
Euler, Ricardo; Lindner, Niels; Borndörfer, Ralf

Article

Price optimal routing in public transportation

EURO Journal on Transportation and Logistics (EJTL)

Provided in Cooperation with:
Association of European Operational Research Societies (EURO), Fribourg

Suggested Citation: Euler, Ricardo; Lindner, Niels; Borndörfer, Ralf (2024) : Price optimal routing
in public transportation, EURO Journal on Transportation and Logistics (EJTL), ISSN 2192-4384,
Elsevier, Amsterdam, Vol. 13, Iss. 1, pp. 1-15,
https://doi.org/10.1016/j.ejtl.2024.100128

This Version is available at:
https://hdl.handle.net/10419/325202

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.ejtl.2024.100128%0A
https://hdl.handle.net/10419/325202
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

EURO Journal on Transportation and Logistics 13 (2024) 100128

A
2
a

Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.elsevier.com/locate/ejtl

Price optimal routing in public transportation
Ricardo Euler ∗, Niels Lindner, Ralf Borndörfer
Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany

A R T I C L E I N F O

Keywords:
Multi-objective shortest path
Fare structure
Public transportation
Monoid
Conditional fare network
Ticket graph
RAPTOR

A B S T R A C T

We consider the price-optimal earliest arrival problem in public transit (POEAP) in which we aim to calculate the
Pareto-set of journeys with respect to ticket price and arrival time in a public transportation network. Public
transit fare structures are often a combination of various fare strategies such as, e.g., distance-based fares, zone-
based fares or flat fares. The rules that determine the actual ticket price are often very complex. Accordingly,
fare structures are notoriously difficult to model, as it is in general not sufficient to simply assign costs to
arcs in a routing graph. Research into POEAP is scarce and usually either relies on heuristics or only considers
restrictive fare models that are too limited to cover the full scope of most real-world applications. We therefore
introduce conditional fare networks (CFNs), the first framework for representing a large number of real-world
fare structures. We show that by relaxing label domination criteria, CFNs can be used as a building block in
label-setting multi-objective shortest path algorithms. By the nature of their extensive modeling capabilities,
optimizing over CFNs is NP-hard. However, we demonstrate that adapting the multi-criteria RAPTOR (McRAP)
algorithm for CFNs yields an algorithm capable of solving POEAP to optimality in less than 400 ms on average
on a real-world dataset. By restricting the size of the Pareto-set, running times are further reduced to below
10 ms.
1. Introduction

The desired shift to more sustainable means of transportation neces-
sitates an increase in the modal share of public transportation systems.
Recent studies show that discounted or even free fares significantly in-
crease such a system’s adaptation (Brough et al., 2022; Bull et al., 2021;
Chen et al., 2020), indicating that, from a traveler’s perspective, the
design of fares and ticket prices are key parameters to foster its attrac-
tiveness. This effect, however, varies between socioeconomic groups:
While many riders may value fast connections with few transfers, low-
income riders are more likely to choose a more affordable mode of
public transportation or to even abstain from using transportation at all
if they deem fares to be too expensive (Blumenberg and Agrawal, 2014;
Rosenblum, 2020). This underlines the need for routing algorithms
that enable passengers to select journeys optimal with respect to their
individual needs. Since these needs are rarely known, we present an
approach that calculates Pareto sets of optimal journeys with respect
to the earliest arrival time, the number of transfers and cost. It is then
on the user to choose from the options presented the one most suited
for their personal needs.

Ticket prices are determined by the public transit providers’ fare
structure. Following Fleishman et al. (1996) a fare structure is ‘‘the
combination of one or more fare strategies with specific tickets’’ while
the term fare strategy refers to a ‘‘general fare collection and payment

∗ Corresponding author.
E-mail address: euler@zib.de (R. Euler).

structure approach’’. This can be, e.g, a distance-based or zone-based
fare, a short-distance discount, a flat fare or a surcharge. Until now, a
unifying framework for the algorithmic treatment of public transit fare
structures has been lacking. Some fare strategies, for example distance-
based fares, can be addressed easily using label-setting shortest path
algorithms. Finding a journey that crosses the least amount of fare
zones, however, is NP-hard (Blanco et al., 2016) and cannot be modeled
using real-valued arc weights. In general, the subpath optimality prin-
ciple does not hold for fare structures and thus label-setting algorithms
cannot be directly applied to POEAP. Consider the following example:
A traveler takes a detour that passes through an additional fare zone
to avoid paying the surcharge of a special connection (e.g., a ferry).
It is not unlikely that, at a later point, the surcharge has to be paid
regardless (e.g., because the target stop can only be reached via a
ferry). In that case, taking the detour was a suboptimal decision and
using the corresponding label to prune other partial journeys breaks
the optimality guarantee of shortest path algorithms.

1.1. Our contribution

We devise algorithms that solve the price-optimal earliest arrival
problem (POEAP) efficiently in practice. To this end, we build upon
https://doi.org/10.1016/j.ejtl.2024.100128
Received 21 March 2023; Received in revised form 20 December 2023; Accepted 8
vailable online 13 February 2024
192-4376/© 2024 The Authors. Published by Elsevier B.V. on behalf of Associatio
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
February 2024

n of European Operational Research Societies (EURO). This is an open access
nd/4.0/).

https://www.elsevier.com/locate/ejtl
https://www.elsevier.com/locate/ejtl
mailto:euler@zib.de
https://doi.org/10.1016/j.ejtl.2024.100128
https://doi.org/10.1016/j.ejtl.2024.100128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2024.100128&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
the state-of-the-art public transport routing algorithms McRAP (Delling
et al., 2015) and Tight-BMRAP (Delling et al., 2019), which combine
an intelligent enumeration scheme with dominance checks. Our domi-
nation rules are based on conditional fare networks (CFN), a novel and
flexible framework for modeling fare structures of public transporta-
tion providers capable of taking most underlying fare strategies into
account. A CFN models fare structures as a ticket graph representing
relations between tickets. Transitions between different tickets are mod-
eled as directed arcs and usually depend on a number of additional
parameters such as, e.g., fare zones or the traveled distance. These
are modeled via partially ordered monoids and events. Fare strate-
gies that can be expressed via CFNs include (but are not limited to):
zone-based fares, distance-based fares, surcharges for special vehicles
or night liners, discounted short-distance fares, transfer fares and all
combinations thereof. We develop domination rules for CFNs based on
path relations in the ticket graph instead of the price alone. This allows
us to retain subpath optimality and prove that using these rules in label-
setting MOSP algorithm does in fact yield lowest-price journeys. By
further restricting the size of the Pareto-set, we solve POEAP in less
than ten milliseconds over the intricate fare structure of a mid-sized
public transit provider from Germany.

1.2. Related literature

There is ample research on routing problems in public transit net-
works. For an overview, see Bast et al. (2016). Delling et al. (2015)
introduced the RAPTOR algorithm for very fast public transit routing.
We refer occasionally to typical label-setting multi-objective shortest
path algorithms, by which we mean, e.g., McRAP (Delling et al., 2015),
Martins’ algorithm (Martins, 1984), and recently Multi-Objective Di-
jkstra (Maristany de las Casas et al., 2021). Delling et al. (2019)
introduce a version of McRAP, Tight-BMRAP, for computing restricted
Pareto-sets.

The concept of relaxed subpath optimality is discussed in Berger and
Müller-Hannemann (2009). Lastly, we refer to Disser et al. (2008) on
how to model public transit systems with transfers in time-dependent
graphs.

In contrast to the general activity of the field, literature on price-
optimal routing is generally rather scarce. This is certainly due to
the usually intricate nature of public transit fare structures. Most ap-
proaches deal with fares on a heuristic basis or only consider a very
narrow set of fare strategies. Most notably, Müller-Hannemann and
Schnee (2005) study fare structures that entail distance- and relation-
based prices, i.e., structures that are usually associated with long-
distance public transportation. They approximate fares by assigning
a fixed price to every arc. This approach, however, does not account
for fare strategies such as, e.g., fare zones and short-distance discount
tickets. Both are usually more prominent in local public transportation.

Reinhardt and Pisinger (2011) consider optimizing the number of
fare zones as a special case in their study of non-additive objective
functions in (multi-criteria) shortest path problems. However, their
approach relies on target pruning as the sole domination technique,
so that partial paths cannot be pruned until a 𝑠, 𝑡-path is known. In
contrast, our approach applies to more general fare structures, includes
target pruning, but also allows for pruning at earlier stages.

Schöbel and Urban (2021) identified conditions under which price-
optimized routing is tractable for zone- and distance-based fare strate-
gies. Additionally, they identify the no-elongation and no-stopover
properties as desirable properties for fare structures. This follows a
line of research concerned with the design of fare structures. For a
review of recent work, see Schöbel and Urban (2021). Blanco et al.
(2016) showed zone-based fares to result in NP-hard routing problems
if reentering a zone does not entail additional costs. The proof relies on
a reduction of the problem of finding a path with a minimum number
of colored edges (Broersma et al., 2005). It was given in the context of

flight trajectory optimization with overflight costs (Blanco et al., 2017).

2
A version adapted for public transport is given by Schöbel and Urban
(2021). Delling et al. (2015) used RAPTOR to compute journeys that
touch the smallest number of fare zones. Recently, Gündling (2020)
considered price-optimized routing in intermodal transportation. They,
however, only considered mileage-based and flat fares.

Our approach combines ideas from automata theory and optimiza-
tion over monoids. For an overview of automata theory, see Hopcroft
and Ullman (1979). The ticket graph concept is inspired by the ap-
plication of finite automata to the language-constrained shortest path
problem (Barrett et al., 2000). It is different, however, in that it serves
to evaluate paths instead of restricting the set of feasible paths. Further-
more, our approach also covers fares based on numerical parameters
that are not expressed as part of a formal language. Finally, it has been
known for a while that shortest path algorithms can be generalized to
ordered monoids (Zimmermann, 1981) and semirings (Mohri, 2002)
in a straightforward fashion. Recently, monoids were also proposed
as a general constraint model for (single-criteria) resource constrained
shortest path problems (Parmentier, 2019).

This paper is an extended and improved version of work presented
at the ATMOS’19 conference (Euler and Borndörfer, 2019). Apart from
streamlining the presentation and proofs, the following additions were
made: We now better motivate the interplay between the monoid and
the ticket graph. We propose a superior approach for dealing with
overlap areas. We provide an adaption of the recent Tight-BMRAP
algorithm to our use case. This leads to an improvement in algorith-
mic performance of up to two orders of magnitude compared to the
previous results in Euler and Borndörfer (2019). Finally, we provide
a complexity analysis and investigate the relation of our approach to
automata theory in Appendix A.

Ticket graphs of various German public transit providers can be
found in Borndörfer et al. (2018, 2021).

1.3. Overview

In Section 2, we introduce the fare structure of MDV, an association
that is responsible for the public transit fares for various operators in
the Leipzig–Halle region of Germany. This fare structure will serve as
a running example for the rest of the paper. We present conditional
fare networks in detail in Section 3 and show how they can be used
to model various aspects of fare structures. The algorithmic treatment
of fares and domination rules is laid out in Section 4. Section 5
discusses how the multi-criteria RAPTOR and Tight-BMRAP algorithms
can be modified to use CFNs for price-optimal search. An evaluation
of the framework’s performance is conducted in Section 6 using the
network and fare structure of MDV. Section 7 concludes the paper with
some closing remarks. In Appendix A, we provide a supplementary
complexity analysis of POEAP and explore links to automata theory.

2. Running example: MDV

We introduce the reader to some intricacies of fare structures in
public transit using the example of Mitteldeutscher Verkehrsverbund
(MDV) (Mitteldeutscher Verkehrsverbund GmbH, 2019a). Throughout
Sections 3 and 4, the MDV fare structure will serve as a running
example to illustrate our core concepts. A schematic depiction of MDV’s
fare plan is given in Fig. 1.

Example 2.1 (The fare system of MDV). MDV’s area of operations covers
large rural areas in Eastern Germany, as well as the conurbation of
Halle and Leipzig. As of 2019, this area is divided into a set of 56
pairwise disjoint fare zones. In most cases, the price depends on the
number of visited fare zones: there are price levels for one to six fare
zones. We denote the respective tickets by 𝑍𝑖 with 𝑖 ∈ [6]. For example,
traveling from station  to station  in Fig. 1 requires ticket 𝑍4. For all
paths covering more than six fare zones, a ticket for MDV’s whole area

of operations has to be purchased, which we denote by 𝑀 . The two

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
Fig. 1. A section of MDVs fare plan with two lines and six fare zones. Two of the fare zones, colored in light gray, are the cities of Halle and Leipzig. Vertically hatched hexagons
represent overlap areas that can be counted as either of the neighboring zones. The horizontally hatched circle represents the small city Merseburg in which a special discounted
fare is applicable. Small black nodes represent public transit stops. Footpaths are indicated by dotted lines.
larger cities, Halle and Leipzig, each form a single fare zone. Traveling
in these zones requires special tickets more expensive than 𝑍1. These,
we denote by 𝐻 and 𝐿, respectively.

For all paths that pass through multiple fare zones, they, however,
count as normal zones, i.e., one of the tickets 𝑍2,… , 𝑍6,𝑀 is applied.
Hence, the paths −  and  − incur tickets 𝐻 and 𝐿, respectively,
while the path − incurs 𝑍2. Several smaller cities are part of larger
fare zones, but allow for discounted fares (city fares) when traveling
only in that city. For each city 𝑐 in the set of such cities 𝐶, we denote
the ticket by 𝐶𝑐 . The path  −  in Merseburg (𝑚), hence, requires the
ticket 𝐶𝑚. When extending the path to stop , the ticket 𝑍1 becomes
applicable. As of 2019, there are 17 cities with city fares and two price
levels (which we denote by 𝐶1 and 𝐶2). For paths starting in Halle and
Leipzig, there are discounted tickets for short trips (𝐷𝐻 and 𝐷𝐿), which
can be used for a maximum number of four stops without transfers.
Hence, paths − and  − are admissible for discounted tickets 𝐷𝐻
and 𝐷𝐿, respectively, while paths − and  − are not. Discounted
tickets also exist for other zones (𝐷). These are a little cheaper and
depend on the length of the journey (4 km maximum) instead of the
number of visited stops. Sometimes it is possible to choose between city
fares and length-based discounts. In this case, the city fare is applied
because it is cheaper. To not unduly burden people living at the borders
of fare zones, MDV uses overlap areas. These can be counted as part
of either of their adjacent fare zones, whichever is most benevolent to
the traveler. For example, when traveling from  to , all stops are
counted as part of fare zone 162 and thus ticket 𝑍1 would be applicable.
When traveling from  to ,  counts as part of the fare zone 233 but
in the path  −  it counts as part of Halle. Hence, tickets 𝑍1 and 𝐻
are applicable, respectively.

While we cover the most important features of the fare structure,
we do ignore some edge cases and explicit exceptions. These are
among other things: Slightly different discount rules for specific trains,
counting stations that are passed without a stop for discounted tickets
and exceptions for a specific tunnel. This is done in part because
they are not properly reflected in our dataset, and in part to simplify
presentation.

3. A formal framework for fare structures

Consider a (directed) routing graph 𝐺 = (𝑉 ,𝐴), in which arcs
represent either public transport connections, footpaths, or transfers
3
between lines and/or modes of transportation. Public transit journeys
can then be interpreted as paths in 𝐺. In the following, we will consider
a time-dependent formulation as presented, for example, by Disser et al.
(2008), i.e., we are given a time-dependent FIFO travel time function
𝑐(𝑎) ∶ 𝐼 → 𝐼 on each arc 𝑎 ∈ 𝐴, where 𝐼 is the set of time points.

In 𝐺, every path 𝑝 is associated with a ticket 𝜏 ∈ 𝑇 from a ticket set
𝑇 that has to be bought to use 𝑝. Each ticket has a corresponding price
𝜋(𝜏) ∈ Q+. In the following, we might also write 𝜋(𝑝) instead of 𝜋(𝜏) if
𝜏 is the ticket associated with 𝑝. The ticket of a path is determined by
the fare structure.

We aim to solve the price-optimal earliest arrival problem (POEAP).
We refer to Definition 3.6 for a precise definition, but the essence
is that, for given 𝑠, 𝑡 ∈ 𝑉 , we want to find a Pareto-set of 𝑠, 𝑡-paths
𝑃 ∗
𝑠,𝑡 ⊆ 𝑃𝑠,𝑡 with respect to arrival time and ticket price in 𝐺. Here, 𝑃𝑠,𝑡

denotes the set of all 𝑠, 𝑡-paths in 𝐺.
Ideally, we want to solve POEAP by taking advantage of the existing

literature on label-setting MOSP algorithms. Ticket prices, however,
usually cannot be modeled via real-valued FIFO functions on arcs.
Hence, a framework for fare structures is needed that allows us to label
paths in a way that (a) labels can be updated quickly when a new arc is
relaxed, (b) dominance relationships between labels can be established
that respect the subpath optimality property.

3.1. Modeling with monoids

Note that in Example 2.1, the price of a path depends on several pa-
rameters: the number of visited stations, the total distance traveled, the
set of visited fare zones and on indicators reporting whether transfers
were made or whether the path crossed city borders.

All these parameters share several key properties: First, there is a
natural partial order on them, indicating which configuration requires
a more expensive ticket. For example, for fare zones 𝐴,𝐵, 𝐶 we have
{𝐴,𝐵} ⊂ {𝐴,𝐵, 𝐶}; for distances and transfers it is the canonical
order on N. The parameters can be summed up along a path using
an appropriate notion of addition. For distances, this is the normal
addition of natural numbers; for fare zones, it is the union of sets; we
can use the logical OR (∨) on the set {0, 1} for indicators. Finally, we
can assume the existence of a neutral element for every parameter.

The above properties suggest that the structure of a partially or-
dered positive monoid is an appropriate model for a large number of

fare-relevant parameters.

R. Euler et al.

p

t
h
m

t

i

t
b
t
a
o
w
t
p
d

E

EURO Journal on Transportation and Logistics 13 (2024) 100128
Definition 3.1 (Partially ordered monoid). A monoid (𝐻,+) is a set 𝐻
together with an associative operation + (called addition) and a neutral
element 𝟎 ∈ 𝐻 , i.e., ℎ + 𝟎 = ℎ∀ℎ ∈ 𝐻 . We call (𝐻,+,≤) a partially
ordered monoid if ≤ is a partial order on 𝐻 that is translation-invariant
with respect to the monoid operation +, i.e., ℎ1 ≤ ℎ2 ⇒ ℎ1 + 𝑥 ≤ ℎ2 +
𝑥∀ℎ1, ℎ2, 𝑥 ∈ 𝐻 . If additionally 𝟎 ≤ ℎ∀ℎ ∈ 𝐻 , we call (𝐻,+,≤) a
partially ordered positive monoid.

Note that we can define the cross-product of two partially ordered
monoids (𝐻1,+1,≤1) and (𝐻2,+2 ≤2) by (𝐻1 × 𝐻2,+12,≤1,2), where
(ℎ1, ℎ2)+1,2 (𝑖1, 𝑖2) ∶= (ℎ1+1 𝑖1, ℎ2+2 𝑖2) and (ℎ1, ℎ2) ≤1,2 (𝑖1, 𝑖2) if and only
if ℎ1 ≤ 𝑖1 and ℎ2 ≤ 𝑖2 for ℎ1, 𝑖1 ∈ 𝐻1 and ℎ2, 𝑖2 ∈ 𝐻2. The cross-product
of two partially ordered positive monoids is again a partially ordered
positive monoid. This construction allows us to represent all the fare-
relevant parameters in Example 2.1 above as a single partially ordered
positive monoid (𝐻,+,≤).

Price-optimal paths can then be found in the following way: We
label each arc 𝑎 ∈ 𝐴 with a weight in 𝐻 representing the relevant
parameters on this arc. The weight of a path 𝑝, denoted by w(𝑝), lives in
𝐻 as well and can be obtained by summing up the weights of the arcs of
𝑝. The ticket 𝜏 for 𝑝 and its price can then be derived from 𝑤(𝑝) using the
rules of the fare structure. Finding a price-optimal 𝑠, 𝑡-path with 𝑠, 𝑡 ∈ 𝑉
can now be achieved by finding the Pareto-set of 𝑠, 𝑡-paths with regard
to the partial order of (𝐻,+,≤). Here, we can apply a label-setting
MOSP algorithm such as, e.g., Martins’ algorithm, by using elements
of 𝐻 as labels and the partial order of (𝐻,+,≤) to establish dominance
between labels (Parmentier, 2019). Note, however, that this set will
likely still contain many dominated paths with respect to price. This
necessitates the filtering out of superfluous paths in a post-processing
step.

Example 3.1 (MDV). For MDV, we can construct a monoid in the
following way: for each city 𝑐 ∈ 𝐶 we define the monoid (𝐻𝑐 ∶=
{0, 1},∨,≤) as an indicator whether our path started in 𝑐 and then left
the city. Hence, all arcs representing a connection leaving the city carry
the weight 1 ∈ 𝐻𝑐 . Furthermore, we represent the distance traveled
by the monoid (𝐻𝑑𝑖𝑠𝑡 ∶= N,+,≤), the number of visited stations by
(𝐻𝑠𝑡𝑜𝑝 ∶= N,+,≤), the set of fare zones by (𝐻𝑧𝑜𝑛𝑒 ∶= 2𝑍 ,∪, ⊆) and finally
the transfers by (𝐻𝑡𝑟𝑎𝑛 ∶= {0, 1},∨,≤). Price-optimal paths can then be
computed by finding the Pareto-set over the monoid (𝐻𝑑𝑖𝑠𝑡 × 𝐻𝑠𝑡𝑜𝑝 ×
𝐻𝑡𝑟𝑎𝑛 × 𝐻𝑧𝑜𝑛𝑒 ×

∏

𝑐∈𝐶 𝐻𝑐 ,+,≤) and filtering out dominated paths in a
post-processing step. Here, + and ≤ are induced from the component
monoids.

While the above modeling approach covers a reasonable set of real-
world applications, it is not expressive enough to be of much use for
complex fare structures. First, note that it requires an order-preserving
relationship between the monoid and the ticket prices. This assumption
does not hold in general: For example, some public transit associations
(e.g., in the city of Bremen, Germany, before 2020 (Verkehrsverbund
Bremen/Niedersachsen GmbH, 2019)) apply night surcharges on se-
lected lines. This means that, e.g., in the early morning, it can be
beneficial to start a journey later because it becomes cheaper. In par-
ticular, it is necessary to capture time in the monoid, but the mapping
between time and price does not preserve order. Second, monoids
often cannot express logical pricing conditions: For example, a price
depending on the order on which stops are visited cannot be modeled
using the monoid-based approach. Third, shortest path search over the
monoid is agnostic to the fare structure and therefore tends to consider
unnecessarily large search trees. In the MDV case, if we already know
an 𝑠, 𝑡-path for which, e.g., the ticket 𝐷𝐿 is applicable, all partial paths
starting in 𝑠 that require a more expensive ticket can be pruned even
though they might not be dominated w.r.t to ≤. To do this, however,
we must find a way to quickly obtain the corresponding ticket to labels
from 𝐻 .

Finally, note that the labels of a label-setting MOSP algorithm live in

𝐻 and might be quite large. In most cases, however, it is not necessary

4
Fig. 2. Ticket graph associated with the MDV public transit network. To simplify the
presentation, all tickets for city fares are collapsed to 𝐶1 and 𝐶2 representing the two
rice levels of city fares. Possible starting tickets are highlighted in light gray.

o carry the whole label along. Consider again the MDV case. If a path
as left a city 𝑐, all city fares become unavailable and labels for all
onoids 𝐻𝑐 , 𝑐 ∈ 𝐶, need no longer be considered. This information

remains unavailable to an algorithm using the monoid-based model.
Computational results in Section 6 reveal that purely monoid-based

modeling quickly becomes intractable, even when only considering the
fare zone monoid (𝐻𝑧𝑜𝑛𝑒,∪, ⊆).

3.2. Ticket graphs and fare events

To overcome the challenges laid out in the previous section, we
extend our modeling in two directions: First, we want to take the
path’s ticket into account. To do so, we develop a model to represent
tickets and their relationships. Second, we introduce events that model
logical fare strategies. They also serve to reduce the size of the monoid.
Addressing the first point, we notice that there is a natural progression
of the applicable ticket along a path 𝑝. If 𝑝 is short, a short-distance
icket might suffice. When 𝑝 is extended by adding another stop 𝑣 at

its end, this ticket might no longer be applicable and now, e.g., a zone
ticket might apply. When traveling even further, a ticket covering two
zones might be needed. Hence, we can relate tickets to each other via
their ability to transition into one another along paths in the routing
graph. We formalize this observation by introducing a ticket graph  =
(𝑇 ,𝐸) that contains an arc 𝑒 = (𝜏1, 𝜏2) ∈ 𝐸 if ticket 𝜏1 can transition
nto ticket 𝜏2. Transitions depend on the weight 𝑤(𝑝) and do not occur

at every stop. Hence, we introduce a ticket transition function that
checks 𝑤(𝑝) and selects the appropriate ticket from the neighborhood of
the ticket of 𝑝 in  . The ticket graph provides crucial advantages over
he purely monoid-based approach: First, when we want to use price-
ased target-pruning (cf. Section 5.4), we must compute the current
icket price. The ticket graph allows doing this by updating tickets
long a path, thereby only checking a few transition conditions on the
utgoing edges. Without the ticket graph, all rules of the fare structure
ould need to be checked whenever a vertex is relaxed. Second, the

icket graph also carries information about the possible further ticket
rice development of a partial path: This knowledge is useful to design
ominance rules.

xample 3.2 (Running example: Ticket graph for MDV). Consider the
ticket graph in Fig. 2. All possible tickets introduced in Example 2.1
are represented as nodes. Whenever, a ticket can transition into another

one, we introduce an arc. Note that, e.g., a discounted ticket for Halle

R. Euler et al.

T
a

p

d
s
b
i
n
g
e
a
w
f
b
l
o
t

E
a

W

t
W
s

E
c
s
p
𝐻
T

t
g
F
i

EURO Journal on Transportation and Logistics 13 (2024) 100128
𝐷𝐻 can never transition into a Leipzig ticket 𝐿. Now, consider again the
path − in Fig. 1. This path requires a ticket covering one fare zone.
Appending the station  will require a ticket covering two fare zones.

his is modeled by performing a ticket transition in the ticket graph
long the edge (𝑍1, 𝑍2) induced by the ticket transition function for 𝑍1.

When calculating the ticket price of a path that contains a subpath with
ticket 𝑍3 now only a condition on the number of fare zones needs to
be checked to determine whether 𝑍3 or 𝑍4 is applicable. Without using
the ticket graph, e.g., the applicability of all discounts would need to
be recalculated. Furthermore, when comparing two paths having, say,
tickets 𝑍2 and 𝑍3, respectively, a dominance check can safely mark the
path with ticket 𝑍3 as dominated even if it is shorter in distance. In the
urely monoid-based approach, both paths would be nondominated.

To reduce the dimension of the monoid, note that the parameters
etermining the ticket of a path can be broadly categorized as (fare)
tates, e.g., number of stops, and (fare) events, e.g., a transfer or the
oarding of a train that requires a surcharge. Up to now, events were
ncluded in the monoid via indicators. However, this is not strictly
ecessary: A transfer arc could cause a ticket transition in the ticket
raph. Thereafter, transfers might be ineffectual and hence it is unnec-
ssary to record them in the monoid. To do so, we need to annotate
rcs in the routing graph not only with elements of a monoid but also
ith events. The distinction between states and events introduces some

lexibility to the modeling, as sometimes aspects of a fare structure can
e modeled as both. However, we naturally aim to keep the monoid as
ow-dimensional as possible. Using events, prices may now also depend
n logical conditions, e.g., the order of events, which is not possible in
he monoid-based approach.

xample 3.3 (Running example: Fare events for MDV). The monoid in Ex-
mple 3.1 was introduced as (𝐻𝑑𝑖𝑠𝑡×𝐻𝑠𝑡𝑜𝑝×𝐻𝑡𝑟𝑎𝑛×𝐻𝑧𝑜𝑛𝑒×

∏

𝑐∈𝐶 𝐻𝑐 ,+,≤).
We can see any transfer as an event 𝑡𝑟𝑎 occurring on a transfer arc of
the routing graph. In the same way, leaving any city 𝑐 ∈ 𝐶 can be seen
as an event 𝑐𝑖𝑡𝑦 occurring on arcs crossing the city’s borders. Hence,
we can shrink the monoid to (𝐻𝑑𝑖𝑠𝑡 × 𝐻𝑠𝑡𝑜𝑝 × 𝐻𝑧𝑜𝑛𝑒,+,≤), reducing
the size of a label in a MOSP algorithm by 17 entries for cities and
by one entry for transfers. Finally, we introduce events ℎ𝑎𝑙 and 𝑙𝑒𝑖 for
public transit arcs ending in the special fare zones of Halle and Leipzig,
respectively. This is purely a design decision, since the information
could also be read from the state of 𝐻𝑧𝑜𝑛𝑒. We obtain a set of events
𝑆 = {𝑐𝑖𝑡𝑦, 𝑡𝑟𝑎, ℎ𝑎𝑙, 𝑙𝑒𝑖, 𝑠0} where 𝑠0 is a dummy event with no effect, see
also Example 3.4.

3.3. Conditional fare networks

We now combine the three core ideas of a ticket graph, fare events
and modeling with monoids to a formal model of public transit fare
structures.

Again, let 𝐺 = (𝑉 ,𝐴) be a routing graph. Additionally, let (𝐻,+,≤)
be a positive, partially ordered monoid,  = (𝑇 ,𝐸) a ticket graph and
𝑆 a set of fare events. We label each arc 𝑎 ∈ 𝐴 with a weight 𝑤(𝑎) ∈ 𝐻
and a fare event 𝑒(𝑎) ∈ 𝑆. By collecting these weights and events along
a path 𝑝 in 𝐺, we build its fare state 𝑓 (𝑝).

Definition 3.2 (Fare state). A fare state 𝑓 ∈ 𝑇 ×𝐻 is a pair of a ticket
𝜏(𝑓) and a weight 𝑤(𝑓). We write 𝐹 ∶= 𝑇 ×𝐻 for the space of all fare
states.

Every vertex 𝑣 ∈ 𝑉 is labeled with an initial fare state 𝜇(𝑣) ∈ 𝐹 . Fare
states will serve as path labels for shortest-path algorithms. They con-
tain all the information necessary to decide domination between paths.
In contrast to common (multi-objective) shortest-path applications, the
arc labels 𝐻 × 𝑆 live not in the same space as the path labels 𝐹 .

We now want to enable the tracking of fare states along paths in
𝐺. To do so, we formalize the notion of the ticket transition function on

tickets 𝜏 ∈ 𝑇 in the ticket graph  = (𝑇 ,𝐸). A ticket transition function o

5
Table 1
MDV fare monoid.

Name Represents Ground set Operator Partial order Neutral element

𝐻𝑑𝑖𝑠𝑡 Distance N + ≤ 0
𝐻𝑠𝑡𝑜𝑝 Stops N + ≤ 0
𝐻𝑧𝑜𝑛𝑒 Fare zones 2𝑍 ∪ ⊆ ∅

returns the ticket 𝜏2 ∈ 𝑇 a ticket 𝜏1 ∈ 𝑇 transitions into given an
accumulated weight ℎ ∈ 𝐻 and a fare event 𝑠 ∈ 𝑆. Possible candidates
are the neighborhood of 𝜏1 in  as well as 𝜏1 itself.

Definition 3.3 (Ticket transition function). The ticket transition function
𝛤 ∶ 𝑇 × 𝐻 × 𝑆 → 𝑇 of  is a function that, given a weight ℎ ∈ 𝐻 and
event 𝑠 ∈ 𝑆, maps each ticket 𝜏 ∈ 𝑇 into its closed out-neighborhood
𝛿+(𝜏) ∪ {𝜏}.

The definition is intentionally kept as general as possible to capture
a large number of possible transition conditions. We use the notion of
ticket transition functions to define the update of a fare state when
relaxing an arc of the routing graph.

Definition 3.4 (Fare update function). Let 𝑓 ∈ 𝐹 and 𝑎 ∈ 𝐴. Then, the
fare update function Up ∶ 𝐹 × 𝐴 → 𝐹 is given by 𝑔 ∶= Up(𝑓, 𝑎) with

𝑤(𝑔) ∶= 𝑤(𝑓) +𝑤(𝑎)

𝜏(𝑔) ∶= 𝛤 (𝜏(𝑓), 𝑤(𝑔), 𝑒(𝑎)).

The fare state of a path 𝑝 = (𝑣1,… , 𝑣𝑛) can now be tracked by letting
𝑓1 ∶= 𝜇(𝑣1) and 𝑓𝑖 ∶= Up(𝑓𝑖−1, (𝑣𝑖−1, 𝑣𝑖)) ∀ 𝑖 = 2,… , 𝑛. In particular,
when calculating 𝑓𝑖 we need only consider the out-neighborhood of
𝜏(𝑓𝑛) instead of reevaluating all fare strategies.

Combining all the above definitions, we arrive at the notion of
conditional fare networks which can precisely describe a fare structure.

Definition 3.5 (Conditional fare network). Let 𝐺 = (𝑉 ,𝐴) be a routing
graph and let the following be given:

1. a directed acyclic ticket graph  = (𝑇 ,𝐸) with transition func-
tion 𝛤 ,

2. arc weights 𝑤 ∶ 𝐴 → 𝐻 from a partially ordered, positive
monoid (𝐻,+,≤),

3. arc events 𝑒 ∶ 𝐴 → 𝑆,
4. initial fare states 𝜇 ∶ 𝑉 → 𝐹 and
5. a price function 𝜋 ∶ 𝑇 → Q+ that is monotonously non-

decreasing along directed paths in 𝑇 , i.e., if there is a directed
𝜏1 − 𝜏2-path in  for 𝜏1, 𝜏2 ∈ 𝑇 , then 𝜋(𝜏1) ≤ 𝜋(𝜏2). We write 𝜋(𝑝)
instead of 𝜋(𝜏(𝑓 (𝑝))) for a path 𝑝 ∈ 𝑃 .

e call the six-tuple ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) a conditional fare network  of 𝐺.

Note that cycle-freeness in  , the monotonicity condition on 𝜋 and
he positivity of 𝐻 ensure that no price-decreasing cycles exist in 𝐺.

e consider those assumptions natural enough that any reasonable fare
tructures should satisfy them.

xample 3.4 (Running example: Conditional fare network for MDV). We
an now give the complete conditional fare network  for the fare
tructure of MDV. We have already introduced the ticket graph (Exam-
le 3.2). As in Example 3.3, we define the monoid (𝐻,+,≤) as (𝐻𝑑𝑖𝑠𝑡 ×
𝑠𝑡𝑜𝑝 × 𝐻𝑧𝑜𝑛𝑒,+,≤). The components of (𝐻,+,≤) are summarized in
able 1.

The set of fare events is 𝑆 = {𝑐𝑖𝑡𝑦, 𝑡𝑟𝑎, ℎ𝑎𝑙, 𝑙𝑒𝑖, 𝑠0}. The meaning of
hese events is summarized in Table 2. Vertices 𝑣 ∈ 𝑉 in the routing
raph can now be annotated with an initial fare state from 𝐹 = 𝑇 ×𝐻 .
or example, for station  in Fig. 1 we have 𝜇(𝑣) = (𝐷, (0, 0, {156})),
.e., we start with the short-distance ticket, and the weight is composed

f 0 m of distance, 0 visited stops and the fare zone 156. Arcs 𝑎 ∈ 𝐴 are

R. Euler et al.

i
𝑤
f

EURO Journal on Transportation and Logistics 13 (2024) 100128
𝛤 (𝑀,ℎ, 𝑠) = 𝑀

𝛤 (𝑍𝑖, ℎ, 𝑠) =

{

𝑍𝑖+1 |ℎ𝑧𝑜𝑛𝑒| = 𝑖 + 1
𝑍𝑖 otherwise

𝛤 (𝐷, ℎ, 𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑍1 |ℎ𝑧𝑜𝑛𝑒| = 1 ∧ (ℎ𝑑𝑖𝑠𝑡 > 4 ∨ 𝑠 = 𝑡𝑟𝑎)
𝑍2 |ℎ𝑧𝑜𝑛𝑒| = 2 ∧ (ℎ𝑑𝑖𝑠𝑡 > 4 ∨ 𝑠 = 𝑡𝑟𝑎)
𝑍3 |ℎ𝑧𝑜𝑛𝑒| = 3 ∧ (ℎ𝑑𝑖𝑠𝑡 > 4 ∨ 𝑠 = 𝑡𝑟𝑎)
𝐷 otherwise

𝛤 (𝐿, ℎ, 𝑠) =

{

𝐿 𝑠 = 𝑙𝑒𝑖 ∨ 𝑠 = 𝑡𝑟𝑎
𝑍2 otherwise

𝛤 (𝐷𝐿, ℎ, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑍2 𝑠 ≠ 𝑙𝑒𝑖 ∧ ℎ𝑠𝑡𝑜𝑝 > 4
𝐿 𝑠 = 𝑡𝑟𝑎 ∨ (𝑠 = 𝑙𝑒𝑖 ∧ ℎ𝑠𝑡𝑜𝑝 > 4)
𝐷𝐿 otherwise

𝛤 (𝐻,ℎ, 𝑠) =

{

𝐻 𝑠 = ℎ𝑎𝑙 ∨ 𝑠 = 𝑡𝑟𝑎
𝑍2 otherwise

𝛤 (𝐷𝐻 , ℎ, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑍2 𝑠 ≠ ℎ𝑎𝑙 ∧ ℎ𝑠𝑡𝑜𝑝 > 4
𝐻 𝑠 = 𝑡𝑟𝑎 ∨ (𝑠 = ℎ𝑎𝑙 ∧ ℎ𝑠𝑡𝑜𝑝 > 4)
𝐷𝐻 otherwise

𝛤 (𝐶1, ℎ, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑍1 𝑠 = 𝑐𝑖𝑡𝑦 ∧ ℎ𝑑𝑖𝑠𝑡 > 4
𝐷 𝑠 = 𝑐𝑖𝑡𝑦 ∧ ℎ𝑑𝑖𝑠𝑡 ≤ 4
𝐶1 otherwise

𝛤 (𝐶2, ℎ, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑍1 𝑠 = 𝑐𝑖𝑡𝑦 ∧ ℎ𝑑𝑖𝑠𝑡 > 4
𝐷 𝑠 = 𝑐𝑖𝑡𝑦 ∧ ℎ𝑑𝑖𝑠𝑡 ≤ 4
𝐶2 otherwise

Box I.
Table 2
MDV fare events.

Fare event Represents

𝑐𝑖𝑡𝑦 Leaving city with city ticket 𝐶1 or 𝐶2
𝑡𝑟𝑎 Transfer
ℎ𝑎𝑙 Head of Arc is in Halle
𝑙𝑒𝑖 Head of Arc is in Leipzig
𝑠0 Nothing

now annotated with weights from 𝐻 and events from 𝑆. For example,
f 𝑎1 = ( ,) had a length of 231 m, it would be annotated with
(𝑎1) = (231, 1, {233}) and 𝑒(𝑎1) = 𝑐𝑖𝑡𝑦. The arc 𝑎2 = (,) represents a

ootpath and is annotated with 𝑤(𝑎2) = (0, 0, ∅) and 𝑒(𝑎2) = 𝑡𝑟𝑎.
Hence, to construct a conditional fare network for MDV, we now

only need to give the transition functions for  . Let 𝑠 ∈ 𝑆 and ℎ =
(ℎ𝑑𝑖𝑠𝑡, ℎ𝑠𝑡𝑜𝑝, ℎ𝑧𝑜𝑛𝑒) ∈ 𝐻 . Then, the ticket transition function 𝛤 of  is
defined by the equations given in Box I. For example, the conditions
for 𝛤 (𝐷𝐿, ℎ, 𝑠) mean that we need to transition to the two zones ticket
𝑍2 whenever we leave Leipzig and travel for more than four stops, and
that we transition to the standard Leipzig ticket 𝐿 whenever we transfer
or surpass the four stops limit within Leipzig. In all other cases, we can
stick with the discounted Leipzig ticket 𝐷𝐿. Note that we did not yet
cover MDV’s overlap areas. We discuss in Section 3.4 why it is best to
address these in a preprocessing step.

We can now finally formalize the price-optimal earliest arrival
problem.

Definition 3.6 (Price-optimal earliest arrival problem (POEAP)). Let a
public transportation network be given as a directed graph 𝐺 = (𝑉 ,𝐴)
together with a conditional fare network ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) and a time-
dependent FIFO travel time function 𝑐(𝑎) ∶ 𝐼 → 𝐼 ∀𝑎 ∈ 𝐴. Then, the
price-optimal earliest arrival problem (POEAP) asks to find a Pareto-set
(w.r.t. price and arrival time) of 𝑠, 𝑡-paths 𝑃 ∗

𝑠,𝑡 ⊆ 𝑃𝑠,𝑡 in 𝐺, i.e.,

∀ 𝑝∗ ∈ 𝑃 ∗
𝑠,𝑡∄𝑝 ∈ 𝑃𝑠,𝑡 ∶ 𝜋(𝑝) ≤ 𝜋(𝑝∗) ∧ 𝑐(𝑝) ≤ 𝑐(𝑝∗) ∧ (𝜋(𝑝) < 𝜋(𝑝∗) ∨ 𝑐(𝑝) < 𝑐(𝑝∗))

(1)

∀ 𝑝 ∈ 𝑃𝑠,𝑡 ∃ 𝑝∗ ∈ 𝑃 ∗
𝑠,𝑡 ∶ 𝜋(𝑝∗) ≤ 𝜋(𝑝) ∧ 𝑐(𝑝∗) ≤ 𝑐(𝑝). (2)
6
3.4. Some hints on modeling with CFNs

In the following, we elaborate on some common features of fare
structures and how they can be modeled using conditional fare net-
works.

Transfer penalties, footpaths, and surcharges. When footpaths have no
influence on the ticket, they can be modeled as arcs with a weight of
𝟎 ∈ 𝐻 and an event 𝑠0 that cannot activate a ticket transition. This
way, a footpath does not change the current fare state. The transition
from a footpath to a public transportation vehicle requires some care.
Assume we walk from stop 𝑣0 to 𝑣1 along arc 𝑎0 = (𝑣0, 𝑣1) to take a
vehicle along 𝑎1 = (𝑣1, 𝑣2) to reach 𝑣2. Some fare structures use the
number of stops a path touches to calculate prices. Here, this number
would be two. Counting a stop when relaxing 𝑎0 is a mistake if the
optimal path would be to continue on foot. Counting both 𝑣1 and 𝑣2
when relaxing 𝑎1 is also wrong, since this would overcount the number
of stops for every journey that reaches 𝑣1 via a vehicle. Hence, the
graph model needs to be extended by splitting up stops into vertices for
every route and a vertex that is connected to footpaths. These vertices
are then connected via transfer arcs and boarding arcs. Placing weights
and events different from 𝟎 and 𝑠0 on transfer arc allows us to make the
applicable ticket dependent on the number of transfers, while events
on arcs representing boarding can be used to model surcharges for the
boarded route. For more details on how to build these expanded graphs,
we refer to Disser et al. (2008).

Overlap areas. Some fare structures that are based on fare zones con-
tain overlap areas. Stations in an overlap area can be counted as part of
either of its neighboring zones, whichever is cheapest for the customer.
This is meant to mitigate sharp price increases for short journeys
at fare zone borders. MDV uses them as well as several other Ger-
man railway companies (e.g., Verkehrsverbund Bremen/Niedersachsen
GmbH (Verkehrsverbund Bremen/Niedersachsen GmbH, 2023)).

At a first glance, one might be tempted to represent overlap areas as
tickets in the ticket graph. A label propagated along a path starting in
an overlap area then keeps this ticket until a regular fare zone is picked
up along the path and transitions in the zone ticket for this fare zone.
This approach, however, becomes cumbersome when several overlap
areas border each other. In this case, a ticket for each combination of
overlap areas needs to be introduced.

Alternatively, overlap ares can be incorporated by label duplication:
Assume an overlap area neighbors 𝑛 fare zones. We associate each arc

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
Fig. 3. Example of a routing graph (a) with two possible conditional fare networks (b) and (c). For both networks, the underlying partially ordered monoid is (R,+,≤), the fare
events are 𝑆 = {𝑠0 , 𝑠1 , 𝑠2 , 𝑠3} and the initial fare state for all vertices 𝑣𝑖 with 𝑖 = 1,… , 5 is 𝜇(𝑣𝑖) = (𝐴, 0). We set prices for the tickets as 𝜋(𝐴) = 0, 𝜋(𝐵) = 2, 𝜋(𝐶) = 3, 𝜋(𝐷) = 1 and
𝜋(𝐸) = 5. The value of the transition function 𝛤 for a given weight ℎ and event 𝑠 is given via indicator functions on the fare arcs. Using the ticket graph (b), the upper 𝑣1 , 𝑣5-path
yields ticket 𝐶, while the lower path yields ticket 𝐸. Using ticket graph (c), the upper path yields ticket 𝐵, the lower path yields ticket 𝐶.
.

𝑎 whose ℎ𝑒𝑎𝑑(𝑎) represents a stop in the overlap area with 𝑛 different
weights, one for each fare zone it could possibly be part of. When
settling the vertex in a shortest path search, the current fare state is
updated once for each weight, thereby creating 𝑛 new labels. This,
however, leads to an increased need for dynamic memory allocation,
which should be avoided.

Hence, we propose simply route duplication as the most convenient
model for overlap areas. Whenever a route of the timetable contains a
stop 𝑣 in an overlap area neighboring 𝑛 fare zones, we simply introduce
𝑛 routes each with a single fare zone at 𝑣. In the routing graph, this
corresponds to introducing parallel arcs with each storing a different
fare zone in its weight. To avoid creating unnecessary duplicates, this
is done block-wise, i.e., only for each consecutive sequence of stops
along a route that are in the same overlap area. Hence, overlap areas
are taken care of in a preprocessing step and are not represented in the
conditional fare network.

4. CFNs in routing algorithms

Label-setting MOSP algorithms rely on dynamic programming and
the subpath optimality condition (Berger and Müller-Hannemann, 2009)
That is, every subpath of an optimal 𝑠, 𝑡-path is in itself an optimal path.
For POEAP, when comparing paths in 𝐺 naively by the price function
𝜋, the subpath optimality condition is usually violated. Consider taking
a local detour to avoid a fare zone: Later on, travelers may be forced to
cross the zone due to the infrastructure, turning the locally dominant
detour into a suboptimal choice. On the other hand, a locally dominated
subpath might still lead to an optimal 𝑠, 𝑡-path. This type of problem
persists in CFNs: the transition between tickets depends on the weights
and events already collected, but also on the structure of the reachable
ticket graph. Example 4.1 highlights that problems can already arise
even in simple cases.

Example 4.1 (Label dominance in Fig. 3). Consider the routing graph
(a) together with the conditional fare network (b). Examining the paths
𝑝1 = (𝑣1, 𝑣2, 𝑣4) and 𝑝2 = (𝑣1, 𝑣3, 𝑣4), we find their respective fare states
are 𝑓 (𝑝1) = (𝐵, 1) and 𝑓 (𝑝2) = (𝐷, 2). Extending them by 𝑣5 to 𝑝′1 and
𝑝′2 yields 𝑓 (𝑝′1) = (𝐶, 3) and 𝑓 (𝑝′2) = (𝐸, 4). Comparing fare states by
price would indicate that 𝑝1 could be pruned at 𝑣4 since 𝜋(𝐵) > 𝜋(𝐷).
This is a suboptimal choice as 𝑝′1 dominates 𝑝′2 since 𝜋(𝐶) < 𝜋(𝐸).
Hence, price cannot be used as dominance criterion for fare states. A
7
natural alternative would be to use the partial order defined by paths
in the ticket graph, instead. A ticket 𝜏1 then dominates a ticket 𝜏2 if
there is a 𝜏1, 𝜏2-path. This would render the tickets 𝐵 and 𝐷 and the
tickets 𝐶 and 𝐸 mutually incomparable. The idea, however, comes
with problems of its own. To see this, consider the conditional fare
network (c). At 𝑣4, we have 𝑓 (𝑝1) = (𝐴, 1) and 𝑓 (𝑝2) = (𝐴, 2) and
hence both paths are equivalent and it would be sensible to keep only
one of them based on the relation between 𝑤(𝑓 (𝑝1)) and 𝑤(𝑓 (𝑝2)).
By relaxing (𝑣4, 𝑣5), we obtain 𝑓 (𝑝′1) = (𝐵, 3) and 𝑓 (𝑝′2) = (𝐶, 4),
which are incomparable, i.e., the fare states of 𝑝′1 and 𝑝′2 diverged
from comparable to incomparable. Consequently, any dominance rule
pruning either 𝑝1 or 𝑝2 would be defective.

To mitigate these and similar problems, we might assume a general
incomparability of fare states. This comes down to enumerating all 𝑠, 𝑡-
paths and simply sorting them by price. However, in a sensibly designed
fare structure, it is usually clear which ticket is better, and taking a
cheaper subpath should usually not turn out more expensive overall.
In the remainder of this section, we propose a more tailored approach.
It bases domination rules on path relationships but adds exceptions to
cover cases in which it is not safe to do so.

4.1. Dominance for fare states

We want to define a partial order for fare states that restores subpath
optimality while not relaxing dominance too generously.

To do so, we partition the ticket set 𝑇 into three disjoint comparabil-
ity groups: 𝐶𝐹 (full comparability), 𝐶𝑃 (partial comparability), 𝐶𝑁 (no
comparability). Based on the partition 𝐶 = (𝐶𝐹 , 𝐶𝑃 , 𝐶𝑁), we define the
partial order.

Definition 4.1 (Comparability of fare states). Let 𝑓1 = (𝜏1, ℎ1), 𝑓2 =
(𝜏2, ℎ2) be fare states. We say 𝑓1 ≤𝐶 𝑓2 if and only if 𝜏1 ∉ 𝐶𝑁 , ℎ1 ≤ ℎ2
and

𝜏1 = 𝜏2 if 𝜏1 ∈ 𝐶𝑃 (3)

∃ 𝜏1, 𝜏2-path in  if 𝜏1 ∈ 𝐶𝐹 . (4)

If 𝑓1 ≤𝐶 𝑓2 and either ℎ1 < ℎ2 or 𝜏1 ≠ 𝜏2, we say that 𝑓1 is strictly less
than 𝑓 , i.e., 𝑓 < 𝑓 .
2 1 𝐶 2

R. Euler et al.

d

E
a
o
t

E
h
w

P
o
c

P
{
𝛤
d
T

d

𝜏

T
𝜏
𝜏
o

𝜏

w

r
H
s

P
l

P
𝜏
w
T

EURO Journal on Transportation and Logistics 13 (2024) 100128
We denote by 𝑃 𝑓
𝑠,𝑡 the set of all Pareto-optimal paths with respect to

≤𝐶 , i.e.,

𝑝∗ ∈ 𝑃 𝑓
𝑠,𝑡 ⇒ ∄𝑠, 𝑡-path 𝑝 ∶ 𝑓 (𝑝) <𝐶 𝑓 (𝑝∗). (5)

We call paths in 𝑃 𝑓
𝑠,𝑡 state-optimal. They form a superset of the

set of price-optimal paths. MOSP algorithms on graphs with weights
from partially ordered monoids rely on the monoid operation being
translation-invariant with respect to the partial order. Similarly, for
CFN’s, we need the update function to be monotone along all arcs
𝑎 ∈ 𝐴, i.e.,

∀ 𝑓1, 𝑓2 ∈ 𝐹 ∶ 𝑓1 ≤𝐶 𝑓2 ⟹ ∀ 𝑎 ∈ 𝐴 ∶ Up(𝑓1, 𝑎) ≤𝐶 Up(𝑓2, 𝑎). (6)

This condition is enough to ensure that a weaker form of subpath
optimality holds.

Proposition 4.1 (Weak subpath optimality). Let 𝐺 = (𝑉 ,𝐴) be a routing
network and = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) be its conditional fare network. Let 𝑝∗ ∈
𝑃 𝑓
𝑠,𝑡 be a state-optimal 𝑠, 𝑡-path in 𝐺 for some 𝑠, 𝑡 ∈ 𝑉 . Then, there is a path

𝑝′ = (𝑠 = 𝑣0, 𝑣1,… , 𝑣𝑛−1, 𝑣𝑛 = 𝑡) ∈ 𝑃 𝑓
𝑠,𝑡 with 𝑓 (𝑝∗) = 𝑓 (𝑝′), such that every

subpath 𝑝′′ = (𝑣0,… , 𝑣𝑙), 𝑙 < 𝑛, of 𝑝′ is a state-optimal 𝑣0, 𝑣𝑙-path.

Proof. Let 𝑝∗ = (𝑠 = 𝑣0, 𝑣1,… , 𝑣𝑛−1, 𝑣𝑛 = 𝑡) ∈ 𝑃 𝑓
𝑠,𝑡 be a state-

optimal 𝑠, 𝑡-path with fare states (𝑓0,… , 𝑓𝑛). Assume there is a 𝑠, 𝑡-path
𝑝̃ = (𝑠 = 𝑢0, 𝑢1,… , 𝑢𝑙−1 = 𝑣𝑛−1, 𝑢𝑙 = 𝑡) with fare states (𝑔0, 𝑔1,… , 𝑔𝑙) and
𝑔0 = 𝑓0. By (6), we can choose 𝑝̃ to be a simple path. Let 𝑘 be the
largest integer such that 𝑣𝑛−𝑘 = 𝑢𝑙−𝑘, i.e., the paths (𝑣𝑛−𝑘,… , 𝑣𝑛) and
(𝑢𝑙−𝑘,… 𝑢𝑙) are equal. Now assume 𝑓𝑙−𝑘−1 <𝐶 𝑓𝑛−𝑘−1. By definition,
𝑓𝑛−𝑘 = Up(𝑓𝑛−𝑘−1, (𝑣𝑛−𝑘−1, 𝑣𝑛−𝑘)) and 𝑔𝑙−𝑘 = Up(𝑔𝑙−𝑘−1, (𝑢𝑙−𝑘−1, 𝑢𝑙−𝑘)).
We apply (6) to obtain 𝑓𝑙−𝑘 ≤𝐶 𝑓𝑛−𝑘. By repeating the process for
𝑖 ∈ {𝑘−1,… , 0}, we find 𝑔𝑙 ≤𝐶 𝑓𝑛. Since 𝑝∗ was state-optimal, it follows
that 𝑔𝑙 = 𝑓𝑛, and consequently, 𝑝 is also state-optimal. Since the number
of paths in 𝐺 is finite, we can repeat this procedure to find the path
𝑝′. □

Proposition 4.1 does not imply that every subpath of a state-optimal
path is state-optimal. We can, however, discard all state-optimal paths
without this property since a path with an equal fare state still remains
in 𝑃 𝑓

𝑠,𝑡. Hence, label-setting MOSP algorithms can still be applied.

4.2. The comparability partition

In choosing 𝐶𝐹 , 𝐶𝑃 and 𝐶𝑁 , there is some degree of freedom. We
want 𝐶𝐹 to be as big and 𝐶𝑁 as small as possible while still fulfilling (6).
It is clear that the best choice does not only depend on the ticket graph
 and the transition function 𝛤 , but also on 𝐺 and the arc weights and
events. Such an approach, however, mostly likely requires extensive
computations on 𝐺. We propose a solution that depends only on  and
𝛤 and needs no recomputation when changes in the routing network
occur.

First, we introduce some notation. If there is a directed path in 
between 𝜏1, 𝜏2 ∈ 𝑇 , we write 𝜏1 → 𝜏2. This includes the case 𝜏1 = 𝜏2.
The reach R(𝜏) of a vertex 𝜏 ∈ 𝑇 is the subgraph induced by all vertices
reachable from 𝜏, i.e., R(𝜏) ∶=  [{𝑘 ∈ 𝑇 ∶ 𝜏 → 𝑘}].

Definition 4.2 (No-overtaking property). Let 𝜏 ∈ 𝑇 be a ticket. We say
its reach R(𝜏) has the no-overtaking property if for all tickets 𝑘, 𝑙 ∈ R(𝜏)
with 𝑘 → 𝑙 and (ℎ, 𝑠) ∈ 𝑊 it holds that

∀ ℎ̄ ∈ 𝐻 ∶ ℎ ≤ ℎ̄ ⟹ 𝛤 (𝑘, ℎ, 𝑠) → 𝛤 (𝑙, ℎ̄, 𝑠). (7)

The no-overtaking property bears some resemblance to the FIFO
(first-in, first-out) property: A worse fare state, i.e., a worse weight or
ticket, cannot give rise to a better fare state when relaxing the same
arc in the routing graph. Note that the no-overtaking property has to
be fulfilled not only for the neighborhood of a ticket 𝜏 but for the reach
R(𝜏). Subgraphs with the no-overtaking property allow for the strictest

domination rules. We use them as comparability group 𝐶𝐹 . a

8
Definition 4.3 (Comparability partition). Let 𝐺 = (𝑉 ,𝐴) be a routing
network with a CFN  = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋). We define

𝐶𝐹 ∶= {𝜏 ∈ 𝑇 ∶ R(𝜏) traceable and has the no-overtaking property} (8)
𝐶𝑃 ∶= {𝜏 ∈ 𝑇 ∖𝐶𝐹 ∶ ∀ 𝑘 ∈ R(𝜏) ∀ 𝑠 ∈ 𝑆 ∀ℎ1, ℎ2 ∈ 𝐻 ∶ 𝛤 (𝑘, ℎ1, 𝑠) = 𝛤 (𝑘, ℎ2, 𝑠)}

(9)

𝐶𝑁 ∶= {𝜏 ∈ 𝑇 ∖(𝐶𝐹 ∪ 𝐶𝑃)}. (10)

It is not enough to fulfill (7) for 𝜏 ∈ 𝑇 to be in the set 𝐶𝐹 . Its
reach R(𝜏) has also to be traceable, i.e., contain a Hamiltonian path.
This condition is needed to avoid the divergence seen in Example 4.1.
If a ticket has non-traceable reach or does not have the no-overtaking
property, it is placed in 𝐶𝑃 . For tickets 𝜏 ∈ 𝐶𝑃 , the transition functions
of tickets 𝑘 ∈ R(𝜏) must be independent of (𝐻,+,≤). This, again, is
necessary to ensure that comparable fare states do not diverge in an
incomparable state after an update, i.e., all tickets that can be reached
from a ticket in 𝐶𝐹 themselves need to be in 𝐶𝐹 . All remaining tickets
are added to 𝐶𝑁 . Fare states containing tickets from 𝐶𝑁 can never be
ominated.

xample 4.2 (Dominance for MDV Fares). In the graph in Fig. 2,
ll nodes have traceable reach, and it is easy to verify that the no-
vertaking property does indeed hold for all tickets. Hence, we can set
he comparability partition to 𝐶𝐹 = 𝑇 , 𝐶𝑃 = 𝐶𝑁 = ∅.

xample 4.3 (Dominance for Example 4.1). For Ticket Graph (b), we
ave 𝐶𝐹 = {𝐵,𝐶,𝐷,𝐸}, 𝐶𝑃 = {𝐴} and 𝐶𝑁 = ∅. For Ticket Graph (c),
e have that 𝐶𝐹 = {𝐵,𝐶}, 𝐶𝑃 = ∅ and 𝐶𝑁 = {𝐴}.

roposition 4.2 (Monotonicity of the cmparability partition). The partial
rder ≤𝐶 defined by Definitions 4.1 and 4.3 fulfills the monotonicity
ondition (6).

roof. Let 𝑎 ∈ 𝐴 and 𝑓1, 𝑓2 ∈ 𝐹 such that 𝑓1 ≤𝐶 𝑓2. For 𝑖 ∈
1, 2}, we write 𝑔𝑖 ∶= Up(𝑓𝑖, 𝑎), i.e, 𝑤(𝑔𝑖) = 𝑤(𝑓𝑖) + 𝑤(𝑎) and 𝜏(𝑔𝑖) =
(𝜏(𝑓𝑖), 𝑤(𝑔𝑖), 𝑒(𝑎)). By positivity of the monoid (𝐻,+,≤), 𝑤(𝑓1) ≤ 𝑤(𝑓2)
irectly implies 𝑤(𝑔1) ≤ 𝑤(𝑔2). It remains to show that 𝜏(𝑔1) → 𝜏(𝑔2).
o do so, we need to distinguish the cases 𝜏(𝑓1) ∈ 𝐶𝑃 and 𝜏(𝑓1) ∈ 𝐶𝐹 .

First, assume that 𝜏(𝑓1) ∈ 𝐶𝑃 and hence 𝜏(𝑓1) = 𝜏(𝑓2). By the
efinition of 𝐶𝑃 , we obtain

(𝑔1) = 𝛤 (𝜏(𝑓1), 𝑤(𝑔1), 𝑒(𝑎)) = 𝛤 (𝜏(𝑓2), 𝑤(𝑔2), 𝑒(𝑎)) = 𝜏(𝑔2).

hus, 𝜏(𝑔1) = 𝜏(𝑔2). Note that the definitions of 𝐶𝑃 and 𝐶𝐹 imply that
(𝑔1) ∈ 𝐶𝑃 ∪𝐶𝐹 since 𝜏(𝑔1) ∈ R(𝜏(𝑓1)) and hence 𝑔1 ≤𝐶 𝑔2. Now, assume
(𝑓1) ∈ 𝐶𝐹 . Note that R(𝜏(𝑓1)) ⊂ 𝐶𝐹 . This allows us to apply (7) to
btain

(𝑔1) = 𝛤 (𝜏(𝑓1), 𝑤(𝑔1), 𝑒(𝑎)) → 𝛤 (𝜏(𝑓2), 𝑤(𝑔2), 𝑒(𝑎)) = 𝜏(𝑔2),

hich concludes the proof. □

Propositions 4.1 and 4.2 allow us to apply label-setting MOSP algo-
ithms to POEAP using the comparability partition from Definition 4.3.
owever, we obtain only the set of state-optimal paths. It remains to

how that this set contains the cheapest path.

roposition 4.3 (Correctness). Let 𝜋∗ ∶= min𝑃𝑠,𝑡 𝜋(𝑝). Then, there is at
east one 𝑠, 𝑡-path 𝑝∗ with 𝜋∗ = 𝜋(𝑝∗) and 𝑝∗ ∈ 𝑃 𝑓

𝑠,𝑡.

roof. Consider a path 𝑝 ∈ 𝑃𝑠,𝑡 with 𝜋(𝑝) = 𝜋∗. If there is 𝑝′ ∈ 𝑃 𝑓
𝑠,𝑡 with

(𝑓 (𝑝′)) = 𝜏(𝑓 (𝑝)), we are done. If not, all such paths must be dominated
.r.t. to <𝐶 and hence there is a path 𝑝′ ∈ 𝑃 𝑓

𝑠,𝑡 with 𝜏(𝑓 (𝑝′)) → 𝜏(𝑓 (𝑝)).
his implies 𝜋(𝜏(𝑓 (𝑝′))) ≤ 𝜋(𝜏(𝑓 (𝑝))) and hence a path of the same price

𝑓
s 𝑝 is present in 𝑃𝑠,𝑡. □

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
5. Price-optimal RAPTOR

In this section, we will discuss how to use conditional fare networks
to implement a price-optimal version of the multi-criteria RAPTOR al-
gorithm (abbr. McRAP) (Delling et al., 2015). Since RAPTOR implicitly
optimizes the number of trips, we obtain an multi-criteria algorithm
that optimizes for travel time, number of trips and price. So far, we have
presented our framework in a graph-based context. RAPTOR, however,
does not use a graph model but works directly on the timetable. The
adaption for RAPTOR is straightforward.

This section is structured as follows. A review of the RAPTOR
algorithm is provided in Section 5.1. Then, in Section 5.2, we lay out
how McRAP can be modified to use conditional fare networks for price
optimization. In Section 5.3, we briefly recap how improvements in
run times can be achieved by calculating a restricted Pareto-set using
the recently introduced Bounded-RAPTOR-algorithm (BMRAP) (Delling
et al., 2019). The algorithm excludes all journeys that need significantly
more transfers or take significantly more time than the journeys found
with an (earliest arrival) RAPTOR query. Finally in Section 5.4, we
introduce two speed-up techniques that are tailored to our application.

Sections 5.1 and 5.3 give succinct summaries of the RAPTOR and
BMRAP algorithms. For a thorough presentation, see the original re-
search in Delling et al. (2015) and Delling et al. (2019), respectively.
We provide the pseudo-code of BMRAP in Appendix B.

5.1. Multi-criteria search with McRAP

We largely adhere to the notation of Delling et al. (2015) albeit with
minor modifications to avoid the reuse of variables.

The RAPTOR algorithm does not use a graph model, but works
directly on the timetable. A timetable is a tuple T = (𝛱, ,,,)
consisting of a period of operation 𝛱 , a set of stops  , a set of routes
, a set of trips  and a set of footpaths  . A stop 𝑝 ∈  is a location
where a vehicle can be boarded or exited. Each stop 𝑝 has a (possibly
zero) transfer time 𝜂𝑐ℎ(𝑝) ∈ N that is applied whenever a vehicle is
boarded at 𝑝. A trip 𝑑 ∈  is a sequence of stops together with arrival
and departure times 𝜂𝑎𝑟𝑟(𝑑, 𝑝) and 𝜂𝑑𝑒𝑝(𝑑, 𝑝) ∈ 𝛱 . A route is a set of trips,
where all trips have the same sequence of stops and no trip overtakes
another one. We denote the sets of stops and trips of a route 𝑟 by (𝑟)
and (𝑟), respectively. Finally, a footpath (𝑝1, 𝑝2, 𝑙) ∈  is a pair of stops
(𝑝1, 𝑝2) combined with a walking time 𝑙.

RAPTOR operates in rounds 𝑘 = 1,… , 𝐾 on T with 𝐾 ∈ N ∪ {∞}
the maximum number of transfers to be considered. It maintains arrival
time labels 𝜂𝑎𝑟𝑟(𝑘, 𝑝) for every 𝑝 ∈  and every round 𝑘 ∈ 1,… , 𝐾. Every
entry of 𝜂𝑎𝑟𝑟 is initialized to ∞. Each round begins with a set of marked
stops. All routes touching these stops are collected and then processed
in an arbitrary order. When processing a route 𝑟 ∈ , RAPTOR begins
with the first marked stop and from there iterates through the stops in
order of travel. For each stop 𝑝 ∈ (𝑟), RAPTOR finds the earliest trip 𝑑
that can be taken at 𝑝 after 𝜂𝑎𝑟𝑟(𝑘−1, 𝑝)+ 𝜂𝑐ℎ(𝑝). In the same sweep, the
arrival times of 𝑑 are used to update 𝜂𝑎𝑟𝑟(𝑘, 𝑝). All stops whose arrival
times improved over 𝜂𝑎𝑟𝑟(𝑘 − 1, 𝑝) are marked.

In a second step, a footpath search is performed. All footpaths
(𝑝1, 𝑝2, 𝑙) starting at a marked stop are processed in an arbitrary order,
and labels in 𝜂𝑎𝑟𝑟(⋅, 𝑝2) are updated accordingly. Again, each stop 𝑝
with an improved arrival time 𝜂𝑎𝑟𝑟(𝑘, 𝑝) is marked for the next round.
Note that this requires the footpath set to be transitively closed. The
algorithm terminates after 𝐾 rounds or when no more stops can be
marked.

RAPTOR can be modified slightly to allow for multi-criteria search.
Instead of only the arrival times 𝜂𝑎𝑟𝑟(𝑘, 𝑝), McRAP now maintains a label
bag 𝐵𝑘(𝑝) for every stop 𝑝 and round 𝑘. Each label 𝐿 ∈ 𝐵𝑘(𝑝) contains an
entry for every optimization criterion. When processing a route 𝑟 ∈ 
at a starting stop 𝑝𝑠, a route bag 𝐵𝑟 is created, and all labels from
𝐵(𝑘−1, 𝑝𝑠) are updated with 𝜂𝑐ℎ(𝑝) and copied into 𝐵𝑟. Each label in 𝐵𝑟
is associated with a trip 𝑑 ∈ (𝑟). At each stop 𝑝 ∈ (𝑟) after 𝑝𝑠, McRAP
updates all labels in 𝐵𝑟, merges 𝐵𝑟 into 𝐵𝑘(𝑝) and finally merges all
labels from 𝐵(𝑘 − 1, 𝑝) into 𝐵𝑟 and assigns a trip to them. In each step,

dominated labels are removed.

9
5.2. Using conditional fare networks in McRAP

Adapting McRAP to incorporate fares is now fairly straightforward
but requires several modifications to T. For every trip 𝑑 ∈ , we
additionally store two pairs of weights and events for each stop 𝑝. The
first pair 𝑤1(𝑑, 𝑝), 𝑒1(𝑑, 𝑝) is considered when reaching the stop 𝑝 while
iterating along 𝑑. The second pair 𝑤2(𝑑, 𝑝), 𝑒2(𝑑, 𝑝) is picked up when
boarding 𝑑 at 𝑝. This distinction is necessary since there is no direct
equivalent in T to the transfer arcs used in the graph-based setting to
model, e.g., surcharges. Furthermore, the definition of a route needs a
slight adjustment: A route 𝑟 ∈  is a set of trips where all trips have the
same sequence of stops and the same weights and events, i.e., for 𝑖 = 1, 2,
𝑤𝑖(𝑑1, 𝑝) = 𝑤𝑖(𝑑2, 𝑝) and 𝑒𝑖(𝑑1, 𝑝) = 𝑒𝑖(𝑑2, 𝑝) for all 𝑑1, 𝑑2 ∈ (𝑟) and
𝑝 ∈ (𝑟), and no trip overtakes another one.

Now, a label 𝐿 = (𝜂, 𝑓) in a label bag 𝐵𝑘(𝑝) consists of an arrival
time 𝜂 and a fare state 𝑓 . Labels in route bags additionally hold the
current trip 𝑑. When updating a label 𝐿 = (𝜂, 𝑓 , 𝑑) from route bag 𝐵𝑟 at
a stop 𝑝, the arrival time 𝜂 is updated to 𝜂𝑎𝑟𝑟(𝑑, 𝑝) and the fare state is
updated with 𝑤2(𝑑, 𝑝) and 𝑒2(𝑑, 𝑝) as in Definition 3.4. Update steps that
are associated with transfers are performed whenever labels are merged
into 𝐵𝑟. Here, 𝑤2(𝑑, 𝑝) and 𝑤2(𝑑, 𝑝) are used for updating. Dominance of
labels is checked according to the theory developed in Section 4 while
also taking arrival times into account. Since walking is usually free of
charge, fare states do not need to be updated in the footpath stage.
Hence, footpaths are also not enriched with fare information.

Using McRAP, we obtain the Pareto-set  𝑓 , optimizing for arrival
time, number of trips and fare state. The smaller set  ∗ ⊆  𝑓 , optimiz-
ing for price instead of fare state, can be calculated in a post-processing
step.

5.3. Restricted Pareto-sets

By design of fare structures, the cheapest path is often among the
fastest, as detours are penalized by increases in price, arrival time
and transfers. At other times, a negligible reduction in price might be
achievable at the expense of a significant increase in travel time. Such
journeys are unlikely to be chosen by a traveler. Hence, it appears
beneficial for a price-optimal search to prune all labels that are worse
by a certain margin (regarding both arrival time and transfers) than the
results of a normal RAPTOR query. This is achieved by the following
pruning schemes, first introduced by Delling et al. (2019) for general
multi-objective search with RAPTOR.

Let  be the Pareto-set of all anchor journeys found with a RAPTOR
query, i.e., optimizing only for arrival time and number of transfers.
We denote the arrival time of a journey 𝐽 by 𝜂𝑎𝑟𝑟(𝐽) and its number of
trips by tr(𝐽). We aim to calculate a restricted Pareto-set  with  ⊆
 ⊆  𝑓 of journeys that do not have a significantly higher arrival
time or number of trips than some journey from . Let 𝜎𝑎𝑟𝑟 ∈ R+ and
𝜎𝑡𝑟 ∈ N+ be the maximal acceptable slacks for arrival time and number
of transfers, respectively. Then, we define

 ∶= {𝐽 ∈  𝑓
|∃𝐽 ∈  such that 𝜂𝑎𝑟𝑟(𝐽) ≤ 𝜂𝑎𝑟𝑟(𝐽)

+ 𝜎𝑎𝑟𝑟 and tr(𝐽) ≤ tr(𝐽) + 𝜎𝑡𝑟}.

To obtain a two-stage pruning scheme, we can first run a normal
RAPTOR query. The labels obtained in this first stage can then be used
to prune the multi-criteria search. Let 𝜂𝑘 be the optimal arrival time at
the target stop 𝑝𝑡 in round 𝑘 of the first stage (computed with RAPTOR).
During round 𝑘 of McRAP, we prune every label that has an arrival time
𝜂 with 𝜂 > 𝜂𝑘+𝜎𝑎𝑟𝑟. This pruning scheme is called Target-BMRAP. Note
that Target-BMRAP works on the assumption that 𝜎𝑡𝑟 = ∞. Also, the
bound is not tight for all stops other than 𝑝𝑡.

The set  can be computed with the more involved Tight-BMRAP.
Here, three rounds are performed. As for Target-BMRAP, we first
perform a normal RAPTOR search, obtaining the Pareto-set . Then,

multiple reverse RAPTOR queries are performed to build bounds at all

R. Euler et al.

p
t

g
n
m

s
p

d
i
t

𝜂

o

EURO Journal on Transportation and Logistics 13 (2024) 100128
Fig. 4. Illustration of the solution space of a Tight-BMRAP search with 𝜎𝑎𝑟𝑟 = 30 min
and 𝜎𝑡𝑟 = 1. The circle marks represent the anchor journeys from . Tight-BMRAP
runes all journeys to the right of the dotted line spanned by those journeys. The area
o the left of the dashed line contains no Pareto-optimal journeys. The journeys from
𝑓 that fall into the area enclosed by the dashed and dotted lines form . The light

ray area forms ̄. Note that the journey marked by the square mark is in  but
ot in ̄. The journey represented by the triangle mark is in ̄ even though it uses
ore trips and has a later arrival time.

tops 𝑝 ∈  . The third stage is the actual McRAP round using the
reviously computed bounds for pruning.

In the following, we describe the second and third stages in more
etail. Let 𝑚 ∶= 𝐾 + 𝜎𝑡𝑟, where 𝐾 is the maximum number of trips
n any journey 𝐽 ∈ . A backward RAPTOR search with starting
ime 𝜂𝑎𝑟𝑟(𝐽) + 𝜎𝑎𝑟𝑟 and 𝑛𝐽 ∶= tr(𝐽) + 𝜎𝑡𝑟 rounds is performed for

every journey 𝐽 ∈ . The backward search works on departure
times instead of arrival times and transfer times are not applied when
boarding a vehicle but instead when disembarking.

Each backward search computes latest departure times 𝜂𝑑𝑒𝑝(𝐽, 𝑘, 𝑝)
such that 𝑝𝑡 can still be reached earlier than 𝜂𝑎𝑟𝑟(𝐽) + 𝜎𝑎𝑟𝑟 while using
at most 𝑘 more trips onward from 𝑝. It is possible that 𝜂𝑑𝑒𝑝(𝐽, 𝑘, 𝑝)
remains at its initialization value of −∞. Using 𝜂𝑑𝑒𝑝(𝐽, 𝑛𝐽 − 𝑘, 𝑝) for
pruning labels in round 𝑘 of a forward McRAP search computes

{𝐽 ∈  𝑓
| 𝜂𝑎𝑟𝑟(𝐽) ≤ 𝜂𝑎𝑟𝑟(𝐽) + 𝜎𝑎𝑟𝑟 and tr(𝐽) ≤ tr(𝐽) + 𝜎𝑡𝑟}.

Carefully overlapping the labels 𝜂𝑑𝑒𝑝(𝐽, 𝑘, 𝑝) results in a set of labels
𝜂𝑑𝑒𝑝(𝑘, 𝑝) with 𝑘 = 1,… , 𝑚, i.e.,

𝑑𝑒𝑝(𝑘, 𝑝) ∶= max
𝐽∈∶
𝑘≥𝑚−𝑛𝐽

{𝜂𝑑𝑒𝑝(𝐽, 𝑘 − 𝑚 + 𝑛𝐽 , 𝑝)}.

The third stage is now a normal McRAP search enriched with two
pruning rules. Let 𝑘 be the current round.

• Labels 𝐿 are not merged into to 𝐵𝑘(𝑝) at stop 𝑝 if 𝜂𝑎𝑟𝑟(𝐿) >
𝜂𝑑𝑒𝑝(𝑚 − 𝑘, 𝑝),

• Labels 𝐿 can be removed from 𝐵𝑟 at stop 𝑝 if 𝜂𝑎𝑟𝑟(𝐿) > 𝜂𝑑𝑒𝑝(𝑚 −
𝑘 + 1, 𝑝) + 𝜂𝑐ℎ(𝑝).

The summand 𝜂𝑐ℎ(𝑝) in the second rule is required since it was factored
into 𝜂𝑑𝑒𝑝(𝑚 − 𝑘 + 1, 𝑝) and no transfer is performed. This third stage
computes exactly .

The definition we gave for  𝑓 differs from the one given by Delling
et al. (2019). The original authors assign each journey 𝐽 ∈  𝑓 its
anchor journey 𝐽 ∈  , that has the maximum number of trips smaller
 

10
r equal to tr(𝐽). They then define the restricted Pareto-set ̄ to be

̄ ∶= {𝐽 ∈  𝑓
| its anch. journ. 𝐽 ∈  has 𝜂𝑎𝑟𝑟(𝐽) ≤ 𝜂𝑎𝑟𝑟(𝐽) + 𝜎𝑎𝑟𝑟 and

tr(𝐽) ≤ tr(𝐽) + 𝜎𝑡𝑟}
⊆ {𝐽 ∈  𝑓

|∃𝐽 ∈  such that 𝜂𝑎𝑟𝑟(𝐽) ≤ 𝜂𝑎𝑟𝑟(𝐽) + 𝜎𝑎𝑟𝑟 and
tr(𝐽) ≤ tr(𝐽) ≤ tr(𝐽) + 𝜎𝑡𝑟}

⊆ .

Note that Tight-BMRAP as presented here and in Delling et al.
(2019) does, in fact, calculate  and not ̄ and that  is a more
interesting set to compute as it does not seem beneficial to impose
lower bounds on the objective function. The difference between  and
̄ is visualized in Fig. 4. The first fact can be seen easily by considering
the case where 𝜎𝑎𝑟𝑟 = ∞. Then, the pruning scheme does not prune
anything but all journeys with more than 𝑚 trips. Specifically, no lower
bound on the number of trips is applied.

5.4. Speed-up techniques

Price-based target pruning. In RAPTOR as well as Dijkstra’s algorithm,
it is possible to use target pruning (Delling et al., 2015) to delete labels
that are worse than the labels that have already been found at the target
stop. Naturally, the same speed-up technique is also possible for our
algorithm. Moreover, we need not use ≤𝐶 to compare fare states. Since
the labels at the target stop are never updated and the price function
𝜋 is non-decreasing, a partial journey already more expensive than the
incumbent cheapest journey cannot be price-optimal. Hence, in round 𝑘
of McRAP, we can prune all labels with a fare state 𝑓 with 𝜋(𝜏(𝑓)) ≥ 𝜋∗,
with 𝜋∗ being the best price at the target stop with at most 𝑘 trips. We
refer to this technique as Price-Based Target Pruning (PTP).

Fare-specific speed-ups. Certain dimensions in (𝐻,+,≤) might only be
relevant for some tickets in 𝑇 . For example, many short-distance tickets
depend on the number of stops visited while this number is irrelevant
for all other tickets that can be reached from that ticket. We can
therefore alter the comparison operator ≤𝐶 for those tickets to ignore
the number of stops. Hence, more labels become comparable, which
results in a smaller Pareto-set  𝑓𝑠𝑠 with  ∗ ⊆  𝑓𝑠𝑠 ⊆  𝑓 . When using
Tight-BMRAP, this results in a set  𝑓𝑠𝑠

 with  ∗
 ⊆  𝑓𝑠𝑠

 ⊆  𝑓
 . We refer

to this technique as fare-specific speed-up (FSS).

6. Computational results

We implemented the McRAP algorithm in C++17 compiled with
gcc 9.3.0 and −O3 optimization. All tests were conducted on Dell
Poweredge M620 machines with 64 GB of RAM. While the general
structure of the MDV fare structure is captured in our model, our
computations deviate from the prices charged by MDV in the following
two cases: A list of relations, that are, contrary to the general rules, not
eligible for the short-distance discount, is considered. Moreover, stops
and fare zones that a route passes through without stopping are not
represented in the available data and therefore cannot be considered.

Our dataset was built from the publicly available timetable data
(Mitteldeutscher Verkehrsverbund GmbH, 2019b) and fare structure
of MDV (Mitteldeutscher Verkehrsverbund GmbH, 2019a). Structured
fare data is not public and was obtained separately via InfraDialog
GmbH. We extracted a timetable spanning two days from July 1, 2019
to July 2, 2019. The resulting timetable contains 4371 stops, 36670
trips, 5576 routes, and 845 footpaths. This original footpath set was
not transitively closed. Since RAPTOR requires a transitively closed
footpath set (Delling et al., 2015), we computed its transitive closure
and obtained 1029 footpaths. We then chose a test set of 5000 origin–
destination pairs (OD pairs) uniformly at random from the set of stops.
After removing all OD pairs that were not connected in the time interval
starting at 08:00 a.m. on July 1, 2019, a total of 4964 OD pairs
remained.

R. Euler et al.

a
(
#

1
O
i
t
o

t
a
o
t
v
o
a
t
t
m
o
m

T
g
i
T
s
j
o
s
a

t
o
p

e
t
b
a

EURO Journal on Transportation and Logistics 13 (2024) 100128
Table 3
Computational results. Evaluation of different RAPTOR variants on the MDV dataset. All experiments were conducted with a maximum of seven rounds. For each algorithm, the
table reports the optimization criteria, the speed-up techniques employed, and the arrival and trip slacks, if applicable. We report the number of scanned routes (#Scan), the
verage running time (Time), the number of rounds performed (#Rounds), the number of journeys found (#Jn.) and the number of journeys that are dominated w.r.t. to the price
#PJn.). For each result, both the average and standard deviation are reported. The algorithms in rows 2–17 run at least one RAPTOR and exactly one McRAPquery. In this case,
Scan and Time are only given for the McRAP run, while the running time is summed up overall RAPTOR and McRAP invocations.

Criteria Speed-Up Slack #Scan Time [ms] #Rounds #Jn. #PJn.

Trips Time Zones Fare PTP FSS arr Trip Avg. Sd. Avg. Sd. Avg. Sd. Avg. Sd. Avg. Sd.

RAPTOR • • ◦ ◦ ◦ ◦ – – 17 295 5883 3.27 1.31 6.64 0.79 1.53 0.66 – –
McRAP • • • ◦ ◦ ◦ – – 29 881 6118 4675 6172 6.92 0.48 47.00 45.95 – –
McRAP • • ◦ • ◦ • – – 29 891 5025 957.54 260.73 6.97 0.26 10.05 13.27 2.62 1.43
McRAP • • ◦ • • • – – 23 460 8263 243.09 283.08 6.86 0.55 3.00 1.80 2.62 1.43

Target-BMRAP • • ◦ • • • 15 – 20 132 8502 71.16 87.10 6.72 0.72 1.72 0.82 1.66 0.74
Target-BMRAP • • ◦ • • • 30 – 20 637 8412 74.86 88.75 6.75 0.70 1.80 0.89 1.72 0.80
Target-BMRAP • • ◦ • • • 60 – 21 394 8311 81.45 91.57 6.78 0.66 1.95 1.00 1.85 0.89

Tight-BMRAP • • ◦ • ◦ ◦ 15 1 3192 1963 8.44 14.46 5.17 1.08 7.52 10.28 1.63 0.72
Tight-BMRAP • • ◦ • ◦ ◦ 30 1 3551 2071 9.40 16.47 5.17 1.08 9.06 12.29 1.68 0.78
Tight-BMRAP • • ◦ • ◦ ◦ 60 1 4316 2384 11.97 18.17 5.17 1.08 13.29 16.02 1.78 0.86
Tight-BMRAP • • ◦ • ◦ ◦ 15 2 4606 3167 20.79 99.60 5.84 1.07 11.90 21.05 1.66 0.74
Tight-BMRAP • • ◦ • ◦ ◦ 30 2 5147 3154 22.75 104.12 5.90 1.03 14.09 23.87 1.71 0.80
Tight-BMRAP • • ◦ • ◦ ◦ 60 2 6487 3359 29.47 107.53 5.97 0.99 20.98 29.70 1.83 0.88
Tight-BMRAP • • ◦ • • • 15 1 2954 1828 6.22 3.14 5.17 1.08 1.68 0.79 1.63 0.72
Tight-BMRAP • • ◦ • • • 30 1 3274 1919 6.69 3.29 5.17 1.08 1.75 0.85 1.69 0.78
Tight-BMRAP • • ◦ • • • 60 1 3984 2209 7.82 3.67 5.17 1.08 1.88 0.97 1.78 0.86
Tight-BMRAP • • ◦ • • • 15 2 4155 2905 8.11 6.28 5.47 1.08 1.71 0.81 1.66 0.74
Tight-BMRAP • • ◦ • • • 30 2 4606 2888 8.76 6.32 5.53 1.0 1.78 0.88 1.71 0.80
Tight-BMRAP • • ◦ • • • 60 2 5758 3055 10.68 6.73 5.62 1.05 1.93 1.00 1.83 0.88
As of 2019, the fare structure of MDV contained 56 fare zones,
7 cities with a city fare, and 30 overlap areas containing 191 stops.
verlap areas were implemented by route duplication, as lined out

n Section 3.4. After route duplication, the timetable contained 49072
rips in 7835 routes. All queries were performed with a starting time
f 08:00 a.m.

In a first experiment, we ran several algorithms for each OD pair:
he standard RAPTOR-algorithm; a McRAP variant optimizing for the
rrival time, the number of trips, and the set of fare zones; then,
ptimizing for the arrival time, number of trips, and the fare state,
wo McRAP variants as well as Target-BMRAP and Tight-BMRAP with
arious configurations for arrival and trip slacks. This results in a total
f 19 algorithms in the first experiment. When optimizing for fare state,
postprocessing step is performed to remove all journeys that are in

he Pareto-set with regard to fare state but not to price. Note that
he McRAP variant for fare zones is a relaxed version of the purely
onoid-based approach from Section 3.1 and provides a lower bound

n its performance. The full approach was implemented but ran out of
emory on most queries and is therefore omitted in the results.

The experiment was conducted with a maximum of seven rounds.
his number was chosen, as we believe it represents a sufficiently
enerous upper bound on the maximum number of transfers a traveler
s willing to undertake. The results of the experiment are reported in
able 3. A standard RAPTOR run takes on average 3.27 ms with a
tandard deviation of 1.31 ms. The computed Pareto-set contains 1.53
ourneys on average. If only fare zones are considered as additional
peration criterion, the average runtime increases to 4.67 s, with a
tandard deviation of 6.17 s. This indicates that run times of up to
round 10 s are not out of the ordinary.

While FSS in McRAP alone does not suffice to obtain acceptable run
imes, the combination of FSS and PTP produces an average run time
f 243.09 ms. Although this performance is no longer prohibitive for
ractical application, the standard deviation remains high at 283 ms.

The Pareto-set computed with McRAP contains 3 journeys on av-
rage, of which 2.62 are also price-optimal. Turning off PTP increases
he number of computed journeys to 10.5; the Pareto-set of the zone-
ased McRAP contains 47 journeys on average. Hence, even though
ll tickets of MDV are in the full-comparability set 𝐶𝐹 , a high number

of superfluous journeys will be generated when no additional tech-
niques are employed. This effect is mainly caused by the fare zones,
11
as they form an only partially ordered set. The 2.62 price-optimal
journeys mark an increase of 71% over the 1.53 journeys found with
RAPTOR. It might, however, contain journeys with an undesirable
trade-off between arrival time and number of trips and price. To obtain
restricted Pareto-sets with a reasonable trade-off, we ran Target-BMRAP
and Tight-BMRAP with arrival time slacks of 15 min, 30 min and
60 min and in the case of Tight-BMRAP with trip slacks of 1 or
2. Using Target-BMRAP reduces run times to between 71.16 ms and
81.45 ms while restricting the size of the Pareto-set to between 1.66
and 1.85. This corresponds to between 8.5% and 21% more journeys
compared to RAPTOR. We ran Tight-BMRAP both with and without
PTP and FSS. Tight-BMRAP performs reasonably well even without
PTP and FSS on average with run times of up to 29.47 ms. However,
a comparatively high standard deviation of up to 107.53 ms hints at
high performance variability. When using both PTP and FSS run times
decrease to at most 10.68 ms. Even more pronounced is the decrease in
the standard deviation to at most 6.73 ms. Compared to RAPTOR there
are between 6.5% and 19.6% more journeys. Consequently, conditional
fare networks used within Tight-BMRAP appear well-suited to provide
the user with price-optimized alternative routes while increasing run
times only insignificantly.

A second experiment was conducted without an upper bound on the
number of rounds (see Table 4). The table 𝜂𝑎𝑟𝑟 was implemented as a
fixed-size array with space for 25 rounds. Since the maximum number
of rounds performed was 21, no journeys were cut off due to early
termination. We excluded all algorithms that had already performed
poorly in the first experiment. Namely, these are the Tight-BMRAP
variants without additional speed-up techniques, McRAP for fare zones
and McRAP for fare states without price-based target-pruning.

For McRAP, we see a significant increase in the run time of about
60% and a even more pronounced increase in its standard deviation
of 151% compared to the variant with only seven rounds. All variants
of Target-BMRAP exhibit similar behavior, albeit to a lesser degree.
Here, the average run time increased by about 16% and the standard
deviation by about 44%. Note that for RAPTOR the run time increased
by only a marginal 0.01 ms and that, when compared to RAPTOR,
McRAP needs to perform significantly more rounds.

For all settings of slack variables for Tight-BMRAP, the increase
of the run time remains minimal at around a millisecond. Hence,

Tight-BMRAP remains highly competitive, whereas the simple McRAP

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
Table 4
Computational results. Evaluation of different RAPTOR variants on the MDV dataset. All experiments were conducted with a maximum of 25 rounds. The maximum number of
rounds performed across all algorithms was 21. Hence, no query was canceled prematurely. All algorithms other than RAPTOR optimized for arrival time, number of trips and fare
state. For all of those, both FFS and PTP were activated. The same performance indicators as in Table 3 are reported. For Target-BMRAP and Tight-BMRAP, #Scan and #Rounds
report only on the last McRAP call whereas Time reports the overall run time.

Slack #Scan Time [ms] #Rounds #Jn. #PJn.

arr Trip Avg. Sd. Avg. Sd. Avg. Sd. Max Avg. Sd. Avg. Sd.

RAPTOR – – 17 496 6111 3.28 1331.9 7.31 1.35 12 1.54 0.66 – –
McRAP – – 32 757 16 429 389.52 710.75 11.10 3.24 21 3.16 1.91 2.77 1.56

Target-BMRAP 15 – 23 007 12 106 82.47 125.89 8.57 2.34 17 1.73 0.84 1.68 0.77
Target-BMRAP 30 – 23 724 12 093 86.38 128.22 8.73 2.33 17 1.81 0.91 1.73 0.82
Target-BMRAP 60 – 24 980 12 186 94.53 131.83 9.00 2.35 17 1.97 1.03 1.87 0.91

Tight-BMRAP 15 1 2985 1871 6.68 3.28 5.20 1.14 9 1.69 0.81 1.63 0.73
Tight-BMRAP 30 1 3309 1973 7.19 3.44 5.20 1.14 9 1.75 0.87 1.69 0.79
Tight-BMRAP 60 1 4039 2307 8.36 3.89 5.20 1.14 9 1.89 0.96 1.79 0.89
Tight-BMRAP 15 2 4360 3145 9.02 7.27 5.52 1.16 10 1.72 0.83 1.66 0.76
Tight-BMRAP 30 2 4833 3151 9.68 7.43 5.58 1.15 10 1.79 0.90 1.72 0.81
Tight-BMRAP 60 2 6071 3378 11.87 7.97 5.67 1.16 10 1.94 1.02 1.84 0.90
w
o
l

c
b
p
z
t
t
i

w
e

D
d
T
𝑝
v

P
l
N

P
w

implementation suffers from considerably degraded performance. It is
furthermore noteworthy that in all slack settings, the multi-criteria
part of Tight-BMRAP needs to both scan significantly fewer routes and
perform fewer rounds than even the standard RAPTOR. This clearly
speaks to the strength of the pruning scheme used in Tight-BMRAP.

7. Conclusion

We presented conditional fare networks, a novel framework for
modeling complex fare structures of public transportation providers. It
is independent of the MOSP algorithm used and can be used to solve
price-optimal earliest arrival queries in real-world networks. Since fare
structures are often composed of various fare strategies, this requires
the optimization of several objective functions. In the MDV case study,
these were the fare zones, city fares, transfers, the number of stops
visited, and the length of the path in kilometers. Performing naive
multi-objective queries for all these objectives results in high run times
with high variance and the computation of many journeys that are not
price-optimal. In contrast, using a CFN-based variant of the McRAP
algorithm, we were able to mitigate these effects and reduce run
times to around 400 ms on average, which we deem acceptable for
commercial applications. Combining CFNs with the Tight-BMRAP al-
gorithm reduced run times further to at most 12 ms with low variance,
while still computing a reasonably sized restricted Pareto-set when
choosing appropriate arrival and trip slacks. Fare structures can differ
quite significantly between public transportation providers. Hence, a
systematic evaluation of CFNs on other public transit networks is
certainly worthwhile. As MDV operates in a largely rural area with
two only medium-sized urban centers, a study of larger urban centers
such as Berlin or Madrid seems especially interesting. However, while
timetables are widely available, fare data is not. Especially, machine-
readable mappings from stations to fare zones are generally not publicly
available. When they are, the data is often incomplete and requires a
significant manual polishing effort.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Ricardo Euler reports financial support was provided by German Fed-
eral Ministry of Education and Research. Ricardo Euler reports financial
support was provided by German Federal Ministry of Transport and
Digital Infrastructure.

Acknowledgments

We thank MDV and InfraDialog Gmbh for providing the data for
this study. We owe special gratitude to our master’s student Rick Grap
 s

12
for implementing the Tight-BMRAP-algorithm and pointing out the
difference between the sets ̄ and  in Section 5.3.

Funding

This work was supported by the Research Campus MODAL funded
by the German Federal Ministry of Education and Research (BMBF)
[grant number 05M20ZBM]; and the German Federal Ministry of Trans-
port and Digital Infrastructure [grant number 19E17001C].

Appendix A. Computational complexity and links to automata
theory

In this section, we study the computational complexity of POEAP.
The intractability of general multi-objective shortest path problems is
well-established (Hansen, 1980). The standard argument is here, that
the output might be exponential in size. Note that in POEAP the number
of tickets |𝑇 | is finite. Therefore, it is always possible to find a valid
set of Pareto-optimal solutions with size ≤ |𝑇 |. This begs the question

hether POEAP can be solved in polynomial time. The answer depends
n whether the monoid (𝐻,+,≤) is considered as part of the encoding
ength.

If (𝐻,+,≤) is not considered part of the input then even the single-
riterion version of POEAP with travel time functions 𝑐 ≡ 0 (denoted
y POEAP0) is NP-hard. Blanco et al. (2016) proved finding a shortest
ath with respect to weights from the monoid (2𝑍 , ⊆,∪). with fare
ones 𝑍 to be NP-hard. The proof was obtained using a reduction from
he minimum-color single-path problem (Broersma et al., 2005). As
his is a special case of POEAP0, the NP-hardness of POEAP0 follows
mmediately.

In the following, we provide an alternative reduction of the path
ith forbidden pairs problem to POEAP0. Its NP-completeness was
stablished by Gabow et al. (1976).

efinition A.1 (Path with forbidden pairs problem). Let 𝐺 = (𝑉 ,𝐴) be a
irected graph and (𝑎𝑖, 𝑏𝑖), 𝑖 ∈ 𝐼 a list of forbidden pairs. Let 𝑠, 𝑡 ∈ 𝑉 .
he path with forbidden pairs problem asks whether there is a 𝑠, 𝑡-path
in 𝐺 such that ∀𝑖 ∈ 𝐼 ∶ 𝑎𝑖 ∉ 𝑝 ∨ 𝑏𝑖 ∉ 𝑝. That is, 𝑝 contains at most one
ertex of each pair (𝑎𝑖, 𝑏𝑖).

roposition A.1 (NP-hardness of POEAP0). The single-criterion prob-
em POEAP0 is NP-hard. Its canonical decision problem POEAP𝐷𝐸𝐶

0 is
P-complete if the evaluation time of 𝛤 is polynomially bounded.

roof. The canonical decision problem POEAP𝐷𝐸𝐶
0 of POEAP0 asks

hether there is a path 𝑝 in 𝐺 with 𝜋(𝑝) ≤ 𝑘 for some 𝑘 ∈ Q+. We

how NP-hardness by reducing the path with forbidden pairs problem

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
Fig. A.5. Transformation from CFN to DFA. The CFN  = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) is given by the ticket graph  depicted in (a). Possible ticket transitions are given as indicator functions
on the arcs. The associated monoid is (𝐻,+,≤) with 𝐻 ∶= {0, 1, 2} and 𝑎+ 𝑏 ∶= min{𝑎+ 𝑏, 2} and 0 ≤ 1 ≤ 2 and the fare events are given as 𝑆 = {𝑠1 , 𝑠2}. The definitions of 𝑤, 𝑒 and
𝜇 depend on the routing graph and are omitted in this example. Our transformation results in the DFA in (b). There is a state for each element from 𝑇 ×𝐻 . Each arc depicts a
possible state transformation. For each arc, there is at least one letter from 𝛴 = 𝐻 × 𝑆 that allows this transformation. There is no arc between (𝜏1 , 0) and (𝜏2 , 0) as moving from
𝜏1 to 𝜏2 in the ticket graph requires ℎ ≥ 1. There should be a loop at every state, e.g., (𝜏1 , 0) transforms into (𝜏1 , 0) if letter (0, 𝑠1) or (0, 𝑠2) was found. We omit them in (b) to not
clutter the presentation.
to POEAP. Let 𝐺 = (𝑉 ,𝐴) be a directed graph, 𝑠, 𝑡 ∈ 𝑉 and (𝑎𝑖, 𝑏𝑖), 𝑖 ∈ 𝐼 ,
a list of forbidden pairs. We construct a CFN  = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) as
follows. Let  = (𝑇 ,𝐸) be the ticket graph with tickets 𝑇 = {𝜏1, 𝜏2} and
𝐸 = {(𝜏1, 𝜏2)}. Furthermore, we define (𝐻,+,≤) as follows. Let 𝐻 =
{0, 1, 2}𝐼 . The sum of 𝑥, 𝑦 ∈ 𝐻 , is defined as 𝑥+ 𝑦 ∶= (min(2, 𝑥𝑖 + 𝑦𝑖))𝑖∈𝐼 .
We have 𝑥 ≤ 𝑦 if and only if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 ∈ 𝐼 . We set the ticket
prices to 𝜋(𝜏1) = 0 and 𝜋(𝜏2) = 1. Now, we let

𝑤(𝑣1, 𝑣2) =

{

𝑒𝑖 𝑣1 = 𝑎𝑖 or 𝑣1 = 𝑏𝑖 for some 𝑖 ∈ 𝐼
0 otherwise,

∀(𝑣1, 𝑣2) ∈ 𝐴

(A.1)

and

𝛤 (𝜏1, ℎ, 𝑠) =

{

𝜏2 ∃𝑖 ∈ 𝐼 ∶ ℎ𝑖 = 2
𝜏1 otherwise,

(A.2)

where 𝑒𝑖 ∈ {0, 1}𝐼 is the standard unit vector with 𝑒𝑖𝑖 = 1. Let 𝑝 be
a simple path. W.l.o.g. we assume that the last vertex of 𝑝 is not in
⋃

𝑖∈𝐼{𝑎𝑖, 𝑏𝑖}. Now, assume that 𝑝 has ticket 𝜏(𝑓 (𝑝)) = 𝜏2. Hence, there
must be an 𝑖 ∈ 𝐼 s.t. 𝑤(𝑓𝑖) = 2 and therefore both 𝑎𝑖 ∈ 𝑝 and 𝑏𝑖 ∈ 𝑝.
Conversely, if both 𝑎𝑖 ∈ 𝑝 and 𝑏𝑖 ∈ 𝑝, we must have 𝑓𝑖(𝑝) = 2 and
therefore 𝜏(𝑓 (𝑝)) = 𝜏2. The CFN  can be built in polynomial time,
as the weights 𝑤 can be built in (|𝐴||𝐼|) time. Hence, the path with
forbidden pairs problem can be polynomially reduced to POEAP0.

It remains to show that POEAP𝐷𝐸𝐶
0 is in NP. When evaluating the

fare state of 𝑝 as many calls to 𝛤 have to be performed as there are arcs
in 𝑝. Every simple 𝑠, 𝑡-path has clearly ≤ |𝐴| edges. Hence, the overall
evaluation time of 𝛤 for 𝑝 is polynomially bounded. Finally, finding 𝜋(𝑝)
from 𝑓 (𝑝) requires a simple table-lookup. Hence, checking 𝜋(𝑝) ≤ 𝑘 can
be done in polynomial time. □

Now, assume that the underlying monoid (𝐻,+,≤) is of finite size
and consider |𝐻| a part of the encoding length. Then, POEAP can
be solved in polynomial time using techniques already used by Bar-
rett et al. (2000) for the regular language constrained shortest path
problem. We begin with a short recapitulation of crucial results from
automata (Hopcroft and Ullman, 1979).

Definition A.2 (Deterministic finite automaton). A deterministic finite
automaton (DFA) is a 5-tuple (𝑄,𝛴, 𝛿, 𝑞0,), where 𝑄 is a finite set of
states, 𝛴 is a finite input alphabet, 𝑞0 ∈ 𝑄 is the initial state,  ⊆ 𝑄 is
the set of final states and 𝛿 ∶ 𝑄 × 𝛴 → 𝑄 is the transition function.
13
The words accepted by a DFA are exactly the words of a regular
language. Hence, we can use DFAs to define the regular language
constrained shortest path problem (REG-ShP) (Barrett et al., 2000). In
this problem, each arc 𝑎 ∈ 𝐴 of a directed graph 𝐺 = (𝑉 ,𝐴) is associated
with a letter 𝜎(𝑎) ∈ 𝛴. The state of a path 𝑝 = (𝑣0,… , 𝑣𝑛) is then
recursively defined via

𝑞((𝑣0,… , 𝑣𝑖)) ∶= 𝛿(𝑞((𝑣0,… , 𝑣𝑖−1)), 𝜎(𝑣𝑖−1, 𝑣𝑖))

𝑞(𝑣0) ∶= 𝑞0.

Definition A.3 (Regular-language constrained shortest path problem (REG-
ShP)). Let a directed graph 𝐺 = (𝑉 ,𝐴), weights 𝑐 ∶ 𝐴 → Q+, a DFA
(𝑄,𝛴, 𝛿, 𝑞0,), letters 𝜎(𝑎), 𝑎 ∈ 𝐴, a source 𝑠 ∈ 𝑉 and a destination
𝑡 ∈ 𝑉 be given. Find a shortest 𝑠, 𝑡-path 𝑝 such that 𝑞(𝑝) ∈  .

Conditional fare networks ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) can be recast as DFAs for
a fixed starting stop 𝑣 ∈ 𝑉 and final fare state 𝑓 ∈ 𝐹 if |𝐻| is finite.
Thus, POEAP can be tackled by solving a series of formal-language
constrained shortest path problems and selecting the price-optimal path
from the successful queries.

Assume the monoid (𝐻,+,≤) is trivial, i.e. 𝐻 = {𝑒} with 𝑒 + 𝑒 =
𝑒 for some element 𝑒. Then, the transition functions 𝛤 (⋅, ⋅, ⋅) can be
considered independent of (𝐻,+,≤), and we can construct a DFA 𝐷(𝑠) =
(𝑄,𝛴, 𝛿, 𝑞0,) in a straightforward manner by setting 𝑄 ∶= 𝑇 , 𝛴 ∶= 𝑆,
𝑞0 ∶= 𝜏′ where (𝜏′, 𝑒) = 𝜇(𝑠) is the initial fare state of 𝑠 and  ∶= {𝜏}
for some 𝜏 ∈ 𝑇 . The transition function 𝛿 is defined as

𝛿(𝑞, 𝜎) ∶= 𝛤 (𝑞, 𝑥, 𝜎) ∀ 𝑞 ∈ 𝑄, 𝜎 ∈ 𝛴.

As there is no direct equivalent for nontrivial 𝐻 in a DFA, we incor-
porate it into the state set 𝑄. We set 𝑄 ∶= 𝐹 = 𝑇 × 𝐻 , 𝛴 ∶= 𝐻 × 𝑆,
𝑞0 ∶= 𝜇(𝑣) and  = {𝑓} for some fare state 𝑓 ∈ 𝐹 . The transition
function 𝛿 is then defined by

𝛿(𝑞, 𝜎) ∶= (𝛤 (𝜏(𝑞), 𝑤(𝑞) +𝑤(𝜎), 𝑒(𝜎)), 𝑤(𝑞) +𝑤(𝜎)) ∀ 𝑞 =∈ 𝑄, 𝜎 ∈ 𝛴.

An example of this transformation can be seen in Fig. A.5.
Note that we can restrict 𝛴 to those fare attributes that do really

appear on arcs in 𝐴. Hence, we can assume (|𝛴|) = (|𝐴|). Then,
the above DFA can be created in (|𝑄| + |𝛴||𝑄|𝐵) = (|𝐴||𝑇 ||𝐻|𝐵)
assuming the evaluation time of 𝛤 to be bounded by a polynomial 𝐵.
Note that constructing a DFA (𝑄,𝛴, 𝛿, 𝑞0, {𝑓}) for all 𝑓 ∈ 𝐹 is still
possible in (|𝐴||𝑇 ||𝐻|𝐵) time as the transition function 𝛿 and the state
space 𝑄 need only be constructed once.

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
REG-ShP can be solved over such a DFA in (|𝑉 ‖𝑇 ‖𝐻|

log(|𝑉 ‖𝑇 ‖𝐻|) + |𝐴‖𝑇 ‖𝐻|) using the algorithm given by Barrett et al.
(2000). Hence, a superset 𝑀 of the Pareto-set of POEAP can be found
in polynomial time by solving |𝐹 | = |𝑇 ||𝐻| instances of REG-ShP. As 𝑀
has at most |𝑇 ||𝐻| entries it takes (|𝑇 ‖𝐻| log(|𝑇 ‖𝐻|)) time to extract
the actual Pareto-set (Kung et al., 1975). Thus, we obtain an overall
running time of (|𝑉 ‖𝑇 |2|𝐻|

2 log(|𝑉 ‖𝑇 ‖𝐻|)+|𝐴‖𝑇 |2|𝐻|

2+|𝐴‖𝑇 ‖𝐻|𝐵).
A slight modification of the proof for Reg-ShP in Barrett et al. (2000)
allows us to obtain a tighter bound.

Lemma A.1 (POEAP with constant travel time over finite monoids). Con-
sider POEAP over  = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) with 𝐻 finite, i.e., |𝐻| < ∞.
Assume all travel time functions are constants and that the evaluation time
of 𝛤 can be bounded by a polynomial 𝐵. Then, POEAP can be solved in
(|𝑉 ‖𝑇 ‖𝐻| log(|𝑉 ‖𝑇 ‖𝐻|) + |𝐴‖𝑇 ‖𝐻|𝐵).

Proof. Let 𝐷(𝑠) = (𝑄,𝛴, 𝛿, 𝑞0,) be the DFA constructed as described
above but letting  ∶= 𝑄 = 𝐹 , i.e., now all states in the automaton are
also accepting states. To keep consistence with automata terminology,
we write 𝜎(𝑣1, 𝑣2) ∶= (𝑤(𝑣1, 𝑣2), 𝑒(𝑣1, 𝑣2)) for 𝑣1, 𝑣2 ∈ 𝑉 .

We construct a product network 𝐺× = (𝑉 ×, 𝐴×) of 𝐺 and 𝐷(𝑠) with

𝑉 (𝐺×) = 𝑉 ×𝑄

𝐸(𝐺×) = {(𝑣1, 𝑞1), (𝑣2, 𝑞2)|(𝑣1, 𝑣2) ∈ 𝐸, 𝑞2 = 𝛿(𝑞1, 𝜎(𝑣1, 𝑣2))}.

Note that for every 𝑎 ∈ 𝐴 there are at most |𝑇 ||𝐻| edges in 𝐸× and
hence |𝐸×

| ≤ |𝐴‖𝑇 ‖𝐻|. Thus, 𝐺× can be constructed in (|𝑉 ‖𝑇 ‖𝐻| +
|𝐴‖𝑇 ‖𝐻|). Using Dijkstra’s algorithm, we compute a shortest path tree
rooted at (𝑠, 𝑞0) in 𝐺×. In particular, we obtain a shortest (𝑠, 𝑞0), (𝑡, 𝑞)-
path for all 𝑞 ∈ 𝑄 = 𝐹 = 𝑇 × 𝐻 . Using a Fibonacci heap, Dijkstra’s
algorithm has a running time of (|𝑉 ×

| log(|𝑉 ×
|) + |𝐸×

|). We can again
extract the Pareto-set in (|𝑇 ‖𝐻| log(|𝑇 ‖𝐻|)) time, giving an overall
runtime of (|𝑉 ‖𝑇 ‖𝐻| log(|𝑉 ‖𝑇 ‖𝐻|) + |𝐴‖𝑇 ‖𝐻|𝐵). □

This result extends naturally to FIFO-travel time functions.

Proposition A.2 (POEAP over finite monoids is polynomial time solv-
able in |𝐻|). Consider POEAP over the conditional fare network 
= ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋) under the assumption that |𝐻| < ∞, that the travel time
functions 𝑐(𝑎) ∶ 𝐼 → 𝐼, 𝑎 ∈ 𝐴 have the FIFO-property and can be evaluated
in constant time, and that the evaluation time of 𝛤 can be bounded by a
polynomial 𝐵. Then, POEAP can be solved in (|𝑉 ‖𝑇 ‖𝐻| log(|𝑉 ‖𝑇 ‖𝐻|)+
|𝐴‖𝑇 ‖𝐻|𝐵).

Proof. It is well-established that time-dependent shortest path prob-
lems can be solved using a modified version of Dijkstra’s algorithm for
FIFO networks (Orda and Rom, 1990). The modified algorithm exhibits
the same running time as the standard algorithm if the evaluation time
of travel time functions is bounded by a constant. Thus, using the
modified Dijkstra variant in Lemma A.1 solves POEAP with FIFO travel
time functions in (|𝑉 ‖𝑇 ‖𝐻| log(|𝑉 ‖𝑇 ‖𝐻|) + |𝐴‖𝑇 ‖𝐻|𝐵). □

Appendix B. Pseudocode for the McRAP algorithm

We provide the pseudocode of the McRAP algorithm (Delling et al.,
2015) adapted to CFNs as developed in Section 5.2. The function
𝐵.add((𝜂, 𝑓)) removes all labels from 𝐵 that are dominated by (𝜂, 𝑓).

References

Barrett, C., Jacob, R., Marathe, M., 2000. Formal-language-constrained path
problems. SIAM J. Comput. 30 (3), 809–837. http://dx.doi.org/10.1137/
S0097539798337716.

Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P.,
Wagner, D., Werneck, R.F., 2016. Route planning in transportation networks.
In: Algorithm Engineering - Selected Results and Surveys. In: Lecture Notes in
Computer Science, vol. 9220, Springer, pp. 19–80. http://dx.doi.org/10.1007/978-

3-319-49487-6_2.

14
Algorithm 1: Price-optimal McRAP
Data: Time Table T = (𝛱, ,,,), CFN  = ( , 𝛤 ,𝑤, 𝑒, 𝜇, 𝜋),

origin 𝑝𝑠 ∈  , destination 𝑝𝑡 ∈  , departure time 𝜂, number of
rounds 𝐾

1 𝐵0(𝑝𝑠) ← {(𝜂, 𝜇(𝑝𝑠))}
2 mark 𝑝𝑠
3 for 𝑘 = 1 to 𝐾 do
4 𝐵𝑘(⋅) ← ∅
5 𝑄 ← ∅ // FIFO queue
6 foreach marked stop 𝑝 do // Find first marked stop per

route
7 foreach route 𝑟 with 𝑝 ∈ (𝑟) do
8 if (𝑟, 𝑝′) ∈ 𝑄 for some 𝑝′ ∈  then
9 if 𝑝 comes before 𝑝′ in 𝑟 then
10 𝑄.remove(𝑟, 𝑝′)
11 𝑄.add(𝑟, 𝑝)
12 else
13 𝑄.add(𝑟, 𝑝)
14 unmark 𝑝
15 foreach (𝑟, 𝑝) ∈ 𝑄 do // Traverse Routes
16 𝐵𝑟 ← ∅
17 foreach stop 𝑝𝑖 in 𝑟 beginning with 𝑝 do
18 foreach (𝜂, 𝑓 , 𝑑) ∈ 𝐵𝑟 do
19 𝜂 ← 𝜂𝑎𝑟𝑟(𝑑, 𝑝) // Update label at new station

𝑝𝑖
20 𝑤(𝑓) ← 𝑤(𝑓) +𝑤1(𝑑, 𝑝)
21 𝜏(𝑓) ← 𝛤 (𝜏(𝑓), 𝑤(𝑓), 𝑒1(𝑑, 𝑝))
22 if (𝜂, 𝑓) not dominated by ∪𝑗∈1,…,𝑘𝐵𝑗 (𝑝) then
23 𝐵𝑘(𝑝).add((𝜂, 𝑓)) // Found new nondominated

label
24 mark 𝑝𝑖
25 foreach (𝜂, 𝑓) ∈ 𝐵𝑘−1(𝑝) do
26 𝜂′ ← 𝜂 + 𝜂𝑐ℎ // Apply transfer costs
27 𝑤(𝑔) ← 𝑤(𝑓) +𝑤2(𝑑, 𝑝)
28 𝜏(𝑔) ← 𝛤 (𝜏(𝑓), 𝑤(𝑔), 𝑒2(𝑑, 𝑝))
29 if (𝜂′, 𝑔) not dominated by 𝐵𝑟 then
30 𝑑 ← min(𝑑 ∶ 𝜂𝑑𝑒𝑝(𝑑, 𝑝) ≥ 𝜂′) // Find next trip
31 𝐵𝑟.add((𝜂′, 𝑔, 𝑑)) // Add nondominated

label to route bag
32 foreach marked stop 𝑝 do // Process Footpaths
33 foreach footpath (𝑝, 𝑝′, 𝑙) ∈  do
34 foreach (𝜂, 𝑓) ∈ 𝐵𝑘(𝑝) do
35 if (𝜂 + 𝑙, 𝑓) not dominated by ∪𝑗∈1,…,𝑘𝐵𝑗 (𝑝′) then
36 𝐵𝑘(𝑝′).add((𝜂 + 𝑙, 𝑓))

37 if no stop is marked then // Early Termination Criterion
38 stop

Berger, A., Müller-Hannemann, M., 2009. Subpath-Optimality of Multi-Criteria Shortest
Paths in Time- and Event-Dependent Networks. Technical Report, Institute of
Computer Science, Martin-Luther-Universität Halle-Wittenberg, URL: http://wcms.
uzi.uni-halle.de/download.php?down=10850&elem=2163494.

Blanco, M., Borndörfer, R., Hoàng, N.D., Kaier, A., Casas, P.M., Schlechte, T.,
Schlobach, S., 2017. Cost projection methods for the shortest path problem
with crossing costs. In: D’Angelo, G., Dollevoet, T. (Eds.), 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2017). In: OpenAccess Series in Informatics (OASIcs), vol. 59, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 15:1–15:14.
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.15, URL: http://drops.dagstuhl.de/
opus/volltexte/2017/7893.

Blanco, M., Borndörfer, R., Hoang, N.-D., Kaier, A., Schlechte, T., Schlobach, S., 2016.
The Shortest Path Problem with Crossing Costs. Technical Report 16–70, ZIB,
Takustr. 7, 14195 Berlin, URL: urn:nbn:de:0297-zib-61240.

Blumenberg, E., Agrawal, A.W., 2014. Getting around when you’re just getting
by: Transportation survival strategies of the poor. J. Poverty 18 (4), 355–378.
http://dx.doi.org/10.1080/10875549.2014.951905, URL: https://doi.org/10.1080/
10875549.2014.951905. arXiv:https://doi.org/10.1080/10875549.2014.951905.

Borndörfer, R., Euler, R., Karbstein, M., 2021. Ein Graphen-basiertes Modell
zur Beschreibung von Preissystemen im öffentlichen Nahverkehr. HEUREKA
21 002/127, 1–15, URL: https://verlag.fgsv-datenbanken.de/tagungsbaende?
kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=

http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://wcms.uzi.uni-halle.de/download.php?down=10850&elem=2163494
http://wcms.uzi.uni-halle.de/download.php?down=10850&elem=2163494
http://wcms.uzi.uni-halle.de/download.php?down=10850&elem=2163494
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.15
http://drops.dagstuhl.de/opus/volltexte/2017/7893
http://drops.dagstuhl.de/opus/volltexte/2017/7893
http://drops.dagstuhl.de/opus/volltexte/2017/7893
http://urn:nbn:de:0297-zib-61240
http://dx.doi.org/10.1080/10875549.2014.951905
https://doi.org/10.1080/10875549.2014.951905
https://doi.org/10.1080/10875549.2014.951905
https://doi.org/10.1080/10875549.2014.951905
https://doi.org/10.1080/10875549.2014.951905
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr

R. Euler et al. EURO Journal on Transportation and Logistics 13 (2024) 100128
&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+
Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr.

Borndörfer, R., Euler, R., Karbstein, M., Mett, F., 2018. Ein mathematisches Modell zur
Beschreibung von Preissystemen im öV. Technical Report 18–47, ZIB, Takustr. 7,
14195 Berlin, URL: urn:nbn:de:0297-zib-70564.

Broersma, H., Li, X., Woeginger, G., Zhang, S., 2005. Paths and cycles in colored
graphs.. Australas. J. Combin. 31, 299–311. http://dx.doi.org/10.1145/62.2737.

Brough, R., Freedman, M., Phillips, D.C., 2022. Experimental evidence on the effects
of means-tested public transportation subsidies on travel behavior. Reg. Sci.
Urban Econ. 96, 103803. http://dx.doi.org/10.1016/j.regsciurbeco.2022.103803,
URL: https://www.sciencedirect.com/science/article/pii/S0166046222000436.

Bull, O., Muñoz, J.C., Silva, H.E., 2021. The impact of fare-free public transport on
travel behavior: Evidence from a randomized controlled trial. Reg. Sci. Urban Econ.
86, 103616. http://dx.doi.org/10.1016/j.regsciurbeco.2020.103616, URL: https://
www.sciencedirect.com/science/article/pii/S016604622030301X.

Chen, X., Ma, J., Bai, X., 2020. Mode choice behavior analysis under the im-
pact of transfer fare discount: A case study from Beijing public transit
system. In: Resilience and Sustainable Transportation Systems. pp. 290–299.
http://dx.doi.org/10.1061/9780784482902.033, URL: https://ascelibrary.org/doi/
abs/10.1061/9780784482902.033. arXiv:https://ascelibrary.org/doi/pdf/10.1061/
9780784482902.033.

Delling, D., Dibbelt, J., Pajor, T., 2019. Fast and exact public transit rout-
ing with restricted Pareto sets. In: 2019 Proceedings of the Twenty-First
Workshop on Algorithm Engineering and Experiments. ALENEX, pp. 54–65.
http://dx.doi.org/10.1137/1.9781611975499.5, URL: https://epubs.siam.org/doi/
abs/10.1137/1.9781611975499.5. arXiv:https://epubs.siam.org/doi/pdf/10.1137/
1.9781611975499.5.

Delling, D., Pajor, T., Werneck, R.F., 2015. Round-based public transit routing. Transp.
Sci. 49 (3), 591–604. http://dx.doi.org/10.1287/trsc.2014.0534.

Disser, Y., Müller-Hannemann, M., Schnee, M., 2008. Multi-criteria shortest paths in
time-dependent train networks. In: McGeoch, C.C. (Ed.), Proceedings of the 7th
International Conference on Experimental Algorithms. WEA ’08, Springer-Verlag,
Berlin, Heidelberg, pp. 347–361. http://dx.doi.org/10.1007/978-3-540-68552-4_
26, URL: http://dl.acm.org/citation.cfm?id=1788888.1788914.

Euler, R., Borndörfer, R., 2019. A Graph- and Monoid-Based Framework for Price-
Sensitive Routing in Local Public Transportation Networks. In: Cacchiani, V.,
Marchetti-Spaccamela, A. (Eds.), 19th Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2019). In: OpenAc-
cess Series in Informatics (OASIcs), vol. 75, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, pp. 12:1–12:15. http://dx.doi.org/10.4230/OASIcs.
ATMOS.2019.12, URL: http://drops.dagstuhl.de/opus/volltexte/2019/11424.

Fleishman, D., Shaw, N., Joshi, A., Freeze, R., Oram, R., 1996. Fare Policies,
Structures and Technologies. TCRP Report 10, Transport Cooperative Research
Program, Transportation Research Board, Washington DC, URL: https://www.trb.
org/Publications/Blurbs/153836.aspx.

Gabow, H.N., Maheshwari, S.N., Osterweil, L.J., 1976. On two problems in the
generation of program test paths. IEEE Trans. Softw. Eng. SE-2 (3), 227–231.
http://dx.doi.org/10.1109/TSE.1976.233819.
15
Gündling, F., 2020. Efficient Algorithms for Intermodal Routing and Monitoring in
Travel Information Systems (Ph.D. thesis). Technische Universität, Darmstadt, http:
//dx.doi.org/10.25534/tuprints-00014212, URL: http://tuprints.ulb.tu-darmstadt.
de/14212/.

Hansen, P., 1980. Bicriterion path problems. In: Lecture Notes in Economics and
Mathematical Systems, vol. 177, http://dx.doi.org/10.1007/978-3-642-48782-8_9.

Hopcroft, J.E., Ullman, J.D., 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company.

Kung, H.T., Luccio, F., Preparata, F.P., 1975. On finding the maxima of a set of
vectors. J. ACM 22 (4), 469–476. http://dx.doi.org/10.1145/321906.321910, URL:
http://doi.acm.org/10.1145/321906.321910.

Maristany de las Casas, P., Sedeno-Noda, A., Borndörfer, R., 2021. An improved
multiobjective shortest path algorithm. Comput. Oper. Res. 135, http://dx.doi.org/
10.1016/j.cor.2021.105424.

Martins, E.Q.V., 1984. On a multicriteria shortest path problem. European J. Oper. Res.
16 (2), 236–245. http://dx.doi.org/10.1016/0377-2217(84)90077-8.

Mitteldeutscher Verkehrsverbund GmbH, 2019a. MDV fares. https://www.mdv.de/
tickets/befoerderungsbedingungen-tarifbestimmungen/, Accessed: 2019-08-11.

Mitteldeutscher Verkehrsverbund GmbH, 2019b. MDV GTFS data. https://www.mdv.
de/informationen/downloads/, Accessed: 2019-08-11.

Mohri, M., 2002. Semiring frameworks and algorithms for shortest-distance problems.
In: J. Autom. Lang. Comb.. J. Autom. Lang. Comb. 7 (3), 321–350, URL: http:
//dl.acm.org/citation.cfm?id=639508.639512.

Müller-Hannemann, M., Schnee, M., 2005. Paying less for train connections with
MOTIS. In: Proceedings of the 5th Workshop on Algorithmic Methods and Models
for Optimization of Railways. In: OpenAccess Series in Informatics, vol. 2, p. 657.
http://dx.doi.org/10.4230/OASIcs.ATMOS.2005.657.

Orda, A., Rom, R., 1990. Shortest-path and minimum-delay algorithms in networks
with time-dependent edge-length. J. ACM 37 (3), 607–625. http://dx.doi.org/10.
1145/79147.214078.

Parmentier, A., 2019. Algorithms for non-linear and stochastic resource constrained
shortest path. Math. Methods Oper. Res. 89 (2), 281–317. http://dx.doi.org/10.
1007/s00186-018-0649-x.

Reinhardt, L.B., Pisinger, D., 2011. Multi-objective and multi-constrained non-additive
shortest path problems. Comput. Oper. Res. 38 (3), 605–616. http://dx.doi.org/10.
1016/j.cor.2010.08.003, URL: https://www.sciencedirect.com/science/article/pii/
S0305054810001656.

Rosenblum, J., 2020. Expanding Access to the City: How Public Transit Fare Policy
Shapes Travel Decision Making and Behavior of Low-Income riders (Ph.D. thesis).
Massachusetts Institute of Technology. Department of Urban Studies and Planning,
URL: https://hdl.handle.net/1721.1/127617.

Schöbel, A., Urban, R., 2021. The cheapest ticket problem in public transport. http:
//dx.doi.org/10.48550/arXiv.2106.10521, pre-print. arXiv:2106.10521 [math.OC].

Verkehrsverbund Bremen/Niedersachsen GmbH, 2019. VBN nightliner fares.
https://web.archive.org/web/20200930070236///https://www.vbn.de/tickets/
ticketangebot/nachtlinienzuschlag/, Accessed: 2023-11-10.

Verkehrsverbund Bremen/Niedersachsen GmbH, 2023. VBN fares. https://www.vbn.de/
tickets/tarifbestimmungen, Accessed: 2023-11-10.

Zimmermann, U., 1981. Linear and Combinatorial Optimization in Ordered Algebraic
Structures. In: Annaly of discrete mathematics, vol. 10, North-Holland.

https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
https://verlag.fgsv-datenbanken.de/tagungsbaende?kat=HEUREKA&subkat=FGSV+002%2F127+%282021%29&fanr=&va=&titel=&text=&autor=&tagungsband=1256&_titel=Ein+Graphen-basiertes+Modell+zur+Beschreibung+von+Preissystemen+im+%C3%B6ffentlichen+Nahverkehr
http://urn:nbn:de:0297-zib-70564
http://dx.doi.org/10.1145/62.2737
http://dx.doi.org/10.1016/j.regsciurbeco.2022.103803
https://www.sciencedirect.com/science/article/pii/S0166046222000436
http://dx.doi.org/10.1016/j.regsciurbeco.2020.103616
https://www.sciencedirect.com/science/article/pii/S016604622030301X
https://www.sciencedirect.com/science/article/pii/S016604622030301X
https://www.sciencedirect.com/science/article/pii/S016604622030301X
http://dx.doi.org/10.1061/9780784482902.033
https://ascelibrary.org/doi/abs/10.1061/9780784482902.033
https://ascelibrary.org/doi/abs/10.1061/9780784482902.033
https://ascelibrary.org/doi/abs/10.1061/9780784482902.033
https://ascelibrary.org/doi/pdf/10.1061/9780784482902.033
https://ascelibrary.org/doi/pdf/10.1061/9780784482902.033
https://ascelibrary.org/doi/pdf/10.1061/9780784482902.033
http://dx.doi.org/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975499.5
http://dx.doi.org/10.1287/trsc.2014.0534
http://dx.doi.org/10.1007/978-3-540-68552-4_26
http://dx.doi.org/10.1007/978-3-540-68552-4_26
http://dx.doi.org/10.1007/978-3-540-68552-4_26
http://dl.acm.org/citation.cfm?id=1788888.1788914
http://dx.doi.org/10.4230/OASIcs.ATMOS.2019.12
http://dx.doi.org/10.4230/OASIcs.ATMOS.2019.12
http://dx.doi.org/10.4230/OASIcs.ATMOS.2019.12
http://drops.dagstuhl.de/opus/volltexte/2019/11424
https://www.trb.org/Publications/Blurbs/153836.aspx
https://www.trb.org/Publications/Blurbs/153836.aspx
https://www.trb.org/Publications/Blurbs/153836.aspx
http://dx.doi.org/10.1109/TSE.1976.233819
http://dx.doi.org/10.25534/tuprints-00014212
http://dx.doi.org/10.25534/tuprints-00014212
http://dx.doi.org/10.25534/tuprints-00014212
http://tuprints.ulb.tu-darmstadt.de/14212/
http://tuprints.ulb.tu-darmstadt.de/14212/
http://tuprints.ulb.tu-darmstadt.de/14212/
http://dx.doi.org/10.1007/978-3-642-48782-8_9
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb21
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb21
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb21
http://dx.doi.org/10.1145/321906.321910
http://doi.acm.org/10.1145/321906.321910
http://dx.doi.org/10.1016/j.cor.2021.105424
http://dx.doi.org/10.1016/j.cor.2021.105424
http://dx.doi.org/10.1016/j.cor.2021.105424
http://dx.doi.org/10.1016/0377-2217(84)90077-8
https://www.mdv.de/tickets/befoerderungsbedingungen-tarifbestimmungen/
https://www.mdv.de/tickets/befoerderungsbedingungen-tarifbestimmungen/
https://www.mdv.de/tickets/befoerderungsbedingungen-tarifbestimmungen/
https://www.mdv.de/informationen/downloads/
https://www.mdv.de/informationen/downloads/
https://www.mdv.de/informationen/downloads/
http://dl.acm.org/citation.cfm?id=639508.639512
http://dl.acm.org/citation.cfm?id=639508.639512
http://dl.acm.org/citation.cfm?id=639508.639512
http://dx.doi.org/10.4230/OASIcs.ATMOS.2005.657
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1007/s00186-018-0649-x
http://dx.doi.org/10.1007/s00186-018-0649-x
http://dx.doi.org/10.1007/s00186-018-0649-x
http://dx.doi.org/10.1016/j.cor.2010.08.003
http://dx.doi.org/10.1016/j.cor.2010.08.003
http://dx.doi.org/10.1016/j.cor.2010.08.003
https://www.sciencedirect.com/science/article/pii/S0305054810001656
https://www.sciencedirect.com/science/article/pii/S0305054810001656
https://www.sciencedirect.com/science/article/pii/S0305054810001656
https://hdl.handle.net/1721.1/127617
http://dx.doi.org/10.48550/arXiv.2106.10521
http://dx.doi.org/10.48550/arXiv.2106.10521
http://dx.doi.org/10.48550/arXiv.2106.10521
http://arxiv.org/abs/2106.10521
https://web.archive.org/web/20200930070236///https://www.vbn.de/tickets/ticketangebot/nachtlinienzuschlag/
https://web.archive.org/web/20200930070236///https://www.vbn.de/tickets/ticketangebot/nachtlinienzuschlag/
https://web.archive.org/web/20200930070236///https://www.vbn.de/tickets/ticketangebot/nachtlinienzuschlag/
https://www.vbn.de/tickets/tarifbestimmungen
https://www.vbn.de/tickets/tarifbestimmungen
https://www.vbn.de/tickets/tarifbestimmungen
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb36
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb36
http://refhub.elsevier.com/S2192-4376(24)00003-7/sb36

	Price optimal routing in public transportation
	Introduction
	Our Contribution
	Related Literature
	Overview

	Running Example: MDV
	A Formal Framework for Fare Structures
	Modeling with Monoids
	Ticket Graphs and Fare Events
	Conditional Fare Networks
	Some Hints on Modeling with CFNs

	CFNs in Routing Algorithms
	Dominance for Fare States
	The Comparability Partition

	Price-Optimal RAPTOR
	Multi-criteria search with McRAP
	Using conditional fare networks in McRAP
	Restricted Pareto-Sets
	Speed-Up Techniques

	Computational Results
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Computational Complexity and Links to Automata Theory
	Appendix B. Pseudocode for the McRAP algorithm
	References

