The impact

of different values of # will be assessed through sensitivity analysis in
Section 5.5. The expected revenue for rebalancing a vehicle to center
i € R, E, is calculated as P, — CT,;, where P, is the revenue of
dispatching a vehicle to rebalancing center i € %, and is calculated
as P, =0Q P‘.A, where P‘.A the average revenue for the requests in the
cluster where i is the centroid and Q is the capacity of the vehicles.
C is the unit transportation cost, set as above, and T, is the distance
between rebalancing point i and the station. To obtain the upper bound
on the number of vehicles dispatchable to a rebalancing center (B,, see
Section 4) we set the average number of customers on board during
one trip of a vehicle O equal to half of the capacity Q = 4.

For each configuration, we generate different instances varying
in the number of vehicles and customers that appear at each new
re-optimization phase. Particularly, we create instance classes named
C| AN |V |H| with number of customers |#.| € {6,7,8}, and num-
ber of vehicles, |#| € {10,12,14}. As an example, C8V 10 indicates
a class of instances with 8 new customers in each re-optimization
phase and 10 vehicles available for dispatching for the whole planning
period. For each instance class we randomly generate 3 different in-
stances. Observe, however, that for each instance we solve 12 different
optimization problems in our simulation framework.

We set the number of rebalancing centers |%| to 3 in all instances
(later we perform sensitivity analysis with respect to this parameter.) .
This number is found using the Elbow Method (EM) and the Silhouette
Analysis Method (SAM) (Mahendru, 2019). Particularly, we use the
instances with |//;;| = 8 as a reference case to find a suitable value
for k = |%|. First we randomly generate 8 customers in the operating
area, then we use the EM approach to show the performance of the
KC method for different values of k. For each k we consider the Within-
Cluster-Sum of Squared Errors (WSS). We then plot the WSS versus k, and
choose the value of k for which the WSS flattens. This point is referred
to as an “Elbow”, see Fig. 5(a).

Nevertheless, in some cases, the EM does not give precise answers
as it is not always clear for which value of k the change of slope is
significant. In such cases, we will use the SAM to make a decision. The
silhouette score is a measure of how similar a customer request is to
its own rebalancing cluster compared to other rebalancing clusters. To
be more precise, the silhouette score of one customer request i can be
calculate as below:

o b)) —a()
S0 = @) b)) 2
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Table 2
Profit [$] in the simulations with |%| = 3.
Cc6V10 Cc6v12 c6v14 C7vV10 C7V12 C7V14 c8v10 Cc8vi2 C8Vv14
wRKC 57.52 59.06 58.20 68.15 68.31 71.14 79.16 81.46 85.17
NUCt wRRS 55.62 58.04 55.54 64.59 67.58 70.51 75.36 80.47 77.63
woR 56.37 56.61 56.42 63.96 67.08 65.72 74.71 77.52 78.71
wRKC 54.35 57.53 54.90 60.64 64.79 65.54 72.78 74.55 76.47
UCt wRRS 51.41 53.99 53.45 60.97 62.20 60.98 70.65 70.52 74.08
woR 50.88 55.03 54.35 61.46 61.68 65.22 66.79 71.78 68.77
wRKC 98.00 105.55 108.57 114.57 121.98 133.76 125.51 148.86 154.95
NUCn wRRS 70.39 74.43 80.23 80.20 95.47 101.69 93.04 97.07 101.03
woR 71.16 72.65 85.50 64.70 82.34 88.40 73.28 76.91 94.33
wRKC 95.42 100.10 103.81 108.41 119.32 118.73 114.99 128.97 146.30
UCn wRRS 69.91 77.88 88.76 86.11 86.95 93.30 76.58 88.92 104.48
woR 70.33 69.94 89.82 77.23 94.43 86.60 90.63 106.04 91.04

where b(i) is the average of the minimum euclidean distance between
customer i and the customers in clusters other than the one customer i
belongs to. Parameter a(i) is the average euclidean distance from cus-
tomer i to other customer requests inside customer i’s own rebalancing
cluster. For each k, we sum s(i) for all customer requests, and we plot
it against k, see a qualitative description in Fig. 8. We then choose the
value of k for which the sum is the highest (the higher s(i) the higher
is the difference between a point i and the clusters other than the one
it belongs to). In our case, the best value of k was found to be k = 3
and therefore we use this value in the computational study.

5.3. Managerial insights

In this subsection, we assess the solutions provided by the model in
terms of service rates and profits. The service rate is computed as the
ratio between the total number of customers transported during the
whole planning period over the total number of requests received in
the same period. The profit consists of the cumulative profit over the
entire simulated period (thus one hours with re-optimization every five
minutes). Particularly, we compare three different strategies, namely no
rebalancing (woR), rebalancing to random rebalancing centers (WRRS),
and rebalancing to rebalancing centers found with the KC method
(WRKC), see Section 4. These three strategies are assessed on different
configurations of the service, namely UCt, NUCt, UCn, NUCn, see
Section 5.2.

Tables 2 and 3 report the profit and service rate for the different
strategies and configurations of the service. When the station is in the
center (UCtand NUCt) we notice that all rebalancing strategies yield
a 90% or higher service rate. The profits are likewise relatively similar
across rebalancing strategies. This is mainly due to the geography of
the instance, with the station located in the center. In this case, no

rebalancing corresponds to leaving the vehicle close to the station,
which is on average halfway to the next request in the worst case.
Nevertheless, we observe that both the service rate and profits in the
WRKC case are systematically higher than in the case woR, illustrating
that rebalancing activities still pay off. Rebalancing according to the
wRKC method is consistently preferable to rebalancing to random lo-
cations (WRRS) and rebalancing to random locations is not necessarily
better than not rebalancing (woR). This is somewhat expected: When
there is a clear pattern in the demand, sending vehicles to locations that
are not carefully chosen represents, in general, a waste of resources. In
general, when the station is in the center of the business area, we do
not observe significant changes between the case with uniform demand
(UCt) and non-uniform demand (NUCt).

When the station is located in a corner (configurations UCn and
NUCn) we observe a much more marked difference in performance be-
tween the setting with and without rebalancing. Particularly, we notice
that the setting wRKC improves both profits and service rates by approx-
imately 30%, compared to woR in the case UCn. In the configuration
NUCn the improvement is even more marked with approximately 50%
higher in service rates and 60% higher profits. Random rebalancing
(wRRS) is still slightly preferable to no rebalancing (woR) but lags
significantly behind compared to the strategy of using clustering-based
rebalancing centers (WRKC).

In Tables 2 and 3 it can be further observed that the gap be-
tween WRKC and woR tends to increase with the number of customers,
keeping the fleet size fixed. In the NUCncase we observe that, in the
WRKC case, both profits and service rates improve as the number of
vehicles increases, keeping fixed the number of customers. Compared
to the UCncase we notice that for the woR strategy, the highest service
rate for the C8V* instances is lower than 60%, while the lowest service
rate for the same instances in the UCn scenario is above 60%.
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Table 3
Service rate [%] in the simulations with |#| = 3.
C6V10 C6V12 CoV14 C7V10 C7v12 C7V14 C8V10 Cc8v12 C8V14
WRKC 97% 97% 96% 94% 96% 98% 92% 96% 98%
NUCt wRRS 96% 95% 93% 90% 91% 96% 88% 93% 91%
WOR 94% 94% 94% 89% 94% 91% 90% 90% 92%
wRKC 97% 99% 98% 95% 97% 97% 96% 98% 98%
UCt wRRS 94% 94% 95% 93% 93% 95% 94% 92% 95%
woR 91% 95% 94% 92% 95% 95% 91% 96% 92%
wRKC 83% 88% 91% 81% 83% 90% 70% 85% 89%
NUCn wRRS 62% 67% 70% 59% 65% 71% 58% 59% 62%
woR 63% 66% 72% 48% 60% 62% 47% 48% 57%
wRKC 88% 89% 91% 86% 88% 88% 77% 86% 91%
UCn wRRS 64% 70% 80% 70% 65% 73% 57% 63% 71%
woR 66% 69% 78% 63% 76% 68% 66% 72% 65%
Table 4
Profit in the simulations with |%| = 3 rebalancing centers and fast-changing demand pattern.
C6V10 CoV12 C6V14 C7V10 C7V12 C7V14 C8V10 Cc8vi12 C8V14
wRKC 65.57 67.23 66.30 70.11 75.07 77.70 80.14 88.19 88.76
NUCt wRRS 62.04 66.91 64.73 68.57 69.69 75.67 78.83 83.10 83.80
woR 58.82 65.61 67.61 67.93 73.54 73.50 81.01 84.25 84.64
wRKC 114.36 125.30 125.72 119.47 131.25 138.95 131.91 156.95 163.13
NUCn wRRS 63.26 75.78 99.18 77.84 98.63 105.68 83.16 106.60 113.75
woR 66.49 80.39 93.81 75.75 75.82 98.48 77.79 87.51 99.30

In conclusion, wWRKC outperform both woR and wRRS in all sce-
narios. When the station is in the center (UCt and NUCt), the model
reaches a service rate higher than 90% regardless of whether and how
rebalancing is done. Nevertheless, profits and service rates are consis-
tently higher when rebalancing centers are chosen with the clustering
method (WRKC). When the station is in a corner (UCn and NUCn),
rebalancing to centers chosen with the clustering method (WRKC) yields
a much more marked improvement both in profits and service rate,
especially with the demand is not evenly spread in the service area
(NUCn). Furthermore, as we observe in this case, keeping fixed the
number of customers, the profit increases with the size of the fleet.
As more vehicles provide better opportunities for rebalancing and
anticipating future requests. This also shows that rebalancing to ap-
propriately chosen locations (e.g., WRKC) can improve the utilization
of empty vehicles.

As explained in Section 4, the strategy of finding rebalancing centers
by clustering existing requests is expected to work well provided that
the demand changes slower than the re-optimization frequency. For
this reason, we assessed the performance of the method assuming the
demand pattern changes faster than our re-optimization frequency.
Particularly, we studied the geographies NUCt and NUCn, where the
demand is not uniformly distributed, and assumed the distribution
chances between re-optimizations. In both cases, we start with having
10% of the demand in the inner zone at the first optimization phase,
and we increase the demand in the inner zone with an additional 5% at
every re-optimization. In this way, the distribution for last (the 12th)
re-optimization sees 65% of the demand coming from the inner zone.
Tables 4 and 5 report profits and service rates, respectively. Compared
with the default setup where one third of the demand comes from the
inner region (see Tables 2 and 3) we notice that the profit increases
substantially. This is due to the fact that, with a changing demand
pattern, there will be more requests coming from the inner zone, which
in general means short travel distances to the station. Despite this, the
service rate for the wRKC strategy is slightly lower, due to the reduced
prediction ability. Nevertheless, the difference between the wRKC, the
random and the no-rebalancing strategies is still visible and in some
cases more marked.

5.4. Experiments on a real case

We performed additional tests on a real-life data set. The data
obtained from the New York City Yellow Taxi data set (Commission

10

Fig. 6. Taxi Zones.

and Limousine, 2023). These additional tests are meant to validate the
results obtained on the randomly generated instances.

Particularly, we generate instances by selecting from the records of
taxi rides occurred on February 1st 2023 between 16:00 and 17:00.
We focus in particular on zones 140, 141 and 237 and set zone 236
as the common destination zone, see Fig. 6. Thus, the geography of
the instances is similar to the one of the randomly generated instances
with the station in a corner. We set the re-optimization frequency to 15
minutes and consider a planning horizon made of 12 re-optimizations,
hence 180 minutes. We assume that the distribution of the demand is
as described in Table 6.

The speed is calculated as the average speed of all requests in the
focal data set. The required pickup time is generated randomly between
3 and 5 minutes. The requested arrival time is generated as the travel
time from the customer pick-up location to the station, plus a buffer
time randomly generated between 3 and 5 minutes. The fare for picking
up new customers is obtained from the original data by subtracting the
tip. The original locations of the vehicles are also generated randomly
in the selected zones.

We compare the rebalancing strategy wRKC against no rebalancing.
In addition, we test a rebalancing strategy based on the aggregation of
historical data. Particularly, in a new rebalancing strategy named wHwe
generate rebalancing points by clustering all requests obtained during
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Fig. 7 illustrates the results for the NUCn configuration. We ob-
serve that the performance of woR, wRRSand wRKC are stable under
different setting of g. Similarly, Fig. 8 reports the results under the
NUCt configuration. Here we observe that when the ratio of customers
to vehicles is relatively high, i.e. C6V10, C7V10, C8V10 and C8V12, the
performance of the wRKC is sensitive to . Particularly, for instances
C8V10 and C8V12, when p increases, the performance of wRKC can
drop below that of wRRS or even below woR while the woR and wRRS
are relatively stable to the change of g. When the customers to vehicles
ratio is relatively low, the results appear insensitive to f.

Fig. 9 reports the proportion of vehicles going to rebalancing centers
under the configuration NUCt for instances C8V10 and C8VI14. The
proportion is computed by the ratio between the average number of
vehicles going to rebalancing centers of 3 randomly generated instances
in the 12 re-optimization phases and the total number of vehicles. When
p increases, the proportion of dispatched vehicles increases significantly
for instance C8V10. The proportion of vehicles going to rebalancing
centers is relatively stable for C8V14, which is consistent with the
results in Fig. 8.

Finally, in the instances considered in Section 5.3 we used three
rebalancing centers. We assessed how a higher number of rebalancing
centers affects the results. Particularly, we run the tests with four and
five rebalancing centers. We found no statistically significant differ-
ences which allow us to draw conclusions. In other words, our results

J. Ye et al.
Table 5
Service rates in the simulations with |%#| = 3 rebalancing centers and fast-changing demand pattern.
C6V10 c6vi2 C6V14
wRKC 93% 96% 93%
NUCt wRRS 88% 94% 91%
woR 83% 91% 94%
wRKC 81% 87% 87%
NUCn wRRS 46% 54% 69%
wOoR 48% 57% 65%
Table 6
Demand distribution in the Yellow Taxi instances.
Zone 140 141 237
Percentage of demand 70% 20% 10%
Table 7
Tests based on NYC real life data.
Service Rate Profit
Instance wRKC woR wH wRKC woR wH
C10V6 97% 33% 82% 2222.07 750.28 1828.03
C10v7 97% 38% 76% 2221.14 883.36 1694.45
C10v8 100% 86% 70% 2275.13 2025.83 1533.21
C12V6 92% 43% 71% 2567.93 1261.87 1956.97
C12v7 95% 60% 69% 2623.73 1741.86 1857.48
C12v8 98% 42% 80% 2662.10 1202.44 2119.25
C14V6 89% 58% 74% 2852.79 1964.34 2396.37
C14v7 99% 52% 83% 3164.63 1707.04 2712.59
C14v8 96% 67% 73% 3091.74 2237.09 2266.38
Table 8
Tests based large instances generated from NYC real life data with 180 s time limit.
Service Rate Profit
Instance wRKC woR wH wRKC woR wH
C30V40 98% 59% 76% 6822.86 4218.23 5123.71
C30V50 93% 65% 60% 6475.25 4573.18 3985.30
C30V60 94% 86% 66% 6499.27 6003.25 4388.29

the previous two weeks (i.e., the last two weeks of January 2023). The
rationale behind this is that by considering more historical data, we
obtain more precise estimates of where requests may occur. The results
are presented in Table 7. Also in this case we observe a marked supe-
riority of the proposed rebalancing strategy. The service rate is almost
always above 90%. The difference with the no-rebalancing strategy is
particularly evident when the ratio between customers and vehicles
is high. Furthermore, we observe that generating rebalancing points
based on historical data (wH) does not improve the wRKCstrategy. Ap-
parently, if the frequency of re-optimization is high enough, following
the occurrence of recent requests is a good enough strategy.

Finally, in order to mimic scenarios that are somewhat closer to real
life contexts, we performed tests on larger instances of the problem. The
instances contain 30 new customers appearing at each re-optimization
phase and 40 to 60 vehicles. At each re-optimization phase, we give the
solver a 180-second time limit, after which we get the best available
solution. The results are summarized in Table 8. Essentially, the results
confirm our observations from the tests on small instances.

5.5. Sensitivity analysis

In this section we analyze the effect of various parameters on
the results obtained. We start by analyzing how the efficiency of
rebalancing is affected by the p parameter, see (1). With the other
parameters unchanged, for each instance we generate nine variants
with different values of f, namely 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8 and 0.9. We conduct experiments on all instances assuming an
non-uniform configurations (NUCn and NUCt) to assess the impact on
profits of the different rebalancing strategies under different weights f.
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suggest that adding potential rebalancing centers does not necessarily
yield better results. The results are provided in Appendix C.

5.6. Complexity of the models

For the numerical experiments presented above, we choose to use
relatively small instances in order to obtain results that are not affected
by optimality gaps. All the instances presented could be solved, in all
re-optimization phases, to provable optimality within less than a second
in average (45 seconds in the worst case).

Nevertheless, in practical situations one may encounter instances
significantly larger than the ones we used. In this section, we assess
how solution times and optimality gaps scale with the size of the
instance. Particularly, we create instance classes named C| 4|V |%| for
|| € {60}, and |F#| € {40,50,60}. As an example, C60V40 indicates
a class of instances with 60 new customers in each re-optimization
phase and 40 vehicles available for dispatch for the whole planning
period. Fig. 10 reports the progression of upper and lower bounds for
instances C60V40, C60V50 and C60V60. The optimality gaps of the
three instances are 21.1%, 71.7% and 26.0%, respectively, after 120
seconds (an amount of time which is sufficiently large if the operator
re-optimizes, e.g., every 5 minutes). We observe significant optimality
gaps and, particularly, that the primal bound improves slowly while
the dual bound remains steady. We believe that finding optimal or
close-to-optimal solutions is valuable in this context. In case of lack of
performance (in some dimension), the decision maker would be able
to rule out the possibility that this is caused by highly sub-optimal
solutions, and understand that the reason should rather be found in
choices in terms of system design.

Fig. 11 provides the same information for three smaller instances,
namely C25V15, C25V20 and C25V25. In this case, the instances are
small enough to observe an improvement of the upper bound. Never-
theless, while a good primal solution is found rather quickly, the upper
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bound improves slowly. This suggests new lines of research that provide
both tighter formulations and methods, perhaps heuristic, to quickly
find primal solutions in large scale instances.

6. Conclusions

In this paper we developed a MILP model for online order dis-
patching and vehicle rebalancing in a first-mile ride-sharing service.
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The model was used in a rolling-horizon simulation framework based
on constructed instances. We assessed whether rebalancing is advanta-
geous over leaving idle vehicles in their positions. We have done this
using a clustering method to identify promising rebalancing locations.
The results show that rebalancing using a clustering-based strategy
consistently outperforms strategies based on rebalancing to random
locations or not rebalancing at all. Particularly, rebalancing strategies
perform dramatically better in a context where the station is not
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centrally located (e.g., the business area is entirely on one side of the
station).

The proposed method to find promising rebalancing locations based
on current requests has some inherent limits. Particularly, it is founded
on the assumption that current demand represents future demand.
This is true in contexts where re-optimization is performed frequently
and/or demand distribution changes slowly enough to make the differ-
ence between to re-optimizations negligible.  Performing
re-optimization frequently requires the ability of solving the proposed
model efficiently also for large-scale instance. However, our tests show
that finding high quality solutions and bounds to the problem presented
becomes problematic as the size of the problem increases. This sug-
gests future research on both efficient solution methods and tighter
formulations. Furthermore, additional research is needed to develop
methods that can accurately predict future occurrence of demand and
promising rebalancing locations in more general conditions than the
ones we assume in this article. Finally, the assumptions made in the
optimization model could be relaxed to improve the model in a number
of ways. As an example, we assume that a vehicle with passengers on-
board cannot drive to a rebalancing center. However, it is reasonable to
imagine a scenario where a vehicle drops off the passengers on board
and then moves to a rebalancing center rather than waiting at the
station. These solutions are currently infeasible in our model.
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Appendix A. Notation

Sets:

Np = {1,...,Np} is the set of customers that have been assigned to
vehicles but have not been picked up yet in previous re-optimization
phase, in which customers can be reassigned but cannot be rejected in
current re-optimization phase.

Ne = {l,...,N¢} is the set of new customers for current
re-optimization phase, in which customers can be accepted or rejected
Ny 1= No U Np is the combined set of assigned and new customers.
R :={1,..., R} is the set of rebalancing centers

K :={l1,...,K} is the set of vehicles

Parameters:

d: Denotes the destination/station node
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o(k): Denotes the original location of vehicle k, for k € #

o(i): Denotes the location of request i € /;

P;: Denotes the profit of picking up customer i, for i € 4,

C: Denotes the unit travel time cost of the vehicle.

p: Denotes the weight parameter of rebalancing reward

V,: Denotes the number of customers on board of vehicle k at the
beginning of the operational period, for k € %

Q: Denotes the capacity of the vehicle

T: Denotes the start time of the operational period

T;;: Denotes the travel time between locations o(i) and o(j), for i €
HKUNy, jE Ny URU{d}

T*: Denotes the requested arrival time of customer i, for i € .4,

TL: = max;{T} for i € Ny, is the upper bound of the requested arrival
time of all the customers

T,: Denotes the requested arrival time of vehicle k, for k € &

TiP : Denotes the requested pick up time of the customer i, for i €
Np UM

B;: Denotes an upper bound on the number of vehicles that can move
to rebalancing center i € %

E;: Denotes the net profit for a vehicle to go to the rebalancing center
i,forie #

A: Denotes the maximum waiting time. Waiting time here is represented
by the difference between actual pick up time and requested pick up
time of the customer

Q: Denotes the average number of customer on board during one trip
of a vehicle

Decision variables:

xf.‘/.: Equal to 1 if vehicle k moves directly between o(i) and o(j), 0
otherwise, fori € (k} UMy, jE Ny URU{d}, ke K.

t]*(‘: Denotes the actual arrival time of vehicle k to the station, for k € &%
tf’ : Denotes the actual pick up time of customer i, for i € /4,

Appendix B. Illustrative example

In what follows we provide two examples to illustrate how the
model in Section 3.2 works. The online FMRSP model re-optimizes
the vehicles dispatch and rebalancing decisions at fixed time inter-
vals. Assume that the current re-optimization phase start at 7 = T,
and a snapshot of the system, which includes vehicles and customers
positions, is shown in Figs. 12(a) and 13(a). The blue circles denote
customers while the yellow squares denote vehicles. Assume all vehicles
have a capacity Q = 2, and that are all empty except for D3 that has
currently one customer on board (Vp; = 1). The triangle denotes the
station. Particularly, Fig. 12 describes a scenario without rebalancing,
while Fig. 13 describes a scenario where rebalancing is permitted.

The solution for the case without rebalancing, is illustrated in
Fig. 12(b) where the orange circles denote rebalancing centers and their
size reflects the expected demand at their location. The solution for
the scenario with rebalancing is provided in Fig. 13(b). Consider the
solution to the first scenario. We observe that the model provides three
routes and that the rebalancing centers are not visited. The route for
vehicle D1 (Route 1) starts from the current location of the vehicle,
o(D1), and visits customer 1 (thus xg}’ , = 1) and customer 2 (xfg =1,
in this order, before arriving at the station (xﬁ = 1). In this solution,
vehicles D4, D5 and D6 stay idle at their current position and wait for
the next re-optimization phase.

Fig. 12(c) depicts a new snapshot of the system at the new re-
optimization phase (say T = T,), and the corresponding solution.
Customers 1 through 5 from the previous optimization phase are not
in the system anymore because they have been by the time picked
up. Similarly, vehicles D1, D2 and D3 are not in the system because
they are currently on the way to the station and have no extra capacity
(D1 and D2 have filled their two seats and D3 has the remaining seat
available). New customers N 1-N4 appear in the system. The solution
suggests picking up only customer N1. The remaining customers are,
in fact, too distant from the available vehicles.
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Table 9
Profit [$] in the simulations with |%| =4.
C6V10 C6V12 C6V14 C7V10 C7vV12 C7V14 C8V10 Cc8vV12 C8V14
wRKC 52.85 57.35 60.40 69.60 70.33 71.22 79.85 83.19 85.06
NUCt wRRS 58.07 55.84 56.20 65.54 66.87 67.03 76.68 80.80 80.38
woR 56.37 56.61 56.42 63.96 67.08 65.72 74.71 77.52 78.71
wRKC 55.89 54.22 53.71 63.74 62.81 64.74 68.93 75.21 74.94
UCt wRRS 52.73 52.81 54.21 57.21 63.08 65.36 70.09 71.39 70.86
woR 50.88 55.03 54.35 61.46 61.68 65.22 66.79 71.78 68.77
wRKC 91.50 100.84 103.91 114.30 122.99 124.83 131.54 146.45 157.57
NUCn wRRS 68.29 70.93 90.19 74.72 90.36 93.54 103.25 92.65 120.69
woR 71.16 72.65 85.50 64.70 82.34 88.40 73.28 76.91 94.33
wRKC 94.80 99.53 98.20 106.83 111.00 118.21 124.10 131.44 130.02
UCn wRRS 77.45 77.99 81.28 90.68 91.29 104.36 97.70 87.89 105.68
woR 70.33 69.94 89.82 77.23 94.43 86.60 90.63 106.04 91.04

The solution for the scenario with rebalancing (Fig. 13(b)) differs
only in the fact that vehicles D4, D5, and D6 are dispatched to rebalanc-
ing centers. Therefore, at the next re-optimization phase (Fig. 13(c)),
D4 and D6 are much closer to the new requests N2, N3, and N4, and
can pick them up ensuring their requested arrival time is satisfied.

The example in Fig. 14(a) illustrates how capacity constraints work.
The original number of customers on board are shown in green boxes
next to the vehicle. Assume the capacity of each vehicle is O = 4. We
observe that routes 1 and 3 are feasible with respect to the capacity
constraints as in both cases the number of customers on board does not
exceed Q. Route 2, on the other hand, will be infeasible, since there
are already 3 customers on board vehicle D2 at the beginning of the
optimization phase, and the route assigns two additional customers to
the vehicle, thus violating the capacity constraints.
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Fig. 14(b) illustrates how requested arrival time constraints are
enforced. Assume the re-optimization phase starts at time 7' = 0. The
requested arrival time of the vehicles and customers are shown in
purple boxes while travel times are shown on top of the arcs. For route
1, the total travel time is 5 + 5 + 4 = 14, which violates the requested
arrival time of the passengers already on board of D1, which is 12. Thus
the route is infeasible, even if the arrival times of the two customers in
route 1 are respected. Routes 2 and 3 are instead feasible as the arrival
times of both customers and vehicles are respected.

Appendix C. Results for different numbers of rebalancing centers

See Tables 9-12.
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Fig. 12. Example problem in a scenario where rebalancing in not permitted.
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Fig. 13. Example problem in a scenario where rebalancing is permitted.
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Table 10
Service rate [%] in the simulations with |%#| = 4.
C6V10 C6V12 C6V14 C7V10 C7V12 C7V14 C8V10 C8V12 C8V14
wRKC 91% 98% 98% 95% 97% 97% 93% 96% 98%
NUCt wRRS 95% 94% 93% 91% 92% 91% 89% 93% 94%
woR 94% 94% 94% 89% 94% 91% 90% 90% 92%
wRKC 97% 97% 96% 95% 96% 98% 94% 98% 99%
UcCt wRRS 92% 94% 95% 92% 93% 94% 92% 94% 94%
woR 91% 95% 94% 92% 95% 95% 91% 96% 92%
wRKC 79% 84% 86% 79% 84% 86% 77% 84% 89%
NUCn wRRS 59% 62% 77% 56% 63% 65% 62% 57% 72%
woR 63% 66% 72% 48% 60% 62% 47% 48% 57%
wRKC 86% 87% 87% 81% 88% 87% 82% 87% 90%
UCn wRRS 67% 70% 72% 72% 72% 78% 64% 62% 70%
woR 66% 69% 78% 63% 76% 68% 66% 72% 65%
Table 11
Profit [$] in the simulations with |%| = 5.
Cc6V10 Cc6Vv12 C6V14 C7V10 C7V12 C7V14 C8V10 c8vi2 C8V14
wRKC 55.59 58.84 57.78 68.43 67.63 70.83 76.62 81.41 82.31
NUCt wRRS 56.72 55.37 53.75 64.77 68.90 66.49 73.98 79.11 80.38
woR 56.37 56.61 56.42 63.96 67.08 65.72 74.71 77.52 78.71
wRKC 54.50 51.97 56.89 64.16 64.61 63.51 67.93 74.05 72.42
Uct wRRS 53.76 51.60 53.94 61.15 60.48 62.18 67.57 67.84 70.33
woR 50.88 55.03 54.35 61.46 61.68 65.22 66.79 71.78 68.77
wRKC 96.28 89.64 97.71 117.68 120.27 128.11 127.05 149.52 148.79
NUCn wRRS 73.74 79.37 87.74 86.42 77.28 97.84 91.69 103.02 115.89
woR 71.16 72.65 85.50 64.70 82.34 88.40 73.28 76.91 94.33
wRKC 90.33 86.50 94.46 101.61 112.41 106.93 114.81 123.93 125.85
UCn wRRS 61.13 84.17 81.85 72.83 78.28 91.78 86.65 88.83 103.16
woR 70.33 69.94 89.82 77.23 94.43 86.60 90.63 106.04 91.04
Table 12
Service rate [%] in the simulations with |#| =5.
C6V10 C6V12 C6V14 C7V10 C7V12 C7V14 C8V10 C8V12 C8V14
wRKC 93% 99% 96% 94% 95% 97% 89% 95% 96%
NUCt wRRS 93% 94% 91% 91% 94% 92% 90% 93% 93%
woR 94% 94% 94% 89% 94% 91% 90% 90% 92%
wRKC 98% 94% 98% 95% 98% 95% 93% 99% 98%
UCt wRRS 94% 94% 97% 95% 93% 94% 92% 90% 95%
woR 91% 95% 94% 92% 95% 95% 91% 96% 92%
wRKC 78% 78% 81% 81% 83% 86% 78% 86% 84%
NUCn wRRS 63% 68% 75% 61% 59% 70% 59% 63% 69%
woR 63% 66% 72% 48% 60% 62% 47% 48% 57%
wRKC 81% 75% 82% 81% 87% 83% 77% 82% 85%
UCn wRRS 61% 78% 76% 62% 66% 76% 64% 68% 73%
woR 66% 69% 78% 63% 76% 68% 66% 72% 65%
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