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Modeling optimal drone fleet size considering stochastic demand 
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A B S T R A C T   

The last mile delivery is particularly challenging for stochastic deliveries with narrow time windows. This topic is 
timely due to the rise of e-commerce and courier type services and the impacts of fleet size and vehicle type on 
delivery costs. A novel contribution of this research is to provide an optimization approach, extending the 
newsvendor model, to provide an optimal drone fleet sizing solution with stochastic demand in terms of number 
of deliveries and deliveries weight or payload from one central depot. The solutions obtained are robust, as 
shown in a comprehensive sensitivity analysis.   

1. Introduction 

In recent years, there have been a lot of exciting announcements and 
pilot studies of drone, or Unmanned Aerial Vehicles (UAVs), de
ployments in freight transportation and logistics. UAVs have been 
featured frequently in the media following announcements made by 
large corporations such as Amazon (Vincent and Gartenberg, 2019). 

In the US e-commerce grew at a 30% rate in 2020 (eMarketer, 2020) 
and drone deliveries are expected to become a 7 billion US dollar market 
by 2027 (Insights, 2020). Drones are increasingly being utilized to 
deliver medical supplies and in courier type services. The COVID-19 
pandemic has accelerated this trend. Drones arrive quickly by taking 
more direct paths and avoiding ground-based obstructions or congested 
roads. 

Most of the drone literature has focused on routing, path optimiza
tion, or scheduling of truck-drone teams. This research studies a novel 
drone fleet sizing problem with stochastic demand in terms of demand 
volume and size of the delivery. Unlike most studies, in this research, the 
objective function is profit maximization when there are costs associated 
with the aircraft size and unmet customer demands. This paper is 
organized as follows: a literature review is presented in the next section, 
followed by a formulation of the drone fleet size optimization problem 
with a stochastic number of demands and demand weights or payload. 
Payload is important because for drones, unlike ground vehicles, 
payload is a major constraint that severely reduces drone range and 
impacts on its costs. A comprehensive simulation and sensitivity analysis 
of a fleet sizing scenario is later presented. The paper ends with 
conclusions. 

2. Literature review 

This section provides a brief background regarding drone-truck ap
plications, fleet sizing, and drone emissions. The idea of utilizing both 
UAV and trucks (Murray and Chu, 2015) to improve overall delivery 
efficiency has been analyzed by many authors focusing on the actual 
design of routes and logistics systems in the last five years. There has 
been an explosion in the number of papers related to drone routing 
optimization. Several reviews present an overview of modeling efforts. 
Since the focus of this research is on drone fleet sizing, not on routing or 
scheduling, the reader is referred to the following surveys for drone 
applications, vehicle routing, and scheduling. A survey of applications of 
drones in civil problems is presented by Otto et al. (2018). A more recent 
survey by Macrina et al. (2020) focuses mostly on routing problems with 
drones and the review by of Chung et al. (2020) on drone-truck com
bined operations. 

In the drone literature, it is possible to find drone a small number of 
research efforts and models that incorporate stochastic elements. For 
example, Baloch and Gzara (2020) study parcel deliveries with drones 
under competition using multinomial logit models. In this work, there is 
competition and uncertainty regarding drone market share but also 
regarding overall market size. The work of Chen et al. (2021) use a 
Markov decision process to develop closed analytical solutions that are 
useful to get insights regarding drone fee structures and delivery ca
pacity for drone delivery operations with random demands, different 
product categories, and multiple service zones. Drone fleet sizing has 
received scant attention in relation to drone-truck routing. The work of 
Lee (2017) utilizes modularity and simulation in drone design to 
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estimate fleet size and optimize their operation. Rabta et al. (2018) 
studies a drone fleet model for last mile deliveries in humanitarian lo
gistics using a MIP model where the objective minimizes the total 
traveling distance or cost taking into account drone payload and energy 
constraints and the installation of recharging stations. Chauhan et al. 
(2019) present a MIP formulation and heuristics to maximize drone fleet 
coverage, also taking into account drone payload and energy constraints 
and providing facility location, allocating drones to facilities and drones 
to customers. This work is later extended to provide robust solutions 
when accounting for uncertainty in initial energy battery availability 
and energy consumption (Chauhan et al., 2020). Torabbeigi et al. (2020) 
formulate a set covering problem and a MIP model, considering payload 
and battery consumption, to locate facilities and minimize the number 
of drones in a parcel delivery system. Point-to-point operations that 
extend the range of drone have been also studied (Pinto and Lagorio, 
2022). 

Fleet sizing under demand uncertainty has been studied for specific 
time-sensitive applications. For example, Boutilier et al. (2017) takes 
into account spatial demand uncertainty and utilizes optimization and 
queuing to determine drone fleet size for the emergency delivery of 
automated external defibrillators. This work was extended by Glick et al. 
(2021) to include not only demand uncertainty, but also the impact of 
weather conditions on drone fleet sizing. An integrated location-queuing 
model was later developed using realistic response times and analyzing 
the impact of congestion (Boutilier and Chan, 2022). Other practical 
applications include work on cold chain network design for vaccine 
distribution with time limits (Enayati et al., 2023). 

The models and results presented in this research are novel in several 
ways: (a) there is uncertainty regarding the number of requests per 
period, (b) there is uncertainty in terms of demand characteristics such 
as the parcel weight, and (c) it is a profit maximization problem where 
companies or drone operators face tradeoffs in terms of fleet size, type of 
drone, revenue, operating costs, and lost sales. The profit maximization 
approach is more appropriate when private operators are assumed and 
given the revenue/cost tradeoffs not all customers could be served. To 
the best of the authors’ knowledge, there is no similar published 
research related to drone fleet size optimization. 

3. Drone fleet size problem formulation 

The formulation of the drone fleet size model utilizes ideas related to 
the newsvendor model for fleet sizing. The newsvendor model is a basic 
problem in stochastic inventory control and from the 1950s has been 
widely studied and applied to operations research and supply chain 
management problems (Wooldridge, 2015). The newsvendor approach 
has been used in the transportation literature, for example, to determine 
optimal fleet size in public transportation settings where agency costs 
are comprised by vehicle size, empty seats, and lost sales and user costs 
are related to waiting and overcrowding (Herbon and Hadas, 2015) or 
transportation adaptation of a supply chain model (Hadas and Shnai
derman, 2012). However, unlike the above-mentioned models, which 
are minimum cost models, the proposed model is based on profit 
maximization and applied to drones, which requires a different formu
lation incorporating payload constraints. 

3.1. Assumptions 

The main assumptions in this research are the following.  

1. Delivery times are short like in a typical courier service. Without loss 
of generality in this research, it is assumed that the planning period is 
½ hour and that drone deliveries are made in this ½ hour period. 
Hence, for fleet size planning purposes, a ½ peak demand period is 
assumed to determine drone fleet size.  

2. The distribution of demand is known, but the actual demand to be 
served in each period is only known at the start of the period.  

3. One trip for one customer per drone can be completed in the ½ hour 
demand period. This is a reasonable assumption, taking into account 
flying time, takeoff and drop-off time, cargo preparation and battery 
swapping time. 

4. Drone purchase cost is a function of payload capability. Drone pur
chase cost and operational cost is an increasing function of drone 
size.  

5. Drone service area and range are constant and independent of drone 
size. Drone costs increase as a function of payload and reflect larger 
batteries to serve the same service area.  

6. A customer can be served by a drone or a truck, but drones travel 
from the depot directly to the customer, i.e. the drone is not using the 
truck as a base for take-off or landing. 

The first two assumptions are similar to assumptions found in the 
traditional newsvendor problem, where the decision (fleet size in this 
case) must be made before actual demand realization is known. In 
particular, the ½ hour time window in the case of drone deliveries can be 
considered as planning for the peak hour demand where customers are 
willing to pay an extra fee or premium for a fast delivery service as well 
discussed in Baloch and Gzara (2020). The following three assumptions 
are needed for drones and not found in the newsvendor literature. As a 
result of these three assumptions, it is necessary to add a decision var
iable: drone payload (size) that greatly increases the complexity of the 
problem. These assumptions are realistic and not very restrictive. The 
main limitation of the newsvendor model is that demands cannot be 
carried over onto the next period, i.e. demands that are not served in a 
given period are lost. It is not possible to postpone servicing a demand or 
to allow for demand backlogs in inventory control terminology. Another 
limitation of the model is that in the real-world, fleet size is an integer 
variable and there is a finite set of drones (payloads) to choose from. The 
results of the model provide the best solution, assuming continuous 
variables, but because the objective function is fairly “flat” around the 
optimal, the rounded values provide a very good approximation. 
Alternatively, given that the number of potential payloads is limited, the 
payload value can be set and the model can be run optimizing only fleet 
size. The model is meant to provide managerial insights to guide drone 
fleet sizing decisions. In practice, there could be many other application 
specific constraints, like financing and cash flows that are outside of the 
scope of this paper. 

The model considers two decision variables, the fleet size (N) and 
drone’s capacity or payload (V). However, to simplify the presentation 
of the model, and without loss of generality, N is also referred to as the 
maximum number of planned trips per period because it is assumed that 
each drone can only serve a customer per period. Having N as the 
number of planned trips, can further relax the non-integer results, which 
is acceptable as N is the average number of trips per time window, 
similar to the way public transport headways are being used (Hadas and 
Shnaiderman, 2012). 

3.2. Random variables and distributions 

The decision variables are related to two distributions or random 
variables: the demand distribution or number of trips per period and the 
distribution of customer payloads. In the proposed model, the two 
random variables should follow three requirements: 1) non-negative 
intervals of finite length, 2) twice differentiable, and 3) fit or estimate 
common distributions. The first requirement stems from the nature of 
the decision variables, i.e. both are non-negative, with the payload 
bounded by minimal and maximal size related to economical and 
physical properties, while the demand can be estimated within a certain 
confidence interval. The second requirement reflects the need for a 
closed-form derivation of the optimal solution. The last requirement 
satisfies the need to estimate different distributions representing de
mand and weight patterns. 

The four parameter Beta distribution (McDonald and Xu, 1995), with 
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the shape parameters α and β in the positive interval [l, u] satisfies all 
three requirements. It is bounded by parameters l and u and differen
tiable per equation (1). 

f (x)=
(x − l)α− 1

(u − x)β− 1

(u − x)α+β− 1 Γ(α)Γ(β)
Γ(α+β)

(1) 

Given that the Gamma function is defined as Γ(n) = (n − 1)! equation 
(1) is also polynomial, which will be useful later for obtaining the global 
optimal solution. The shape parameters α and β can be modified to 
define both symmetric (α= β= 1) and unimodal skewed 
(α> 1, β> 1,α∕= β) distributions, with relatively straightforward 
calculation of the first two moments (equation (2) and equation (3)). 

E(x)= l +
α

α + β
(u − l) (2)  

Var(x)=
αβ

(α + β)2
(α + β + 1)

(u − l)2 (3) 

Furthermore, the most common distributions (normal, logistic, etc.) 
can be approximated using a Beta distribution. Furthermore, both uni
form and exponential distributions are special cases when the parame
ters are (α= β= 1) and lim

n→∞
n Beta(1, n) = Exp(1) respectively. Fig. 1 

provides four examples of the four parameters Beta distribution for 
different parameters α, β , l and u, in this research the demand attributes 
are number of customers per period and payload per customer (both 
stochastic variables). 

3.3. Model formulation 

The model maximizes a profit function which is composed of four 
components: revenues (Tr), delivery costs (TCe), operation costs (TCo), 
and lost sales when customer requests cannot be satisfied due to fleet 
size and payload limits (TCl). 

Unlike the traditional newsvendor model, which only has one deci
sion variable, the optimization model utilized in this research has two 
decision variables. In the traditional newsvendor model, there is a one- 
dimensional probability space with two regions, shortage and surplus. In 
the proposed model, there is a joint probability space with two di
mensions that are independent of each other based on the following 
properties.  

1) The demand and weight distributions are independent. The former 
defines the number of deliveries, while the latter denotes the indi
vidual weight of each delivery.  

2) The fleet size and payload decision variables are each uniquely 
associated with the demand and weight, respectively. 

3) Following 1) and by definition, the decision variables are indepen
dent. Given the complexity of the proposed newsvendor model with 
two independent variables, a case where demand number and 
payload are positively or negatively correlated is left as a future 
research effort. 

Based on the previous three assumptions the two-dimensional 
probability space can be divided into four regions, as illustrated in 
Fig. 2. The bounds of the demand interval are denoted [ld, ud] and the 
bounds of the payload interval are denoted [lw,uw]. The two axes, x and 
y, correspond to the payload and fleet size, respectively. Each axis is 
bounded by the variable’s minimum and maximum values. The vertical 
and horizontal lines are projecting a given values of the decision vari
ables. Region 1 refers to the so-called surplus region, as these actual 
demand and weight can be satisfied. Region 4 reflects the shortage 
related to both payload and fleet size. Region 2 refers to the situation in 
which unsatisfied demand is related to payload only (payload shortage). 

Region 3 refers to the situation in which unsatisfied demand is 
related to insufficient fleet size (fleet size shortage). Unlike previous 
regions, region 3 can be divided into two sub-regions, 3a and 3b, in 
which the latter can be satisfied by unused trips associated with region 
2. Hence, the formulation of the problem should include the not a priori 
obvious case where the demand per period exceeds the number of 
drones available but some of the shortage is captured already in region 2 
and should not be double counted. 

Furthermore, each region is associated with one or more of the 
revenue or cost components. The realized revenue and delivery costs are 
associated with region 1, as they are a function of the actual demand 
bounded by the selected fleet size and payload. Lost sales due to payload 
limit occur for all requests with weight over the payload limit (region 2). 
Lost sales due to fleet size limit occur for fleet size limits (region 3), and 
lost sales due to both variables are associated with region 4. 

The exact formulation of each component is herein defined, with 
fd(x) and fw(y) as the demand and weight probability distribution 
functions, respectively. Since both probability distributions are inde
pendent the joint probability fdw(x, y) can be written as fd(x) fw(y). 
Following that, the integrals over fd(x) and fw(y) can be replaced by the 
probability functions: 

Fig. 1. Examples for the four parameters Beta distribution.  Fig. 2. probability space’s zones.  
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Fd(V)=

∫N

ld

fd(x)dx (4)  

Fw(V)=

∫V

lw

fw(y)dy (5)  

In turn, equations (6)–(9) define the aforementioned regions’ 
expectancies. 

Ed(N,V)=

∫ud

ld

Min(x,N) fd(x) dx Fw(V)=

⎛

⎝
∫N

ld

x fd(x) dx+N(1 − Fd(N))

⎞

⎠

Fw(V)
(6)  

Ew(N,V)=
∫ud

ld

w(N,V, x) fd(x) dx=
∫ud

ld

Min(x,N) fd(x) dx (1 − Fw(V))

=

⎛

⎝
∫N

ld

x fd(x) dx+N(1 − Fd(N))

⎞

⎠ (1 − Fw(V))

(7)  

Es(N,V)=

∫ud

N

s(N,V, x) fd(x) dx=

⎛

⎝
∫ud

N

x fd(x) dx

− N(1 − Fd(N))

⎞

⎠ Fw(V) (8)  

Esw(N,V)=

⎛

⎝
∫ud

N

x fd(x) dx − N(1 − Fd(N))

⎞

⎠ (1 − Fw(V)) (9) 

The additional deliveries based on the unused trips resulting from the 
payload limits can be formulated as the expectancy of the minimum 
between regions 2 and 3. Equation (10) defines the additional successful 
deliveries resulted with the unused trips due to payload limits. i.e., as 
each planned trip has a probability Fw(V) of not being served it can 
potentially satisfy part of the unmet deliveries. 

Ed′(N,V)=

∫ud

N

Min (s(N,V, x),w(N,V, x))dx

=

∫ud

N

Min ((x − N) Fw(V),N(1 − Fw(V)))fd(x) dx (10) 

Equation (11) defines the total revenues’ expectancy, where R is the 
revenue or price paid per delivery. Equation (12) and equation (13) 
define the operation costs’ expectancies related to the fleet size and 
drone size (maximal payload). The former are the costs incurred by the 
actual deliveries, with the coefficient Ce, which is the average cost to 
complete a trip related to energy and battery consumption. The latter is 
the fixed cost required to secure the availability of the drones regardless 
of the actual deliveries (purchasing, labor, facility). Two coefficients are 
associated with the fixed costs, Cv and Cf , the former with the drone size 
and the latter with the fleet size. 

Finally, equations (14)–(16) define the penalties’ expectancies 
associated with unserved customers due to fleet size and payload limits. 
Both penalty components are associated with the same penalty per un
served customer Cl. 

Tr(N,V)=R (Ed(N,V)) + Ed′(N,V) (11)  

TCe(N,V)=CeV (Ed(N,V)+Ed′(N,V)) (12)  

TCo(N,V)=N
(
Cf +CvV

)
(13)  

TCs(N,V)=Cl Es(N,V) (14)  

TCw(N,V)=Cl Ew(N,V) (15)  

TCsw(N,V)=Cl Esw(N,V) (16) 

The objective function is then to maximize the profits (for clarity, the 
decision variables were removed from the functions). 

max Tp = Tr − TCo − TCe − TCs − TCw − TCsw
ld ≤ N ≤ ud
lw ≤ V ≤ uw 

However, part of the penalties should be eliminated. This fact follows 
from equation (10) where additional deliveries are carried out. Hence, 
TC sw, which is the absolute difference between w(N,V, x) and s(N,V,x), 
replaces TCs and TCw as follows: 

max Tp = Tr − TCo − TCe − TC sw − TCsw.
ld ≤ N ≤ ud
lw ≤ V ≤ uw

(17)  

where 

E sw (N,V)=

∫N

ld

x (1 − Fw(V)) fd(x) dx +
∫ud

N

| N(1 − Fw(V))

− (x − N) Fw(V)| fd(x) dx (18)  

TC sw (N,V)=Cl E sw (N,V) (19) 

The model can be rewritten as follows. Equation (10) can be 
simplified given that regions 3a and 3b are divided at the line defined by 
equation (20). 

N′(V)=
N

Fw(V)
(20)  

as a result, equation (10) can be rewritten as: 

Ed′(N,V)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫
N

Fw(V)

N

(x − N) fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fw(V)

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

N
Fw(V)

ud N fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1 − Fw(V)) (21)  

With N′(V) ≤ ud, eliminating the use of the minimum operator (equation 
(10)) by dividing the integral from N to ud into two separate integrals 
from N to N

Fw(V) and from N
Fw(V) to ud. For clarity, the full development of 

equation (21) is provided in Appendix A. Based on equation (20), 
equation (18) can be rewritten as: 

E sw (N,V)=

∫N

ld

x (1 − Fw(V)) fd(x) dx +
∫

N
Fw(V)

N

(N − x − Fw(V))fd(x) dx

+

∫

N
Fw(V)

ud (x Fw(V) − N)fd(x) dx

(22) 
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Once again, for clarity, the full development of equation (22) is 
provided in Appendix A. As a result, the revised objective function is 

max Tp = Tr − TCo − TCe − TC sw − TCsw.

ld ≤ N ≤ ud
lw ≤ V ≤ uw

s.t. N′(V) ≤ ud

(23)  

4. Global optimal search algorithm 

The objective function (23) is non-convex, as depicted in Fig. 3, 
hence traditional optimization algorithms does not guarantee finding 
the global optima. However, the model has several properties that 
enable the construction of an efficient global optimal search algorithm. 

The objective function components are twice continuously differ
entiable functions, as such, existing algorithms that use convex relaxa
tion of non-linear twice continuously differentiable functions can obtain 
the global optima. Hence the αBB algorithm (Androulakis et al., 1995) or 
the QBB algorithm (Zhu and Kuno, 2005) are possible algorithms that 
can be used. Furthermore, as fd(x) and fw(y) are polynomial functions it 
follows that Tp is a polynomial function as well, as Tp’s components are 
integrals over polynomial functions. This in turns, simplified the search 
for the global optima, even though Tp is non-convex. Specifically, the 
search procedure can be constructed as follows. 

4.1. Step A: model relaxation  

1) Objective function (23) is solved unconstrained.  
2) Find all roots of the unconstrained function (23): 

∂Tp
∂N

= 0,
∂Tp
∂V

= 0 (24)    

3) Iterate over all roots and identify the global optima. 
4) If the global optimum is feasible, given the constraint, stop. Other

wise continue to step B. 

Solving (24) is a relatively simple task, as the problem of finding all 
roots of a multivariate polynomial is a well-studied problem (Geil, 
2015), specifically when solving over a bounded interval, such as the 
problem at hand. Then, commercial packages can be used that imple
ment traditional search algorithms such as the Newton-Raphson. 

4.2. Step B: Lagrange multiplier 

If the global optimum is outside the feasible region, then solve the 
objective function with equality constraint, as the solution resides along 
the constraint (equation (25)). 

max Tp′ = Tr − TCo − TCe − TC sw − TCsw − λ(N′(V) − ud)
ld ≤ N ≤ ud
lw ≤ V ≤ uw

(25)    

1) Find all roots of equation (25) based the Lagrange multipliers 
method. 

∂Tp′

∂N
= 0,

∂Tp′

∂V
= 0,

∂Tp′

∂λ
= 0 (26)    

2) Iterate over all roots and identify the global optimum. 

5. Drone fleet sizing results 

The implementation of the formulation and search algorithm is 
applied in this section to a base case study. To further study the stability 
of the solution, a sensitivity analysis and noise in the parameters are also 
studied in this section. 

6. Case study 

The model was implemented with Maple 2020 package (Maplesoft, 
2020). Solutions were obtained instantly, as the model is differentiable 
with only range constraints for the decision variables. Assuming a ½ 
hour period, with 1 trip per period per drone, the following parameters 
were selected for a case study. The revenue (R) per delivery is based on 
rush courier delivery rates (Breakaway, 2021) after considering the 
service area of the drone and the number of deliveries per hour. For the 
drone costs, two key assumptions are labor costs per trip and the useful 
life of the aircraft (Figliozzi, 2018) and a base cost for unmet delivery is 
the cost of an alternative ground delivery like Uber Eats (Gridwise, 
2020). 

The appeals of drones are both potential delivery time savings and 
cost (Vincent and Gartenberg, 2019). It is important to note that the 
profit for a drone delivery assumes a premium due to fast and reliable 
delivery and the cost of unmet demand is related to using a ground 
service to cover the unmet drone demand and/or the loss of a customer 
to a rival service provider. Drone services are still in its infancy and it is 
not trivial to estimate the value of lost customer (Hogan et al., 2003), 
due to the difficulties to identify precise or narrow ranges for most of the 
parameters an extensive sensitivity analysis exercise is performed in the 
following section. 

R = $12.5/delivery 
Cl = $ 5.0/unmet delivery 
Cf = $ 1.5/delivery 
Ce = $ 0.2/delivery-kg payload 
Cv = $ 0.1/delivery-kg payload 

For this study, we assume that a multi-copter can carry up to 2.5 kg of 
payload with an effective range of 10 km. As a reference, Amazon is 
studying drones to deliver up to 5 pounds (2.27 kg) in 1/2 h or less, 
which roughly agrees with the assumptions made in this paper (Amazon, 
2021). In additions, up to 5 pounds accounts for 80–90% of Amazon 
packages (Manjoo, 2016). As a reference, an effective range of 5 km 
covers downtown Manhattan in New York City. For service times, it is 
assumed that an average drone delivery requires 30 min. Note that for a 
total round trip of 10 km, flying at an average cruise speed of 18 m s the 
flying time is approximately 9–10 min, and the rest of time is consumed 
by other activities which include: take-off preparation, delivery time, Fig. 3. Objective function (Tp) as a function of payload V and fleet size N.  
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landing, battery swap, and cargo loading and securing (Glick et al., 
2021). 

The values of Ce and Cv are determined taking into account that for 
delivery drones the payload is approximately 1/5 of the drone total 
takeoff weight and that drone energy consumption and costs are a 
function of drone size (Figliozzi, 2023a). It is implicitly assumed that 
many of the drone dimensions and cost data are approximately linear for 
small size drones with a tare (empty weight without payload and bat
tery) of up to 10 kg as shown when analyzing real-world drone speci
fications (Figliozzi, 2018). The tare of the drone is assumed to be 8 kg 
and the battery 2.5 kg. The estimated cost related to energy and battery 
replacement are approximately $0.5 per delivery assuming: a payload of 
2.5 kg, a battery energy density of 200 wh/kg, a cost of $275/Kwh, a 
battery life of 300 cycles, a 50% battery utilization to account for the 
safety factor and aging, a cost per Kwh of approximately $0.15/Kwh, 
and finally a drone energy consumption of 25 wh/km when flying. The 
estimated cost of drone as a function of size is estimated as $0.25 per 
delivery assuming: a payload of 2.5 kg, 3000 flight hours per drone, and 
an initial drone cost of $7500. A comprehensive sensitivity analysis is 
provided because drones and battery technologies are quickly evolving 
(Figliozzi, 2023b) and therefore it is recommended that assumptions 
regarding drone costs and capabilities in future research efforts should 
be adequate for the specific application and year of analysis. 

Demand and weight probability distributions parameters were set to 
fd(x) ∼ Beta(α= 3, β= 3, l= 0, u= 100) and fw(y) ∼ Beta(α= 3, β= 3,
l= 0, u= 2.5) respectively. The weight distribution is in kilograms. With 
these parameters the expected demand and variance are 50 and 357 
respectively and the expected weight and variance of 1.25 and 0.22 
respectively. The optimal solution value is $458 obtained for N = 75 
drones and V = 2.38 kg (5.25 lbs) of maximum payload per drone. 

The solution space is presented in Fig. 3, along with the break-even 
plane. The shape of each of the components and values associated with 

the optimal solution are presented in Appendix B. All the six figures are 
aligned with the axes of Fig. 3. 

6.1. Sensitivity analysis 

The sensitivity analysis constitutes of the following assessments: 1) 
distributions’ shape analysis, 2) coefficients sensitivity, 3) noise level 
analysis and 4) robustness analysis. 

6.1.1. Distribution shapes 
First, the effect of the demand and weight distribution shapes was 

investigated. For that, the base solution, which has symmetrical distri
butions was compared to positive and negative skewed distributions. 
The results are presented in Table 1. 

When compared to the symmetrical distribution, the positive and 
negative skewed distributions have a drastic effect on the fleet size and 
drone size. Positive skew distributions decrease the optimal fleet size 
and drone size (demand and weight averages are smaller), while nega
tive skew distributions increase them. Moreover, as fd(x) and fw(y) are 
independent, each one affects its corresponding decision variable. The 
slight change of the other decision variable can be attributed to TCo 
(equation (13)), which has a multiplication of N and V. Please note that 
N was rounded, the slight change (0.1–0.2 for each column) is not 
presented. 

6.1.2. Coefficients sensitivity 
Additional sensitivity analysis was performed for each of the co

efficients with selected coefficient values, while holding all other co
efficients to their initial values. This analysis examines the effect on N 
and V resulting from increasing or decreasing each coefficient. The re
sults are summarized in Table 2. The results provide insight into the 
change of N and V with regards to the specific coefficient. The coefficient 

Table 1 
Sensitivity analysis of the demand and weight distributions.      

Demand distribution 

Positive skew 
E = 29, V = 162 

α = 2,β = 5 

Symmetrical 
E = 50, V = 192 

α = 3,β = 3 

Negative Skew 
E = 71, V = 162 

α = 5,β = 2     

Weight distribution Positive skew 
E = 0.71, V = 0.42 

α = 2,β = 5 

N 51 75 91 
V 1.90 1.93 1.94 
Tp 243 465 703 

Symmetric 
E = 1.25, V = 0.472 

α = 3,β = 3 

N 51 75 91 
V 2.37 2.38 2.39 
Tp 239 548 685 

Negative Skew 
E¼1.79, V¼0.42 

α = 5,β = 2 

N 51 75 91 
V 2.49 2.50 2.50 
Tp 238 457 693  
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that is being examined has a gray background. The objective is to verify 
that increasing or decreasing each coefficient is logical: 1) Increasing R 
(from 12.5 to 30, 100, and 550) increases both N and V, as higher rev
enue reduces the effect of the costs. The same applies to decreasing R 
(from 12.5 to 10, 5, and 1). 2) Similar behavior can be observed from Cl. 
Higher shortage costs must reduce then shortage, which is realized by 
increasing N and V. 3) Cv and Cf are the coefficients related to the so 
called fixed costs (equation (13)), so higher fixed costs (increasing the 
coefficients) decreases both N and V. However, as Cf is only related to N, 
the effect on V is minimal. 5) Ce is related to the operational costs 
(equation (12)), and have similar effect to Cv and Cf . However, Cv is 
multiplied by V (aside from the demand), hence it affects only V when 
the change is closer to the initial coefficient value. However, due to the 
power effect, the larger the coefficient, the higher the change of both N 
and V. 

The results verify that the behavior of all the coefficients are logical. 

6.1.3. Noise level analysis 
Each of the objective function coefficients was injected with a 

random, uniformly distributed noise, in which c’ is a randomized coef
ficient c with a noise level in a given % range pr. The noise was injected 
for each coefficient before obtaining the optimal solution. A total of 
1000 independent simulations were performed for each scenario with 
the optimal decision variables results recorded. 

c′ = c+ rand (1 − pr…1+ pr (27) 

Fig. 4 illustrates the distribution of the decision variables optimal 
values in a range determined by pr = ±20% for each of the coefficients 
(Cl,Ce,Cf ,Cv,R). The black dot represents the original optimal solution. 
All the coefficients have linear effect on N and V. Clearly, based on the 
slopes, Cf affect mostly N, while Ce,Cv has more effect on V. The pa
rameters Cl,R have similar impact on N and V. 

In order to investigate extreme values, each of the coefficients was 
randomized within the following range: Cl− 0.1000, Ce− 0.5.1, Cf – 
0.10, Cf – 0.5.1, and R – 1.500. 

Fig. 5 illustrates that for a wider range of noise levels, not all the 
coefficients are linear, especially the effect of R, Cf and Ce on N and V. 

Table 2 
Sensitivity Analysis of the Model’s Coefficients. 

Fig. 4. Decision variables distribution by coefficient with pr ± 20%.  

Fig. 5. Decision variables distribution by coefficient with extreme values.  
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6.1.4. Robustness analysis 
The robustness of the solution was investigated by introducing noise 

to all coefficients, excluding R. This is due to the uncertainty with 
drones’ operations, while R is associated with the delivery cost and is 
more predictable. 

Three scenarios were constructed for three noise levels: 5%, 10%, 
and 20%. The decision variables distribution is illustrated in Fig. 6, as a 
function of optimal fleet size (N) and payload (V). The black dot is the 
optimal solution without noise. The observations with less noise (5%) 

are close to the black dot and mostly covered by the observations with 
higher noise levels. To facilitate the observation of the distribution, 
there are three boxes bounded by the two-dimensional 5 and 95 per
centiles of N and V and by noise level. 

It is evident that the solution is robust, for the noisiest level (20%) 
the solution range is +/− ~1.5 drones and +/− ~0.012 kg. when 
considering the 5 and 95 percentiles bounds. 

The impact of noise on profits is observed in Fig. 7 utilizing histo
grams. As expected, the histogram range is roughly proportional to the 
noise level. The black vertical bar is the optimal solution without noise. 
It is also observed that the solution is also robust in terms of profit with a 
range ± 5% with the noisiest level (20%) with respect to the profit 
without noise. 

7. Conclusions 

The last mile delivery is particularly challenging for stochastic de
liveries with narrow time windows. Due to its characteristics, drones are 
suited for situations where fast and reliable deliveries are needed. This 
research developed a novel optimization approach for drone fleet sizing, 
extending the newsvendor model. The model provides an optimal drone 
fleet sizing solution with stochastic demand in terms of two decision 
variables: 1) number of deliveries and 2) deliveries weight or payload. 
Unlike other studies, in this research, the objective function is profit 
maximization and there are costs associated with the aircraft size and 
unmet customer demands. An efficient algorithm guarantees that the 
optimal solution is found, which can be used in large-scale delivery 
scenarios. The solutions obtained are robust, as shown in the compre
hensive sensitivity analysis. The sensitivity analysis showed the higher 
importance of fleet size in relation to drone size, though as drone 
technology is rapidly evolving it is important to consider that this 
finding may change in the future or other specific drone applications. 

This research focused only on drone fleet sizing, however, having a 
fleet of drones and a fleet of trucks is a more resilient approach since 
drones may not be able to operate effectively with adverse weather 
conditions and similarly ground vehicles may be hindered sometimes by 
congestion or ground network disruptions. However, having two 
different vehicle types is also likely to increase costs not only in terms of 
labor but also in terms of facilities and capital costs, and modeling these 
costs and tradeoffs requires a major future research effort. Further 
research is also necessary to study both drone and truck fleet sizes when 
considering profit and/or sustainability goals. Other research direction 
can extend the model with additional decision variable, the range (or 
coverage). The larger the range, the higher the potential demand. 
However, the number trips per drone will decrease due to the larger 
round trip. 
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APPENDIX A 

In this appendix, equation (21) and equation (22) are fully developed  
and proofed. For both equations two propositions are introduced, fol
lowed by each equation development. 

Fig. 6. Decision variables for 5%, 10%, and 20% noise levels.  

Fig. 7. Profit distribution for 5%, 10%, and 20% noise levels.  

Y. Hadas and M.A. Figliozzi                                                                                                                                                                                                                 



EURO Journal on Transportation and Logistics 13 (2024) 100127

9

Propositions 

Following eqautions (7) and (8), w(N,V, x) and s(N,V, x) can be defined as: 

w(N,V, x) =
[

x (1 − Fw(V)) x ≤ N
N(1 − Fw(V)) x ≥ N (28)  

s(N,V, x) =
[

0 x ≤ N
(x − N)Fw(V) x ≥ N (29)  

Proposition 1. s(N,V, x) < w(N,V, x) when ld ≤ x ≤ N. 

Proof: 
Following equations (28) and (29), w(N,V, x) − s(N,V, x) = x(1 − Fw(V)) − 0 > 0 as x ≥ 0 and Fw(V) ≤ 1. 

Proposition 2. s(N,V, x) ≤ w(N,V, x) when N ≤ x ≤ N
Fw(V)

ands(N,V, x) ≥ w(N,V, x) when N
Fw(V)

≤ x ≤ ud. 

Proof: 
Following equation (28) and(29), and for x ≥ N. 

w(N,V, x) − s(N,V, x)=N(1 − Fw(V)) − (x − N) Fw(V) = N − N Fw(V) − x Fw(V) + N Fw(V) = N − x Fw(V) (30) 

Therefore, for s(N,V,x) ≤ w(N,V,x), s(N,V, x) − w(N,V, x) ≤ 0 and following equation (30) 

N − x Fw(V)≤ 0 ⇒x ≤
N

Fw(V)

And for s(N,V,x) ≥ w(N,V,x), s(N,V, x) − w(N,V, x) ≥ 0 and following equation (30) 

N − x Fw(V)≥ 0 ⇒x ≥
N

Fw(V)

Construction of equation (21) 

Please recall that equation (10) is defined as 

Ed′(N,V)=

∫ud

N

Min (s(N,V, x),w(N,V, x))dx =

∫ud

N

Min ((x − N) Fw(V),N(1 − Fw(V)))fd(x) dx  

which is the minumim of w(N,V, x) and s(N,V, x) for the range (N,ud). 
Following Proposition 2: 

Ed′(N,V)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫
N

Fw(V)

N

(x − N) fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fw(V) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

N
Fw(V)

ud N fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1 − Fw(V))

Ed′(N,V)=
∫

N
Fw(V)

N

s(N,V, x) fd(x) dx+
∫

N
Fw(V)

ud w(N,V, x) fd(x) dx= =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫
N

Fw(V)

N

(x − N) Fw(V) fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

N
Fw(V)

ud (1 − Fw(V))N fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫
N

Fw(V)

N

(x − N) fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fw(V) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

N
Fw(V)

ud N fd(x) dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1 − Fw(V))

Construction of equation (22) 

Please recall that equation (18) is defined as 
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E sw (N,V)=

∫N

ld

x (1 − Fw(V)) fd(x) dx +
∫ud

N

| N(1 − Fw(V)) − (x − N) Fw(V)| fd(x) dx 

which is the absulute difference of w(N,V, x) and s(N,V, x) for the range (ld,ud). 
Following propsitions 1 and 2: 
For ld ≤ x ≤ N: 

w(N,V, x) − s(N,V, x)=w(N,V, x) = x(1 − Fw(V))

For ≤ x ≤ N
Fw(V) : 

w(N,V, x) − s(N,V, x)=N(1 − Fw(V)) − (x − N) Fw(V) = N − N Fw(V) − x Fw(V) + NFw(V) = N − x Fw(V)

And for N
Fw(V) ≤ x ≤ ud : 

s(N,V, x) − w(N,V, x)= (x − N)Fw(V) − N(1 − Fw(V)) = x Fw(V) − N Fw(V) − N + NFw(V) = x Fw(V) − N 

Hence: 

E sw (N,V)=

∫N

ld

w(N,V, x) fd(x) dx+
∫

N
Fw(V)

N

(w(N,V, x) − s(N,V, x)) fd(x) dx+
∫

N
Fw(V)

ud (s(N,V, x)

− w(N,V, x))fd(x) dx=E sw (N,V)=
∫N

ld

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(1 − Fw(V)) fd(x) dx+
∫

N
Fw(V)

N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

N(x − Fw(V))fd(x) dx+
∫

N
Fw(V)

ud (x − Fw(V) − N)fd(x) dx  

APPENDIX B  

TABLE 3 
Objective Function Components Solution Space and Optimal Values as a function of payload V 
and fleet size N.  

Component Solution space Optimal value 

Tr 615 

− TCo − 130 

− TCe − 23 

(continued on next page) 
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TABLE 3 (continued ) 

Component Solution space Optimal value 

− TCs − 3.5 

− TCw − 0.3 

− TCsw 0  
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