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A B S T R A C T

The paper investigates the Electric Vehicle Routing Problem with a non-linear concave and strictly monotonic
increasing charging function. In the literature, the non-linear charging function is typically approximated by
a piecewise linear charging function which does not overestimate the real charging function in any point.
As the piecewise linear charging function underestimates the real state-of-charge in some points, such an
approximation excludes feasible solutions from the solution space. To overcome this drawback we introduce
a new method to determine a piecewise linear charging function overestimating the real charging function in
a way that the area between both functions is minimized as well as an adaptation of a known linearization to
include the piecewise linear charging function in a branch-and-cut approach. Thereby, we include infeasible
solutions in the solution space. To declare them infeasible again we check every integer solution obtained in
the branch-and-cut procedure and add an infeasible path cut if the solution is infeasible for the real charging
function such that the procedure terminates with an optimal solution for the real charging function. Our
approach is evaluated in a computational study in which instances with up to 100 customers were solved
to optimality. Moreover, we evaluate the trade-off between a more complex model formulation due to more
binary variables if the number of supporting points for the piecewise linear approximation is increased and
the higher approximation error if fewer supporting points are used.
1. Introduction

Due to the importance of electric vehicles for the required trans-
formation to a zero-emission world, Electric Vehicle Routing Problems
(EVRPs) have been extensively investigated in recent years (Qin et al.,
2021). One of the most challenging aspects in modeling an EVRP is
the charging function. While in the first years authors assumed a linear
charging function (Schneider et al., 2014; Desaulniers et al., 2016), the
state-of-charge (SOC) increases non-linearly but concavely in real world
charging processes (Marra et al., 2012). However, while linear charging
functions can be implemented straightforward in linear mixed-integer
programming models, non-linear charging functions cannot be im-
plemented directly. Therefore, most of the authors model non-linear
charging functions in linear mixed-integer programming models for the
EVRP by a piecewise linear approximation of the charging function (see
e.g. Montoya et al. (2017)).

Indeed, a model with a piecewise linear approximation is not exact
any more. Thus, the paper at hand introduces a method using infea-
sible path cuts to overcome this disadvantage of the piecewise linear
charging function approximation leading to an exact solution approach.
Thereby, we are in line with a future research direction proposed

✩ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
E-mail address: arne.schulz@uni-hamburg.de.

in the review by Kucukoglu et al. (2021) who state that non-linear
charging operations should be incorporated. The proposed method can
be used by researchers to solve EVRPs exactly within a branch-and-cut
framework. To the best of our knowledge this is the first exact solution
approach for EVRPs with time windows and a realistic non-linear and
concave charging function.

Infeasible path cuts have already been used intensively in different
contexts in the operations research literature. Primarily, they were
introduced by Dantzig et al. (1954) to avoid subtours in the Traveling
Salesman Problem (TSP). The basic idea is to identify a path within a
tour of the current solution which is infeasible. Then, a cut is added
ensuring that only 𝑛 − 1 of the 𝑛 sequence variables determining the
path can be set to 1 in a feasible solution. By this, the current infeasible
solution is declared to be infeasible. In the paper, we use a piecewise
linear approximation of the charging function which overestimates the
real SOC. If the found solution in a branch-and-cut node is infeasible
with respect to the real charging function, an infeasible path cut is
added to declare the solution to be infeasible. By this, the best found
solution is feasible with respect to the real charging function such that
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we have found a feasible and optimal solution when the procedure
terminates.

Summarized, our contribution is fourfold:

• We introduce a new method to determine a piecewise linear ap-
proximation which never underestimates the real charging func-
tion. As we want to minimize the number of obtained infeasi-
ble solutions in the solution process, we determine this piece-
wise linear charging function such that the area between the
approximated and the real charging function is minimized.

• We present a mixed-integer program to solve the EVRP including
an adaptation of the linearization of the charging function pre-
sented in Zuo et al. (2019) to include the overestimation of the
real charging function.

• We use the model in a branch-and-cut framework. Thereby, we
add infeasible path cuts whenever we obtain an integer solution
which is infeasible regarding the real charging function such that
the procedure terminates with an optimal solution regarding the
real charging function.

• We evaluate the branch-and-cut algorithm in a computational
study with up to 100 customers.

The paper is structured as follows: First, we review the literature
regarding EVRPs with a focus on the charging process (Section 2). Then,
we formally describe the EVRP (Section 3). In Section 4, we discuss the
non-linear charging function before we introduce the solution approach
in Section 5. Thereby, we introduce the used mixed-integer program
(Section 5.1), including a linearization (Section 5.2) and preprocessing
steps to improve the search (Section 5.3). Moreover, the separation
procedure to identify infeasible paths (Section 5.4) is presented. After-
wards, our solution approach is evaluated in a computational study in
Section 6. Finally, the paper closes with a conclusion (Section 7).

2. Literature review

The EVRP is a variant of the Vehicle Routing Problem (VRP) with
electric vehicles which require charging. We refer to Pelletier et al.
(2017) for an profound analysis of the special properties of electric
vehicles in comparison to conventional vehicles. A general variant of
the VRP for alternative fuel-powered vehicles is the green VRP (Er-
doğan and Miller-Hooks, 2012). Our literature review focuses on the
modeling of the charging process in linear mixed-integer programs. The
charging process is typically either assumed to be linear or non-linear
but concave. While a linear charging process can be modeled directly
by constraints of the form

SOCdeparture𝑖 ≤ SOCarrival𝑖 + charging_rate ⋅ (timedeparture𝑖 − timearrival𝑖 )

with the linear charging rate for every location 𝑖, a non-linear concave
function needs to be approximated to linearize it. This is typically
done by a piecewise linear charging function underestimating the real
SOC. For an example compare Fig. 1. By this, authors ensure that
their solutions are feasible regarding the real charging function, but
it might be that their approximation cuts off the optimal solution. We
discuss the linearization in more detail including a formulation of the
corresponding constraints in Section 5.2.

Both variants have their advantages and disadvantages. Linear
charging can be modeled exactly but does not fully picture real-world
charging processes. Piecewise-linear approximations are a more precise
approximation of the real-world but lead to more difficult model
formulations and are still not exact. We discuss the literature on both
aspects in Sections 2.1 and 2.2.

For further reading on different aspects of the EVRP literature we
refer to the various reviews by Pelletier et al. (2016), Erdelić and Carić
(2019), Ghorbani et al. (2020), Zhou et al. (2020), Kucukoglu et al.
(2021), Qin et al. (2021), Xiao et al. (2021), and Ye et al. (2022)
2

published in recent years.
Fig. 1. Piecewise linear approximation of the real charging function with four
supporting points (underestimation; Montoya et al. (2017)).

For conventional fossil fuel vehicles authors usually assume that the
refueling process is fast enough such that the required time is neglected
in solution approaches (see e.g. Schulz and Suzuki (2023)). Accord-
ingly, under the assumption that refueling is fast and filling stations
are widely available, standard formulations for the TSP (Dantzig et al.,
1954; Miller et al., 1960) or the VRP (Toth and Vigo, 2014) even do
not include any refueling process. In contrast, the charging process
of electric vehicles requires a significant time such that it needs to
be part of an EVRP model. In the following, we first review papers
which assume charging to be linear (Section 2.1) and then those with
non-linear charging (Section 2.2).

2.1. Linear charging

Early approaches for the EVRP considered linear charging func-
tions (Schneider et al., 2014; Desaulniers et al., 2016), but also more
recent approaches still model the charging process linearly. They typi-
cally make the simplifying assumption of linear charging to evaluate
different aspects of routing problems with electric vehicles, which
are not directly related to the charging process itself such that a
linear approximation of the charging process is sufficiently precise.
However, realistic non-linear charging could also be included in these
approaches.

The focus in Hiermann et al. (2019) is on the mix of conven-
tional, plug-in hybrid, and electric vehicles. Macrina et al. (2019)
also considered a setting with a mix of conventional and electric
vehicles. Moreover, their conventional vehicles had to follow a limit
on emissions. In the work by Dönmez et al. (2022), multiple chargers
are evaluated. The above mentioned charging time is used in Cortés-
Murcia et al. (2019) to serve satellite customers with a different mode
of transportation while the electric vehicle is bounded to the charging
station. To avoid unused time while charging, charging time can also be
reduced by reducing the required energy for a trip. Scholl et al. (2023)
optimized platoon formations for long-haul transportation to reduce the
required energy. Another option to avoid unused time during charging
operations is to charge-while-driving. In the paper by Schwerdfeger
et al. (2022), the electrification of roads with charge-while-driving
technology is optimized. Boysen et al. (2023) then schedule point-
to-point deliveries with overhead wiring. There is also an option to
avoid unused charging time by swapping batteries. Verma (2018)
and Raeesi and Zografos (2022) considered a problem variant where
electric vehicles can charge their battery or swap the battery. Su et al.
(2023) developed a deterministic annealing local search algorithm for
the electric autonomous dial-a-ride problem.

From a methodical point of view several papers use Branch-and-

Price algorithms with linear charging functions (Duman et al., 2022).
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In the paper by Ceselli et al. (2021), a Branch-and-Price algorithm is
developed for the EVRP with multiple technologies. A special aspect
of their approach is that a column in the master problem represents a
sequence of customer visits between two charging stations which needs
not to be an entire vehicle’s tour. The approach by Zang et al. (2022)
further includes non-linear battery depreciation. The focus of Wu and
Zhang (2021) is on a two-echelon setting.

2.2. Non-linear charging

If non-linear charging is included in EVRPs, authors typically ap-
proximate the charging function by a piecewise linear function
(e.g. Kullman et al. (2021)). They thereby underestimate the SOC in
dependency of the time. As a result the procedure terminates with a
feasible solution but might also cutoff feasible solutions. Therefore, the
solution is not necessarily optimal. The idea was introduced by Zündorf
(2014) and included into a mixed-integer programming formulation
by Montoya et al. (2017). The only study we found that also adds
a further piecewise linear approximation of the charging function to
overestimate the original charging function is Zhou et al. (2022). By
this, the authors are able to evaluate the gap of their solution. In
contrast, Montoya et al. (2017) indicated the average relative absolute
error of their piecewise linear approximation to the original charging
function. However, this does not allow to compute a gap, as the
maximal error might be larger.

Further mixed-integer programming formulations for the EVRP with
piecewise linear approximation of the charging function have been
proposed by Froger et al. (2019) and Zuo et al. (2019). Kullman et al.
(2021) and Froger et al. (2019) used the charging function approxima-
tion by Montoya et al. (2017). In Zuo et al. (2019), supporting points
were equally distributed.

Camponogara and Nazari (2015) did not consider a non-linear
charging function but a set of points of the charging function which are
given. They presented several methods, including one which does not
underestimate any charging point, to approximate them by a piecewise
linear charging function minimizing the squared error. In our paper,
we do not minimize the squared error or the maximal error between
real charging function and approximation but introduce a new method
to minimize the area included between real charging function and
approximation. By this, we want to minimize the chance to obtain
a solution which is infeasible due to the real charging function and,
hence, minimize the number of required infeasible path cuts.

If we consider, from a methodical point of view, again Branch-and-
Price algorithms, we have to differentiate between problem variants
with and without time windows. Several authors used piecewise lin-
ear charging functions in problem variants with time windows (Lera-
Romero et al., 2024; Liang et al., 2021; Klein and Schiffer, 2022; Lam
et al., 2022). In problem variants without time windows, Branch-and-
Price algorithms without the approximation of the non-linear charging
function were presented (Xu and Meng, 2019; Lee, 2021; Zhang et al.,
2021b). Without time windows no approximation is necessary, as due
to the concavity of the charging function it is always superior to charge
as late as possible. Thus, it is optimal to charge exactly enough to reach
the next charging station. With time windows this is not possible, as the
time window might be too short such that charging has to be pushed
up to an earlier station. However, we do not know how much charging
time is necessary at each charging station before the entire tour is
determined. This makes the problem variant with time windows more
challenging. Therefore, we include time windows in this paper.

As in the linear case most of the other studies using piecewise
linear charging functions focus on different problem expansions. The
approach by Pelletier et al. (2018) includes amongst others time-
dependent energy costs and battery degradation. Battery degradation
is also included in Guo et al. (2022), the energy consumption in Xiao
et al. (2021). Load-dependent discharging is considered in Kancharla
3

and Ramadurai (2020). Xu et al. (2022) focused on simultaneous
pickups and deliveries. Capacity restrictions at the charging stations are
considered in Froger et al. (2022) while Keskin et al. (2019) focused on
time-dependent waiting times at charging stations and Koç et al. (2019)
on the shared usage of charging stations among several companies. In
the work by Zhang et al. (2021a), bus scheduling with a piecewise
linear charging function is considered.

The literature review shows that there is a vast body of literature
using linear or piecewise linear approximations of the charging function
while we could not found any exact approach using a mixed-integer
program to optimize an EVRP with time windows and non-linear
charging. We close this research gap in the paper at hand.

3. Problem description

The EVRP extends the classical VRP. Thus, we consider a set 𝐼 =
{0,… , 𝑛 + 1} of locations to be given. While locations 0 and 𝑛 + 1
represent the depot, locations 1,… , 𝑛 are customer locations. Between
each pair of locations 𝑖, 𝑗 ∈ 𝐼 the travel time 𝑡𝑖𝑗 is known. We assume
that the travel distance can directly be transformed into the travel time
and that the travel time is deterministic. Moreover, we abstain from
introducing a service time, as the service time at location 𝑖 can simply
be added to the travel times 𝑡𝑖𝑗 for all locations 𝑗 ≠ 𝑖. All locations
1,… , 𝑛 have to be served by a number of 𝐾 homogeneous vehicles
which start and end their tours at the depot. Therefore, we define the
binary variable 𝑥𝑖𝑗 , 𝑖, 𝑗 ∈ 𝐼 , which is 1 if a vehicle drives directly from
location 𝑖 to location 𝑗 and 0 otherwise.

As we consider electric vehicles, the vehicles have a given battery
capacity which we measure relatively. This means, the SOC of a battery
is 1 if it is full and 0 if it is empty. Thus, we need parameters 𝑞𝑖𝑗 which
indicate how much energy is required to drive between locations 𝑖 and
𝑗, 𝑖, 𝑗 ∈ 𝐼 , in relation to the maximal battery capacity, i.e. 𝑞𝑖𝑗 = 𝑡𝑖𝑗∕𝑄, if
the vehicle is able to drive for 𝑄 time units with a full battery. Note that
𝑄 can be smaller than the true physically possible driving range of the
vehicles. By this, we can ensure that the battery is only used in a certain
range to avoid battery degradation (Pelletier et al., 2017). Of course a
battery is never allowed to exceed a SOC of 1 or fall below a SOC of
0. We model the SOC at locations 𝑖 ∈ 𝐼 by the continuous variable
𝑠𝑖 and assume that the battery is full when leaving the starting depot,
i.e. 𝑠0 = 1. Each vehicle can visit one of 𝑚 charging stations 𝑐 ∈ 𝐶 =
{1,… , 𝑚} between any pair of locations 𝑖, 𝑗 ∈ 𝐼 . Like in Zuo et al. (2019)
we assume for simplicity that a vehicle never charges directly after the
starting depot. The assumption can be dropped by duplicating the depot
once for every tour. The travel time between customer location 𝑖 and
charging station 𝑐 is denoted as 𝑡𝑖𝑐 and 𝑡𝑐𝑖 for the opposite direction.
The required energy is correspondingly denoted by 𝑞𝑖𝑐 = 𝑡𝑖𝑐∕𝑄 and
𝑞𝑐𝑖 = 𝑡𝑐𝑖∕𝑄, respectively. We assume the triangle inequality for the
detours to charging stations to hold, i.e. that 𝑡𝑖𝑐 + 𝑡𝑐𝑗 ≥ 𝑡𝑖𝑗 and 𝑞𝑖𝑐 +𝑞𝑐𝑗 ≥
𝑞𝑖𝑗 holds for all pairs of locations 𝑖 and 𝑗 and all charging stations 𝑐.
We do not require this, but it is possible that charging stations are at
the same location as the depot or customer locations. This can simply
be accomplished by setting the corresponding travel times to 0. We
assume that only one charging station is visited between any pair of
locations 𝑖, 𝑗 ∈ 𝐼 . At a charging station the vehicle charges its battery
according to a non-linear charging function 𝑓 (𝑡) depending on the time
𝑡. We discuss the charging function in detail in Section 4.1. The binary
variable 𝑦𝑖𝑐 , 𝑖 ∈ 𝐼 , 𝑐 ∈ 𝐶, is 1 if a vehicle visits charging station 𝑐
directly after location 𝑖 and 0 otherwise. Our objective is to minimize
the entire time spent on the vehicles’ trips including travel and charging
time.

As mentioned in Section 2 we focus on the problem variant with
time windows. Thus, we assume a time window [𝑒𝑖, 𝑙𝑖] to be given for
each location 𝑖 ∈ 𝐼∖{0, 𝑛+1} in which a vehicle has to start serving the
customer. We abstain from restricting the maximal tour duration of the
vehicles as it is done e.g. in Montoya et al. (2017). However, this can

easily be included into the model by a further set of constraints.
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Fig. 2. Piecewise linear approximation of the charging function (underestimation; Montoya et al. (2017)).
Fig. 3. Piecewise linear approximation of the charging function (overestimation).
4. Approximation of the charging function

In this section, we analyze the non-linear concave and strictly
monotonic increasing charging function.

4.1. Non-linear concave and strictly monotonic increasing charging function

The charging process follows a non-linear concave and strictly
monotonic increasing charging function in reality (Marra et al., 2012;
Uhrig et al., 2015). We do not discuss the details on the charging
process in this paper but refer to Marra et al. (2012), Uhrig et al.
(2015), and Pelletier et al. (2017) for details. In this section, we focus
on the modeling of the non-linear concave and strictly monotonic
increasing charging function.

As stated in the literature review (Section 2) researchers typically
approximate the charging function with a piecewise linear function
whereat they underestimate the real charging function. Two examples
are shown in Fig. 2. On the left side of the figure a piecewise linear
approximation with three supporting points indicated by black circles
– one at point (0,0), one at the point where the SOC is 1, and one
somewhere in the middle – is shown (Fig. 2(a)). On the right side the
same charging function is approximated with five supporting points
(Fig. 2(b)). It can easily be seen that the approximation error, i.e. the
area between charging function and approximation, becomes smaller
with a larger number of supporting points (at least if they are chosen
usefully). We will discuss on the position of the supporting points later
in this section.
4

Fig. 2 shows a piecewise linear approximation where the original
charging function is never overestimated. Analogously, Fig. 3 shows
corresponding approximations such that the original charging function
is never underestimated. This means that in Fig. 2 a found solution
is always feasible, but we might ignore feasible solutions. In contrast,
we might find an infeasible solution in Fig. 3 but will never declare a
feasible solution to be infeasible.

One can easily think about an example where the disadvantage of
both variants becomes clear. Let an instance with two locations and one
charging station be given. Energy consumption and time windows can
be selected such that the combination of charging time and required
charge at the charging station, visited between the two locations,
is between the piecewise linear function and the original charging
function. Thus, the solution is either infeasible but declared as feasible
(in case of overestimation) or feasible but declared to be infeasible (in
case of underestimation).

Our idea is to overestimate the charging function (like in Fig. 3)
such that we never declare a feasible solution to be infeasible. However,
we might find an integer solution which is feasible for the charging
function approximation but not for the original charging function. In
this case, we add a cut to declare it as infeasible.

To minimize the chance to obtain an infeasible integer solution
in the search process, we have to select the supporting points such
that the area between the piecewise linear approximation and the
original charging function is minimized while the piecewise linear
approximation never underestimates the original charging function. As
can be seen in Fig. 3 the approximation becomes the better the more
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upporting points are used. However, we will see in Section 5.2 that
very added supporting point leads to additional binary variables in the
odel formulation. Hence, we have a trade-off between increasing the

pproximation error in favor of the model complexity and increasing
he model complexity while decreasing the approximation error. We
ill investigate this trade-off in the computational study (Section 6)
nd assume for now the number of supporting points to be given when
inimizing the approximation error.

In this paper, we assume the non-linear charging function to be
iven as a continuous concave and strictly monotonic increasing func-
ion like the one presented in Motoaki et al. (2018). However, in
ractice the charging function might not be given as closed form
unction but only at certain measuring points. For this case Camponog-
ra and Nazari (2015) presented a dynamic program to determine a
iecewise linear upper envelope with minimal squared error.

.2. The approximation

The approximation consists of two parts. First, we determine a
irst approximation (starting solution) which is improved afterwards
y reoptimizing the positions of two consecutive supporting points
teratively.

.2.1. Determination of a first approximation
Let the charging function 𝑓 (𝑡) as well as the number of supporting

oints |𝑅| and the considered time interval [0, 𝑓−1(1)] be given. Note
that the inverse function 𝑓−1 of 𝑓 exists, since 𝑓 is strictly monotonic
increasing.

We start with a starting approximation as illustrated in Fig. 4. It is
determined as follows:

(a) Divide the considered time interval [0, 𝑓−1(1)] into |𝑅| equally
long intervals.

(b) Compute for every point in time 𝑡 in the intersection of the
intervals the unique linear function 𝐹 𝑟(𝑡) = 𝑏𝑟 + 𝛽𝑟 ⋅ 𝑡 given by
𝑡, 𝑓 (𝑡), and 𝛽𝑟 = 𝑓 ′(𝑡) whereat 𝑓 ′(⋅) is the derivative of 𝑓 (⋅) (if
the derivative does not exist, 𝛽𝑟 can be set such that 𝐹 𝑟 does not
intersect with 𝑓 in any point beside 𝑡).

hese piecewise linear functions are an approximation of 𝑓 (⋅) whereat
he supporting points are given by the intersection of 𝐹 𝑟(𝑡) and 𝐹 𝑟+1(𝑡),
= 1,… , |𝑅| − 2, as well as (0, 𝐹 (0)) and (𝑓−1(1), 𝐹 (𝑓−1(1))).
5

1 |𝑅|−1
4.2.2. Reoptimization of the positions of two consecutive supporting points
Afterwards, we optimize the starting solution to minimize the area

between the piecewise linear functions and the non-linear charging
function. Thus, we search for |𝑅| supporting points and their corre-
sponding linear functions 𝐹 𝑟(𝑡) crossing supporting points 𝑟 and 𝑟 + 1
such that the area between the resulting piecewise linear function
𝐹 (𝑡) = min𝑟∈𝑅∖{|𝑅|} 𝐹 𝑟(𝑡) and 𝑓 (𝑡) is minimized whereat 𝐹 (𝑡) ≥ 𝑓 (𝑡) holds
or all 𝑡 ∈ [0, 𝑓−1(1)]. Formally, our objective is

∫

𝑓−1(1)

0
𝐹 (𝑡)𝑑𝑡 − ∫

𝑓−1(1)

0
𝑓 (𝑡)𝑑𝑡. (1)

s ∫ 𝑓−1(1)
0 𝑓 (𝑡)𝑑𝑡 is constant, the objective reduces to minimize

∫

𝑓−1(1)

0
𝐹 (𝑡)𝑑𝑡 =

|𝑅|−1
∑

𝑟=1

1
2
⋅(𝐹 𝑟+1(𝜏𝑟+1)−𝐹 𝑟(𝜏𝑟))⋅(𝜏𝑟+1−𝜏𝑟)+𝐹 𝑟(𝜏𝑟)⋅(𝜏𝑟+1−𝜏𝑟).

(2)

In our procedure, we change 𝜏𝑟 and 𝐹 𝑟(𝜏𝑟), 𝑟 ∈ 𝑅∖{|𝑅|}, iteratively to
inimize the sum on the right side of (2) such that min𝑟∈𝑅∖{|𝑅|} 𝐹 𝑟(𝑡) ≥
(𝑡) holds for all 𝑡 ∈ [0, 𝑓−1(1)].

The idea of the procedure is to delete two supporting points
𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) and reoptimize their position while
ixing the remaining piecewise linear functions. Fig. 5 shows the
ituation. In the figure, four supporting points are given. We reoptimize
he position of supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) by

optimizing the position of touch point 𝑝 where the piecewise linear
function crossing (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) touches the original
charging function. As the touch point and the derivative 𝑓 ′(𝑝) of the
original charging function determine the piecewise linear function,
the positions of (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) are determined as
intersections with the previous and next piecewise linear function,
respectively. Thus, we have to vary 𝑝 such that (2) is minimized.

iven the fixed remaining piecewise linear charging functions, this is
quivalent to minimize the sum of areas 𝐴 and 𝐵 in Fig. 5 between the
iecewise linear functions and the original charging function.

Due to the concavity of 𝑓 , 𝑓 ′(𝑝′) ≤ 𝑓 ′(𝑝) for 𝑝′ > 𝑝, i.e. the slope
f 𝐹 𝑟(⋅) does not increase if 𝑝 increases. At the same time 𝜏𝑟+1 − 𝑝

decreases such that area 𝐵 decreases if 𝑝 increases. On the other side,
𝑝 − 𝜏𝑟 increases if 𝑝 increases. As the slope of 𝐹 𝑟(⋅) does not increase,
area 𝐴 increases if 𝑝 increases. Since 𝐴 increases and 𝐵 decreases for
increasing 𝑝, it follows that the sum of 𝐴 and 𝐵 is a convex function in
dependency of 𝑝 with a unique minimum.

Algorithm 1. (Determination of optimal 𝑝)
1: function set_touch_point(𝜏 , 𝜏 , 𝑓 (⋅), 𝑓 ′(⋅), 𝐹 (⋅), 𝐹 (⋅), 𝜀)
𝑟 𝑟+1 𝑟−1 𝑟+1
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Fig. 5. Reoptimization of supporting points (𝜏𝑟 , 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1 , 𝐹 𝑟+1(𝜏𝑟+1)).

2: let 𝑝̂ be the increasingly ordered list of possible touch points 𝑝̂ =
(

𝜏𝑟,
𝜏𝑟+𝜏𝑟+1

2 , 𝜏𝑟+1
)

3: set 𝑔(1) = ∑𝑟
𝑟′=𝑟−1

1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) does not change
4: set 𝑔(3) = ∑𝑟

𝑟′=𝑟−1
1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) = 𝐹 𝑟+1(⋅)
5: set 𝑔(2) = ∑𝑟

𝑟′=𝑟−1
1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) is the unique linear function determined by
𝜏𝑟+𝜏𝑟+1

2 , 𝑓
(

𝜏𝑟+𝜏𝑟+1
2

)

, and 𝑓 ′
(

𝜏𝑟+𝜏𝑟+1
2

)

6: set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0
7: set 𝑏𝑒𝑠𝑡 = min{𝑔(1), 𝑔(2), 𝑔(3)}
8: while 𝑏𝑒𝑠𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝜀 do
9: set 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
10: 𝑢 = 1
11: while 𝑔(𝑢) > 𝑔(𝑢 + 1) and 𝑢 < |𝑝̂| do
12: set 𝑢 = 𝑢 + 1
13: end while
14: insert 𝑝̂𝑢+𝑝̂𝑢+1

2 in list 𝑝̂ (𝑝̂𝑢 is the (𝑢 + 1)𝑡ℎ entry in extended list
𝑝̂), evaluate the solution (∑𝑟

𝑟′=𝑟−1
1
2 ⋅ (𝐹 𝑟′+1(𝜏𝑟′+1) − 𝐹 𝑟′ (𝜏𝑟′ )) ⋅ (𝜏𝑟′+1 −

𝜏𝑟′ ) + 𝐹 𝑟′ (𝜏𝑟′ ) ⋅ (𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹𝑟(⋅) is the unique linear function
determined by 𝑝̂𝑢+𝑝̂𝑢+1

2 , 𝑓
(

𝑝̂𝑢+𝑝̂𝑢+1
2

)

, and 𝑓 ′
(

𝑝̂𝑢+𝑝̂𝑢+1
2

)

and 𝜏𝑟 and 𝜏𝑟+1
are given as the intersection between 𝐹 𝑟−1(⋅) and 𝐹 𝑟(⋅) as well as 𝐹 𝑟(⋅)
and 𝐹 𝑟+1(⋅)), update 𝑔(⋅), and update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if improved

15: set 𝑢 = |𝑝̂|
6: while 𝑔(𝑢 − 1) < 𝑔(𝑢) and 𝑢 > 0 do
17: set 𝑢 = 𝑢 − 1
18: end while
19: insert 𝑝̂𝑢−1+𝑝̂𝑢

2 in list 𝑝̂ (𝑝̂𝑢 is the (|𝑝̂|− 𝑢− 1)𝑡ℎ entry in extended
list 𝑝̂), evaluate the solution (∑𝑟

𝑟′=𝑟−1
1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ ))⋅(𝜏𝑟′+1−

𝜏𝑟′ ) + 𝐹 𝑟′ (𝜏𝑟′ ) ⋅ (𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) is the unique linear function
determined by 𝑝̂𝑢−1+𝑝̂𝑢

2 , 𝑓
(

𝑝̂𝑢−1+𝑝̂𝑢
2

)

, and 𝑓 ′
(

𝑝̂𝑢−1+𝑝̂𝑢
2

)

and 𝜏𝑟 and 𝜏𝑟+1
are given as the intersection between 𝐹 𝑟−1(⋅) and 𝐹 𝑟(⋅) as well as 𝐹 𝑟(⋅)
and 𝐹 𝑟+1(⋅)), update 𝑔(⋅), and update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if improved

20: end while
21: return 𝜏𝑟, 𝐹𝑟(⋅), and 𝜏𝑟+1 determined by 𝑝 = arg min𝑝′∈𝑝̂{𝑔(𝑝′)}.
2: end function

Algorithm 1 uses this fact to find the optimal position of 𝑝 and
hereby supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) given the re-
aining supporting points (𝜏1, 𝐹 𝑟(𝜏1)),… , (𝜏𝑟−1, 𝐹 𝑟−1(𝜏𝑟−1)),

𝜏𝑟+2, 𝐹 𝑟+2(𝜏𝑟+2)),… , (𝜏
|𝑅|, 𝐹 |𝑅|−1(𝜏|𝑅|)) by nested intervals. The func-

ion starts with three potential positions for 𝑝 (line 2) which are
valuated in lines 3–5. The best of them is our current best solution
line 7). In lines 8–20, we search for a new best solution by nested
ntervals until the improvement is smaller than a given 𝜀. As we know
6

hat the solution space is convex and there is a single optimal solution,
e run through the found potential positions for 𝑝 stored in 𝑝̂ once from

he left side (lines 10–13) and once from the right side (lines 15–18).
f there is a better solution, then it must be between this position 𝑢 and
he next one in the first case and 𝑢 and the previous one in the second.
he corresponding interval is bisected to determine a new potential
osition of 𝑝 (lines 14 and 19, respectively). This new potential position
f 𝑝 is evaluated and added to 𝑝̂ such that 𝑝̂ is ordered increasingly.
unction 𝑔, indicating the evaluation of 𝑝̂ is updated accordingly. If
he new 𝑝 improves the current best solution, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is also updated.
f we cannot find a solution which improves our current best one by
ore than 𝜀, the algorithm returns 𝜏𝑟, 𝐹 𝑟(⋅), and 𝜏𝑟+1 such that the

reoptimized supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) are set.

4.2.3. Approximation procedure
Algorithm 2 reoptimizes the supporting points iteratively with the

help of Algorithm 1.

Algorithm 2. (Determination of piecewise linear function 𝐹 (𝑡))
1: determine starting solution → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
2: set 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1
3: while 𝑏𝑒𝑠𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝜀̄ do
4: set 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
5: for all 𝑟 = 1 to |𝑅| − 1 do
6: reoptimize supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and (𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1))
by 𝑆𝐸𝑇 _𝑇𝑂𝑈𝐶𝐻_𝑃𝑂𝐼𝑁𝑇 (𝜏𝑟, 𝜏𝑟+1, 𝑓 (⋅), 𝑓 ′(⋅), 𝐹 𝑟−1(⋅), 𝐹 𝑟+1(⋅), 𝜀)

7: end for
8: evaluate current solution → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
9: end while

Algorithm 2 optimizes supporting points (𝜏1, 𝐹 𝑟(𝜏1)),… ,
(𝜏

|𝑅|−1, 𝐹 |𝑅|−1(𝜏|𝑅|−1)), (𝜏
|𝑅|, 𝐹 |𝑅|−1(𝜏|𝑅|)) and linear functions 𝐹 1,… ,

𝐹
|𝑅|−1 according to (2). Therefore, we first determine the starting

solution as described above (line 1). Then, the solution is improved
iteratively (lines 3–9) until the improvement is smaller than 𝜀̄. In each
teration, every pair of succeeding supporting points is updated in
ncreasing order (lines 5–7) by Algorithm 1. Afterwards, the solution
s evaluated and the current solution updated (line 8). Note that two
upporting points are special. For the first we always set 𝜏1 = 0 and only

update 𝐹 1(0). For the last we always set 𝜏
|𝑅| = 𝑓−1(1), i.e. to the time

he battery is fully charged if the battery was empty when starting the
harging process, and only update 𝐹

|𝑅|−1(𝜏|𝑅|). Moreover, Algorithm 2
requires function 𝐹

|𝑅|(⋅) in line 6 if 𝑟 = |𝑅|−1. Let 𝐹
|𝑅|(⋅) be the unique

linear function determined by 𝜏
|𝑅|, 𝑓 (𝜏|𝑅|), and 𝑓 ′(𝜏

|𝑅|) in this case.

5. Solution approach

In the following, we introduce our mixed-integer programming for-
mulation in Section 5.1. Afterwards, we discuss the linearization of the
model formulation (Section 5.2) and present some preprocessing tech-
niques (Section 5.3). Finally, we introduce the separation procedure for
our cuts (Section 5.4).

5.1. Mixed-integer program

Table 1 gives an overview of the used notation.

min
∑

𝑖,𝑗∈𝐼
𝑡𝑖𝑗 ⋅ 𝑥𝑖𝑗 +

∑

𝑖∈𝐼∖{0,𝑛+1}
𝑑𝑖 +

∑

𝑖∈𝐼
𝑧𝑖 (3)

subject to
∑

𝑗∈𝐼
𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐼∖{0, 𝑛 + 1} (4)

∑

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐼∖{0, 𝑛 + 1} (5)

𝑖∈𝐼
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Table 1
Notation.

Sets and indices

𝑐 ∈ 𝐶 = {1,… , 𝑚} charging stations
ℎ, 𝑖, 𝑗, 𝑘 ∈ 𝐼 = {0,… , 𝑛 + 1} locations whereat 0 and 𝑛 + 1 represent the depot

and 1,… , 𝑛 are customer locations
𝑟 ∈ 𝑅 = {1,… , |𝑅|} supporting points of the piecewise linear charging

function

Scalars

𝐾 Number of available vehicles
𝑀𝑖𝑗 , 𝑀̄𝑖𝑗 , 𝑀̃𝑖 Sufficiently large numbers
𝑚 Number of charging stations
𝑛 Number of customer locations
𝑄 Number of time units which can be driven with a full battery

Parameters

𝑏𝑟 Intercept of piecewise linear function crossing supporting points
(𝜏𝑟 , 𝑓 (𝜏𝑟)) and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1))

𝑏𝑟 Intercept of piecewise linear function crossing supporting points
(𝜏𝑟 , 𝑓 (𝜏𝑟)) and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1))

𝛽𝑟 Slope of piecewise linear function crossing supporting points
(𝜏𝑟 , 𝑓 (𝜏𝑟)) and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1))

𝛽
𝑟

Slope of piecewise linear function crossing supporting points
(𝜏𝑟 , 𝑓 (𝜏𝑟)) and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1))

𝑒𝑖 Beginning of time window at customer location 𝑖
𝐹 𝑟(𝑡) = 𝑏𝑟 + 𝛽𝑟 ⋅ 𝑡 linear function crossing supporting points (𝜏𝑟 , 𝑓 (𝜏𝑟))

and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1)) dependent on time 𝑡 for all 𝑟 = 1,… , |𝑅| − 1
𝐹 𝑟(𝑡) = 𝑏𝑟 + 𝛽

𝑟
⋅ 𝑡 linear function crossing supporting points (𝜏𝑟 , 𝑓 (𝜏𝑟))

and (𝜏𝑟+1 , 𝑓 (𝜏𝑟+1)) dependent on time 𝑡 for all 𝑟 = 1,… , |𝑅| − 1
𝐹 (𝑡) = min𝑟∈𝑅∖{|𝑅|} 𝐹 𝑟(𝑡) piecewise linear charging function
𝐹 (𝑡) = min𝑟∈𝑅∖{|𝑅|} 𝐹 𝑟(𝑡) piecewise linear charging function
𝑓 (𝑡) Non-linear charging function dependent on time 𝑡
𝑓−1(⋅) Inverse function of the non-linear charging function, i.e. the

function indicating the time required to charge from SOC = 0 to
SOC equal to the argument of the function

𝑓 ′(𝑡) The derivative of 𝑓 (𝑡)
𝑙𝑖 End of time window at customer location 𝑖
𝑞𝑖𝑐 Required energy to travel from location 𝑖 to charging station 𝑐

(𝑞𝑐𝑖 correspondingly)
𝑞𝑖𝑗 Required energy to travel from location 𝑖 to location 𝑗
𝑡𝑖𝑐 Travel time between location 𝑖 and charging station 𝑐 (𝑡𝑐𝑖

correspondingly)
𝑡𝑖𝑗 Travel time between locations 𝑖 and 𝑗
𝑡𝑖 , 𝑡𝑖 Charging time
(𝜏𝑟 , 𝑓 (𝜏𝑟)) Supporting point
(𝜏𝑟 , 𝑓 (𝜏𝑟)) Supporting point

Variables

𝑎𝑖 Starting time of service at location 𝑖
𝛼𝑖𝑟 Binary variable which is 1 if charging starts with a SOC

between 𝑓 (𝜏𝑟) and 𝑓 (𝜏𝑟+1) and 0 otherwise
𝑑𝑖 Detour after location 𝑖 to travel to a charging station and back

to main route
𝜙𝑖 Amount of charge charged at a charging station directly after

location 𝑖
𝑠𝑖 SOC when reaching location 𝑖
𝑥𝑖𝑗 Binary variable which is 1 if a vehicle drives directly from

location 𝑖 to location 𝑗 and 0 otherwise
𝑦𝑖𝑐 Binary variable which is 1 if a vehicle visits charging station 𝑐

directly after location 𝑖 and 0 otherwise
𝑧𝑖 Non-negative variable indicating the charging time at a charging

station directly after visiting location 𝑖

∑

𝑗∈𝐽
𝑥0𝑗 ≤ 𝐾 (6)

∑

𝑐∈𝐶
𝑦𝑖𝑐 ≤ 1 ∀𝑖 ∈ 𝐼∖{0, 𝑛 + 1} (7)

𝑑𝑖 ≥ (𝑡𝑖𝑐 + 𝑡𝑐𝑗 − 𝑡𝑖𝑗 ) ⋅ (𝑥𝑖𝑗 + 𝑦𝑖𝑐 − 1) ∀𝑖, 𝑗 ∈ 𝐼, 𝑐 ∈ 𝐶 (8)

𝑠𝑗 ≤ 𝑠𝑖 − 𝑞𝑖𝑗 +

(

1 − 𝑥𝑖𝑗 +
∑

𝑐∈𝐶
𝑦𝑖𝑐

)

⋅(1 + 𝑞𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝐼 (9)

𝑠𝑗 ≤ 𝑠𝑖 − 𝑞𝑖𝑐 − 𝑞𝑐𝑗 + 𝜙𝑖 + (2 − 𝑥𝑖𝑗 − 𝑦𝑖𝑐 )

⋅(1 + 𝑞 + 𝑞 ) ∀𝑖, 𝑗 ∈ 𝐼, 𝑐 ∈ 𝐶 (10)
7

𝑖𝑐 𝑗𝑐 l
𝑖 ≥ 𝑓−1 (𝑠𝑖 − 𝑞𝑖𝑐 + 𝜙𝑖
)

− 𝑓−1 (𝑠𝑖 − 𝑞𝑖𝑐
)

− 𝑀̃𝑖

⋅(1 − 𝑦𝑖𝑐 ) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶 (11)
𝑒𝑖 ≤ 𝑎𝑖 ≤ 𝑙𝑖 ∀𝑖 ∈ 𝐼∖{0, 𝑛 + 1} (12)

𝑎𝑗 ≥ 𝑎𝑖 + 𝑡𝑖𝑗 −𝑀𝑖𝑗 ⋅ (1 − 𝑥𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝐼 (13)

𝑎𝑗 ≥ 𝑎𝑖 + 𝑡𝑖𝑐 + 𝑡𝑐𝑗 + 𝑧𝑖 − 𝑀̄𝑖𝑗𝑐 ⋅ (2 − 𝑥𝑖𝑗 − 𝑦𝑖𝑐 ) ∀𝑖, 𝑗 ∈ 𝐼, 𝑐 ∈ 𝐶 (14)

𝑥𝑖𝑗 , 𝑦𝑖𝑐 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐼, 𝑐 ∈ 𝐶 (15)

𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶 (16)
𝜙𝑖, 𝑧𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (17)

Objective function (3) minimizes the entire time spent by all vehicles,
i.e. travel times between locations, detours for charging, and charging
times. Constraints (4)–(6) are the classical VRP constraints. Due to
Constraints (4) and (5) every location is visited and left exactly once,
respectively. Constraints (6) ensure that at most 𝐾 vehicles are used.

The next block of constraints (7)–(11) are the charging constraints.
Because of Constraints (7) at most one charging station is visited
directly after location 𝑖. Constraints (8) indicate the detour if charging
station 𝑐 is visited between locations 𝑖 and 𝑗, which is required for
the objective function. If location 𝑗 is visited directly after location 𝑖
without any charging stop in between, Constraints (9) update the SOC.
If a charging station is visited between locations 𝑖 and 𝑗, the same is
done by Constraints (10). The required charging time is pictured by
Constraints (11). We will not consider 𝑓−1 in detail, as we do not need
it in the linearized model (compare Section 5.2).

The block of constraints (12)–(14) includes the time windows.
Arrival times have to be in the time window (Constraints (12)). They
are determined by Constraints (13) if the vehicle drives directly from
location 𝑖 to location 𝑗. If charging station 𝑐 is visited in between,
Constraints (14) determine the correct arrival time.

Finally, the last block of constraints (15)–(17) sets the variable do-
mains. Constraints (15) are the binary constraints for 𝑥 and 𝑦 variables.
Constraints (16) ensure that a charging station is always reached with
a non-negative SOC. Constraints (17) are the non-negativity constraints
for the amount of charge charged at a charging station and the charging
time. Note that 𝑎𝑖 (by Constraints (12)) and 𝑑𝑖 (by Constraints (8)) are
already bounded by the constraints. Note further that we can fix 𝑥𝑖𝑖,
𝑥𝑖0, 𝑥𝑛+1,𝑖 as well as 𝑦0𝑐 and 𝑦𝑛+1,𝑐 to zero. By this, we can also exclude
some constraints. However, due to readability we abstain from doing
so in the presentation of the constraints, as they stay still valid.

Before we can use the model, we have to linearize Constraints (11)
and set the Big M values 𝑀𝑖𝑗 , 𝑀̄𝑖𝑗 , and 𝑀̃𝑖. This is done in the following
two sections.

5.2. Linearization

Model formulation (3)–(17) is not linear due to the non-linear
inverse of the charging function in Constraints (11). To linearize the
constraints, we approximate the non-linear charging function 𝑓 by a
piecewise linear function as introduced in Section 4 (compare Fig. 3).
Thus, let a piecewise linear function with supporting points 𝑟 ∈ 𝑅 =
{1,… , |𝑅|} approximating 𝑓 determined by the procedure in Section 4
be given. Let the supporting points be (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)), 𝑟 ∈ 𝑅, i.e. 𝜏𝑟 is
he point in time of the supporting point and 𝐹 𝑟(𝜏𝑟) the SOC. By this,

the unique linear function cutting the supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)) and
(𝜏𝑟+1, 𝐹 𝑟+1(𝜏𝑟+1)) is 𝐹 𝑟(𝑡) = 𝑏𝑟+𝛽𝑟 ⋅𝑡 with 𝑡 the time, 𝛽𝑟 =

𝐹 (𝜏𝑟+1)−𝐹 (𝜏𝑟)
𝜏𝑟+1−𝜏𝑟

the
lope, and 𝑏𝑟 = 𝐹 (𝜏𝑟)−𝛽𝑟 ⋅ 𝜏𝑟 the intercept. Fig. 6 extends the piecewise
inear function of Fig. 3(b) accordingly. We now describe a variation
f the linearization presented by Zuo et al. (2019). The linearization
y Zuo et al. (2019) has the benefit to require comparably few addi-
ional binary variables. In distinction to Zuo et al. (2019), we include
he overestimation of the real charging function into the linearization.
oreover, we directly include the charging station variables 𝑦𝑖𝑐 in the
inearization.



EURO Journal on Transportation and Logistics 13 (2024) 100131A. Schulz

𝑠
𝑠

𝑠
e
w

𝑠

g
f

s

p
p

t

𝑠

T
i

o
p
i
s
w
v

5

b
s
𝑀

𝑀

𝑀

w
c
ℎ
d
𝑖
p
v
n
i
t
t
o
c
c
d
c
e
t
a
c
o

Fig. 6. Piecewise linear approximation of the charging function with five supporting
points (overestimation).

We compute the time 𝑡𝑖 to charge from a SOC of 0 to a SOC of

𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 and the time 𝑡𝑖 to charge from a SOC of 0 to a SOC of
𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 + 𝜙𝑖. Thus, 𝑡𝑖 − 𝑡𝑖 is the required charging time and we can

replace Constraints (11) by

𝑧𝑖 ≥ 𝑡𝑖 − 𝑡𝑖 − 𝑀̃𝑖 ⋅

(

1 −
∑

𝑐∈𝐶
𝑦𝑖𝑐

)

∀𝑖 ∈ 𝐼. (18)

We first compute 𝑡𝑖. As an example let us assume that 𝐹 3(𝜏3) ≤
𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 + 𝜙𝑖 ≤ 𝐹 4(𝜏4) in Fig. 6. Thus, we get 𝑡𝑖 by resolving the
quation 𝑏𝑟 + 𝛽𝑟 ⋅ 𝑡𝑖 = 𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 + 𝜙𝑖 with 𝑟 = 3. However, in general
e do not know 𝑟. Nevertheless, in general

𝑖−𝑞𝑖𝑐 ⋅𝑦𝑖𝑐+𝜙𝑖 ≤ 𝑏𝑟+𝛽𝑟 ⋅𝑡𝑖+(1−𝑦𝑖𝑐 ) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑟 = 1,… , |𝑅|−1 (19)

holds.
To understand why (19) is correct, we go back to our example.

Let 𝑟 < 3, then 𝛽𝑟 > 𝛽3 and, although 𝑏𝑟 < 𝑏3, Fig. 6 shows that
𝐹 𝑟(𝑡𝑖) = 𝑏𝑟 + 𝛽𝑟 ⋅ 𝑡𝑖 ≥ 𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 + 𝜙𝑖 holds. Accordingly, Fig. 6 shows
that this also holds for 𝑟 > 3 due to the larger intercept 𝑏𝑟 > 𝑏3 which
overcompensates for the smaller slope 𝛽𝑟 < 𝛽3. As this is also true in
eneral for an arbitrary 𝑟 ∈ 𝑅, Constraints (19) are a valid lower bound
or 𝑡𝑖. Because of (18) and since 𝑧𝑖 is minimized in objective function

(3), 𝑡𝑖 is set to the correct value.
When computing 𝑡𝑖 we cannot use the same trick because 𝑡𝑖 is

subtracted in (18) such that the model would maximize it. Instead, we
use binary variables 𝛼𝑖𝑟 to identify the correct part of the piecewise
linear charging function (the one for which 𝛼𝑖𝑟 = 1 for the corre-
ponding 𝑖 ∈ 𝐼). Moreover, we are not allowed to underestimate 𝑡𝑖.

If we would do so, a too small number would be subtracted in (18)
such that 𝑧𝑖 could be overestimated. By this, a feasible solution can
become infeasible due to the time windows. Hence, we cannot use 𝑏𝑟
and 𝛽𝑟, 𝑟 = 1,… , |𝑅| − 1, for the approximation. Instead, we need a
piecewise linear function which overestimates the charging time (but
underestimates the charging function) like in Fig. 2. We assume for now
that a corresponding approximation 𝐹 𝑟(𝑡) = 𝑏𝑟 + 𝛽

𝑟
⋅ 𝑡, 𝑟 = 1,… , |𝑅|− 1,

with supporting points (𝜏𝑟, 𝐹 𝑟(𝜏𝑟)), 𝑟 = 1,… , |𝑅|, is given. As the
rocedure is very similar to the approach in Section 4, we present the
rocedure to find them in the appendix.

Variables 𝛼𝑖𝑟 are set correctly by Constraints (20)–(23):

𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 ≥ (𝑏𝑟 + 𝛽
𝑟
⋅ 𝜏𝑟) ⋅ 𝑦𝑖𝑐 + (𝛼𝑖𝑟 − 1) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶,

𝑟 = 1,… , |𝑅| − 1 (20)
+ 𝛽 ⋅ 𝜏 ) ⋅ 𝑦
8

𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 ≤ (𝑏𝑟+1 𝑟+1 𝑟+1 𝑖𝑐
+(2 − 𝛼𝑖𝑟 − 𝑦𝑖𝑐 ) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶,

𝑟 = 1,… , |𝑅| − 2 (21)
∑

𝑟∈𝑅∖{|𝑅|}
𝛼𝑖𝑟 =

∑

𝑐∈𝐶
𝑦𝑖𝑐 ∀𝑖 ∈ 𝐼 (22)

𝛼𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅∖{|𝑅|} (23)

𝑏𝑟+𝛽𝑟 ⋅𝜏𝑟 is either strictly smaller or larger than 𝑠𝑖−𝑞𝑖𝑐 ⋅𝑦𝑖𝑐 for all 𝑟 beside
he one we search for (if 𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 = 𝐹 𝑟′ (𝜏𝑟′ ) for any 𝑟′ ∈ 𝑅∖{|𝑅|},

then 𝑟 is not unique, but we are indifferent which of the two possible
to choose). Moreover, the SOC is always smaller or equal to 1 such that
(20) and (21) are always valid if 𝛼𝑖𝑟 = 0. Thus, (20)–(23) give us the
correct part of the piecewise linear function if 𝑦𝑖𝑐 = 1. If 𝑦𝑖𝑐 = 0, all
constraints are fulfilled for 𝛼𝑖𝑟 = 0 and for all 𝑟 = 1,… , |𝑅| − 1.

It remains to set 𝑡𝑖 to the time to charge from a SOC of 0 to a SOC
of 𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 . This is done by Constraints (24)–(25):

𝑠𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 ≥ 𝑏𝑟 + 𝛽
𝑟
⋅ 𝑡𝑖 + (𝛼𝑖𝑟 − 1) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑟 = 1,… , |𝑅| − 1

(24)

𝑖 − 𝑞𝑖𝑐 ⋅ 𝑦𝑖𝑐 ≤ 𝑏𝑟 + 𝛽
𝑟
⋅ 𝑡𝑖 + (2 − 𝑦𝑖𝑐 − 𝛼𝑖𝑟) ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑟 = 1,… , |𝑅| − 1

(25)

ogether, Constraints (18)–(25) linearize Constraints (11) by introduc-
ng |𝐼| ⋅ (|𝑅| − 1) further binary variables.

Remember the argumentation in Section 4 that a larger number
f supporting points leads to a better approximation and therefore
robably less cuts which need to be added to declare solutions to be
nfeasible. Now we are aware of the disadvantage of a larger number of
upporting points leading to a larger number of binary variables. Thus,
e have a trade-off between a better approximation and fewer binary
ariables. We evaluate this trade-off in the computational study.

.3. Preprocessing

It is well-known that Big Ms should be set as small as possi-
le (Camm et al., 1990; Codato and Fischetti, 2006). Therefore, we
et

𝑖𝑗 = 𝑙𝑖 + 𝑡𝑖𝑗 − 𝑒𝑗

̃ 𝑖 = max
{

max
ℎ≠𝑖

{𝑙ℎ − min
𝑐∈𝐶

{𝑡𝑖𝑐 + 𝑡𝑐ℎ}} − 𝑒𝑖, max
𝑐∈𝐶,𝑟∈𝑅

{𝑡 ∶ 𝐹𝑟(𝑡) = 𝑞𝑐,𝑛+1}
}

̄ 𝑖𝑗𝑐 = max
{

0,max
{

max
ℎ≠𝑖

{𝑙ℎ − min
𝑐′∈𝐶

{𝑡𝑖𝑐′ + 𝑡𝑐′ℎ}} − 𝑒𝑖,

max
𝑐′∈𝐶,𝑟∈𝑅

{𝑡 ∶ 𝐹𝑟(𝑡) = 𝑞𝑐′ ,𝑛+1}
}

+ 𝑙𝑖 + 𝑡𝑖𝑐 + 𝑡𝑐𝑗 − 𝑒𝑗

}

hereat maxℎ≠𝑖{𝑙ℎ − min𝑐∈𝐶{𝑡𝑖𝑐 + 𝑡𝑐ℎ}} − 𝑒𝑖 is the longest time which
an be charged at a charging station after location 𝑖 if another location
is visited afterwards, i.e. the vehicle starts as early as possible in 𝑖,

rives to the charging station 𝑐 such that the travel time for the path
→ 𝑐 → ℎ is as short as possible, and reaches location ℎ at the latest
ossible point in time. If the vehicle drives back to the depot after
isiting location 𝑖, it will due to the objective never charge more than
ecessary to reach the depot. As we do not know which charging station
s used, max𝑐∈𝐶,𝑟∈𝑅{𝑡 ∶ 𝐹𝑟(𝑡) = 𝑞𝑐0} is an upper bound for the charging
ime in this case. Note that the charging time has to be computed by
he real charging function here. As the piecewise linear approximation
verestimates the charging function, it underestimates the required
harging time. Thus, a feasible solution could be excluded by the
onstraint if the approximation is used. As either another location or the
epot has to be visited after the charging procedure, we would never
harge for a longer time than the maximum of both. To do so would
ither be infeasible or not optimal due to an unnecessary high charging
ime. Beside that all three choices of Big M are set in the classical way
s difference between the largest value the right side of the inequality
an obtain and the smallest value the left side of the inequality can
btain. By this, the constraints are fulfilled for all optimal solutions.
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Moreover, we can fix 𝑥𝑖𝑗 variables to 0 if they cannot be selected in
feasible tour due to time windows (Cordeau, 2006). This is the case

f the vehicle would not reach location 𝑗 within its time window even
if it starts in location 𝑖 at the beginning of location 𝑖’s time window.
Thus, 𝑥𝑖𝑗 can be fixed to 0 if

𝑒𝑖 + 𝑡𝑖𝑗 > 𝑙𝑗 .

With the same argument we know that charging station 𝑐 cannot be
visited between locations 𝑖 and 𝑗 if

𝑒𝑖 + 𝑡𝑖𝑐 + 𝑡𝑐𝑗 > 𝑙𝑗 .

If this is the case, we can add the following cut to the model

𝑦𝑖𝑐 + 𝑥𝑖𝑗 ≤ 1. (26)

We cannot fix 𝑦𝑖𝑐 directly to 0, as there might be another location ℎ
such that 𝑖 → 𝑐 → ℎ is a feasible sequence. However, if this sequence
is infeasible for all ℎ ∈ 𝐼∖{0, 𝑛 + 1}, Constraints (26) ensure already
hat 𝑦𝑖𝑐 = 0 if another customer location is visited after 𝑖. Though, the
equence 𝑖 → 𝑐 → 𝑛 + 1 is still possible.

Keskin and Çatay (2018) stated that a charging station will not be
isited between locations 𝑖 and 𝑗 if there is another charging station
hich is closer to location 𝑖 and to location 𝑗. Transmitted to our setting
charging station is dominated to be visited between locations 𝑖 and
if there is another non-dominated charging station 𝑐 such that the

ehicle requires less energy driving from location 𝑖 to 𝑐 as well as from
here to location 𝑗 in comparison to the corresponding segments for the
ominated charging station. For all dominated charging stations (26) is
valid inequality.

.4. Separation procedure

Our piecewise linear approximation of the charging function under-
stimates the required charging time such that it is possible that the
ehicle charges more energy than possible in the corresponding time. If
he vehicle reaches a location at the end of the time window, this might
ead to an infeasible solution because, using the real charging function,
ot enough energy can be charged. To identify such infeasibilities, we
un through all tours in an integer solution and check them. To do
o, we start in the depot and check Constraints (9)–(14). If the time
indow at location 𝑗 or a later location is violated, we cannot charge
𝑖 at the charging station visited after the previous location 𝑖. Then,
e check whether it is possible to push up charge to a charging station
isited prior in the tour. If so, we charge such that 𝑗 is again reached
ith a SOC of 𝑠𝑗 or if this is not possible as much as possible such

hat no time window is violated and we reach the next charging stop
fter 𝑗 as early as possible. Due to the concave charging function it is
ptimal to charge as late as possible. Thus, it is better to reach the next
top earlier than charging more before location 𝑗. From there on we
roceed to check the remaining tour. If we cannot charge enough at any
harging stop to reach the next charging stop or the end depot at least
ith a SOC of 0, the tour is infeasible. Let 𝑘 be the next location visited
fter the charging stop (or the end depot) which cannot be reached
ithout the battery being depleted. Then, we add the following cut and

runcate the node:
∑

(𝑖,𝑗)∈𝑆𝑘

𝑥𝑖𝑗 +
∑

(𝑖,𝑐)∈𝑆̄𝑘

𝑦𝑖𝑐 ≤ |𝑆𝑘| + |𝑆̄𝑘| − 1 +
∑

(𝑖,𝑐)∈𝑆̂𝑘

𝑦𝑖𝑐 (27)

whereat (𝑖, 𝑗) is in 𝑆𝑘 if the vehicle visits location 𝑗 directly or via a
charging station after location 𝑖 and before location 𝑘 in the infeasible
our. If 𝑘 is the end depot, (𝑖, 𝑛 + 1) is included in 𝑆𝑘 for the location
visited directly before the end depot. Accordingly, 𝑦𝑖𝑐 is in 𝑆̄𝑘 if the

vehicle visits charging stop 𝑐 directly after location 𝑖 and location 𝑖 is
visited before location 𝑘 in the infeasible tour. Set 𝑆̂𝑘 contains all pairs
of locations visited in the tour before location 𝑘 and charging stops 𝑐
such that 𝑦𝑖𝑐 = 0 in the current solution. As the tour segment 0 → ⋯ → 𝑐
9

where 𝑐 is the charging stop directly before location 𝑘 (and accordingly
tour 0 → ⋯ → 𝑛 + 1) is infeasible, at least one of the corresponding
ariables cannot be 1 in a feasible solution or an additional charging
tation needs to be visited such that (27) cuts of the infeasible solution.

If a tour is feasible, we compare the computed charging time 𝑍 as
escribed above with the required charging time in the solution ∑

𝑖∈𝑆 𝑧𝑖
hereat 𝑆 is the set of all customer locations visited in the tour. If
>

∑

𝑖∈𝑆 𝑧𝑖, the real charging time is underestimated such that the
olution is not evaluated correctly. To correct this, we add the following
ut

∑

𝑖∈𝑆
𝑧𝑖 ≥ 𝑍 ⋅

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝑆𝑥

𝑥𝑖𝑗 +
∑

(𝑖,𝑐)∈𝑆𝑦

𝑦𝑖𝑐 − (|𝑆𝑥| + |𝑆𝑦| − 1) −
∑

𝑖∈𝑆

∑

(𝑖,𝑐)∉𝑆𝑦

𝑦𝑖𝑐
⎞

⎟

⎟

⎠

(28)

hereat 𝑆𝑥 is the set of pairs of locations (𝑖, 𝑗) (including depot) such
hat location 𝑗 is visited directly or via a charging stop after location 𝑖 in
he tour and 𝑆𝑦 is the set of all pairs (𝑖, 𝑐) of a location 𝑖 and a charging
tation 𝑐 such that 𝑐 is visited directly after location 𝑖 in the tour. Thus,
he term in brackets is 1 if exactly the considered tour is selected. If
nything in the tour changes, i.e. either ∑

(𝑖,𝑗)∈𝑆𝑥
𝑥𝑖𝑗 +

∑

(𝑖,𝑐)∈𝑆𝑦
𝑦𝑖𝑐 is

educed by at least 1 or an additional stop is added (∑𝑖∈𝑆
∑

(𝑖,𝑐)∉𝑆𝑦
𝑦𝑖𝑐

s increased by at least 1), the term in the brackets is at most 0. Thus,
28) is a valid inequality.

. Computational study

The objective of the computational study is to evaluate the per-
ormance of the presented approach as well as the trade-off between
n increased number of binary variables for an increased number of
upporting points (compare Section 5.2) and a worse approximation
f the linearization for a smaller number of supporting points. The
xperiments were conducted on a single AMD EPYC 7542 32 core with
.90 GHz. The time limit for each instance was set to 3600s. The
omposition is described in Section 6.1. The results are presented in
ection 6.2.

.1. Composition

We use the following non-linear charging function model introduced
y Motoaki et al. (2018) for the computational study:

(𝑡) = 0.015 + 0.00034 ⋅ 𝑇
0.022

− 0.015 + 0.00034 ⋅ 𝑇
0.022

⋅ 𝑒−0.022⋅𝑡 (29)

hereat 𝑇 is the outside temperature. As lim𝑡→∞𝑒−0.022⋅𝑡 = 0, 𝑓 (𝑡) = 1
an only be reached if 0.015+0.00034⋅𝑇

0.022 ≥ 1, i.e. 𝑇 ≥ 0.007
0.00034 ≈ 20.59. In

ur experiments, we set 𝑇 = 25, which is a realistic temperature in

any countries, such that 𝑓 (𝑡) = 1 for 𝑡 = −
ln
(

1− 0.022
0.015+0.00034⋅25

)

0.022 ≈ 125.07.
his means a vehicle requires 125.07 time units to fully recharge an
mpty battery. We approximated Eq. (29) with three, five, and seven
upporting points. The resulting linear approximations, determined
ith the procedures described in Section 4 and in the appendix, can
e found in Table 2. The error is the percentage of the value in (1)
nd (30), respectively, in relation to ∫ 𝑓−1(1)

0 𝑓 (𝑡)𝑑𝑡. Due to the convexity
f 𝑓 (⋅) the error is smaller for the piecewise linear approximation
verestimating 𝑓 (⋅). We set 𝜀 = 𝜀 = 0.001 when determining the

piecewise linear charging functions.
We evaluated instances with 10, 15, 20, 30, 40, 50, 80, and 100 cus-

tomer locations as well as 2, 5, and 10 charging stations. The number
of vehicles 𝐾 was set dependent on the number of customer locations
such that on average 5 (𝐾 = ⌈𝑛∕5⌉), 10 (𝐾 = ⌈𝑛∕10⌉), and 20 (𝐾 =
⌈𝑛∕20⌉) locations are visited in one tour. Moreover, we considered three
different time window length 𝑇𝑊 𝑙𝑒𝑛𝑔𝑡ℎ of 0, 10, and 20 time units.
Finally, we determined three instances for each possible combination
resulting from the instance characteristics described above. In total, we
get 621 instances (for 10 customers locations ⌈𝑛∕10⌉ = 1 = ⌈𝑛∕20⌉).
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Table 2
Linear approximations of the charging function (rounded values).

Three supporting points (error over: 3.34%, error under: 6.85%)

𝜏𝑟 𝑏𝑟 𝛽𝑟 𝜏𝑟 𝑏𝑟 𝛽
𝑟

1 0 0.1091 0.0137 0 0 0.0144
2 48.772 0.6086 0.0034 48.855 0.5135 0.0039
3 125.07 – – 125.07 – –

Five supporting points (error over: 0.84%, error under: 1.69%)

𝜏𝑟 𝑏𝑟 𝛽𝑟 𝜏𝑟 𝑏𝑟 𝛽
𝑟

1 0 0.0292 0.0182 0 0 0.0186
2 22.934 0.2063 0.0105 22.167 0.1687 0.0110
3 49.888 0.4583 0.0055 48.172 0.4195 0.0058
4 82.586 0.7110 0.0024 81.327 0.6846 0.0025
5 125.07 – – 125.07 – –

Seven supporting points (error over: 0.38%, error under: 0.76%)

𝜏𝑟 𝑏𝑟 𝛽𝑟 𝜏𝑟 𝑏𝑟 𝛽
𝑟

1 0 0.0148 0.0197 0 0 0.0200
2 15.890 0.1113 0.0136 15.095 0.0904 0.0140
3 33.294 0.2612 0.0091 32.487 0.2425 0.0093
4 52.252 0.4303 0.0059 52.246 0.4210 0.0059
5 73.148 0.5968 0.0036 74.135 0.5911 0.0036
6 96.860 0.7483 0.0020 97.012 0.7405 0.0021
7 125.07 – – 125.07 – –

Instances were determined as follows: Locations were drawn ran-
omly on a 100 × 100 grid. For it, we drew a random position on both
xes for each location (customer locations, depot, charging stations)
ccording to a uniform distribution. Afterwards, travel times were
etermined according to the Euclidean distance metric. This value was
hen divided by the battery capacity to obtain the required energy. To
btain a sufficient driving range we set the battery capacity to two
imes the grid’s diagonal.

It remains to determine the time windows. However, the time
indows are critical for feasibility. To ensure that a feasible solution
xists, we determined a feasible solution. For it, a random not yet
ssigned location is selected and assigned randomly to one of the tours
ntil all locations are assigned. For each tour the customer locations
re served in the sequence they were assigned to the tour. Next, we
eed to include the charging stops. To do so, we start at the depot and
un through the tour until the battery is depleted. Let 𝑠𝑢𝑚 be the sum

of required energy until the current location. We sum up 1∕(1− 𝑠𝑢𝑚) at
each location. Let this sum until the current location be called 𝑎 and the
same sum until the last location before the battery would be depleted
be called 𝑏. Afterwards, a random number in [0, 1] is determined and
the charging stop is scheduled after the location where 𝑎∕𝑏 exceeds
the random number for the first time. By this, it is more likely that
the charging stop is scheduled when the SOC is lower. Which of the
reachable charging stations is used is again determined according to
a uniform distribution. Afterwards, the same procedure is repeated
starting in the newly scheduled charging stop until the end depot is
reached. This was done for all tours. Finally, the time windows were
determined by running through each tour, including recharging up to
the required amount to travel to the next stop at each selected charging
station. Thereby, charging times were determined according to function
(29). Then, 𝑒𝑖 was set to the time location 𝑖 is reached, which is the
earliest possible time given this tour, and 𝑙𝑖 = 𝑒𝑖 +𝑇𝑊 𝑙𝑒𝑛𝑔𝑡ℎ. Note that
due to the randomly determined tours it is very likely that there are
several feasible solutions even if 𝑇𝑊 𝑙𝑒𝑛𝑔𝑡ℎ = 0.

6.2. Results

We first evaluate the performance of the presented approach before
the mentioned trade-off is discussed. Our instances vary in five dimen-
sions: the number of vehicles, the number of charging stations, the
average number of customers per vehicle (called workload), the time
10
Fig. 7. Evaluation of solutions regarding number of charging stations.

window length (𝑇𝑊 𝑙𝑒𝑛𝑔𝑡ℎ), and the number of supporting points. We
evaluate all criteria in dependency of the first, the number of customer
locations.

6.2.1. Evaluation of performance
Fig. 7 shows the average computation times of all instances with

the corresponding number of customer locations and charging stations
(solid lines) as well as their average gaps (dashed lines). Regarding the
computation times it can clearly be seen that computation times are the
higher the larger the number of possible charging stations is. For the
gaps the impression is not that clear. Although the gaps after one hour
follow the same profile – increasing up to 40 or 50 customer locations
and decreasing afterwards –, there is no clear tendency whether a
larger or smaller number of charging stations leads to better or worse
results. However, an interesting observation is that gaps have a peak for
40 or 50 customer locations. A reason for it might be the interaction
between two effects. First, a smaller number of customer locations leads
to easier instances due to less binary variables. Second, as instances are
determined randomly, it is more likely that similar customer locations
(position on the grid and time windows) are drawn if the number of
customer locations is higher such that it is easier to find good solutions
for a larger number of customer locations. Note, furthermore, that
we included a dominance criterion for the charging stations (compare
Section 5.3). Thus, the number of non-dominated charging stations
might be significantly lower than the number of possible charging
stations. Overall, the number of possible charging stations seems to
have a rather small effect on the instances’ difficulty.

This impression is confirmed by the evaluation of the vehicles’ work-
load in Fig. 8. As before the average computation times (solid lines) and
the average gaps (dashed lines) are presented for the three different
average numbers of customer locations visited by each vehicle. Note
here that we do not have instances with 10 customer locations and
an average of 20 customers per vehicle. Fig. 8 clearly shows that a
larger workload per vehicle leads to more difficult instances. A reason
might be the aforementioned effect that it is more likely to have similar
customer locations the larger the number of customer locations is.
If the number of customer locations per vehicle is smaller, it is of
course more likely that we find a group of customer locations of the
required size which are concentrated locally on the grid and have
fitting time windows. The figure also shows that our branch-and-cut
approach struggles with instances with 50 or more customer locations
and an average of 20 customers per vehicle. We were not able to solve
these instances within one hour of computation time. Nevertheless,
instances with fewer customers per vehicle were solved reliably even
for instances with 100 customer locations.
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Fig. 8. Evaluation of solutions regarding workload of vehicles.

Fig. 9. Evaluation of solutions regarding time window length.

It is well-known in the routing literature that larger time windows
typically increase the instance’s difficulty, as smaller time windows
reduce the number of feasible tours. We also fixed variables to 0 if we
know already that they cannot be part of a feasible solution due to time
windows (compare Section 5.3). Fig. 9 analyzes the performance re-
garding the different time window lengths. Solid lines show the average
computation times again. Dashed lines present the number of instances
terminated with a proven optimal solution (there are 81 instances with
fixed time window length for each number of customer locations; 54
for ten customer locations). In our results, we can only observe a small
effect of the time window size on the solution quality. For 80 and
100 customer locations the instances with a time window lengths of
20 led to the longest computation times and the fewest instances were
solved to proven optimality. However, the figure confirms the results
obtained in Fig. 7 that instances are more difficult if more customer
locations are present. Moreover, we can see that almost all instances
were solved to proven optimality for a small number of customer
locations (especially 10 and 15). Afterwards, this number decreases.
Starting with 40 or 50 locations roughly half of the instances were
solved to proven optimality. Remembering the results in regard to the
vehicles’ workload, these are especially those instances with a small
workload per vehicle, i.e. with a larger number of vehicles.

Concluding the evaluation of our solution approach, we can sum-
marize that our branch-and-cut framework is able to solve even large
instances with 100 customer locations to proven optimality. If the
11
number of vehicles is not too large, even almost all of these instances
can be solved to optimality within one hour of computation time.
Otherwise, gaps of a few percent are obtained. Moreover, the workload
of vehicles has the largest effect on the solution quality while the
number of charging stations and the time window length only have a
smaller influence.

6.2.2. Influence of the number of supporting points
Our solution approach has the characteristic to allow infeasible

solutions in the model formulation which are declared to be infeasible
by an infeasible path cut if they occur. By this, we are able to solve
the linearized model without cutting off feasible solutions. Fig. 10(a)
pictures the number of calls of the procedure described in Section 5.4
(solid lines), i.e. how often integer solutions were considered in the
branch-and-cut procedure. Dashed lines represent the number of cuts
of type (28) added to the model. Dotted lines do the same for cuts of
type (27). It can clearly be seen that in most calls infeasible path cuts
were added to the model if the number of customer locations is rather
small (up to 40). Note that only changing the charging station visited
between two customer locations leads to a new integer solution which
explains the significant number of calls in instances with only three
supporting points. Nevertheless, 4000 is still a moderate number such
that the required computation time for the procedure in Section 5.4 is
negligible in comparison to the computation time of the entire branch-
and-cut procedure. If the number of customer locations becomes larger,
the number of added cuts of type (27) decreases. Instead, most of the
found solutions were feasible, but the required charging time needed
to be corrected. Furthermore, the left part of Fig. 10 shows that the
number of added cuts can be significantly reduced by increasing the
number of supporting points. However, the right side of the figure
shows that the different numbers of supporting points led to very
similar results regarding the required computation times as well as
the number of instances solved to proven optimality. Thus, the results
show that the effect of a higher model complexity due to more binary
variables in favor of a better approximation of the charging function is
comparable to the effect of a higher chance to obtain integer solutions
which need to be declared as infeasible if the number of supporting
points and by it the number of binary variables is smaller, i.e. the
charging function approximation is worse. In tendency, it seems to be
that seven supporting points are already too many, as for instances
with at least 30 customer locations fewer optimal solution were found
and higher computation times were required in comparison with the
same instances with three and five supporting points, respectively.
Note that we used the same number of supporting points for the
piecewise linear function overestimating the real charging function
as well as for the one underestimating the real charging function.
However, additional binary variables are only required to determine 𝑡𝑖
in Constraints (20)–(25). The approximation of 𝑡𝑖 (in Constraints (19))
can be improved by further supporting points by only adding |𝐼| ⋅ |𝐶|

additional constraints per supporting point. Nevertheless, Fig. 10 shows
that the number of supporting points is not really decisive. Therefore,
we abstain from evaluating different numbers of supporting points for
the two approximations.

6.2.3. Relation between optimal and best truncated solution
Our procedure, moreover, allows us to track the best solution which

was truncated by an infeasible path cut (27) for every instance. Fig. 11
shows the relative improvement of the best truncated solution in re-
lation to the optimal solution (best feasible found if procedure not
terminated within 3600s). Solid lines show the average over all in-
stances with the corresponding number of customer locations and
dashed lines the maximum of them. It can clearly be seen that a smaller
number of supporting points leads to a higher difference between
optimal solution and best truncated solution. This is not surprising,
as the approximation is worse if the number of supporting points is

smaller (compare Fig. 3). For three supporting points we found gaps
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Fig. 10. Influence of the number of supporting points on the solution quality.
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Fig. 11. Evaluation of truncated infeasible solutions in relation to optimal solution.

of up to almost 2% on average and over 16% in maximum. However,
for five supporting points (5.17%) and seven supporting points (3.85%)
maximal gaps were clearly smaller and average gaps were smaller than
0.5%.

We evaluated the gaps between piecewise linear overestimation of
the real charging function and the real charging function. Thus, we
cannot conclude on the gaps reached by an underestimation of the real
charging function as it is typically done in the literature. However,
Table 2 shows that the approximation error is rather smaller for the
overestimation in comparison to the underestimation such that the
results indicate that the approximation error with a piecewise linear
underestimation might be larger than 0.5% for some instances even if
more than three supporting points are used.

7. Conclusion

We have investigated the EVRP with a realistic non-linear concave
and strictly monotonic increasing charging function. In our model,
we approximate the charging function by a piecewise linear function
which never underestimates the real SOC. By this, the solution space
is increased. Whenever an integer solution is found in the branch-
and-cut procedure, we declare infeasible solutions regarding the real
charging function to be infeasible by adding an infeasible path cut of
12

type (27). If the solution is feasible, we correct the required charging
time if necessary by adding a cut of type (28). The computational
results show that the approach can solve instances with 100 customer
locations reliably to optimality. Moreover, we found that the average
number of customers per vehicle is the main indicator for instances to
be difficult to solve. The number of charging stations as well as the
time window length had smaller effects in this regard. The larger the
number of supporting points is, the better is the approximation, but
the larger is the number of binary variables in the model formulation.
Our computational results show that there is no clear difference in the
performance for three, five, and seven supporting points.

As the presented solution approach leads to good results even for
larger instances with 100 customer locations, it can be used in different
routing settings in future research to incorporate the usage of electric
vehicles. Examples are variants of the EVRP e.g. with vehicle capacities
or maximum ride time constraints. Moreover, possible applications also
include the pickup-and-delivery problem or the dial-a-ride problem and
variants of them like ridepooling services (Schulz and Pfeiffer, 2024).
In applications of all of these problems, electric vehicles are used for
emission-free transportation.
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Appendix. Piecewise linear charging function underestimating
real charging function

As described in Section 5.2 we also need a piecewise linear approx-
imation of the charging function such that the real charging function
is never overestimated, but the estimation is as tight as possible. This
means, we want to find linear functions 𝐹 𝑟(𝑡) = 𝑏𝑟+𝛽𝑟⋅𝑡, 𝑟 = 1,… , |𝑅|−1,
and 𝐹 (𝑡) = min𝑟∈𝑅∖{|𝑅|} 𝐹 𝑟(𝑡) such that 𝐹 (𝑡) ≤ 𝑓 (𝑡) holds for all 𝑡 ∈
[0, 𝑓−1(1)] and

∫

𝑓−1(1)

0
𝑓 (𝑡)𝑑𝑡 − ∫

𝑓−1(1)

0
𝐹 (𝑡)𝑑𝑡 (30)

s minimized. Analogously to (1), which is minimized if Eq. (2) is
inimized, (30) is minimized if

∫

𝑓−1(1)

0
𝐹 (𝑡)𝑑𝑡 =

|𝑅|−1
∑

𝑟=1

1
2
⋅(𝐹 𝑟+1(𝜏𝑟+1)−𝐹 𝑟(𝜏𝑟))⋅(𝜏𝑟+1−𝜏𝑟)+𝐹 𝑟(𝜏𝑟)⋅(𝜏𝑟+1−𝜏𝑟)
(31)
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is maximized. Analogously to the procedure in Section 4, we first find
a starting solution by splitting the interval [0, 𝑓−1(1)] into |𝑅| equally
long intervals and setting 𝜏1 = 0, 𝜏𝑟, 1 < 𝑟 < |𝑅|, as the intersection of
wo succeeding intervals, and 𝜏

|𝑅| = 𝑓−1(1). Then, 𝐹 𝑟 is defined as the
unique linear function crossing 𝑓 (𝜏𝑟) and 𝑓 (𝜏𝑟+1), 𝑟 = 1,… , |𝑅| − 1.

Afterwards, we use Algorithm 2 to optimize this solution but run the
loop in line 5 from 𝑟 = 2 to |𝑅| − 1 because the first supporting point
is always (0, 0) and call Algorithm 3 instead of Algorithm 1 in line 6. If
𝑟 = |𝑅|−1, Algorithm 3 requires 𝐹

|𝑅|(⋅). As the last supporting point is
always (𝑓−1(1), 1), we can simply set 𝐹

|𝑅|(⋅) = 1.

Algorithm 3. (Determination of optimal supporting points (underestima-
tion))
1: function set_supporting_point(𝜏𝑟−1, 𝜏𝑟, 𝜏𝑟+1, 𝑓 (⋅), 𝐹 𝑟−1(⋅), 𝐹 𝑟+1(⋅), 𝜀)
2: let 𝑝̂ be the increasingly ordered list of possible supporting points

𝑝̂ =
( 𝜏𝑟−1+𝜏𝑟

2 , 𝜏𝑟,
𝜏𝑟+𝜏𝑟+1

2

)

3: set 𝑔(1) = ∑𝑟
𝑟′=𝑟−1

1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) is the unique linear function determined by
𝜏𝑟−1+𝜏𝑟

2 , 𝑓
( 𝜏𝑟−1+𝜏𝑟

2

)

, 𝜏𝑟+1, and 𝑓 (𝜏𝑟+1)

4: set 𝑔(2) = ∑𝑟
𝑟′=𝑟−1

1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) does not change
5: set 𝑔(3) = ∑𝑟

𝑟′=𝑟−1
1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ )) ⋅(𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅

(𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) is the unique linear function determined by
𝜏𝑟+𝜏𝑟+1

2 , 𝑓
( 𝜏𝑟+𝜏𝑟+1

2

)

, 𝜏𝑟+1, and 𝑓 (𝜏𝑟+1)
6: set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0
7: set 𝑏𝑒𝑠𝑡 = min{𝑔(1), 𝑔(2), 𝑔(3)}
8: while 𝑏𝑒𝑠𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝜀 do
9: set 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
0: 𝑢 = 1
1: while 𝑔(𝑢) > 𝑔(𝑢 + 1) and 𝑢 < |𝑝̂| do
2: set 𝑢 = 𝑢 + 1
3: end while
4: insert 𝜏𝑟 =

𝑝̂𝑢+𝑝̂𝑢+1
2 in list 𝑝̂ (𝑝̂𝑢 is the (𝑢+ 1)𝑡ℎ entry in extended

list 𝑝̂), evaluate the solution (∑𝑟
𝑟′=𝑟−1

1
2 ⋅(𝐹 𝑟′+1(𝜏𝑟′+1)−𝐹 𝑟′ (𝜏𝑟′ ))⋅(𝜏𝑟′+1−

𝜏𝑟′ ) + 𝐹 𝑟′ (𝜏𝑟′ ) ⋅ (𝜏𝑟′+1 − 𝜏𝑟′ ) whereat 𝐹𝑟(⋅) is the unique linear function
determined by 𝑝̂𝑢+𝑝̂𝑢+1

2 , 𝑓
(

𝑝̂𝑢+𝑝̂𝑢+1
2

)

, 𝜏𝑟+1, and 𝑓 (𝜏𝑟+1)), update 𝑔(⋅),
and update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

if improved
5: set 𝑢 = |𝑝̂|
6: while 𝑔(𝑢 − 1) < 𝑔(𝑢) and 𝑢 > 0 do
17: set 𝑢 = 𝑢 − 1
18: end while
19: insert 𝜏𝑟 = 𝑝̂𝑢−1+𝑝̂𝑢

2 in list 𝑝̂ (𝑝̂𝑢 is the (|𝑝̂| − 𝑢 − 1)𝑡ℎ entry
in extended list 𝑝̂), evaluate the solution (∑𝑟

𝑟′=𝑟−1
1
2 ⋅ (𝐹 𝑟′+1(𝜏𝑟′+1) −

𝐹 𝑟′ (𝜏𝑟′ )) ⋅ (𝜏𝑟′+1−𝜏𝑟′ )+𝐹 𝑟′ (𝜏𝑟′ ) ⋅ (𝜏𝑟′+1−𝜏𝑟′ ) whereat 𝐹 𝑟(⋅) is the unique
linear function determined by 𝑝̂𝑢−1+𝑝̂𝑢

2 , 𝑓
(

𝑝̂𝑢−1+𝑝̂𝑢
2

)

, 𝜏𝑟+1, and 𝑓 (𝜏𝑟+1)),
update 𝑔(⋅), and update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if improved

0: end while
1: return 𝜏𝑟 and 𝐹𝑟(⋅) determined by 𝑝 = arg min𝑝′∈𝑝̂{𝑔(𝑝′)}.
22: end function
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